Sample records for adventitious roots formed

  1. The Physiology of Adventitious Roots1

    PubMed Central

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  2. Inhibition of strigolactones promotes adventitious root formation

    PubMed Central

    Beveridge, Christine A.; Geelen, Danny

    2012-01-01

    Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate here that fluridone can be used to promote adventitious rooting in the model species Pisum sativum (pea). In addition, in the garden species Plumbago auriculata and Jasminium polyanthum fluridone was equally as successful at promoting roots as a commercial rooting compound containing NAA and IBA. Our findings demonstrate that inhibition of strigolactone signaling has the potential to be used to improve adventitious rooting in commercially relevant species. PMID:22580687

  3. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    PubMed

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  4. Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants

    PubMed Central

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Li, Siqi; van Bodegom, Peter M.; Cornelissen, Johannes H. C.

    2016-01-01

    Background and Aims Flooding imposes stress upon terrestrial plants because it results in oxygen deficiency, which is considered a major problem for submerged plants. A common response of terrestrial plants to flooding is the formation of aquatic adventitious roots. Some studies have shown that adventitious roots on submerged plants are capable of absorbing water and nutrients. However, there is no experimental evidence for the possible oxygen uptake function of adventitious roots or for how important this function might be for the survival of plants during prolonged submergence. This study aims to investigate whether adventitious roots absorb oxygen from the water column, and whether this new function is beneficial to the survival of completely submerged plants. Methods Taking Alternanthera philoxeroides (Mart.) Griseb. as a representative species, the profiling of the underwater oxygen gradient towards living and dead adventitious roots on completely submerged plants was conducted, the oxygen concentration in stem nodes with and without adventitious roots was measured, and the growth, survival and non-structural carbohydrate content of completely submerged plants with and without adventitious roots was investigated. Key Results Oxygen profiles in the water column of adventitious roots showed that adventitious roots absorbed oxygen from water. It is found that the oxygen concentration in stem nodes having adventitious roots was higher than that in stem nodes without adventitious roots, which implies that the oxygen absorbed by adventitious roots from water was subsequently transported from the roots to other plant tissues. Compared with plants whose adventitious roots had been pruned, those with intact adventitious roots had slower leaf shedding, slower plant mass reduction, more efficient carbohydrate economy and prolonged survival when completely submerged. Conclusions The adventitious roots of A. philoxeroides formed upon submergence can absorb oxygen from

  5. Distinct modes of adventitious rooting in Arabidopsis thaliana.

    PubMed

    Correa, L da Rocha; Troleis, J; Mastroberti, A A; Mariath, J E A; Fett-Neto, A G

    2012-01-01

    The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species. Â

  6. Adventitious Root Formation of Forest Trees and Horticultural Plants - From Genes to Applications

    USDA-ARS?s Scientific Manuscript database

    Adventitious root formation is a key step in the clonal propagation of forest trees and horticultural crops. Difficulties in forming adventitious roots (ARs) on stem cuttings and plants produced in vitro hinders the propagation of elite trees and efficient production of many horticultural plant spec...

  7. Metabolic analysis of the increased adventitious rooting mutant of Artemisia annua reveals a role for the plant monoterpene borneol in adventitious root formation.

    PubMed

    Tian, Na; Liu, Shuoqian; Li, Juan; Xu, Wenwen; Yuan, Lin; Huang, Jianan; Liu, Zhonghua

    2014-08-01

    Adventitious root (AR) formation is a critical process for plant clonal propagation. The role of plant secondary metabolites in AR formation is still poorly understood. Chemical and physical mutagenesis in combination with somatic variation were performed on Artemisia annua in order to obtain a mutant with changes in adventitious rooting and composition of plant secondary metabolites. Metabolic and morphological analyses of the iar (increased adventitious rooting) mutant coupled with in vitro assays were used to elucidate the relationship between plant secondary metabolites and AR formation. The only detected differences between the iar mutant and wild-type were rooting capacity and borneol/camphor content. Consistent with this, treatment with borneol in vitro promoted adventitious rooting in wild-type. The enhanced rooting did not continue upon removal of borneol. The iar mutant displayed no significant differences in AR formation upon treatment with camphor. Together, our results suggest that borneol promotes adventitious rooting whereas camphor has no effect on AR formation. © 2013 Scandinavian Plant Physiology Society.

  8. Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea1[C][W][OA

    PubMed Central

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B.; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-01-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776

  9. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis

    PubMed Central

    Rasmussen, Amanda; Hosseini, Seyed Abdollah; Hajirezaei, Mohammed-Reza; Druege, Uwe; Geelen, Danny

    2015-01-01

    Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue’s auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation. PMID:25540438

  10. Growth and anatomical parameters of adventitious roots formed on mung bean hypocotyls are correlated with galactoglucomannan oligosaccharides structure.

    PubMed

    KollĂĄrovĂĄ, K; Zelko, I; HenselovĂĄ, M; Capek, P; LiĆĄkovĂĄ, D

    2012-01-01

    The effect of galactoglucomannan oligosaccharides (GGMOs) compared with chemically modified oligosaccharides, GGMOs-g (with reduced number of D-galactose side chains) and GGMOs-r (with reduced reducing ends) on mung bean (Vigna radiata (L.) Wilczek) adventitious roots formation, elongation, and anatomical structure have been studied. All types of oligosaccharides influenced adventitious root formation in the same way: stimulation in the absence of exogenous auxin and inhibition in the presence of exogenous auxin. Both reactions are probably related with the presence/content of endogenous auxin in plant cuttings. However, the adventitious root length was inhibited by GGMOs both in the absence as well as in the presence of auxin (IBA or NAA), while GGMOs-g inhibition was significantly weaker compared with GGMOs. GGMOs-r were without significant difference on both processes, compared with GGMOs. GGMOs affected not only the adventitious root length but also their anatomy in dependence on the combination with certain type of auxin. The oligosaccharides influenced cortical cells division, which was reflected in the cortex area and in the root diameter. All processes followed were dependent on oligosaccharides chemical structure. The results suggest also that GGM-derived oligosaccharides may play an important role in adventitious roots elongation but not in their formation.

  11. Growth and Anatomical Parameters of Adventitious Roots Formed on Mung Bean Hypocotyls Are Correlated with Galactoglucomannan Oligosaccharides Structure

    PubMed Central

    KollĂĄrovĂĄ, K.; Zelko, I.; HenselovĂĄ, M.; Capek, P.; LiĆĄkovĂĄ, D.

    2012-01-01

    The effect of galactoglucomannan oligosaccharides (GGMOs) compared with chemically modified oligosaccharides, GGMOs-g (with reduced number of D-galactose side chains) and GGMOs-r (with reduced reducing ends) on mung bean (Vigna radiata (L.) Wilczek) adventitious roots formation, elongation, and anatomical structure have been studied. All types of oligosaccharides influenced adventitious root formation in the same way: stimulation in the absence of exogenous auxin and inhibition in the presence of exogenous auxin. Both reactions are probably related with the presence/content of endogenous auxin in plant cuttings. However, the adventitious root length was inhibited by GGMOs both in the absence as well as in the presence of auxin (IBA or NAA), while GGMOs-g inhibition was significantly weaker compared with GGMOs. GGMOs-r were without significant difference on both processes, compared with GGMOs. GGMOs affected not only the adventitious root length but also their anatomy in dependence on the combination with certain type of auxin. The oligosaccharides influenced cortical cells division, which was reflected in the cortex area and in the root diameter. All processes followed were dependent on oligosaccharides chemical structure. The results suggest also that GGM-derived oligosaccharides may play an important role in adventitious roots elongation but not in their formation. PMID:22666154

  12. Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia.

