Science.gov

Sample records for adventitious rooting process1

  1. The Physiology of Adventitious Roots1

    PubMed Central

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  2. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    PubMed

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  3. [Influencing factors on culture of medicinal plants adventitious roots].

    PubMed

    Yin, Shuang-Shuang; Gao, Wen-Yuan; Wang, Juan; Liu, Hui; Zuo, Bei-Mei

    2012-12-01

    With the modernization of traditional Chinese medicine, medicinal plants resources cannot meet the request of Chinese medicine industry. Medicinal plants adventitious roots culture in a large scale is an important way to achieve Chinese medicine industrialization. However, how to establish good adventitious roots culture system is its key, such as plant hormones, explant, sucrose, innoculum and salt strength.

  4. Meristematic Activity during Adventitious Root Primordium Development

    PubMed Central

    Haissig, Bruce E.

    1972-01-01

    Intact brittle willows (Salix fragilis L.) were treated so that developing adventitious root primordia in the stems would be subjected to elevated gibberellic acid or reduced endogenous auxin levels. Observations were made of primordia that were initiated during the experiments and of primordia that were established before the experiments began. The results indicated that as primordia became older and contained more cells, auxin basipetally transported in the stem seemed to be of less importance in determining cell number per primordium. Thus, established primordia depended upon this auxin to a lesser extent than primordia which were being initiated. These observations were explained on the basis of differential contributions during primordium development of cell division in the cambium of the stem and in the primordia themselves. As opposed to the effects of reduced auxin levels, applied gibberellic acid reduced the cell number per primordium most in established primordia. Initiating primordia were least affected by gibberellic acid treatment. Gibberellic acid treatment seemed mainly to reduce intraprimordium cell division, on which continued development of established primordia most depends. Seemingly, at least in brittle willow, applied gibberellic acid blocks the action of auxin in primordium development subsequent to the initiation phase. PMID:16658077

  5. Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia.

    PubMed

    Baskaran, P; Jayabalan, N

    2009-07-01

    Psoralea corylifolia is an endangered plant producing various compounds of medical importance. Adventitious roots and hairy roots were induced in cultures prepared from hypocotyl explants. Psoralen content was evaluated in both root types grown either in suspension cultures or on agar solidified medium. Psoralen content was approximately 3 mg g(-1) DW in suspension grown hairy roots being higher than in solid grown hairy roots and in solid and suspension-grown adventitious roots.

  6. Improvement of adventitious root formation in flax using hydrogen peroxide.

    PubMed

    Takáč, Tomáš; Obert, Bohuš; Rolčík, Jakub; Šamaj, Jozef

    2016-09-25

    Flax (Linum usitatissimum L.) is an important crop for the production of oil and fiber. In vitro manipulations of flax are used for genetic improvement and breeding while improvements in adventitious root formation are important for biotechnological programs focused on regeneration and vegetative propagation of genetically valuable plant material. Additionally, flax hypocotyl segments possess outstanding morphogenetic capacity, thus providing a useful model for the investigation of flax developmental processes. Here, we investigated the crosstalk between hydrogen peroxide and auxin with respect to reprogramming flax hypocotyl cells for root morphogenetic development. Exogenous auxin induced the robust formation of adventitious roots from flax hypocotyl segments while the addition of hydrogen peroxide further enhanced this process. The levels of endogenous auxin (indole-3-acetic acid; IAA) were positively correlated with increased root formation in response to exogenous auxin (1-Naphthaleneacetic acid; NAA). Histochemical staining of the hypocotyl segments revealed that hydrogen peroxide and peroxidase, but not superoxide, were positively correlated with root formation. Measurements of antioxidant enzyme activities showed that endogenous levels of hydrogen peroxide were controlled by peroxidases during root formation from hypocotyl segments. In conclusion, hydrogen peroxide positively affected flax adventitious root formation by regulating the endogenous auxin levels. Consequently, this agent can be applied to increase flax regeneration capacity for biotechnological purposes such as improved plant rooting.

  7. Transcript expression profiling for adventitious roots of Panax ginseng Meyer.

    PubMed

    Subramaniyam, Sathiyamoorthy; Mathiyalagan, Ramya; Natarajan, Sathishkumar; Kim, Yu-Jin; Jang, Moon-Gi; Park, Jun-Hyung; Yang, Deok Chun

    2014-08-01

    Panax ginseng Meyer is one of the major medicinal plants in oriental countries belonging to the Araliaceae family which are the primary source for ginsenosides. However, very few genes were characterized for ginsenoside pathway, due to the limited genome information. Through this study, we obtained a comprehensive transcriptome from adventitious roots, which were treated with methyl jasmonic acids for different time points (control, 2h, 6h, 12h, and 24h) and sequenced by RNA 454 pyrosequencing technology. Reference transcriptome 39,304,529 (0.04GB) was obtained from 5,724,987,880 bases (5.7GB) of 22 libraries by de novo assembly and 35,266 (58.5%) transcripts were annotated with biological schemas (GO and KEGG). The digital gene expression patterns were obtained from in vitro grown adventitious root sequences which mapped to reference, from that, 3813 (6.3%) unique transcripts were involved in ≥2 fold up and downregulations. Finally, candidates for ginsenoside pathway genes were predicted from observed expression patterns. Among them, 30 transcription factors, 20 cytochromes, and 11 glycosyl transferases were predicted as ginsenoside candidates. These data can remarkably expand the existing transcriptome resources of Panax, especially to predict existence of gene networks in P. ginseng. The entity of the data provides a valuable platform to reveal more on secondary metabolism and abiotic stresses from P. ginseng in vitro grown adventitious roots.

  8. Dissecting the contribution of microtubule behaviour in adventitious root induction

    PubMed Central

    Abu-Abied, Mohamad; Rogovoy (Stelmakh), Oksana; Mordehaev, Inna; Grumberg, Marina; Elbaum, Rivka; Wasteneys, Geoffrey O.; Sadot, Einat

    2015-01-01

    Induction of adventitious roots (ARs) in recalcitrant plants often culminates in cell division and callus formation rather than root differentiation. Evidence is provided here to suggest that microtubules (MTs) play a role in the shift from cell division to cell differentiation during AR induction. First, it was found that fewer ARs form in the temperature-sensitive mutant mor1-1, in which the MT-associated protein MOR1 is mutated, and in bot1-1, in which the MT-severing protein katanin is mutated. In the two latter mutants, MT dynamics and form are perturbed. By contrast, the number of ARs increased in RIC1-OX3 plants, in which MT bundling is enhanced and katanin is activated. In addition, any1 plants in which cell walls are perturbed made more ARs than wild-type plants. MT perturbations during AR induction in mor1-1 or in wild-type hypocotyls treated with oryzalin led to the formation of amorphous clusters of cells reminiscent of callus. In these cells a specific pattern of polarized light retardation by the cell walls was lost. PIN1 polarization and auxin maxima were hampered and differentiation of the epidermis was inhibited. It is concluded that a fine-tuned crosstalk between MTs, cell walls, and auxin transport is required for proper AR induction. PMID:25788735

  9. Dissecting the contribution of microtubule behaviour in adventitious root induction.

    PubMed

    Abu-Abied, Mohamad; Rogovoy Stelmakh, Oksana; Mordehaev, Inna; Grumberg, Marina; Elbaum, Rivka; Wasteneys, Geoffrey O; Sadot, Einat

    2015-05-01

    Induction of adventitious roots (ARs) in recalcitrant plants often culminates in cell division and callus formation rather than root differentiation. Evidence is provided here to suggest that microtubules (MTs) play a role in the shift from cell division to cell differentiation during AR induction. First, it was found that fewer ARs form in the temperature-sensitive mutant mor1-1, in which the MT-associated protein MOR1 is mutated, and in bot1-1, in which the MT-severing protein katanin is mutated. In the two latter mutants, MT dynamics and form are perturbed. By contrast, the number of ARs increased in RIC1-OX3 plants, in which MT bundling is enhanced and katanin is activated. In addition, any1 plants in which cell walls are perturbed made more ARs than wild-type plants. MT perturbations during AR induction in mor1-1 or in wild-type hypocotyls treated with oryzalin led to the formation of amorphous clusters of cells reminiscent of callus. In these cells a specific pattern of polarized light retardation by the cell walls was lost. PIN1 polarization and auxin maxima were hampered and differentiation of the epidermis was inhibited. It is concluded that a fine-tuned crosstalk between MTs, cell walls, and auxin transport is required for proper AR induction.

  10. Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana.

    PubMed

    López-Bucio, José; Ortiz-Castro, Randy; Ruíz-Herrera, León Francisco; Juárez, Consuelo Vargas; Hernández-Madrigal, Fátima; Carreón-Abud, Yazmín; Martínez-Trujillo, Miguel

    2015-04-01

    Morphological root plasticity optimizes nutrient and water uptake by plants and is a promising target to improve tolerance to metal toxicity. Exposure to sublethal chromate [Cr(VI)] concentrations inhibits root growth, decreases photosynthesis and compromises plant development and productivity. Despite the increasing environmental problem that Cr(VI) represents, to date, the Cr tolerance mechanisms of plants are not well understood, and it remains to be investigated whether root architecture remodelling is important for plant adaptation to Cr(VI) stress. In this report, we analysed the growth response of Arabidopsis thaliana seedlings to concentrations of Cr(VI) that strongly repress primary and lateral root growth. Interestingly, adventitious roots started developing, branched and allowed seedlings to grow under highly growth-repressing Cr(VI) concentrations. Cr(VI) negatively regulates auxin transport and response gene expression in the primary root tip, as evidenced by decreased expression of auxin-related reporters DR5::GFP, DR5::uidA and PIN1::PIN1::GFP, and then, another auxin maximum is established at the site of adventitious root initiation that drives adventitious root organogenesis. Both primary root growth inhibition and adventitious root formation induced by high Cr(VI) levels are blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. These data provide evidence that suggests a critical role for auxin transport and signalling via IAA14/SLR1 in the developmental program linking Cr(VI) to root architecture remodelling.

  11. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation

    PubMed Central

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Schwambach, Joseli; Bellini, Catherine

    2014-01-01

    The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process. PMID:24596172

  12. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.

    PubMed

    Agulló-Antón, María Ángeles; Ferrández-Ayela, Almudena; Fernández-García, Nieves; Nicolás, Carlos; Albacete, Alfonso; Pérez-Alfocea, Francisco; Sánchez-Bravo, José; Pérez-Pérez, José Manuel; Acosta, Manuel

    2014-03-01

    The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. A detailed analysis of the morphological changes occurring in the basal region of cultivated carnation cuttings during the early stages of adventitious rooting was carried out and the physiological modifications induced by exogenous auxin application were studied. To this end, the endogenous concentrations of five major classes of plant hormones [auxin, cytokinin (CK), abscisic acid, salicylic acid (SA) and jasmonic acid] and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid were analyzed at the base of stem cuttings and at different stages of adventitious root formation. We found that the stimulus triggering the initiation of adventitious root formation occurred during the first hours after their excision from the donor plant, due to the breakdown of the vascular continuum that induces auxin accumulation near the wounding. Although this stimulus was independent of exogenously applied auxin, it was observed that the auxin treatment accelerated cell division in the cambium and increased the sucrolytic activities at the base of the stem, both of which contributed to the establishment of the new root primordia at the stem base. Further, several genes involved in auxin transport were upregulated in the stem base either with or without auxin application, while endogenous CK and SA concentrations were specially affected by exogenous auxin application. Taken together our results indicate significant crosstalk between auxin levels, stress hormone homeostasis and sugar availability in the base of the stem cuttings in carnation during the initial steps of adventitious rooting.

  13. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata.

    PubMed

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar

    2013-08-01

    Andrographolide is the principal bioactive component of the medicinal plant Andrographis paniculata, to which various diverse pharmacological properties are attributed. Traditionally, andrographolide was extracted from the leaves, stems and other parts of the plant. Leaves have the highest andrographolide content (2-3%) in comparison with the other plant parts. Adventitious root culture of leaf explants of A. paniculata was studied using different strength MS medium supplemented by different concentrations of auxins and a combination of NAA + kinetin for growth and andrographolide production. Among the different auxin treatments in adventitious root culture, only NAA was able to induce adventitious roots. Adventitious roots grown in modified strength MS medium showed the highest root growth (26.7 +/- 1.52), as well as the highest amount of andrographolide (133.3 +/- 1.5 mg/g DW) as compared with roots grown in half- and full-strength MS medium. Growth kinetics showed maximum biomass production after five weeks of culture in different strength MS liquid medium. The produced andrographolide content was 3.5 - 5.5 folds higher than that of the natural plant, depending on the medium strength.

  14. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings

    PubMed Central

    Birlanga, Virginia; Villanova, Joan; Cano, Antonio; Cano, Emilio A.; Acosta, Manuel; Pérez-Pérez, José Manuel

    2015-01-01

    Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders’ rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species. PMID:26230608

  15. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings.

    PubMed

    Birlanga, Virginia; Villanova, Joan; Cano, Antonio; Cano, Emilio A; Acosta, Manuel; Pérez-Pérez, José Manuel

    2015-01-01

    Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders' rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species.

  16. Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber.

    PubMed

    Zhu, Yongchao; Liao, Weibiao; Wang, Meng; Niu, Lijuan; Xu, Qingqing; Jin, Xin

    2016-05-20

    Hydrogen gas (H2) is involved in plant development and stress responses. Cucumber explants were used to study whether nitric oxide (NO) is involved in H2-induced adventitious root development. The results revealed that 50% and 100% hydrogen-rich water (HRW) apparently promoted the development of adventitious root in cucumber. While, the responses of HRW-induced adventitious rooting were blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), NO synthase (NOS) enzyme inhibitor N(G)-nitro-l-arginine methylester hydrochloride (l-NAME) and nitrate reductase (NR) inhibitor NaN3. HRW also increased NO content and NOS and NR activity both in a dose- and time-dependent fashion. Moreover, molecular evidence showed that HRW up-regulated NR genes expression in explants. The results indicate the importance of NOS and NR enzymes, which might be responsible for NO production in explants during H2-induced root organogenesis. Additionally, peroxidase (POD) and indoleacetic acid oxidase (IAAO) activity was significantly decreased in the explants treated with HRW, while HRW treatment significantly increased polyphenol oxidase (PPO) activity. In addition, cPTIO, l-NAME and NaN3 inhibited the actions of HRW on the activity of these enzymes. Together, NO may be involved in H2-induced adventitious rooting, and NO may be acting downstream in plant H2 signaling cascade.

  17. [Cloning of cDNA fragments related to adventitious root formation from mango cotyledon section].

    PubMed

    Xiao, Jie-Ning; Huang, Xue-Lin; Zhang, Yi-Shun; Li, Yin; Li, Xiao-Ju

    2004-04-01

    Two cut surfaces of mango cotyledon (distal and proximal cut surfaces) showed different capability of adventitious root formation, only proximal cut surface could be induced to form the roots and the distal cut surface did not. cDNA fragments related to adventitious root formation from the cut sections were isolated with suppressive subtractive hybridization. The forward substracted cDNA library was constructed using the cDNAs of distal (non-rooting) cut surface as driver and the cDNAs of proximal (rooting) cut surface as tester. Six positive clones were obtained by Virtual Northern blots. In this study, the putative up-regulated genes showed by sequence analysis were reported in mango for the first time, the deduced proteins among the positive clones were homologous to transporters, transcriptional regulators and enzymes.

  18. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures.

    PubMed

    Sanches Lopes, Sheila Mara; Francisco, Mariane Grigio; Higashi, Bruna; de Almeida, Rafaela Takako Ribeiro; Krausová, Gabriela; Pilau, Eduardo Jorge; Gonçalves, José Eduardo; Gonçalves, Regina Aparecida Correia; Oliveira, Arildo José Braz de

    2016-11-05

    Stevia rebaudiana (Bertoni) is widely studied because of its foliar steviol glycosides. Fructan-type polysaccharides were recently isolated from its roots. Fructans are reserve carbohydrates that have important positive health effects and technological applications in the food industry. The objective of the present study was to isolate and characterize fructo-oligosaccharides (FOSs) from S. rebaudiana roots and in vitro adventitious root cultures and evaluate the potential prebiotic effect of these molecules. The in vitro adventitious root cultures were obtained using a roller bottle system. Chemical analyses (gas chromatography-mass spectrometry, (1)H nuclear magnetic resonance, and off-line electrospray ionization-mass spectrometry) revealed similar chemical properties of FOSs that were obtained from the different sources. The potential prebiotic effects of FOSs that were isolated from S. rebaudiana roots enhanced the growth of both bifidobacteria and lactobacilli, with strains specificity in their fermentation ability.

  19. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting.

    PubMed

    Urquhart, Shelley; Foo, Eloise; Reid, James B

    2015-03-01

    The recently discovered group of plant hormones, the strigolactones, have been implicated in regulating photomorphogenesis. We examined this extensively in our strigolactone synthesis and response mutants and could find no evidence to support a major role for strigolactone signaling in classic seedling photomorphogenesis (e.g. elongation and leaf expansion) in pea (Pisum sativum), consistent with two recent independent reports in Arabidopsis. However, we did find a novel effect of strigolactones on adventitious rooting in darkness. Strigolactone-deficient mutants, Psccd8 and Psccd7, produced significantly fewer adventitious roots than comparable wild-type seedlings when grown in the dark, but not when grown in the light. This observation in dark-grown plants did not appear to be due to indirect effects of other factors (e.g. humidity) as the constitutively de-etiolated mutant, lip1, also displayed reduced rooting in the dark. This role for strigolactones did not involve the MAX2 F-Box strigolactone response pathway as Psmax2 f-box mutants did not show a reduction in adventitious rooting in the dark compared with wild-type plants. The auxin-deficient mutant bushy also reduced adventitious rooting in the dark, as did decapitation of wild-type plants. Rooting was restored by the application of indole-3-acetic acid (IAA) to decapitated plants, suggesting a role for auxin in the rooting response. However, auxin measurements showed no accumulation of IAA in the epicotyls of wild-type plants compared with the strigolactone synthesis mutant Psccd8, suggesting that changes in the gross auxin level in the epicotyl are not mediating this response to strigolactone deficiency.

  20. The quiescent center and the stem cell niche in the adventitious roots of Arabidopsis thaliana.

    PubMed

    Rovere, Federica Della; Fattorini, Laura; Ronzan, Marilena; Falasca, Giuseppina; Altamura, Maria Maddalena

    2016-05-03

    Adventitious rooting is essential for the survival of numerous species from vascular cryptogams to monocots, and is required for successful micropropagation. The tissues involved in AR initiation may differ in planta and in in vitro systems. For example, in Arabidopsis thaliana, ARs originate from the hypocotyl pericycle in planta and the stem endodermis in in vitro cultured thin cell layers. The formation of adventitious roots (ARs) depends on numerous factors, among which the hormones, auxin, in particular. In both primary and lateral roots, growth depends on a functional stem cell niche in the apex, maintained by an active quiescent center (QC), and involving the expression of genes controlled by auxin and cytokinin. This review summarizes current knowledge about auxin and cytokinin control on genes involved in the definition and maintenance of QC, and stem cell niche, in the apex of Arabidopsis ARs in planta and in longitudinal thin cell layers.

  1. Adventitious roots of wheat seedlings that emerge in oxygen-deficient conditions have increased root diameters with highly developed lysigenous aerenchyma.

    PubMed

    Yamauchi, Takaki; Abe, Fumitaka; Kawaguchi, Kentaro; Oyanagi, Atsushi; Nakazono, Mikio

    2014-01-01

    Exposing roots of plants to hypoxic conditions is known to greatly improve their anoxic stress tolerance. We previously showed that pre-treatment of wheat seedlings with an ethylene precursor, 1-aminocyclopropanecarboxylic acid (ACC), enhanced their tolerance of oxygen-deficient conditions. Although ACC-pretreated seminal roots of wheat seedlings grown under oxygen-deficient conditions avoided root tip death, they elongated very little. In the present study, we assessed the effects of ethylene on the responses of adventitious roots of wheat seedlings to oxygen-deficient conditions. Lysigenous aerenchyma formation in the adventitious roots of wheat seedlings pretreated with ACC appeared to reduce tip death under oxygen-deficient conditions, but the adventitious roots, like the seminal roots, hardly elongated. We also found that adventitious roots that emerge in oxygen-deficient conditions continued to elongate even under such conditions. The adventitious roots emerged in oxygen-deficient conditions were found to have thicker root diameters than those emerged in aerated conditions. These results suggest that the adventitious roots with thicker root diameters can better cope with oxygen-deficient conditions. Measurements of the area of the lysigenous aerenchyma confirmed that the increased root diameters have a greater amount of air space generated by lysigenous aerenchyma formation.

  2. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    PubMed

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.

  3. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara

    PubMed Central

    Zhang, Qian; Visser, Eric J. W.; de Kroon, Hans; Huber, Heidrun

    2015-01-01

    Background and Aims Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Methods Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Key Results Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. Conclusions The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant’s life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow

  4. Large Scale Culture of Ginseng Adventitious Roots for Production of Ginsenosides

    NASA Astrophysics Data System (ADS)

    Paek, Kee-Yoeup; Murthy, Hosakatte Niranjana; Hahn, Eun-Joo; Zhong, Jian-Jiang

    Ginseng (Panax ginseng C. A. Meyer) is one of the most famous oriental medicinal plants used as crude drugs in Asian countries, and now it is being used worldwide for preventive and therapeutic purposes. Among diverse constituents of ginseng, saponins (ginsenosides) have been found to be major components responsible for their biological and pharmacological actions. On the other hand, difficulties in the supply of pure ginsenosides in quantity prevent the development of ginseng for clinical medicines. Cultivation of ginseng in fields takes a long time, generally 5-7 years, and needs extensive effort regarding quality control since growth is susceptible to many environmental factors including soil, shade, climate, pathogens and pests. To solve the problems, cell and tissue cultures have been widely explored for more rapid and efficient production of ginseng biomass and ginsenosides. Recently, cell and adventitious root cultures of P. ginseng have been established in large scale bioreactors with a view to commercial application. Various physiological and engineering parameters affecting the biomass production and ginsenoside accumulation have been investigated. Advances in adventitious root cultures including factors for process scale-up are reviewed in this chapter. In addition, biosafety analyses of ginseng adventitious roots are also discussed for real application.

  5. Proteomic Analysis of Different Mutant Genotypes of Arabidopsis Led to the Identification of 11 Proteins Correlating with Adventitious Root Development1[W

    PubMed Central

    Sorin, Céline; Negroni, Luc; Balliau, Thierry; Corti, Hélène; Jacquemot, Marie-Pierre; Davanture, Marlène; Sandberg, Göran; Zivy, Michel; Bellini, Catherine

    2006-01-01

    A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities. PMID:16377752

  6. Gonadotropin promotion of adventitious root production on cuttings of Begonia semperflorens and Vitis vinifera.

    PubMed

    Leshem, Y; Lunenfeld, B

    1968-03-01

    Adventitious rooting of Begonia semperflorens cv. Indian Maid and Vitis vinifera cv. Semillon stem cuttings was significantly promoted by human chorionic gonadotropin (HCG). Basal sections of HCG treated cuttings upon which promoted rooting took place had markedly less endogenous gibberellin (GA) activity than non-treated controls or apical sections of treated ones, while changes in auxin levels were not found. HCG also inhibited GA(3)-induced reducing sugar release from embryoless barley endosperm halves. These findings are discussed in the light of a possible analogy to gonadotropin action in animal systems.

  7. Gonadotropin Promotion of Adventitious Root Production on Cuttings of Begonia semperflorens and Vitis vinifera 1

    PubMed Central

    Leshem, Y.; Lunenfeld, B.

    1968-01-01

    Adventitious rooting of Begonia semperflorens cv. Indian Maid and Vitis vinifera cv. Semillon stem cuttings was significantly promoted by human chorionic gonadotropin (HCG). Basal sections of HCG treated cuttings upon which promoted rooting took place had markedly less endogenous gibberellin (GA) activity than non-treated controls or apical sections of treated ones, while changes in auxin levels were not found. HCG also inhibited GA3-induced reducing sugar release from embryoless barley endosperm halves. These findings are discussed in the light of a possible analogy to gonadotropin action in animal systems. PMID:5641189

  8. Production of tropane alkaloids by small-scale bubble column bioreactor cultures of Scopolia parviflora adventitious roots.

    PubMed

    Min, Ji Yun; Jung, Hee Young; Kang, Seung Mi; Kim, Yong Duck; Kang, Young Min; Park, Dong Jin; Prasad, Doddananjappa Theertha; Choi, Myung Suk

    2007-07-01

    The mass production of tropane alkaloids from adventitious root cultures of Scopolia parviflora, in small-scale bubble column bioreactor (BCB) was attempted. Adventitious roots of S. parviflora produced relatively enhanced levels of scopolamine and hyoscyamine in bioreactor compared to flask type cultures, and rapidly produced root clumps, with continuously increasing biomass throughout the culture period. The production of scopolamine and hyoscyamine in the top and bottom regions of root clumps were higher than in the core region. The adventitious root cultures of S. parviflora in the BCB required a relatively high level of aeration. The optimized conditions for the bioreactor culture growth and alkaloid production were found to be 3g of inoculum, on a fresh weight basis, a 15-day culture period and 0.4vvm of airflow. The elicitation by Staphylococus aureus increased the specific compound of scopolamine, while the production of hyoscyamine was slightly inhibited in BCB cultures.

  9. Triterpene and Flavonoid Biosynthesis and Metabolic Profiling of Hairy Roots, Adventitious Roots, and Seedling Roots of Astragalus membranaceus.

    PubMed

    Park, Yun Ji; Thwe, Aye Aye; Li, Xiaohua; Kim, Yeon Jeong; Kim, Jae Kwang; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2015-10-14

    Astragalus membranaceus is an important traditional Chinese herb with various medical applications. Astragalosides (ASTs), calycosin, and calycosin-7-O-β-d-glucoside (CG) are the primary metabolic components in A. membranaceus roots. The dried roots of A. membranaceus have various medicinal properties. The present study aimed to investigate the expression levels of genes related to the biosynthetic pathways of ASTs, calycosin, and CG to investigate the differences between seedling roots (SRs), adventitious roots (ARs), and hairy roots (HRs) using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR study revealed that the transcription level of genes involved in the AST biosynthetic pathway was lowest in ARs and showed similar patterns in HRs and SRs. Moreover, most genes involved in the synthesis of calycosin and CG exhibited the highest expression levels in SRs. High-performance liquid chromatography (HPLC) analysis indicated that the expression level of the genes correlated with the content of ASTs, calycosin, and CG in the three different types of roots. ASTs were the most abundant in SRs. CG accumulation was greater than calycosin accumulation in ARs and HRs, whereas the opposite was true in SRs. Additionally, 40 metabolites were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). Principal component analysis (PCA) documented the differences among SRs, ARs, and HRs. PCA comparatively differentiated among the three samples. The results of PCA showed that HRs were distinct from ARs and SRs on the basis of the dominant amounts of sugars and clusters derived from closely similar biochemical pathways. Also, ARs had a higher concentration of phenylalanine, a precursor for the phenylpropanoid biosynthetic pathway, as well as CG. TCA cycle intermediates levels including succinic acid and citric acid indicated a higher amount in SRs than in the others.

  10. An Efficient Method for Adventitious Root Induction from Stem Segments of Brassica Species

    PubMed Central

    Srikanth, Sandhya; Choong, Tsui Wei; Yan, An; He, Jie; Chen, Zhong

    2016-01-01

    Plant propagation via in vitro culture is a very laborious and time-consuming process. The growth cycle of some of the crop species is slow even in the field and the consistent commercial production is hard to maintain. Enhanced methods of reduced cost, materials and labor significantly impact the research and commercial production of field crops. In our studies, stem-segment explants of Brassica species were found to generate adventitious roots (AR) in aeroponic systems in less than a week. As such, the efficiency of rooting from stem explants of six cultivar varieties of Brassica spp was tested without using any plant hormones. New roots and shoots were developed from Brassica alboglabra (Kai Lan), B. oleracea var. acephala (purple kale), B. rapa L. ssp. chinensis L (Pai Tsai, Nai Bai C, and Nai Bai T) explants after 3 to 5 days of growing under 20 ± 2°C cool root zone temperature (C-RZT) and 4 to 7 days in 30 ± 2°C ambient root zone temperature (A-RZT). At the base of cut end, anticlinal and periclinal divisions of the cambial cells resulted in secondary xylem toward pith and secondary phloem toward cortex. The continuing mitotic activity of phloem parenchyma cells led to a ring of conspicuous white callus. Root initials formed from the callus which in turn developed into ARs. However, B. rapa var. nipposinica (Mizuna) explants were only able to root in C-RZT. All rooted explants were able to develop into whole plants, with higher biomass obtained from plants that grown in C-RZT. Moreover, explants from both RZTs produced higher biomass than plants grown from seeds (control plants). Rooting efficiency was affected by RZTs and explant cuttings of donor plants. Photosynthetic CO2 assimilation rate (Asat) and stomatal conductance (gssat) were significantly differentiated between plants derived from seeds and explants at both RZTs. All plants in A-RZT had highest transpiration rates. PMID:27446170

  11. An Efficient Method for Adventitious Root Induction from Stem Segments of Brassica Species.

    PubMed

    Srikanth, Sandhya; Choong, Tsui Wei; Yan, An; He, Jie; Chen, Zhong

    2016-01-01

    Plant propagation via in vitro culture is a very laborious and time-consuming process. The growth cycle of some of the crop species is slow even in the field and the consistent commercial production is hard to maintain. Enhanced methods of reduced cost, materials and labor significantly impact the research and commercial production of field crops. In our studies, stem-segment explants of Brassica species were found to generate adventitious roots (AR) in aeroponic systems in less than a week. As such, the efficiency of rooting from stem explants of six cultivar varieties of Brassica spp was tested without using any plant hormones. New roots and shoots were developed from Brassica alboglabra (Kai Lan), B. oleracea var. acephala (purple kale), B. rapa L. ssp. chinensis L (Pai Tsai, Nai Bai C, and Nai Bai T) explants after 3 to 5 days of growing under 20 ± 2°C cool root zone temperature (C-RZT) and 4 to 7 days in 30 ± 2°C ambient root zone temperature (A-RZT). At the base of cut end, anticlinal and periclinal divisions of the cambial cells resulted in secondary xylem toward pith and secondary phloem toward cortex. The continuing mitotic activity of phloem parenchyma cells led to a ring of conspicuous white callus. Root initials formed from the callus which in turn developed into ARs. However, B. rapa var. nipposinica (Mizuna) explants were only able to root in C-RZT. All rooted explants were able to develop into whole plants, with higher biomass obtained from plants that grown in C-RZT. Moreover, explants from both RZTs produced higher biomass than plants grown from seeds (control plants). Rooting efficiency was affected by RZTs and explant cuttings of donor plants. Photosynthetic CO2 assimilation rate (Asat ) and stomatal conductance (gssat ) were significantly differentiated between plants derived from seeds and explants at both RZTs. All plants in A-RZT had highest transpiration rates.

  12. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    PubMed Central

    Tombesi, Sergio; Palliotti, Alberto; Poni, Stefano; Farinelli, Daniela

    2015-01-01

    Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L) (a hard-to-root specie) leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non-saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation. PMID:26635821

  13. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus

    DOE PAGES

    Ribeiro, Cintia L.; Silva, Cynthia M.; Drost, Derek R.; ...

    2016-03-16

    In this study, adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. As a result, parental individuals andmore » progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7–10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. In conclusion, this study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of

  14. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus

    SciTech Connect

    Ribeiro, Cintia L.; Silva, Cynthia M.; Drost, Derek R.; Novaes, Evandro; Novaes, Carolina R. D. B.; Dervinis, Christopher; Kirst, Matias

    2016-03-16

    In this study, adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. As a result, parental individuals and progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7–10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. In conclusion, this study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of the Trp

  15. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara.

    PubMed

    Dawood, Thikra; Yang, Xinping; Visser, Eric J W; Te Beek, Tim A H; Kensche, Philip R; Cristescu, Simona M; Lee, Sangseok; Floková, Kristýna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo

    2016-04-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding.

  16. Bioreactor with Ipomoea hederifolia adventitious roots and its endophyte Cladosporium cladosporioides for textile dye degradation.

    PubMed

    Patil, Swapnil M; Chandanshive, Vishal V; Rane, Niraj R; Khandare, Rahul V; Watharkar, Anuprita D; Govindwar, Sanjay P

    2016-04-01

    In vitro grown untransformed adventitious roots (AR) culture of Ipomoea hederifolia and its endophytic fungus (EF) Cladosporium cladosporioides decolorized Navy Blue HE2R (NB-HE2R) at a concentration of 20 ppm up to 83.3 and 65%, respectively within 96h. Whereas the AR-EF consortium decolorized the dye more efficiently and gave 97% removal within 36h. Significant inductions in the enzyme activities of lignin peroxidase, tyrosinase and laccase were observed in roots, while enzymes like tyrosinase, laccase and riboflavin reductase activities were induced in EF. Metabolites of dye were analyzed using UV-vis spectroscopy, FTIR and gas chromatography-mass spectrometry. Possible metabolic pathways of NB-HE2R were proposed with AR, EF and AR-EF systems independently. Looking at the superior efficacy of AR-EF system, a rhizoreactor was developed for the treatment of NB-HE2R at a concentration of 1000 ppm. Control reactor systems with independently grown AR and EF gave 94 and 85% NB-HE2R removal, respectively within 36h. The AR-EF rhizoreactor, however, gave 97% decolorization. The endophyte colonization additionally increased root and shoot lengths of candidate plants through mutualism. Combined bioreactor strategies can be effectively used for future eco-friendly remediation purposes.

  17. Rapid flooding-induced adventitious root development from preformed primordia in Solanum dulcamara

    PubMed Central

    Dawood, Thikra; Rieu, Ivo; Wolters-Arts, Mieke; Derksen, Emiel B.; Mariani, Celestina; Visser, Eric J. W.

    2013-01-01

    Flooding is a common stress factor in both natural and agricultural systems, and affects plant growth by the slow diffusion rate of gases in water. This results in low oxygen concentrations in submerged tissues, and hence in a decreased respiration rate. Understanding the responses of plants to flooding is essential for the management of wetland ecosystems, and may benefit research to improve the flood tolerance of crop species. This study describes the response to partial submergence of bittersweet (Solanum dulcamara). Bittersweet is a Eurasian species that grows both in dry habitats such as coastal dunes, and in wetlands, and therefore is a suitable model plant for studying responses to a variety of environmental stresses. A further advantage is that the species is closely related to flood-intolerant crops such as tomato and eggplant. The species constitutively develops dormant primordia on the stem, which we show to have a predetermined root identity. We investigated adventitious root growth from these primordia during flooding. The synchronized growth of roots from the primordia was detected after 2–3 days of flooding and was due to a combination of cell division and cell elongation. Gene expression analysis demonstrated that the molecular response to flooding began within 2 h and included activation of hypoxia and ethylene signalling genes. Unexpectedly, these early changes in gene expression were very similar in primordia and adjacent stem tissue, suggesting that there is a dominant general response in tissues during early flooding. PMID:24790121

  18. The Arabidopsis Cop9 signalosome subunit 4 (CNS4) is involved in adventitious root formation.

    PubMed

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Lakehal, Abdellah; Pacurar, Andrea Mariana; Ranjan, Alok; Bellini, Catherine

    2017-04-04

    The COP9 signalosome (CSN) is an evolutionary conserved multiprotein complex that regulates many aspects of plant development by controlling the activity of CULLIN-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate and target for proteasomal degradation a vast number of specific substrate proteins involved in many developmental and physiological processes, including light and hormone signaling and cell division. As a consequence of CSN pleiotropic function, complete loss of CSN activity results in seedling lethality. Therefore, a detailed analysis of CSN physiological functions in adult Arabidopsis plants has been hampered by the early seedling lethality of csn null mutants. Here we report the identification and characterization of a viable allele of the Arabidopsis COP9 signalosome subunit 4 (CSN4). The allele, designated csn4-2035, suppresses the adventitious root (AR) phenotype of the Arabidopsis superroot2-1 mutant, potentially by altering its auxin signaling. Furthermore, we show that although the csn4-2035 mutation affects primary and lateral root (LR) formation in the 2035 suppressor mutant, CSN4 and other subunits of the COP9 complex seem to differentially control AR and LR development.

  19. Inheritance and quantitative trail loci mapping of adventitious root numbers in cucumber seedlings under waterlogging conditions.

    PubMed

    Xu, Xuewen; Ji, Jing; Xu, Qiang; Qi, Xiaohua; Chen, Xuehao

    2017-04-01

    The hypocotyl-derived adventitious root (AR) is an important morphological acclimation to waterlogging stress; however, its genetic basis has not been adequately understood. In the present study, a mixed major gene plus polygene inheritance model was used to analyze AR numbers (ARN) 7 days after waterlogging treatment in six generations (P1, P2, F1, B1, B2, and F2), using cucumber waterlogging tolerant line Zaoer-N and sensitive Pepino as parents. The results showed that the genetic model D-4, mixed one negative dominance major gene and additive-dominance polygenes, is the best-fitting genetic model for waterlogging-triggered ARN phenotype. A genetic linkage map spanning 550.8 cM and consisting of 149 simple sequence repeat (SSR) markers segregating into seven linkage groups was constructed. Three QTLs (ARN3.1, ARN5.1, and ARN6.1) distributed on chromosomes 3, 5, and 6 were identified by composite interval mapping. The major-effect QTL, ARN6.1, located between SSR12898 and SSR04751, was the only locus detected in three seasons, with least likelihood (LOD) scores of 8.8, 10.4, and 9.5 and account for 17.6, 24, and 19.8% of the phenotypic variance, respectively. Using five additional single nucleotide polymorphism (SNP) makers, the ARN6.1 was narrowed down to a 0.79 Mb interval franked by SSR12898 and SNP25558853. Illumina RNA-sequencing data generated on hypocotyls of two parents 48 h after waterlogging treatment revealed 15 genes in the 0.79 Mb interval were differentially expressed, including Csa6G503880 encoding a salicylic acid methyl transferase-like protein, Csa6G504590 encoding a cytochrome P450 monooxygenase, and Csa6G505230 encoding a heavy metal-associated protein. Our findings shed light on the genetic architecture underlying adventitious rooting during waterlogging stress in cucumber, and provide a list of potential gene targets for further elucidating waterlogging tolerance in plants.

  20. Pilot-scale culture of Hypericum perforatum L. adventitious roots in airlift bioreactors for the production of bioactive compounds.

    PubMed

    Cui, Xi-Hua; Murthy, Hosakatte Niranjana; Paek, Kee-Yoeup

    2014-09-01

    Hypericum perforatum L. (St. John's Wort) is an important medicinal plant which is widely used in the treatment for depression and irritable bowel syndrome. It is also used as a dietary supplement. Major bioactive phytochemicals of H. perforatum are phenolics and flavonoids. Quality of these phytochemicals is dramatically influenced by environmental and biological factors in the field grown plants. As an alternative, we have developed adventitious root cultures in large-scale bioreactors for the production of useful phytochemicals. Adventitious roots of H. perforatum were cultured in 500 l pilot-scale airlift bioreactors using half-strength Murashige and Skoog medium with an ammonium and nitrate ratio of 5:25 mM and supplemented with 1.0 mg l(-1) indole butyric acid, 0.1 mg l(-1) kinetin, and 3 % sucrose for the production of bioactive phenolics and flavonoids. Then 4.6 and 6.3 kg dry biomass were realized in the 500 l each of drum-type and balloon-type bioreactors, respectively. Accumulation of 66.9 mg g(-1) DW of total phenolics, 48.6 mg g(-1) DW of total flavonoids, 1.3 mg g(-1) DW of chlorogenic acid, 0.01 mg g(-1) DW of hyperin, 0.04 mg g(-1) DW of hypericin, and 0.01 mg g(-1) DW of quercetin could be achieved with adventitious roots cultured in 500 l balloon-type airlift bioreactors. Our findings demonstrate the possibilities of using H. perforatum adventitious root cultures for the production of useful phytochemicals to meet the demand of pharmaceutical and food industry.

  1. Acetylcholinesterase-Inhibition and Antibacterial Activity of Mondia whitei Adventitious Roots and Ex vitro-Grown Somatic Embryogenic-Biomass

    PubMed Central

    Baskaran, Ponnusamy; Kumari, Aloka; Ncube, Bhekumthetho; Van Staden, Johannes

    2016-01-01

    Mondia whitei (Hook.f.) Skeels is an important endangered medicinal and commercial plant in South Africa. In vitro propagation systems are required for biomass production and bioactivity analysis to supplement wild resources/stocks. Adventitious roots from somatic embryogenic explants using suspension culture and ex vitro-grown plants produced via somatic embryogenesis were established using different plant growth regulator treatments. The adventitious root biomass and different parts of ex vitro-grown and mother plants were used to investigate the potential for acetylcholinesterase (AChE) and antibacterial activities. Adventitious roots derived from 2.5 μM indole-3-acetic acid (IAA) treatments and ex vitro-grown plants derived from meta-topolin riboside and IAA treatments gave the best AChE and antibacterial activities. The in vitro-established M. whitei and ex vitro biomass have comparable ability to function as inhibitors of acetylcholinesterase and antibacterial agents, and can be used as potent bioresources in traditional medicine. PMID:27752244

  2. Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in Arabidopsis thaliana.

    PubMed

    Guénin, Stéphanie; Mareck, Alain; Rayon, Catherine; Lamour, Romain; Assoumou Ndong, Yves; Domon, Jean-Marc; Sénéchal, Fabien; Fournet, Françoise; Jamet, Elisabeth; Canut, Hervé; Percoco, Giuseppe; Mouille, Grégory; Rolland, Aurélia; Rustérucci, Christine; Guerineau, François; Van Wuytswinkel, Olivier; Gillet, Françoise; Driouich, Azeddine; Lerouge, Patrice; Gutierrez, Laurent; Pelloux, Jérôme

    2011-10-01

    • Here, we focused on the biochemical characterization of the Arabidopsis thaliana pectin methylesterase 3 gene (AtPME3; At3g14310) and its role in plant development. • A combination of biochemical, gene expression, Fourier transform-infrared (FT-IR) microspectroscopy and reverse genetics approaches were used. • We showed that AtPME3 is ubiquitously expressed in A. thaliana, particularly in vascular tissues. In cell wall-enriched fractions, only the mature part of the protein was identified, suggesting that it is processed before targeting the cell wall. In all the organs tested, PME activity was reduced in the atpme3-1 mutant compared with the wild type. This was related to the disappearance of an activity band corresponding to a pI of 9.6 revealed by a zymogram. Analysis of the cell wall composition showed that the degree of methylesterification (DM) of galacturonic acids was affected in the atpme3-1 mutant. A change in the number of adventitious roots was found in the mutant, which correlated with the expression of the gene in adventitious root primordia. • Our results enable the characterization of AtPME3 as a major basic PME isoform in A. thaliana and highlight its role in adventitious rooting.

  3. Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana

    PubMed Central

    Veloccia, A.; Fattorini, L.; Della Rovere, F.; Sofo, A.; D’Angeli, S.; Betti, C.; Falasca, G.; Altamura, M.M.

    2016-01-01

    Adventitious roots (ARs) are post-embryonic roots essential for plant survival and propagation. Indole-3-acetic acid (IAA) is the auxin that controls AR formation; however, its precursor indole-3-butyric acid (IBA) is known to enhance it. Ethylene affects many auxin-dependent processes by affecting IAA synthesis, transport and/or signaling, but its role in AR formation has not been elucidated. This research investigated the role of ethylene in AR formation in dark-grown Arabidopsis thaliana seedlings, and its interaction with IAA/IBA. A number of mutants/transgenic lines were exposed to various treatments, and mRNA in situ hybridizations were carried out and hormones were quantified In the wild-type, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) at 0.1 μM enhanced AR formation when combined with IBA (10 μM), but reduced it when applied alone; this effect did not occur in the ein3eil1 ethylene-insensitive mutant. ACC inhibited the expression of the IAA-biosynthetic genes WEI2, WEI7, and YUC6, but enhanced IBA-to-IAA conversion, as shown by the response of the ech2ibr10 mutant and an increase in the endogenous levels of IAA. The ethylene effect was independent of auxin-signaling by TIR1-AFB2 and IBA-efflux by ABCG carriers, but it was dependent on IAA-influx by AUX1/LAX3. Taken together, the results demonstrate that a crosstalk involving ethylene signaling, IAA-influx, and IBA-to-IAA conversion exists between ethylene and IAA in the control of AR formation. PMID:27831474

  4. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  5. Oxygen deficiency and salinity affect cell-specific ion concentrations in adventitious roots of barley (Hordeum vulgare).

    PubMed

    Kotula, Lukasz; Clode, Peta L; Striker, Gustavo G; Pedersen, Ole; Läuchli, André; Shabala, Sergey; Colmer, Timothy D

    2015-12-01

    Oxygen deficiency associated with soil waterlogging adversely impacts root respiration and nutrient acquisition. We investigated the effects of O2 deficiency and salinity (100 mM NaCl) on radial O2 concentrations and cell-specific ion distributions in adventitious roots of barley (Hordeum vulgare). Microelectrode profiling measured O2 concentrations across roots in aerated, aerated saline, stagnant or stagnant saline media. X-ray microanalysis at two positions behind the apex determined the cell-specific elemental concentrations of potassium (K), sodium (Na) and chloride (Cl) across roots. Severe O2 deficiency occurred in the stele and apical regions of roots in stagnant solutions. O2 deficiency in the stele reduced the concentrations of K, Na and Cl in the pericycle and xylem parenchyma cells at the subapical region. Near the root apex, Na declined across the cortex in roots from the aerated saline solution but was relatively high in all cell types in roots from the stagnant saline solution. Oxygen deficiency has a substantial impact on cellular ion concentrations in roots. Both pericycle and xylem parenchyma cells are involved in energy-dependent K loading into the xylem and in controlling radial Na and Cl transport. At root tips, accumulation of Na in the outer cell layers likely contributed to reduction of Na in inner cells of the tips.

  6. Carbon Monoxide Is Involved in Hydrogen Gas-Induced Adventitious Root Development in Cucumber under Simulated Drought Stress

    PubMed Central

    Chen, Yue; Wang, Meng; Hu, Linli; Liao, Weibiao; Dawuda, Mohammed M.; Li, Chunlan

    2017-01-01

    Hydrogen gas (H2) and carbon monoxide (CO) are involved in plant growth and developmental processes and may induce plant tolerance to several stresses. However, the independent roles and interaction effect of H2 and CO in adventitious root development under drought conditions have still not received the needed research attention. We hypothesize that there exists crosstalk between H2 and CO during adventitious root development under drought stress. The results of our current study revealed that 50% (v/v) hydrogen-rich water (HRW), 500 μM Hemin (the CO donor) and 30% (w/v) CO aqueous solution apparently promoted the development of adventitious roots in cucumber explants (Cucumis Sativus L.) under drought stress. H2 and CO increased relative water content (RWC), leaf chlorophyll content (chlorophyll a, b, and a+b), and chlorophyll fluorescence parameters [photochemical efficiency of photosystem II (PSII), PSII actual photochemical efficiency and photochemical quench coefficient] under drought condition. When the CO scavenger hemoglobin (Hb) or zinc protoporphyrin IX (ZnPPIX) was added to HRW/CO aqueous solution, the positive effect of HRW/CO aqueous solution on RWC, leaf chlorophyll content, and chlorophyll fluorescence parameters were reversed. Additionally, superoxide dismutases, peroxidase, catalase, and ascorbate peroxidase was significantly increased in the explants treated with HRW and CO aqueous solution under drought stress, thus alleviating oxidative damage, as indicated by decreases in thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and superoxide radical (O2-) levels. H2 and CO also improved the levels of water soluble carbohydrate, total soluble protein, and proline content. However, the above CO/H2-mediated effects were reversed by CO scavenger Hb or CO specific synthetic inhibitor ZnPPIX. Therefore, CO may be involved in H2-induced adventitious rooting under drought stress and alleviate oxidative damage by enhancing RWC, leaf

  7. Carbon Monoxide Is Involved in Hydrogen Gas-Induced Adventitious Root Development in Cucumber under Simulated Drought Stress.

    PubMed

    Chen, Yue; Wang, Meng; Hu, Linli; Liao, Weibiao; Dawuda, Mohammed M; Li, Chunlan

    2017-01-01

    Hydrogen gas (H2) and carbon monoxide (CO) are involved in plant growth and developmental processes and may induce plant tolerance to several stresses. However, the independent roles and interaction effect of H2 and CO in adventitious root development under drought conditions have still not received the needed research attention. We hypothesize that there exists crosstalk between H2 and CO during adventitious root development under drought stress. The results of our current study revealed that 50% (v/v) hydrogen-rich water (HRW), 500 μM Hemin (the CO donor) and 30% (w/v) CO aqueous solution apparently promoted the development of adventitious roots in cucumber explants (Cucumis Sativus L.) under drought stress. H2 and CO increased relative water content (RWC), leaf chlorophyll content (chlorophyll a, b, and a+b), and chlorophyll fluorescence parameters [photochemical efficiency of photosystem II (PSII), PSII actual photochemical efficiency and photochemical quench coefficient] under drought condition. When the CO scavenger hemoglobin (Hb) or zinc protoporphyrin IX (ZnPPIX) was added to HRW/CO aqueous solution, the positive effect of HRW/CO aqueous solution on RWC, leaf chlorophyll content, and chlorophyll fluorescence parameters were reversed. Additionally, superoxide dismutases, peroxidase, catalase, and ascorbate peroxidase was significantly increased in the explants treated with HRW and CO aqueous solution under drought stress, thus alleviating oxidative damage, as indicated by decreases in thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and superoxide radical (O2(-)) levels. H2 and CO also improved the levels of water soluble carbohydrate, total soluble protein, and proline content. However, the above CO/H2-mediated effects were reversed by CO scavenger Hb or CO specific synthetic inhibitor ZnPPIX. Therefore, CO may be involved in H2-induced adventitious rooting under drought stress and alleviate oxidative damage by enhancing RWC

  8. Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax Quinquefolium adventitious root

    PubMed Central

    Wang, Juan; Li, Jinxin; Li, Jianli; Liu, Shujie; Wu, Xiaolei; Li, Jing; Gao, Wenyuan

    2016-01-01

    Here, we combine elicitors and transcriptomics to investigate the inducible biosynthesis of the ginsenoside from the Panax quinquefolium. Treatment of P. quinquefolium adventitious root with methyl jasmonate (MJ) results in an increase in ginsenoside content (43.66 mg/g compared to 8.32 mg/g in control group). Therefore, we sequenced the transcriptome of native and MJ treated adventitious root in order to elucidate the key differentially expressed genes (DEGs) in the ginsenoside biosynthetic pathway. Through DEG analysis, we found that 5,759 unigenes were up-regulated and 6,389 unigenes down-regulated in response to MJ treatment. Several defense-related genes (48) were identified, participating in salicylic acid (SA), jasmonic acid (JA), nitric oxide (NO) and abscisic acid (ABA) signal pathway. Additionally, we mapped 72 unigenes to the ginsenoside biosynthetic pathway. Four cytochrome P450s (CYP450) were likely to catalyze hydroxylation at C-16 (c15743_g1, c39772_g1, c55422_g1) and C-30 (c52011_g1) of the triterpene backbone. UDP-xylose synthases (c52571_g3) was selected as the candidate, which was likely to involve in ginsenoside Rb3 biosynthesis. PMID:27876840

  9. AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco

    PubMed Central

    Toscano-Morales, Roberto; Xoconostle-Cázares, Beatriz; Martínez-Navarro, Angélica Concepción; Ruiz-Medrano, Roberto

    2016-01-01

    The Translationally Controlled Tumor Proteins, or TCTP, is a superfamily of exclusively eukaryotic proteins essential in the regulation of proliferation and general growth. However, it is clear that these are multifunctional proteins given (1) the pleiotropic effects of its mutations, and (2), the multiple processes in which this protein is involved. TCTP function in general is conserved, since Arabidopsis AtTCTP1 can rescue a Drosophila mutant, and vice versa. It has become clear, however, that these proteins may have “taxon-specific” functions. In the case of plants, mRNA and/or proteins have been found in the phloem translocation stream of different species, suggesting a role in long-distance signaling. We have found that a second Arabidopsis TCTP gene, AtTCTP2, codes for a protein that moves long-distance through a graft union in tobacco. Interestingly, the mRNA is also transported long-distance. Both mRNA and protein move long-distance; interestingly, the movement, while more efficient from source to sink tissues, also occurs in the opposite direction. The protein reaches the nuclei of parenchyma cells and adventitious roots. Furthermore, it is clear that the long-distance delivery of AtTCTP2 protein and mRNA is required for the induction of adventitious roots. A model is presented that accounts for these observations. PMID:26237533

  10. Effect of nitrogen source on biomass and bioactive compound production in submerged cultures of Eleutherococcus koreanum Nakai adventitious roots.

    PubMed

    Lee, Eun-Jung; Paek, Kee-Yoeup

    2012-01-01

    Ammonium to nitrate ratios of 0:30, 5:25, 10:20, 15:15, 20:10, 25:5, and 30:0 mM were tested to determine the optimal NH(4)(+) :NO(3)(-) ratio for improving biomass and bioactive compound production in Eleutherococcus koreanum Nakai adventitious roots using 3-L bulb-type bubble bioreactors. A high ammonium nitrogen ratio had a negative effect on root growth, and the highest fresh and dry weights were obtained when NH(4)(+):NO(3)(-) ratios were 5:25 and 10:20 (mM) after 5 weeks of culture. Although the total production of eleutherosides B and E was slightly higher at the 10:20 ratio than at the 5:25 ratio (NH(4)(+):NO(3)(-)), we proposed that the optimal NH(4)(+):NO(3)(-) ratio was 5:25 mM. This ratio achieved both the highest total production of five target bioactive compounds (eleutherosides B and E, chlorogenic acid, total phenolics, and flavonoids) and the highest root biomass. Furthermore, increasing NH(4)(+):NO(3)(-) ratios to 10:20 decreased pH in the medium, interrupted the absorption of essential minerals from the culture medium, and resulted in low biomass and increased relative oxidative stress levels, which were evaluated by determining 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Therefore, nitrate rather than ammonium nitrogen was more essential not for only biomass production but also for bioactive compound production in E. koreanum adventitious root cultures. The optimal nitrogen source ratio produced 5.63 g L(-1) of biomass and 24.41 mg of the five total bioactive compounds per gram of biomass (dry weight basis). The development of such in vitro culture technology will benefit the pilot-scale production of E. koreanum-based bioactive compounds for commercialization.

  11. Production of biomass and bioactive compounds from adventitious roots by optimization of culturing conditions of Eurycoma longifolia in balloon-type bubble bioreactor system.

    PubMed

    Lulu, Tao; Park, So-Young; Ibrahim, Rusli; Paek, Kee-Yoeup

    2015-06-01

    The present study aimed to optimize the conditions for the production of adventitious roots from Eurycoma longifolia Jack, an important medicinal woody plant, in bioreactor culture. The effects of the type and concentration of auxin on root growth were studied, as well as the effects of the NH4(+):NO3(-) ratio on adventitious root growth and the production of phenolics and flavonoids. Approximately 5 g L(-1) fresh weight of adventitious roots was inoculated into a 3 L balloon-type bubble bioreactor, which contained 2 L 3/4 MS medium supplemented with 30 g L(-1) sucrose and cultures were maintained in the dark for 7 weeks at 24 ± 1°C. Higher concentrations of IBA (7.0 and 9.0 mg L(-1)) and NAA (5.0 mg L(-1)) enhanced the biomass and accumulation of total phenolics and flavonoids. The adventitious roots were thin, numerous, and elongated in 3/4 MS medium supplemented with 5.0 and 7.0 mg L(-1) IBA, whereas the lateral roots were shorter and thicker with 5.0 mg L(-1) NAA compared with IBA treatment. The optimum biomasses of 50.22 g L(-1) fresh weight and 4.60 g L(-1) dry weight were obtained with an NH4(+):NO3(-) ratio of 15:30. High phenolic and flavonoid productions (38.59 and 11.27 mg L(-1) medium, respectively) were also obtained with a ratio of 15:30. Analysis of the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity indicated higher antioxidant activity with an NH4(+):NO3(-) ratio of 30:15. These results suggest that balloon-type bubble bioreactor cultures are suitable for the large-scale commercial production of E. longifolia adventitious roots which contain high yield of bioactive compounds.

  12. Molecular cloning, characterization and expression analysis of the SAMS gene during adventitious root development in IBA-induced tetraploid black locust.

    PubMed

    Quan, Jine; Zhang, Sheng; Zhang, Chunxia; Meng, Sen; Zhao, Zhong; Xu, Xuexuan

    2014-01-01

    S-Adenosylmethionine synthetase (SAMS) catalyzes the synthesis of S-adenosylmethionine (SAM), a precursor for ethylene and polyamine biosynthesis. Here, we report the isolation of the 1498 bp full-length cDNA sequence encoding tetraploid black locust (Robinia pseudoacacia L.) SAMS (TrbSAMS), which contains an open reading frame of 1179 bp encoding 392 amino acids. The amino acid sequence of TrbSAMS has more than 94% sequence identity to SAMSs from other plants, with a closer phylogenetic relationship to SAMSs from legumes than to SAMS from other plants. The TrbSAMS monomer consists of N-terminal, central, and C-terminal domains. Subcellular localization analysis revealed that the TrbSAMS protein localizes mainly to in the cell membrane and cytoplasm of onion epidermal cells and Arabidopsis mesophyll cell protoplasts. Indole-3-butyric acid (IBA)-treated cuttings showed higher levels of TrbSAMS transcript than untreated control cuttings during root primordium and adventitious root formation. TrbSAMS and its downstream genes showed differential expression in shoots, leaves, bark, and roots, with the highest expression observed in bark. IBA-treated cuttings also showed higher SAMS activity than control cuttings during root primordium and adventitious root formation. These results indicate that TrbSAMS might play an important role in the regulation of IBA-induced adventitious root development in tetraploid black locust cuttings.

  13. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara1[OPEN

    PubMed Central

    Dawood, Thikra; Kensche, Philip R.; Cristescu, Simona M.; Mariani, Celestina

    2016-01-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara. Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. PMID:26850278

  14. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner.

    PubMed

    Lin, Yuting; Zhang, Wei; Qi, Fang; Cui, Weiti; Xie, Yanjie; Shen, Wenbiao

    2014-01-15

    Hydrogen gas (H2) is an endogenous gaseous molecule in plants. Although its reputation is as a "biologically inert gas", recent results suggested that H2 has therapeutic antioxidant properties in animals and plays fundamental roles in plant responses to environmental stresses. However, whether H2 regulates root morphological patterns is largely unknown. In this report, hydrogen-rich water (HRW) was used to characterize H2 physiological roles and possible signaling transduction pathways in the promotion of adventitious root (AR) formation in cucumber explants. Our results showed that a 50% concentration of HRW was able to mimic the effect of hemin, an inducer of a carbon monoxide (CO) synthetic enzyme, and heme oxygenase-1 (HO-1), in restoring AR formation in comparison with the inhibition effect conferred by auxin-depletion treatment alone. It was further shown that the inducible effect of HRW could be further blocked by the co-treatment with N-1-naphthylphtalamic acid (NPA; an auxin transport inhibitor). The HRW-induced response, at least partially, was HO-1-dependent. This conclusion was supported by the fact that the exposure of cucumber explants to HRW up-regulates cucumber HO-1 gene expression and its protein levels. HRW-mediated induction of representative target genes related to auxin signaling and AR formation, such as CsDNAJ-1, CsCDPK1/5, CsCDC6, CsAUX22B-like, and CsAUX22D-like, and thereafter AR formation (particularly in the AR length) was differentially sensitive to the HO-1 inhibitor zinc protoporphyrin IX (ZnPP). Above blocking actions were clearly reversed by CO, further confirming that the above response was HO-1/CO-specific. However, the addition of a well-known antioxidant, ascorbic acid (AsA), failed to influence AR formation triggered by HRW, thus ruling out the involvement of redox homeostasis in this process. Together, these results indicated that HRW-induced adventitious rooting is, at least partially, correlated with the HO-1/CO

  15. The Cytokinin Type-B Response Regulator PtRR13 Is a Negative Regulator of Adventitious Root Development in Populus1[C][W][OA

    PubMed Central

    Ramírez-Carvajal, Gustavo A.; Morse, Alison M.; Dervinis, Christopher; Davis, John M.

    2009-01-01

    Adventitious root formation at the base of plant cuttings is an innate de novo organogenesis process that allows massive vegetative propagation of many economically and ecologically important species. The early molecular events following shoot excision are not well understood. Using whole-genome microarrays, we detected significant transcriptome remodeling during 48 h following shoot removal in Populus tremula × Populus alba softwood cuttings in the absence of exogenous auxin, with 27% and 36% of the gene models showing differential abundance between 0 and 6 h and between 6 and 24 h, respectively. During these two time intervals, gene networks involved in protein turnover, protein phosphorylation, molecular transport, and translation were among the most significantly regulated. Transgenic lines expressing a constitutively active form of the Populus type-B cytokinin response regulator PtRR13 (ΔDDKPtRR13) have a delayed rooting phenotype and cause misregulation of CONTINUOUS VASCULAR RING1, a negative regulator of vascularization; PLEIOTROPIC DRUG RESISTANCE TRANSPORTER9, an auxin efflux transporter; and two APETALA2/ETHYLENE RESPONSE FACTOR genes with sequence similarity to TINY. Inappropriate cytokinin action via ΔDDKPtRR13 expression appeared to disrupt adventitious root development 24 h after shoot excision, when root founder cells are hypothesized to be sensitive to the negative effects of cytokinin. Our results are consistent with PtRR13 acting downstream of cytokinin to repress adventitious root formation in intact plants, and that reduced cytokinin signaling after shoot excision enables coordinated expression of ethylene, auxin, and vascularization pathways leading to adventitious root development. PMID:19395410

  16. Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation.

    PubMed

    Li, Mei-Yue; Cao, Ze-Yu; Shen, Wen-Biao; Cui, Jin

    2011-10-15

    Our previous work showed that in cucumber (Cucumis sativus), auxin rapidly induces heme oxygenase (HO) activity and the product of HO action, carbon monoxide (CO), then triggers the signal transduction events leading to adventitious root formation. In this study, the cucumber HO-1 gene (named as CsHO1) was isolated and sequenced. It contains four exons and three introns and encodes a polypeptide of 291 amino acids. Further results show that CsHO1 shares a high homology with plant HO-1 proteins and codes a 33.3 kDa protein with a 65-amino transit peptide, predicting a mature protein of 26.1 kDa. The mature CsHO1 was expressed in Escherichia coli to produce a fusion protein, which exhibits HO activity. The CsHO1:GFP fusion protein was localized in the chloroplast. Related biochemical analyses of mature CsHO1, including Vmax, Km, Topt and pHopt, were also investigated. CsHO1 mRNA was found in germinating seeds, roots, stem, and especially in leaf tissues. Several well-known adventitious root inducers, including auxin, ABA, hemin, nitric oxide donor sodium nitroprusside (SNP), CaCl(2), and sodium hydrosulfide (NaHS), differentially up-regulate CsHO1 transcripts and corresponding protein levels. These results suggest that CsHO1 may be involved in cucumber adventitious rooting.

  17. A higher sink competitiveness of the rooting zone and invertases are involved in dark stimulation of adventitious root formation in Petunia hybrida cuttings.

    PubMed

    Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2016-02-01

    The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation.

  18. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin. PMID

  19. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings.

    PubMed

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.

  20. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization.

    PubMed

    Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Chengcai; Ma, Chunlei; Zhang, Liqun; Gong, Wuyun; Wu, Liyun

    2013-02-10

    The plant hormone auxin plays a key role in adventitious rooting. To increase our understanding of genes involved in adventitious root formation, we identified transcripts differentially expressed in single nodal cuttings of Camellia sinensis treated with or without indole-3-butyric acid (IBA) by suppressive subtractive hybridization (SSH). A total of 77 differentially expressed transcripts, including 70 up-regulated and 7 down-regulated sequences, were identified in tea cuttings under IBA treatment. Seven candidate transcripts were selected and analyzed for their response to IBA, and IAA by real time RT-PCR. All these transcripts were up regulated by at least two folds one day after IBA treatment. Meanwhile, IAA showed less positive effects on the expression of candidate transcripts. The full-length cDNA of a F-box/kelch gene was also isolated and found to be similar to a group of At1g23390 like genes. These unigenes provided a new source for mining genes related to adventitious root formation, which facilitate our understanding of relative fundamental metabolism.

  1. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    PubMed

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  2. Promoting Roles of Melatonin in Adventitious Root Development of Solanum lycopersicum L. by Regulating Auxin and Nitric Oxide Signaling

    PubMed Central

    Wen, Dan; Gong, Biao; Sun, Shasha; Liu, Shiqi; Wang, Xiufeng; Wei, Min; Yang, Fengjuan; Li, Yan; Shi, Qinghua

    2016-01-01

    Melatonin (MT) plays integral roles in regulating several biological processes including plant growth, seed germination, flowering, senescence, and stress responses. This study investigated the effects of MT on adventitious root formation (ARF) of de-rooted tomato seedlings. Exogenous MT positively or negatively influenced ARF, which was dependent on the concentration of MT application. In the present experiment, 50 μM MT showed the best effect on inducing ARF. Interestingly, exogenous MT promoted the accumulation of endogenous nitric oxide (NO) by down-regulating the expression of S-nitrosoglutathione reductase (GSNOR). To determine the interaction of MT and NO in ARF, MT synthesis inhibitor p-chlorophenylalanine, NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt as well as GSNOR-overexpression plants with low NO levels were used. The function of MT was removed by NO scavenger or GSNOR-overexpression plants. However, application of MT synthesis inhibitor did little to abolish the function of NO. These results indicate that NO, as a downstream signal, was involved in the MT-induced ARF. Concentrations of indole-3-acetic acid and indole-3-butyric acid, as well as the expression of several genes related to the auxin signaling pathway (PIN1, PIN3, PIN7, IAA19, and IAA24), showed that MT influenced auxin transport and signal transduction as well as auxin accumulation through the NO signaling pathway. Collectively, these strongly suggest that elevated NO levels resulting from inhibited GSNOR activity and auxin signaling were involved in the MT-induced ARF in tomato plants. This can be applied in basic research and breeding. PMID:27252731

  3. Comprehensive Transcriptome Analysis Unravels the Existence of Crucial Genes Regulating Primary Metabolism during Adventitious Root Formation in Petunia hybrida

    PubMed Central

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase. PMID:24978694

  4. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch.

    PubMed

    Li, Jing; Wang, Juan; Li, Jinxin; Liu, Dahui; Li, Hongfa; Gao, Wenyuan; Li, Jianli; Liu, Shujie

    2016-02-01

    In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4-0.6-0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g(-1)) and glycyrrhetinic acid (0.18 mg g(-1)) occurred at a dose of 400 mg L(-1) of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g(-1)) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity.

  5. Differential auxin transport and accumulation in the stem base lead to profuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.).

    PubMed

    Mignolli, F; Mariotti, L; Picciarelli, P; Vidoz, M L

    2017-02-27

    The aerial roots (aer) mutant of tomato is characterized by a profuse and precocious formation of adventitious root primordia along the stem. We demonstrated that auxin is involved in the aer phenotype but ruled out higher auxin sensitivity of mutant plants. Interestingly, polar auxin transport was altered in aer, as young seedlings showed a reduced response to an auxin transport inhibitor and higher expression of auxin export carriers SlPIN1 and SlPIN3. An abrupt reduction in transcripts of auxin efflux and influx genes in older aer hypocotyls caused a marked deceleration of auxin transport in more mature tissues. Indeed, in 20days old aer plants, the transport of labeled IAA was faster in apices than in hypocotyls, displaying an opposite trend in comparison to a wild type. In addition, auxin transport facilitators (SlPIN1, SlPIN4, SlLAX5) were more expressed in aer apices than in hypocotyls, suggesting that auxin moves faster from the upper to the lower part of the stem. Consequently, a significantly higher level of free and conjugated IAA was found at the base of aer stems with respect to their apices. This auxin accumulation is likely the cause of the aer phenotype.

  6. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    PubMed

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  7. Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: the effect of the juvenile–adult transition

    PubMed Central

    Díaz-Sala, Carmen

    2014-01-01

    Cellular plasticity refers, among others, to the capability of differentiated cells to switch the differentiation process and acquire new fates. One way by which plant cell plasticity is manifested is through de novo regeneration of organs from somatic differentiated cells in an ectopic location. However, switching the developmental program of adult cells prior to organ regeneration is difficult in many plant species, especially in forest tree species. In these species, a decline in the capacity to regenerate shoots, roots, or embryos from somatic differentiated cells is associated with tree age and maturation. The decline in the ability to form adventitious roots from stem cuttings is one of the most dramatic effects of maturation, and has been the subject of investigations on the basic nature of the process. Cell fate switches, both in plants and animals, are characterized by remarkable changes in the pattern of gene expression, as cells switch from the characteristic expression pattern of a somatic cell to a new one directing a new developmental pathway. Therefore, determining the way by which cells reset their gene expression pattern is crucial to understand cellular plasticity. The presence of specific cellular signaling pathways or tissue-specific factors underlying the establishment, maintenance, and redirection of gene expression patterns in the tissues involved in adventitious root formation could be crucial for cell fate switch and for the control of age-dependent cellular plasticity. PMID:25071793

  8. Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots.

    PubMed

    Kung, Yi-Jung; Yu, Tsong-Ann; Huang, Chiung-Huei; Wang, Hui-Chin; Wang, Shin-Lan; Yeh, Shyi-Dong

    2010-08-01

    Papaya production is seriously limited by Papaya ringspot virus (PRSV) worldwide and Papaya leaf-distortion mosaic virus (PLDMV) in Eastern Asia. An efficient transformation method for developing papaya lines with transgenic resistance to these viruses and commercially desirable traits, such as hermaphroditism, is crucial to shorten the breeding program for this fruit crop. In this investigation, an untranslatable chimeric construct pYP08 containing truncated PRSV coat protein (CP) and PLDMV CP genes coupled with the 3' untranslational region of PLDMV, was generated. Root segments from different portions of adventitious roots of in vitro multiple shoots of hermaphroditic plants of papaya cultivars 'Tainung No. 2', 'Sunrise', and 'Thailand' were cultured on induction medium for regeneration into somatic embryos. The highest frequency of somatic embryogenesis was from the root-tip segments of adventitious roots developed 2-4 weeks after rooting in perlite medium. After proliferation, embryogenic tissues derived from somatic embryos were wounded in liquid-phase by carborundum and transformed by Agrobacterium carrying pYP08. Similarly, another construct pBG-PLDMVstop containing untranslatable CP gene of PLDMV was also transferred to 'Sunrise' and 'Thailand', the parental cultivars of 'Tainung No. 2'. Among 107 transgenic lines regenerated from 349 root-tip segments, nine lines of Tainung No. 2 carrying YP08 were highly resistant to PRSV and PLDMV, and 9 lines (8 'Sunrise' and 1 'Thailand') carrying PLDMV CP highly resistant to PLDMV, by a mechanism of post-transcriptional gene silencing. The hermaphroditic characteristics of the transgenic lines were confirmed by PCR with sex-linked primers and phenotypes of flower and fruit. Our approach has generated transgenic resistance to both PRSV and PLDMV with commercially desirable characters and can significantly shorten the time-consuming breeding programs for the generation of elite cultivars of papaya hybrids.

  9. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple.

    PubMed

    You, Chun-Xiang; Zhao, Qiang; Wang, Xiao-Fei; Xie, Xing-Bin; Feng, Xiao-Ming; Zhao, Ling-Ling; Shu, Huai-Rui; Hao, Yu-Jin

    2014-02-01

    Although numerous miRNAs have been already isolated from fruit trees, knowledge about miRNA biogenesis is largely unknown in fruit trees. Double-strand RNA-binding (DRB) protein plays an important role in miRNA processing and maturation; however, its role in the regulation of economically important traits is not clear yet in fruit trees. EST blast and RACE amplification were performed to isolate apple MdDRB1 gene. Following expression analysis, RNA binding and protein interaction assays, MdDRB1 was transformed into apple callus and in vitro tissue cultures to characterize the functions of MdDRB1 in miRNA biogenesis, adventitious rooting, leaf development and tree growth habit. MdDRB1 contained two highly conserved DRB domains. Its transcripts existed in all tissues tested and are induced by hormones. It bound to double-strand RNAs and interacted with AtDCL1 (Dicer-Like 1) and MdDCL1. Chip assay indicated its role in miRNA biogenesis. Transgenic analysis showed that MdDRB1 controls adventitious rooting, leaf curvature and tree architecture by modulating the accumulation of miRNAs and the transcript levels of miRNA target genes. Our results demonstrated that MdDRB1 functions in the miRNA biogenesis in a conserved way and that it is a master regulator in the formation of economically important traits in fruit trees.

  10. Large-scale cultivation of adventitious roots of Echinacea purpurea in airlift bioreactors for the production of chichoric acid, chlorogenic acid and caftaric acid.

    PubMed

    Wu, Chun-Hua; Murthy, Hosakatte Niranjana; Hahn, Eun-Joo; Paek, Kee-Yoeup

    2007-08-01

    Adventitious roots of Echinacea purpurea were cultured in airlift bioreactors (20 l, 500 l balloon-type, bubble bioreactors and 1,000 l drum-type bubble bioreactor) using Murashige and Skoog (MS) medium with 2 mg indole butyric acid l(-1) and 50 g sucrose l(-1) for the production of chichoric acid, chlorogenic acid and caftaric acid. In the 20 l bioreactor (containing 14 l MS medium) a maximum yield of 11 g dry biomass l(-1) was achieved after 60 days. However, the amount of total phenolics (57 mg g(-1) DW), flavonoids (34 mg g(-1) DW) and caffeic acid derivatives (38 mg g(-1) DW) were highest after 50 days. Based on these studies, pilot-scale cultures were established and 3.6 kg and 5.1 kg dry biomass were achieved in the 500 l and 1,000 l bioreactors, respectively. The accumulation of 5 mg chlorogenic acid g(-1) DW, 22 mg chichoric acid g(-1) DW and 4 mg caftaric acids g(-1) DW were achieved with adventitious roots grown in 1,000 l bioreactors.

  11. The Tomato (Solanum Lycopersicum cv. Micro-Tom) Natural Genetic Variation Rg1 and the DELLA Mutant Procera Control the Competence Necessary to Form Adventitious Roots and Shoots

    PubMed Central

    Peres, Lázaro Eustáquio Pereira

    2012-01-01

    Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively. PMID:22915742

  12. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).

    PubMed

    Abiko, Tomomi; Kotula, Lukasz; Shiono, Katsuhiro; Malik, Al Imran; Colmer, Timothy David; Nakazono, Mikio

    2012-09-01

    Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging-tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.

  13. Analysis of Microtubule-Associated-Proteins during IBA-Mediated Adventitious Root Induction Reveals KATANIN Dependent and Independent Alterations of Expression Patterns.

    PubMed

    Abu-Abied, Mohamad; Mordehaev, Inna; Sunil Kumar, Gujulla B; Ophir, Ron; Wasteneys, Geoffrey O; Sadot, Einat

    2015-01-01

    Adventitious roots (AR) are post embryonic lateral organs that differentiate from non-root tissues. The understanding of the molecular mechanism which underlies their differentiation is important because of their central role in vegetative plant propagation. Here it was studied how the expression of different microtubule (MT)-associated proteins (MAPs) is affected during AR induction, and whether expression differences are dependent on MT organization itself. To examine AR formation when MTs are disturbed we used two mutants in the MT severing protein KATANIN. It was found that rate and number of AR primordium formed following IBA induction for three days was reduced in bot1-1 and bot1-7 plants. The reduced capacity to form ARs in bot1-1 was associated with altered expression of MAP-encoding genes along AR induction. While the expression of MAP65-4, MAP65-3, AURORA1, AURORA2 and TANGLED, increased in wild-type but not in bot1-1 plants, the expression of MAP65-8 and MDP25 decreased in wild type plants but not in the bot1-1 plant after two days of IBA-treatment. The expression of MOR1 was increased two days after AR induction in wild type and bot1-1 plants. To examine its expression specifically in AR primordium, MOR1 upstream regulatory sequence was isolated and cloned to regulate GFP. Expression of GFP was induced in the primary root tips and lateral roots, in the pericycle of the hypocotyls and in all stages of AR primordium formation. It is concluded that the expression of MAPs is regulated along AR induction and that reduction in KATANIN expression inhibits AR formation and indirectly influences the specific expression of some MAPs.

  14. Analysis of Microtubule-Associated-Proteins during IBA-Mediated Adventitious Root Induction Reveals KATANIN Dependent and Independent Alterations of Expression Patterns

    PubMed Central

    Abu-Abied, Mohamad; Mordehaev, Inna; Sunil Kumar, Gujulla B; Ophir, Ron; Wasteneys, Geoffrey O.; Sadot, Einat

    2015-01-01

    Adventitious roots (AR) are post embryonic lateral organs that differentiate from non-root tissues. The understanding of the molecular mechanism which underlies their differentiation is important because of their central role in vegetative plant propagation. Here it was studied how the expression of different microtubule (MT)-associated proteins (MAPs) is affected during AR induction, and whether expression differences are dependent on MT organization itself. To examine AR formation when MTs are disturbed we used two mutants in the MT severing protein KATANIN. It was found that rate and number of AR primordium formed following IBA induction for three days was reduced in bot1-1 and bot1-7 plants. The reduced capacity to form ARs in bot1-1 was associated with altered expression of MAP-encoding genes along AR induction. While the expression of MAP65-4, MAP65-3, AURORA1, AURORA2 and TANGLED, increased in wild-type but not in bot1-1 plants, the expression of MAP65-8 and MDP25 decreased in wild type plants but not in the bot1-1 plant after two days of IBA-treatment. The expression of MOR1 was increased two days after AR induction in wild type and bot1-1 plants. To examine its expression specifically in AR primordium, MOR1 upstream regulatory sequence was isolated and cloned to regulate GFP. Expression of GFP was induced in the primary root tips and lateral roots, in the pericycle of the hypocotyls and in all stages of AR primordium formation. It is concluded that the expression of MAPs is regulated along AR induction and that reduction in KATANIN expression inhibits AR formation and indirectly influences the specific expression of some MAPs. PMID:26630265

  15. Comparative Proteomic Analysis Provides Insight into the Key Proteins Involved in Cucumber (Cucumis sativus L.) Adventitious Root Emergence under Waterlogging Stress

    PubMed Central

    Xu, Xuewen; Ji, Jing; Ma, Xiaotian; Xu, Qiang; Qi, Xiaohua; Chen, Xuehao

    2016-01-01

    Waterlogging is a common abiotic stress in both natural and agricultural systems, and it primarily affects plant growth by the slow oxygen diffusion in water. To sustain root function in the hypoxic environment, a key adaptation for waterlogging tolerant plants is the formation of adventitious roots (ARs). We found that cucumber waterlogging tolerant line Zaoer-N seedlings adapt to waterlogging stress by developing a larger number of ARs in hypocotyls, while almost no AR is generated in sensitive line Pepino. To understand the molecular mechanisms underlying AR emergence, the iTRAQ-based quantitative proteomics approach was employed to map the proteomes of hypocotyls cells of the Zaoer-N and Pepino under control and waterlogging conditions. A total of 5508 proteins were identified and 146 were differentially regulated proteins (DRPs), of which 47 and 56 DRPs were specific to tolerant and sensitive line, respectively. In the waterlogged Zaoer-N hypocotyls, DRPs related to alcohol dehydrogenases (ADH), 1-aminocyclopropane-1-carboxylicacid oxidases, peroxidases, 60S ribosomal proteins, GSDL esterases/lipases, histone deacetylases, and histone H5 and were strongly overrepresented to manage the energy crisis, promote ethylene release, minimize oxidative damage, mobilize storage lipids, and stimulate cell division, differentiation and growth. The evaluations of ethylene production, ADH activity, pyruvate decarboxylase (PDC) activity and ethanol production were in good agreement with the proteomic results. qRT-PCR analysis of the corresponding 146 genes further confirmed the accuracy of the observed protein abundance. These findings shed light on the mechanisms underlying waterlogging triggered cucumber ARs emergence, and provided valuable information for the breeding of cucumber with enhanced tolerance to waterlogging. PMID:27790230

  16. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments.

    PubMed

    Li, Yun-He; Zou, Ming-Hong; Feng, Bi-Hong; Huang, Xia; Zhang, Zhi; Sun, Guang-Ming

    2012-06-01

    Polar auxin transport (PAT) plays an important role in the adventitious root formation of mango cotyledon segments, but the molecular mechanism remains unclear. In this study, we cloned a gene encoding an auxin efflux carrier (designated as MiPIN1), and we cloned four genes encoding auxin influx carriers (designated as MiAUX1, MiAUX2, MiAUX3 and MiAUX4). The results of a phylogenetic tree analysis indicated that MiPIN1 and the MiAUXs belong to plant PIN and AUXs/LAXs groups. Quantitative real-time PCR indicated that the expression of MiPIN1 and the MiAUXs was lowest at 0 days but sharply increased on and after day 4. During the root formation in the mango cotyledon segments, the MiPIN1 expression in the distal cut surface (DCS) was always higher than the expression in the proximal cut surface (PCS) whereas the expression of the MiAUXs in the PCS was usually higher than in the DCS. This expression pattern might be result in the PAT from the DCS to the PCS, which is essential for the adventitious root formation in the PCS. Our previous study indicated that a pre-treatment of embryos with indole-3-butyric acid (IBA) significantly promoted adventitious rooting in PCS whereas a pre-treatment with 2,3,5-triiodobenzoic acid (TIBA) completely inhibited this rooting. In this study, however, IBA and TIBA pre-treatments slightly changed the expression of MiPIN1. In contrast, while the MiAUX3 and MiAUX4 expression levels were significantly up-regulated by the IBA pre-treatment, the expression levels were down-regulated by the TIBA pre-treatment. These findings imply that MiAUX3 and MiAUX4 are more sensitive to the IBA and TIBA treatments and that they might play important roles during adventitious root formation in mango cotyledon segments.

  17. Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber.

    PubMed

    Lanteri, María Luciana; Pagnussat, Gabriela Carolina; Lamattina, Lorenzo

    2006-01-01

    A few years ago it was demonstrated that nitric oxide (NO) and cGMP are involved in the auxin response during adventitious root (AR) formation in cucumber (Cucumis sativus). More recently, a mitogen-activated protein kinase cascade was shown to be induced by IAA in a NO-dependent, but cGMP-independent, pathway. In the present study, the involvement of Ca2+ and the regulation of Ca2+-dependent protein kinase (CDPK) activity during IAA- and NO-induced AR formation was evaluated in cucumber explants. The effectiveness of several broad-spectrum Ca2+ channel inhibitors and Ca2+ chelators in affecting AR formation induced by IAA or NO was also examined. Results indicate that the explants response to IAA and NO depends on the availability of both intracellular and extracellular Ca2+ pools. Protein extracts from cucumber hypocotyls were assayed for CDPK activity by using histone IIIS or syntide 2 as substrates for in-gel or in vitro assays, respectively. The activity of a 50 kDa CDPK was detected after 1 d of either NO or IAA treatments and it extended up to the third day of treatment. This CDPK activity was affected in both extracts from NO- and IAA-treated explants in the presence of the specific NO-scavenger cPTIO, suggesting that NO is required for its maximal and sustained activity. The in-gel and the in vitro CDPK activity, as well as the NO- or IAA-induced AR formation, were inhibited by calmodulin antagonists. Furthermore, the induction of CDPK activity by NO and IAA was shown to be reliant on the activity of the enzyme guanylate cyclase.

  18. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings

    PubMed Central

    Nordström, Ann-Caroline; Jacobs, Fernando Alvarado; Eliasson, Lennart

    1991-01-01

    The influence of exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on the internal levels of these auxins was studied during the first 4 days of adventitious root formation in cuttings of Pisum sativum L. The quantitations were done by high performance liquid chromatography with spectrofluorometric detection. IBA, identified by combined gas chromatography-mass spectrometry (GC-MS), was found to naturally occur in this plant material. The root inducing ability of exogenous IBA was superior to that of IAA. The IAA level in the tissue increased considerably on the first day after application of IAA, but rapidly decreased again, returning to a level twice the control by day 3. The predominant metabolic route was conjugation with aspartic acid, as reflected by the increase in the level of indole-3-acetylaspartic acid. The IBA treatment resulted in increases in the levels of IBA, IAA, and indole-3-acetylaspartic acid. The IAA content rapidly returned to control levels, whereas the IBA level remained high throughout the experimental period. High amounts of indole-3-butyrylaspartic acid were found in the tissue after feeding with IBA. The identity of the conjugate was confirmed by 1H-nuclear magnetic resonance and GC-MS. IBA was much more stable in solution than IAA. No IAA was detected after 48 hours, whereas 70% IBA was still recovered after this time. The relatively higher root inducing ability of IBA is ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. Adventitious root formation is discussed on the basis of these findings. PMID:16668265

  19. In vitro antifungal activity of extracts obtained from Hypericum perforatum adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of Malassezia furfur.

    PubMed

    Simonetti, Giovanna; Tocci, Noemi; Valletta, Alessio; Brasili, Elisa; D'Auria, Felicia Diodata; Idoux, Alicia; Pasqua, Gabriella

    2016-01-01

    Xanthone-rich extracts from Hypericum perforatum root cultures grown in a Mist Bioreactor as antifungal agents against Malassezia furfur. Extracts of Hypericum perforatum roots grown in a bioreactor showed activity against planktonic cells and biofilm of Malassezia furfur. Dried biomass, obtained from roots grown under controlled conditions in a ROOTec mist bioreactor, has been extracted with solvents of increasing polarity (i.e. chloroform, ethyl acetate and methanol). The methanolic fraction was the richest in xanthones (2.86 ± 0.43 mg g(-1) DW) as revealed by HPLC. The minimal inhibitory concentration of the methanol extract against M. furfur planktonic cells was 16 μg mL(-1). The inhibition percentage of biofilm formation, at a concentration of 16 μg mL(-1), ranged from 14% to 39%. The results show that H. perforatum root extracts could be used as new antifungal agents in the treatment of Malassezia infections.

  20. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots.

    PubMed

    Cheniany, Monireh; Ganjeali, Ali

    2016-12-01

    Phenylalanine-ammonia-lyase and cinnamate-4-hydroxylase play important role in the phenylpropanoid pathway, which produces many biologically important secondary metabolites participating in normal plant development. Flavonol quercetin is the main representant of these compounds that has been identified in numerous Juglans spp. In this survey, the developmental expression patterns of PAL and C4H genes during in vitro rooting of two walnut cultivars 'Sunland' and 'Howard' was examined by RT-PCR. To understand the potential role in rooting, the changing pattern of endogenous content of quercetin was also analyzed by HPLC. The 'Sunland' with better capacity to root had more quercetin content during the "inductive phase" of rooting than 'Howard'. In each cultivar, the level of PAL transcripts showed the same behavior with the changing patterns of quercetin during root formation of microshoots. The positive correlation between the changes of quercetin and PAL-mRNA indicated that PAL gene may have an immediate effect on flavonoid pathway metabolites including quercetin. Although the behavioral change of C4H expression was similar in both cultivars during root formation (with significantly more level for 'Howard'), it was not coincide with the changes of quercerin concentrations. Our results showed that C4H function is important for the normal development, but its transcriptional regulation does not correlate with quercetin as an efficient phenolic compound for walnut rhizogenesis.

  1. Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and MxM 60 (P. avium × P. mahaleb).

    PubMed

    Sarropoulou, Virginia N; Therios, Ioannis N; Dimassi-Theriou, Kortessa N

    2012-01-01

    The objectives of this study were to test the effects of melatonin (N-acetyl-5-methoxytryptamine), a natural compound of edible plants on the rooting of certain commercial sweet cherry rootstocks. Shoot tip explants from previous in vitro cultures of the cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and M × M 60 (P. avium × P. mahaleb) were included in the experiment. The effect of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) alone or in combination with melatonin was tested concerning their rooting potential. Seven concentrations of melatonin (0, 0.05, 0.1, 0.5, 1, 5, and 10 μM) alone or in combination with 5.71 μM of IAA or 4.92 μM of IBA were tested. For each rootstock, 21 treatments were included. The explants were grown in glass tubes containing 10 mL of substrate. The parameters measured include rooting percentage, number of roots per rooted explant, root length, and callus formation. The data presented in this study show that melatonin has a rooting promoting effect at a low concentration but a growth inhibitory effect at high concentrations. In the absence of auxin, 1 μM melatonin had auxinic response concerning the number and length of roots, but 10 μM melatonin was inhibitory to rooting in all the tested rootstocks. The final conclusion of this experiment is that exogenously applied melatonin acted as a rooting promoter and its action was similar to that of IAA.

  2. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3.

    PubMed

    Watanabe, Kohtaro; Takahashi, Hirokazu; Sato, Saori; Nishiuchi, Shunsaku; Omori, Fumie; Malik, Al Imran; Colmer, Timothy David; Mano, Yoshiro; Nakazono, Mikio

    2017-02-01

    A radial oxygen loss (ROL) barrier in roots of waterlogging-tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging-tolerant wild relative of maize (Zea mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation. A segment of the short-arm of chromosome 3 of Z. nicaraguensis conferred ROL barrier formation in the genetic background of maize. This chromosome segment also decreased apoplastic solute permeability across the hypodermis/exodermis. However, the IL and maize were similar for suberin staining in the hypodermis/exodermis at 40 mm and further behind the root tip. Z. nicaraguensis contained suberin in the hypodermis/exodermis at 20 mm and lignin at the epidermis. The IL with ROL barrier, however, did not contain lignin in the epidermis. Discovery of the Z. nicaraguensis chromosomal region responsible for root ROL barrier formation has improved knowledge of this trait and is an important step towards improvement of waterlogging tolerance in maize.

  3. In vitro regeneration of Salix nigra from adventitious shoots.

    PubMed

    Lyyra, Satu; Lima, Amparo; Merkle, Scott A

    2006-07-01

    Black willow (Salix nigra Marsh.) is the largest and only commercially important willow species in North America. It is a candidate for phytoremediation of polluted soils because it is fast-growing and thrives on floodplains throughout eastern USA. Our objective was to develop a protocol for the in vitro regeneration of black willow plants that could serve as target material for gene transformation. Unexpanded inflorescence explants were excised from dormant buds collected from three source trees and cultured on woody plant medium (WPM) supplemented with one of: (1) 0.1 mg l(-1) thidiazuron (TDZ); (2) 0.5 mg l(-1) 6-benzoaminopurine (BAP); or (3) 1 mg l(-1) BAP. All plant growth regulator (PGR) treatments induced direct adventitious bud formation from the genotypes. The percentage of explants producing buds ranged from 20 to 92%, depending on genotype and treatment. Although most of the TDZ-treated inflorescences produced buds, these buds failed to elongate into shoots. Buds on explants treated with BAP elongated into shoots that were easily rooted in vitro and further established in potting mix in high humidity. The PGR treatments significantly affected shoot regeneration frequency (P < 0.01). The highest shoot regeneration frequency (36%) was achieved with Genotype 3 cultured on 0.5 mg l(-1) BAP. Mean number of shoots per explant varied from one to five. The ability of black willow inflorescences to produce adventitious shoots makes them potential targets for Agrobacterium-mediated transformation with heavy-metal-resistant genes for phytoremediation.

  4. Relationship between Indole-3-Acetic Acid Levels in Apple (Malus pumila Mill) Rootstocks Cultured in Vitro and Adventitious Root Formation in the Presence of Indole-3-Butyric Acid 1

    PubMed Central

    Alvarez, Rafael; Nissen, Scott J.; Sutter, Ellen G.

    1989-01-01

    In vitro rooting response and indole-3-acetic acid (IAA) levels were examined in two genetically related dwarfing apple (Malus pumila Mill) rootstocks. M.26 and M.9 were cultured in vitro using Linsmaier-Skoog medium supplemented with benzyladenine (BA), indole-3-butyric acid (IBA), and 1,3,5-trihydroxybenzoic acid (PG). Rooting response was tested in Lepoivre medium supplemented with IBA and PG. IBA concentrations of 12.0 and 4.0 micromolar induced the maximum rooting percentages for M.9 and M.26, respectively. At these concentrations rooting response was 100% for M.26 and 80% for M.9. Free and conjugated IAA levels were determined in M.26 and M.9 shoots prior to root inducing treatment by high performance liquid chromatography with fluorescence detection and validated by gas chromatography-mass spectrometry using 13[C6]IAA as internal standard. Basal sections of M.26 shoots contained 2.8 times more free IAA than similar tissue in M.9 (477.1 ± 6.5 versus 166.6 ± 6.7 nanograms per gram fresh weight), while free IAA levels in apical sections of M.26 and M.9 shoots were comparable (298.0 ± 4.4 versus 263.7 ± 9.3 nanograms per gram fresh weight). Conjugated IAA levels were significantly higher in M.9 than in M.26 indicating that a greater proportion of total IAA was present as a conjugate in M.9. These data suggest that differences between M.26 and M.9 rooting responses may be related to differences in free IAA levels in the shoot base. PMID:16666562

  5. Congenitally Blind Counselor, Adventitiously Blind Client.

    ERIC Educational Resources Information Center

    Roberts, A. H.

    1994-01-01

    A counselor blind from birth describes personal difficulties in fully understanding the experience of clients who are adventitiously blind. Congenitally blind counselors are urged to recognize that adaptive methods cannot compensate for the panoramic view of the environment provided by vision and that recently blinded individuals need to deal with…

  6. Branching Out in Roots: Uncovering Form, Function, and Regulation1

    PubMed Central

    Atkinson, Jonathan A.; Rasmussen, Amanda; Traini, Richard; Voß, Ute; Sturrock, Craig; Mooney, Sacha J.; Wells, Darren M.; Bennett, Malcolm J.

    2014-01-01

    Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research. PMID:25136060

  7. Cystic adventitial disease of popliteal artery with significant stenosis

    PubMed Central

    Gupta, Ranjana; Mittal, Puneet; Gupta, Praveen; Jindal, Nancy

    2013-01-01

    Cystic adventitial disease of popliteal artery is a rare condition of unknown etiology which usually presents in middle-aged men. We present Doppler and computed tomography angiography findings in a case of cystic adventitial disease with significant obstruction of popliteal artery, with secondary narrowing of popliteal vein. PMID:24082480

  8. Adventitial vasa vasorum arteriosclerosis in abdominal aortic aneurysm.

    PubMed

    Tanaka, Hiroki; Zaima, Nobuhiro; Sasaki, Takeshi; Hayasaka, Takahiro; Goto-Inoue, Naoko; Onoue, Kenji; Ikegami, Koji; Morita, Yoshifumi; Yamamoto, Naoto; Mano, Yuuki; Sano, Masaki; Saito, Takaaki; Sato, Kohji; Konno, Hiroyuki; Setou, Mitsutoshi; Unno, Naoki

    2013-01-01

    Abdominal aortic aneurysm (AAA) is a common disease among elderly individuals. However, the precise pathophysiology of AAA remains unknown. In AAA, an intraluminal thrombus prevents luminal perfusion of oxygen, allowing only the adventitial vaso vasorum (VV) to deliver oxygen and nutrients to the aortic wall. In this study, we examined changes in the adventitial VV wall in AAA to clarify the histopathological mechanisms underlying AAA. We found marked intimal hyperplasia of the adventitial VV in the AAA sac; further, immunohistological studies revealed proliferation of smooth muscle cells, which caused luminal stenosis of the VV. We also found decreased HemeB signals in the aortic wall of the sac as compared with those in the aortic wall of the neck region in AAA. The stenosis of adventitial VV in the AAA sac and the malperfusion of the aortic wall observed in the present study are new aspects of AAA pathology that are expected to enhance our understanding of this disease.

  9. Adventitial inflammation and its interaction with intimal atherosclerotic lesions

    PubMed Central

    Akhavanpoor, Mohammadreza; Wangler, Susanne; Gleissner, Christian A.; Korosoglou, Grigorios; Katus, Hugo A.; Erbel, Christian

    2014-01-01

    The presence of adventitial inflammation in correlation with atherosclerotic lesions has been recognized for decades. In the last years, several studies have investigated the relevance and impact of adventitial inflammation on atherogenesis. In the abdominal aorta of elderly Apoe−/− mice, adventitial inflammatory structures were characterized as organized ectopic lymphoid tissue, and therefore termed adventitial tertiary lymphoid organs (ATLOs). These ATLOs possess similarities in development, structure and function to secondary lymphoid organs. A crosstalk between intimal atherosclerotic lesions and ATLOs has been suggested, and several studies could demonstrate a potential role for medial vascular smooth muscle cells in this process. We here review the development, phenotypic characteristics, and function of ATLOs in atherosclerosis. Furthermore, we discuss the possible role of medial vascular smooth muscle cells and their interaction between plaque and ATLOs. PMID:25152736

  10. LTB4 activates pulmonary artery adventitial fibroblasts in pulmonary hypertension

    PubMed Central

    Jiang, Xinguo; Tamosiuniene, Rasa; Sung, Yon K.; Shuffle, Eric M.; Tu, Allen B.; Valenzuela, Antonia; Jiang, Shirley; Zamanian, Roham T.; Fiorentino, David F.; Voelkel, Norbert F.; Peters-Golden, Marc; Stenmark, Kurt R.; Chung, Lorinda; Rabinovitch, Marlene; Nicolls, Mark R.

    2015-01-01

    A recent study demonstrated a significant role for leukotriene B4 (LTB4) causing pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). LTB4 was found to directly injure luminal endothelial cells and promote growth of the smooth muscle cell layer of pulmonary arterioles. The purpose of the current study was to determine the effects of LTB4 on the pulmonary adventitial layer, largely composed of fibroblasts. Here, we demonstrate that LTB4 enhanced human pulmonary artery adventitial fibroblast (HPAAF) proliferation, migration and differentiation in a dose-dependent manner through its cognate G-protein coupled receptor, BLT1. LTB4 activated HPAAF by up-regulating p38 MAPK as well as Nox4 signaling pathways. In an autoimmune model of PH, inhibition of these pathways blocked perivascular inflammation, decreased Nox4 expression, reduced reactive oxygen species production, reversed arteriolar adventitial fibroblast activation and attenuated PH development. This study uncovers a novel mechanism by which LTB4 further promotes PAH pathogenesis, beyond its established effects on endothelial and smooth muscle cells, by activating adventitial fibroblasts. PMID:26558820

  11. Strigolactones fine-tune the root system.

    PubMed

    Rasmussen, Amanda; Depuydt, Stephen; Goormachtig, Sofie; Geelen, Danny

    2013-10-01

    Strigolactones were originally discovered to be involved in parasitic weed germination, in mycorrhizal association and in the control of shoot architecture. Despite their clear role in rhizosphere signaling, comparatively less attention has been given to the belowground function of strigolactones on plant development. However, research has revealed that strigolactones play a key role in the regulation of the root system including adventitious roots, primary root length, lateral roots, root hairs and nodulation. Here, we review the recent progress regarding strigolactone regulation of the root system and the antagonism and interplay with other hormones.

  12. In vitro root induction of faba bean (Vicia faba L.).

    PubMed

    Ismail, Roba M; Elazab, Heba E M; Hussein, Gihan M H; Metry, Emad A

    2011-01-01

    A major challenge for regeneration of faba bean (Vicia faba L.) plants is the difficulty of in vitro root induction. In the present study, in vitro rooting and its architecture have been studied. Adventitious root formation was successfully induced from regenerated faba bean shoots of four Egyptian cultivars, i.e., Giza 461, Giza 40, Giza 834 and Giza 716 on hormone free MS medium supplemented with 5 mg/l silver nitrate. Among the four cultivars, Giza 461 and Giza 40 were recorded as the highest root formation response (75 % and 65) followed by cultivars Giza716 and Giza843 (20%, and 10%). Anatomical study proved that the produced roots are initiated as the adventitious lateral root (LR) with tri-arch xylem strands as compared with the penta-arch of the primary roots of the intact faba bean seedling. The obtained results overcome the root induction problem in faba bean.

  13. Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L).

    PubMed

    Srinivasan, C; Liu, Zongrang; Scorza, Ralph

    2011-04-01

    Transgenic plants of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L) were produced by transforming with the apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KNOX1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a medium lacking cytokinin. Ectopic expression of KNOX genes retarded shoot growth by suppressing elongation of internodes in transgenic tobacco plants. Expression of each of the three KNOX1 genes induced malformation and extensive lobbing in tobacco leaves. In situ regeneration of adventitious shoots was observed from leaves and roots of transgenic tobacco plants expressing each of the three KNOX genes. In vitro culture of leaf explants and internode sections excised from in vitro grown MdKN1 expressing tobacco shoots regenerated adventitious shoots on MS (Murashige and Skoog 1962) basal medium in the absence of exogenous cytokinin. Transgenic plum plants that expressed the MdKN2 or corn KNOX1 gene grew normally but MdKN1 caused a significant reduction in plant height, leaf shape and size and produced malformed curly leaves. A high frequency of adventitious shoot regeneration (96%) was observed in cultures of leaf explants excised from corn KNOX1-expressing transgenic plum shoots. In contrast to KNOX1-expressing tobacco, leaf and internode explants of corn KNOX1-expressing plum required synthetic cytokinin (thidiazuron) in the culture medium to induce adventitious shoot regeneration. The induction of high-frequency regeneration of adventitious shoots in vitro from leaves and stem internodal sections of plum through the ectopic expression of a KNOX1 gene is the first such report for a woody perennial fruit trees.

  14. Massively parallel sequencing, a new method for detecting adventitious agents.

    PubMed

    Onions, David; Kolman, John

    2010-05-01

    There has been an upsurge of interest in developing new veterinary and human vaccines and, in turn, this has involved the development of new mammalian and insect cell substrates. Excluding adventitious agents from these cells can be problematic, particularly for cells derived from species with limited virological investigation. Massively parallel sequencing is a powerful new method for the identification of viruses and other adventitious agents, without prior knowledge of the nature of the agent. We have developed methods using random priming to detect viruses in the supernatants from cell substrates or in virus seed stocks. Using these methods we have recently discovered a new parvovirus in bovine serum. When applied to sequencing the transcriptome, massively parallel sequencing can reveal latent or silent infections. Enormous amounts of data are developed in this process usually between 100 and 400 Mbp. Consequently, sophisticated bioinformatic algorithms are required to analyse and verify virus targets.