    PubMed

    Baskaran, P; Jayabalan, N

    2009-07-01

    Psoralea corylifolia is an endangered plant producing various compounds of medical importance. Adventitious roots and hairy roots were induced in cultures prepared from hypocotyl explants. Psoralen content was evaluated in both root types grown either in suspension cultures or on agar solidified medium. Psoralen content was approximately 3 mg g(-1) DW in suspension grown hairy roots being higher than in solid grown hairy roots and in solid and suspension-grown adventitious roots.

  13. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis.

    PubMed

    Rasmussen, Amanda; Hosseini, Seyed Abdollah; Hajirezaei, Mohammed-Reza; Druege, Uwe; Geelen, Danny

    2015-03-01

    Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue's auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.)

    Treesearch

    Micah E Stevens; Keith E Woeste; Paula M Pijut

    2018-01-01

    Cutting propagation plays a large role in the forestry and horticulture industries where superior genotypes need to be clonally multiplied. Integral to this process is the ability of cuttings to form adventitious roots. Recalcitrance to adventitious root development is a serious hurdle for many woody plant propagation systems including black walnut (Juglans...

  15. Adventitious root formation in tree species: involvement of transcription factors.

    PubMed

    Legué, Valérie; Rigal, Adeline; Bhalerao, Rishikesh P

    2014-06-01

    Adventitious rooting is an essential step in the vegetative propagation of economically important horticultural and woody species. Populus has emerged as an experimental model for studying processes that are important in tree growth and development. It is highly useful for molecular genetic analysis of adventitious roots in trees. In this short review, we will highlight the recent progress made in the identification of transcription factors involved in the control of adventitious rooting in woody species. Their regulation will be discussed. © 2014 Scandinavian Plant Physiology Society.

  16. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara

    PubMed Central

    Zhang, Qian; Visser, Eric J. W.; de Kroon, Hans; Huber, Heidrun

    2015-01-01

    Background and Aims Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Methods Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Key Results Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. Conclusions The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant’s life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow

  17. Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments.

    PubMed

    Li, Yun-He; Zhang, Hong-Na; Wu, Qing-Song; Muday, Gloria K

    2017-06-01

    A total of 74,745 unigenes were generated and 1975 DEGs were identified. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment were revealed. Adventitious root formation is a crucial step in plant vegetative propagation, but the molecular mechanism of adventitious root formation remains unclear. Adventitious roots formed only at the proximal cut surface (PCS) of mango cotyledon segments, whereas no roots were formed on the opposite, distal cut surface (DCS). To identify the transcript abundance changes linked to adventitious root development, RNA was isolated from PCS and DCS at 0, 4 and 7 days after culture, respectively. Illumina sequencing of libraries generated from these samples yielded 62.36 Gb high-quality reads that were assembled into 74,745 unigenes with an average sequence length of 807 base pairs, and 33,252 of the assembled unigenes at least had homologs in one of the public databases. Comparative analysis of these transcriptome databases revealed that between the different time points at PCS there were 1966 differentially expressed genes (DEGs), while there were only 51 DEGs for the PCS vs. DCS when time-matched samples were compared. Of these DEGs, 1636 were assigned to gene ontology (GO) classes, the majority of that was involved in cellular processes, metabolic processes and single-organism processes. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment are predicted to encode polar auxin transport carriers, auxin-regulated proteins, cell wall remodeling enzymes and ethylene-related proteins. In order to validate RNA-sequencing results, we further analyzed the expression profiles of 20 genes by quantitative real-time PCR. This study expands the transcriptome information for Mangifera indica and identifies candidate genes involved in adventitious root formation in cotyledon segments of mango.

  18. Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis[W

    PubMed Central

    Gutierrez, Laurent; Mongelard, GaĂ«lle; FlokovĂĄ, KristĂœna; Păcurar, Daniel I.; NovĂĄk, Ondƙej; Staswick, Paul; Kowalczyk, Mariusz; Păcurar, Monica; Demailly, HervĂ©; Geiss, Gaia; Bellini, Catherine

    2012-01-01

    Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other’s expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways. PMID:22730403

  19. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara.

    PubMed

    Zhang, Qian; Visser, Eric J W; de Kroon, Hans; Huber, Heidrun

    2015-08-01

    Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant's life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants. © The Author 2015. Published by

  20. Expressed sequence tag analysis of functional genes associated with adventitious rooting in Liriodendron hybrids.

    PubMed

    Zhong, Y D; Sun, X Y; Liu, E Y; Li, Y Q; Gao, Z; Yu, F X

    2016-06-24

    Liriodendron hybrids (Liriodendron chinense x L. tulipifera) are important landscaping and afforestation hardwood trees. To date, little genomic research on adventitious rooting has been reported in these hybrids, as well as in the genus Liriodendron. In the present study, we used adventitious roots to construct the first cDNA library for Liriodendron hybrids. A total of 5176 expressed sequence tags (ESTs) were generated and clustered into 2921 unigenes. Among these unigenes, 2547 had significant homology to the non-redundant protein database representing a wide variety of putative functions. Homologs of these genes regulated many aspects of adventitious rooting, including those for auxin signal transduction and root hair development. Results of quantitative real-time polymerase chain reaction showed that AUX1, IRE, and FB1 were highly expressed in adventitious roots and the expression of AUX1, ARF1, NAC1, RHD1, and IRE increased during the development of adventitious roots. Additionally, 181 simple sequence repeats were identified from 166 ESTs and more than 91.16% of these were dinucleotide and trinucleotide repeats. To the best of our knowledge, the present study reports the identification of the genes associated with adventitious rooting in the genus Liriodendron for the first time and provides a valuable resource for future genomic studies. Expression analysis of selected genes could allow us to identify regulatory genes that may be essential for adventitious rooting.

  1. Proliferation and glucosinolates accumulation of broccoli adventitious roots in liquid medium

    NASA Astrophysics Data System (ADS)

    Nhut, Nguyen Minh; Tien, Le Thi Thuy

    2017-09-01

    Cotyledons from 7-day-old in vitro broccoli seedling were used as explant source in adventitious root induction on MS medium supplemented with 30 g/l sucrose, 1.6 mg/l IBA and 7 g/l agar. Adventitious roots from cotyledons were transferred to liquid medium containing the same components as rooting medium for two weeks, then subcultured to MS medium with diferent sugar, macrominerals and casein hydrolysate concentrations. The best adventitious root growth was observed in half-strength MS medium supplemented with 40 g/l sucrose, 600 mg/l casein hydrolysate and 1.6 mg/l IBA (growth index of 4.00 in about 14 culture days with inoculum density of 1.0 g fresh weight / 30 ml of culture medium). The culturing process can be stopped on the 28th day for root biomass and on the 35th day for glucosinolates.