  15. Regulatory expectations of validation/qualification of adventitious virus assays.

    PubMed

    Baylis, S A; Blümel, J

    2010-01-01

    The European Union (EU) guideline concerning the virus safety evaluation of biotechnological investigational medicinal products (CPMP/BWP/398498/2005) recently came into force. In the guideline it is stated that analytical procedures supporting the qualification of cell banking systems, starting materials, as well as testing of unprocessed bulks for the presence of adventitious viruses, should be supported by appropriate qualification/validation studies. The validation protocols should prospectively set claims for assay performance, which should be verified by the validation experiments and demonstrate that a particular procedure is suitable for its intended purpose. Assay parameters for adventitious virus testing are discussed, and examples of validation of qualitative and quantitative assays for the detection of blood-borne viruses in human plasma are considered.

  16. Adventitious Shoot Regeneration from Leaf Explant of Dwarf Hygro (Hygrophila polysperma (Roxb.) T. Anderson)

    PubMed Central

    Karataş, Mehmet; Aasim, Muhammad; Çınar, Ayşegül; Dogan, Muhammet

    2013-01-01

    Dwarf hygro (Hygrophila polysperma) is an ornamental aquatic plant that changes its leaf colours to pinkish in high light. It is listed as a medicinal plant in medicinal plant lists of Indian states of West Bengal and Karnataka. It is also used as a screening tool for toxicities and a bioindicator to detect and control algae. The study reported in vitro adventitious shoot regeneration from leaf explants cultured on MS medium containing 0.10–1.60 mg/L Kin/TDZ with or without 0.10 mg/L IBA and 500 mg/L Amoklavin to eradicate endogenic bacterial contamination. Direct adventitious shoot regeneration started within one week from both culture mediums followed by late callus induction which was more prominent on TDZ containing media compared to Kin containing media. Addition of 0.10 mg/L IBA with both Kin and TDZ increased shoot regeneration frequency, mean number of shoots per explant, and mean shoot length. Maximum number of 16.33 and 20.55 shoots per explant was obtained on MS medium containing 0.80 + 0.10 mg/L Kin-IBA and 0.10 + 0.10 mg/L TDZ-IBA, respectively. Regenerated shoots were rooted on MS medium containing 0.20–1.00 mg/L IBA followed by successfull acclimatization in aquariums. Regenerated plantlets were also tested in jars containing distilled water that showed the pH 6–9 for the best plant growth and development. PMID:23853539

  17. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L.

    PubMed

    Naz, Ruphi; Anis, M

    2012-11-01

    In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog's (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2 ± 0.58 buds in central vein explants. Addition of different growth regulators (cytokinins-6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins-indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4 ± 0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.

  18. [Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis].

    PubMed

    Zhu, Li-Fang; Xu, Chao; Zhu, Zai-Biao; Yang, He-Tong; Guo, Qiao-Sheng; Xu, Hong-jian; Ma, Hong-Jian; Zhao, Gui-Hua

    2014-08-01

    To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established.

  19. [Microscopic anatomy of abnormal structure in root tuber of Pueraria lobata].

    PubMed

    Duan, Hai-yan; Cheng, Ming-en; Peng, Hua-sheng; Zhang, He-ting; Zhao, Yu-jiao

    2015-11-01

    Puerariae Lobatae Radix, also known as Gegen, is a root derived from Pueraria lobata. Based on field investigation and the developmental anatomy of root tuber, we have elucidated the relationship between the growth of root tuber and the anomalous structure. The results of analysis showed that the root system of P. lobata was developed from seed and adventitious root and there existed root tuber, adventitious root and conductive root according to morphology and function. The root tuber was developed from adventitious root, its secondary structure conformed to the secondary structure of dicotyledon's root. With the development of root, the secondary phloem of root tuber appeared abnormal vascular tissue, which was distributed like ring in the outside of secondary vascular tissue. The root tuber might have 4-6 concentric circular permutation abnormal vascular tissuelobate, and was formed by the internal development of abnormal vascular tissue. The xylem and phloem of abnormal vascular tissue were the main body of the root tuber. The results reveal the abnormal anatomical structure development of P. lobata, also provides the theoretical basis for reasonable harvest medicinal parts and promoting sustainable utilization of resources of P. lobata.

  20. Hypoperfusion of the Adventitial Vasa Vasorum Develops an Abdominal Aortic Aneurysm.

    PubMed

    Tanaka, Hiroki; Zaima, Nobuhiro; Sasaki, Takeshi; Sano, Masaki; Yamamoto, Naoto; Saito, Takaaki; Inuzuka, Kazunori; Hayasaka, Takahiro; Goto-Inoue, Naoko; Sugiura, Yuki; Sato, Kohji; Kugo, Hirona; Moriyama, Tatsuya; Konno, Hiroyuki; Setou, Mitsutoshi; Unno, Naoki

    2015-01-01

    The aortic wall is perfused by the adventitial vasa vasorum (VV). Tissue hypoxia has previously been observed as a manifestation of enlarged abdominal aortic aneurysms (AAAs). We sought to determine whether hypoperfusion of the adventitial VV could develop AAAs. We created a novel animal model of adventitial VV hypoperfusion with a combination of a polyurethane catheter insertion and a suture ligation of the infrarenal abdominal aorta in rats. VV hypoperfusion caused tissue hypoxia and developed infrarenal AAA, which had similar morphological and pathological characteristics to human AAA. In human AAA tissue, the adventitial VV were stenotic in both small AAAs (30-49 mm in diameter) and in large AAAs (> 50 mm in diameter), with the sac tissue in these AAAs being ischemic and hypoxic. These results indicate that hypoperfusion of adventitial VV has critical effects on the development of infrarenal AAA.

  1. [Induction and in vitro culture of hairy roots of Dianthus caryophyllus and its plant regeneration].

    PubMed

    Shi, Heping; Zhu, Yuanfeng; Wang, Bei; Sun, Jiangbing; Huang, Shengqin

    2014-11-01

    To use Agrobacterium rhizogenes-induced hairy roots to create new germplasm of Dianthus caryophyllus, we transformed D. caryophyllus with A. rhizogenes by leaf disc for plant regeneration from hairy roots. The white hairy roots could be induced from the basal surface of leaf explants of D. caryophyllus 12 days after inoculation with A. rhizogenes ATCC15834. The percentage of the rooting leaf explants was about 90% 21 days after inoculation. The hairy roots could grow rapidly and autonomously in liquid or solid phytohormone-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and silica gel thin-layer chromatography of opines from D. caryophyllus hairy roots. Hairy roots could form light green callus after cultured on MS+6-BA 1.0-3.0 mg/L + NAA 0.1-0.2 mg/L for 15 days. The optimum medium for adventitious shoots formation was MS + 6-BA 2.0 mg/L + NAA 0.02 mg/L, where the rate of adventitious shoot induction was 100% after cultured for 6 weeks. The mean number of adventitious shoot per callus was 30-40. The adventitious shoots can form roots when cultured on phytohormone-free 1/2 MS or 1/2 MS +0.5 mg/L NAA for 10 days. When the rooted plantlets transplanted in the substrate mixed with perlite sand and peat (volume ratio of 1:2), the survival rate was above 95%.

  2. The role of strigolactones in root development.

    PubMed

    Sun, Huwei; Tao, Jinyuan; Gu, Pengyuan; Xu, Guohua; Zhang, Yali

    2016-01-01

    Strigolactones (SLs) and their derivatives were recently defined as novel phytohormones that orchestrate shoot and root growth. Levels of SLs, which are produced mainly by plant roots, increase under low nitrogen and phosphate levels to regulate plant responses. Here, we summarize recent work on SL biology by describing their role in the regulation of root development and hormonal crosstalk during root deve-lopment. SLs promote the elongation of seminal/primary roots and adventitious roots (ARs) and they repress lateral root formation. In addition, auxin signaling acts downstream of SLs. AR formation is positively or negatively regulated by SLs depending largely on the plant species and experimental conditions. The relationship between SLs and auxin during AR formation appears to be complex. Most notably, this hormonal response is a key adaption that radically alters rice root architecture in response to nitrogen- and phosphate-deficient conditions.

  3. Venous cystic adventitial disease presenting as an enlarging groin mass.

    PubMed

    Scott, Mark F; Gavin, Timothy; Levin, Steven

    2014-02-01

    Venous cystic adventitial disease is an exceedingly rare vascular disorder, with 12 cases reported in the past decade. A 60-year-old woman presented with a painful, palpable groin mass without leg swelling. She was initially thought to have a nonreducible inguinal hernia. A computed tomography scan was obtained that revealed a cystic mass involving the right common femoral vein. Previous imaging revealed that the mass had enlarged over time. In the operating room, the cyst wall was excised without compromising vein integrity. The patient had an uneventful recovery and her pain resolved. We review the presentation, diagnosis, and treatment of this condition. We believe that the rapid evolution of this lesion suggests that an unknown inciting factor triggers its onset and growth.

  4. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  5. Adventitious Reinforcement of Maladaptive Stimulus Control Interferes with Learning.

    PubMed

    Saunders, Kathryn J; Hine, Kathleen; Hayashi, Yusuke; Williams, Dean C

    2016-09-01

    Persistent error patterns sometimes develop when teaching new discriminations. These patterns can be adventitiously reinforced, especially during long periods of chance-level responding (including baseline). Such behaviors can interfere with learning a new discrimination. They can also disrupt already learned discriminations, if they re-emerge during teaching procedures that generate errors. We present an example of this process. Our goal was to teach a boy with intellectual disabilities to touch one of two shapes on a computer screen (in technical terms, a simple simultaneous discrimination). We used a size-fading procedure. The correct stimulus was at full size, and the incorrect-stimulus size increased in increments of 10 %. Performance was nearly error free up to and including 60 % of full size. In a probe session with the incorrect stimulus at full size, however, accuracy plummeted. Also, a pattern of switching between choices, which apparently had been established in classroom instruction, re-emerged. The switching pattern interfered with already-learned discriminations. Despite having previously mastered a fading step with the incorrect stimulus up to 60 %, we were unable to maintain consistently high accuracy beyond 20 % of full size. We refined the teaching program such that fading was done in smaller steps (5 %), and decisions to "step back" to a smaller incorrect stimulus were made after every 5-instead of 20-trials. Errors were rare, switching behavior stopped, and he mastered the discrimination. This is a practical example of the importance of designing instruction that prevents adventitious reinforcement of maladaptive discriminated response patterns by reducing errors during acquisition.

  6. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse

    SciTech Connect

    Xu Fang; Ji Jian; Li Li; Chen Rong; Hu Weicheng . E-mail: huweicheng@sdu.edu.cn

    2007-01-19

    The role of the adventitia in vascular function and vascular lesion formation has been largely ignored. This study observed the activation of the adventitia and specifically the fibroblasts in the development of atherosclerosis in the apoE(-/-) mouse. The results showed a gradual increase in expression of collagen types I and III after 2, 4, and 8 weeks of hyperlipidic diet. The earliest expression of monocyte chemoattractant protein-1 (MCP-1) protein and mRNA was detected in the adventitial fibroblast before the formation of intimal lesions. Proliferation, too, was first found in the adventitial fibroblasts. We hypothesize that the adventitial fibroblast is activated in the early stage of atherosclerosis. Adventitial inflammation may be an early event in the development of atherosclerotic lesions.

  7. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    PubMed

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (P<0.05). In addition, catalase transfection significantly attenuated AngII‑induced ROS generation, macrophage infiltration, collagen deposition and adventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  8. Adventitial Nab-Rapamycin Injection Reduces Porcine Femoral Artery Luminal Stenosis Induced by Balloon Angioplasty via Inhibition of Medial Proliferation and Adventitial Inflammation

    PubMed Central

    Gasper, Warren J.; Jimenez, Cynthia A.; Walker, Joy; Conte, Michael S.; Seward, Kirk; Owens, Christopher D.

    2014-01-01

    Background Endovascular interventions on peripheral arteries are limited by high rates of restenosis. Our hypothesis was that adventitial injection of rapamycin nanoparticles would be safe and reduce luminal stenosis in a porcine femoral artery balloon angioplasty model. Methods and Results Eighteen juvenile male crossbred swine were included. Single-injury (40%–60% femoral artery balloon overstretch injury; n=2) and double-injury models (endothelial denudation injury 2 weeks before a 20%–30% overstretch injury; n=2) were compared. The double-injury model produced significantly more luminal stenosis at 28 days, P=0.002, and no difference in medial fibrosis or inflammation. Four pigs were randomized to the double-injury model and adventitial injection of saline (n=2) or 500 μg of nanoparticle albumin-bound rapamycin (nab-rapamycin; n=2) with an endovascular microinfusion catheter. There was 100% procedural success and no difference in endothelial regeneration. At 28 days, nab-rapamycin led to significant reductions in luminal stenosis, 17% (interquartile range, 12%–35%) versus 10% (interquartile range, 8.3%–14%), P=0.001, medial cell proliferation, P<0.001, and fibrosis, P<0.001. There were significantly fewer adventitial leukocytes at 3 days, P<0.001, but no difference at 28 days. Pharmacokinetic analysis (single-injury model) found rapamycin concentrations 1500× higher in perivascular tissues than in blood at 1 hour. Perivascular rapamycin persisted ≥8 days and was not detectable at 28 days. Conclusions Adventitial nab-rapamycin injection was safe and significantly reduced luminal stenosis in a porcine femoral artery balloon angioplasty model. Observed reductions in early adventitial leukocyte infiltration and late medial cell proliferation and fibrosis suggest an immunosuppressive and antiproliferative mechanism. An intraluminal microinfusion catheter for adventitial injection represents an alternative to stent- or balloon-based local drug delivery

  9. An anatomically based imaging sign to detect adventitial cyst derived from the superior tibiofibular joint.

    PubMed

    Hébert-Blouin, Marie-Noëlle; Pirola, Elena; Amrami, Kimberly K; Wang, Huan; Desy, Nicholas M; Spinner, Robert J

    2011-10-01

    The origin for complex intraneural cysts remains controversial despite recent emerging evidence to support their articular origin. The coexistence of intraneural and adventitial cysts has been described due to the proximate neurovascular bundle, i.e., the articular (neural) branch and vessels at the joint capsule. To clarify the pathogenesis, anatomically based imaging patterns can be identified. This paper characterizes a common finding identified on MRI describing the adventitial component originating from the superior tibiofibular joint (STFJ). MRIs of patients with fibular (peroneal) (n = 24) and tibial (n = 7) intraneural ganglion cysts were reviewed. Eleven patients with fibular intraneural ganglion cysts were identified as having a coexisting adventitial component. In all cases, the adventitial cyst extended from the anterior portion of the STFJ, within the capsular vessels, and along the anterior tibial vessels. The reproducible anatomy permitted the identification of an imaging pattern: the "vascular U" sign, consisting of cystic anterior tibial vessels running through the interosseous membrane between the proximal tibia and fibula. This sign was seen on axial MR image(s) obtained at the level of the fibular neck in all cases. To generalize these findings, the rare tibial intraneural ganglion cysts (derived from the posterior aspect of the STFJ) were examined; two cases had coexisting adventitial cysts with visualization of the vascular U sign. This new imaging pattern can improve the identification of adventitial cysts at the level of the STFJ.

  10. The architecture of adventitial elastin in the canine infrarenal aorta.

    PubMed

    Haas, K S; Phillips, S J; Comerota, A J; White, J V

    1991-05-01

    Although the artery wall consists of three distinct layers, only the structures of the intima and media have been well characterized. The adventitia has generally been overlooked. Our examination focused on the organization of elastin and collagen which are the major components of this tunic. Canine infrarenal aortas were excised, stretched to their in vivo length, then pressure fixed in formalin. Transverse, longitudinal, and frontal sections were prepared with specific elastin and collagen stains. Areas of adventitia in these sections were examined with LM, and interconnections between collagen and elastin were photographed at various magnifications. Subsequently, the slides were fractured for attachment to SEM stubs, and the coverslips were demounted. The identical areas were then examined with SEM using the LM micrographs as a guide to identify elastin and collagen. Whole mount aortic ring preparations were digested in formic acid for 72 and 96 h at 45 degrees C to confirm adventitial elastin architecture. The adventitia was organized in alternating lamellae of collagen and elastin. The elastin lamellae consisted of continuous sheets of elastin with a longitudinal fibrillar substructure. Finer circumferential elastin fibers were also identified. These attached to both longitudinal elastin and adjacent collagen lamellae. Collagen lamellae were arranged in broad corrugated bands of fibrils. The unique architecture of the adventitia may explain some of the visco-elastic properties of the aorta in both normal and pathologic states.

  11. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to

  12. Emerging roots alter epidermal cell fate through mechanical and reactive oxygen species signaling.

    PubMed

    Steffens, Bianka; Kovalev, Alexander; Gorb, Stanislav N; Sauter, Margret

    2012-08-01

    A central question in biology is how spatial information is conveyed to locally establish a developmental program. Rice (Oryza sativa) can survive flash floods by the emergence of adventitious roots from the stem. Epidermal cells that overlie adventitious root primordia undergo cell death to facilitate root emergence. Root growth and epidermal cell death are both controlled by ethylene. This study aimed to identify the signal responsible for the spatial control of cell death. Epidermal cell death correlated with the proximity to root primordia in wild-type and ADVENTITIOUS ROOTLESS1 plants, indicating that the root emits a spatial signal. Ethylene-induced root growth generated a mechanical force of ~18 millinewtons within 1 h. Force application to epidermal cells above root primordia caused cell death in a dose-dependent manner and was inhibited by 1-methylcyclopropene or diphenylene iodonium, an inhibitor of NADPH oxidase. Exposure of epidermal cells not overlying a root to either force and ethylene or force and the catalase inhibitor aminotriazole induced ectopic cell death. Genetic downregulation of the reactive oxygen species (ROS) scavenger METALLOTHIONEIN2b likewise promoted force-induced ectopic cell death. Hence, reprogramming of epidermal cell fate by the volatile plant hormone ethylene requires two signals: mechanosensing for spatial resolution and ROS for cell death signaling.

  13. Quantification of Adventitial Vasa Vasorum Vascularization in Double-injury Restenotic Arteries

    PubMed Central

    Ye, Meng; Zhang, Bai-Gen; Zhang, Lan; Xie, Hui; Zhang, Hao

    2015-01-01

    Background: Accumulating evidence indicates a potential role of adventitial vasa vasorum (VV) dysfunction in the pathophysiology of restenosis. However, characterization of VV vascularization in restenotic arteries with primary lesions is still missing. In this study, we quantitatively evaluated the response of adventitial VV to vascular injury resulting from balloon angioplasty in diseased arteries. Methods: Primary atherosclerotic-like lesions were induced by the placement of an absorbable thread surrounding the carotid artery of New Zealand rabbits. Four weeks following double-injury induced that was induced by secondary balloon dilation, three-dimensional patterns of adventitial VV were reconstructed; the number, density, and endothelial surface of VV were quantified using micro-computed tomography. Histology and immunohistochemistry were performed in order to examine the development of intimal hyperplasia. Results: Results from our study suggest that double injured arteries have a greater number of VV, increased luminal surface, and an elevation in the intima/media ratio (I/M), along with an accumulation of macrophages and smooth muscle cells in the intima, as compared to sham or single injury arteries. I/M and the number of VV were positively correlated (R2 = 0.82, P < 0.001). Conclusions: Extensive adventitial VV neovascularization occurs in injured arteries after balloon angioplasty, which is associated with intimal hyperplasia. Quantitative assessment of adventitial VV response may provide insight into the basic biological process of postangioplasty restenosis. PMID:26228224

  14. CD14 Directs Adventitial Macrophage Precursor Recruitment: Role in Early Abdominal Aortic Aneurysm Formation

    PubMed Central

    Blomkalns, Andra L.; Gavrila, Daniel; Thomas, Manesh; Neltner, Bonnie S.; Blanco, Victor M.; Benjamin, Stephanie B.; McCormick, Michael L.; Stoll, Lynn L.; Denning, Gerene M.; Collins, Sean P.; Qin, Zhenyu; Daugherty, Alan; Cassis, Lisa A.; Thompson, Robert W.; Weiss, Robert M.; Lindower, Paul D.; Pinney, Susan M.; Chatterjee, Tapan; Weintraub, Neal L.

    2013-01-01

    Background Recruitment of macrophage precursors to the adventitia plays a key role in the pathogenesis of abdominal aortic aneurysms (AAAs), but molecular mechanisms remain undefined. The innate immune signaling molecule CD14 was reported to be upregulated in adventitial macrophages in a murine model of AAA and in monocytes cocultured with aortic adventitial fibroblasts (AoAf) in vitro, concurrent with increased interleukin‐6 (IL‐6) expression. We hypothesized that CD14 plays a crucial role in adventitial macrophage precursor recruitment early during AAA formation. Methods and Results CD14−/− mice were resistant to AAA formation induced by 2 different AAA induction models: aortic elastase infusion and systemic angiotensin II (AngII) infusion. CD14 gene deletion led to reduced aortic macrophage infiltration and diminished elastin degradation. Adventitial monocyte binding to AngII‐infused aorta in vitro was dependent on CD14, and incubation of human acute monocytic leukemia cell line‐1 (THP‐1) monocytes with IL‐6 or conditioned medium from perivascular adipose tissue (PVAT) upregulated CD14 expression. Conditioned medium from AoAf and PVAT induced CD14‐dependent monocyte chemotaxis, which was potentiated by IL‐6. CD14 expression in aorta and plasma CD14 levels were increased in AAA patients compared with controls. Conclusions These findings link CD14 innate immune signaling via a novel IL‐6 amplification loop to adventitial macrophage precursor recruitment in the pathogenesis of AAA. PMID:23537804

  15. Detection of patients considering observation frequency of continuous and discontinuous adventitious sounds in lung sounds.

    PubMed

    Nakamura, Naoki; Yamashita, Masaru; Matsunaga, Shoichi

    2016-08-01

    We propose an improved approach for distinguishing between healthy subjects and patients with pulmonary emphysema by the use of one stochastic acoustic model for continuous adventitious sounds and another for discontinuous adventitious sounds. These models are able to represent the spectral features of the adventitious sounds for the detection of abnormal respiration. However, abnormal respiratory sounds with unclassifiable spectral features are present among the continuous and discontinuous adventitious sounds and mixing noises. These sounds cause difficulties in achieving a highly accurate classification. In this study, the difference in occurrence frequencies between two types of adventitious sounds for each considered auscultation point and inspiration/expiration was considered. This difference, in combination with the confusion tendency of the classifier, was formulated as the validity score of each respiratory sound. The conventional spectral likelihood and the newly formulated validity score were combined to perform detection of abnormal respiration and patients. In the classification of healthy subjects and patients, the proposed approach achieved a higher classification rate (87.7%) than the conventional method (85.2%), demonstrating the statistical superiority (5% level) of the former.

  16. Adventitious agents and live viral vectored vaccines: Considerations for archiving samples of biological materials for retrospective analysis.

    PubMed

    Klug, Bettina; Robertson, James S; Condit, Richard C; Seligman, Stephen J; Laderoute, Marian P; Sheets, Rebecca; Williamson, Anna-Lise; Gurwith, Marc; Kochhar, Sonali; Chapman, Louisa; Carbery, Baevin; Mac, Lisa M; Chen, Robert T

    2016-12-12

    Vaccines are one of the most effective public health medicinal products with an excellent safety record. As vaccines are produced using biological materials, there is a need to safeguard against potential contamination with adventitious agents. Adventitious agents could be inadvertently introduced into a vaccine through starting materials used for production. Therefore, extensive testing has been recommended at specific stages of vaccine manufacture to demonstrate the absence of adventitious agents. Additionally, the incorporation of viral clearance steps in the manufacturing process can aid in reducing the risk of adventitious agent contamination. However, for live viral vaccines, aside from possible purification of the virus or vector, extensive adventitious agent clearance may not be feasible. In the event that an adventitious agent is detected in a vaccine, it is important to determine its origin, evaluate its potential for human infection and pathology, and discern which batches of vaccine may have been affected in order to take risk mitigation action. To achieve this, it is necessary to have archived samples of the vaccine and ancillary components, ideally from developmental through to current batches, as well as samples of the biological materials used in the manufacture of the vaccine, since these are the most likely sources of an adventitious agent. The need for formal guidance on such vaccine sample archiving has been recognized but not fulfilled. We summarize in this paper several prior major cases of vaccine contamination with adventitious agents and provide points for consideration on sample archiving of live recombinant viral vector vaccines for use in humans.

  17. miR-29a-3p attenuates hypoxic pulmonary hypertension by inhibiting pulmonary adventitial fibroblast activation.

    PubMed

    Luo, Ying; Dong, Hai-Ying; Zhang, Bo; Feng, Zhao; Liu, Yi; Gao, Yu-Qi; Dong, Ming-Qing; Li, Zhi-Chao

    2015-02-01

    Activation of pulmonary adventitial fibroblasts plays a key role in the pulmonary vascular remodeling in hypoxic pulmonary hypertension. Previous studies showed that miRNAs participated in the regulation of fibroblast activation. This study explored the role of miR-29 in the activation of pulmonary adventitial fibroblasts and the therapeutic potential in hypoxic pulmonary hypertension. We found that hypoxia-induced pulmonary adventitial fibroblasts activation was accompanied with a drastic decrease of miR-29a-3p expression. Knockdown of hypoxia-inducible factor-1 α or Smad3 reversed the hypoxia-induced decrease of miR-29-3p in cultured pulmonary adventitial fibroblasts. In vitro, miR-29a-3p mimic inhibited the hypoxia-induced proliferation, migration, and secretion of pulmonary adventitial fibroblasts, suppressed the hypoxia-induced expression of α-smooth muscle actin and extracellular matrix collagen in pulmonary adventitial fibroblasts; however, miR-29a-3p inhibitor mimicked the effect of hypoxia on the activation of pulmonary adventitial fibroblasts. Further studies revealed that preventative or therapeutic administration of miR-29a-3p significantly decreased pulmonary artery pressure and right ventricle hypertrophy index and ameliorated pulmonary vascular remodeling in hypoxic pulmonary hypertension rats. These findings suggest that miR-29a-3p regulates the activation and phenotype of pulmonary adventitial fibroblasts in hypoxia and has preventative and therapeutic potential in hypoxic pulmonary hypertension.

  18. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots.

    PubMed

    de Vries, Jan; Fischer, Angela Melanie; Roettger, Mayo; Rommel, Sophie; Schluepmann, Henriette; Bräutigam, Andrea; Carlsbecker, Annelie; Gould, Sven Bernhard

    2016-01-01

    The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system.

  19. High spatial resolution magnetic resonance imaging of cystic adventitial disease of the popliteal artery.

    PubMed

    Maged, Ismaeel M; Turba, Ulku C; Housseini, Ahmed M; Kern, John A; Kron, Irving L; Hagspiel, Klaus D

    2010-02-01

    High spatial resolution magnetic resonance imaging (MRI) of patients with cystic adventitial disease can demonstrate connections between cysts in the adventitia and the adjacent joint, which is important for successful treatment. The inability to identify these during surgery can lead to a recurrence; thus, high spatial resolution MRI has the potential to affect therapy. This article presents the high spatial resolution MRI findings of cystic adventitial disease in a series of three consecutive patients and discusses the relevance of these findings to the etiology and therapy.

  20. Adventitial stripping of the radial and ulnar arteries in Raynaud's disease.

    PubMed

    Balogh, Brigitta; Mayer, W; Vesely, M; Mayer, S; Partsch, H; Piza-Katzer, H

    2002-11-01

    Adventitial stripping of the palmar arch, the palmar common digital arteries, or the proper digital arteries is a last resort in the treatment of refractory primary or secondary Raynaud's phenomenon. Seven patients who had adventitial stripping of the ulnar and radial arteries proximal to the wrist and resection of the nerve of Henle, if identifiable, are presented. All of them were evaluated by telethermography, acral rheography, and a questionnaire before and after surgery. All were asymptomatic after surgery with satisfactory healing of the ulcers at the fingertips. None of them relapsed during the follow-up time of 1.5 years.

  1. Adventitial cystic disease of the common femoral vein presenting as deep vein thrombosis.

    PubMed

    Kim, Young-Kyun; Chun, Ho Jong; Hwang, Jeong Kye; Kim, Ji Il; Kim, Sang Dong; Park, Sun-Cheol; Moon, In Sung

    2016-07-01

    Adventitial cystic disease of the common femoral vein is a rare condition. We herein report the case of a 50-year-old woman who presented with painless swelling in her left lower leg that resembled deep vein thrombosis. She underwent femoral exploration and excision of the cystic wall. The presentation, investigation, treatment, and pathology of this condition are discussed with a literature review.

  2. Tissue sealing device associated thermal spread: a comparison of histologic methods for detecting adventitial collagen denaturation

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; Grisez, Brian T.; Thomas, Aaron C.; Livengood, Ryan H.; Coad, James E.

    2013-02-01

    Thermal spread (thermal tissue damage) results from heat conduction through the tissues immediately adjacent to a hyperthermic tissue sealing device. The extent of such heat conduction can be assessed by the detection of adventitial collagen denaturation. Several histologic methods have been reported to measure adventitial collagen denaturation as a marker of thermal spread. This study compared hematoxylin and eosin staining, Gomori trichrome staining and loss of collagen birefringence for the detection of collagen denaturation. Twenty-eight ex vivo porcine carotid arteries were sealed with a commercially available, FDA-approved tissue sealing device. Following formalin fixation and paraffin embedding, two 5-micron tissue sections were hematoxylin and eosin and Gomori trichrome stained. The hematoxylin and eosin-stained section was evaluated by routine bright field microscopy and under polarized light. The trichromestained section was evaluated by routine bright field microscopy. Radial and midline adventitial collagen denaturation measurements were made for both the top and bottom jaw sides of each seal. The adventitial collagen denaturation lengths were determined using these three methods and statistically compared. The results showed that thermal spread, as represented by histologically detected collagen denaturation, is technique dependent. In this study, the trichrome staining method detected significantly less thermal spread than the hematoxylin and eosin staining and birefringence methods. Of the three methods, hematoxylin and eosin staining provided the most representative results for true thermal spread along the adjacent artery.

  3. Adventitious shoot regeneration from leaf explants of southern highbush blueberry cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protocols were developed to optimize adventitious shoot regeneration from four southern highbush blueberry cultivars. Leaf explants from six-week-old shoots of the four cultivars were excised and cultured on ten WPM (woody plant medium)-based regeneration media each containing thidiazuron (TDZ) (4.5...

  4. Rapid in vitro adventitious shoot propagation of Scopolia parviflora through rhizome cultures for enhanced production of tropane alkaloids.

    PubMed

    Kang, Y M; Min, J Y; Moon, H S; Karigar, C S; Prasad, D T; Lee, C H; Choi, M S

    2004-09-01

    A rapid micropropagation system for Scopolia parviflora Nakai (Solanaceae), a rare medicinal plant native to Korea, was established using rhizome cultures. Shoots that originated from adventitious shoots of the rhizome were multiplied when the rhizomes were cultured on half-strength B5 liquid medium supplemented with various growth regulators. Optimum shoot multiplication was observed in half-strength B5 medium containing 3% (w/v) sucrose and 5.77 microM gibberellic acid (GA(3)). Each rhizome gave rise to an average of 12 shoots. Shoot elongation and root induction from multiple shoots occurred on growth regulator-free half-strength B5 solid medium. Healthy plantlets were transferred to a peat moss:vermiculite mixture for acclimatization, which was successful. The concentrations of tropane alkaloids, hyoscyamine and scopolamine were determined in different tissues of native growing plants, in vitro-propagated plants and acclimatized plants by high-performance liquid chromatography. The analysis revealed that the levels of hyoscyamine and scopolamine were higher in in vitro-propagated plants than in the native growing plants. When the rhizome was cut into segments and transferred to optimal culture conditions for multiple shoot propagation, only 12 weeks were required to produce a mature plant. We conclude that in vitro propagation techniques through rhizome cultures provide an efficient and rapid method for shoot propagation of S. parviflora.

  5. Developmental anatomy and branching of roots of four Zeylanidium species (podostemaceae), with implications for evolution of foliose roots.

    PubMed

    Hiyama, Y; Tsukamoto, I; Imaichi, R; Kato, M

    2002-12-01

    Podostemaceae have markedly specialized and diverse roots that are adapted to extreme habitats, such as seasonally submerged or exposed rocks in waterfalls and rapids. This paper describes the developmental anatomy of roots of four species of Zeylanidium, with emphasis on the unusual association between root branching and root-borne adventitious shoots. In Z. subulatum and Z. lichenoides with subcylindrical or ribbon-like roots, the apical meristem distal (exterior) to a shoot that is initiated within the meristem area reduces and loses meristematic activity. This results in a splitting into two meristems that separate the parental root and lateral root (anisotomous dichotomy). In Z. olivaceum with lobed foliose roots, shoots are initiated in the innermost zone of the marginal meristem, and similar, but delayed, meristem reduction usually occurs, producing a parenchyma exterior to shoots located between root lobes. In some extreme cases, due to meristem recovery, root lobing does not occur, so the margin is entire. In Z. maheshwarii with foliose roots, shoots are initiated proximal to the marginal meristem and there is no shoot-root lobe association. Results suggest that during evolution from subcylindrical or ribbon-like roots to foliose roots, reduction of meristem exterior to a shoot was delayed and then arrested as a result of inward shifting of the sites of shoot initiation. The evolutionary reappearance of a protective tissue or root cap in Z. olivaceum and Z. maheshwarii in the Zeylanidium clade is implied, taking into account the reported molecular phylogeny and root-cap development in Hydrobryum.

  6. An auxin-responsive endogenous peptide regulates root development in Arabidopsis.

    PubMed

    Yang, Fengxi; Song, Yu; Yang, Hao; Liu, Zhibin; Zhu, Genfa; Yang, Yi

    2014-07-01

    Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, root morphology, including lateral root number and adventitious roots, differed greatly between transgenic and wild-type plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wild-type plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxin-mediated root development.

  7. Deciphering Phosphate Deficiency-Mediated Temporal Effects on Different Root Traits in Rice Grown in a Modified Hydroponic System

    PubMed Central

    Negi, Manisha; Sanagala, Raghavendrarao; Rai, Vandna; Jain, Ajay

    2016-01-01

    Phosphate (Pi), an essential macronutrient for growth and development of plant, is often limiting in soils. Plants have evolved an array of adaptive strategies including modulation of root system architecture (RSA) for optimal acquisition of Pi. In rice, a major staple food, RSA is complex and comprises embryonically developed primary and seminal roots and post-embryonically developed adventitious and lateral roots. Earlier studies have used variant hydroponic systems for documenting the effects of Pi deficiency largely on primary root growth. Here, we report the temporal effects of Pi deficiency in rice genotype MI48 on 15 ontogenetically distinct root traits by using easy-to-assemble and economically viable modified hydroponic system. Effects of Pi deprivation became evident after 4 days- and 7 days-treatments on two and eight different root traits, respectively. The effects of Pi deprivation for 7 days were also evident on different root traits of rice genotype Nagina 22 (N22). There were genotypic differences in the responses of primary root growth along with lateral roots on it and the number and length of seminal and adventitious roots. Notably though, there were attenuating effects of Pi deficiency on the lateral roots on seminal and adventitious roots and total root length in both these genotypes. The study thus revealed both differential and comparable effects of Pi deficiency on different root traits in these genotypes. Pi deficiency also triggered reduction in Pi content and induction of several Pi starvation-responsive (PSR) genes in roots of MI48. Together, the analyses validated the fidelity of this modified hydroponic system for documenting Pi deficiency-mediated effects not only on different traits of RSA but also on physiological and molecular responses. PMID:27200025

  8. Influences of polar auxin transport on polarity of adventitious bud formation in hybrid populas

    SciTech Connect

    Kim, Myung Won ); Hackett, W. )

    1989-04-01

    The role of auxin and cytokinin distribution of polar regeneration of adventitious bud has been investigated. Explants from leaf midvein were labelled with {sup 14}C-NAA and {sup 14}C-BA and the radioactivity in proximal, mid, and distal portions was counted after 24h and 48h. Explants showing polar regeneration of buds on the proximal end showed a clear polar distribution of {sup 14}CNAA. Auxin transport inhibitors (NPA, TIBA) eliminated polar distribution of auxin and reduced polarity of bud formation and the total number of buds formed, but did not reduce callus formation. Increased concentration of Ca(NO{sub 3}){sub 2} decreased polarity of bud formation and increased the number of buds formed but did not affect the distribution of auxin of cytokinin. Some factor in addition to polar distribution of auxin or cytokinin-auxin ratio appears to influence the polarity of adventitious bud formation.

  9. Recurrent cystic adventitial disease of the popliteal artery: successful treatment with percutaneous transluminal angioplasty.

    PubMed

    Maged, Ismaeel M; Kron, Irving L; Hagspiel, Klaus D

    2009-01-01

    Cystic adventitial disease (CAD) is a rare vascular condition that most commonly affects the popliteal artery. Percutaneous transluminal angioplasty (PTA) is generally not considered a valid therapeutic option due to high recurrence rate. We report a case of CAD of the popliteal artery that recurred after surgical cyst enucleation that was successfully treated with PTA. To the best of our knowledge, this is the first case of successful PTA for the treatment of recurrent CAD of the popliteal artery.

  10. Targeting the adventitial microenvironment in pulmonary hypertension: A potential approach to therapy that considers epigenetic change

    PubMed Central

    Stenmark, Kurt R.; Frid, Maria G.; Yeager, Michael; Li, Min; Riddle, Suzette; McKinsey, Timothy; El Kasmi, Karim C.

    2012-01-01

    Experimental data indicate that the adventitial compartment of blood vessels, in both the pulmonary and systemic circulations, like the connective tissue stroma in tissues throughout the body, is a critical regulator of vessel wall function in health and disease. It is clear that adventitial cells, and in particular the adventitial fibroblast, are activated early following vascular injury, and play essential roles in regulating vascular wall structure and function through production of chemokines, cytokines, growth factors, and reactive oxygen species (ROS). The recognition of the ability of these cells to generate and maintain inflammatory responses within the vessel wall provides insight into why vascular inflammatory responses, in certain situations, fail to resolve. It is also clear that the activated adventitial fibroblast plays an important role in regulating vasa vasorum growth, which can contribute to ongoing vascular remodeling by acting as a conduit for delivery of inflammatory and progenitor cells. These functions of the fibroblast clearly support the idea that targeting chemokine, cytokine, adhesion molecule, and growth factor production in activated fibroblasts could be helpful in abrogating vascular inflammatory responses and thus in ameliorating vascular disease. Further, the recent observations that fibroblasts in vascular and fibrotic diseases may maintain their activated state through epigenetic alterations in key inflammatory and pro-fibrotic genes suggests that current therapies used to treat pulmonary hypertension may not be sufficient to induce apoptosis or to inhibit key inflammatory signaling pathways in these fibroblasts. New therapies targeted at reversing changes in the acetylation or methylation status of key transcriptional networks may be needed. At present, therapies specifically targeting abnormalities of histone deacytelase (HDAC) activity in fibroblast-like cells appear to hold promise. PMID:22558514

  11. Cystic adventitial disease of the popliteal artery: an infrequent cause of intermittent claudication

    PubMed Central

    Kauffman, Paulo; Kuzniec, Sergio; Sacilotto, Roberto; Teivelis, Marcelo Passos; Wolosker, Nelson; Tachibana, Adriano

    2014-01-01

    Intermittent claudication is frequently associated with atherosclerotic disease, but differential diagnosis must be sought in patients with no traditional risk factors. Cystic adventitial disease, of unknown etiology, most frequently affects the popliteal artery, and occasionally presents as intermittent claudication. We report a case of this disease and the surgical treatment, and discuss some aspects related to etiopathogenesis, diagnosis and treatment of this condition. PMID:25167336

  12. Detecting and quantifying the adventitious presence of transgenic seeds in safflower, Carthamus tinctorius L.

    PubMed

    Christianson, Jed; McPherson, Marc; Topinka, Deborah; Hall, Linda; Good, Allen G

    2008-07-23

    Safflower ( Carthamus tinctorius L.) is currently being developed as a platform for the production of novel proteins. Methods for detecting and quantifying transgenic safflower are needed to ensure seed quality and to monitor for its adventitious presence. We developed and compared three methods of assaying for transgenic safflower presence in conventional seedlots: field bioassays, enzyme-linked immunosorbent assays (ELISA), and quantitative polymerase chain reaction (Q-PCR). Limits for reliable quantification for both ELISA and Q-PCR are approximately 0.1%, although levels at least as low as 0.02% can be detected by Q-PCR. Levels of quantification for the field bioassay are limited only by space and resources available. Multiple sampling methods to detect and quantify transgenic safflower presence at levels lower than 0.1% were used on field collected samples from a pollen outcrossing experiment to quantify the adventitious presence of transgenic safflower. Taking into account the potential utility and relative advantages or disadvantages of each detection method, it is recommended that the initial testing for the adventitious presence of transgenic seed be carried out using an antibody-based test if available and that Q-PCR-based assays to quantify transgenic proportion be used when it is necessary to identify specific transgenic constructs or if antibody-based assays are not readily available.

  13. Adventitial lymphatic capillary expansion impacts on plaque T cell accumulation in atherosclerosis

    PubMed Central

    Rademakers, Timo; van der Vorst, Emiel P. C.; Daissormont, Isabelle T. M. N.; Otten, Jeroen J. T.; Theodorou, Kosta; Theelen, Thomas L.; Gijbels, Marion; Anisimov, Andrey; Nurmi, Harri; Lindeman, Jan H. N.; Schober, Andreas; Heeneman, Sylvia; Alitalo, Kari; Biessen, Erik A. L.

    2017-01-01

    During plaque progression, inflammatory cells progressively accumulate in the adventitia, paralleled by an increased presence of leaky vasa vasorum. We here show that next to vasa vasorum, also the adventitial lymphatic capillary bed is expanding during plaque development in humans and mouse models of atherosclerosis. Furthermore, we investigated the role of lymphatics in atherosclerosis progression. Dissection of plaque draining lymph node and lymphatic vessel in atherosclerotic ApoE−/− mice aggravated plaque formation, which was accompanied by increased intimal and adventitial CD3+ T cell numbers. Likewise, inhibition of VEGF-C/D dependent lymphangiogenesis by AAV aided gene transfer of hVEGFR3-Ig fusion protein resulted in CD3+ T cell enrichment in plaque intima and adventitia. hVEGFR3-Ig gene transfer did not compromise adventitial lymphatic density, pointing to VEGF-C/D independent lymphangiogenesis. We were able to identify the CXCL12/CXCR4 axis, which has previously been shown to indirectly activate VEGFR3, as a likely pathway, in that its focal silencing attenuated lymphangiogenesis and augmented T cell presence. Taken together, our study not only shows profound, partly CXCL12/CXCR4 mediated, expansion of lymph capillaries in the adventitia of atherosclerotic plaque in humans and mice, but also is the first to attribute an important role of lymphatics in plaque T cell accumulation and development. PMID:28349940

  14. Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa

    PubMed Central

    Sun, Peng; Xiao, Xingguo; Duan, Liusheng; Guo, Yuhai; Qi, Jianjun; Liao, Dengqun; Zhao, Chunli; Liu, Yan; Zhou, Lili; Li, Xianen

    2015-01-01

    Rehmannia glutinosa, an herb of the Scrophulariaceae family, is widely cultivated in the Northern part of China. The tuberous root has well-known medicinal properties; however, yield and quality are threatened by abiotic and biotic stresses. Understanding the molecular process of tuberous root development may help identify novel targets for its control. In the present study, we used Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome that is relevant to tuberous root development. We then conducted RNA-seq quantification analysis to determine gene expression profiles of the adventitious root (AR), thickening adventitious root (TAR), and the developing tuberous root (DTR). Expression profiling identified a total of 6794 differentially expressed unigenes during root development. Bioinformatics analysis and gene expression profiling revealed changes in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone biosynthesis during root development. Moreover, we identified and allocated putative functions to the genes involved in tuberous root development, including genes related to major carbohydrate metabolism, hormone metabolism, and transcription regulation. The present study provides the initial description of gene expression profiles of AR, TAR, and DTR, which facilitates identification of genes of interest. Moreover, our work provides insights into the molecular mechanisms underlying tuberous root development and may assist in the design and development of improved breeding schemes for different R. glutinosa varieties through genetic manipulation. PMID:26113849

  15. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination.

    PubMed

    Park, Sangkyu; Back, Kyoungwhan

    2012-11-01

    The effect of melatonin on root growth after germination was examined in transgenic rice seedlings expressing sheep serotonin N-acetyltransferase (NAT). Enhanced melatonin levels were found in T(3) homozygous seedlings because of the ectopic overexpression of sheep NAT, which is believed to be the rate-limiting enzyme in melatonin biosynthesis in animals. Compared with wild-type rice seeds, the transgenic rice seeds showed enhanced seminal root growth and an analogous number of adventitious roots 4 and 10 days after seeding on half-strength Murashige and Skoog medium. The enhanced initial seminal root growth in the transgenic seedlings matched their increased root biomass well. We also found that treatment with 0.5 and 1 μM melatonin promoted seminal root growth of the wild type under continuous light. These results indicate that melatonin plays an important role in regulating both seminal root length and root growth after germination in monocotyledonous rice plants. This is the first report on the effects of melatonin on root growth in gain-of-function mutant plants that produce high levels of melatonin.

  16. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    PubMed

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins.

  17. Hypoxia induces unique proliferative response in adventitial fibroblasts by activating PDGFβ receptor-JNK1 signalling

    PubMed Central

    Panzhinskiy, Evgeniy; Zawada, W. Michael; Stenmark, Kurt R.; Das, Mita

    2012-01-01

    Aims Pulmonary hypertension (PH) is a devastating condition for which no disease-modifying therapies exist. PH is recognized as proliferative disease of the pulmonary artery (PA). In the experimental newborn calf model of hypoxia-induced PH, adventitial fibroblasts in the PA wall exhibit a heightened replication index. Because elevated platelet-derived growth factor β receptor (PDGFβ-R) signalling is associated with PH, we tested the hypothesis that the activation of PDGFβ-R contributes to fibroblast proliferation and adventitial remodelling in PH. Methods and results Newborn calves were exposed to either ambient air (PB = 640 mmHg) (Neo-C) or high altitude (PB = 445 mm Hg) (Neo-PH) for 2 weeks. PDGFβ-R phosphorylation was markedly elevated in PA adventitia of Neo-PH calves as well as in cultured PA fibroblasts isolated from Neo-PH animals. PDGFβ-R activation with PDGF-BB stimulated higher replication in Neo-PH cells compared with that of control fibroblasts. PDGF-BB-induced proliferation was dependent on reactive oxygen species generation and extracellular signal-regulated kinase1/2 activation in both cell populations; however, only Neo-PH cell division via PDGFβ-R activation displayed a unique dependence on c-Jun N-terminal kinase1 (JNK1) stimulation as the blockade of JNK1 with SP600125, a pharmacological antagonist of the JNK pathway, and JNK1-targeted siRNA selectively blunted Neo-PH cell proliferation. Conclusions Our data strongly suggest that hypoxia-induced modified cells engage the PDGFβ-R-JNK1 axis to confer distinctively heightened proliferation and adventitial remodelling in PH. PMID:22735370

  18. Cloning and characterization of a type-A response regulator differentially expressed during adventitious shoot formation in Pinus pinea L.

    PubMed

    Cortizo, M; Alvarez, J M; Rodríguez, A; Fernández, B; Ordás, R J

    2010-08-15

    Type-A response regulators play an important role in cytokinin-induced adventitious shoot formation, acting as negative regulators of cytokinin signal transduction. In this work, we obtained the full-length cDNA clone of a type-A response regulator from the conifer Pinus pinea, designated PipiRR1. The derived peptide sequence showed all the characteristic motifs found in angiosperms. Gene expression analysis showed that the gene was differentially expressed during adventitious shoot formation in P. pinea cotyledons, suggesting that PipiRR1 may play a role in caulogenesis in conifers. This is the first type-A response regulator identified in gymnosperms.

  19. Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea cotyledons by subtractive hybridization and quantitative PCR.

    PubMed

    Alonso, Pablo; Cortizo, Millán; Cantón, Francisco R; Fernández, Belén; Rodríguez, Ana; Centeno, Maria L; Cánovas, Francisco M; Ordás, Ricardo J

    2007-12-01

    As part of a study aimed at understanding the physiological and molecular mechanisms involved in adventitious shoot bud formation in pine cotyledons, we conducted a transcriptome analysis to identify early-induced genes during the first phases of adventitious caulogenesis in Pinus pinea L. cotyledons cultured in the presence of benzyladenine. A subtractive cDNA library with more than 700 clones was constructed. Of these clones, 393 were sequenced, analyzed and grouped according to their putative function. Quantitative real-time PCR analysis was performed to confirm the differential expression of 30 candidate genes. Results are contrasted with available data for other species.

  20. Pulmonary Artery Adventitial Fibroblasts Cooperate with Vasa Vasorum Endothelial Cells to Regulate Vasa Vasorum Neovascularization

    PubMed Central

    Davie, Neil J.; Gerasimovskaya, Evgenia V.; Hofmeister, Stephen E.; Richman, Aaron P.; Jones, Peter L.; Reeves, John T.; Stenmark, Kurt R.

    2006-01-01

    The precise cellular and molecular mechanisms regulating adventitial vasa vasorum neovascularization, which occurs in the pulmonary arterial circulation in response to hypoxia, remain unknown. Here, using a technique to isolate and culture adventitial fibroblasts (AdvFBs) and vasa vasorum endothelial cells (VVECs) from the adventitia of pulmonary arteries, we report that hypoxia-activated pulmonary artery AdvFBs exhibited pro-angiogenic properties and influenced the angiogenic phenotype of VVEC, in a process of cell-cell communication involving endothelin-1 (ET-1). We demonstrated that AdvFBs, either via co-culture or conditioned media, stimulated VVEC proliferation and augmented the self-assembly and integrity of cord-like networks that formed when VVECs where cultured on Matrigel. In addition, hypoxia-activated AdvFBs produced ET-1, suggesting a paracrine role for this pro-angiogenic molecule in these processes. When co-cultured on Matrigel, AdvFBs and VVECs self-assembled into heterotypic cord-like networks, a process augmented by hypoxia but attenuated by either selective endothelin receptor antagonists or oligonucleotides targeting prepro-ET-1 mRNA. From these observations, we propose that hypoxia-activated AdvFBs exhibit pro-angiogenic properties and, as such, communicate with VVECs, in a process involving ET-1, to regulate vasa vasorum neovascularization occurring in the adventitia of pulmonary arteries in response to chronic hypoxia. PMID:16723696

  1. A Methodology for Concomitant Isolation of Intimal and Adventitial Endothelial Cells from the Human Thoracic Aorta

    PubMed Central

    Leclercq, Anne; Veillat, Véronique; Loriot, Sandrine; Spuul, Pirjo; Madonna, Francesco; Roques, Xavier; Génot, Elisabeth

    2015-01-01

    Background Aortic diseases are diverse and involve a multiplicity of biological systems in the vascular wall. Aortic dissection, which is usually preceded by aortic aneurysm, is a leading cause of morbidity and mortality in modern societies. Although the endothelium is now known to play an important role in vascular diseases, its contribution to aneurysmal aortic lesions remains largely unknown. The aim of this study was to define a reliable methodology for the isolation of aortic intimal and adventitial endothelial cells in order to throw light on issues relevant to endothelial cell biology in aneurysmal diseases. Methodology/Principal Findings We set up protocols to isolate endothelial cells from both the intima and the adventitia of human aneurysmal aortic vessel segments. Throughout the procedure, analysis of cell morphology and endothelial markers allowed us to select an endothelial fraction which after two rounds of expansion yielded a population of >90% pure endothelial cells. These cells have the features and functionalities of freshly isolated cells and can be used for biochemical studies. The technique was successfully used for aortic vessel segments of 20 patients and 3 healthy donors. Conclusions/Significance This simple and highly reproducible method allows the simultaneous preparation of reasonably pure primary cultures of intimal and adventitial human endothelial cells, thus providing a reliable source for investigating their biology and involvement in both thoracic aneurysms and other aortic diseases. PMID:26599408

  2. Venous Adventitial Cystic Disease: A Review of 45 Cases Treated Since 1963

    PubMed Central

    Bascone, Corey; Szuchmacher, Mauricio; Cicchillo, Michael; Krishnasastry, Kambhampaty V.

    2016-01-01

    Purpose. To review and identify the most accurate ways of diagnosing and treating adventitial cystic disease (ACD) of the venous system. Methods. Cases of ACD were collected through three popular medical databases, including PubMed, Cochrane, OVID, and MEDLINE. After reviewing the literature, the sites of occurrence of 323 cases of adventitial cystic disease were documented, and all cases of arterial ACD were excluded. The clinical features, treatment, and subsequent course of 45 cases of venous ACD are included in this paper. Results. After reviewing all 45 cases of venous ACD , we have confirmed that the most common vessel affected is the common femoral vein, which reproduces the most common symptom of venous ACD: asymmetric lower extremity swelling worsening over time. Conclusion. Venous ACD most commonly affects the common femoral vein. When unilateral leg swelling occurs with or without a noticeable mass, ACD should be considered. It is best confirmed with CT venography and the treatment of choice is transluminal cyst evacuation and excision. PMID:27885342

  3. Enhanced root production in Haplopappus gracilis grown under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Krikorian, A. D.

    1996-01-01

    The production and growth of roots in two aseptically maintained clonal populations of Haplopappus gracilis (family Compositae), each with a distinctive pattern of root production, were studied after they had been exposed to space for 5 days aboard a NASA Space Shuttle. Total root production of both populations was 67-95% greater when compared with their Earth-grown controls. Roots were generated: (1) laterally from pre-formed roots, the tips of which had been severed at the time of plantlet insertion into a "horticultural foam" substrate supplied with a nutrient solution; (2) adventitiously from the basal or cut-end portion of shoots; (3) de novo, i.e. from primordial which were non-existent at the outset of the experiment. Roots grew in all directions in space but were uniformly positively gravitropic in ground controls. In space and on Earth, both clonal populations maintained their clone-specific root formation and growth characteristics and produced an equivalent amount of tissue when compared to each other. As on Earth, and as expected, there were fewer and shorter roots on plantlets that formed floral buds. The significance of altered moisture distribution in the "horticultural foam" substrate in space for root growth and the significance of our findings for growing plants in altered gravity environments are discussed.

  4. Enhanced root production in Haplopappus gracilis grown under spaceflight conditions.

    PubMed

    Levine, H G; Krikorian, A D

    1996-04-01

    The production and growth of roots in two aseptically maintained clonal populations of Haplopappus gracilis (family Compositae), each with a distinctive pattern of root production, were studied after they had been exposed to space for 5 days aboard a NASA Space Shuttle. Total root production of both populations was 67-95% greater when compared with their Earth-grown controls. Roots were generated: (1) laterally from pre-formed roots, the tips of which had been severed at the time of plantlet insertion into a "horticultural foam" substrate supplied with a nutrient solution; (2) adventitiously from the basal or cut-end portion of shoots; (3) de novo, i.e. from primordial which were non-existent at the outset of the experiment. Roots grew in all directions in space but were uniformly positively gravitropic in ground controls. In space and on Earth, both clonal populations maintained their clone-specific root formation and growth characteristics and produced an equivalent amount of tissue when compared to each other. As on Earth, and as expected, there were fewer and shorter roots on plantlets that formed floral buds. The significance of altered moisture distribution in the "horticultural foam" substrate in space for root growth and the significance of our findings for growing plants in altered gravity environments are discussed.

  5. Elicitation Approaches for Withanolide Production in Hairy Root Culture of Withania somnifera (L.) Dunal.

    PubMed

    Sivanandhan, Ganeshan; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2016-01-01

    Withania somnifera (L.) Dunal is a versatile medicinal plant extensively utilized for production of phytochemical drug preparations. The roots and whole plants are traditionally used in Ayurveda, Unani, and Siddha medicines, as well as in homeopathy. Several studies provide evidence for an array of pharmaceutical properties due to the presence of steroidal lactones named "withanolides." A number of research groups have focused their attention on the effects of biotic and abiotic elicitors on withanolide production using cultures of adventitious roots, cell suspensions, shoot suspensions, and hairy roots in large-scale bioreactor for producing withanolides. This chapter explains the detailed procedures for induction and establishment of hairy roots from leaf explants of W. somnifera, proliferation and multiplication of hairy root cultures, estimation of withanolide productivity upon elicitation with salicylic acid and methyl jasmonate, and quantification of major withanolides by HPLC. The protocol herein described could be implemented for large-scale cultivation of hairy root biomass to improve withanolide production.

  6. [Effects of phytohormones on plant regeneration and production of flavonoids in transgenic Saussurea involucrata hairy roots].

    PubMed

    Qiao, Xianli; Jiang, Shuguang; Li, Xiaofeng; Li, Fengxia; Zhao, Dexiu

    2011-01-01

    We investigated the plant regeneration and production of flavonoids in three high-yield flavonoids transgenic Saussurea involucrata hairy roots C17, C27 and C46 by quantification of two phytohormones GA3 and IAA. The results showed that GA3 concentration at more than 1.0 mg/L could induce adventitious shoots in the hairy root lines. The highest shoot regeneration rate, about 82%, was obtained when the hairy roots C17 were cultured with 2.0 mg/L GA3. The results on HPLC and UV spectrophotometry showed that exogenous application of both GA3 and IAA increased the content of flavonoids in the hairy roots. The contents of flavonoids and apigenin in the hormone-treated hairy roots and regenerates were higher comparing with those in the untreated hairy roots and the regenerates. However, the content of flavonoids was not related to tissue weight, and was negatively related to the regeneration efficiency.

  7. Chrysanthemum transcription factor CmLBD1 direct lateral root formation in Arabidopsis thaliana

    PubMed Central

    Zhu, Lu; Zheng, Chen; Liu, Ruixia; Song, Aiping; Zhang, Zhaohe; Xin, Jingjing; Jiang, Jiafu; Chen, Sumei; Zhang, Fei; Fang, Weimin; Chen, Fadi

    2016-01-01

    The plant-specific LATERAL ORGAN BOUNDARIES DOMAIN (LBD) genes are important regulators of growth and development. Here, a chrysanthemum class I LBD transcription factor gene, designated CmLBD1, was isolated and its function verified. CmLBD1 was transcribed in both the root and stem, but not in the leaf. The gene responded to auxin and was shown to participate in the process of adventitious root primordium formation. Its heterologous expression in Arabidopsis thaliana increased the number of lateral roots formed. When provided with exogenous auxin, lateral root emergence was promoted. CmLBD1 expression also favored callus formation from A. thaliana root explants in the absence of exogenously supplied phytohormones. In planta, CmLBD1 probably acts as a positive regulator of the response to auxin fluctuations and connects auxin signaling with lateral root formation. PMID:26819087

  8. Evidence to support that adventitial cysts, analogous to intraneural ganglion cysts, are also joint-connected.

    PubMed

    Spinner, Robert J; Desy, Nicholas M; Agarwal, Gautum; Pawlina, Wojciech; Kalra, Manju; Amrami, Kimberly K

    2013-03-01

    Cystic adventitial disease (CAD) is a rare condition in which cyst is found within a vessel, typically producing symptoms of vascular compromise. Most commonly located in the popliteal artery near the knee, it has been reported in arteries and veins throughout the body. Its pathogenesis has been poorly understood and various surgical approaches have been recommended. We extrapolated some recent information about a similar condition, intraneural ganglion cyst affecting the deep fibular (peroneal) nerve, to the prototype, CAD of the popliteal artery. In intraneural ganglion cysts affecting the deep fibular nerve we have shown that an articular (neural) branch is the conduit between the superior tibiofibular joint and the main parent nerve for which epineurial dissection of joint fluid can occur. We hypothesized that the same principles would apply to CAD and that an articular (vascular) branch would be the conduit from the knee joint leading to dissection to the main parent vessel. We reviewed five patients with CAD of the popliteal artery in whom MRIs were available: two treated by the primary author well familiar with the proposed articular theory, and three treated by others at our institution, less familiar with it. We then reviewed the literature critically to assess for additional evidence to support our articular (synovial) theory and an anatomic explanation. In the two cases treated by the primary author a joint connection was identified on high resolution MRI prospectively and intraoperatively through the middle genicular artery (MGA); postoperatively in these cases there was no recurrence. In the other three cases, a joint connection was not identified on imaging or at operation. Reinterpretation of these cases revealed a joint connection through the MGA in the one patient who had preoperative imaging and subclinical persistence/recurrence in the two patients who underwent postoperative MRIs done for other reasons. Our review of the literature and imaging

  9. Anatomical aspects of angiosperm root evolution

    PubMed Central

    Seago, James L.; Fernando, Danilo D.

    2013-01-01

    Background and Aims Anatomy had been one of the foundations in our understanding of plant evolutionary trends and, although recent evo-devo concepts are mostly based on molecular genetics, classical structural information remains useful as ever. Of the various plant organs, the roots have been the least studied, primarily because of the difficulty in obtaining materials, particularly from large woody species. Therefore, this review aims to provide an overview of the information that has accumulated on the anatomy of angiosperm roots and to present possible evolutionary trends between representatives of the major angiosperm clades. Scope This review covers an overview of the various aspects of the evolutionary origin of the root. The results and discussion focus on angiosperm root anatomy and evolution covering representatives from basal angiosperms, magnoliids, monocots and eudicots. We use information from the literature as well as new data from our own research. Key Findings The organization of the root apical meristem (RAM) of Nymphaeales allows for the ground meristem and protoderm to be derived from the same group of initials, similar to those of the monocots, whereas in Amborellales, magnoliids and eudicots, it is their protoderm and lateral rootcap which are derived from the same group of initials. Most members of Nymphaeales are similar to monocots in having ephemeral primary roots and so adventitious roots predominate, whereas Amborellales, Austrobaileyales, magnoliids and eudicots are generally characterized by having primary roots that give rise to a taproot system. Nymphaeales and monocots often have polyarch (heptarch or more) steles, whereas the rest of the basal angiosperms, magnoliids and eudicots usually have diarch to hexarch steles. Conclusions Angiosperms exhibit highly varied structural patterns in RAM organization; cortex, epidermis and rootcap origins; and stele patterns. Generally, however, Amborellales, magnoliids and, possibly

  10. Giant kelp vegetative propagation: Adventitious holdfast elements rejuvenate senescent individuals of the Macrocystis pyrifera "integrifolia" ecomorph.

    PubMed

    Murúa, Pedro; Müller, Dieter G; Patiño, David J; Westermeier, Renato

    2016-11-22

    Recent findings on holdfast development in the giant kelp highlighted its key importance for Macrocystis vegetative propagation. We report here for the first time the development of adventitious holdfasts from Macrocystis stipes. Swellings emerge spontaneously from different areas of the stipes, especially in senescent or creeping individuals. After being manually fastened to solid substrata, these swellings elongated into haptera, which became strongly attached after 1 month. Within 4 months, new thalli increased in size and vitality, and developed reproductive fronds. Our results suggest the usage of these structures for auxiliary attachment techniques. These could act as a backup, when primary holdfasts are weak, and thus improve the survival rate of the giant kelp in natural beds.

  11. Summary of cases of adventitial cystic disease of the popliteal artery.

    PubMed Central

    Flanigan, D P; Burnham, S J; Goodreau, J J; Bergan, J J

    1979-01-01

    Adventitial cystic disease of the popliteal artery is explored. The results of correspondence with authors reporting this condition are elaborated upon. This has provided an opportunity to discuss the history of the condition, the findings in 115 cases which have come to the attention of the Correspondence Office dealing with this entity, and the results of treatment. A discussion of the suspected etiology of the condition is presented. The condition remains one of unknown etiology which can be treated by cyst evacuation or aspiration when the popliteal artery is patent and which is best treated by arterial reconstruction when the artery is occluded. The results of such treatment are good but are dependent upon technical excellence of the operative procedure. PMID:426549

  12. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  13. Foliar application of glyphosate affects molecular mechanisms in underground adventitious buds of leafy spurge (Euphorbia esula) and alters their vegetative growth patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long term control of leafy spurge with glyphosate requires multiple applications because the plant reproduces vegetatively from abundant underground adventitious buds (UABs). Determining the molecular mechanisms involved in controlling vegetative reproduction in leafy spurge following foliar glyphos...

  14. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  15. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    PubMed

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  16. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max)

    PubMed Central

    Valliyodan, Babu; Van Toai, Tara T.; Alves, Jose Donizeti; de Fátima P. Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B.; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J. Grover; Nguyen, Henry T.

    2014-01-01

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be

  17. Polyamines and Root Formation in Mung Bean Hypocotyl Cuttings 1

    PubMed Central

    Friedman, Ra'Anan; Altman, Arie; Bachrach, Uriel

    1982-01-01

    The effect of several polyamines (putrescine, spermidine, and spermine), their precursors (l-arginine and l-ornithine), and some analogs and metabolic inhibitors (l-canavanine, l-canaline, and methylglyoxal-bis [guanylhydrazone]) on root formation have been studied in mung bean (Vigna radiata [L.] Wilczek) hypocotyl cuttings. Exogenously applied polyamines did not promote adventitious root formation. Rooting was inhibited by l-canavanine and l-canaline, and this inhibition was reversed by the corresponding amino acids l-arginine and l-ornithine. Methylglyoxal-bis (guanylhydrazone), an inhibitor of S-adenosylmethionine decarboxylase and polyamine biosynthesis, was also found to inhibit root formation. All compounds at concentrations of >10−4 molarity completely inhibited natural root formation, whereas at <10−5 molarity only the indole-butyric acid-induced root formation was inhibited. Indole-butyric acid-induced root formation was accompanied by a considerable increase in polyamine levels, more than 2-fold of the control. Whereas senescing (unrooted) cuttings evinced a rapid decline in polyamine content during 48 hours, indole-butyric acid treatment resulted in elevated levels of putrescine and increased putrescine to spermidine ratio. The changes in polyamines were dependent on indole-butyric acid concentration and were organ specific. Images Fig. 1 PMID:16662586

  18. Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations.

    PubMed

    Roger, Isolda; Symes, Mark D

    2015-11-04

    Electrolytic water oxidation using earth-abundant elements is a key challenge in the quest to develop cheap, large surface area arrays for solar-to-hydrogen conversion. There have been numerous studies in this area in recent years, but there remains an imperative to demonstrate that the current densities reported are indeed due to the species under consideration and not due to the presence of adventitious (yet possibly highly active) contaminants at low levels. Herein, we show that adventitious nickel at concentrations as low as 17 nM can act as a water oxidation catalyst in mildly basic aqueous solutions, achieving stable (tens of hours) current densities of 1 mA cm(-2) at overpotentials as low as 540 mV at pH 9.2 and 400 mV at pH 13. This nickel was not added to the electrolysis baths deliberately, but it was found to be present in the electrolytes as an impurity by ICP-MS. The presence of nickel on anodes from extended-time bulk electrolysis experiments was confirmed by XPS. In showing that such low levels of nickel can perform water oxidation at overpotentials comparable to many recently reported water oxidation catalysts, this work serves to raise the burden of proof required of new materials in this field: contamination by adventitious metal ions at trace loadings must be excluded as a possible cause of any observed water oxidation activity.

  19. Aerenchyma Formation and Recovery from Hypoxia of the Flooded Root System of Nodulated Soybean

    PubMed Central

    THOMAS, A. L.; GUERREIRO, S. M. C.; SODEK, L.

    2005-01-01

    • Background and Aims Flooding results in hypoxia of the root system to which N2 fixation of nodulated roots can be especially sensitive. Morphological adaptions, such as aerenchyma formation, can facilitate the diffusion of oxygen to the hypoxic tissues. Using soybean, the aim of the study was to characterize the morphological response of the nodulated root system to flooding and obtain evidence for the recovery of N metabolism. • Methods Sections from submerged tissues were observed by light microscopy, while sap bleeding from the xylem was analysed for nitrogenous components. • Key Results Flooding resulted in the rapid formation of adventitious roots and aerenchyma between the stem (immediately above the water line), roots and nodules. In the submerged stem, taproot, lateral roots and adventitious roots, lysigenous aerenchyma arose initially in the cortex and was gradually substituted by secondary aerenchyma arising from cells derived from the pericycle. Nodules developed aerenchyma from cells originating in the phellogen but nodules situated at depths greater than 7–8 cm showed little or no aerenchyma formation. As a result of aerenchyma formation, porosity of the taproot increased substantially between the 4th and 7th days of flooding, coinciding with the recovery of certain nitrogenous products of N metabolism of roots and nodules transported in the xylem. Thus, on the first day of flooding there was a sharp decline in xylem ureides and glutamine (products of N2 fixation), together with a sharp rise in alanine (product of anaerobic metabolism). Between days 7 and 10, recovery of ureides and glutamine to near initial levels was recorded while recovery of alanine was partial. • Conclusions N metabolism of the nodulated soybean root system can recover at least partially during a prolonged period of flooding, a process associated with aerenchyma formation. PMID:16199486

  20. High Levels of Hemoglobin Promote Carotid Adventitial Vasa Vasorum Neoangiogenesis in Chronic Kidney Disease

    PubMed Central

    Martinez-Alonso, Montserrat; Belart, Montserrat; Vilar, Ana; Martín, Marisa; Craver, Lourdes; Betriu, Àngels; Valdivielso, José Manuel; Fernández, Elvira

    2017-01-01

    Chronic kidney disease (CKD) patients, characterized by traditional and nontraditional risk factors, are prone to develop atheromatosis and thus cardiovascular events and mortality. The angiogenesis of the adventitial vasa vasorum (aVV) surrounding the carotid has been described as the atheromatosis initiator. Therefore, the aim of the study was to (1) evaluate if the carotid aVV in CKD patients increases in comparison to its physiological value of healthy patients; (2) explore which traditional or nontraditional risk factor including inflammation, bone and mineral metabolism, and anemia could be related to the aVV angiogenesis. CKD patients without previous cardiovascular events (44, stages 3-4; 37, stage 5D) and 65 healthy subjects were compared. The carotid aVV and the intima-media thickness (cIMT) were evaluated by ultrasound. CKD patients at stages 3-4 showed higher aVV of the right carotid artery even after adjusting for age. Importantly, a multiple linear regression model showed hemoglobin levels > 12.5 g/dL as the factor for an estimated higher aVV of the right carotid artery. In conclusion, the association of hemoglobin with higher aVV could suggest the role of high hemoglobin in the higher incidence of adverse cardiovascular outcomes in CKD patients. PMID:28133420

  1. An adventitious interaction of filamin A with RhoGDI2(Tyr153Glu)

    PubMed Central

    Song, Mia; He, Qianjing; Berk, Benjamin-Andreas; Hartwig, John H.; Stossel, Thomas P.; Nakamura, Fumihiko

    2015-01-01

    Filamin A (FLNA) is an actin filament crosslinking protein with multiple intracellular binding partners. Mechanical force exposes cryptic FLNA binding sites for some of these ligands. To identify new force-dependent binding interactions, we used a fusion construct composed of two FLNA domains, one of which was previously identified as containing a force-dependent binding site as a bait in a yeast two-hybrid system and identified the Rho dissociation inhibitor 2 (RhoGDI2) as a potential interacting partner. A RhoGDI2 truncate with 81 N-terminal amino acid residues and a phosphomimetic mutant, RhoGDI(Tyr153Glu) interacted with the FLNA construct. However, neither wild-type or full-length RhoGDI2 phosphorylated at Y153 interacted with FLNA. Our interpretation of these contradictions is that truncation and/or mutation of RhoGDI2 perturbs its conformation to expose a site that adventitiously binds FLNA and is not a bona-fide interaction. Therefore, previous studies reporting that a RhoGDI(Y153E) mutant suppresses the metastasis of human bladder cancer cells must be reinvestigated in light of artificial interaction of this point mutant with FLNA. PMID:26707877

  2. Percutaneous Image-Guided Aspiration and Sclerosis of Adventitial Cystic Disease of the Femoral Vein

    SciTech Connect

    Johnson, Jason M.; Kiankhooy, Armin; Bertges, Daniel J.; Morris, Christopher S.

    2009-07-15

    Adventitial cystic disease (ACD), also known as cystic mucoid or myxomatous degeneration, is a rare vascular disease mainly seen in arteries. Seventeen cases have been reported in the world literature. We report the first known case of ACD successfully treated with percutaneous image-guided ethanol sclerosis. Computed tomography showed a cystic mass adherent to the wall of the common femoral vein. An ultrasound examination revealed a deep venous thrombosis of the leg, secondary to extrinsic compression of the common femoral vein. Three years prior to our procedure, the cyst was aspirated, which partially relieved the patient's symptoms. Over the following 3 years the patient's symptoms worsened and a 10-cm discrepancy in thigh size developed, in addition to the deep venous thrombosis associated with lower-extremity edema. Using ultrasound guidance and fluoroscopic control, the cyst was drained and then sclerosed with absolute ethanol. The patient's symptoms and leg swelling resolved completely within several weeks. Follow-up physical examination and duplex ultrasound 6 months following sclerosis demonstrated resolution of the symptoms and elimination of the extrinsic compression effect of the ACD on the common femoral vein.

  3. Sampling and modeling for the quantification of adventitious genetically modified presence in maize.

    PubMed

    Allnutt, Theodore Richard; Dwyer, Mark; McMillan, Jillian; Henry, Christine; Langrell, Stephen

    2008-05-14

    The coexistence of genetically modified (GM) and non-GM crops is an important economic and political issue in the European Union. We examined the GM content in non-GM maize crops in Spain in 2005. Both the standing crop and the harvest were tested, and the %GM DNA was quantified by real-time polymerase chain reaction. We compared the level of GM as a function of distance from known GM source fields in a 1.2 km2 landscape. The distribution of GM was compared to predictions from previous studies, and good agreement was found. Control and monitoring of adventitious GM presence in non-GM crops can only be achieved by fit-for-purpose sampling and testing schemes. We used a GM dispersal function to simulate non-GM crops in the studied zone and tested the accuracy of five different sampling schemes. Random sampling was found to be the most accurate and least susceptible to bias by GM spatial structure or gradients. Simulations showed that to achieve greater than 95% confidence in a GM labeling decision of a harvest (when treated as a single marketed lot), 34 samples would be needed when the harvest was outside 50% of the GM threshold value. The number of samples required increased rapidly as the harvest approached the GM threshold, implying that accurate labeling when the harvest is within +/-17% of the threshold may not be possible with high confidence.

  4. The effect of polar auxin transport on adventitious branches formation in Gracilaria lichenoides in vitro.

    PubMed

    Wang, Wenlei; Li, Huanqin; Lin, Xiangzhi; Zhang, Fang; Fang, Baishan; Wang, Zhaokai

    2016-11-01

    Seaweed tissue culture (STC) is an important micropropagation tool that has been applied for strain improvement, micropropagation and genetic engineering. Because the mechanisms associated with STC are poorly understood, its application to these organisms lags far behind that of tissue culture propagation of higher plants. Auxin, calcium (Ca(2+) ) and hydrogen peroxide (H2 O2 ) fluxes all play key roles during plant growth and development. In this study, we therefore measured indole-3-acetic acid, Ca(2+) and H2 O2 fluxes of Gracilaria lichenoides explants during adventitious branches (ABs) formation for the first time using noninvasive micro-test technology. We confirmed that polar auxin transport (PAT) also occurs in the marine red alga G. lichenoides. We additionally found that N-1-naphthylphthalamic acid may suppress auxin efflux via ABCB1 transporters and then inhibit ABs formation from the apical region of G. lichenoides segments. The involvement of Ca(2+) and H2 O2 fluxes in PAT-mediated AB formation in G. lichenoides was also investigated. We propose that complex feedback among Ca(2+) , H2 O2 and auxin signaling and response systems may occur during ABs polar formation in G. lichenoides explants, similar to that in higher plants. Our results provide innovative insights that should aid future elucidation of mechanisms operative during STC.

  5. Analysis of miRNAs and Their Targets during Adventitious Shoot Organogenesis of Acacia crassicarpa

    PubMed Central

    Hou, Lingyu; Wang, Xiaoyu; Zheng, Fei; Wang, Weixuan; Liang, Di; Yang, Hailun; Jin, Yi; Xie, Xiangming

    2014-01-01

    Organogenesis is an important process for plant regeneration by tissue or cell mass differentiation to regenerate a complete plant. MicroRNAs (miRNAs) play an essential role in regulating plant development by mediating target genes at transcriptional and post-transcriptional levels, but the diversity of miRNAs and their potential roles in organogenesis of Acacia crassicarpa have rarely been investigated. In this study, approximately 10 million sequence reads were obtained from a small RNA library, from which 189 conserved miRNAs from 57 miRNA families, and 7 novel miRNAs from 5 families, were identified from A. crassicarpa organogenetic tissues. Target prediction for these miRNAs yielded 237 potentially unique genes, of which 207 received target Gene Ontology annotations. On the basis of a bioinformatic analysis, one novel and 13 conserved miRNAs were selected to investigate their possible roles in A. crassicarpa organogenesis by qRT-PCR. The stage-specific expression patterns of the miRNAs provided information on their possible regulatory functions, including shoot bud formation, modulated function after transfer of the culture to light, and regulatory roles during induction of organogenesis. This study is the first to investigate miRNAs associated with A. crassicarpa organogenesis. The results provide a foundation for further characterization of miRNA expression profiles and roles in the regulation of diverse physiological pathways during adventitious shoot organogenesis of A. crassicarpa. PMID:24718555

  6. Characterization of a type-A response regulator differentially expressed during adventitious caulogenesis in Pinus pinaster.

    PubMed

    Alvarez, José M; Cortizo, Millán; Ordás, Ricardo J

    2012-12-15

    The molecular cloning and characterization of PipsRR1, a type-A response regulator in Pinus pinaster, is reported here. Type-A response regulators mediate downstream responses to cytokinin and act as negative feedback regulators of the signal transduction pathway. Some type-A response regulators in Arabidopsis have been related to de novo meristem formation. However, little information exists in Pinus spp. The PipsRR1 gene contains 5 exons, as do all type-A response regulators in Arabidopsis, and the deduced protein contains a receiver domain with the conserved DDK residues and a short C terminal extension. Expression analysis showed that the PipsRR1 gene is differentially expressed during the first phases of adventitious caulogenesis induced by benzyladenine in P. pinaster cotyledons, suggesting that PipsRR1 plays a role in caulogenesis in conifers. Additionally, a binary vector carrying the PipsRR1 promoter driving GFP:GUS expression was constructed to analyze the promoter activity in P. pinaster somatic embryos. The results of genetic transformation showed GUS activity during somatic embryo mass proliferation and embryo maturation.

  7. Distribution of myofibroblast and tenascin-C in cystic adventitial disease: comparison with ganglion.

    PubMed

    Hao, Hiroyuki; Ishibashi-Ueda, Hatsue; Nishida, Naoki; Kawakami, Rika; Tsukamoto, Yoshitane; Tsujimoto, Masahiko; Hirota, Seiichi

    2013-12-01

    Cystic adventitial disease (CAD) is a rare peripheral artery disorder which shows the development of gelatinous cysts in the adventitia. Although several theories for the pathogenesis of CAD have been postulated, the etiology of CAD remains unclear. Histological examination of three CAD cases revealed that these cyst walls were composed of fibrous tissue and lacked both epithelial and endothelial lining. The surfaces of these cysts were partially covered with spindle-shaped cells, similar to the interstitial cells within the cyst wall. A pool of mucinous material in the adventitia was evident. Distribution of vimentin-positive spindle-shaped cells and scattered CD68-positive oval-shaped cells in the cyst wall was revealed by immunohistochemistry. A part of vimentin-positive spindle-shaped cells demonstrated to be positive for α-smooth muscle actin, indicating the presence of myofibroblasts in the cyst wall. A focal tenascin-C-positive area was observed in the cyst wall of our CAD cases. Presence of two different cell types, proliferation of myofibroblasts and expression of tenascin-C were consistent with those of cyst walls of 20 surgically resected ganglions. These results suggest that CAD may arise as capsular synovial structures, similar to ganglion cysts.

  8. In vitro Cultured Primary Roots Derived from Stem Segments of Cassava (Manihot esculenta) Can Behave Like Storage Organs

    PubMed Central

    Medina, Ricardo D.; Faloci, Mirta M.; Gonzalez, Ana M.; Mroginski, Luis A.

    2007-01-01

    Background and Aims Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Methods Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Key Results Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0·54 μm 1-naphthaleneacetic acid and 0·44 μm 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly

  9. Galectin-3 Gene Inactivation Reduces Atherosclerotic Lesions and Adventitial Inflammation in ApoE-Deficient Mice

    PubMed Central

    Nachtigal, Maurice; Ghaffar, Abdul; Mayer, Eugene P.

    2008-01-01

    This study has examined the role of galectin-3 (GaL3), a multicompartmented N-acetyllactosamine-binding chimeric lectin, on atherogenesis in the ApoE-deficient mouse model of atherosclerosis. Pathological changes consisting of atheromatous plaques, atherosclerotic microaneurysms extending into periaortic vascular channels, and adventitial and periaortic inflammatory infiltrates were assessed in an equal number (n = 36) of apolipoprotein (Apo)E-deficient mice and ApoE-GaL3 double-knockout mice. These mice were divided into three age groups, 21 to 23 weeks, 25 to 31 weeks, and 36 to 44 weeks of age. Results of this morphological analysis have shown an age-related increase in the incidence of aorta atheromatous plaques and periaortic vascular channels in ApoE-deficient mice. By contrast ApoE/GaL3 double-knockout mice did not show an increase in pathological changes with age. The 36- to 44-week group of ApoE−/−/GaL3−/− mice had a significantly lower number of atherosclerotic lesions (P < 0.004) and fewer atheromatous plaques (P < 0.008) when compared with ApoE−/−/GaL3+/+ mice of the same age. ApoE−/−/GaL3−/− mice had a lower number of perivascular inflammatory infiltrates and mast cells than those found in ApoE−/−/GaL3+/+ mice. The reduced number of perivascular mast cells may have resulted in a low level of interleukin-4 that contributed to the reduction in the morphological parameters of atherogenesis correlated with the lack of GaL3 expression. The effect of GaL3 deficiency on atherogenesis decrease could be related to its function as a multifunctional protein implicated in macrophage chemotaxis, angiogenesis, lipid loading, and inflammation. PMID:18156214

  10. Novel approach to continuous adventitious respiratory sound analysis for the assessment of bronchodilator response

    PubMed Central

    Fiz, José Antonio; Martínez-Rivera, Carlos; Torrents, Aurora; Ruiz-Manzano, Juan; Jané, Raimon

    2017-01-01

    Background A thorough analysis of continuous adventitious sounds (CAS) can provide distinct and complementary information about bronchodilator response (BDR), beyond that provided by spirometry. Nevertheless, previous approaches to CAS analysis were limited by certain methodology issues. The aim of this study is to propose a new integrated approach to CAS analysis that contributes to improving the assessment of BDR in clinical practice for asthma patients. Methods Respiratory sounds and flow were recorded in 25 subjects, including 7 asthma patients with positive BDR (BDR+), assessed by spirometry, 13 asthma patients with negative BDR (BDR-), and 5 controls. A total of 5149 acoustic components were characterized using the Hilbert spectrum, and used to train and validate a support vector machine classifier, which distinguished acoustic components corresponding to CAS from those corresponding to other sounds. Once the method was validated, BDR was assessed in all participants by CAS analysis, and compared to BDR assessed by spirometry. Results BDR+ patients had a homogenous high change in the number of CAS after bronchodilation, which agreed with the positive BDR by spirometry, indicating high reversibility of airway obstruction. Nevertheless, we also found an appreciable change in the number of CAS in many BDR- patients, revealing alterations in airway obstruction that were not detected by spirometry. We propose a categorization for the change in the number of CAS, which allowed us to stratify BDR- patients into three consistent groups. From the 13 BDR- patients, 6 had a high response, similar to BDR+ patients, 4 had a noteworthy medium response, and 1 had a low response. Conclusions In this study, a new non-invasive and integrated approach to CAS analysis is proposed as a high-sensitive tool for assessing BDR in terms of acoustic parameters which, together with spirometry parameters, contribute to improving the stratification of BDR levels in patients with

  11. Adventitial Tertiary Lymphoid Organs as Potential Source of MicroRNA Biomarkers for Abdominal Aortic Aneurysm.

    PubMed

    Spear, Rafaelle; Boytard, Ludovic; Blervaque, Renaud; Chwastyniak, Maggy; Hot, David; Vanhoutte, Jonathan; Staels, Bart; Lemoine, Yves; Lamblin, Nicolas; Pruvot, François-René; Haulon, Stephan; Amouyel, Philippe; Pinet, Florence

    2015-05-18

    Abdominal aortic aneurysm (AAA) is an inflammatory disease associated with marked changes in the cellular composition of the aortic wall. This study aims to identify microRNA (miRNA) expression in aneurysmal inflammatory cells isolated by laser microdissection from human tissue samples. The distribution of inflammatory cells (neutrophils, B and T lymphocytes, mast cells) was evaluated in human AAA biopsies. We observed in half of the samples that adventitial tertiary lymphoid organs (ATLOs) with a thickness from 0.5 to 2 mm were located exclusively in the adventitia. Out of the 850 miRNA that were screened by microarray in isolated ATLOs (n = 2), 164 miRNAs were detected in ATLOs. The three miRNAs (miR-15a-3p, miR-30a-5p and miR-489-3p) with the highest expression levels were chosen and their expression quantified by RT-PCR in isolated ATLOs (n = 4), M1 (n = 2) and M2 macrophages (n = 2) and entire aneurysmal biopsies (n = 3). Except for the miR-30a-5p, a similar modulation was found in ATLOs and the two subtypes of macrophages. The modulated miRNAs were then evaluated in the plasma of AAA patients for their potential as AAA biomarkers. Our data emphasize the potential of miR-15a-3p and miR-30a-5p as biomarkers of AAA but also as triggers of ATLO evolution. Further investigations will be required to evaluate their targets in order to better understand AAA pathophysiology.

  12. Quantitative risk assessment relating to adventitious presence of allergens in food: a probabilistic model applied to peanut in chocolate.

    PubMed

    Rimbaud, Loup; Heraud, Fanny; La Vieille, Sébastien; Leblanc, Jean-Charles; Crepet, Amélie

    2010-01-01

    Peanut allergy is a public health concern, owing to the high prevalence in France and the severity of the reactions. Despite peanut-containing product avoidance diets, a risk may exist due to the adventitious presence of peanut allergens in a wide range of food products. Peanut is not mentioned in their ingredients list, but precautionary labeling is often present. A method of quantifying the risk of allergic reactions following the consumption of such products is developed, taking the example of peanut in chocolate tablets. The occurrence of adventitious peanut proteins in chocolate and the dose-response relationship are estimated with a Bayesian approach using available published data. The consumption pattern is described by the French individual consumption survey INCA2. Risk simulations are performed using second-order Monte Carlo simulations, which separately propagates variability and uncertainty of the model input variables. Peanut allergens occur in approximately 36% of the chocolates, leading to a mean exposure level of 0.2 mg of peanut proteins per eating occasion. The estimated risk of reaction averages 0.57% per eating occasion for peanut-allergic adults. The 95% values of the risk stand between 0 and 3.61%, which illustrates the risk variability. The uncertainty, represented by the 95% credible intervals, is concentrated around these risk estimates. Children have similar results. The conclusion is that adventitious peanut allergens induce a risk of reaction for a part of the French peanut-allergic population. The method developed can be generalized to assess the risk due to the consumption of every foodstuff potentially contaminated by allergens.

  13. High Spatial Resolution MRI of Cystic Adventitial Disease of the Iliofemoral Vein Communicating with the Hip Joint

    SciTech Connect

    Michaelides, Michael; Pantziara, Maria Ioannidis, Kleanthis

    2013-05-14

    Venous cystic adventitial disease (CAD) is an extremely rare entity, and so far less than 20 cases have been described in the literature. Herein, we describe the imaging findings of CAD of iliofemoral vein in a 51-year-old woman who presented with leg swelling with special emphasis on high spatial resolution MRI, which demonstrated communication of the cyst with the hip joint. To our knowledge, this is the first description of high spatial resolution MRI findings in venous CAD supporting a new theory about the pathogenesis of venous CAD.

  14. Ecophysiology of wetland plant roots: A modelling comparison of aeration in relation to species distribution

    USGS Publications Warehouse

    Sorrell, B.K.; Mendelssohn, I.A.; McKee, K.L.; Woods, R.A.

    2000-01-01

    This study examined the potential for inter-specific differences in root aeration to determine wetland plant distribution in nature. We compared aeration in species that differ in the type of sediment and depth of water they colonize. Differences in root anatomy, structure and physiology were applied to aeration models that predicted the maximum possible aerobic lengths and development of anoxic zones in primary adventitious roots. Differences in anatomy and metabolism that provided higher axial fluxes of oxygen allowed deeper root growth in species that favour more reducing sediments and deeper water. Modelling identified factors that affected growth in anoxic soils through their effects on aeration. These included lateral root formation, which occurred at the expense of extension of the primary root because of the additional respiratory demand they imposed, reducing oxygen fluxes to the tip and stele, and the development of stelar anoxia. However, changes in sediment oxygen demand had little detectable effect on aeration in the primary roots due to their low wall permeability and high surface impedance, but appeared to reduce internal oxygen availability by accelerating loss from laterals. The development of pressurized convective gas flow in shoots and rhizomes was also found to be important in assisting root aeration, as it maintained higher basal oxygen concentrations at the rhizome-root junctions in species growing into deep water. (C) 2000 Annals of Botany Company.

  15. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity.

    PubMed

    Ge, Lei; Chen, Hui; Jiang, Jia-Fu; Zhao, Yuan; Xu, Ming-Li; Xu, Yun-Yuan; Tan, Ke-hui; Xu, Zhi-Hong; Chong, Kang

    2004-07-01

    There are very few root genes that have been described in rice as a monocotyledonous model plant so far. Here, the OsRAA1 (Oryza sativa Root Architecture Associated 1) gene has been characterized molecularly. OsRAA1 encodes a 12.0-kD protein that has 58% homology to the AtFPF1 (Flowering Promoting Factor 1) in Arabidopsis, which has not been reported as modulating root development yet. Data of in situ hybridization and OsRAA1::GUS transgenic plant showed that OsRAA1 expressed specifically in the apical meristem, the elongation zone of root tip, steles of the branch zone, and the young lateral root. Constitutive expression of OsRAA1 under the control of maize (Zea mays) ubiquitin promoter resulted in phenotypes of reduced growth of primary root, increased number of adventitious roots and helix primary root, and delayed gravitropic response of roots in seedlings of rice (Oryza sativa), which are similar to the phenotypes of the wild-type plant treated with auxin. With overexpression of OsRAA1, initiation and growth of adventitious root were more sensitive to treatment of auxin than those of the control plants, while their responses to 9-hydroxyfluorene-9-carboxylic acid in both transgenic line and wild type showed similar results. OsRAA1 constitutive expression also caused longer leaves and sterile florets at the last stage of plant development. Analysis of northern blot and GUS activity staining of OsRAA1::GUS transgenic plants demonstrated that the OsRAA1 expression was induced by auxin. At the same time, overexpression of OsRAA1 also caused endogenous indole-3-acetic acid to increase. These data suggested that OsRAA1 as a new gene functions in the development of rice root systems, which are mediated by auxin. A positive feedback regulation mechanism of OsRAA1 to indole-3-acetic acid metabolism may be involved in rice root development in nature.

  16. Infection of Cultured Thin Cell Layer Roots of Lycopersicon esculentum by Meloidogyne incognita.

    PubMed

    Radin, D N; Eisenback, J D

    1991-10-01

    A new aseptic culture system for studying interactions between tomato (Lycopersicon esculentum) and Meloidogyne incognita is described. Epidermal thin cell layer explants from peduncles of tomato produced up to 20 adventitious roots per culture in 4-9 days on Murashige &Scoog medium plus kinetin and indole acetic acid. Rooted cultures were transferred to Gamborg's B-5 medium and inoculated with infective second-stage juveniles. Gall formation was apparent 5 days after inoculation and egg production by mature females occurred within 25 days at 25 C in the susceptible genotypes Rutgers and Red Alert. Resistant genotypes LA655, LA656, and LA1022 exhibited a characteristic hypersensitive response. This system provides large numbers of cultured root tips for studies on the molecular basis of the host-parasite relationship.

  17. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  18. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum.

    PubMed

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere.

  19. [Induction of polyploid hairy roots and its plant regeneration in Pogostemon cablin].

    PubMed

    Shi, Heping; Yu, Wu; Zhang, Guopeng; Tsang, Pokeung Eric; Chow, Cheuk Fai Stephen

    2014-08-01

    Abstract: In order to enhance the content of secondary metabolites patchouli alcohol in Pogostemon cablin, we induced polyploid hairy roots and their plant regeneration, and determined the content of patchouli alcohol through artificial chromosome doubling with colchicine. The highest rate of polyploidy induction was more than 40% when hairy roots were treated with 0.05% colchicine for 36 h. The obtained polyploid hairy roots formed adventitious shoots when cultured in an MS medium with 6-BA 0.2 mg/L and NAA 0.1 mg/L for 60 d. Compared with the control diploid plants, the polyploid hairy root-regenerated plants of P. cablin had more developed root systems, thicker stems, shorter internodes and longer, wider and thicker leaves. Observation of the chromosome number in their root tip cells reveals that the obtained polyploid regenerated plants were tetraploidy, with 128 (4n = 128) chromosomes. The leaves contained around twice as many stomatal guard cells and chloroplasts as the controls, but the stomatal density declined with increasing ploidy. The stomatal density in diploid plants was around 1.67 times of that in polyploid plants. GC-MS analysis shows that the content of patchouli alcholol in the hairy root-derived polyploid plants was about 4.25 mg/g dry weight, which was 2.3 times of that in diploid plants. The present study demonstrates that polyploidization of hairy roots can stimulate the content of patchouli alcholol in medicinal plant of P. cablin.

  20. Analysis of genes developmentally regulated during storage root formation of sweet potato.

    PubMed

    Tanaka, Masaru; Takahata, Yasuhiro; Nakatani, Makoto

    2005-01-01

    To identify the genes involved in storage root formation of sweet potato (Ipomoea batatas), we performed a simplified differential display analysis on adventitious roots at different developmental stages of the storage root. The expression patterns were confirmed by semiquantitative RT-PCR analyses. As a result, 10 genes were identified as being developmentally regulated and were named SRF1-SRF10. The expression of SRF1, SRF2, SRF3, SRF5, SRF6, SRF7, and SRF9 increased during storage root formation, whereas the expression of SRF4, SRF8, and SRF10 decreased. For further characterization, a full-length cDNA of SRF6 was isolated from the cDNA library of the storage root. SRF6 encoded a receptor-like kinase (RLK), which was structurally similar to the leucine-rich repeat (LRR) II RLK family of Arabidopsis thaliana. RNA gel blot analysis showed that the mRNA of SRF6 was most abundantly expressed in the storage roots, although a certain amount of expression was also observed in other vegetative organs. Tissue print mRNA blot analysis of the storage root showed that the mRNA of SRF6 was localized around the primary cambium and meristems in the xylem, which consist of actively dividing cells and cause the thickening of the storage root.

  1. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum

    PubMed Central

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G.

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere. PMID:26236301

  2. Incorporation of a Reporter Peptide in FPOP Compensates for Adventitious Scavengers and Permits Time-Dependent Measurements

    NASA Astrophysics Data System (ADS)

    Niu, Ben; Mackness, Brian C.; Rempel, Don. L.; Zhang, Hao; Cui, Weidong; Matthews, C. Robert; Zitzewitz, Jill A.; Gross, Michael L.

    2017-02-01

    Incorporation of a reporter peptide in solutions submitted to fast photochemical oxidation of proteins (FPOP) allows for the correction of adventitious scavengers and enables the normalization and comparison of time-dependent results. Reporters will also be useful in differential experiments to control for the inclusion of a radical-reactive species. This incorporation provides a simple and quick check of radical dosage and allows comparison of FPOP results from day-to-day and lab-to-lab. Use of a reporter peptide in the FPOP workflow requires no additional measurements or spectrometers while building a more quantitative FPOP platform. It requires only measurement of the extent of reporter-peptide modification in a LC/MS/MS run, which is performed by using either data-dependent scanning or an inclusion list.

  3. Automatic Differentiation of Normal and Continuous Adventitious Respiratory Sounds Using Ensemble Empirical Mode Decomposition and Instantaneous Frequency.

    PubMed

    Lozano, Manuel; Fiz, José Antonio; Jané, Raimon

    2016-03-01

    Differentiating normal from adventitious respiratory sounds (RS) is a major challenge in the diagnosis of pulmonary diseases. Particularly, continuous adventitious sounds (CAS) are of clinical interest because they reflect the severity of certain diseases. This study presents a new classifier that automatically distinguishes normal sounds from CAS. It is based on the multiscale analysis of instantaneous frequency (IF) and envelope (IE) calculated after ensemble empirical mode decomposition (EEMD). These techniques have two major advantages over previous techniques: high temporal resolution is achieved by calculating IF-IE and a priori knowledge of signal characteristics is not required for EEMD. The classifier is based on the fact that the IF dispersion of RS signals markedly decreases when CAS appear in respiratory cycles. Therefore, CAS were detected by using a moving window to calculate the dispersion of IF sequences. The study dataset contained 1494 RS segments extracted from 870 inspiratory cycles recorded from 30 patients with asthma. All cycles and their RS segments were previously classified as containing normal sounds or CAS by a highly experienced physician to obtain a gold standard classification. A support vector machine classifier was trained and tested using an iterative procedure in which the dataset was randomly divided into training (65%) and testing (35%) sets inside a loop. The SVM classifier was also tested on 4592 simulated CAS cycles. High total accuracy was obtained with both recorded (94.6% ± 0.3%) and simulated (92.8% ± 3.6%) signals. We conclude that the proposed method is promising for RS analysis and classification.

  4. Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases†

    PubMed Central

    Bhattacharjee, Hiranmoy; Sheng, Ju; Ajees, A. Abdul; Mukhopadhyay, Rita; Rosen, Barry P.

    2013-01-01

    A number of eukaryotic enzymes that function as arsenate reductases are homologues of the catalytic domain of the human Cdc25 phosphatase. For example, the Leishmania major enzyme LmACR2 is both a phosphatase and an arsenate reductase, and its structure bears similarity to the structure of the catalytic domain of human Cdc25 phosphatase. These reductases contain an active site C-X5-R signature motif, where C is the catalytic cysteine, the five X residues form a phosphate binding loop, and R is a highly conserved arginine, which is also present in human Cdc25 phosphatases. We therefore investigated the possibility that the three human Cdc25 isoforms might have adventitious arsenate reductase activity. The sequences for the catalytic domains of Cdc25A, -B, and -C were cloned individually into a prokaryotic expression vector, and their gene products were purified from a bacterial host using nickel affinity chromatography. While each of the three Cdc25 catalytic domains exhibited phosphatase activity, arsenate reductase activity was observed only with Cdc25B and -C. These two enzymes reduced inorganic arsenate but not methylated pentavalent arsenicals. Alteration of either the cysteine and arginine residues of the Cys-X5-Arg motif led to the loss of both reductase and phosphatase activities. Our observations suggest that Cdc25B and -C may adventitiously reduce arsenate to the more toxic arsenite and may also provide a framework for identifying other human protein tyrosine phosphatases containing the active site Cys-X5-Arg loop that might moonlight as arsenate reductases. PMID:20025242

  5. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice

    PubMed Central

    Tieu, Brian C.; Lee, Chang; Sun, Hong; LeJeune, Wanda; Recinos, Adrian; Ju, Xiaoxi; Spratt, Heidi; Guo, Dong-Chuan; Milewicz, Dianna; Tilton, Ronald G.; Brasier, Allan R.

    2009-01-01

    Vascular inflammation contributes to cardiovascular diseases such as aortic aneurysm and dissection. However, the precise inflammatory pathways involved have not been clearly defined. We have shown here that subcutaneous infusion of Ang II, a vasopressor known to promote vascular inflammation, into older C57BL/6J mice induced aortic production of the proinflammatory cytokine IL-6 and the monocyte chemoattractant MCP-1. Production of these factors occurred predominantly in the tunica adventitia, along with macrophage recruitment, adventitial expansion, and development of thoracic and suprarenal aortic dissections. In contrast, a reduced incidence of dissections was observed after Ang II infusion into mice lacking either IL-6 or the MCP-1 receptor CCR2. Further analysis revealed that Ang II induced CCR2+CD14hiCD11bhiF4/80– macrophage accumulation selectively in aortic dissections and not in aortas from Il6–/– mice. Adoptive transfer of Ccr2+/+ monocytes into Ccr2–/– mice resulted in selective monocyte uptake into the ascending and suprarenal aorta in regions of enhanced ROS stress, with restoration of IL-6 secretion and increased incidence of dissection. In vitro, coculture of monocytes and aortic adventitial fibroblasts produced MCP-1– and IL-6–enriched conditioned medium that promoted differentiation of monocytes into macrophages, induced CD14 and CD11b upregulation, and induced MCP-1 and MMP-9 expression. These results suggest that leukocyte-fibroblast interactions in the aortic adventitia potentiate IL-6 production, inducing local monocyte recruitment and activation, thereby promoting MCP-1 secretion, vascular inflammation, ECM remodeling, and aortic destabilization. PMID:19920349

  6. The interaction of transient receptor potential melastatin 7 with macrophages promotes vascular adventitial remodeling in transverse aortic constriction rats.

    PubMed

    Li, Yan; Jiang, Hui; Ruan, Chengchao; Zhong, Jiuchang; Gao, Pingjin; Zhu, Dingliang; Niu, Wenquan; Guo, Shujie

    2014-01-01

    Transient receptor potential melastatin 7 (TRPM7), a novel channel kinase, has been recently identified in the vasculature. However, its regulation and function in vascular diseases remain poorly understood. To address this lack of knowledge, we sought to examine whether TRPM7 can mediate the vascular remodeling process induced by pressure overload in the right common carotid artery proximal to the band (RCCA-B) in male Sprague-Dawley rats with transverse aortic constriction (TAC). The contribution of TRPM7 to amplified vascular remodeling after TAC was tested using morphometric and western blot analyses. Pressure overload-induced vascular wall thickening, especially in the adventitia, was readily detected in RCCA-B. The TRPM7 level was increased with a simultaneous accumulation of macrophages in the adventitia of RCCA-B, whereas the anti-inflammatory molecule annexin-1, a TRPM7 downstream target, was decreased. After the addition of the TRPM7 inhibitor 2-aminoethoxydiphenyl borate (2-APB), significant reductions in macrophage accumulation as well as the expression of monocyte chemotactic protein-1, SM-22-α and collagen I were observed, whereas annexin-1 was rescued. Finally, in cultured vascular adventitial fibroblasts treated with macrophage-conditioned medium, there were marked increases in the expression of TRPM7 and SM-22-α with a concurrent reduction in annexin-1 expression; these effects were largely prevented by treatment with 2-APB and specific anti-TRPM7 small interfering RNA. Our findings provide the first demonstration of the potential regulatory roles of TRPM7 in the vascular inflammation, pressure overload-mediated vascular adventitial collagen accumulation and cell phenotypic transformation in TAC rats. The targeting of TRPM7 has potential therapeutic importance for vascular diseases.