  2. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding

    PubMed Central

    2012-01-01

    Background Flooding reduces supply of oxygen to the roots affecting plant water uptake. Some flooding-tolerant tree species including tamarack (Larix laricina (Du Roi) K. Koch) produce adventitious roots in response to flooding. These roots were reported to have higher hydraulic conductivity under flooding conditions compared with non-adventitious roots. In the present study, we examined structural and functional modifications in adventitious roots of tamarack seedlings to explain their flooding tolerance. Results Seedlings were subjected to the flooding treatment for six months, which resulted in an almost complete disintegration of the existing root system and its replacement with adventitious roots. We compared gas exchange parameters and water relations of flooded plants with the plants growing in well-drained soil and examined the root structures and root water transport properties. Although flooded seedlings had lower needle chlorophyll concentrations, their stomatal conductance, net photosynthesis rates and shoot water potentials were similar to non-flooded plants, indicative of flooding tolerance. Flooded adventitious roots had higher activation energy and a higher ratio of apoplastic to cell-to-cell water flow compared with non-flooded control roots as determined with the 1-hydroxypirene 3,6,8-trisulfonic acid apoplastic tracer dye. The adventitious roots in flooded plants also exhibited retarded xylem and endodermal development and accumulated numerous starch grains in the cortex. Microscopic examination of root sections treated with the PIP1 and PIP2 antibodies revealed high immunoreactivity in the cortex of non-flooded roots, as compared with flooded roots. Conclusions Structural modifications of adventitious roots suggest increased contribution of apoplastic bypass to water flow. The reduced dependence of roots on the hypoxia-sensitive aquaporin-mediated water transport is likely among the main mechanisms allowing tamarack seedlings to maintain water

  3. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding.

    PubMed

    Calvo-Polanco, Mónica; Señorans, Jorge; Zwiazek, Janusz J

    2012-06-27

    Flooding reduces supply of oxygen to the roots affecting plant water uptake. Some flooding-tolerant tree species including tamarack (Larix laricina (Du Roi) K. Koch) produce adventitious roots in response to flooding. These roots were reported to have higher hydraulic conductivity under flooding conditions compared with non-adventitious roots. In the present study, we examined structural and functional modifications in adventitious roots of tamarack seedlings to explain their flooding tolerance. Seedlings were subjected to the flooding treatment for six months, which resulted in an almost complete disintegration of the existing root system and its replacement with adventitious roots. We compared gas exchange parameters and water relations of flooded plants with the plants growing in well-drained soil and examined the root structures and root water transport properties. Although flooded seedlings had lower needle chlorophyll concentrations, their stomatal conductance, net photosynthesis rates and shoot water potentials were similar to non-flooded plants, indicative of flooding tolerance. Flooded adventitious roots had higher activation energy and a higher ratio of apoplastic to cell-to-cell water flow compared with non-flooded control roots as determined with the 1-hydroxypirene 3,6,8-trisulfonic acid apoplastic tracer dye. The adventitious roots in flooded plants also exhibited retarded xylem and endodermal development and accumulated numerous starch grains in the cortex. Microscopic examination of root sections treated with the PIP1 and PIP2 antibodies revealed high immunoreactivity in the cortex of non-flooded roots, as compared with flooded roots. Structural modifications of adventitious roots suggest increased contribution of apoplastic bypass to water flow. The reduced dependence of roots on the hypoxia-sensitive aquaporin-mediated water transport is likely among the main mechanisms allowing tamarack seedlings to maintain water balance and gas exchange under

  4. [Effects of culture conditions on biomass and active components of adventitious roots culture in Panax ginseng].

    PubMed

    Huang, Tao; Gao, Wenyuan; Wang, Juan; Cao, Yu

    2010-01-01

    To optimize the culture condition of adventitious roots of Panax ginseng. The adventitious roots were obtained through tissue culture by manipulation of inoculum, various sucrose concentrations and salt strength. The contents of ginsenosides Re, Rb1 and Rg1 were determined by HPLC while the contents of polysaccharides were determined by ultraviolet spectrophotometry. The multiplication of adventitious roots reached the peak when the inoculum was 20 g x L(-1). The effects of sucrose concentration and salt strength on adventitious roots were observed. The contents of polysaccharides were higher when the medium contained more sucrose. 40 g x L(-1) sucrose was favorable for roots growth and biosynthesis of Re, while 30 g x L(-1) was favorable for the biosynthesis of Rb1 and Rg1. 3/4MS medium was benefit for the growth of adventitious roots and the biosynthesis of ginsenosides. The contents of polysaccharides were decreased with the increase of salt strength. The results showed that inoculum, various sucrose concentrations and salt strength have significant influences on adventitious roots growth, secondary metabolite and polysaccharide synthesis in P. ginseng.

  5. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress

    PubMed Central

    Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M.

    2017-01-01

    Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca2+) on the process of adventitious rooting in cucumber (Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 ÎŒM NO donor nitroprusside (SNP) or 200 ÎŒM Ca2+. The application of Ca2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca2+/CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na2WO4) and sodium azide (NaN3). This gives an indication that Ca2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca2+/CaM may act as a downstream signaling molecule in NO-induced development of adventitious root under simulated osmotic

  6. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress.

    PubMed

    Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M

    2017-01-01

    Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca 2+ ) on the process of adventitious rooting in cucumber ( Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca 2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 ÎŒM NO donor nitroprusside (SNP) or 200 ÎŒM Ca 2+ . The application of Ca 2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca 2+ /CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca 2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na 2 WO 4 ) and sodium azide (NaN 3 ) . This gives an indication that Ca 2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca 2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca 2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca 2+ /CaM may act as a downstream signaling molecule in NO-induced development of adventitious root

  7. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture.

    PubMed

    Song, Xiaolin; Wu, Hao; Yin, Zhenhao; Lian, Meilan; Yin, Chengri

    2017-05-23

    Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endophytic bacterial elicitors on biomass and ginsenoside production in adventitious roots cultures of Panax ginseng . Endophyte LB 5-3 as an elicitor could increase biomass and ginsenoside accumulation in ginseng adventitious root culture. After 6 days elicitation with a 10.0 mL of strain LB 5-3, the content of total ginsenoside was 2.026 mg g -1 which was four times more than that in unchallenged roots. The combination of methyl jasmonate and strain LB 5-3 had a negative effect on ginseng adventitious root growth and ginsenoside production. The genomic DNA of strain LB 5-3 was sequenced, and was found to be most closely related to Bacillus altitudinis (KX230132.1). The challenged ginseng adventitious root extracts exerted inhibitory effect against the HepG2 cells, which IC 50 value was 0.94 mg mL -1 .