  7. Endogenous isoflavone methylation correlates with the in vitro rooting phases of Spartium junceum L. (Leguminosae).

    PubMed

    Clematis, Francesca; Viglione, Serena; Beruto, Margherita; Lanzotti, Virginia; Dolci, Paola; Poncet, Christine; Curir, Paolo

    2014-09-01

    Spartium junceum L. (Leguminosae) is a perennial shrub, native to the Mediterranean region in southern Europe, widespread in all the Italian regions and, as a leguminous species, it has a high isoflavone content. An in vitro culture protocol was developed for this species starting from stem nodal sections of in vivo plants, and isoflavone components of the in vitro cultured tissues were studied by means of High Performance Liquid Chromatography (HPLC) analytical techniques. Two main isoflavones were detected in the S. junceum tissues during the in vitro propagation phases: Genistein (4',5,7-Trihydroxyisoflavone), already reported in this species, and its methylated form 4',5,7-Trimethoxyisoflavone, detected for the first time in this plant species (0.750 ± 0.02 mg g(-1) dry tissue). The presence of both of these compounds in S. junceum tissues was consistently detected during the in vitro multiplication phase. The absence of the methylated form within plant tissues in the early phases of the in vitro adventitious root formation was correlated with its negative effect displayed on root induction and initiation phases, while its presence in the final "root manifestation" phase influenced positively the rooting process. The unmethylated form, although detectable in tissues in the precocious rooting phases, was no longer present in the final rooting phase. Its effect on rooting, however, proved always to be beneficial.

  8. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings

    PubMed Central

    Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25–47.4% and increased the rooting percentages of cuttings by 0.9–1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting. PMID:28231330

  9. Influence of Microgravity Environment on Root Growth, Soluble Sugars, and Starch Concentration of Sweetpotato Stem Cuttings

    PubMed Central

    Mortley, Desmond G.; Bonsi, Conrad K.; Hill, Walter A.; Morris, Carlton E.; Williams, Carol S.; Davis, Ceyla F.; Williams, John W.; Levine, Lanfang H.; Petersen, Barbara V.; Wheeler, Raymond M.

    2009-01-01

    Because sweetpotato [Ipomoea batatas (L.) Lam.] stem cuttings regenerate very easily and quickly, a study of their early growth and development in microgravity could be useful to an understanding of morphological changes that might occur under such conditions for crops that are propagated vegetatively. An experiment was conducted aboard a U.S. Space Shuttle to investigate the impact of microgravity on root growth, distribution of amyloplasts in the root cells, and on the concentration of soluble sugars and starch in the stems of sweetpotatoes. Twelve stem cuttings of ‘Whatley/Loretan’ sweetpotato (5 cm long) with three to four nodes were grown in each of two plant growth units filled with a nutrient agarose medium impregnated with a half-strength Hoagland solution. One plant growth unit was flown on Space Shuttle Colombia for 5 days, whereas the other remained on the ground as a control. The cuttings were received within 2 h postflight and, along with ground controls, processed in ≈45 min. Adventitious roots were counted, measured, and fixed for electron microscopy and stems frozen for starch and sugar assays. Air samples were collected from the headspace of each plant growth unit for postflight determination of carbon dioxide, oxygen, and ethylene levels. All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. Amyloplasts in root cap cells of ground-based controls were evenly sedimented toward one end compared with a more random distribution in the flight samples. The concentration of soluble sugars, glucose, fructose, and sucrose and total starch concentration were all substantially greater in the stems of

  10. Establishment of Tripterygium wilfordii Hook. f. Hairy root culture and optimization of its culture conditions for the production of triptolide and wilforine.

    PubMed

    Zhu, Chuanshu; Miao, Guopeng; Guo, Jia; Huo, Yanbo; Zhang, Xing; Xie, Jiahua; Feng, Juntao

    2014-06-28

    In order to solve the shortage of natural Tripterygium wilfordii Hook. f. plant resource for the production of the important secondary metabolites triptolide and wilforine, hairy roots were induced from its root calli by Agrobacterium rhizogenes. Induced hairy roots not only could be maintained and grown well in hormone-free half-strength Murashige and Skoog medium but also could produce sufficient amounts of both triptolide and wilforine. Although hairy roots produced approximately 15% less triptolide than adventitious roots and 10% less wilforine than naturally grown roots, they could grow fast and could be a suitable system for producing both secondary metabolites compared with other tissues. Addition of 50 micrometer methyl jasmonate (MeJA) could slightly affect hairy root growth, but dramatically stimulated the production of both triptolide and wilforine, whereas 50 micrometer salicylic acid had no apparent effect on hairy root growth with slightly stimulatory effects on the production of both secondary metabolites. Addition of precursor nicotinic acid, isoleucine, or aspartic acid at the concentration of 500 micrometer had varying effects on hairy root growth, but none of them had stimulatory effects on triptolide production, and only the former two had slightly beneficial effects on wilforine production. The majority of triptolide produced was secreted into the medium, whereas most of the produced wilforine was retained inside of hairy roots. Our studies provide a promising way to produce triptolide and wilforine in T. wilfordii hairy root cultures combined with MeJA treatment.

  11. Modeling gene flow distribution within conventional fields and development of a simplified sampling method to quantify adventitious GM contents in maize

    PubMed Central

    Melé, Enric; Nadal, Anna; Messeguer, Joaquima; Melé-Messeguer, Marina; Palaudelmàs, Montserrat; Peñas, Gisela; Piferrer, Xavier; Capellades, Gemma; Serra, Joan; Pla, Maria

    2015-01-01

    Genetically modified (GM) crops have been commercially grown for two decades. GM maize is one of 3 species with the highest acreage and specific events. Many countries established a mandatory labeling of products containing GM material, with thresholds for adventitious presence, to support consumers’ freedom of choice. In consequence, coexistence systems need to be introduced to facilitate commercial culture of GM and non-GM crops in the same agricultural area. On modeling adventitious GM cross-pollination distribution within maize fields, we deduced a simple equation to estimate overall GM contents (%GM) of conventional fields, irrespective of its shape and size, and with no previous information on possible GM pollen donor fields. A sampling strategy was designed and experimentally validated in 19 agricultural fields. With 9 samples, %GM quantification requires just one analytical GM determination while identification of the pollen source needs 9 additional analyses. A decision support tool is provided. PMID:26596213

  12. Evidence for vocal learning in juvenile male killer whales, Orcinus orca, from an adventitious cross-socializing experiment.

    PubMed

    Crance, Jessica L; Bowles, Ann E; Garver, Alan

    2014-04-15

    Killer whales (Orcinus orca) are thought to learn their vocal dialect. Dispersal in the species is rare, but effects of shifts in social association on the dialect can be studied under controlled conditions. Individual call repertoires and social association were measured in three adult female killer whales and three males (two juveniles and an adult) during two periods, 2001-2003 and 2005-2006. Three distinct dialect repertoires were represented among the subjects. An adventitious experiment in social change resulted from the birth of a calf and the transfer of two non-focal subjects in 2004. Across the two periods, 1691 calls were collected, categorized and attributed to individuals. Repertoire overlap for each subject dyad was compared with an index of association. During 2005-2006, the two juvenile males increased association with the unrelated adult male. By the end of the period, both had begun producing novel calls and call features characteristic of his repertoire. However, there was little or no reciprocal change and the adult females did not acquire his calls. Repertoire overlap and association were significantly correlated in the first period. In the second, median association time and repertoire similarity increased, but the relationship was only marginally significant. The results provided evidence that juvenile male killer whales are capable of learning new call types, possibly stimulated by a change in social association. The pattern of learning was consistent with a selective convergence of male repertoires.

  13. Sampling Strategies for Evaluating the Rate of Adventitious Transgene Presence in Non-Genetically Modified Crop Fields.

    PubMed

    Makowski, David; Bancal, Rémi; Bensadoun, Arnaud; Monod, Hervé; Messéan, Antoine

    2017-02-23

    According to E.U. regulations, the maximum allowable rate of adventitious transgene presence in non-genetically modified (GM) crops is 0.9%. We compared four sampling methods for the detection of transgenic material in agricultural non-GM maize fields: random sampling, stratified sampling, random sampling + ratio reweighting, random sampling + regression reweighting. Random sampling involves simply sampling maize grains from different locations selected at random from the field concerned. The stratified and reweighting sampling methods make use of an auxiliary variable corresponding to the output of a gene-flow model (a zero-inflated Poisson model) simulating cross-pollination as a function of wind speed, wind direction, and distance to the closest GM maize field. With the stratified sampling method, an auxiliary variable is used to define several strata with contrasting transgene presence rates, and grains are then sampled at random from each stratum. With the two methods involving reweighting, grains are first sampled at random from various locations within the field, and the observations are then reweighted according to the auxiliary variable. Data collected from three maize fields were used to compare the four sampling methods, and the results were used to determine the extent to which transgene presence rate estimation was improved by the use of stratified and reweighting sampling methods. We found that transgene rate estimates were more accurate and that substantially smaller samples could be used with sampling strategies based on an auxiliary variable derived from a gene-flow model.

  14. Micropropagation of Codiaeum variegatum (L.) Blume and regeneration induction via adventitious buds and somatic embryogenesis.

    PubMed

    Radice, Silvia

    2010-01-01

    Codiaeum variegatum (L) Blume cv. "Corazon de oro" and cv. "Norma" are successfully micropropagated when culture are initiated with explants taken from newly sprouted shoots. The establishment and multiplication steps are possible when 1 mg/L BA or 1 mg/L IAA and 3 mg/L 2iP are added to MS medium, according to the cultivar respectively selected.Adventive organogenesis and somatic embryogenesis are induced from leaf explants taken from in vitro buds of croton. On leaf-sectioned of "Corazon de oro" cultured in vitro, 1 mg/L BA stimulates continuous somatic embryos development and induces some shoots too. Replacing BA with 1 mg/L TDZ induces up to 100% bud regeneration in the same explants. On the other hand, leaf-sectioned of C. variegatum cv. Norma does not start somatic embryo differentiation if 1 mg/L TDZ is not added to the MS basal medium. Incipient callus is observed after 30 days of culture, and then, subculture to MS with 1 mg/L BA allows the same process to show on the "Corazon de oro" cultivar. Somatic embryos show growth arrest that is partially overcome by transfer to hormone-free basal medium with activated charcoal. Root induction is possible on basal medium plus 1 mg/L IBA. Plantlets in the greenhouse have variegated leaves true-to-type.

  15. Soybean roots retain the seed urease isozyme synthesized during embryo development. [Glycine max (L. ) Merr

    SciTech Connect

    Torisky, R.S.; Polacco, J.C. )

    1990-10-01

    Roots of young soybean (Glycine max (L.) Merr.) plants (up to 25 days old) contain two distinct urease isozymes, which are separable by hydroxyapatite chromatography. These two urease species (URE1 and URE2) differ in: (a) electrophoretic mobility in native gels, (b) pH dependence, and (c) recognition by a monoclonal antibody specific for the seed (embryo-specific) urease. By these parameters root URE1 urease is similar to the abundant embryo-specific urease isozyme, while root URE2 resembles the ubiquitous urease which has previously been found in all soybean tissues examined (leaf, embryo, seed coat, and cultured cells). The embryo-specific and ubiquitous urease isozymes are products of the Eu1 and Eu4 structural genes, respectively. Roots of the eu1-sun/eu1-sun genotype, which lacks the embryo-specific urease (i.e. seed urease-null), contain no URE1 urease activity. Roots of eu4/eu4, which lacks ubiquitous urease, lack the URE2 (leaflike) urease activity. From these genetic and biochemical criteria, then, we conclude that URE1 and URE2 are the embryo-specific and ubiquitous ureases, respectively. Adventitious roots generated from cuttings of any urease genotype lack URE1 activity. In seedling roots the seedlike (URE1) activity declines during development. Roots of 3-week-old plants contain 5% of the total URE1 activity of the radicle of 4-day-old seedlings, which, in turn, has approximately the same urease activity level as the dormant embryonic axis. The embryo-specific urease incorporates label from ({sup 35}S)methionine during embryo development but not during germination, indicating that there is no de novo synthesis of the embryo-specific (URE1) urease in the germinating root.

  16. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings.

    PubMed

    Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-10-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.

  17. GENOME ENABLED MODIFICATION OF POPLAR ROOT DEVELOPMENT FOR INCREASED CARBON SEQUESTRATION

    SciTech Connect

    Busov, Victor

    2013-03-05

    DR5 as a reporter system to study auxin response in Populus Plant Cell Reports 32:453-463 Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar. The Populus AINTEGUMENTA LIKE 1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia. Plant Physiol. 160: 1996-2006 Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described the transcriptional profiles that are associated with the developmental stages of adventitious root formation in the model tree poplar (Populus trichocarpa). Transcriptome analyses indicate a highly specific temporal induction of the AINTEGUMENTA LIKE1 (PtAIL1) transcription factor of the AP2 family during adventitious root formation. Transgenic poplar samples that overexpressed PtAIL1 were able to

  18. Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development

    PubMed Central

    Guevara-García, A. A.

    2014-01-01

    Mitogen-activated protein kinase (MAPKs) cascades are signal transduction modules highly conserved in all eukaryotes regulating various aspects of plant biology, including stress responses and developmental programmes. In this study, we characterized the role of MAPK 6 (MPK6) in Arabidopsis embryo development and in post-embryonic root system architecture. We found that the mpk6 mutation caused altered embryo development giving rise to three seed phenotypes that, post-germination, correlated with alterations in root architecture. In the smaller seed class, mutant seedlings failed to develop the primary root, possibly as a result of an earlier defect in the division of the hypophysis cell during embryo development, but they had the capacity to develop adventitious roots to complete their life cycle. In the larger class, the MPK6 loss of function did not cause any evident alteration in seed morphology, but the embryo and the mature seed were bigger than the wild type. Seedlings developed from these bigger seeds were characterized by a primary root longer than that of the wild type, accompanied by significantly increased lateral root initiation and more and longer root hairs. Apparently, the increment in primary root growth resulted from an enhanced cell production and cell elongation. Our data demonstrated that MPK6 plays an important role during embryo development and acts as a repressor of primary and lateral root development. PMID:24218326

  19. Single-walled carbon nanotubes promote rat vascular adventitial fibroblasts to transform into myofibroblasts by SM22-α expression.

    PubMed

    Lin, Zhiqing; Liu, Lihua; Xi, Zhuge; Huang, Jiehua; Lin, Bencheng

    2012-01-01

    The aim of this study was to explore whether single-wall carbon nanotubes (SWCNTs) can be used as artery tissue-engineering materials by promoting vascular adventitial fibroblasts (VAFs) to transform into myofibroblasts (MFs) and to find the signal pathway involved in this process. VAFs were primary cultured and incubated with various doses of SWCNTs suspension (0, 0.8, 3.2, 12.5, 50, and 200 μg/mL). In the present study, we used three methods (MTT, WST-1, and WST-8) at the same time to detect the cell viability and immunofluorescence probe technology to investigate the effects of oxidative injury after VAFs incubated with SWCNTs. Immunocytochemical staining was used to detect SM(22)-α expression to confirm whether VAFs transformed into MFs. The protein levels were detected by western blotting. The results of immunocytochemical staining showed that SM(22)-α was expressed after incubation with 50 μg/mL SWCNTs for 96 hours, but with oxidative damage. The mRNA and protein levels of SM(22)-α, C-Jun N-terminal kinase, TGF-β(1), and TGF-β receptor II in VAFs increased with the dose of SWCNTs. The expression of the p-Smad2/3 protein was upregulated while the Smad7 protein was significantly down-regulated. Smad4 was translocated to the nucleus to regulate SM(22)-α gene expression. In conclusion, SWCNTs promoted VAFs to transform into MFs with SM(22)-α expression by the C-Jun N-terminal kinase/Smads signal pathway at the early stage (48 hours) but weakened quickly. SWCNTs also promoted the transformation by the TGF-β(l)/Smads signal pathway at the advanced stage in a persistent manner. These results indicate that SWCNTs can possibly be used as artery tissue-engineering materials.

  20. Evaluation of cells and biological reagents for adventitious agents using degenerate primer PCR and massively parallel sequencing.

    PubMed

    McClenahan, Shasta D; Uhlenhaut, Christine; Krause, Philip R

    2014-12-12

    We employed a massively parallel sequencing (MPS)-based approach to test reagents and model cell substrates including Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), African green monkey kidney (Vero), and High Five insect cell lines for adventitious agents. RNA and DNA were extracted either directly from the samples or from viral capsid-enriched preparations, and then subjected to MPS-based non-specific virus detection with degenerate oligonucleotide primer (DOP) PCR. MPS by 454, Illumina MiSeq, and Illumina HiSeq was compared on independent samples. Virus detection using these methods was reproducibly achieved. Unclassified sequences from CHO cells represented cellular sequences not yet submitted to the databases typically used for sequence identification. The sensitivity of MPS-based virus detection was consistent with theoretically expected limits based on dilution of virus in cellular nucleic acids. Capsid preparation increased the number of viral sequences detected. Potential viral sequences were detected in several samples; in each case, these sequences were either artifactual or (based on additional studies) shown not to be associated with replication-competent viruses. Virus-like sequences were more likely to be identified in BLAST searches using virus-specific databases that did not contain cellular sequences. Detected viral sequences included previously described retrovirus and retrovirus-like sequences in CHO, Vero, MDCK and High Five cells, and nodavirus and endogenous bracovirus sequences in High Five insect cells. Bovine viral diarrhea virus, bovine hokovirus, and porcine circovirus sequences were detected in some reagents. A recently described parvo-like virus present in some nucleic acid extraction resins was also identified in cells and extraction controls from some samples. The present study helps to illustrate the potential for MPS-based strategies in evaluating the presence of viral nucleic acids in various sample types

  1. Cystic adventitial disease of the popliteal artery: elongation into the media of the popliteal artery and communication with the knee joint capsule: report of a case.

    PubMed

    Unno, N; Kaneko, H; Uchiyama, T; Yamamoto, N; Nakamura, S

    2000-01-01

    Cystic disease of the popliteal artery is a rare disorder in which most cases involve the formation of an adventitial cyst that disturbs the popliteal artery blood flow. We present herein the case of a patient presenting with popliteal artery occlusion due to compression by a cyst which formed at the media of the popliteal artery. The onset occurred during a baseball game in which he played catcher. Preoperative magnetic resonance imaging demonstrated a communication of the cyst with the adjacent knee joint. This unusual case could provide important clues to help identify the pathogenesis of this disease.

  2. Using Square Roots

    ERIC Educational Resources Information Center

    Wilson, William Wynne

    1976-01-01

    This article describes techniques which enable the user of a comparatively simple calculator to perform calculations of cube roots, nth roots, trigonometric, and inverse trigonometric functions, logarithms, and exponentials. (DT)

  3. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  4. Corky root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  5. WHY ROOTING FAILS.

    SciTech Connect

    CREUTZ,M.

    2007-07-30

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four 'tastes.' The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  6. Rooting gene trees without outgroups: EP rooting.

    PubMed

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  7. Pulmonary artery adventitial fibroblasts cooperate with vasa vasorum endothelial cells to regulate vasa vasorum neovascularization: a process mediated by hypoxia and endothelin-1.

    PubMed

    Davie, Neil J; Gerasimovskaya, Evgenia V; Hofmeister, Stephen E; Richman, Aaron P; Jones, Peter L; Reeves, John T; Stenmark, Kurt R

    2006-06-01

    The precise cellular and molecular mechanisms regulating adventitial vasa vasorum neovascularization, which occurs in the pulmonary arterial circulation in response to hypoxia, remain unknown. Here, using a technique to isolate and culture adventitial fibroblasts (AdvFBs) and vasa vasorum endothelial cells (VVECs) from the adventitia of pulmonary arteries, we report that hypoxia-activated pulmonary artery AdvFBs exhibited pro-angiogenic properties and influenced the angiogenic phenotype of VVEC, in a process of cell-cell communication involving endothelin-1 (ET-1). We demonstrated that AdvFBs, either via co-culture or conditioned media, stimulated VVEC proliferation and augmented the self-assembly and integrity of cord-like networks that formed when VVECs where cultured on Matrigel. In addition, hypoxia-activated AdvFBs produced ET-1, suggesting a paracrine role for this pro-angiogenic molecule in these processes. When co-cultured on Matrigel, AdvFBs and VVECs self-assembled into heterotypic cord-like networks, a process augmented by hypoxia but attenuated by either selective endothelin receptor antagonists or oligonucleotides targeting prepro-ET-1 mRNA. From these observations, we propose that hypoxia-activated AdvFBs exhibit pro-angiogenic properties and, as such, communicate with VVECs, in a process involving ET-1, to regulate vasa vasorum neovascularization occurring in the adventitia of pulmonary arteries in response to chronic hypoxia.

  8. Partial versus complete submergence: snorkelling aids root aeration in Rumex palustris but not in R. acetosa.

    PubMed

    Herzog, Max; Pedersen, Ole

    2014-10-01

    The root and shoot tissues of flood-tolerant wetland plants are highly porous to enable internal gas phase diffusion of O2 during waterlogging or submergence. In the case of only partial submergence (snorkelling), the atmosphere can act as source of O2 . The aim of this study was to assess the effect of waterlogging, partial submergence and complete submergence in the dark as well as in light on O2 partial pressure (pO2 ) in roots of Rumex palustris (flood tolerant) and R. acetosa (flood intolerant). We used O2 microelectrodes to measure pO2 of adventitious roots during manipulations of the water level around the shoot. Root pO2 in both species declined significantly upon submergence but remained oxic also when shoots were completely submerged in the dark (0.8 and 4.6 kPa in R. acetosa and R. palustris, respectively). The snorkelling effect was substantial in R. palustris only. Submergence in light had less impact on root pO2 and the effect of snorkelling was also minor. Hence, the benefits of light (underwater photosynthesis) and air contact (snorkelling) upon growth and survival in submerged wetland plants can now be linked to enhanced internal aeration.

  9. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  10. Heme oxygenase is involved in cobalt chloride-induced lateral root development in tomato.

    PubMed

    Xu, Sheng; Zhang, Bo; Cao, Ze-Yu; Ling, Teng-Fang; Shen, Wen-Biao

    2011-04-01

    In animals, heme oxygenase (HO), a rate-limiting enzyme responsible for carbon monoxide (CO) production, was regarded as a protective system maintaining cellular homeostasis. It was also established that metal ions are powerful HO-inducing agents and cobalt chloride (CoCl(2)) was the first metal ion identified with an inducing property. Previous study suggests that CoCl(2) stimulates adventitious root formation in tomato and cucumber cuttings. In this test, we discover that both CoCl(2) and an inducer of HO-1, hemin, could lead to the promotion of lateral root development, as well as the induction of HO-1 protein expression, HO activity, or LeHO-1/2 transcripts, in lateral root initiation zone of tomato seedlings. The effect is specific for HO since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX) blocked the above actions of CoCl(2), and the inhibitory effect was reversed partially when 50% CO aqueous solution was added. However, the addition of ascorbic acid (AsA), a well-known antioxidant, exhibited no obvious effect on lateral root formation. Molecular evidence further showed that CoCl(2)-induced the up-regulation of target genes responsible for lateral root formation, including LeCDKA1, LeCYCA2;1, and LeCYCA3;1, was suppressed differentially by ZnPPIX. And these decreases were reversed further by the addition of CO. All together, these results suggest a novel role for HO in the CoCl(2)-induced tomato lateral root formation.

  11. Ascending aortic adventitial remodeling and fibrosis are ameliorated with Apelin-13 in rats after TAC via suppression of the miRNA-122 and LGR4-β-catenin signaling.

    PubMed

    Xu, Ran; Zhang, Zhen-Zhou; Chen, Lai-Jiang; Yu, Hui-Min; Guo, Shu-Jie; Xu, Ying-Le; Oudit, Gavin Y; Zhang, Yan; Chang, Qing; Song, Bei; Chen, Dong-Rui; Zhu, Ding-Liang; Zhong, Jiu-Chang

    2016-12-01

    Apelin has been proved to be a critical mediator of vascular function and homeostasis. Here, we investigated roles of Apelin in aortic remodeling and fibrosis in rats with transverse aortic constriction (TAC). Male Sprague-Dawley rats were subjected to TAC and then randomized to daily deliver Apelin-13 (50μg/kg) or angiotensin type 1 receptor (AT1) blocker Irbesartan (50mg/kg) for 4 weeks. Pressure overload resulted in myocardial hypertrophy, systolic dysfunction, aortic remodeling and adventitial fibrosis with reduced levels of Apelin in ascending aortas of rat after TAC compared with sham-operated group. These changes were associated with marked increases in levels of miRNA-122, TGFβ1, CTGF, NFAT5, LGR4, and β-catenin. More importantly, Apelin and Irbesartan treatment strikingly prevented TAC-mediated aortic remodeling and adventitial fibrosis in pressure overloaded rats by blocking AT1 receptor and miRNA-122 levels and repressing activation of the CTGF-NFAT5 and LGR4-β-catenin signaling. In cultured primary rat adventitial fibroblasts, exposure to angiotensin II (100nmolL(-1)) led to significant increases in cellular migration and levels of TGFβ1, CTGF, NFAT5, LGR4 and β-catenin, which were effectively reversed by pre-treatment with Apelin (100nmolL(-1)) and miRNA-122 inhibitor (50nmolL(-1)). In conclusion, Apelin counterregulated against TAC-mediated ascending aortic remodeling and angiotensin II-induced promotion of cellular migration by blocking AT1 receptor and miRNA-122 levels and preventing activation of the TGFβ1-CTGF-NFAT5 and LGR4-β-catenin signaling, ultimately contributing to attenuation of aortic adventitial fibrosis. Our data point to Apelin as an important regulator of aortic remodeling and adventitial fibrosis and a promising target for vasoprotective therapies.

  12. Trees and Roots.

    ERIC Educational Resources Information Center

    Jones, Lethonee A.

    Constructing a family history can be significant in helping persons understand and appreciate the root system that supports and sustains them. Oral history can be a valuable resource in family research as Alex Haley demonstrated in writing "Roots." The major difficulty of using oral tradition in tracing a family history is that family…

  13. Irrational Square Roots

    ERIC Educational Resources Information Center

    Misiurewicz, Michal

    2013-01-01

    If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?

  14. The Roots of Literacy.

    ERIC Educational Resources Information Center

    Goodman, Yetta M.

    This review of research with children aged two to six on their reading, writing, and oral language development speaks of five roots of a tree of literate life that require nourishment in the soil of a written language environment. The roots discussed are the development of print awareness in situational contexts, the development of print awareness…

  15. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings

    PubMed Central

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca2+]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca2+] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development. PMID:26076049

  16. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions

    PubMed Central

    Kato, Yoichiro; Okami, Midori

    2011-01-01

    Background and Aims Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. ‘Aerobic rice culture’ aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant–water relationships and stomatal conductance in aerobic culture. Methods Root system development, stomatal conductance (gs) and leaf water potential (Ψleaf) were monitored in a high-yielding rice cultivar (‘Takanari’) under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> –10 kPa) and mildly dry (> –30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; Kpa) was measured under flooded and aerobic conditions. Key Results Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72–85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower Kpa than plants grown under flooded conditions. Ψleaf was always significantly lower in aerobic culture than in flooded culture, while gs was unchanged when the soil moisture was at around field capacity. gs was inevitably reduced when the soil water potential at 20-cm depth reached –20 kPa. Conclusions Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψleaf. Ψleaf may reduce even if Kpa is not significantly changed, but the lower Ψleaf would certainly occur in case Kpa reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep

  17. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  18. Root nutrient foraging.

    PubMed

    Giehl, Ricardo F H; von Wirén, Nicolaus

    2014-10-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status.

  19. Systematic Evaluation of In Vitro and In Vivo Adventitious Virus Assays for the Detection of Viral Contamination of Cell Banks and Biological Products1

    PubMed Central

    Gombold, James; Karakasidis, Stephen; Niksa, Paula; Podczasy, John; Neumann, Kitti; Richardson, James; Sane, Nandini; Johnson-Leva, Renita; Randolph, Valerie; Sadoff, Jerald; Minor, Phillip; Schmidt, Alexander; Duncan, Paul; Sheets, Rebecca L.

    2015-01-01

    Viral vaccines and the cell substrates used to manufacture them are subjected to tests for adventitious agents, including viruses, which might contaminant them. Some of the compendial methods (in vivo and in vitro in cell culture) were established in the mid-20th century. These methods have not been subjected to current assay validation, as new methods would need to be. This study was undertaken to provide insight into the breadth (selectivity) and sensitivity (limit of detection) of the routine methods, two such validation parameters. Sixteen viral stocks were prepared and characterized. These stocks were tested in serial dilutions by the routine methods to establish which viruses were detected by which methods and above what limit of detection. Sixteen out of sixteen viruses were detected in vitro, though one (bovine viral diarrhea virus) required special conditions to detect and another (rubella virus) was detected with low sensitivity. Many were detected at levels below 1 TCID50 or PFU (titers were established on the production cell line in most cases). In contrast, in vivo, only 6/11 viruses were detected, and 4 of these were detected only at amounts one or more logs above 1 TCID50 or PFU. Only influenza virus and vesicular stomatitis virus were detected at lower amounts in vivo than in vitro. Given the call to reduce, refine, or replace (3 R's) the use of animals in product safety testing and the emergence of new technologies for the detection of viruses, a re-examination of the current adventitious virus testing strategies seems warranted. Suggested pathways forward are offered. PMID:24681273

  20. Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens.

    PubMed

    Argus, R E; Colmer, T D; Grierson, P F

    2015-06-01

    We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water-limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches.

  1. Root hydrotropism: an update.

    PubMed

    Cassab, Gladys I; Eapen, Delfeena; Campos, María Eugenia

    2013-01-01

    While water shortage remains the single-most important factor influencing world agriculture, there are very few studies on how plants grow in response to water potential, i.e., hydrotropism. Terrestrial plant roots dwell in the soil, and their ability to grow and explore underground requires many sensors for stimuli such as gravity, humidity gradients, light, mechanical stimulations, temperature, and oxygen. To date, extremely limited information is available on the components of such sensors; however, all of these stimuli are sensed in the root cap. Directional growth of roots is controlled by gravity, which is fixed in direction and intensity. However, other environmental factors, such as water potential gradients, which fluctuate in time, space, direction, and intensity, can act as a signal for modifying the direction of root growth accordingly. Hydrotropism may help roots to obtain water from the soil and at the same time may participate in the establishment of the root system. Current genetic analysis of hydrotropism in Arabidopsis has offered new players, mainly AHR1, NHR1, MIZ1, and MIZ2, which seem to modulate how root caps sense and choose to respond hydrotropically as opposed to other tropic responses. Here we review the mechanism(s) by which these genes and the plant hormones abscisic acid and cytokinins coordinate hydrotropism to counteract the tropic responses to gravitational field, light or touch stimuli. The biological consequence of hydrotropism is also discussed in relation to water stress avoidance.

  2. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis.

    PubMed

    Wu, Bei; Li, Yun-He; Wu, Jian-Yong; Chen, Qi-Zhu; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2011-06-01

    An auxin response factor 2 gene, MiARF2, was cloned in our previous study [1] from the cotyledon section of mango (Mangifera indica L. cv. Zihua) during adventitious root formation, which shares an 84% amino acid sequence similarity to Arabidopsis ARF2. This study was to examine the effects of over-expression of the full-length MiARF2 open reading frame on the root and hypocotyl growth in Arabidopsis. Phenotype analysis showed that the T(3) transgenic lines had about 20-30% reduction in the length of hypocotyls and roots of the seedlings in comparison with the wild-type. The transcription levels of ANT and ARGOS genes which play a role in controlling organ size and cell proliferation in the transgenic seedlings also decreased. Therefore, the inhibited root and hypocotyl growth in the transgenic seedlings may be associated with the down-regulated transcription of ANT and ARGOS by the over-expression of MiARF2. This study also suggests that although MiARF2 only has a single DNA-binding domain (DBD), it can function as other ARF-like proteins containing complete DBD, middle region (MR) and carboxy-terminal dimerization domain (CTD).

  3. Plant regeneration, genetic fidelity, and active ingredient content of encapsulated hairy roots of Picrorhiza kurrooa Royle ex Benth.

    PubMed

    Rawat, Janhvi Mishra; Rawat, Balwant; Mehrotra, Shakti

    2013-06-01

    Among five hairy root lines of Picrorhiza kurrooa that were established through Agrobacterium rhizogenes, one (H7) was selected for encapsulation due to high accumulation of picrotin and picrotoxinin (8.3 and 47.6 μg/g DW, respectively). Re-grown encapsulated roots induced adventitious shoots with 73 % frequency on MS medium supplemented with 0.1 μM 6-benzylaminopurine, following 6 months of storage at 25 °C. Regenerated plantlets had 85 % survival after 2 months. Regenerants were of similar morphotype having increased leaf number and branched root system as compared to non-transformed plants. The transformed nature of the plants was confirmed through PCR and Southern blot analysis. Genetic fidelity analysis of transformed plants using RAPD and ISSR showed 5.2 and 3.6 % polymorphism, respectively. Phytochemical analysis also showed that picrotin and picrotoxinin content were similar in hairy root line and its regenerants.

  4. Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development.

    PubMed

    Nan, Wenbin; Wang, Xiaomin; Yang, Lei; Hu, Yanfeng; Wei, Yuantao; Liang, Xiaolei; Mao, Lina; Bi, Yurong

    2014-04-01

    The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays an important role in plant development and responses to stress. Recent studies indicated that cGMP is a secondary signal generated in response to auxin stimulation. cGMP also mediates auxin-induced adventitious root formation in mung bean and gravitropic bending in soybean. Nonetheless, the mechanism of the participation of cGMP in auxin signalling to affect these growth and developmental processes is largely unknown. In this report we provide evidence that indole-3-acetic acid (IAA) induces cGMP accumulation in Arabidopsis roots through modulation of the guanylate cyclase activity. Application of 8-bromo-cGMP (a cell-permeable cGMP derivative) increases auxin-dependent lateral root formation, root hair development, primary root growth, and gene expression. In contrast, inhibitors of endogenous cGMP synthesis block these processes induced by auxin. Data also showed that 8-bromo-cGMP enhances auxin-induced degradation of Aux/IAA protein modulated by the SCF(TIR1) ubiquitin-proteasome pathway. Furthermore, it was found that 8-bromo-cGMP is unable to directly influence the auxin-dependent TIR1-Aux/IAA interaction as evidenced by pull-down and yeast two-hybrid assays. In addition, we provide evidence for cGMP-mediated modulation of auxin signalling through cGMP-dependent protein kinase (PKG). Our results suggest that cGMP acts as a mediator to participate in auxin signalling and may govern this process by PKG activity via its influence on auxin-regulated gene expression and auxin/IAA degradation.

  5. Economic strategies of plant absorptive roots vary with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247 µm) and thick roots. For each category, we analyzed a range of root traits related to resource acquisition and conservation, including root tissue density, different carbon (C), and nitrogen (N) fractions (i.e., extractive, acid-soluble, and acid-insoluble fractions) as well as root anatomical traits. The results showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. Similar results were found when reanalyzing data of a previous study including 96 plant species. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.

  6. Quantitative measurements of root water uptake and root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  7. Root lattices and quasicrystals

    NASA Astrophysics Data System (ADS)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  8. Root lattices and quasicrystals

    NASA Astrophysics Data System (ADS)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown how root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All non-periodic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  9. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize

    PubMed Central

    Wu, Qian; Pagès, Loïc; Wu, Jie

    2016-01-01

    Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field. Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars. Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals. Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models. PMID:26744490

  10. The "Green" Root Beer Laboratory

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  11. How roots respond to gravity.

    PubMed

    Evans, M L; Moore, R; Hasenstein, K H

    1986-12-01

    Current knowledge about the mechanisms of plant root response to gravity is reviewed. The roles of the columella region and amyloplasts in the root cap are examined. Results of experiments related to gravistimulation in corn roots with and without root caps are explained. The role of auxin, abscisic acid, and calcium also are examined.

  12. Response to Bagavathiannan and Van Acker's "Transgenes and national boundaries - The need for international regulations": Biotechnology developers and regulators already consider transgene movement across national boundaries and the environmental risks posed by adventitious presence of unapproved events are overstated.

    PubMed

    Nickson, Thomas E; Raybould, Alan F

    2009-01-01

    Bagavathiannan and Van Acker propose greater international cooperation and information sharing in risk assessment for biotechnology-derived crops because pollen- and seed-mediated gene flow across political boundaries may lead to the adventitious presence of unapproved transgenes at sites along the borders of neighboring countries. However, they fail to convince us that something is wrong with the current situation and provide no details of how it could be improved.

  13. In vitro adventitious shoot regeneration via indirect organogenesis from inflorescence explants and peroxidase involvement in morphogenesis of Populus euphratica Olivier.

    PubMed

    Zhou, Yan; Gao, Ziyang; Gao, Shumin; Sun, Fangfang; Cheng, Pengjun; Li, Fenglan

    2012-12-01

    The inflorescences as explants for rapid propagation in vitro remained unknown in Populus euphratica Olivier. Here, we reported that multiple shoots were initiation from calli of both male and female inflorescences. The optimum medium for shoot induction from male inflorescences was lactose sulfite medium containing 1.0 mg L(-1) 6-benzylaminopurine (BA) and 0.5 mg L(-1) α-naphthalene acetic acid (NAA) or Murashige and Skoog (MS) medium containing 0.5 mg L(-1) BA and 0.2 mg L(-1) NAA. The optimum medium of shoot induction from female inflorescence calli was the MS medium containing 0.5 mg L(-1) BA and 0.2 mg L(-1) NAA. Rooting of regenerated shoots was obtained on 1/2 MS medium supplemented with 0.5∼1.0 mg L(-1) indole-3-butyric acid (IBA) and the highest frequency rooting was on medium containing 0.5 mg L(-1) IBA. No shoots were obtained on medium without BA and NAA. Peroxidase (POD) activity was measured by polyacrylamide gel electrophoresis during shoot induction and differentiation stages. The results showed that two bands of POD (2a and 2b) activity appeared lowest during the early 8 days at the dedifferentiation phase of leaves inducing calli, whereas POD 2a, 2b activity appeared to be increasing at the homeochronous dedifferentiation phase of inflorescence. Five most intensive bands, POD 1a, 1b, 1c, 2a, and ab, appeared in 8th and 28th days at the redifferentiation phase during shoot morphogenesis. These results demonstrated that the POD was involved in shoot morphogenesis from both leaf and inflorescence explants of Populus euphratica.

  14. Root architecture and root and tuber crop productivity.

    PubMed

    Villordon, Arthur Q; Ginzberg, Idit; Firon, Nurit

    2014-07-01

    It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems.

  15. Nerve root replantation.

    PubMed

    Carlstedt, Thomas

    2009-01-01

    Traumatic avulsion of nerve roots from the spinal cord is a devastating event that usually occurs in the brachial plexus of young adults following motor vehicle or sports accidents or in newborn children during difficult childbirth. A strategy to restore motor function in the affected arm by reimplanting into the spinal cord the avulsed ventral roots or autologous nerve grafts connected distally to the avulsed roots has been developed. Surgical outcome is good and useful recovery in shoulder and proximal arm muscles occurs. Pain is alleviated with motor recovery but sensory improvement is poor when only motor conduits have been reconstructed. In experimental studies, restoration of sensory connections with general improvement in the outcome from this surgery is pursued.

  16. PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 Regulates Lateral Root Formation via Auxin Signaling in Arabidopsis1[C][W

    PubMed Central

    Raya-González, Javier; Ortiz-Castro, Randy; Ruíz-Herrera, León Francisco; Kazan, Kemal; López-Bucio, José

    2014-01-01

    Root system architecture is a major determinant of water and nutrient acquisition as well as stress tolerance in plants. The Mediator complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA polymerase II. In this article, we characterize possible roles of the MEDIATOR8 (MED8) and MED25 subunits of the plant Mediator complex in the regulation of root system architecture in Arabidopsis (Arabidopsis thaliana). We found that loss-of-function mutations in PHYTOCHROME AND FLOWERING TIME1 (PFT1)/MED25 increase primary and lateral root growth as well as lateral and adventitious root formation. In contrast, PFT1/MED25 overexpression reduces these responses, suggesting that PFT1/MED25 is an important element of meristematic cell proliferation and cell size control in both lateral and primary roots. PFT1/MED25 negatively regulates auxin transport and response gene expression in most parts of the plant, as evidenced by increased and decreased expression of the auxin-related reporters PIN-FORMED1 (PIN1)::PIN1::GFP (for green fluorescent protein), DR5:GFP, DR5:uidA, and BA3:uidA in pft1-2 mutants and in 35S:PFT1 seedlings, respectively. No alterations in endogenous auxin levels could be found in pft1-2 mutants or in 35S:PFT1-overexpressing seedlings. However, detailed analyses of DR5:GFP and DR5:uidA activity in wild-type, pft1-2, and 35S:PFT1 seedlings in response to indole-3-acetic acid, naphthaleneacetic acid, and the polar auxin transport inhibitor 1-N-naphthylphthalamic acid indicated that PFT1/MED25 principally regulates auxin transport and response. These results provide compelling evidence for a new role for PFT1/MED25 as an important transcriptional regulator of root system architecture through auxin-related mechanisms in Arabidopsis. PMID:24784134

  17. Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos.

    PubMed

    Lawit, Shai J; Chamberlin, Mark A; Agee, April; Caswell, Eric S; Albertsen, Marc C

    2013-06-01

    Expression datasets relating to the Arabidopsis female gametophyte have enabled the creation of a tool set which allows simultaneous visual tracking of each specific cell type (egg, synergids, central cell, and antipodals). This cell-specific, fluorescent labeling tool-set functions from gametophyte cellularization through fertilization and early embryo development. Using this system, cell fates were tracked within Arabidopsis ovules following molecular manipulations, such as the ablation of the egg and/or synergids. Upon egg cell ablation, it was observed that a synergid can switch its developmental fate to become egg/embryo-like upon loss of the native egg. Also, manipulated was the fate of the somatic ovular cells, which can become egg- and embryo-like, reminiscent of adventitious embryony. These advances represent initial steps toward engineering synthetic apomixis resulting in seed derived wholly from the maternal plant. The end goal of applied apomixis research, fixing important agronomic traits such as hybrid vigor, would be a key benefit to agricultural productivity.

  18. Feline immunodeficiency virus and retrovirus-mediated adventitial ex vivo gene transfer to rabbit carotid artery using autologous vascular smooth muscle cells.

    PubMed

    Kankkonen, Hanna M; Turunen, Mikko P; Hiltunen, Mikko O; Lehtolainen, Pauliina; Koponen, Jonna; Leppänen, Pia; Turunen, Anna-Mari; Ylä-Herttuala, Seppo

    2004-03-01

    We have developed an ex vivo gene transfer technique to rabbit arterial wall using autologous smooth muscle cells (SMCs). SMCs were harvested from rabbit ear artery, transduced in vitro with vesicular stomatitis virus G-glycoprotein pseudotyped retrovirus or feline immunodeficiency virus (FIV) and returned to the adventitial surface of the carotid artery using a periadventitial silicone collar or collagen sheet placed around the artery. Beta-galactosidase (lacZ) and human apolipoprotein E3 (apoE3) cDNAs were used as transgenes. After retrovirus-mediated gene transfer of lacZ the selected cells implanted with high efficiency and expressed lacZ marker gene at a very high level 7 and 14 days after the operation. The level of lacZ expression decreased thereafter but was still detectable 12 weeks after the gene transfer, and was exclusively localized to the site of cell implantation inside the collar. Utilizing FIV vector expressing apoE3, low levels of apoE were measured from serum collected from a low-density lipoprotein receptor deficient Watanabe heritable hyperlipidemic rabbits 1 month after the gene transfer. The physiological effect of apoE expression was detected as transiently elevated serum cholesterol levels. The results indicate that the model can be used for high efficiency local gene transfer in arteries, e.g. during vascular surgery. The model is also valuable for studying expression, stability and safety of new gene transfer vectors and their expression products in vivo.

  19. Grass Roots Project Evaluation.

    ERIC Educational Resources Information Center

    Wick, John W.

    Some aspects of a grass roots evaluation training program are presented. The program consists of two elements: (1) a series of 11 slide/tape individualized self-paced units, and (2) a six-week summer program. Three points of view on this program are: (1) University graduate programs in quantitative areas are usually consumed by specialists; (2)…

  20. The Roots of Reading.

    ERIC Educational Resources Information Center

    Montoya, Colleen, Ed.

    2002-01-01

    This newsletter covers educational issues affecting schools in the Western Regional Educational Laboratory's 4-state region (Arizona, California, Nevada, and Utah) and nationwide. The following articles appear in the Volume 4, Number 1 issue: (1) "The Roots of Reading"; (2) "Breaking the Code: Reading Literacy in K-3"; (3)…

  1. Root hair sweet growth

    PubMed Central

    Velasquez, Silvia M; Iusem, Norberto D

    2011-01-01

    Root hairs are single cells specialized in the absorption of water and nutrients from the soil. Growing root hairs require intensive cell-wall changes to accommodate cell expansion at the apical end by a process known as tip or polarized growth. We have recently shown that cell wall glycoproteins such as extensins (EXTs) are essential components of the cell wall during polarized growth. Proline hydroxylation, an early posttranslational modification of cell wall EXTs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs. Biochemical inhibition or genetic disruption of specific P4Hs resulted in the blockage of polarized growth in root hairs. Our results demonstrate that correct hydroxylation and also further O-glycosylation on EXTs are essential for cell-wall self-assembly and, hence, root hair elongation. The changes that O-glycosylated cell-wall proteins like EXTs undergo during cell growth represent a starting point to unravel the entire biochemical pathway involved in plant development. PMID:21918376

  2. Great Plains Roots.

    ERIC Educational Resources Information Center

    Frey, Jennifer

    2001-01-01

    Sandy White Hawk, Sicangu Lakota, was adopted by white missionaries as an infant and suffered child abuse. After 33 years, she found her birth family and formed First Nations Orphans Association, which uses songs and ceremonies to help adoptees return to their roots. Until the 1970s, federal agencies and welfare organizations facilitated removal…

  3. The Roots Of Alienation

    ERIC Educational Resources Information Center

    Bronfenbrenner, Urie

    1973-01-01

    Alienation in our society takes several forms--withdrawal, hostility, or efforts to reform. The author traces the roots of alienation to our neglect of many of the needs of children, particularly their need for interaction with adults. Among his many recommendations are: modified work schedules to permit more time with children and systems for…

  4. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes.

    PubMed

    Tuberosa, Roberto; Sanguineti, Maria Corinna; Landi, Pierangelo; Giuliani, Marcella Michela; Salvi, Silvio; Conti, Sergio

    2002-01-01

    We investigated the overlap among quantitative trait loci (QTLs) in maize for seminal root traits measured in hydroponics with QTLs for grain yield under well-watered (GY-WW) and water-stressed (GY-WS) field conditions as well as for a drought tolerance index (DTI) computed as GY-WS/GY-WW. In hydroponics, 11, 7, 9, and 10 QTLs were identified for primary root length (R1L), primary root diameter (R1D), primary root weight (R1W), and for the weight of the adventitious seminal roots (R2W), respectively. In the field, 7, 8, and 9 QTLs were identified for GY-WW, GY-WS, and DTI, respectively. Despite the weak correlation of root traits in hydroponics with GY-WW, GY-WS, and DTI, a noticeable overlap between the corresponding QTLs was observed. QTLs for R2W most frequently and consistently overlapped with QTLs for GY-WW, GY-WS, and/or DTI. At four QTL regions, an increase in R2W was positively associated with GY-WW, GY-WS, and/or DTI. A 10 cM interval on chromosome 1 between PGAMCTA205 and php20644 showed the strongest effect on R1L, R1D, R2W, GY-WW, GY-WS, and DTI. These results indicate the feasibility of using hydroponics in maize to identify QTL regions controlling root traits at an early growth stage and also influencing GY in the field. A comparative analysis of the QTL regions herein identified with those described in previous studies investigating root traits in different maize populations revealed a number of QTLs in common.

  5. Silicon Promotes Adventitious Shoot Regeneration and Enhances Salinity Tolerance of Ajuga multiflora Bunge by Altering Activity of Antioxidant Enzyme

    PubMed Central

    Sivanesan, Iyyakkannu; Jeong, Byoung Ryong

    2014-01-01

    We investigated the effect of Si concentration on shoot regeneration and salinity tolerance of Ajuga multiflora. Addition of Si to the shoot induction medium significantly increased the frequency of shoot induction. The average number of shoots regenerated per explant decreased on the medium containing NaCl alone, while there was less decrease when the shoot induction medium was supplemented with both NaCl and Si. The shoot induction percentage increased linearly with increasing concentration of Si in the NaCl containing medium. Addition of Si to the shoot induction medium significantly increased SOD, POD, APX, and CAT activity in regenerated shoot buds as compared with the control. The inclusion of Si to the NaCl containing medium significantly increased the SOD activity in leaves and roots, while it decreased POD, APX, and CAT activity in both organs. Scanning electron microscopic analysis showed that there are no distinct differences in the structure of stomata between the control and Si-treated plants. However, NaCl treatment significantly affected the structure and number of stomata as compared to the control. Wavelength dispersive X-ray analysis confirmed the high Si deposition in trichomes of plants grown in the Si containing medium but not in plants grown in the medium without Si. PMID:24526904

  6. Advances in root reinforcement experiments

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Schwarz, Massimiliano; Niedda, Marcello

    2013-04-01

    Root reinforcement is considered in many situations an important effect of vegetation for slope stability. In the past 20 years many studies analyzed root reinforcement in laboratory and field experiments, as well as through modeling frameworks. Nearby the important contribution of roots to shear strength, roots are recognized to impart stabilization also through lateral (parallel to slope) redistribution of forces under tension. Lateral root reinforcement under tensile solicitations (such as in the upper part of a shallow landslide) was documented and discussed by some studies. The most common method adopted to measure lateral root reinforcement are pullout tests where roots (single or as bundle) are pulled out from a soil matrix. These conditions are indeed representative for the case where roots within the mass of a landslide slip out from the upper stable part of the slope (such in a tension crack). However, there is also the situation where roots anchored at the upper stable part of the slope slip out from the sliding soil mass. In this last case it is difficult to quantify root reinforcement and no study discussed this mechanism so far. The main objective of this study is to quantify the contribution of roots considering the two presented cases of lateral root reinforcement discussed above - roots slipping out from stable soil profile or sliding soil matrix from anchored roots-, and discuss the implication of the results for slope stability modeling. We carried out a series of laboratory experiments for both roots pullout and soil sliding mechanisms using a tilting box with a bundle of 15 roots. Both Douglas (Pseudotsuga menziesii) roots and soil were collected from the study area in Sardinia (Italy), and reconstructed in laboratory, filling the root and soil layer by layer up to 0.4 meter thickness. The results show that the ratio between pullout force and force transferred to the root during soil sliding range from 0.5 to 1. This results indicate that

  7. Angles of multivariable root loci

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.; Laub, A. J.

    1982-01-01

    A generalized eigenvalue problem is demonstrated to be useful for computing the multivariable root locus, particularly when obtaining the arrival angles to finite transmission zeros. The multivariable root loci are found for a linear, time-invariant output feedback problem. The problem is then employed to compute a closed-loop eigenstructure. The method of computing angles on the root locus is demonstrated, and the method is extended to a multivariable optimal root locus.

  8. Diagravitropism in corn roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  9. Springback in root gravitropism

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation.

  10. Aquaporins and root water relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  11. Nurturing the Roots of Literacy.

    ERIC Educational Resources Information Center

    Blass, Rosanne J.

    Reflecting the work of Yetta Goodman on child language development, this paper examines Goodman's five "roots of literacy" and offers suggestions on classroom techniques for nurturing these roots. The first half of the paper explains how Goodman identified the roots of literacy and describes each of them, including (1) print awareness in…

  12. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  13. Inhibition of fucosylation of cell wall components by 2-fluoro 2-deoxy-L-fucose induces defects in root cell elongation.

    PubMed

    Dumont, Marie; Lehner, Arnaud; Bardor, Muriel; Burel, Carole; Vauzeilles, Boris; Lerouxel, Olivier; Anderson, Charles T; Mollet, Jean-Claude; Lerouge, Patrice

    2015-12-01

    Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 μm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism.

  14. Design, fabrication and perivascular implantation of bioactive scaffolds engineered with human adventitial progenitor cells for stimulation of arteriogenesis in peripheral ischemia.

    PubMed

    Carrabba, M; De Maria, C; Oikawa, A; Reni, C; Rodriguez-Arabaolaza, I; Spencer, H; Slater, S; Avolio, E; Dang, Z; Spinetti, G; Madeddu, P; Vozzi, G

    2016-03-24

    Cell therapy represents a promising option for revascularization of ischemic tissues. However, injection of dispersed cells is not optimal to ensure precise homing into the recipient's vasculature. Implantation of cell-engineered scaffolds around the occluded artery may obviate these limitations. Here, we employed the synthetic polymer polycaprolactone for fabrication of 3D woodpile- or channel-shaped scaffolds by a computer-assisted writing system (pressure assisted micro-syringe square), followed by deposition of gelatin (GL) nanofibers by electro-spinning. Scaffolds were then cross-linked with natural (genipin, GP) or synthetic (3-glycidyloxy-propyl-trimethoxy-silane, GPTMS) agents to improve mechanical properties and durability in vivo. The composite scaffolds were next fixed by crown inserts in each well of a multi-well plate and seeded with adventitial progenitor cells (APCs, 3 cell lines in duplicate), which were isolated/expanded from human saphenous vein surgical leftovers. Cell density, alignment, proliferation and viability were assessed 1 week later. Data from in vitro assays showed channel-shaped/GPTMS-crosslinked scaffolds confer APCs with best alignment and survival/growth characteristics. Based on these results, channel-shaped/GPTMS-crosslinked scaffolds with or without APCs were implanted around the femoral artery of mice with unilateral limb ischemia. Perivascular implantation of scaffolds accelerated limb blood flow recovery, as assessed by laser Doppler or fluorescent microspheres, and increased arterial collaterals around the femoral artery and in limb muscles compared with non-implanted controls. Blood flow recovery and perivascular arteriogenesis were additionally incremented by APC-engineered scaffolds. In conclusion, perivascular application of human APC-engineered scaffolds may represent a novel option for targeted delivery of therapeutic cells in patients with critical limb ischemia.

  15. SIRT1 inhibits TNF-α-induced apoptosis of vascular adventitial fibroblasts partly through the deacetylation of FoxO1.

    PubMed

    Wang, Weirong; Yan, Chunfang; Zhang, Jiye; Lin, Rong; Lin, Qinqin; Yang, Lina; Ren, Feng; Zhang, Jianfeng; Ji, Meixi; Li, Yanxiang

    2013-06-01

    Sirtuin 1 (SIRT1), a NAD(+)-dependent class III histone deacetylase, participates in regulating cellular apoptosis, senescence and metabolism by deacetylating histones and multiple transcription factors. In this study, we aimed to determine the effect of SIRT1 on the apoptosis of vascular adventitial fibroblasts (VAFs) and related signaling pathways. SIRT1 was found in the nucleus of VAFs and translocated into the cytoplasm in response to tumor necrosis factor-α (TNF-α). Moreover, SIRT1 protein expression was reduced in VAFs stimulated with TNF-α. In addition, TNF-α increased the apoptosis of VAFs. Activation of SIRT1 by resveratrol (RSV) or overexpression of SIRT1 attenuated TNF-α-induced VAF apoptosis by decreasing the percentage of apoptotic cells and cleaved caspase-3 protein expression and increasing the Bcl-2/Bax ratio. In contrast, inhibition of SIRT1 by sirtinol/nicotinamide or knockdown of SIRT1 enhanced apoptosis of VAFs. On the other hand, knockdown of FoxO1 reduced TNF-α-induced VAF apoptosis. SIRT1 interacted with FoxO1 in VAFs by the co-immunoprecipitation assay. Further study showed that RSV or SIRT1 overexpression decreased acetylated-FoxO1 (Ac-FoxO1) protein expression in VAFs stimulated with TNF-α. Knockdown of SIRT1 resulted in an increase in Ac-FoxO1 protein expression. Taken together, these findings indicate that SIRT1 inhibits the apoptosis of VAFs, whereas FoxO1 promotes VAF apoptosis. Furthermore, the inhibitory effect of SIRT1 on VAF apoptosis is partly mediated by the deacetylation of FoxO1.

  16. Root aeration improves growth and nitrogen accumulation in rice seedlings under low nitrogen

    PubMed Central

    Zhu, Jingwen; Liang, Jing; Xu, Zhihui; Fan, Xiaorong; Zhou, Quansuo; Shen, Qirong; Xu, Guohua

    2015-01-01

    In wetland soils, changes in oxygen (O2) level in the rhizosphere are believed to influence the behaviour of nutrients and their usage by plants. However, the effect of aeration on nitrogen (N) acquisition under different N supply conditions remains largely unknown. In this study, the rice cultivars Yangdao 6 (YD6, with higher root aerenchyma abundance) and Nongken 57 (NK57, with lower root aerenchyma abundance) were used to evaluate the effects of aeration on rice growth and N accumulation. Our results showed that the number of adventitious roots and the root surface area increased significantly, and ethylene production and aerenchyma formation decreased in both cultivars after external aeration (EA). Five N treatments, including no N (−N), 0.125 mM NH4NO3 (LN), 1.25 mM Ca(NO3)2 (NO3-N), 1.25 mM (NH4)2SO4 (NH4-N) and 1.25 mM NH4NO3 (N/N), were applied to YD6 and NK57 for 2 days under internal aeration or EA conditions. External aeration increased the root biomass in both cultivars and the shoot biomass in NK57 by 18–50 %. The total N concentrations in roots of YD6 grown under −N and LN and of NK57 grown under NO3-N were increased by EA. Expression of OsPAD4, one of four putative genes regulating aerenchyma formation, showed a similar pattern alongside changes in the ethylene level in the EA-treated rice irrespective of the N treatments. Furthermore, expression of the high-affinity nitrate transporter gene OsNRT2.1 was increased by EA under −N, LN and NO3-N conditions. Our data provide evidence of an interaction between O2 and the supply of N in ethylene production, aerenchyma formation and N nutrition through modification of the expression of OsPAD4 and OsNRT2.1. PMID:26578743

  17. Philosophical Roots of Cosmology

    NASA Astrophysics Data System (ADS)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  18. Rooting an Android Device

    DTIC Science & Technology

    2015-09-01

    this feature on an Android device, go to “Settings” and then “About Phone ” or “About tablet”. Find “Build Number”, then tab on the “Build Number” 7...flag, which should not affect phone operation. Ensure that the phone or tablet is on and active while the rooting process is underway, and monitor...the Android device and host computer for progress of the script to determine whether the installation succeeded or failed. Do not unplug the phone

  19. The Roots of Beowulf

    NASA Technical Reports Server (NTRS)

    Fischer, James R.

    2014-01-01

    The first Beowulf Linux commodity cluster was constructed at NASA's Goddard Space Flight Center in 1994 and its origins are a part of the folklore of high-end computing. In fact, the conditions within Goddard that brought the idea into being were shaped by rich historical roots, strategic pressures brought on by the ramp up of the Federal High-Performance Computing and Communications Program, growth of the open software movement, microprocessor performance trends, and the vision of key technologists. This multifaceted story is told here for the first time from the point of view of NASA project management.

  20. Underground riparian wood: Buried stem and coarse root structures of Black Poplar (Populus nigra L.)

    NASA Astrophysics Data System (ADS)

    Holloway, James V.; Rillig, Matthias C.; Gurnell, Angela M.

    2017-02-01

    Despite the potential importance of tree species in influencing the processes of wood recruitment, transport, retention, and decay that control river wood budgets, focus has been relatively limited on this theme within fluvial wood research. Furthermore, one of the least investigated topics is the belowground living wood component of riparian trees. This paper presents observations of the morphology and age of buried stem and coarse root structures of eight Populus nigra individuals located in the riparian woodland of two sites on the middle to lower Tagliamento River, Italy. This species was selected because of its wide distribution along European rivers and its frequent dominance of riparian woodland. Each tree was excavated by hand to expose a minimum of half of the root system with complete exposure of the main axis. Smaller roots were then removed and larger protruding roots cut back to permit access to the main axis. The excavated structures were photographed from multiple angles for photogrammetric modelling; the structure and character of the exposed sediments around the tree's main axis were recorded; and wood samples were taken from the main aboveground stem(s), sections of the main buried axis, and major roots for dendrochronological analysis. Results from these field observations and laboratory dating of the wood samples were combined to describe the belowground morphology of each tree and to draw inferences concerning the impact of fluvial disturbances. Common features of these excavated structures included: (i) rooting depths to below the bar surface where the original tree established, with many young roots also existing at depth; (ii) translocation of the main buried axis in a downstream direction; (iii) a main buried axis comprised mainly of stems that have become buried and then generated new shoots, including multistem patches, and adventitious roots; (iv) the presence of steps and bends in the main buried axis associated with the generation of

  1. Matching roots to their environment

    PubMed Central

    White, Philip J.; George, Timothy S.; Gregory, Peter J.; Bengough, A. Glyn; Hallett, Paul D.; McKenzie, Blair M.

    2013-01-01

    Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers. Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future. PMID:23821619

  2. Morphometric analysis of root shape.

    PubMed

    Grabov, A; Ashley, M K; Rigas, S; Hatzopoulos, P; Dolan, L; Vicente-Agullo, F

    2005-02-01

    Alterations in the root shape in plant mutants indicate defects in hormonal signalling, transport and cytoskeleton function. To quantify the root shape, we introduced novel parameters designated vertical growth index (VGI) and horizontal growth index (HGI). VGI was defined as a ratio between the root tip ordinate and the root length. HGI was the ratio between the root tip abscissa and the root length. To assess the applicability of VGI and HGI for quantification of root shape, we analysed root development in agravitropic Arabidopsis mutants. Statistical analysis indicated that VGI is a sensitive morphometric parameter enabling detection of weak gravitropic defects. VGI dynamics were qualitatively similar in auxin-transport mutants aux1, pin2 and trh1, but different in the auxin-signalling mutant axr2. Analysis of VGI and HGI of roots grown on tilted plates showed that the trh1 mutation affected downstream cellular responses rather than perception of the gravitropic stimulus. All these tests indicate that the VGI and HGI analysis is a versatile and sensitive method for the study of root morphology.

  3. Geophysical Imaging of Root Architecture and Root-soil Interaction

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Dafflon, B.; Hubbard, S. S.

    2015-12-01

    Roots play a critical role in controlling water and nutrient uptake, soil biogeochemical processes, as well as the physical anchorage for plants. While important processes, such as root hydraulic redistribution for optimal growth and survival have been recognized, representation of roots in climate models, e.g. its carbon storage, carbon resilience, root biomass, and role in regulating water and carbon fluxes across the rhizosphere and atmosphere interface is still challenging. Such a challenge is exacerbated because of the large variations of root architecture and function across species and locations due to both genetic and environmental controls and the lack of methods for quantifying root mass, distribution, dynamics and interaction with soils at field scales. The scale, complexity and the dynamic nature of plant roots call for minimally invasive methods capable of providing quantitative estimation of root architecture, dynamics over time and interactions with the soils. We present a study on root architecture and root-soil interactions using geophysical methods. Parameters and processes of interests include (1) moisture dynamics around root zone and its interaction with plant transpiration and environmental controls and (2) estimation of root structure and properties based on geophysical signals. Both pot and field scale studies were conducted. The pot scale experiments were conducted under controlled conditions and were monitored with cross-well electrical resistivity tomography (ERT), TDR moisture sensors and temperature probes. Pots with and without a tree were compared and the moisture conditions were controlled via a self regulated pumping system. Geophysical monitoring revealed interactions between roots and soils under dynamic soil moisture conditions and the role of roots in regulating the response of the soil system to changes of environmental conditions, e.g. drought and precipitation events. Field scale studies were conducted on natural trees using

  4. Perennial roots to immortality.

    PubMed

    Munné-Bosch, Sergi

    2014-10-01

    Maximum lifespan greatly varies among species, and it is not strictly determined; it can change with species evolution. Clonal growth is a major factor governing maximum lifespan. In the plant kingdom, the maximum lifespans described for clonal and nonclonal plants vary by an order of magnitude, with 43,600 and 5,062 years for Lomatia tasmanica and Pinus longaeva, respectively. Nonclonal perennial plants (those plants exclusively using sexual reproduction) also present a huge diversity in maximum lifespans (from a few to thousands of years) and even more interestingly, contrasting differences in aging patterns. Some plants show a clear physiological deterioration with aging, whereas others do not. Indeed, some plants can even improve their physiological performance as they age (a phenomenon called negative senescence). This diversity in aging patterns responds to species-specific life history traits and mechanisms evolved by each species to adapt to its habitat. Particularities of roots in perennial plants, such as meristem indeterminacy, modular growth, stress resistance, and patterns of senescence, are crucial in establishing perenniality and understanding adaptation of perennial plants to their habitats. Here, the key role of roots for perennial plant longevity will be discussed, taking into account current knowledge and highlighting additional aspects that still require investigation.

  5. cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation1[OPEN

    PubMed Central

    Steenackers, Ward; Corneillie, Sander; Araújo, Pedro; Viaene, Tom; Nowack, Moritz K.; Blakeslee, Joshua J.; Novák, Ondřej; Zažímalová, Eva

    2017-01-01

    Auxin steers numerous physiological processes in plants, making the tight control of its endogenous levels and spatiotemporal distribution a necessity. This regulation is achieved by different mechanisms, including auxin biosynthesis, metabolic conversions, degradation, and transport. Here, we introduce cis-cinnamic acid (c-CA) as a novel and unique addition to a small group of endogenous molecules affecting in planta auxin concentrations. c-CA is the photo-isomerization product of the phenylpropanoid pathway intermediate trans-CA (t-CA). When grown on c-CA-containing medium, an evolutionary diverse set of plant species were shown to exhibit phenotypes characteristic for high auxin levels, including inhibition of primary root growth, induction of root hairs, and promotion of adventitious and lateral rooting. By molecular docking and receptor binding assays, we showed that c-CA itself is neither an auxin nor an anti-auxin, and auxin profiling data revealed that c-CA does not significantly interfere with auxin biosynthesis. Single cell-based auxin accumulation assays showed that c-CA, and not t-CA, is a potent inhibitor of auxin efflux. Auxin signaling reporters detected changes in spatiotemporal distribution of the auxin response along the root of c-CA-treated plants, and long-distance auxin transport assays showed no inhibition of rootward auxin transport. Overall, these results suggest that the phenotypes of c-CA-treated plants are the consequence of a local change in auxin accumulation, induced by the inhibition of auxin efflux. This work reveals a novel mechanism how plants may regulate auxin levels and adds a novel, naturally occurring molecule to the chemical toolbox for the studies of auxin homeostasis. PMID:27837086

  6. A Split-Root Technique for Measuring Root Water Potential

    PubMed Central

    Adeoye, Kingsley B.; Rawlins, Stephen L.

    1981-01-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem. In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium. Images PMID:16661886

  7. Maximum-rank root subsystems of hyperbolic root systems

    SciTech Connect

    Tumarkin, P V

    2004-02-28

    A Kac-Moody algebra is said to be hyperbolic if it corresponds to a generalized Cartan matrix of hyperbolic type. Root subsystems of root systems of algebras of this kind are studied. The main result of the paper is the classification of the maximum-rank regular hyperbolic subalgebras of hyperbolic Kac-Moody algebras.

  8. The roots of predictivism.

    PubMed

    Barnes, Eric Christian

    2014-03-01

    In The Paradox of Predictivism (2008, Cambridge University Press) I tried to demonstrate that there is an intimate relationship between predictivism (the thesis that novel predictions sometimes carry more weight than accommodations) and epistemic pluralism (the thesis that one important form of evidence in science is the judgments of other scientists). Here I respond to various published criticisms of some of the key points from Paradox from David Harker, Jarret Leplin, and Clark Glymour. Foci include my account of predictive novelty (endorsement novelty), the claim that predictivism has two roots, the prediction per se and predictive success, and my account of why Mendeleev's predictions carried special weight in confirming the Periodic Law of the Elements.

  9. Lumbosacral nerve root avulsion.

    PubMed

    Chin, C H; Chew, K C

    1997-01-01

    Lumbosacral nerve root avulsion is a rare clinical entity. Since the first description in 1955, only 35 cases have been reported. It is often associated with pelvic fractures and may be missed in the initial clinical examination as these patients usually present with multiple injuries. We present three such cases with clinical and radiological findings. These patients were involved in road traffic accidents. Two had fractures of the sacroiliac joint with diastasis of the symphysis pubis (Tile type C 1.2) and one had fractures of the public rami (Tile type B 2.1). All three had various degrees of sensory and motor deficit of the lower limbs. Lumbar myelogram shows characteristic pseudomeningoceles in the affected lumboscral region. Magnetic resonance (MR) imaging provides an additional non-invasive modality to diagnose this condition.

  10. New roots for agriculture: exploiting the root phenome.

    PubMed

    Lynch, Jonathan P; Brown, Kathleen M

    2012-06-05

    Recent advances in root biology are making it possible to genetically design root systems with enhanced soil exploration and resource capture. These cultivars would have substantial value for improving food security in developing nations, where yields are limited by drought and low soil fertility, and would enhance the sustainability of intensive agriculture. Many of the phenes controlling soil resource capture are related to root architecture. We propose that a better understanding of the root phenome is needed to effectively translate genetic advances into improved crop cultivars. Elementary, unique root phenes need to be identified. We need to understand the 'fitness landscape' for these phenes: how they affect crop performance in an array of environments and phenotypes. Finally, we need to develop methods to measure phene expression rapidly and economically without artefacts. These challenges, especially mapping the fitness landscape, are non-trivial, and may warrant new research and training modalities.

  11. New roots for agriculture: exploiting the root phenome

    PubMed Central

    Lynch, Jonathan P.; Brown, Kathleen M.

    2012-01-01

    Recent advances in root biology are making it possible to genetically design root systems with enhanced soil exploration and resource capture. These cultivars would have substantial value for improving food security in developing nations, where yields are limited by drought and low soil fertility, and would enhance the sustainability of intensive agriculture. Many of the phenes controlling soil resource capture are related to root architecture. We propose that a better understanding of the root phenome is needed to effectively translate genetic advances into improved crop cultivars. Elementary, unique root phenes need to be identified. We need to understand the ‘fitness landscape’ for these phenes: how they affect crop performance in an array of environments and phenotypes. Finally, we need to develop methods to measure phene expression rapidly and economically without artefacts. These challenges, especially mapping the fitness landscape, are non-trivial, and may warrant new research and training modalities. PMID:22527403

  12. Osmolarity and root canal antiseptics.

    PubMed

    Rossi-Fedele, G; Guastalli, A R

    2014-04-01

    Antiseptics used in endodontics for disinfection purposes include root canal dressings and irrigants. Osmotic shock is known to cause the alteration of microbial cell viability and might have a role in the mechanism of action of root canal antiseptics. The aim of this review was to determine the role of osmolarity on the performance of antiseptics in root canal treatment. A literature search using the Medline electronic database was conducted up to 30 May 2013 using the following search terms and combinations: 'osmolarity AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmolality AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmotic AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmosis AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; sodium chloride AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm'. Publications were included if the effects of osmolarity on the clinical performance of antiseptics in root canal treatment were stated, if preparations with different osmolarities values were compared and if they were published in English. A hand search of articles published online, 'in press' and 'early view', and in the reference list of the included papers was carried out following the same criteria. A total of 3274 publications were identified using the database, and three were included in the review. The evidence available in endodontics suggests a possible role for hyperosmotic root canal medicaments as disinfectants, and that there is no influence of osmolarity on the tissue dissolution capacity of sodium hypochlorite. There are insufficient data to obtain a sound conclusion regarding the role of hypo-osmosis in root canal disinfection, or osmosis in any further desirable

  13. Compensatory Root Water Uptake of Overlapping Root Systems

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  14. Gut and Root Microbiota Commonalities

    PubMed Central

    Ramírez-Puebla, Shamayim T.; Servín-Garcidueñas, Luis E.; Jiménez-Marín, Berenice; Bolaños, Luis M.; Rosenblueth, Mónica; Martínez, Julio; Rogel, Marco Antonio; Ormeño-Orrillo, Ernesto

    2013-01-01

    Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends. PMID:23104406

  15. The root as a drill

    PubMed Central

    Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju; Ivanchenko, Maria; Sharma, Rameshwar

    2012-01-01

    Plant roots forage the soil for water and nutrients and overcome the soil’s physical compactness. Roots are endowed with a mechanism that allows them to penetrate and grow in dense media such as soil. However, the molecular mechanisms underlying this process are still poorly understood. The nature of the media in which roots grow adds to the difficulty to in situ analyze the mechanisms underlying root penetration. Inhibition of ethylene perception by application of 1-methyl cyclopropene (1-MCP) to tomato seedlings nearly abolished the root penetration in Soilrite. The reversal of this process by auxin indicated operation of an auxin-ethylene signaling pathway in the regulation of root penetration. The tomato pct1–2 mutant that exhibits an enhanced polar transport of auxin required higher doses of 1-MCP to inhibit root penetration, indicating a pivotal role of auxin transport in this process. In this update we provide a brief review of our current understanding of molecular processes underlying root penetration in higher plants. PMID:22415043

  16. Light-Sensing in Roots

    PubMed Central

    Rabenold, Jessica J; Liscum, Emmanuel

    2007-01-01

    Light gradients in the soil have largely been overlooked in understanding plant responses to the environment. However, roots contain photoreceptors that may receive ambient light through the soil or piped light through the vascular cylinder. In recent experiments we demonstrated linkages between phototropin-1 photoreceptor production, root growth efficiency, and drought tolerance, suggesting that root plasticity in response to light signals contributes to the ecological niche of A. thaliana. However, the availability of light cues in natural soil environments is poorly understood, raising questions about the relevance of light-mediated root growth for fitness in nature. Additionally, photoreceptor expression is characterized by pleiotropy so unique functions cannot be clearly ascribed to root vs. shoot sensory mechanisms. These considerations show that challenges exist for resolving the contribution of light-sensing by roots to plant adaptation. We suggest that blue-light sensing in roots of A. thaliana provides a model system for addressing these challenges. By calibrating blue light gradients in soils of diverse A. thaliana habitats and comparing fitness of phot1 mutant and wild-type controls when grown in presence or absence of soil light cues, it should be possible to elucidate the ecological significance of light-mediated plasticity in roots. PMID:19704750

  17. Theon's Ladder for Any Root

    ERIC Educational Resources Information Center

    Osler, Thomas J.; Wright, Marcus; Orchard, Michael

    2005-01-01

    Theon's ladder is an ancient algorithm for calculating rational approximations for the square root of 2. It features two columns of integers (called a ladder), in which the ratio of the two numbers in each row is an approximation to the square root of 2. It is remarkable for its simplicity. This algorithm can easily be generalized to find rational…

  18. Project Work on Plant Roots.

    ERIC Educational Resources Information Center

    Devonald, V. G.

    1986-01-01

    Methods of investigating plant root growth developed for research purposes can be adopted for student use. Investigations of the effect of water table level and of ethylene concentration are described, and techniques of measuring root growth are explained. (Author/ML)

  19. Characteristic and Expression Analysis of a Metallothionein Gene, OsMT2b, Down-Regulated by Cytokinin Suggests Functions in Root Development and Seed Embryo Germination of Rice1[OA

    PubMed Central

    Yuan, Jing; Chen, Dan; Ren, Yujun; Zhang, Xuelian; Zhao, Jie

    2008-01-01

    Metallothioneins (MTs) are low molecular mass and cysteine-rich metal-binding proteins known to be mainly involved in maintaining metal homeostasis and stress responses. But, their functions in higher plant development are scarcely studied. Here, we characterized rice (Oryza sativa) METALLOTHIONEIN2b (OsMT2b) molecularly and found that its expression was down-regulated by cytokinins. OsMT2b was preferentially expressed in rice immature panicles, scutellum of germinating embryos, and primordium of lateral roots. In contrast with wild-type plants, OsMT2b-RNA interference (RNAi) transgenic plants had serious handicap in plant growth and root formation, whereas OsMT2b-overexpressing transformants were dwarfed and presented more adventitious roots and big lateral roots. The increased cytokinin levels in RNAi plants and decreased cytokinin levels in overexpressing plants were confirmed by high-performance liquid chromatography quantitative analysis in the roots of wild-type and transgenic plants. In RNAi plants, localization of isopentenyladenosine, a kind of endogenous cytokinin, in roots and germinating embryos expanded to the whole tissues, whereas in overexpressing plants, the isopentenyladenosine signals were very faint in the vascular tissues of roots and scutellum cells of germinating embryos. In vitro culture of embryos could largely resume the reduced germination frequency in RNAi plants but had no obvious change in overexpressing plants. Taken together, these results indicate a possible feedback regulation mechanism of OsMT2b to the level of endogenous cytokinins that is involved in root development and seed embryo germination of rice. PMID:18258694

  20. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    PubMed

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  1. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  2. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    NASA Astrophysics Data System (ADS)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  3. IAA transport in corn roots includes the root cap

    SciTech Connect

    Hasenstein, K.H. )

    1989-04-01

    In earlier reports we concluded that auxin is the growth regulator that controls gravicurvature in roots and that the redistribution of auxin occurs within the root cap. Since other reports did not detect auxin in the root cap, we attempted to confirm the IAA does move through the cap. Agar blocks containing {sup 3}H-IAA were applied to the cut surface of 5 mm long apical segments of primary roots of corn (mo17xB73). After 30 to 120 min radioactivity (RA) of the cap and root tissue was determined. While segments suspended in water-saturated air accumulated very little RA in the cap, application of 0.5 {mu}1 of dist. water to the cap (=controls) increased RA of the cap dramatically. Application to the cap of 0.5 {mu}1 of sorbitol or the Ca{sup 2+} chelator EGTA reduced cap RA to 46% and 70% respectively compared to water, without affecting uptake. Control root segments gravireacted faster than non-treated or osmoticum or EGTA treated segments. The data indicate that both the degree of hydration and calcium control the amount of auxin moving through the cap.

  4. Underground tuning: quantitative regulation of root growth.

    PubMed

    Satbhai, Santosh B; Ristova, Daniela; Busch, Wolfgang

    2015-02-01

    Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation.

  5. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength.

    PubMed

    Haling, Rebecca E; Brown, Lawrie K; Bengough, A Glyn; Young, Iain M; Hallett, Paul D; White, Philip J; George, Timothy S

    2013-09-01

    Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems.

  6. Power and Roots by Recursion.

    ERIC Educational Resources Information Center

    Aieta, Joseph F.

    1987-01-01

    This article illustrates how questions from elementary finance can serve as motivation for studying high order powers, roots, and exponential functions using Logo procedures. A second discussion addresses a relatively unknown algorithm for the trigonometric exponential and hyperbolic functions. (PK)

  7. Swarming behavior in plant roots.

    PubMed

    Ciszak, Marzena; Comparini, Diego; Mazzolai, Barbara; Baluska, Frantisek; Arecchi, F Tito; Vicsek, Tamás; Mancuso, Stefano

    2012-01-01

    Interactions between individuals that are guided by simple rules can generate swarming behavior. Swarming behavior has been observed in many groups of organisms, including humans, and recent research has revealed that plants also demonstrate social behavior based on mutual interaction with other individuals. However, this behavior has not previously been analyzed in the context of swarming. Here, we show that roots can be influenced by their neighbors to induce a tendency to align the directions of their growth. In the apparently noisy patterns formed by growing roots, episodic alignments are observed as the roots grow close to each other. These events are incompatible with the statistics of purely random growth. We present experimental results and a theoretical model that describes the growth of maize roots in terms of swarming.

  8. Crenarchaeota colonize terrestrial plant roots.

    PubMed

    Simon, H M; Dodsworth, J A; Goodman, R M

    2000-10-01

    Microorganisms that colonize plant roots are recruited from, and in turn contribute substantially to, the vast and virtually uncharacterized phylogenetic diversity of soil microbiota. The diverse, but poorly understood, microorganisms that colonize plant roots mediate mineral transformations and nutrient cycles that are central to biosphere functioning. Here, we report the results of epifluorescence microscopy and culture-independent recovery of small subunit (SSU) ribosomal RNA (rRNA) gene sequences showing that members of a previously reported clade of soil Crenarchaeota colonize both young and senescent plant roots at an unexpectedly high frequency, and are particularly abundant on the latter. Our results indicate that non-thermophilic members of the Archaea inhabit an important terrestrial niche on earth and direct attention to the need for studies that will determine their possible roles in mediating root biology.

  9. Effect of parameter choice in root water uptake models - the arrangement of root hydraulic properties within the root architecture affects dynamics and efficiency of root water uptake

    NASA Astrophysics Data System (ADS)

    Bechmann, M.; Schneider, C.; Carminati, A.; Vetterlein, D.; Attinger, S.; Hildebrandt, A.

    2014-10-01

    Detailed three-dimensional models of root water uptake have become increasingly popular for investigating the process of root water uptake. However, they suffer from a lack of information on important parameters, particularly on the spatial distribution of root axial and radial conductivities, which vary greatly along a root system. In this paper we explore how the arrangement of those root hydraulic properties and branching within the root system affects modelled uptake dynamics, xylem water potential and the efficiency of root water uptake. We first apply a simple model to illustrate the mechanisms at the scale of single roots. By using two efficiency indices based on (i) the collar xylem potential ("effort") and (ii) the integral amount of unstressed root water uptake ("water yield"), we show that an optimal root length emerges, depending on the ratio between roots axial and radial conductivity. Young roots with high capacity for radial uptake are only efficient when they are short. Branching, in combination with mature transport roots, enables soil exploration and substantially increases active young root length at low collar potentials. Second, we investigate how this shapes uptake dynamics at the plant scale using a comprehensive three-dimensional root water uptake model. Plant-scale dynamics, such as the average uptake depth of entire root systems, were only minimally influenced by the hydraulic parameterization. However, other factors such as hydraulic redistribution, collar potential, internal redistribution patterns and instantaneous uptake depth depended strongly on the arrangement on the arrangement of root hydraulic properties. Root systems were most efficient when assembled of different root types, allowing for separation of root function in uptake (numerous short apical young roots) and transport (longer mature roots). Modelling results became similar when this heterogeneity was accounted for to some degree (i.e. if the root systems contained between

  10. How Can Science Education Foster Students' Rooting?

    ERIC Educational Resources Information Center

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  11. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  12. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex

    PubMed Central

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5–7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  13. Magnetophoretic Induction of Root Curvature

    NASA Technical Reports Server (NTRS)

    Hasenstein, Karl H.

    1997-01-01

    The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.

  14. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex.

    PubMed

    Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis

    2013-03-01

    Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity.

  15. Root branching: mechanisms, robustness, and plasticity.

    PubMed

    Dastidar, Mouli Ghosh; Jouannet, Virginie; Maizel, Alexis

    2012-01-01

    Plants are sessile organisms that must efficiently exploit their habitat for water and nutrients. The degree of root branching impacts the efficiency of water uptake, acquisition of nutrients, and anchorage. The root system of plants is a dynamic structure whose architecture is determined by modulation of primary root growth and root branching. This plasticity relies on the continuous integration of environmental inputs and endogenous developmental programs controlling root branching. This review focuses on the cellular and molecular mechanisms involved in the regulation of lateral root distribution, initiation, and organogenesis with the main focus on the root system of Arabidopsis thaliana. We also examine the mechanisms linking environmental changes to the developmental pathways controlling root branching. Recent progress that emphasizes the parallels to the formation of root branches in other species is discussed.

  16. New theories of root growth modelling

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way

  17. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  18. Four cuspal maxillary second premolar with single root and three root canals: Case report

    PubMed Central

    Bansal, Parul; Nikhil, Vineeta; Goyal, Ayush; Singh, Ritu

    2016-01-01

    Traditional configuration of maxillary second premolars has been described to have two cusps, one root and one or two root canals. The endodontic literature reports considerable anatomic aberrations in the root canal morphology of maxillary second premolar but the literature available on the variation in cuspal anatomy and its relationship to the root canal anatomy is sparse. The purpose of this clinical report was to describe the root and root canal configuration of a maxillary second premolar with four cusps. PMID:27563190

  19. Disease notes - Bacterial root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  20. Cutting the Roots of Violence.

    ERIC Educational Resources Information Center

    Koziey, Paul W.

    1996-01-01

    Violence is rooted in obedience to authority and in comparisons--foundations of our institutions of parenting and schooling. Obedience brings reward and punishment, comparison perpetuates a cycle of competition and conflict. Television violence is especially harmful because children easily understand visual images. The Reality Research approach to…

  1. Excising the Root from STEM

    ERIC Educational Resources Information Center

    Lock, Roger

    2009-01-01

    There are a number of well-intentioned STEM initiatives, some designed to improve the recruitment and retention of science teachers. Sometimes it appears that the initiators are remote from direct contact with the "grass roots" issues that feed the "stem" on which the blossoms of young enthusiastic recruits to the science teaching profession are…

  2. Rhizoctonia root rot of lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot is a soilborne disease of lentil caused by the fungal pathogen Rhizoctonia solani, and is favored by cool (11-19 C or 52 - 66 F) and wet soil conditions. The disease starts as reddish or dark brown lesions on lentil plants near the soil line, and develops into sunken lesions an...

  3. Roots: An Asian American Reader.

    ERIC Educational Resources Information Center

    Tachiki, Amy, Ed.; And Others

    A documentary collection of the experiences of Asian Americans from a multitude of perspectives, including a scholarly focus and also containing contemporary expressions, comprises "Roots: An Asian American Reader." The volume is said to be designed to meet the needs of Asian Americans by providing a compilation of materials in readily…

  4. Dry root rot of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry root rot of chickpea is a serious disease under dry hot summer conditions, particularly in the semi-arid tropics of Ethiopia, and in central and southern India. It usually occurs at reproductive stages of the plant. Symptoms include drooping of petioles and leaflets of the tips, but not the low...

  5. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    PubMed

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  6. Strigolactones are regulators of root development.

    PubMed

    Koltai, Hinanit

    2011-05-01

    Strigolactones (SLs) have been defined as a new group of plant hormones or their derivatives that suppress lateral shoot branching. Recently, a new role for SLs was discovered, in the regulation of root development. Strigolactones were shown to alter root architecture and affect root-hair elongation. Here, I review the recent findings regarding the effects of SLs on root growth and development, and their association with changes in auxin flux. The networking between SLs and other plant hormones that regulate root development is also presented. Strigolactone regulation of plant development suggests that they are coordinators of shoot and root development and mediators of plant responses to environmental conditions.

  7. Investigation of VEGGIE Root Mat

    NASA Technical Reports Server (NTRS)

    Subbiah, Arun M.

    2013-01-01

    VEGGIE is a plant growth facility that utilizes the phenomenon of capillary action as its primary watering system. A cloth made of Meta Aramid fiber, known as Nomex is used to wick water up from a reservoir to the bottom of the plants roots. This root mat system is intended to be low maintenance with no moving parts and requires minimal crew interface time. Unfortunately, the water wicking rates are inconsistent throughout the plant life cycle, thus causing plants to die. Over-wicking of water occurs toward the beginning of the cycle, while under-wicking occurs toward the middle. This inconsistency of wicking has become a major issue, drastically inhibiting plant growth. The primary objective is to determine the root cause of the inconsistent wicking through experimental testing. Suspect causes for the capillary water column to break include: a vacuum effect due to a negative pressure gradient in the water reservoir, contamination of material due to minerals in water and back wash from plant fertilizer, induced air bubbles while using syringe refill method, and material limitations of Nomex's ability to absorb and retain water. Experimental testing will be conducted to systematically determine the cause of under and over-wicking. Pressure gages will be used to determine pressure drop during the course of the plant life cycle and during the water refill process. A debubbler device will be connected to a root mat in order to equalize pressure inside the reservoir. Moisture and evaporation tests will simultaneously be implemented to observe moisture content and wicking rates over the course of a plant cycle. Water retention tests will be performed using strips of Nomex to determine materials wicking rates, porosity, and absorptivity. Through these experimental tests, we will have a better understanding of material properties of Nomex, as well as determine the root cause of water column breakage. With consistent test results, a forward plan can be achieved to resolve

  8. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  9. Image analysis from root system pictures

    NASA Astrophysics Data System (ADS)

    Casaroli, D.; Jong van Lier, Q.; Metselaar, K.

    2009-04-01

    Root research has been hampered by a lack of good methods and by the amount of time involved in making measurements. In general the studies from root system are made with either monolith or minirhizotron method which is used as a quantitative tool but requires comparison with conventional destructive methods. This work aimed to analyze roots systems images, obtained from a root atlas book, to different crops in order to find the root length and root length density and correlate them with the literature. Five crops images from Zea mays, Secale cereale, Triticum aestivum, Medicago sativa and Panicum miliaceum were divided in horizontal and vertical layers. Root length distribution was analyzed for horizontal as well as vertical layers. In order to obtain the root length density, a cuboidal volume was supposed to correspond to each part of the image. The results from regression analyses showed root length distributions according to horizontal or vertical layers. It was possible to find the root length distribution for single horizontal layers as a function of vertical layers, and also for single vertical layers as a function of horizontal layers. Regression analysis showed good fits when the root length distributions were grouped in horizontal layers according to the distance from the root center. When root length distributions were grouped according to soil horizons the fits worsened. The resulting root length density estimates were lower than those commonly found in literature, possibly due to (1) the fact that the crop images resulted from single plant situations, while the analyzed field experiments had more than one plant; (2) root overlapping may occur in the field; (3) root experiments, both in the field and image analyses as performed here, are subject to sampling errors; (4) the (hand drawn) images used in this study may have omitted some of the smallest roots.

  10. Nicotiana Roots Recruit Rare Rhizosphere Taxa as Major Root-Inhabiting Microbes.

    PubMed

    Saleem, Muhammad; Law, Audrey D; Moe, Luke A

    2016-02-01

    Root-associated microbes have a profound impact on plant health, yet little is known about the distribution of root-associated microbes among different root morphologies or between rhizosphere and root environments. We explore these issues here with two commercial varieties of burley tobacco (Nicotiana tabacum) using 16S rRNA gene amplicon sequencing from rhizosphere soil, as well as from primary, secondary, and fine roots. While rhizosphere soils exhibited a fairly rich and even distribution, root samples were dominated by Proteobacteria. A comparison of abundant operational taxonomic units (OTUs) between rhizosphere and root samples indicated that Nicotiana roots select for rare taxa (predominantly Proteobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Acidobacteria) from their corresponding rhizosphere environments. The majority of root-inhabiting OTUs (~80 %) exhibited habitat generalism across the different root morphological habitats, although habitat specialists were noted. These results suggest a specific process whereby roots select rare taxa from a larger community.

  11. Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of Chamaecyparis obtusa.

    PubMed

    Hishi, Takuo; Takeda, Hiroshi

    2005-08-01

    To understand the physiology of fine-root functions in relation to soil organic sources, the heterogeneity of individual root functions within a fine-root system requires investigation. Here the heterogeneous dynamics within fine-root systems are reported. The fine roots of Chamaecyparis obtusa were sampled using a sequential ingrowth core method over 2 yr. After color categorization, roots were classified into protoxylem groups from anatomical observations. The root lengths with diarch and triarch groups fluctuated seasonally, whereas the tetrarch root length increased. The percentage of secondary root mortality to total mortality increased with increasing amounts of protoxylem. The carbon : nitrogen ratio indicated that the decomposability of primary roots might be greater than that of secondary roots. The position of diarch roots was mostly apical, whereas tetrarch roots tended to be distributed in basal positions within the root architecture. We demonstrate the heterogeneous dynamics within a fine-root system of C. obtusa. Fine-root heterogeneity should affect soil C dynamics. This heterogeneity is determined by the branching position within the root architecture.

  12. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).

    PubMed

    Valenzuela-Estrada, Luis R; Vera-Caraballo, Vivianette; Ruth, Leah E; Eissenstat, David M

    2008-12-01

    Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.

  13. Brassinosteroids Regulate Root Growth, Development, and Symbiosis.

    PubMed

    Wei, Zhuoyun; Li, Jia

    2016-01-04

    Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR deficient or signaling mutants show significantly shortened root phenotypes. However, for a long time, it was thought that these phenotypes were solely caused by reduced cell elongation in the mutant roots. Functions of BRs in regulating root development have been largely neglected. Nonetheless, recent detailed analyses, revealed that BRs are not only involved in root cell elongation but are also involved in many aspects of root development, such as maintenance of meristem size, root hair formation, lateral root initiation, gravitropic response, mycorrhiza formation, and nodulation in legume species. In this review, current findings on the functions of BRs in mediating root growth, development, and symbiosis are discussed.

  14. Environmental Control of Root System Biology.

    PubMed

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Dinneny, José R

    2016-04-29

    The plant root system traverses one of the most complex environments on earth. Understanding how roots support plant life on land requires knowing how soil properties affect the availability of nutrients and water and how roots manipulate the soil environment to optimize acquisition of these resources. Imaging of roots in soil allows the integrated analysis and modeling of environmental interactions occurring at micro- to macroscales. Advances in phenotyping of root systems is driving innovation in cross-platform-compatible methods for data analysis. Root systems acclimate to the environment through architectural changes that act at the root-type level as well as through tissue-specific changes that affect the metabolic needs of the root and the efficiency of nutrient uptake. A molecular understanding of the signaling mechanisms that guide local and systemic signaling is providing insight into the regulatory logic of environmental responses and has identified points where crosstalk between pathways occurs.

  15. Endoplasmic Reticulum Stress Response in Arabidopsis Roots

    PubMed Central

    Cho, Yueh; Kanehara, Kazue

    2017-01-01

    Roots are the frontier of plant body to perceive underground environmental change. Endoplasmic reticulum (ER) stress response represents circumvention of cellular stress caused by various environmental changes; however, a limited number of studies are available on the ER stress responses in roots. Here, we report the tunicamycin (TM) -induced ER stress response in Arabidopsis roots by monitoring expression patterns of immunoglobulin-binding protein 3 (BiP3), a representative marker for the response. Roots promptly responded to the TM-induced ER stress through the induction of similar sets of ER stress-responsive genes. However, not all cells responded uniformly to the TM-induced ER stress in roots, as BiP3 was highly expressed in root tips, an outer layer in elongation zone, and an inner layer in mature zone of roots. We suggest that ER stress response in roots has tissue specificity. PMID:28298914

  16. Neovascularization of coronary tunica intima (DIT) is the cause of coronary atherosclerosis. Lipoproteins invade coronary intima via neovascularization from adventitial vasa vasorum, but not from the arterial lumen: a hypothesis

    PubMed Central

    2012-01-01

    Background An accepted hypothesis states that coronary atherosclerosis (CA) is initiated by endothelial dysfunction due to inflammation and high levels of LDL-C, followed by deposition of lipids and macrophages from the luminal blood into the arterial intima, resulting in plaque formation. The success of statins in preventing CA promised much for extended protection and effective therapeutics. However, stalled progress in pharmaceutical treatment gives a good reason to review logical properties of the hypothesis underlining our efforts, and to reconsider whether our perception of CA is consistent with facts about the normal and diseased coronary artery. Analysis To begin with, it must be noted that the normal coronary intima is not a single-layer endothelium covering a thin acellular compartment, as claimed in most publications, but always appears as a multi-layer cellular compartment, or diffuse intimal thickening (DIT), in which cells are arranged in many layers. If low density lipoprotein cholesterol (LDL-C) invades the DIT from the coronary lumen, the initial depositions ought to be most proximal to blood, i.e. in the inner DIT. The facts show that the opposite is true, and lipids are initially deposited in the outer DIT. This contradiction is resolved by observing that the normal DIT is always avascular, receiving nutrients by diffusion from the lumen, whereas in CA the outer DIT is always neovascularized from adventitial vasa vasorum. The proteoglycan biglycan, confined to the outer DIT in both normal and diseased coronary arteries, has high binding capacity for LDL-C. However, the normal DIT is avascular and biglycan-LDL-C interactions are prevented by diffusion distance and LDL-C size (20 nm), whereas in CA, biglycan in the outer DIT can extract lipoproteins by direct contact with the blood. These facts lead to the single simplest explanation of all observations: (1) lipid deposition is initially localized in the outer DIT; (2) CA often develops at high

  17. Rhizosphere biophysics and root water uptake

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Zarebanadkouki, Mohsen; Ahmed, Mutez A.; Passioura, John

    2016-04-01

    The flow of water into the roots and the (putative) presence of a large resistance at the root-soil interface have attracted the attention of plant and soil scientists for decades. Such resistance has been attributed to a partial contact between roots and soil, large gradients in soil matric potential around the roots, or accumulation of solutes at the root surface creating a negative osmotic potential. Our hypothesis is that roots are capable of altering the biophysical properties of the soil around the roots, the rhizosphere, facilitating root water uptake in dry soils. In particular, we expect that root hairs and mucilage optimally connect the roots to the soil maintaining the hydraulic continuity across the rhizosphere. Using a pressure chamber apparatus we measured the relation between transpiration rate and the water potential difference between soil and leaf xylem during drying cycles in barley mutants with and without root hairs. The samples were grown in well structured soils. At low soil moistures and high transpiration rates, large drops in water potential developed around the roots. These drops in water potential recovered very slowly, even after transpiration was severely decreased. The drops in water potential were much bigger in barley mutants without root hairs. These mutants failed to sustain high transpiration rates in dry conditions. To explain the nature of such drops in water potential across the rhizosphere we performed high resolution neutron tomography of the rhizosphere of the barleys with and without root hairs growing in the same soil described above. The tomograms suggested that the hydraulic contact between the soil structures was the highest resistance for the water flow in dry conditions. The tomograms also indicate that root hairs and mucilage improved the hydraulic contact between roots and soil structures. At high transpiration rates and low water contents, roots extracted water from the rhizosphere, while the bulk soil, due its

  18. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    USGS Publications Warehouse

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  19. Doubling bialgebras of rooted trees

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed Belhaj; Manchon, Dominique

    2017-01-01

    The vector space spanned by rooted forests admits two graded bialgebra structures. The first is defined by Connes and Kreimer using admissible cuts, and the second is defined by Calaque, Ebrahimi-Fard and the second author using contraction of trees. In this article, we define the doubling of these two spaces. We construct two bialgebra structures on these spaces which are in interaction, as well as two related associative products obtained by dualization. We also show that these two bialgebras verify a commutative diagram similar to the diagram verified Calaque, Ebrahimi-Fard and the second author in the case of rooted trees Hopf algebra, and by the second author in the case of cycle-free oriented graphs.

  20. The rhizosphere revisited: root microbiomics

    PubMed Central

    Bakker, Peter A. H. M.; Berendsen, Roeland L.; Doornbos, Rogier F.; Wintermans, Paul C. A.; Pieterse, Corné M. J.

    2013-01-01

    The rhizosphere was defined over 100 years ago as the zone around the root where microorganisms and processes important for plant growth and health are located. Recent studies show that the diversity of microorganisms associated with the root system is enormous. This rhizosphere microbiome extends the functional repertoire of the plant beyond imagination. The rhizosphere microbiome of Arabidopsis thaliana is currently being studied for the obvious reason that it allows the use of the extensive toolbox that comes with this model plant. Deciphering plant traits that drive selection and activities of the microbiome is now a major challenge in which Arabidopsis will undoubtedly be a major research object. Here we review recent microbiome studies and discuss future research directions and applicability of the generated knowledge. PMID:23755059

  1. How Roots Perceive and Respond to Gravity.

    ERIC Educational Resources Information Center

    Moore, Randy

    1984-01-01

    Discusses graviperception and gravitropism by plant roots. Indicates that graviperception occurs via sedimentation of amyloplasts in columella cells of the root cap and that the minimal graviresponsiveness of lateral roots may be due to the intensity of their caps to establish a concentration gradient of inhibitor(s) sufficient to affect…

  2. Sonic instruments in root canal therapy.

    PubMed

    Waplington, M; Lumley, P J; Walmsley, A D

    1995-10-01

    Although hand instrumentation is considered the most acceptable method of preparing root canals, sonic instruments may be useful additions to the endodontic armamentarium. Sonic instrumentation may be incorporated as an adjunct to traditional techniques for shaping the root canal. The use of such instruments may assist the practitioner during root canal treatment in general practice.

  3. The removal of root surface deposits.

    PubMed

    Eaton, K A; Kieser, J B; Davies, R M

    1985-02-01

    The importance of adequate root surface instrumentation has received increasing emphasis. The purpose of this study was to determine the extent to which root planning could produce surfaces free of stainable deposits. Initial laboratory investigations on extracted, periodontally involved roots demonstrated that after meticulous root preparation, totally non-stainable surfaces could be obtained. These surfaces were shown to consist of either thin cementum or dentine. The efficacy of instrumenting periodontally involved buccal root surfaces on the anterior teeth of 33 patients, undergoing routine periodontal flap surgery was then evaluated. Root surfaces were instrumented either before or after the reflection of surgical flaps. Remaining bacterial deposits were disclosed with a gentian violet solution and the root surfaces then photographed. Further root planing, disclosure and photography were then carried out. These photographic slides were analysed for stainable deposits on the root surfaces using an image analysis system, based on densitometric principles, to measure the areas of stainable root surface deposits. The findings revealed that root planning under direct vision at the time of surgery was more effective than blind instrumentation. However, in no instance was any root surface found to be completely free of stainable deposits.

  4. Phenotyping jasmonate regulation of root growth.

    PubMed

    Kellermeier, Fabian; Amtmann, Anna

    2013-01-01

    Root architecture is a complex and highly plastic feature of higher plants. Direct treatments with jasmonates and alterations in jasmonate signaling have been shown to elicit a range of root phenotypes. Here, we describe a fast, noninvasive, and semiautomatic method to monitor root architectural responses to environmental stimuli using plant tissue culture and the software tool EZ-RHIZO.