  8. Proliferation and ajmalicine biosynthesis of Catharanthus roseus (L). G. Don adventitious roots in self-built temporary immersion system

    NASA Astrophysics Data System (ADS)

    Phuc, Vo Thanh; Trung, Nguyen Minh; Thien, Huynh Tri; Tien, Le Thi Thuy

    2017-09-01

    Periwinkle (Catharanthus roseus (L.) G. Don) is a medicinal plant containing about 130 types of alkaloids that have important pharmacological effects. Ajmalicine in periwinkle root is an antihypertensive drug used in treatment of high blood pressure. Adventitious roots obtained from periwinkle leaves of in vitro shoots grew well in quarter-strength MS medium supplemented with 0.3 mg/l IBA and 20 g/l sucrose. Dark condition was more suitable for root growth than light. However, callus formation also took place in addition to the growth of adventitious roots. Temporary immersion system was applied in the culture of adventitious roots in order to reduce the callus growth rate formed in shake flask cultures. The highest growth index of roots was achieved using the system with 5-min immersion every 45 min (1.676 ± 0.041). The roots cultured in this system grew well without callus formation. Ajmalicine content was highest in the roots cultured with 5-min immersion every 180 min (950 Όg/g dry weight).

  9. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata.

    PubMed

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar

    2013-08-01

    Andrographolide is the principal bioactive component of the medicinal plant Andrographis paniculata, to which various diverse pharmacological properties are attributed. Traditionally, andrographolide was extracted from the leaves, stems and other parts of the plant. Leaves have the highest andrographolide content (2-3%) in comparison with the other plant parts. Adventitious root culture of leaf explants of A. paniculata was studied using different strength MS medium supplemented by different concentrations of auxins and a combination of NAA + kinetin for growth and andrographolide production. Among the different auxin treatments in adventitious root culture, only NAA was able to induce adventitious roots. Adventitious roots grown in modified strength MS medium showed the highest root growth (26.7 +/- 1.52), as well as the highest amount of andrographolide (133.3 +/- 1.5 mg/g DW) as compared with roots grown in half- and full-strength MS medium. Growth kinetics showed maximum biomass production after five weeks of culture in different strength MS liquid medium. The produced andrographolide content was 3.5 - 5.5 folds higher than that of the natural plant, depending on the medium strength.

  10. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation.

    PubMed

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Bussell, John Desmond; Schwambach, Joseli; Pop, Tiberia Ioana; Kowalczyk, Mariusz; Gutierrez, Laurent; Cavel, Emilie; Chaabouni, Salma; Ljung, Karin; Fett-Neto, Arthur Germano; Pamfil, Doru; Bellini, Catherine

    2014-04-01

    The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process.

  11. Branching Out in Roots: Uncovering Form, Function, and Regulation1

    PubMed Central

    Atkinson, Jonathan A.; Rasmussen, Amanda; Traini, Richard; Voß, Ute; Sturrock, Craig; Mooney, Sacha J.; Wells, Darren M.; Bennett, Malcolm J.

    2014-01-01

    Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research. PMID:25136060

  12. [Effects of Ca2+ on nitric oxide-induced adventitious rooting in cucumber under drought stress].

    PubMed

    Li, Chun Lan; Niu, Li Juan; Hu, Lin Li; Liao, Wei Biao; Chen, Yue

    2017-11-01

    Cucumber (Cucumis sativus L. 'Xinchun 4') was used to explore the relationship between nitric oxide (NO) and calcium (Ca 2+ ) during adventitious rooting under drought stress. Rooting parameters, endogenous Ca 2+ fluorescent intensity and the antioxidant enzymes activity (SOD, CAT and APX) in cucumber explants under drought stress were investigated. The results showed that treatment with 200 Όmol·L -1 CaCl 2 and 0.05% PEG significantly improved the number and length of adventitious root in cucumber explants under drought stress, while the application of Ca 2+ chelating agent (EGTA) and channel inhibitor (BAPTA/AM) significantly decreased NO-induced number and length of adventitious root under drought stress. Under drought stress, the fluorescence intensity of Ca 2+ in hypocotyls treated with NO and CaCl 2 was improved, however, the Ca 2+ fluorescence intensity in the hypocotyls treated with NO scavenger (cPTIO) was significantly lower than that in the hypocotyls treated with NO. Under drought stress, the activities of antioxidant enzymes in the cucumber explants were significantly promoted by the treatments with NO and CaCl 2 , however, Ca 2+ chelating agent and channel inhibitor significantly decreased the activity of antioxidant enzymes induced by NO. In conclusion, Ca 2+ might be involved in the process of NO-adjusted antioxidant enzymes activity during adventitious rooting under drought stress, which alleviated the negative effects of drought on the adventitious rooting and promoted the formation of adventitious roots.

  13. Biosynthesis of Diterpenoids in Tripterygium Adventitious Root Cultures1[OPEN

    PubMed Central

    Inabuy, Fainmarinat S.; Fischedick, Justin T.; Lange, Iris; Xu, Meimei

    2017-01-01

    Adventitious root cultures were developed from Tripterygium regelii, and growth conditions were optimized for the abundant production of diterpenoids, which can be collected directly from the medium. An analysis of publicly available transcriptome data sets collected with T. regelii roots and root cultures indicated the presence of a large gene family (with 20 members) for terpene synthases (TPSs). Nine candidate diterpene synthase genes were selected for follow-up functional evaluation, of which two belonged to the TPS-c, three to the TPS-e/f, and four to the TPS-b subfamilies. These genes were characterized by heterologous expression in a modular metabolic engineering system in Escherichia coli. Members of the TPS-c subfamily were characterized as copalyl diphosphate (diterpene) synthases, and those belonging to the TPS-e/f subfamily catalyzed the formation of precursors of kaurane diterpenoids. The TPS-b subfamily encompassed genes coding for enzymes involved in abietane diterpenoid biosynthesis and others with activities as monoterpene synthases. The structural characterization of diterpenoids accumulating in the medium of T. regelii adventitious root cultures, facilitated by searching the Spektraris online spectral database, enabled us to formulate a biosynthetic pathway for the biosynthesis of triptolide, a diterpenoid with pharmaceutical potential. Considering the significant enrichment of diterpenoids in the culture medium, fast-growing adventitious root cultures may hold promise as a sustainable resource for the large-scale production of triptolide. PMID:28751314

  14. Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca(2+) pathways.

    PubMed

    Cui, Weiti; Qi, Fang; Zhang, Yihua; Cao, Hong; Zhang, Jing; Wang, Ren; Shen, Wenbiao

    2015-03-01

    Methane-rich water triggered adventitious rooting by regulating heme oxygenase1/carbon monoxide and calcium pathways in cucumber explants. Heme oxygenase1/carbon monoxide (HO1/CO) and calcium (Ca(2+)) were reported as the downstream signals in auxin-induced cucumber adventitious root (AR) formation. Here, we observed that application of methane-rich water (MRW; 80% saturation) obviously induced AR formation in IAA-depleted cucumber explants. To address the universality, we checked adventitious rooting in soybean and mung bean explants, and found that MRW (50 and 10% saturation, respectively) exhibited the similar inducing results. To further determine if the HO1/CO system participated in MRW-induced adventitious rooting, MRW, HO1 inducer hemin, its activity inhibitor zinc protoporphyrin IX (ZnPP), and its catalytic by-products CO, bilirubin, and Fe(2+) were used to detect their effects on cucumber adventitious rooting in IAA-depleted explants. Subsequent results showed that MRW-induced adventitious rooting was blocked by ZnPP and further reversed by 20% saturation CO aqueous solution. However, the other two by-products of HO1, bilirubin and Fe(2+), failed to induce AR formation. Above responses were consistent with the MRW-induced increases of HO1 transcript and corresponding protein level. Further molecular evidence indicted that expression of marker genes, including auxin signaling-related genes and cell cycle regulatory genes, were modulated by MRW alone but blocked by the cotreatment with ZnPP, the latter of which could be significantly rescued by the addition of CO. By using the Ca(2+)-channel blocker and Ca(2+) chelator, the involvement of Ca(2+) pathway in MRW-induced adventitious rooting was also suggested. Together, our results indicate that MRW might serve as a stimulator of adventitious rooting, which was partially mediated by HO1/CO and Ca(2+) pathways.

  15. Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber.

    PubMed

    Zhu, Yongchao; Liao, Weibiao; Niu, Lijuan; Wang, Meng; Ma, Zhanjun

    2016-06-28

    Adventitious root development is a complex process regulated through a variety of signaling molecules. Hydrogen gas (H2) and nitric oxide (NO), two new signaling molecules are both involved in plant development and stress tolerance. To investigate the mechanism of adventitious root development induced by hydrogen-rich water (HRW), a combination of fluorescence microscopy and molecular approaches was used to study cell cycle activation and cell cycle-related gene expression in cucumber (Cucumis sativus 'Xinchun 4') explants. The results revealed that the effect of HRW on adventitious root development was dose-dependent, with maximal biological responses at 50 % HRW. HRW treatment increased NO content in a time-dependent fashion. The results also indicated that HRW and NO promoted the G1-to-S transition and up-regulated cell cycle-related genes: CycA (A-type cyclin), CycB (B-type cyclin), CDKA (cyclin-dependent kinase A) and CDKB (cyclin-dependent kinase B) expression. Additionally, target genes related to adventitious rooting were up-regulated by HRW and NO in cucumber explants. While, the responses of HRW-induced adventitious root development and increase of NO content were partially blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt, NO synthase (NOS)-like enzyme inhibitor N(G) -nitro-L-arginine methylester hydrochloride, or nitrate reductase inhibitors tungstate and NaN3. These chemicals also partially reversed the effect of HRW on cell cycle activation and the transcripts of cell cycle regulatory genes and target genes related adventitious root formation. Together, NO may emerge as a downstream signaling molecule in H2-induced adventitious root organogenesis. Additionally, H2 mediated cell cycle activation via NO pathway during adventitious root formation.

  16. Comparative evaluation of oxidative enzyme activities during adventitious rooting in the cuttings of grapevine rootstocks.

    PubMed

    Kose, Cafer; Erdal, Serkan; Kaya, Ozkan; Atici, OkkeƟ

    2011-03-15

    This study investigated changes in peroxidase (POX) and polyphenol oxidase (PPO) activities through adventitious rooting in hardwood cuttings of grapevine rootstocks. Three grapevine rootstocks with different propensity to produce adventitious roots were selected: recalcitrant (Ramsey), non-recalcitrant (Rupestris du Lot) and intermediate (99R) cultivars. The averages of root number at 65 days were 96 in Lot, 76 in 99R and 30 in Ramsey. Both enzyme activities characteristically increased before adventitious rooting, regardless of rooting ability of the rootstocks, and then decreased. POX activity increased in Ramsey cuttings at 22 days, in Lot and 99R cuttings at 14 days after planting, and then decreased gradually until 51 days. The highest POX activity was determined in Ramsey rootstock with the highest rooting ability and the lowest activity was determined in the rootstocks with the lowest rooting ability. PPO activity gradually increased in Ramsey rootstock cuttings from 10 days to 22 days, in Lot and 99R cuttings at 14 days, and then decreased until 51 days. A significant correlation was identified between high POX activity and adventitious rooting capability in rootstocks, but the same result was not determined with PPO activity. A recalcitrant rooting variety cannot increase POX activity sufficiently before rooting. Therefore applications that could increase POX activity in stem cuttings during rooting may facilitate increased rooting in such rootstocks. Copyright © 2011 Society of Chemical Industry.

  17. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings

    PubMed Central

    Birlanga, Virginia; Villanova, Joan; Cano, Antonio; Cano, Emilio A.; Acosta, Manuel; Pérez-Pérez, José Manuel

    2015-01-01

    Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders’ rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species. PMID:26230608

  18. Dynamics of Aerenchyma Distribution in the Cortex of Sulfate-deprived Adventitious Roots of Maize

    PubMed Central

    BOURANIS, DIMITRIS L.; CHORIANOPOULOU, STYLIANI N.; KOLLIAS, CHARALAMBOS; MANIOU, PHILIPPA; PROTONOTARIOS, VASSILIS E.; SIYIANNIS, VASSILIS F.; HAWKESFORD, MALCOLM J.

    2006-01-01

    ‱ Background and Aims Aerenchyma formation in maize adventitious roots is induced in nutrient solution by the deprivation of sulfate (S) under well-oxygenated conditions. The aim of this research was to examine the extent of aerenchyma formation in the cortex of sulfate-deprived adventitious roots along the root axis, in correlation with the presence of reactive oxygen species (ROS), calcium levels and pH of cortex cells and root lignification. ‱ Methods The morphometry of the second whorl of adventitious (W2) roots, subject to S-deprivation conditions throughout development, was recorded in terms of root length and lateral root length and distribution. W2 roots divided into sectors according to the mean length of lateral roots, and cross-sections of each were examined for aerenchyma. In-situ detection of alterations in ROS presence, calcium levels and pH were performed by means of fluorescence microscopy using H2DCF-DA, fluo-3AM and BCECF, respectively. Lignification was detected using the Wiesner test. ‱ Key Results S-deprivation reduced shoot growth and enhanced root proliferation. Aerenchyma was found in the cortex of 77 % of the root length, particularly in the region of emerging or developing lateral roots. The basal and apical sectors had no aerenchyma and no aerenchyma connection was found with the shoot. S-deprivation resulted in alterations of ROS, calcium levels and pH in aerenchymatous sectors compared with the basal non-aerenchymatous region. Lignified epidermal layers were located at the basal and the proximal sectors. S-deprivation resulted in shorter lateral roots in the upper sectors and in a limited extension of the lignified layers towards the next lateral root carrying sector. ‱ Conclusions Lateral root proliferation is accompanied by spatially localized induced cell death in the cortex of developing young maize adventitious roots during S-deprivation. PMID:16481362

  19. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting.

    PubMed

    Urquhart, Shelley; Foo, Eloise; Reid, James B

    2015-03-01

    The recently discovered group of plant hormones, the strigolactones, have been implicated in regulating photomorphogenesis. We examined this extensively in our strigolactone synthesis and response mutants and could find no evidence to support a major role for strigolactone signaling in classic seedling photomorphogenesis (e.g. elongation and leaf expansion) in pea (Pisum sativum), consistent with two recent independent reports in Arabidopsis. However, we did find a novel effect of strigolactones on adventitious rooting in darkness. Strigolactone-deficient mutants, Psccd8 and Psccd7, produced significantly fewer adventitious roots than comparable wild-type seedlings when grown in the dark, but not when grown in the light. This observation in dark-grown plants did not appear to be due to indirect effects of other factors (e.g. humidity) as the constitutively de-etiolated mutant, lip1, also displayed reduced rooting in the dark. This role for strigolactones did not involve the MAX2 F-Box strigolactone response pathway as Psmax2 f-box mutants did not show a reduction in adventitious rooting in the dark compared with wild-type plants. The auxin-deficient mutant bushy also reduced adventitious rooting in the dark, as did decapitation of wild-type plants. Rooting was restored by the application of indole-3-acetic acid (IAA) to decapitated plants, suggesting a role for auxin in the rooting response. However, auxin measurements showed no accumulation of IAA in the epicotyls of wild-type plants compared with the strigolactone synthesis mutant Psccd8, suggesting that changes in the gross auxin level in the epicotyl are not mediating this response to strigolactone deficiency. © 2014 Scandinavian Plant Physiology Society.

  20. Involvement of heme oxygenase-1 in ÎČ-cyclodextrin-hemin complex-induced cucumber adventitious rooting process.

    PubMed

    Lin, Yuting; Li, Meiyue; Huang, Liqin; Shen, Wenbiao; Ren, Yong

    2012-09-01

    Our previous results showed that ÎČ-cyclodextrin-hemin complex (CDH) exhibited a vital protective role against cadmium-induced oxidative damage and toxicity in alfalfa seedling roots by the regulation of heme oxygenase-1 (HO-1) gene expression. In this report, we further test whether CDH exhibited the hormonal-like response. The application of CDH and an inducer of HO-1, hemin, were able to induce the up-regulation of cucumber HO-1 gene (CsHO1) expression and thereafter the promotion of adventitious rooting in cucumber explants. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blocked the above responses triggered by CDH, and the inhibitory effects were reversed further when 30% saturation of CO aqueous solution was added together. Further, molecular evidence showed that CDH triggered the increases of the HO-1-mediated target genes responsible for adventitious rooting, including one DnaJ-like gene (CsDNAJ-1) and two calcium-dependent protein kinase (CDPK) genes (CsCDPK1 and CsCDPK5), and were inhibited by ZnPP and reversed by CO. The calcium (Ca2+) chelator ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and the Ca2+ channel blocker lanthanum chloride (LaCl3) not only compromised the induction of adventitious rooting induced by CDH but also decreased the transcripts of above three target genes. However, the application of ascorbic acid (AsA), a well-known antioxidant in plants, failed to exhibit similar inducible effect on adventitious root formation. In short, above results illustrated that the response of CDH in the induction of cucumber adventitious rooting might be through HO-1-dependent mechanism and calcium signaling. Physiological, pharmacological and molecular evidence showed that ÎČ-cyclodextrin-hemin complex (CDH) was able to induce cucumber adventitious rooting through heme oxygenase-1 (HO-1)-dependent mechanism and calcium signaling.

  1. Large Scale Culture of Ginseng Adventitious Roots for Production of Ginsenosides

    NASA Astrophysics Data System (ADS)

    Paek, Kee-Yoeup; Murthy, Hosakatte Niranjana; Hahn, Eun-Joo; Zhong, Jian-Jiang

    Ginseng (Panax ginseng C. A. Meyer) is one of the most famous oriental medicinal plants used as crude drugs in Asian countries, and now it is being used worldwide for preventive and therapeutic purposes. Among diverse constituents of ginseng, saponins (ginsenosides) have been found to be major components responsible for their biological and pharmacological actions. On the other hand, difficulties in the supply of pure ginsenosides in quantity prevent the development of ginseng for clinical medicines. Cultivation of ginseng in fields takes a long time, generally 5-7 years, and needs extensive effort regarding quality control since growth is susceptible to many environmental factors including soil, shade, climate, pathogens and pests. To solve the problems, cell and tissue cultures have been widely explored for more rapid and efficient production of ginseng biomass and ginsenosides. Recently, cell and adventitious root cultures of P. ginseng have been established in large scale bioreactors with a view to commercial application. Various physiological and engineering parameters affecting the biomass production and ginsenoside accumulation have been investigated. Advances in adventitious root cultures including factors for process scale-up are reviewed in this chapter. In addition, biosafety analyses of ginseng adventitious roots are also discussed for real application.

  2. Transcript expression profiling for adventitious roots of Panax ginseng Meyer.

    PubMed

    Subramaniyam, Sathiyamoorthy; Mathiyalagan, Ramya; Natarajan, Sathishkumar; Kim, Yu-Jin; Jang, Moon-Gi; Park, Jun-Hyung; Yang, Deok Chun

    2014-08-01

    Panax ginseng Meyer is one of the major medicinal plants in oriental countries belonging to the Araliaceae family which are the primary source for ginsenosides. However, very few genes were characterized for ginsenoside pathway, due to the limited genome information. Through this study, we obtained a comprehensive transcriptome from adventitious roots, which were treated with methyl jasmonic acids for different time points (control, 2h, 6h, 12h, and 24h) and sequenced by RNA 454 pyrosequencing technology. Reference transcriptome 39,304,529 (0.04GB) was obtained from 5,724,987,880 bases (5.7GB) of 22 libraries by de novo assembly and 35,266 (58.5%) transcripts were annotated with biological schemas (GO and KEGG). The digital gene expression patterns were obtained from in vitro grown adventitious root sequences which mapped to reference, from that, 3813 (6.3%) unique transcripts were involved in ≄2 fold up and downregulations. Finally, candidates for ginsenoside pathway genes were predicted from observed expression patterns. Among them, 30 transcription factors, 20 cytochromes, and 11 glycosyl transferases were predicted as ginsenoside candidates. These data can remarkably expand the existing transcriptome resources of Panax, especially to predict existence of gene networks in P. ginseng. The entity of the data provides a valuable platform to reveal more on secondary metabolism and abiotic stresses from P. ginseng in vitro grown adventitious roots. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    PubMed

    Mauriat, MĂ©lanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloĂŻdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  4. Selecting Populus with different adventitious root types for environmental benefits, fiber, and energy

    Treesearch

    Ronald S., Jr. Zalesny; Jill A. Zalesny

    2009-01-01

    Primary roots from seeds, sucker roots in aspens, and adventitious roots (ARs) in poplars and their hybrids are prevalent within the genus Populus. Two AR types develop on hardwood cuttings: (i) lateral roots from either preformed or induced primordia along the length of the cutting and (ii) basal roots from callus at the base of the cutting in...

  5. High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis

    PubMed Central

    Xu, Xiaozhao; Li, Xu; Hu, Xingwang; Wu, Ting; Wang, Yi; Xu, Xuefeng; Zhang, Xinzhong; Han, Zhenhai

    2017-01-01

    Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156), the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we showed that in the presence of the synthetic auxin indole-3-butyric acid (IBA), semi-lignified leafy cuttings from juvenile phase (Mx-J) and rejuvenated (Mx-R) Malus xiaojinensis trees exhibited significantly higher expression of miR156, PIN-FORMED1 (PIN1), PIN10, and rootless concerning crown and seminal roots-like (RTCS-like) genes, thus resulting in higher adventitious rooting ability than those from adult phase (Mx-A) trees. However, the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE26 (SPL26) and some auxin response factor (ARF) gene family members were substantially higher in Mx-A than in Mx-R cuttings. The expression of NbRTCS-like but not NbPINs and NbARFs varied with miR156 expression in tobacco (Nicotiana benthamiana) plants transformed with 35S:MdMIR156a6 or 35S:MIM156 constructs. Overexpressing the miR156-resistant MxrSPL genes in tobacco confirmed the involvement of MxSPL20, MxSPL21&22, and MxSPL26 in adventitious root formation. Together, high expression of miR156 was necessary for auxin-induced adventitious root formation via MxSPL26, but independent of MxPINs and MxARFs expression in M. xiaojinensis leafy cuttings. PMID:28674551

  6. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.

    PubMed

    Agulló-Antón, María Ángeles; Ferråndez-Ayela, Almudena; Fernåndez-García, Nieves; Nicolås, Carlos; Albacete, Alfonso; Pérez-Alfocea, Francisco; Sånchez-Bravo, José; Pérez-Pérez, José Manuel; Acosta, Manuel

    2014-03-01

    The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. A detailed analysis of the morphological changes occurring in the basal region of cultivated carnation cuttings during the early stages of adventitious rooting was carried out and the physiological modifications induced by exogenous auxin application were studied. To this end, the endogenous concentrations of five major classes of plant hormones [auxin, cytokinin (CK), abscisic acid, salicylic acid (SA) and jasmonic acid] and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid were analyzed at the base of stem cuttings and at different stages of adventitious root formation. We found that the stimulus triggering the initiation of adventitious root formation occurred during the first hours after their excision from the donor plant, due to the breakdown of the vascular continuum that induces auxin accumulation near the wounding. Although this stimulus was independent of exogenously applied auxin, it was observed that the auxin treatment accelerated cell division in the cambium and increased the sucrolytic activities at the base of the stem, both of which contributed to the establishment of the new root primordia at the stem base. Further, several genes involved in auxin transport were upregulated in the stem base either with or without auxin application, while endogenous CK and SA concentrations were specially affected by exogenous auxin application. Taken together our results indicate significant crosstalk between auxin levels, stress hormone homeostasis and sugar availability in the base of the stem cuttings in carnation during the initial steps of adventitious rooting. © 2013 Scandinavian Plant Physiology Society.

  7. Hydrogen Peroxide Is a Second Messenger in the Salicylic Acid-Triggered Adventitious Rooting Process in Mung Bean Seedlings

    PubMed Central

    Yang, Wei; Zhu, Changhua; Ma, Xiaoling; Li, Guijun; Gan, Lijun; Ng, Denny; Xia, Kai

    2013-01-01

    In plants, salicylic acid (SA) is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR) and hypertensive response (HR). SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF) in mung bean (Phaseolus radiatus L) hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2) were also elucidated. Pretreatment of mung bean explants with N, N’-dimethylthiourea (DMTU), a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI), a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings. PMID:24386397

  8. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures.

    PubMed

    Sanches Lopes, Sheila Mara; Francisco, Mariane Grigio; Higashi, Bruna; de Almeida, Rafaela Takako Ribeiro; Krausovå, Gabriela; Pilau, Eduardo Jorge; Gonçalves, José Eduardo; Gonçalves, Regina Aparecida Correia; Oliveira, Arildo José Braz de

    2016-11-05

    Stevia rebaudiana (Bertoni) is widely studied because of its foliar steviol glycosides. Fructan-type polysaccharides were recently isolated from its roots. Fructans are reserve carbohydrates that have important positive health effects and technological applications in the food industry. The objective of the present study was to isolate and characterize fructo-oligosaccharides (FOSs) from S. rebaudiana roots and in vitro adventitious root cultures and evaluate the potential prebiotic effect of these molecules. The in vitro adventitious root cultures were obtained using a roller bottle system. Chemical analyses (gas chromatography-mass spectrometry, (1)H nuclear magnetic resonance, and off-line electrospray ionization-mass spectrometry) revealed similar chemical properties of FOSs that were obtained from the different sources. The potential prebiotic effects of FOSs that were isolated from S. rebaudiana roots enhanced the growth of both bifidobacteria and lactobacilli, with strains specificity in their fermentation ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L.

    PubMed

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar

    2014-11-01

    Adventitious root cultures of Prunella vulgaris L. were established in shaking flask system for the production of biomass and secondary metabolites. Adventitious root cultures were induced from callus cultures obtained from leaf explants on solid Murashige and Skoog (MS) medium containing combination of 6-benzyladenine (BA; 1.0 mg l(-1)) and naphthalene acetic acid (NAA; 1.5 mg l(-1)). Thereafter, 0.49 g inoculum was transferred to liquid MS medium supplemented with different concentrations of NAA (0.5-2.0 mg l(-1)). Growth kinetics of adventitious roots was recorded with an interval of 7 days for 49 days period. Highest biomass accumulation (2.13 g/l) was observed in liquid medium containing 1.0 mg l(-1) NAA after 21 days of inoculation. However, other concentrations of NAA also showed similar accumulation pattern but the biomass gradually decreases after 49 days of inoculation. Adventitious roots were collected and dried for investigation of total phenolics (TP), total flavonoids (TF), and antioxidant activities. Higher TPC (0.995 GAE mg/g-DRB) and TFC (6.615 RE mg/g-DRB) were observed in 0.5 mg l(-1) NAA treated cultures. In contrast, higher antioxidant activity (83.53 %) was observed 1.5 mg l(-1) NAA treated cultures. These results are helpful in up scaling of root cultures into bioreactor for secondary metabolites production.

  10. Adventitious root production and plastic resource allocation to biomass determine burial tolerance in woody plants from central Canadian coastal dunes.

    PubMed

    Dech, Jeffery P; Maun, M Anwar

    2006-11-01

    Burial is a recurrent stress imposed upon plants of coastal dunes. Woody plants are buried on open coastal dunes and in forested areas behind active blowouts; however, little is known about the burial responses and adaptive traits of these species. The objectives of this study were: (a) to determine the growth and morphological responses to burial in sand of seven woody plant species native to central Canadian coastal dunes; and (b) to identify traits that determine burial tolerance in these species. Field experiments were conducted to determine the responses of each species to burial. Saplings were exposed to burial treatments of 0, 10, 25, 50 and 75 % of their height. Burial responses were evaluated based on regressions of total biomass, height, adventitious root production and percentage allocation to shoot, root and adventitious root biomass on percentage burial. Pinus strobus and Picea glauca lacked burial tolerance. In response to the burial gradient, these species showed a strong linear decline in total biomass, minimal adventitious root production that peaked at moderate levels (25-50 % burial) and no change in allocation to shoots vs. roots. The tolerant species Juniperus virginiana, Thuja occidentalis and Picea mariana showed a quadratic response to burial, with little change in biomass up to 50 % burial, but a large decline at 75 %. These species produced abundant adventitious roots up to 50 % burial, but did not alter allocation patterns over the range of burial levels. Populus balsamifera and Salix cordata were stimulated by burial. These species showed linear increases in biomass with increasing burial, produced copious adventitious roots across the gradient and showed a clear shift in allocation to vertical shoot growth and adventitious root production at the expense of the original roots under high burial conditions. Adventitious root production and plastic resource allocation to biomass are adaptive traits of coastal dune woody plants in central

  11. Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioning.

    PubMed

    Zhang, Qian; Huber, Heidrun; Beljaars, Simone J M; Birnbaum, Diana; de Best, Sander; de Kroon, Hans; Visser, Eric J W

    2017-07-01

    Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding. The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots. As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system. The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events. © The Author 2017. Published by

  12. The effect of graphene oxide on adventitious root formation and growth in apple.

    PubMed

    Li, Feihong; Sun, Chao; Li, Xuehan; Yu, Xinyi; Luo, Chao; Shen, Yanying; Qu, Shenchun

    2018-05-30

    Graphene, a new type of nanomaterial, has unique physical properties and important potential biological applications. However, few studies have been conducted on the environmental impact of graphene. Therefore, to explore the effect of graphene on plants, three-week-old, tissue-cultured 'Gala' apple plants (Malus domestica) were treated with different concentrations (0, 0.1, 1, 10 mg/L) of graphene oxide (GO) and examined after 40 days. Results indicated that adventitious root length, moisture content and the number of lateral roots were all inhibited by 0.1-10 mg/L GO. At 0.1 and 1 mg/L GO, however, the number of adventitious roots and the rooting rate exhibited a significant increase, relative to the control (no GO). Treatment with GO increased the activities of oxidative stress enzymes including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in the apple plants, relative to controls. Malondialdehyde (MDA) levels were also significantly decreased at 10 mg/L GO. Treatment of apple plantlets with 0.1 mg/L GO increased the transcript abundance of auxin efflux carrier (PIN7, ABCB1) genes and auxin influx carrier (LAX2, LAX3) genes but inhibited the transcript levels of the ARR3 gene, which involved in cytokinin biosynthesis. Additionally, the transcript levels of ARRO1, ARF19, and TTG1, which play roles in the formation of adventitious roots, lateral roots, and root hairs, respectively, were all decreased in response to treatment with 1 and 10 mg/L GO. Collectively, the results indicate that treatment of 'Gala' apple plants with 0.1 mg/L GO had a positive effect on root formation but a negative effect on root growth. This response may be related to the negative impact of GO on cellular structure and function. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation

    PubMed Central

    2013-01-01

    Background A lack of competence to form adventitious roots by cuttings of Chrysanthemum (Chrysanthemum morifolium) is an obstacle for the rapid fixation of elite genotypes. We performed a proteomic analysis of cutting bases of chrysanthemum cultivar ‘Jinba’ during adventitious root formation (ARF) in order to identify rooting ability associated protein and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Results The protein profiles during ARF were analyzed by comparing the 2-DE gels between 0-day-old (just severed from the stock plant) and 5-day-old cutting bases of chrysanthemum. A total of 69 differentially accumulated protein spots (two-fold change; t-test: 95% significance) were excised and analyzed using MALDI-TOF/TOF, among which 42 protein spots (assigned as 24 types of proteins and 7 unknown proteins) were confidently identified using the NCBI database. The results demonstrated that 19% proteins were related to carbohydrate and energy metabolism, 16% to photosynthesis, 10% to protein fate, 7% to plant defense, 6% to cell structure, 7% to hormone related, 3% to nitrate metabolism, 3% to lipid metabolism, 3% to ascorbate biosynthesis and 3% to RNA binding, 23% were unknown proteins. Twenty types of differentially accumulated proteins including ACC oxidase (CmACO) were further analyzed at the transcription level, most of which were in accordance with the results of 2-DE. Moreover, the protein abundance changes of CmACO are supported by western blot experiments. Ethylene evolution was higher during the ARF compared with day 0 after cutting, while silver nitrate, an inhibitor of ethylene synthesis, pretreatment delayed the ARF. It suggested that ACC oxidase plays an important role in ARF of chrysanthemum. Conclusions The proteomic analysis of cutting bases of chrysanthemum allowed us to identify proteins whose expression was related to ARF. We identified auxin-induced protein PCNT115 and ACC oxidase positively or

  14. Panax ginseng Adventitious Root Suspension Culture: Protocol for Biomass Production and Analysis of Ginsenosides by High Pressure Liquid Chromatography.

    PubMed

    Murthy, Hosakatte Niranjana; Paek, Kee Yoeup

    2016-01-01

    Panax ginseng C.A. Meyer (Korean ginseng) is a popular herbal medicine. It has been used in Chinese and Oriental medicines since thousands of years. Ginseng products are generally used as a tonic and an adaptogen to resist the adverse influence of a wide range of physical, chemical and biological factors, and to restore homeostasis. Ginsenosides or ginseng saponins are the principal active ingredients of ginseng. Since ginseng cultivation process is very slow and needs specific environment for field cultivation, cell and tissue cultures are sought as alternatives for the production of ginseng biomass and bioactive compounds. In this chapter, we focus on methods of induction of adventitious roots from ginseng roots, establishment of adventitious root suspension cultures using bioreactors, procedures for processing of adventitious roots, and analysis of ginsenosides by high pressure liquid chromatography.

  15. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings.

    PubMed

    Cano, Antonio; Sånchez-García, Ana Belén; Albacete, Alfonso; Gonzålez-Bayón, Rebeca; Justamante, María Salud; Ibåñez, Sergio; Acosta, Manuel; Pérez-Pérez, José Manuel

    2018-01-01

    Commercial carnation ( Dianthus caryophyllus ) cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR) formation in two carnation cultivars with contrasting rooting performance, "2101-02 MFR" and "2003 R 8", as well as in the reference cultivar "Master". We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the "2003 R 8" cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of "2003 R 8". Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings.

  16. Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi × Larix olgensis).

    PubMed

    Han, Hua; Sun, Xiaomei; Xie, Yunhui; Feng, Jian; Zhang, Shougong

    2014-11-26

    Hybrids of larch (Larix kaempferi × Larix olgensis) are important afforestation species in northeastern China. They are routinely propagated via rooted stem cuttings. Despite the importance of rooting, little is known about the regulation of adventitious root development in larch hybrids. 454 GS FLX Titanium technology represents a new method for characterizing the transcriptomes of non-model species. This method can be used to identify differentially expressed genes, and then two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analyses can be used to analyze their corresponding proteins. In this study, we analyzed semi-lignified cuttings