  5. Root functioning modifies seasonal climate.

    PubMed

    Lee, Jung-Eun; Oliveira, Rafael S; Dawson, Todd E; Fung, Inez

    2005-12-06

    Hydraulic redistribution (HR), the nocturnal vertical transfer of soil water from moister to drier regions in the soil profile by roots, has now been observed in Amazonian trees. We have incorporated HR into an atmospheric general circulation model (the National Center for Atmospheric Research Community Atmospheric Model Version 2) to estimate its impact on climate over the Amazon and other parts of the globe where plants displaying HR occur. Model results show that photosynthesis and evapotranspiration increase significantly in the Amazon during the dry season when plants are allowed to redistribute soil water. Plants draw water up and deposit it into the surface layers, and this water subsidy sustains transpiration at rates that deep roots alone cannot accomplish. The water used for dry season transpiration is from the deep storage layers in the soil, recharged during the previous wet season. We estimate that HR increases dry season (July to November) transpiration by approximately 40% over the Amazon. Our model also indicates that such an increase in transpiration over the Amazon and other drought-stressed regions affects the seasonal cycles of temperature through changes in latent heat, thereby establishing a direct link between plant root functioning and climate.

  6. Root-cubing and general root-powering methods for finding the zeros of polynomials

    NASA Technical Reports Server (NTRS)

    Bareiss, E. H.

    1969-01-01

    Mathematical analysis technique generalizes a root squaring and root cubing method into a general root powering method. The introduction of partitioned polynomials into this general root powering method simplifies the coding of the polynomial transformations into input data suitable for processing by computer. The method includes analytic functions.

  7. Estimate of fine root production including the impact of decomposed roots in a Bornean tropical rainforest

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Khoon Koh, Lip; Kume, Tomonori; Makita, Naoki; Matsumoto, Kazuho; Ohashi, Mizue

    2016-04-01

    Considerable carbon is allocated belowground and used for respiration and production of roots. It is reported that approximately 40 % of GPP is allocated belowground in a Bornean tropical rainforest, which is much higher than those in Neotropical rainforests. This may be caused by high root production in this forest. Ingrowth core is a popular method for estimating fine root production, but recent study by Osawa et al. (2012) showed potential underestimates of this method because of the lack of consideration of the impact of decomposed roots. It is important to estimate fine root production with consideration for the decomposed roots, especially in tropics where decomposition rate is higher than other regions. Therefore, objective of this study is to estimate fine root production with consideration of decomposed roots using ingrowth cores and root litter-bag in the tropical rainforest. The study was conducted in Lambir Hills National Park in Borneo. Ingrowth cores and litter bags for fine roots were buried in March 2013. Eighteen ingrowth cores and 27 litter bags were collected in May, September 2013, March 2014 and March 2015, respectively. Fine root production was comparable to aboveground biomass increment and litterfall amount, and accounted only 10% of GPP in this study site, suggesting most of the carbon allocated to belowground might be used for other purposes. Fine root production was comparable to those in Neotropics. Decomposed roots accounted for 18% of fine root production. This result suggests that no consideration of decomposed fine roots may cause underestimate of fine root production.

  8. Root canal treatment of a maxillary second premolar with two palatal roots: A case report

    PubMed Central

    George, Gingu Koshy; Varghese, Anju Mary; Devadathan, Aravindan

    2014-01-01

    Anatomical variations in root canal morphology are an enigma and it is this variability, which is often a complicating factor in a successful root canal treatment. To achieve success in endodontic therapy it is imperative that all the canals are located, cleaned and shaped and obturated three dimensionally. Maxillary first premolar having three separate roots has an incidence of 0.5-6%. Even rarer are reported clinical case reports of maxillary second premolar with three separate roots and three canals. This case report describes the endodontic management of maxillary second premolar with two palatal roots and one buccal root having three root canals PMID:24944457

  9. Light as stress factor to plant roots - case of root halotropism.

    PubMed

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  10. Conserved and diverse mechanisms in root development.

    PubMed

    Hochholdinger, Frank; Zimmermann, Roman

    2008-02-01

    The molecular basis of root formation and growth is being analyzed in more and more detail in the dicot model organism Arabidopsis. However, considerable progress has also been made in the molecular and genetic dissection of root system development in the monocot species rice and maize. This review will highlight some recent molecular data that allow for the comparison of cereal and Arabidopsis root development. Members of the COBRA, GRAS, and LOB domain gene families and a gene encoding a subunit of the exocyst complex are associated with root development. Analyses of these genes revealed some common and distinct molecular principles and functions in cereal versus Arabidopsis root formation.

  11. Hydrogenase in actinorhizal root nodules and root nodule homogenates.

    PubMed Central

    Benson, D R; Arp, D J; Burris, R H

    1980-01-01

    Hydrogenases were measured in intact actinorhizal root nodules and from disrupted nodules of Alnus glutinosa, Alnus rhombifolia, Alnus rubra, and Myrica pensylvanica. Whole nodules took up H2 in an O2-dependent reaction. Endophyte preparations oxidized H2 through the oxyhydrogen reaction, but rates were enhanced when hydrogen uptake was coupled to artificial electron acceptors. Oxygen inhibited artifical acceptor-dependent H2 uptake. The hydrogenase system from M. pensylvanica had a different pattern of coupling to various electron acceptors than the hydrogenase systems from the alders; only the bayberry system evolved H2 from reduced viologen dyes. PMID:6989799

  12. Optimal root arrangement of cereal crops

    NASA Astrophysics Data System (ADS)

    Jung, Yeonsu; Park, Keunhwan; Kim, Ho-Young

    2015-11-01

    The plant root absorbs water from the soil and supplies it to the rest part of the plant. It consists of a number of root fibers, through whose surfaces water uptake occurs. There is an intriguing observation that for most of cereal crops such as maize and wheat, the volume density of root in the soil declines exponentially as a function of depth. To understand this empirical finding, we construct a theoretical model of root water uptake, where mass transfer into root surface is modeled just as heat flux around a fin. Agreement between the theoretically predicted optimal root distribution in vertical direction and biological data supports the hypothesis that the plant root has evolved to achieve the optimal water uptake in competition with neighbors. This study has practical implication in the agricultural industry as well as optimal design of water transport networks in both micro- and macroscales. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea.

  13. Hydraulic responses of whole vines and individual roots of kiwifruit (Actinidia chinensis) following root severance.

    PubMed

    Black, Marykate Z; Patterson, Kevin J; Minchin, Peter E H; Gould, Kevin S; Clearwater, Michael J

    2011-05-01

    Whole vine (K(plant)) and individual root (K(root)) hydraulic conductances were measured in kiwifruit (Actinidia chinensis Planch. var. chinensis 'Hort16A') vines to observe hydraulic responses following partial root system excision. Heat dissipation and compensation heat pulse techniques were used to measure sap flow in trunks and individual roots, respectively. Sap flux and measurements of xylem pressure potential (Ψ) were used to calculate K(plant) and K(root) in vines with zero and ∼80% of roots severed. Whole vine transpiration (E), Ψ and K(plant) were significantly reduced within 24 h of root pruning, and did not recover within 6 weeks. Sap flux in intact roots increased within 24 h of root pruning, driven by an increase in the pressure gradient between the soil and canopy and without any change in root hydraulic conductance. Photosynthesis (A) and stomatal conductance (g(s)) were reduced, without significant effects on leaf internal CO(2) concentration (c(i)). Shoot growth rates were maintained; fruit growth and dry matter content were increased following pruning. The woody roots of kiwifruit did not demonstrate a rapid dynamic response to root system damage as has been observed previously in monocot seedlings. Increased sap flux in intact roots with no change in K(root) and only a moderate decline in shoot A suggests that under normal growing conditions root hydraulic conductance greatly exceeds requirements for adequate shoot hydration.

  14. Patterns of variability in the diameter of lateral roots in the banana root system.

    PubMed

    Lecompte, François; Pagès, Loïc; Ozier-Lafontaine, Harry

    2005-09-01

    The relative importance of root system structure, plant carbon status and soil environment in the determination of lateral root diameter remains unclear, and was investigated in this study. Banana (Musa acuminata) plants were grown at various moderate levels of soil compaction in two distinct experiments, in a field experiment (FE) and in a glasshouse experiment (GE). Radiant flux density was 5 times lower in GE. The distribution of root diameter was measured for several root branching orders. Root diameters ranged between 0.09 and 0.52 mm for secondary roots and between 0.06 and 0.27 mm for tertiary roots. A relationship was found between the diameter of the parent bearing root and the median diameter of its laterals, which appears to be valid for a wide range of species. Mean lateral root diameter increased with distance to the base of the root and decreased with branching density [number of lateral roots per unit length of bearing root (cm(-1))]. Typical symptoms of low light availability were observed in GE. In this case, lateral root diameter variability was reduced. Although primary root growth was affected by soil compaction, no effects on lateral root diameter were observed.

  15. Xanthones from Garcinia propinqua Roots.

    PubMed

    Meesakul, Pornphimol; Pansanit, Acharavadee; Maneerat, Wisanu; Sripisut, Tawanun; Ritthiwigrom, Thunwadee; Machana, Theeraphan; Cheenpracha, Sarot; Laphookhieo, Surat

    2016-01-01

    Phytochemical investigation of Garcinia propinqua roots led to the isolation and identification of a new xanthone, doitunggarcinone D (1), together with 15 known compounds (2-16). Their structures were elucidated by intensive analysis of spectroscopic data. Compounds 3, 6, 7, 14, 15 and 16 exhibited strong antibacterial activity against Bacillus subtilis TISTR 088 with MIC values in the range of 1-4 µg/mL. Compounds 3, 7, 10 and 14 also showed good antibacterial activity against B. cereus TISTR 688 with MIC values ranging from 4-8 µg/mL.

  16. Flavonoids from Caragana pruinosa roots.

    PubMed

    Peng, Wei; Wang, Liang; Qiu, Xu-Hui; Jiang, Yi-Ping; Pan, Lan; Jia, Xiao-Guang; Qin, Lu-Ping; Zheng, Cheng-Jian

    2016-10-01

    A new pterocarpan derivative, pruinosanone D (1), a new isoflavonoid, pruinosanone E (2), and a new chalcone, pruinosanone F (3), were isolated from Caragana pruinosa roots, along with four known analogues (4-7), identified as 2,4-dihydroxy-3'-methoxy-4'-ethoxychalcone, 7,4-dihydroxyflavanone, butin and scutellaprostin C, respectively. Their structures were elucidated by detailed analyses of NMR, IR, and MS data. The ability of the isolated compounds to prevent nitric oxide (NO) production by LPS-stimulated RAW 264.7 macrophages was also studied. Compound 1 were among the most potent NO production inhibitor, with IC50 value of 0.62μM.

  17. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology.

  18. Measuring tree root respiration using (13)C natural abundance: rooting medium matters.

    PubMed

    Cheng, Weixin; Fu, Shenglei; Susfalk, Richard B; Mitchell, Robert J

    2005-07-01

    Tree root respiration utilizes a major portion of the primary production in forests and is an important process in the global carbon cycle. Because of the lack of ecologically relevant methods, tree root respiration in situ is much less studied compared with above-ground processes such as photosynthesis and leaf respiration. This study introduces a new (13)C natural tracer method for measuring tree root respiration in situ. The method partitions tree root respiration from soil respiration in buried root chambers. Rooting media substantially influenced root respiration rates. Measured in three media, the fine root respiration rates of longleaf pine were 0.78, 0.27 and 0.18 mg CO(2) carbon mg(-1) root nitrogen d(-1) at 25 degrees C in the native soil, tallgrass prairie soil, and sand-vermiculite mixture, respectively. Compared with the root excision method, the root respiration rate of longleaf pine measured by the field chamber method was 18% higher when using the native soil as rooting medium, was similar in the prairie soil, but was 42% lower if in the sand-vermiculite medium. This natural tracer method allows the use of an appropriate rooting medium and is capable of measuring root respiration nondestructively in natural forest conditions.

  19. PATTERNS IN SOIL FERTILITY AND ROOT HERBIVORY INTERACT TO INFLUENCE FINE-ROOT DYNAMICS.

    SciTech Connect

    Stevens, Glen, N.; Jones, Robert, H.

    2006-03-01

    Fine-scale soil nutrient enrichment typically stimulates root growth, but it may also increase root herbivory, resulting in trade-offs for plant species and potentially influencing carbon cycling patterns. We used root ingrowth cores to investigate the effects of microsite fertility and root herbivory on root biomass in an aggrading upland forest in the coastal plain of South Carolina, USA. Treatments were randomly assigned to cores from a factorial combination of fertilizer and insecticide. Soil, soil fauna, and roots were removed from the cores at the end of the experiment (8–9 mo), and roots were separated at harvest into three diameter classes. Each diameter class responded differently to fertilizer and insecticide treatments. The finest roots (,1.0 mm diameter), which comprised well over half of all root biomass, were the only ones to respond significantly to both treatments, increasing when fertilizer and when insecticide were added (each P , 0.0001), with maximum biomass found where the treatments were combined (interaction term significant, P , 0.001). These results suggest that root-feeding insects have a strong influence on root standing crop with stronger herbivore impacts on finer roots and within more fertile microsites. Thus, increased vulnerability to root herbivory is a potentially significant cost of root foraging in nutrient-rich patches.

  20. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  1. A statistical approach to root system classification

    PubMed Central

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for “plant functional type” identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200

  2. Root hairs aid soil penetration by anchoring the root surface to pore walls

    PubMed Central

    Bengough, A. Glyn; Loades, Kenneth; McKenzie, Blair M.

    2016-01-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3–3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0–1.5g cm−3). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm−3 soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm−3 soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm−3). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm−3 soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027

  3. A rooted net of life.

    PubMed

    Williams, David; Fournier, Gregory P; Lapierre, Pascal; Swithers, Kristen S; Green, Anna G; Andam, Cheryl P; Gogarten, J Peter

    2011-09-21

    Phylogenetic reconstruction using DNA and protein sequences has allowed the reconstruction of evolutionary histories encompassing all life. We present and discuss a means to incorporate much of this rich narrative into a single model that acknowledges the discrete evolutionary units that constitute the organism. Briefly, this Rooted Net of Life genome phylogeny is constructed around an initial, well resolved and rooted tree scaffold inferred from a supermatrix of combined ribosomal genes. Extant sampled ribosomes form the leaves of the tree scaffold. These leaves, but not necessarily the deeper parts of the scaffold, can be considered to represent a genome or pan-genome, and to be associated with members of other gene families within that sequenced (pan)genome. Unrooted phylogenies of gene families containing four or more members are reconstructed and superimposed over the scaffold. Initially, reticulations are formed where incongruities between topologies exist. Given sufficient evidence, edges may then be differentiated as those representing vertical lines of inheritance within lineages and those representing horizontal genetic transfers or endosymbioses between lineages.

  4. Roots at the percolation threshold.

    PubMed

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water?

  5. Roots at the percolation threshold

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water?

  6. A Rooted Net of Life

    PubMed Central

    2011-01-01

    Abstract Phylogenetic reconstruction using DNA and protein sequences has allowed the reconstruction of evolutionary histories encompassing all life. We present and discuss a means to incorporate much of this rich narrative into a single model that acknowledges the discrete evolutionary units that constitute the organism. Briefly, this Rooted Net of Life genome phylogeny is constructed around an initial, well resolved and rooted tree scaffold inferred from a supermatrix of combined ribosomal genes. Extant sampled ribosomes form the leaves of the tree scaffold. These leaves, but not necessarily the deeper parts of the scaffold, can be considered to represent a genome or pan-genome, and to be associated with members of other gene families within that sequenced (pan)genome. Unrooted phylogenies of gene families containing four or more members are reconstructed and superimposed over the scaffold. Initially, reticulations are formed where incongruities between topologies exist. Given sufficient evidence, edges may then be differentiated as those representing vertical lines of inheritance within lineages and those representing horizontal genetic transfers or endosymbioses between lineages. Reviewers W. Ford Doolittle, Eric Bapteste and Robert Beiko. PMID:21936906

  7. Springback and diagravitropism in Merit corn roots

    NASA Technical Reports Server (NTRS)

    Kelly, M. O.; Leopold, A. C.

    1992-01-01

    Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots.

  8. Temperature sensing by primary roots of maize

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  9. Behavioral response of grape root borer (Lepidoptera: Sesiidae) neonates to grape root volatiles.

    PubMed

    Rijal, J P; Zhang, A; Bergh, J C

    2013-12-01

    Grape root borer, Vitacea polistiformis (Harris), is an oligophagous and potentially destructive pest of grape in commercial vineyards throughout much of the eastern United States. Larvae feed on vine roots, although little is known about their below-ground interactions with host plants. The behavioral response of groups of grape root borer neonates to stimuli from host and nonhost roots was evaluated in single and paired stimuli bioassays in which stimuli were presented in opposing wells attached to the bottom of petri dish arenas. Stimulus sources included root pieces and root headspace volatiles from 3309 and 420-A grape rootstocks (host) and apple (nonhost) and ethanol-based extracts of 3309 and 420-A roots. In single stimulus assays, significantly more larvae were recovered from wells containing grape roots, apple roots, grape extracts, and grape root volatiles than from control wells, but there was no significant response to volatiles collected from the headspace of apple roots. In paired stimuli assays, significantly more larvae were recovered from wells containing grape than apple roots. There was no difference in larval distribution between wells when 420-A and 3309 roots were presented simultaneously, although a significantly greater response to 3309 than 420-A root extract was recorded. When soil was added to the assays, significantly more larvae were recovered from wells containing grape roots than from those containing only soil, but this response was not detected in assays using buried apple roots. These results are discussed in relation to the plant-insect interactions between grape root borer larvae and their Vitaceae hosts.

  10. Cytokinins act directly on lateral root founder cells to inhibit root initiation.

    PubMed

    Laplaze, Laurent; Benkova, Eva; Casimiro, Ilda; Maes, Lies; Vanneste, Steffen; Swarup, Ranjan; Weijers, Dolf; Calvo, Vanessa; Parizot, Boris; Herrera-Rodriguez, Maria Begoña; Offringa, Remko; Graham, Neil; Doumas, Patrick; Friml, Jiri; Bogusz, Didier; Beeckman, Tom; Bennett, Malcolm

    2007-12-01

    In Arabidopsis thaliana, lateral roots are formed from root pericycle cells adjacent to the xylem poles. Lateral root development is regulated antagonistically by the plant hormones auxin and cytokinin. While a great deal is known about how auxin promotes lateral root development, the mechanism of cytokinin repression is still unclear. Elevating cytokinin levels was observed to disrupt lateral root initiation and the regular pattern of divisions that characterizes lateral root development in Arabidopsis. To identify the stage of lateral root development that is sensitive to cytokinins, we targeted the expression of the Agrobacterium tumefaciens cytokinin biosynthesis enzyme isopentenyltransferase to either xylem-pole pericycle cells or young lateral root primordia using GAL4-GFP enhancer trap lines. Transactivation experiments revealed that xylem-pole pericycle cells are sensitive to cytokinins, whereas young lateral root primordia are not. This effect is physiologically significant because transactivation of the Arabidopsis cytokinin degrading enzyme cytokinin oxidase 1 in lateral root founder cells results in increased lateral root formation. We observed that cytokinins perturb the expression of PIN genes in lateral root founder cells and prevent the formation of an auxin gradient that is required to pattern lateral root primordia.

  11. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    PubMed Central

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  12. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  13. New stopping criteria for iterative root finding

    PubMed Central

    Nikolajsen, Jorgen L.

    2014-01-01

    A set of simple stopping criteria is presented, which improve the efficiency of iterative root finding by terminating the iterations immediately when no further improvement of the roots is possible. The criteria use only the function evaluations already needed by the root finding procedure to which they are applied. The improved efficiency is achieved by formulating the stopping criteria in terms of fractional significant digits. Test results show that the new stopping criteria reduce the iteration work load by about one-third compared with the most efficient stopping criteria currently available. This is achieved without compromising the accuracy of the extracted roots. PMID:26064544

  14. Genetic ablation of root cap cells in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Fedoroff, N. V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

  15. Root-growth-inhibiting sheet

    DOEpatents

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  16. Root-growth-inhibiting sheet

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  17. ROOT CAUSE ANALYSIS PROGRAM MANUAL

    SciTech Connect

    Gravois, Melanie C.

    2007-05-02

    Root Cause Analysis (RCA) identifies the cause of an adverse condition that, if corrected, will preclude recurrence or greatly reduce the probability of recurrence of the same or similar adverse conditions and thereby protect the health and safety of the public, the workers, and the environment. This procedure sets forth the requirements for management determination and the selection of RCA methods and implementation of RCAs that are a result of significant findings from Price-Anderson Amendments Act (PAAA) violations, occurrences/events, Significant Adverse Conditions, and external oversight Corrective Action Requests (CARs) generated by the Office of Enforcement (PAAA headquarters), the U.S. Environmental Protection Agency, and other oversight entities against Lawrence Berkeley National Laboratory (LBNL). Performance of an RCA may result in the identification of issues that should be reported in accordance with the Issues Management Program Manual.

  18. Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions.

    PubMed

    Barton, Craig V M; Montagu, Kelvin D

    2004-12-01

    A tree's root system accounts for between 10 and 65% of its total biomass, yet our understanding of the factors that cause this proportion to vary is limited because of the difficulty encountered when studying tree root systems. There is a need to develop new sampling and measuring techniques for tree root systems. Ground penetrating radar (GPR) offers the potential for direct nondestructive measurements of tree root biomass and root distributions to be made. We tested the ability of GPR, with 500 MHz, 800 MHz and 1 GHz antennas, to detect tree roots and determine root size by burying roots in a 32 m3 pit containing damp sand. Within this test bed, tree roots were buried in two configurations: (1) roots of various diameters (1-10 cm) were buried at a single depth (50 cm); and (2) roots of similar diameter (about 5 cm) were buried at various depths (15-155 cm). Radar antennas were drawn along transects perpendicular to the buried roots. Radar profile normalization, filtration and migration were undertaken based on standard algorithms. All antennas produced characteristic reflection hyperbolas on the radar profiles allowing visual identification of most root locations. The 800 MHz antenna resulted in the clearest radar profiles. An unsupervised, maximum-convexity migration algorithm was used to focus information contained in the hyperbolas back to a point. This resulted in a significant gain in clarity with roots appearing as discrete shapes, thereby reducing confusion due to overlapping of hyperbolas when many roots are detected. More importantly, parameters extracted from the resultant waveform through the center of a root correlated well with root diameter for the 500 MHz antenna, but not for the other two antennas. A multiple regression model based on the extracted parameters was calibrated on half of the data (R2 = 0.89) and produced good predictions when tested on the remaining data. Root diameters were predicted with a root mean squared error of 0.6 cm

  19. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    PubMed

    Pedrotti, Lorenzo; Mueller, Martin J; Waller, Frank

    2013-01-01

    Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  20. Malformations of the tooth root in humans

    PubMed Central

    Luder, Hans U.

    2015-01-01

    The most common root malformations in humans arise from either developmental disorders of the root alone or disorders of radicular development as part of a general tooth dysplasia. The aim of this review is to relate the characteristics of these root malformations to potentially disrupted processes involved in radicular morphogenesis. Radicular morphogenesis proceeds under the control of Hertwig's epithelial root sheath (HERS) which determines the number, length, and shape of the root, induces the formation of radicular dentin, and participates in the development of root cementum. Formation of HERS at the transition from crown to root development appears to be very insensitive to adverse effects, with the result that rootless teeth are extremely rare. In contrast, shortened roots as a consequence of impaired or prematurely halted apical growth of HERS constitute the most prevalent radicular dysplasia which occurs due to trauma and unknown reasons as well as in association with dentin disorders. While odontoblast differentiation inevitably stops when growth of HERS is arrested, it seems to be unaffected even in cases of severe dentin dysplasias such as regional odontodysplasia and dentin dysplasia type I. As a result radicular dentin formation is at least initiated and progresses for a limited time. The only condition affecting cementogenesis is hypophosphatasia which disrupts the formation of acellular cementum through an inhibition of mineralization. A process particularly susceptible to adverse effects appears to be the formation of the furcation in multirooted teeth. Impairment or disruption of this process entails taurodontism, single-rooted posterior teeth, and misshapen furcations. Thus, even though many characteristics of human root malformations can be related to disorders of specific processes involved in radicular morphogenesis, precise inferences as to the pathogenesis of these dysplasias are hampered by the still limited knowledge on root formation

  1. Root-soil relationships and terroir

    NASA Astrophysics Data System (ADS)

    Tomasi, Diego

    2015-04-01

    Soil features, along with climate, are among the most important determinants of a succesful grape production in a certain area. Most of the studies, so far, investigated the above-ground vine response to differente edaphic and climate condition, but it is clearly not sufficient to explain the vine whole behaviour. In fact, roots represent an important part of the terroir system (soil-plant-atmosphere-man), and their study can provide better comprehension of vine responses to different environments. The root density and distribution, the ability of deep-rooting and regenerating new roots are good indicators of root well-being, and represents the basis for an efficient physiological activity of the root system. Root deepening and distribution are strongly dependent and sensitive on soil type and soil properties, while root density is affected mostly by canopy size, rootstock and water availability. According to root well-being, soil management strategies should alleviate soil impediments, improving aeration and microbial activity. Moreover, agronomic practices can impact root system performance and influence the above-ground growth. It is well known, for example, that the root system size is largely diminished by high planting densities. Close vine spacings stimulate a more effective utilization of the available soil, water and nutrients, but if the competition for available soil becomes too high, it can repress vine growth, and compromise vineyard longevity, productivity and reaction to growing season weather. Development of resilient rootstocks, more efficient in terms of water and nutrient uptake and capable of dealing with climate and soil extremes (drought, high salinity) are primary goals fore future research. The use of these rootstocks will benefit a more sustainable use of the soil resources and the preservation and valorisation of the terroir.

  2. Root susceptibility and inoculum production from roots of Eastern United States oak species to Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about root susceptibility of eastern U.S. tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Sprouted acorns of Q. rubra, Q. palustrus, Q. coccinia, Q. alba, Q. michauxii and Q. prinus were exposed to motile zoos...

  3. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    PubMed Central

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  4. RootScan: Software for high-throughput analysis of root anatomical traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RootScan is a program for semi-automated image analysis of anatomical phenes in root cross-sections. RootScan uses pixel value thresholds to separate the cross-section from its background and to visually dissect it into tissue regions. Area measurements and object counts are performed within various...

  5. Anatomical evaluation of the root canal diameter and root thickness on the apical third of mesial roots of molars.

    PubMed

    Martos, Josué; Tatsch, Gustavo Henrique; Tatsch, Augusto César; Silveira, Luiz Fernando Machado; Ferrer-Luque, Carmen María

    2011-09-01

    The purpose was to determine the diameter of the main root canal and wall thickness in the apical dentin in mesial roots of maxillary and mandibular molars. Forty mesiobuccal and mesial root specimens were sectioned horizontally at 1, 2 and 3 mm from the apex, and measured at each top surface by using optical microscopy to an accuracy of ×20 magnification. The anatomical parameters were established as the following points of reference: AB, two points connected by a line from the outer edge of the mesial wall to the outer edge of the distal one through the center of the root canal to measure the thickness of the root and mesiodistal diameter of the root canal (CD). A second line (EF) was designed to evaluate the diameter of the root canal in the buccolingual direction. All data were summarized, and values were assessed statistically by ANOVA and Bonferroni multiple comparisons. The buccolingual (BL) root canal diameters at 1, 2 and 3 mm in the mandibular and maxillary molars were greater than in the mesiodistal (MD), showing statistically significant differences (p < 0.05). The MD root thicknesses at 1, 2 and 3 mm in mandibular and maxillary molars were statistically significant (p < 0.05). The lowest value to 1 mm from the apex in the mandibular molars was 1.219 mm and the highest at 3 mm from the root apex in maxillary molars was 1.741 mm. The BL diameters in maxillary and mandibular molars were higher than the MD diameter. The thickness (MD) of maxillary and mandibular molars decreased as a function of apical proximity.

  6. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  7. Effect of Root System Morphology on Root-sprouting and Shoot-rooting Abilities in 123 Plant Species from Eroded Lands in North-east Spain

    PubMed Central

    GUERRERO-CAMPO, JOAQUÍN; PALACIO, SARA; PÉREZ-RONTOMÉ, CARMEN; MONTSERRAT-MARTÍ, GABRIEL

    2006-01-01

    • Background and Aims The objective of this study was to test whether the mean values of several root morphological variables were related to the ability to develop root-borne shoots and/or shoot-borne roots in a wide range of vascular plants. • Methods A comparative study was carried out on the 123 most common plant species from eroded lands in north-east Spain. After careful excavations in the field, measurements were taken of the maximum root depth, absolute and relative basal root diameter, specific root length (SRL), and the root depth/root lateral spread ratio on at least three individuals per species. Shoot-rooting and root-sprouting were observed in a large number of individuals in many eroded and sedimentary environments. The effect of life history and phylogeny on shoot-rooting and root-sprouting abilities was also analysed. • Key Results The species with coarse and deep tap-roots tended to be root-sprouting and those with fine, fasciculate and long main roots (which generally spread laterally), tended to be shoot-rooting. Phylogeny had an important influence on root system morphology and shoot-rooting and root-sprouting capacities. However, the above relations stood after applying analyses based on phylogenetically independent contrasts (PICs). • Conclusions The main morphological features of the root system of the study species are related to their ability to sprout from their roots and form roots from their shoots. According to the results, such abilities might only be functionally viable in restricted root system morphologies and ecological strategies. PMID:16790468

  8. Root phenotypic characterization of lesquerella genetic resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root systems are crucial for optimizing plant growth and productivity. There has been a push to better understand root morphological and architectural traits and their plasticity because these traits determine the capacity of plants to effectively acquire available water and soil nutrients in the so...

  9. Purely extradural spinal nerve root hemangioblastomas

    PubMed Central

    Aytar, Murat Hamit; Yener, Ulaş; Ekşi, Murat Şakir; Kaya, Behram; Özgen, Serdar; Sav, Aydin; Alanay, Ahmet

    2016-01-01

    Spinal nerve root hemangioblastomas present mostly as intradural-extradurally. Purely extradural spinal nerve root hemangioblastoma is a very rare entity. In this study, we aimed to analyze epidemiological perspectives of purely extradural spinal nerve root hemangioblastomas presented in English medical literature in addition to our own exemplary case. PubMed/MEDLINE was searched using the terms “hemangioblastoma,” “extradural,” “spinal,” and “nerve root.” Demographical variables of age, gender, concomitant presence of von Hippel–Lindau (VHL) disease; spinal imaging and/or intraoperative findings for tumor location were surveyed from retrieved articles. There are 38 patients with purely extradural spinal nerve root hemangioblastoma. The median age is 45 years (range = 24–72 years). Female:male ratio is 0.6. Spinal levels for purely extradural spinal nerve root hemangioblastomas, in order of decreasing frequency, are thoracic (48.6%), cervical (13.5%), lumbar (13.5%), lumbosacral (10.8%), sacral (8.1%), and thoracolumbar (5.4%). Concomitant presence of VHL disease is 45%. Purely extradural spinal nerve root hemangioblastomas are very rare and can be confused with other more common extradural spinal cord tumors. Concomitant presence of VHL disease is observed in less than half of the patients with purely extradural spinal nerve root hemangioblastomas. Surgery is the first-line treatment in these tumors. PMID:27891027

  10. Cytological and ultrastructural studies on root tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  11. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  12. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  13. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  14. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  15. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  16. Rapid phenotyping of alfalfa root system architecture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root system architecture (RSA) influences the capacity of an alfalfa plant for symbiotic nitrogen fixation, nutrient uptake and water use efficiency, resistance to frost heaving, winterhardiness, and some pest and pathogen resistance. However, we currently lack a basic understanding of root system d...

  17. Graphing Powers and Roots of Complex Numbers.

    ERIC Educational Resources Information Center

    Embse, Charles Vonder

    1993-01-01

    Using De Moivre's theorem and a parametric graphing utility, examines powers and roots of complex numbers and allows students to establish connections between the visual and numerical representations of complex numbers. Provides a program to numerically verify the roots of complex numbers. (MDH)

  18. Method for Constructing Standardized Simulated Root Canals.

    ERIC Educational Resources Information Center

    Schulz-Bongert, Udo; Weine, Franklin S.

    1990-01-01

    The construction of visual and manipulative aids, clear resin blocks with root-canal-like spaces, for simulation of root canals is explained. Time, materials, and techniques are discussed. The method allows for comparison of canals, creation of any configuration of canals, and easy presentation during instruction. (MSE)

  19. Sporulation on plant roots by Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora ramorum has been shown to infect the roots of many of the pathogen’s foliar hosts. Methods of detecting inoculum in runoff and of quantifying root colonization were tested using Viburnum tinus, Camellia oleifera, Quercus prinus, Umbellularia californica, and Epilobium ciliatum. Plants...

  20. Roots as a source of food.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous plant species produce edible roots that are an important source of calories and that contribute to human nutrition. This book chapter discusses the origin and domestication, production aspects and nutritional aspects of a number of root crops including; cassava (Manioc), sweetpotato (Ipomo...

  1. Compounds from the roots of Jasminum sambac.

    PubMed

    Zeng, Lin-Hong; Hu, Min; Yan, Yong-Ming; Lu, Qing; Cheng, Yong-Xian

    2012-01-01

    Four new compounds (+)-jasminoids A, B, C, and D, together with seven known compounds, were isolated from the roots of Jasminum sambac. Their structures were identified using spectroscopic methods. This study provides a better understanding to the chemical composition of J. sambac roots that have been thought to be one ingredient of an ancient prescription 'Ma-Fei-San'.

  2. Enhancing Students' Understanding of Square Roots

    ERIC Educational Resources Information Center

    Wiesman, Jeff L.

    2015-01-01

    Students enrolled in a middle school prealgebra or algebra course often struggle to conceptualize and understand the meaning of radical notation when it is introduced. For example, although it is important for students to approximate the decimal value of a number such as [square root of] 30 and estimate the value of a square root in the form of…

  3. ADVANCING FINE ROOT RESEARCH WITH MINIRHIZOTRONS

    EPA Science Inventory

    Minirhizotrons provide a nondestructive, in situ method for directly viewing and studying fine roots. Although many insights into fine roots have been gained using minirhizotrons, it is clear from the literature that there is still wide variation in how minirhizotrons and minirhi...

  4. ACETOGENIC BACTERIA ASSOCIATED WITH SEAGRASS ROOTS

    EPA Science Inventory

    Seagrasses are adapted to being rooted in reduced, anoxic sediments with high rates of sulfate reduction. During the day, an oxygen gradient is generated around the roots, becoming anoxic at night. Thus, obligate anaerobic bacteria in the rhizosphere have to tolerate elevated oxy...

  5. Tissue engineering in endodontics: root canal revascularization.

    PubMed

    Palit Madhu Chanda; Hegde, K Sundeep; Bhat, Sham S; Sargod, Sharan S; Mantha, Somasundar; Chattopadhyay, Sayan

    2014-01-01

    Root canal revascularization attempts to make necrotic tooth alive by the use of certain simple clinical protocols. Earlier apexification was the treatment of choice for treating and preserving immature permanent teeth that have lost pulp vitality. This procedure promoted the formation of apical barrier to seal the root canal of immature teeth and nonvital filling materials contained within root canal space. However with the success of root canal revascularization to regenerate the pulp dentin complex of necrotic immature tooth has made us to rethink if apexification is at the beginning of its end. The objective of this review is to discuss the new concepts of tissue engineering in endodontics and the clinical steps of root canal revascularization.

  6. Microleakage of root-end filling materials.

    PubMed

    Fogel, H M; Peikoff, M D

    2001-07-01

    The purpose of this study was to evaluate the microleakage of various root-end filling materials using a fluid filtration system. Sixty extracted human single-rooted teeth were used. The crowns were removed, the canals prepared, and root-end fillings placed. The samples were divided into two control and five experimental groups. The root-end filling materials tested were: amalgam, Intermediate Restorative Material (IRM), a dentin-bonded resin, Super-EBA, and mineral trioxide aggregate. The results showed that amalgam root-end fillings demonstrated significantly more microleakage than Super-EBA, dentin-bonded resin, or mineral trioxide aggregate. There was no significant difference between amalgam and IRM. However IRM was also not significantly different from the other three groups. There were no significant differences between the other three groups.

  7. Long-term control of root growth

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin.

  8. Effect of lead on root growth

    PubMed Central

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development. PMID:23750165

  9. Management of Six Root Canals in Mandibular First Molar

    PubMed Central

    Gomes, Fabio de Almeida; Sousa, Bruno Carvalho

    2015-01-01

    Success in root canal treatment is achieved after thorough cleaning, shaping, and obturation of the root canal system. This clinical case describes conventional root canal treatment of an unusual mandibular first molar with six root canals. The prognosis for endodontic treatment in teeth with abnormal morphology is unfavorable if the clinician fails to recognize extra root canals. PMID:25685156

  10. Root Canal Treatment of a Maxillary Second Premolar with Two Palatal Root Canals: A Case Report

    PubMed Central

    Golmohammadi, Maryam; Jafarzadeh, Hamid

    2016-01-01

    Accurate diagnosis of the root canal morphology and anatomy is essential for thorough shaping and cleaning of the entire root canal system and consequent successful treatment. This report describes a case of maxillary second premolar with two roots and three root canals (two mesial and distal palatal canals). The case report underlines the importance of complete knowledge about root canal morphology and possible variations, coupled with clinical and radiographic examination in order to increase the ability of clinicians to treat difficult cases. PMID:27471538

  11. Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding

    SciTech Connect

    Sena Gomes, A.R.; Kozlowski, T.T.

    1980-01-01

    Flooding induced several physiological and morphological changes in Fraxinus pennsylvanica seedlings, with stomatal closure among the earliest responses. Subsequent changes included: reduction in dry weight increment of roots, stems, and leaves; formation of hypertrophied lenticles and production of adventitious roots on submerged portions of the stem above the soil line; leaf necrosis; and leaf abscission. After 15 days of stomatal closure as a results of flooding, stomata began to reopen progressively until stomata aperture was similar in flooded and unflooded plants. Adventitious roots began to form at about the time stomatal reopening began. As more adventitious roots formed, elongated, and branched, the stomata opened further. The formation of adventitious roots was in important adaptation for flooding tolerance as shown by the high efficiency of adventitious roots in absorption of water and in high correlation between the production of adventitious roots and stomatal reopening. 6 figures, 2 tables.

  12. Lateral root initiation in Marsilea quadrifolia. I. Origin and histogensis of lateral roots

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    In Marsilea quadrifolia, lateral roots arise from modified single cells of the endodermis located opposite the protoxylem poles within the meristematic region of the parent root. The initial cell divides in four specific planes to establish a five-celled lateral root primordium, with a tetrahedral apical cell in the centre and the oldest merophytes and the root cap along the sides. The cells of the merophyte divide in a precise pattern to give rise to the cells of the cortex, endodermis, pericycle, and vascular tissues of the emerging lateral root. Although the construction of the parent root is more complicated than that of lateral roots, patterns of cell division and tissue formation are similar in both types of roots, with the various tissues being arranged in similar positions in relation to the central axis. Vascular connection between the lateral root primordium and the parent root is derived from the pericycle cells lying between the former and the protoxylem members of the latter. It is proposed that the central axis of the root is not only a geometric centre, but also a physiological centre which determines the fate of the different cell types.

  13. RootGraph: a graphic optimization tool for automated image analysis of plant roots.

    PubMed

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J

    2015-11-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions.

  14. RootGraph: a graphic optimization tool for automated image analysis of plant roots

    PubMed Central

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.

    2015-01-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880

  15. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    PubMed Central

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  16. Root phenology at Harvard Forest and beyond

    NASA Astrophysics Data System (ADS)

    Abramoff, R. Z.; Finzi, A.

    2013-12-01

    Roots are hidden from view and heterogeneously distributed making them difficult to study in situ. As a result, the causes and timing of root production are not well understood. Researchers have long assumed that above and belowground phenology is synchronous; for example, most parameterizations of belowground carbon allocation in terrestrial biosphere models are based on allometry and represent a fixed fraction of net C uptake. However, using results from metaanalysis as well as empirical data from oak and hemlock stands at Harvard Forest, we show that synchronous root and shoot growth is the exception rather than the rule. We collected root and shoot phenology measurements from studies across four biomes (boreal, temperate, Mediterranean, and subtropical). General patterns of root phenology varied widely with 1-5 production peaks in a growing season. Surprisingly, in 9 out of the 15 studies, the first root production peak was not the largest peak. In the majority of cases maximum shoot production occurred before root production (Offset>0 in 32 out of 47 plant sample means). The number of days offset between maximum root and shoot growth was negatively correlated with median annual temperature and therefore differs significantly across biomes (ANOVA, F3,43=9.47, p<0.0001). This decline in offset with increasing temperature may reflect greater year-round coupling between air and soil temperature in warm biomes. Growth form (woody or herbaceous) also influenced the relative timing of root and shoot growth. Woody plants had a larger range of days between root and shoot growth peaks as well as a greater number of growth peaks. To explore the range of phenological relationships within woody plants in the temperate biome, we focused on above and belowground phenology in two common northeastern tree species, Quercus rubra and Tsuga canadensis. Greenness index, rate of stem growth, root production and nonstructural carbohydrate content were measured beginning in April

  17. Scalable encryption using alpha rooting

    NASA Astrophysics Data System (ADS)

    Wharton, Eric J.; Panetta, Karen A.; Agaian, Sos S.

    2008-04-01

    Full and partial encryption methods are important for subscription based content providers, such as internet and cable TV pay channels. Providers need to be able to protect their products while at the same time being able to provide demonstrations to attract new customers without giving away the full value of the content. If an algorithm were introduced which could provide any level of full or partial encryption in a fast and cost effective manner, the applications to real-time commercial implementation would be numerous. In this paper, we present a novel application of alpha rooting, using it to achieve fast and straightforward scalable encryption with a single algorithm. We further present use of the measure of enhancement, the Logarithmic AME, to select optimal parameters for the partial encryption. When parameters are selected using the measure, the output image achieves a balance between protecting the important data in the image while still containing a good overall representation of the image. We will show results for this encryption method on a number of images, using histograms to evaluate the effectiveness of the encryption.

  18. Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana.

    PubMed

    Ivanchenko, Maria G; Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G

    2010-12-01

    The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.

  19. Variation of the Linkage of Root Function with Root Branch Order

    PubMed Central

    Chen, Zhengxia; Zeng, Hui

    2013-01-01

    Mounting evidence has shown strong linkage of root function with root branch order. However, it is not known whether this linkage is consistent in different species. Here, root anatomic traits of the first five branch order were examined in five species differing in plant phylogeny and growth form in tropical and subtropical forests of south China. In Paramichelia baillonii, one tree species in Magnoliaceae, the intact cortex as well as mycorrhizal colonization existed even in the fifth-order root suggesting the preservation of absorption function in the higher-order roots. In contrast, dramatic decreases of cortex thickness and mycorrhizal colonization were observed from lower- to higher-order roots in three other tree species, Cunninghamia lanceolata, Acacia auriculiformis and Gordonia axillaries, which indicate the loss of absorption function. In a fern, Dicranopteris dichotoma, there were several cortex layers with prominently thickened cell wall and no mycorrhizal colonization in the third- and fourth-order roots, also demonstrating the loss of absorptive function in higher-order roots. Cluster analysis using these anatomic traits showed a different classification of root branch order in P. baillonii from other four species. As for the conduit diameter-density relationship in higher-order roots, the mechanism underpinning this relationship in P. baillonii was different from that in other species. In lower-order roots, different patterns of coefficient of variance for conduit diameter and density provided further evidence for the two types of linkage of root function with root branch order. These linkages corresponding to two types of ephemeral root modules have important implication in the prediction of terrestrial carbon cycling, although we caution that this study was pseudo-replicated. Future studies by sampling more species can test the generality of these two types of linkage. PMID:23451168

  20. Variation of the linkage of root function with root branch order.

    PubMed

    Long, Yingqian; Kong, Deliang; Chen, Zhengxia; Zeng, Hui

    2013-01-01

    Mounting evidence has shown strong linkage of root function with root branch order. However, it is not known whether this linkage is consistent in different species. Here, root anatomic traits of the first five branch order were examined in five species differing in plant phylogeny and growth form in tropical and subtropical forests of south China. In Paramichelia baillonii, one tree species in Magnoliaceae, the intact cortex as well as mycorrhizal colonization existed even in the fifth-order root suggesting the preservation of absorption function in the higher-order roots. In contrast, dramatic decreases of cortex thickness and mycorrhizal colonization were observed from lower- to higher-order roots in three other tree species, Cunninghamia lanceolata, Acacia auriculiformis and Gordonia axillaries, which indicate the loss of absorption function. In a fern, Dicranopteris dichotoma, there were several cortex layers with prominently thickened cell wall and no mycorrhizal colonization in the third- and fourth-order roots, also demonstrating the loss of absorptive function in higher-order roots. Cluster analysis using these anatomic traits showed a different classification of root branch order in P. baillonii from other four species. As for the conduit diameter-density relationship in higher-order roots, the mechanism underpinning this relationship in P. baillonii was different from that in other species. In lower-order roots, different patterns of coefficient of variance for conduit diameter and density provided further evidence for the two types of linkage of root function with root branch order. These linkages corresponding to two types of ephemeral root modules have important implication in the prediction of terrestrial carbon cycling, although we caution that this study was pseudo-replicated. Future studies by sampling more species can test the generality of these two types of linkage.

  1. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    PubMed Central

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal differences between EM and AM trees. We further assessed the evidence of convergence or divergence in root traits among the six co-occurring species. Eight fine root morphological and chemical traits were investigated in root segments of the first to fourth root order in three different soil depths and the relative importance of the factors root order, tree species and soil depth for root morphology was determined. Root order was more influential than tree species while soil depth had only a small effect on root morphology All six species showed similar decreases in specific root length and specific root area from the 1st to the 4th root order, while the species patterns differed considerably in root tissue density, root N concentration, and particularly with respect to root tip abundance. Most root morphological traits were not significantly different between EM and AM species (except for specific root area that was larger in AM species), indicating that mycorrhiza type is not a key factor influencing fine root morphology in these species. The order-based root analysis detected species differences more clearly than the simple analysis of bulked fine root mass. Despite convergence in important root traits among AM and EM species, even congeneric species may differ in certain fine root morphological traits. This suggests that, in general, species identity has a larger influence on fine root morphology than mycorrhiza type. PMID:25717334

  2. Transcript profiling of early lateral root initiation.

    PubMed

    Himanen, Kristiina; Vuylsteke, Marnik; Vanneste, Steffen; Vercruysse, Steven; Boucheron, Elodie; Alard, Philippe; Chriqui, Dominique; Van Montagu, Marc; Inzé, Dirk; Beeckman, Tom

    2004-04-06

    At the onset of lateral root initiation in Arabidopsis thaliana, the phytohormone auxin activates xylem pole pericycle cells for asymmetric cell division. However, the molecular events leading from auxin to lateral root initiation are poorly understood, in part because the few responsive cells in the process are embedded in the root and are thus difficult to access. A lateral root induction system, in which most xylem pole pericycle cells were synchronously activated by auxin transport inhibition followed by auxin application, was used for microarray transcript profiling. Of 4,600 genes analyzed, 906 significantly differentially regulated genes were identified that could be grouped into six major clusters. Basically, three major patterns were discerned representing induced, repressed, and transiently expressed genes. Analysis of the coregulated genes, which were specific for each time point, provided new insight into the molecular regulation and signal transduction preceding lateral root initiation in Arabidopsis. The reproducible expression profiles during a time course allowed us to define four stages that precede the cell division in the pericycle. These early stages were characterized by G1 cell cycle block, auxin perception, and signal transduction, followed by progression over G1/S transition and G2/M transition. All these processes took place within 6 h after transfer from N-1-naphthylphthalamic acid to 1-naphthalene acetic acid. These results indicate that this lateral root induction system represents a unique synchronized system that allows the systematic study of the developmental program upstream of the cell cycle activation during lateral root initiation.

  3. How to bond to root canal dentin

    NASA Astrophysics Data System (ADS)

    Nica, Luminita; Todea, Carmen; Furtos, Gabriel; Baldea, Bogdan

    2014-01-01

    Bonding to root canal dentin may be difficult due to various factors: the structural characteristic of the root canal dentin, which is different from that of the coronal dentin; the presence of the organic tissue of the dental pulp inside the root canal, which has to be removed during the cleaning-shaping of the root canal system; the smear-layer resulted after mechanical instrumentation, which may interfere with the adhesion of the filling materials; the type of the irrigants used in the cleaning protocol; the type of the sealer and core material used in the obturation of the endodontic space; the type of the materials used for the restoration of the endodontically treated teeth. The influence of the cleaning protocol, of the root canal filling material, of the type of the adhesive system used in the restoration of the treated teeth and of the region of the root canal, on the adhesion of several filling and restorative materials to root canal dentin was evaluated in the push-out bond strength test on 1-mm thick slices of endodontically treated human teeth. The results showed that all these factors have a statistically significant influence on the push-out bond strength. Formation of resin tags between radicular dentin and the investigated materials was observed in some of the samples at SEM analysis.

  4. Ecology of Root Colonizing Massilia (Oxalobacteraceae)

    PubMed Central

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Background Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. Methodology/Principal Findings The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. Conclusions In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche. PMID:22808103

  5. A thermodynamic formulation of root water uptake

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Anke; Kleidon, Axel; Bechmann, Marcel

    2016-08-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how root water uptake can be evaluated thermodynamically and demonstrate that this evaluation provides additional insights into the factors that impede root water uptake. We derive an expression that relates the energy export at the base of the root system to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We illustrate this thermodynamic formulation using an idealized setup of scenarios with a simple model. In these scenarios, we demonstrate why heterogeneity in soil water distribution and rooting properties affect the impediment of water flow even though the mean soil water content and rooting properties are the same across the scenarios. The effects of heterogeneity can clearly be identified in the thermodynamics of the system in terms of differences in dissipative losses and hydraulic energy, resulting in an earlier start of water limitation in the drying cycle. We conclude that this thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path, which goes beyond resistances and also accounts for the role of heterogeneity in soil water distribution.

  6. 10. PHOTOCOPY OF 'P. H. & F. M. ROOTS FOUNDARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. PHOTOCOPY OF 'P. H. & F. M. ROOTS FOUNDARY MANUFACTURERS OF ROOTS BLOWERS' FROM INDIANAPOLIS STAR, June 13, 1926, Gravure Section, p. 2 - P. H. & F. M. Roots Company, Eastern Avenue, Connersville, Fayette County, IN

  7. Bitter Root Irrigation district canal, looking east, typical section (canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bitter Root Irrigation district canal, looking east, typical section (canal full) - Bitter Root Irrigation Project, Bitter Root Irrigation Canal, Heading at Rock Creek Diversion Dam, West of U.S. Highway 93, Darby, Ravalli County, MT

  8. Bitter Root Irrigation district canal, looking east, typical section and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bitter Root Irrigation district canal, looking east, typical section and crossing - Bitter Root Irrigation Project, Bitter Root Irrigation Canal, Heading at Rock Creek Diversion Dam, West of U.S. Highway 93, Darby, Ravalli County, MT

  9. A thermodynamic formulation of root water uptake

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A.; Kleidon, A.; Bechmann, M.

    2015-12-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how the energetics involved in root water uptake can be quantified. The illustration is done using a simple, four-box model of the soil-root system to represent heterogeneity and a parameterization in which root water uptake is driven by the xylem potential of the plant with a fixed flux boundary condition. We use this approach to evaluate the effects of soil moisture heterogeneity and root system properties on the dissipative losses and export of energy involved in root water uptake. For this, we derive an expression that relates the energy export at the root collar to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We conclude that such a thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path and explicitly accounting not only for the resistances along the flow path and those imposed by soil drying but especially the role of heterogenous soil water distribution. The results show that least energy needs to be exported and dissipative losses are minimized by a root system if it extracts water uniformly from the soil. This has implications for plant water relations in forests where canopies generate heterogenous input patterns. Our diagnostic in the energy domain should be useful in future model applications for quantifying how plants can evolve towards greater efficiency in their structure and function, particularly in heterogenous soil environments. Generally, this approach may help to better describe heterogeneous processes in the soil in a simple, yet physically-based way.

  10. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks

  11. Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Cohen, D.; Or, D.

    2011-06-01

    Root-soil mechanical interactions are key to soil stability on steep hillslopes. Motivated by new advances and applications of the Root Bundle Model (RBM), we conducted a series of experiments in the laboratory and in the field to study the mechanical response of pulled roots. We systematically quantified the influence of different factors such as root geometry and configuration, soil type, and soil water content considering individual roots and root bundles. We developed a novel pullout apparatus for strain-controlled field and laboratory tests of up to 13 parallel roots measured individually and as a bundle. Results highlight the importance of root tortuosity and root branching points for prediction of individual root pullout behavior. Results also confirm the critical role of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Friction between root and soil matrix varied with soil type and water content and affected the force-displacement behavior. Friction in sand varied from 1 to 17 kPa, with low values obtained in wet sand at a confining pressure of 2 kPa and high values obtained in dry sand with 4.5 kPa confining pressure. In a silty soil matrix, friction ranged between 3 kPa under wet and low confining pressure (2 kPa) and 6 kPa in dry and higher confining pressure (4.5 kPa). Displacement at maximum pullout force increased with increasing root diameter and with tortuosity. Laboratory experiments were used to calibrate the RBM that was later validated using six field measurements with natural root bundles of Norway spruce (Picea abies L.). These tests demonstrate the progressive nature of root bundle failure under strain-controlled pullout force and provide new insights regarding force-displacement behavior of root reinforcement, highlighting the importance of considering displacement in slope stability models. Results show that the magnitude of maximum root pullout forces (1-5 kPa) are important for slope

  12. THttpServer class in ROOT

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, Joern; Linev, Sergey

    2015-12-01

    The new THttpServer class in ROOT implements HTTP server for arbitrary ROOT applications. It is based on Civetweb embeddable HTTP server and provides direct access to all objects registered for the server. Objects data could be provided in different formats: binary, XML, GIF/PNG, and JSON. A generic user interface for THttpServer has been implemented with HTML/JavaScript based on JavaScript ROOT development. With any modern web browser one could list, display, and monitor objects available on the server. THttpServer is used in Go4 framework to provide HTTP interface to the online analysis.

  13. Complex root networks of Chinese characters

    NASA Astrophysics Data System (ADS)

    Lee, Po-Han; Chen, Jia-Ling; Wang, Po-Cheng; Chi, Ting-Ting; Xiao, Zhi-Ren; Jhang, Zih-Jian; Yeh, Yeong-Nan; Chen, Yih-Yuh; Hu, Chin-Kun

    There are several sets of Chinese characters still available today, including Oracle Bone Inscriptions (OBI) in Shang Dynasty, Chu characters (CC) used in Chu of Warring State Period, Small Seal Script in dictionary Shuowen Jiezi (SJ) in Eastern Han Dynasty, and Kangxi Dictionary (KD) in Qing Dynasty. Such as Chinese characters were all constructed via combinations of meaningful patterns, called roots. Our studies for the complex networks of all roots indicate that the roots of the characters in OBI, CC, SJ and KD have characteristics of small world networks and scale-free networks.

  14. BOREAS TE-2 Root Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set includes means of tree root respiration measurements on roots having diameters ranging from 0 to 2 mm conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  15. Underground riparian wood: Reconstructing the processes influencing buried stem and coarse root structures of Black Poplar (Populus nigra L.)

    NASA Astrophysics Data System (ADS)

    Holloway, James V.; Rillig, Matthias C.; Gurnell, Angela M.

    2017-02-01

    Following analysis of morphological (including dendrochronological and sedimentological) aspects of buried stem and coarse root structures of eight mature P. nigra individuals located within two sites along the middle to lower Tagliamento River, Italy (Holloway et al., 2017), this paper introduces information on the historical processes of vegetation development and river flow and links this to the form of these eight trees. Aerial images and flow time series are assembled to reconstruct the flood history, potential recruitment periods, and vegetation cover development in the vicinity of the studied trees. This information is combined with previous morphological evidence to reconstruct the development history of each tree via three-element summary diagrams showing (i) a time series of floods, aerial imagery dates, and potential recruitment periods, with colour-coded bars indicating likely key stages in the development of the tree; (ii) colour-coded overlays on an SfM photogrammetric model of each tree; and (iii) colour-coded text boxes providing explanatory annotations. The combined morphology-process analysis reveals complex three-dimensional underground structures, incorporating buried stems, shoots, and adventitious roots that are sometimes joined by grafting, linking the standing tree with the buried gravel surface on which it was recruited. Analysis of process data provides a firm basis for identifying and dating influential flow disturbance events and recruitment windows and shows that a relatively small number of flood events have significantly impacted the studied trees, which are mainly but not exclusively the largest floods in the record. Nevertheless, we stress that all suggested dates are best estimates in the light of the combined evidence. There is undoubted potential for building different interpretations of belowground woody structure development in light of such evidence, but we feel that the form and timing of the developmental trajectories we

  16. Getting to the roots of it: Genetic and hormonal control of root architecture

    PubMed Central

    Jung, Janelle K. H.; McCouch, Susan

    2013-01-01

    Root system architecture (RSA) – the spatial configuration of a root system – is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants. PMID:23785372

  17. Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla.

    PubMed

    Fudali, Sylwia L; Wang, Congli; Williamson, Valerie M

    2013-01-01

    Infective juveniles of the root-knot nematode Meloidogyne hapla are attracted to the zone of elongation of roots where they invade the host but little is known about what directs the nematode to this region of the root. We found that Arabidopsis roots exposed to an ethylene (ET)-synthesis inhibitor attracted significantly more nematodes than control roots and that ET-overproducing mutants were less attractive. Arabidopsis seedlings with ET-insensitive mutations were generally more attractive whereas mutations resulting in constitutive signaling were less attractive. Roots of the ET-insensitive tomato mutant Never ripe (Nr) were also more attractive, indicating that ET signaling also modulated attraction of root-knot nematodes to this host. ET-insensitive mutants have longer roots due to reduced basipetal auxin transport. However, assessments of Arabidopsis mutants that differ in various aspects of the ET response suggest that components of the ET-signaling pathway directly affecting root length are not responsible for modulating root attractiveness and that other components of downstream signaling result in changes in levels of attractants or repellents for M. hapla. These signals may aid in directing this pathogen to an appropriate host and invasion site for completing its life cycle.

  18. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops

    PubMed Central

    Khan, M. A.; Gemenet, Dorcus C.; Villordon, Arthur

    2016-01-01

    The challenge to produce more food for a rising global population on diminishing agricultural land is complicated by the effects of climate change on agricultural productivity. Although great progress has been made in crop improvement, so far most efforts have targeted above-ground traits. Roots are essential for plant adaptation and productivity, but are less studied due to the difficulty of observing them during the plant life cycle. Root system architecture (RSA), made up of structural features like root length, spread, number, and length of lateral roots, among others, exhibits great plasticity in response to environmental changes, and could be critical to developing crops with more efficient roots. Much of the research on root traits has thus far focused on the most common cereal crops and model plants. As cereal yields have reached their yield potential in some regions, understanding their root system may help overcome these plateaus. However, root and tuber crops (RTCs) such as potato, sweetpotato, cassava, and yam may hold more potential for providing food security in the future, and knowledge of their root system additionally focuses directly on the edible portion. Root-trait modeling for multiple stress scenarios, together with high-throughput phenotyping and genotyping techniques, robust databases, and data analytical pipelines, may provide a valuable base for a truly inclusive ‘green revolution.’ In the current review, we discuss RSA with special reference to RTCs, and how knowledge on genetics of RSA can be manipulated to improve their tolerance to abiotic stresses. PMID:27847508

  19. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops.

    PubMed

    Khan, M A; Gemenet, Dorcus C; Villordon, Arthur

    2016-01-01

    The challenge to produce more food for a rising global population on diminishing agricultural land is complicated by the effects of climate change on agricultural productivity. Although great progress has been made in crop improvement, so far most efforts have targeted above-ground traits. Roots are essential for plant adaptation and productivity, but are less studied due to the difficulty of observing them during the plant life cycle. Root system architecture (RSA), made up of structural features like root length, spread, number, and length of lateral roots, among others, exhibits great plasticity in response to environmental changes, and could be critical to developing crops with more efficient roots. Much of the research on root traits has thus far focused on the most common cereal crops and model plants. As cereal yields have reached their yield potential in some regions, understanding their root system may help overcome these plateaus. However, root and tuber crops (RTCs) such as potato, sweetpotato, cassava, and yam may hold more potential for providing food security in the future, and knowledge of their root system additionally focuses directly on the edible portion. Root-trait modeling for multiple stress scenarios, together with high-throughput phenotyping and genotyping techniques, robust databases, and data analytical pipelines, may provide a valuable base for a truly inclusive 'green revolution.' In the current review, we discuss RSA with special reference to RTCs, and how knowledge on genetics of RSA can be manipulated to improve their tolerance to abiotic stresses.

  20. Plant roots use a patterning mechanism to position lateral root branches toward available water

    PubMed Central

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E.; Sturrock, Craig J.; Thompson, Mark C.; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L.; Vernoux, Teva; Mooney, Sacha J.; Bennett, Malcolm J.; Dinneny, José R.

    2014-01-01

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 and PIN-FORMED 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root. PMID:24927545

  1. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    PubMed

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  2. Rooting depths of plants relative to biological and environmental factors

    SciTech Connect

    Foxx, T S; Tierney, G D; Williams, J M

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance.

  3. Understanding plant root system influences on soil strength and stability

    NASA Astrophysics Data System (ADS)

    Bengough, A. Glyn; Brown, Jennifer L.; Loades, Kenneth W.; Knappett, Jonathan A.; Meijer, Gertjan; Nicoll, Bruce

    2016-04-01

    Keywords: root growth, soil reinforcement, tensile strength Plant roots modify and reinforce the soil matrix, stabilising it against erosion and shallow landslides. Roots mechanically bind the soil particles together and modify the soil hydrology via water uptake, creation of biopores, and modification of the soil water-release characteristic. Key to understanding the mechanical reinforcement of soil by roots is the relation between root strength and root diameter measured for roots in any given soil horizon. Thin roots have frequently been measured to have a greater tensile strength than thick roots, but their strength is also often much more variable. We consider the factors influencing this strength-diameter relationship, considering relations between root tensile strength and root dry density, root water content, root age, and root turnover in several woody and non-woody species. The role of possible experimental artefacts and measurement techniques will be considered. Tensile strength increased generally with root age and decreased with thermal time after excision as a result of root decomposition. Single factors alone do not appear to explain the strength-diameter relationship, and both strength/stiffness and dry density may vary between different layers of tissue within a single root. Results will be discussed to consider how we can achieve a more comprehensive understanding of the variation in root biomechanical properties, and its consequences for soil reinforcement. Acknowledgements: The James Hutton Institute receives funding from the Scottish Government. AGB and JAK acknowledge part funding from EPSRC (EP/M020355/1).

  4. Effect of two contemporary root canal sealers on root canal dentin microhardness

    PubMed Central

    2017-01-01

    Background Successful root canal treatment depends on proper cleaning, disinfecting and shaping of the root canal space. Pulpless teeth have lower dentin microhardness value compared to that of vital teeth. A material which can cause change in dentin composition may affect the microhardness. Thus the aim of this study was to evaluate and compare the effect of two root canal sealers on dentin microhardness. Material and Methods Forty two single rooted teeth were selected and divided into 3 equal groups; Apexit, iRootSP and control groups (n=14) Each group was then divided into 2 subgroups according to the post evaluation period; 1 week and 2 months (n=7). Root canal procedure was done in the experimental groups and obturation was made using either; Apexit, iRootSP or left unprepared and unobturated in the control group. Roots were sectioned transversely into cervical, middle and apical segments. The three sections of each root were mounted in a plastic chuck with acrylic resin. The coronal dentin surfaces of the root segments werepolished. Microhardness of each section was measured at 500 µm and 1000 µm from the canal lumen. Results Four way-ANOVA revealed that different tested sealer materials, canal third, measuring distance from the pulp and time as independent variables had statistically non significant effect on mean microhardness values (VHN) at p≤0.001. Among iRootSP groups there was a statistically significant difference between iRoot SP at coronal root portion (87.79±17.83) and iRoot SP at apical root portion (76.26±9.33) groups where (p=0.01). IRoot SP at coronal canal third had higher statistically significant mean microhardness value (87.79±17.83) compared to Apexit at coronal third (73.61±13.47) where (p=0.01). Conclusions Root canal sealers do not affect dentin microhardness. Key words:Root canal, dentin, sealers, microhardness, bioceramic. PMID:28149466

  5. "Roots" Touched Children: Planned or Not

    ERIC Educational Resources Information Center

    Greathouse, Betty

    1977-01-01

    Explores children's reactions to the televised version of Alex Haley's "Roots" through interviews with thirty 8-year-old third-graders (10 Black, 10 Mexican-American, 10 White) from two classrooms in South Phoenix, Arizona. (BF/JH)

  6. DMA thermal analysis of yacon tuberous roots

    NASA Astrophysics Data System (ADS)

    Blahovec, J.; Lahodová, M.; Kindl, M.; Fernández, E. C.

    2013-12-01

    Specimens prepared from yacon roots in first two weeks after harvest were tested by dynamic mechanical analysis thermal analysis at temperatures between 30 and 90°C. No differences between different parts of roots were proved. There were indicated some differences in the test parameters that were caused by short time storage of the roots. One source of the differences was loss of water during the roots storage. The measured modulus increased during short time storage. Detailed study of changes of the modulus during the specimen dynamic mechanical analysis test provided information about different development of the storage and loss moduli during the specimen heating. The observed results can be caused by changes in cellular membranes observed earlier during vegetable heating, and by composition changes due to less stable components of yacon like inulin.

  7. Dechlorodauricumine from cultured roots of Menispermum dauricum.

    PubMed

    Sugimoto, Yukihiro; Matsui, Miharu; Takikawa, Hirosato; Sasaki, Mitsuru; Kato, Masako

    2005-11-01

    Dechlorodauricumine, a possible organic substrate for biochlorination, was isolated from cultured roots of Menispermum dauricum, a rich source of chlorinated alkaloids. Its structure was established by spectroscopic and chemical methods.

  8. Hairy root cultures for secondary metabolites production.

    PubMed

    Pistelli, Laura; Giovannini, Annalisa; Ruffoni, Barbara; Bertoli, Alessandra; Pistelli, Luisa

    2010-01-01

    Hairy roots (HRs) are differentiated cultures of transformed roots generated by the infection of wounded higher plants with Agrobacterium rhizogenes. This pathogen causes the HR disease leading to the neoplastic growth of roots that are characterized by high growth rate in hormone free media and genetic stability. HRs produce the same phytochemicals pattern of the corresponding wild type organ. High stability and productivity features allow the exploitation of HRs as valuable biotechnological tool for the production of plant secondary metabolites. In addition, several elicitation methods can be used to further enhance their accumulation in both small and large scale production. However, in the latter case, cultivation in bioreactors should be still optimized. HRs can be also utilised as biological farm for the production of recombinant proteins, hence holding additional potential for industrial use. HR technology has been strongly improved by increased knowledge of molecular mechanisms underlying their development. The present review summarizes updated aspects of the hairy root induction, genetics and metabolite production.

  9. Asymptotic unbounded root loci - Formulas and computation

    NASA Technical Reports Server (NTRS)

    Sastry, S. S.; Desoer, C. A.

    1983-01-01

    A new geometric way of computing the asymptotic behavior of unbounded root loci of a strictly proper linear time-invariant control system as loop gain goes to infinity is presented. Properties of certain restricted linear maps and nested restrictions of linear maps are developed, and formulas are obtained for the leading coefficient of the asymptotic values of the unbounded multivariable root loci are obtained in terms of eigenvalues of those maps. Published results and a certain simple null structure assumption are used to relate these asymptotic values to the structure at infinity of the Smith-McMillan form of the open loop transfer function. Explicit matrix formulas for the more abstract derived formulas are given and additional geometric insights are developed with orthogonal projections and singular value decomposition. Formulas for the pivots of the unbounded root loci are calculated and shown to have the same form as the coefficients of the unbounded asymptotic root loci.

  10. Root gravitropism in maize and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  11. Irregular sesquiterpenoids from Ligusticum grayi roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root oil of Ligusticum grayi (Apiaceae) contains numerous irregular sesquiterpenoids. In addition to the known acyclic sesquilavandulol and a new sesquilavandulyl aldehyde, two thapsanes, one epithapsane, and fourteen sesquiterpenoids representing eight novel carbon skeletons were found. The new sk...

  12. Sequential rooting media and rooting capacity of Sequoiadendron giganteum in vitro. Peroxidase activity as a marker.

    PubMed

    Berthon, J Y; Boyer, N; Gaspar, T

    1987-10-01

    The rooting capacities of tips of seedling, juvenile and mature shoots of Sequoiadendron giganteum were compared on different rooting media (inductive and expressive media) after passage on an elongating medium. None of the cuttings rooted when continuously kept on medium containing the auxin NAA and vitamin D2. Peroxidase activity of all those cuttings on NAA+D2 first increased during the 7-9 first days and decreased in the days after. Rooting was obtained by transfer of the cuttings after periods longer than 7-9 days from the NAA+D2 inductive medium to a basal medium supplemented or not with rutin (expressive medium). The rooting capacity was emphasized by rutin treatment and was in correlation with the peroxidase peak reached on the NAA+D2 medium. Seedlings, characterised by the highest peroxidase activity, were most performing in rooting.

  13. Capillary-Effect Root-Environment System

    NASA Technical Reports Server (NTRS)

    Wright, Bruce D.

    1991-01-01

    Capillary-effect root-environment system (CERES) is experimental apparatus for growing plants in nutrient solutions. Solution circulated at slight tension in cavity filled with plastic screen and covered by porous plastic membrane. By adsorptive attraction, root draws solution through membrane. Conceived for use in microgravity of space, also finds terrestrial application in germinating seedlings, because it protects them from extremes of temperature, moisture, and soil pH and from overexposure to fertilizers and herbicides.

  14. Development of Machine Learning Tools in ROOT

    NASA Astrophysics Data System (ADS)

    Gleyzer, S. V.; Moneta, L.; Zapata, Omar A.

    2016-10-01

    ROOT is a framework for large-scale data analysis that provides basic and advanced statistical methods used by the LHC experiments. These include machine learning algorithms from the ROOT-integrated Toolkit for Multivariate Analysis (TMVA). We present several recent developments in TMVA, including a new modular design, new algorithms for variable importance and cross-validation, interfaces to other machine-learning software packages and integration of TMVA with Jupyter, making it accessible with a browser.

  15. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica.

    PubMed

    Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan

    2013-06-01

    Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the

  16. Adaptive significance of root grafting in trees

    SciTech Connect

    Loehle, C.; Jones, R.

    1988-12-31

    Root grafting has long been observed in forest trees but the adaptive significance of this trait has not been fully explained. Various authors have proposed that root grafting between trees contributes to mechanical support by linking adjacent root systems. Keeley proposes that this trait would be of greatest advantage in swamps where soils provide poor mechanical support. He provides as evidence a greenhouse study of Nyssa sylvatica Marsh in which seedlings of swamp provenance formed between-individual root grafts more frequently than upland provenance seedlings. In agreement with this within-species study, Keeley observed that arid zone species rarely exhibit grafts. Keeley also demonstrated that vines graft less commonly than trees, and herbs never do. Since the need for mechanical support coincides with this trend, these data seem to support his model. In this paper, the authors explore the mechanisms and ecological significance of root grafting, leading to predictions of root grafting incidence. Some observations support and some contradict the mechanical support hypothesis.

  17. ASTROCULTURE (TM) root metabolism and cytochemical analysis

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Barta, D. J.; Ming, D. W.; Morrow, R. C.; Musgrave, M. E.

    2000-01-01

    Physiology of the root system is dependent upon oxygen availability and tissue respiration. During hypoxia nutrient and water acquisition may be inhibited, thus affecting the overall biochemical and physiological status of the plant. For the Astroculture (TM) plant growth hardware, the availability of oxygen in the root zone was measured by examining the changes in alcohol dehydrogenase (ADH) activity within the root tissue. ADH activity is a sensitive biochemical indicator of hypoxic conditions in plants and was measured in both spaceflight and control roots. In addition to the biochemical enzyme assays, localization of ADH in the root tissue was examined cytochemically. The results of these analyses showed that ADH activity increased significantly as a result of spaceflight exposure. Enzyme activity increased 248% to 304% in dwarf wheat when compared with the ground controls and Brassica showed increases between 334% and 579% when compared with day zero controls. Cytochemical staining revealed no differences in ADH tissue localization in any of the dwarf wheat treatments. These results show the importance of considering root system oxygenation in designing and building nutrient delivery hardware for spaceflight plant cultivation and confirm previous reports of an ADH response associated with spaceflight exposure.

  18. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  19. Defining the core Arabidopsis thaliana root microbiome

    PubMed Central

    Gehring, Jase; Malfatti, Stephanie; Tremblay, Julien; Engelbrektson, Anna; Kunin, Victor; del Rio, Tijana Glavina; Edgar, Robert C.; Eickhorst, Thilo; Ley, Ruth E.; Hugenholtz, Philip; Tringe, Susannah Green; Dangl, Jeffery L.

    2014-01-01

    Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing therhizosphere(immediately surroundingthe root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1-3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities. PMID:22859206

  20. Acid protease production in fungal root endophytes.

    PubMed

    Mayerhofer, Michael S; Fraser, Erica; Kernaghan, Gavin

    2015-01-01

    Fungal endophytes are ubiquitous in healthy root tissue, but little is known about their ecosystem functions, including their ability to utilize organic nutrient sources such as proteins. Root-associated fungi may secrete proteases to access the carbon and mineral nutrients within proteins in the soil or in the cells of their plant host. We compared the protein utilization patterns of multiple isolates of the root endophytes Phialocephala fortinii s.l., Meliniomyces variabilis and Umbelopsis isabellina with those of two ectomycorrhizal (ECM) fungi, Hebeloma incarnatulum and Laccaria bicolor, and the wood-decay fungus Irpex lacteus at pH values of 2-9 on liquid BSA media. We also assessed protease activity using a fluorescently labeled casein assay and gelatin zymography and characterized proteases using specific protease inhibitors. I. lacteus and U. isabellina utilized protein efficiently, while the ECM fungi exhibited poor protein utilization. ECM fungi secreted metallo-proteases and had pH optima above 4, while other fungi produced aspartic proteases with lower pH optima. The ascomycetous root endophytes M. variabilis and P. fortinii exhibited intermediate levels of protein utilization and M. variabilis exhibited a very low pH optimum. Comparing proteolytic profiles between fungal root endophytes and fungi with well defined ecological roles provides insight into the ecology of these cryptic root associates.

  1. [Apical root pins of high-karat gold alloys for resected roots].

    PubMed

    Handtmann, S; Lindemann, W; Sculte, W

    1989-02-01

    Following earlier studies on corrosion of silver pins in the root canal experience will be presented with the use of high-karat gold pins for apical closure of root amputations. The commercially available standardized Ackermann silver pins were replaced by high-karat gold pins of similar Vicker hardness and inserted in 218 patients with 264 root amputations since 1986. A clinical and radiological follow-up demonstrated a success rate of over 90%.

  2. Lectin Binding to the Root and Root Hair Tips of the Tropical Legume Macroptilium atropurpureum Urb

    PubMed Central

    Ridge, R. W.; Rolfe, B. G.

    1986-01-01

    Ten fluorescein isothiocyanate-labeled lectins were tested on the roots of the tropical legume Macroptilium atropurpureum Urb. Four of these (concanavalin A, peanut agglutinin, Ricinis communis agglutinin I [RCA-I], wheat germ agglutinin) were found to bind to the exterior of root cap cells, the root cap slime, and the channels between epidermal cells in the root elongation zone. One of these lectins, RCA-I, bound to the root hair tips in the mature and emerging hair zones and also to sites at which root hairs were only just emerging. There was no RCA-I binding to immature trichoblasts. Preincubation of these lectins with their hapten sugars eliminated all types of root cell binding. By using a microinoculation technique, preincubation of the root surface with RCA-I lectin was found to inhibit infection and nodulation by Rhizobium spp. Preincubation of the root surface with the RCA-I hapten β-d-galactose or a mixture of RCA-I lectin and its hapten failed to inhibit nodulation. Application of RCA-I lectin to the root surface caused no apparent detrimental effects to the root hair cells and did not prevent the growth of root hairs. The lectin did not prevent Rhizobium sp. motility or viability even after 24 h of incubation. It was concluded that the RCA-I lectin-specific sugar β-d-galactose may be involved in the recognition or early infection stages, or both, in the Rhizobium sp. infection of M. atropurpureum. Images PMID:16346989

  3. Modulation of root branching by a coumarin derivative.

    PubMed

    Li, Xiang; Gao, Ming-Jun

    2011-11-01

    A healthy root system is crucial to plant growth and survival. To maintain efficiency of root function, plants have to dynamically modulate root system architecture through various adaptive mechanisms such as lateral root formation to respond to a changing and diversified soil environment. Exogenous application of a coumarin derivative, 4-methylumbelliferone (4-MU), in Arabidopsis thaliana inhibits seed germination by mainly reducing primary root growth. UDP-glycosyltransferases play an integral role in the biochemical mechanism of 4-MU detoxification in plant roots.1 However, 4-MU treatment also dramatically led to increased lateral root initiation, elongation and density. Moreover, marked root bending at the root-hypocotyl junction and auxin redistribution appeared to contribute to the 4-MU-mediated lateral root formation. We propose that 4-MU would serve as a useful chemical tool to study auxin-mediated root branching.

  4. Modulation of root branching by a coumarin derivative

    PubMed Central

    Li, Xiang; Gao, Ming-Jun

    2011-01-01

    A healthy root system is crucial to plant growth and survival. To maintain efficiency of root function, plants have to dynamically modulate root system architecture through various adaptive mechanisms such as lateral root formation to respond to a changing and diversified soil environment. Exogenous application of a coumarin derivative, 4-methylumbelliferone (4-MU), in Arabidopsis thaliana inhibits seed germination by mainly reducing primary root growth. UDP-glycosyltransferases play an integral role in the biochemical mechanism of 4-MU detoxification in plant roots.1 However, 4-MU treatment also dramatically led to increased lateral root initiation, elongation and density. Moreover, marked root bending at the root-hypocotyl junction and auxin redistribution appeared to contribute to the 4-MU-mediated lateral root formation. We propose that 4-MU would serve as a useful chemical tool to study auxin-mediated root branching. PMID:22057336

  5. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types.

    PubMed

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops.

  6. Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure

    SciTech Connect

    Andersen, C.P.; Hogsett, W.E.; Wessling, R.; Plocher, M.

    1991-01-01

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. The hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. The results suggest that (1) ponderosa pine seedlings exposed to 122 and 169 ppm hrs ozone for one season have significantly less root starch reserves available just prior to and during bud break the following year, and (2) spring root growth is decreased following ozone exposure. The carry-over effects of ozone stress may be important in long-lived perennial species which are annually subjected to ozone.

  7. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots

    PubMed Central

    Lux, Alexander; Lackovič, Andrej; Van Staden, Johannes; Lišková, Desana; Kohanová, Jana; Martinka, Michal

    2015-01-01

    Background and Aims Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. Methods Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. Key Results The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical–subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. Conclusions The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant

  8. Root cortical senescence decreases root respiration, nutrient content, and radial water and nutrient transport in barley.

    PubMed

    Schneider, Hannah M; Wojciechowski, Tobias; Postma, Johannes A; Brown, Kathleen M; Lücke, Andreas; Zeisler, Viktoria; Schreiber, Lukas; Lynch, Jonathan P

    2017-02-06

    The functional implications of root cortical senescence (RCS) are poorly understood. We tested the hypotheses that RCS in barley: (1) reduces the respiration and nutrient content of root tissue; (2) decreases radial water and nutrient transport; (3) is accompanied by increased suberization to protect the stele. Genetic variation for RCS exists between modern germplasm and landraces. Nitrogen and phosphorus deficiency increased the rate of RCS. Maximal RCS, defined as the disappearance of the entire root cortex, reduced root nitrogen content by 66%, phosphorus content by 63%, and respiration by 87% compared to root segments with no RCS. Roots with maximal RCS had 90%, 92%, and 84% less radial water, nitrate, and phosphorus transport, respectively compared to segments with no RCS. The onset of RCS coincided with 30% greater aliphatic suberin in the endodermis. These results support the hypothesis that RCS reduces root carbon and nutrient costs and may therefore have adaptive significance for soil resource acquisition. By reducing root respiration and nutrient content, RCS could permit greater root growth, soil resource acquisition, and resource allocation to other plant processes. RCS merits investigation as a trait for improving the performance of barley, wheat, triticale, and rye under edaphic stress.

  9. Root Branching Is a Leading Root Trait of the Plant Economics Spectrum in Temperate Trees.

    PubMed

    Liese, Rebecca; Alings, Katrin; Meier, Ina C

    2017-01-01

    Global vegetation models use conceived relationships between functional traits to simulate ecosystem responses to environmental change. In this context, the concept of the leaf economics spectrum (LES) suggests coordinated leaf trait variation, and separates species which invest resources into short-lived leaves with a high expected energy return rate from species with longer-lived leaves and slower energy return. While it has been assumed that being fast (acquisitive) or slow (conservative) is a general feature for all organ systems, the translation of the LES into a root economics spectrum (RES) for tree species has been hitherto inconclusive. This may be partly due to the assumption that the bulk of tree fine roots have similar uptake functions as leaves, despite the heterogeneity of their environments and resources. In this study we investigated well-established functional leaf and stature traits as well as a high number of fine root traits (14 traits split by different root orders) of 13 dominant or subdominant temperate tree species of Central Europe, representing two phylogenetic groups (gymnosperms and angiosperms) and two mycorrhizal associations (arbuscular and ectomycorrhizal). We found reflected variation in leaf and lower-order root traits in some (surface areas and C:N) but not all (N content and longevity) traits central to the LES. Accordingly, the LES was not mirrored belowground. We identified significant phylogenetic signal in morphological lower-order root traits, i.e., in root tissue density, root diameter, and specific root length. By contrast, root architecture (root branching) was influenced by the mycorrhizal association type which developed independent from phylogeny of the host tree. In structural equation models we show that root branching significantly influences both belowground (direct influence on root C:N) and aboveground (indirect influences on specific leaf area and leaf longevity) traits which relate to resource investment and

  10. Ultrasonography Evaluation of Vulnerable Vessels Around Cervical Nerve Roots During Selective Cervical Nerve Root Block

    PubMed Central

    2017-01-01

    Objective To evaluate the prevalence of vulnerable blood vessels around cervical nerve roots before cervical nerve root block in the clinical setting. Methods This retrospective study included 74 patients with cervical radiculopathy who received an ultrasonography-guided nerve block at an outpatient clinic from July 2012 to July 2014. Before actual injection of the steroid was performed, we evaluated the vulnerable blood vessels around each C5, C6, and C7 nerve root of each patient's painful side, with Doppler ultrasound. Results Out of 74 cases, the C5 level had 2 blood vessels (2.7%), the C6 level had 4 blood vessels (5.45%), and the C7 level had 6 blood vessels (8.11%) close to each targeted nerve root. Moreover, the C5 level had 2 blood vessels (2.7%), the C6 level 5 blood vessels (6.75%), and the C7 level had 4 blood vessels (5.45%) at the site of an imaginary needle's projected pathway to the targeted nerve root, as revealed by axial transverse ultrasound imaging with color Doppler imaging. In total, the C5 level had 4 blood vessels (5.45%), the C6 level 9 blood vessels (12.16%), and the C7 level 10 had blood vessels (13.51%) either at the targeted nerve root or at the site of the imaginary needle's projected pathway to the targeted nerve root. There was an unneglectable prevalence of vulnerable blood vessels either at the targeted nerve root or at the site of the needle' projected pathway to the nerve root. Also, it shows a higher prevalence of vulnerable blood vessels either at the targeted nerve root or at the site of an imaginary needle's projected pathway to the nerve root as the spinal nerve root level gets lower. Conclusion To prevent unexpected critical complications involving vulnerable blood vessel injury during cervical nerve root block, it is recommended to routinely evaluate for the presence of vulnerable blood vessels around each cervical nerve root using Doppler ultrasound imaging before the cervical nerve root block, especially for the lower

  11. Root Branching Is a Leading Root Trait of the Plant Economics Spectrum in Temperate Trees

    PubMed Central

    Liese, Rebecca; Alings, Katrin; Meier, Ina C.

    2017-01-01

    Global vegetation models use conceived relationships between functional traits to simulate ecosystem responses to environmental change. In this context, the concept of the leaf economics spectrum (LES) suggests coordinated leaf trait variation, and separates species which invest resources into short-lived leaves with a high expected energy return rate from species with longer-lived leaves and slower energy return. While it has been assumed that being fast (acquisitive) or slow (conservative) is a general feature for all organ systems, the translation of the LES into a root economics spectrum (RES) for tree species has been hitherto inconclusive. This may be partly due to the assumption that the bulk of tree fine roots have similar uptake functions as leaves, despite the heterogeneity of their environments and resources. In this study we investigated well-established functional leaf and stature traits as well as a high number of fine root traits (14 traits split by different root orders) of 13 dominant or subdominant temperate tree species of Central Europe, representing two phylogenetic groups (gymnosperms and angiosperms) and two mycorrhizal associations (arbuscular and ectomycorrhizal). We found reflected variation in leaf and lower-order root traits in some (surface areas and C:N) but not all (N content and longevity) traits central to the LES. Accordingly, the LES was not mirrored belowground. We identified significant phylogenetic signal in morphological lower-order root traits, i.e., in root tissue density, root diameter, and specific root length. By contrast, root architecture (root branching) was influenced by the mycorrhizal association type which developed independent from phylogeny of the host tree. In structural equation models we show that root branching significantly influences both belowground (direct influence on root C:N) and aboveground (indirect influences on specific leaf area and leaf longevity) traits which relate to resource investment and

  12. Earliest rooting system and root : shoot ratio from a new Zosterophyllum plant.

    PubMed

    Hao, Shougang; Xue, Jinzhuang; Guo, Dali; Wang, Deming

    2010-01-01

    The enhanced chemical weathering by rooted vascular plants during the Silurian-Devonian period played a crucial role in altering global biogeochemical cycles and atmospheric environments; however, the documentation of early root morphology and physiology is scarce because the existing fossils are mostly incomplete. Here, we report an entire, uprooted specimen of a new Zosterophyllum Penhallow, named as Z. shengfengense, from the Early Devonian Xitun Formation (Lochkovian, c. 413 Myr old) of Yunnan, south China. This plant has the most ancient known record of a rooting system. The plant consists of aerial axes of 98 mm in height, showing a tufted habit, and a rhizome bearing a fibrous-like rooting system, c. 20 mm in length. The rhizome shows masses of branchings, which produce upwardly directed aerial axes and downwardly directed root-like axes. The completeness of Z. shengfengense made it possible to estimate the biomass allocation and root : shoot ratio. The root : shoot ratio of this early plant is estimated at a mean value of 0.028, and the root-like axes constitute only c. 3% of the total biomass. Zosterophyllum shengfengense was probably a semi-aquatic plant with efficient water use or a strong uptake capacity of the root-like axes.

  13. Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq.

    PubMed

    Celis-Arámburo, Teresita de Jesús; Carrillo-Pech, Mildred; Castro-Concha, Lizbeth A; Miranda-Ham, María de Lourdes; Martínez-Estévez, Manuel; Echevarría-Machado, Ileana

    2011-12-01

    The effects of nitrate (NO₃⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO₃⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO₃⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO₃⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO₃⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO₃⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO₃⁻ in fluctuating soil environments.

  14. Plant root tortuosity: an indicator of root path formation in soil with different composition and density

    PubMed Central

    Popova, Liyana; van Dusschoten, Dagmar; Nagel, Kerstin A.; Fiorani, Fabio; Mazzolai, Barbara

    2016-01-01

    Background and Aims Root soil penetration and path optimization are fundamental for root development in soil. We describe the influence of soil strength on root elongation rate and diameter, response to gravity, and root-structure tortuosity, estimated by average curvature of primary maize roots. Methods Soils with different densities (1·5, 1·6, 1·7 g cm−3), particle sizes (sandy loam; coarse sand mixed with sandy loam) and layering (monolayer, bilayer) were used. In total, five treatments were performed: Mix_low with mixed sand low density (three pots, 12 plants), Mix_medium - mixed sand medium density (three pots, 12 plants), Mix_high - mixed sand high density (three pots, ten plants), Loam_low sandy loam soil low density (four pots, 16 plants), and Bilayer with top layer of sandy loam and bottom layer mixed sand both of low density (four pots, 16 plants). We used non-invasive three-dimensional magnetic resonance imaging to quantify effects of these treatments. Key Results Roots grew more slowly [root growth rate (mm h–1); decreased 50 %] with increased diameters [root diameter (mm); increased 15 %] in denser soils (1·7 vs. 1·5 g cm–3). Root response to gravity decreased 23 % with increased soil compaction, and tortuosity increased 10 % in mixed sand. Response to gravity increased 39 % and tortuosity decreased 3 % in sandy loam. After crossing a bilayered–soil interface, roots grew more slowly, similar to roots grown in soil with a bulk density of 1·64 g cm–3, whereas the actual experimental density was 1·48±0·02 g cm–3. Elongation rate and tortuosity were higher in Mix_low than in Loam_low. Conclusions The present study increases our existing knowledge of the influence of physical soil properties on root growth and presents new assays for studying root growth dynamics in non-transparent media. We found that root tortuosity is indicative of root path selection, because it could result from both mechanical deflection and

  15. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity.

    PubMed

    Julkowska, Magdalena M; Hoefsloot, Huub C J; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A; Testerink, Christa

    2014-11-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na(+)/K(+) ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked.

  16. Modelling water uptake efficiency of root systems

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  17. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Pallero-Baena, Mercedes; Navarro-Neila, Sara; Téllez-Robledo, Bárbara; Garcia-Mina, Jose M; Baigorri, Roberto; Gallego, Francisco Javier; del Pozo, Juan C

    2015-10-01

    In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark-Root (D-Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D-Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D-Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.

  18. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum.

    PubMed

    Ling, Ning; Zhang, Wenwen; Wang, Dongsheng; Mao, Jiugeng; Huang, Qiwei; Guo, Shiwei; Shen, Qirong

    2013-01-01

    Grafting watermelon onto bottle gourd rootstock is commonly used method to generate resistance to Fusarium oxysporum f. sp. niveum (FON), but knowledge of the effect of the root exudates of grafted watermelon on this soil-borne pathogen in rhizosphere remains limited. To investigate the root exudate profiles of the own-root bottle gourd, grafted-root watermelon and own-root watermelon, recirculating hydroponic culture system was developed to continuously trap these root exudates. Both conidial germination and growth of FON were significantly decreased in the presence of root exudates from the grafted-root watermelon compared with the own-root watermelon. HPLC analysis revealed that the composition of the root exudates released by the grafted-root watermelon differed not only from the own-root watermelon but also from the bottle gourd rootstock plants. We identified salicylic acid in all 3 root exudates, chlorogenic acid and caffeic acid in root exudates from own-root bottle gourd and grafted-root watermelon but not own-root watermelon, and abundant cinnamic acid only in own-root watermelon root exudates. The chlorogenic and caffeic acid were candidates for potentiating the enhanced resistance of the grafted watermelon to FON, therefore we tested the effects of the two compounds on the conidial germination and growth of FON. Both phenolic acids inhibited FON conidial germination and growth in a dose-dependent manner, and FON was much more susceptible to chlorogenic acid than to caffeic acid. In conclusion, the key factor in attaining the resistance to Fusarium wilt is grafting on the non-host root stock, however, the root exudates profile also showed some contribution in inhibiting FON. These results will help to better clarify the disease resistance mechanisms of grafted-root watermelon based on plant-microbe communication and will guide the improvement of strategies against Fusarium-mediated wilt of watermelon plants.

  19. Effects of Nutrient Heterogeneity and Competition on Root Architecture of Spruce Seedlings: Implications for an Essential Feature of Root Foraging

    PubMed Central

    Nan, Hongwei; Liu, Qing; Chen, Jinsong; Cheng, Xinying; Yin, Huajun; Yin, Chunying; Zhao, Chunzhang

    2013-01-01

    Background We have limited understanding of root foraging responses when plants were simultaneously exposed to nutrient heterogeneity and competition, and our goal was to determine whether and how plants integrate information about nutrients and neighbors in root foraging processes. Methodology/Principal Findings The experiment was conducted in split-containers, wherein half of the roots of spruce (Picea asperata) seedlings were subjected to intraspecific root competition (the vegetated half), while the other half experienced no competition (the non-vegetated half). Experimental treatments included fertilization in the vegetated half (FV), the non-vegetated half (FNV), and both compartments (F), as well as no fertilization (NF). The root architecture indicators consisted of the number of root tips over the root surface (RTRS), the length percentage of diameter-based fine root subclasses to total fine root (SRLP), and the length percentage of each root order to total fine root (ROLP). The target plants used novel root foraging behaviors under different combinations of neighboring plant and localized fertilization. In addition, the significant increase in the RTRS of 0–0.2 mm fine roots after fertilization of the vegetated half alone and its significant decrease in fertilizer was applied throughout the plant clearly showed that plant root foraging behavior was regulated by local responses coupled with systemic control mechanisms. Conclusions/Significance We measured the root foraging ability for woody plants by means of root architecture indicators constructed by the roots possessing essential nutrient uptake ability (i.e., the first three root orders), and provided new evidence that plants integrate multiple forms of environmental information, such as nutrient status and neighboring competitors, in a non-additive manner during the root foraging process. The interplay between the responses of individual root modules (repetitive root units) to localized

  20. Disentangling root system responses to neighbours: identification of novel root behavioural strategies

    PubMed Central

    Belter, Pamela R.; Cahill, James F.

    2015-01-01

    Plants live in a social environment, with interactions among neighbours a ubiquitous aspect of life. Though many of these interactions occur in the soil, our understanding of how plants alter root growth and the patterns of soil occupancy in response to neighbours is limited. This is in contrast to a rich literature on the animal behavioural responses to changes in the social environment. For plants, root behavioural changes that alter soil occupancy patterns can influence neighbourhood size and the frequency or intensity of competition for soil resources; issues of fundamental importance to understanding coexistence and community assembly. Here we report a large comparative study in which individuals of 20 species were grown with and without each of two neighbour species. Through repeated root visualization and analyses, we quantified many putative root behaviours, including the extent to which each species altered aspects of root system growth (e.g. rooting breadth, root length, etc.) in response to neighbours. Across all species, there was no consistent behavioural response to neighbours (i.e. no general tendencies towards root over-proliferation nor avoidance). However, there was a substantial interspecific variation showing a continuum of behavioural variation among the 20 species. Multivariate analyses revealed two novel and predominant root behavioural strategies: (i) size-sensitivity, in which focal plants reduced their overall root system size in response to the presence of neighbours, and (ii) location-sensitivity, where focal plants adjusted the horizontal and vertical placement of their roots in response to neighbours. Of these, size-sensitivity represents the commonly assumed response to competitive encounters—reduced growth. However, location sensitivity is not accounted for in classic models and concepts of plant competition, though it is supported from recent work in plant behavioural ecology. We suggest that these different strategies could have

  1. How can science education foster students' rooting?

    NASA Astrophysics Data System (ADS)

    Østergaard, Edvin

    2015-06-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to prevent (further) uprooting and efforts to promote rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the earth as ground, and potential consequences for teaching science in a rooted manner. However, the argumentation raises a number of questions which I try to answer. My argumentation rests on Husserl's critique of science and the "ontological reversal", an ontological position where abstract models from science are considered as more real than the everyday reality itself, where abstract, often mathematical, models are taken to be the real causes behind everyday experiences. In this paper, measures towards an "ontological re-reversal" are discussed by drawing on experiences from phenomenon-based science education. I argue that perhaps the most direct and productive way of promoting rooting in science class is by intentionally cultivating the competencies of sensing and aesthetic experience. An aesthetic experience is defined as a precognitive, sensuous experience, an experience that is opened up for through sensuous perception. Conditions for rooting in science education is discussed against three challenges: Restoring the value of aesthetic experience, allowing time for open inquiry and coping with curriculum. Finally, I raise the question whether dimensions like "reality" or "nature" are self-evident for students. In the era of constructivism, with its focus on cognition and knowledge building, the inquiry process itself has become more important than the object of inquiry. I argue that as educators of science teachers we have to emphasize more explicitly "the nature of nature" as a field of exploration.

  2. Roots: evolutionary origins and biogeochemical significance.

    PubMed

    Raven, J A; Edwards, D

    2001-03-01

    Roots, as organs distinguishable developmentally and anatomically from shoots (other than by occurrence of stomata and sporangia on above-ground organs), evolved in the sporophytes of at least two distinct lineages of early vascular plants during their initial major radiation on land in Early Devonian times (c. 410-395 million years ago). This was some 15 million years after the appearance of tracheophytes and c. 50 million years after the earliest embryophytes of presumed bryophyte affinity. Both groups are known initially only from spores, but from comparative anatomy of extant bryophytes and later Lower Devonian fossils it is assumed that, during these times, below-ground structures (if any) other than true roots fulfilled the functions of anchorage and of water and nutrient acquisition, despite lacking an endodermis (as do the roots of extant Lycopodium spp.). By 375 million years ago root-like structures penetrated almost a metre into the substratum, greatly increasing the volume of mineral matter subject to weathering by the higher than atmospheric CO(2) levels generated by plant and microbial respiration in material with restricted diffusive contact with the atmosphere. Chemical weathering consumes CO(2) in converting silicates into bicarbonate and Si(OH)(4). The CO(2) consumed in weathering ultimately came from atmospheric CO(2) via photosynthesis and respiration; this use of CO(2) probably accounts for most of the postulated 10-fold decrease in atmospheric CO(2) from 400-350 million years ago, with significant effects on shoot evolution. Subsequent evolution of roots has yielded much-branched axes down to 40 microm diameter, a lower limit set by long-distance transport constraints. Finer structures involved in the uptake of nutrients of low diffusivity in soil evolved at least 400 million years ago as arbuscular mycorrhizas or as evaginations of "roots" ("root hairs").

  3. The evolution of root hairs and rhizoids

    PubMed Central

    Jones, Victor A.S.; Dolan, Liam

    2012-01-01

    Background Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively. Scope Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts. Conclusions A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period. PMID:22730024

  4. Potassium Transport in Corn Roots 1

    PubMed Central

    Kochian, Leon V.; Lucas, William J.

    1985-01-01

    It has recently been reported that plasmalemma electron transport may be involved in the generation of H+ gradients and the uptake of ions into root tissue. We report here on the influence of extracellular NADH and ferricyanide on K+ (86Rb+) influx, K+ (86Rb+) efflux, net apparent H+ efflux, and O2 consumption in 2-centimeter corn (Zea mays [A632 × Oh43]) root segments and intact corn roots. In freshly excised root segments, NADH had no effect on O2 consumption and K+ uptake. However, after the root segments were given a 4-hour wash in aerated salt solution, NADH elicited a moderate stimulation in O2 consumption but caused a dramatic inhibition of K+ influx. Moreover, net apparent H+ efflux was significantly inhibited following NADH exposure in 4-hour washed root segments. Exogenous ferricyanide inhibited K+ influx in a similar fashion to that caused by NADH, but caused a moderate stimulation of net H+ efflux. Additionally, both reagents substantially altered K+ efflux at both the plasmalemma and tonoplast. These complex results do not lend themselves to straightforward interpretation and are in contradiction with previously published results. They suggest that the interaction between cell surface redox reactions and membrane transport are more complex than previously considered. Indeed, more than one electron transport system may operate in the plasmalemma to influence, or regulate, a number of transport functions and other cellular processes. The results presented here suggest that plasmalemma redox reactions may be involved in the regulation of ion uptake and the `wound response' exhibited by corn roots. PMID:16664070

  5. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  6. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  7. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  8. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  9. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  10. Cold temperature delays wound healing in postharvest sugarbeet roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots s...

  11. Root cortical burden influences drought tolerance in maize

    PubMed Central

    Jaramillo, Raúl E.; Nord, Eric A.; Chimungu, Joseph G.; Brown, Kathleen M.; Lynch, Jonathan P.

    2013-01-01

    Background and Aims Root cortical aerenchyma (RCA) increases water and nutrient acquisition by reducing the metabolic costs of soil exploration. In this study the hypothesis was tested that living cortical area (LCA; transversal root cortical area minus aerenchyma area and intercellular air space) is a better predictor of root respiration, soil exploration and, therefore, drought tolerance than RCA formation or root diameter. Methods RCA, LCA, root respiration, root length and biomass loss in response to drought were evaluated in maize (Zea mays) recombinant inbred lines grown with adequate and suboptimal irrigation in soil mesocosms. Key Results Root respiration was highly correlated with LCA. LCA was a better predictor of root respiration than either RCA or root diameter. RCA reduced respiration of large-diameter roots. Since RCA and LCA varied in different parts of the root system, the effects of RCA and LCA on root length were complex. Greater crown-root LCA was associated with reduced crown-root length relative to total root length. Reduced LCA was associated with improved drought tolerance. Conclusions The results are consistent with the hypothesis that LCA is a driver of root metabolic costs and may therefore have adaptive significance for water acquisition in drying soil. PMID:23618897

  12. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture.

  13. Functional genomics of root growth and development in Arabidopsis.

    PubMed

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N

    2009-04-01

    Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics, and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal.

  14. [Dimensional fractal of post-paddy wheat root architecture].

    PubMed

    Chen, Xin-xin; Ding, Qi-shuo; Li, Yi-nian; Xue, Jin-lin; Lu, Ming-zhou; Qiu, Wei

    2015-06-01

    To evaluate whether crop rooting system was directionally dependent, a field digitizer was used to measure post-paddy wheat root architectures. The acquired data was transferred to Pro-E, in which virtual root architecture was reconstructed and projected to a series of planes each separated in 10° apart. Fractal dimension and fractal abundance of root projections in all the 18 planes were calculated, revealing a distinctive architectural distribution of wheat root in each direction. This strongly proved that post-paddy wheat root architecture was directionally dependent. From seedling to turning green stage, fractal dimension of the 18 projections fluctuated significantly, illustrating a dynamical root developing process in the period. At the jointing stage, however, fractal indices of wheat root architecture resumed its regularity in each dimension. This wheat root architecture recovered its dimensional distinctness. The proposed method was applicable for precision modeling field state root distribution in soil.

  15. Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses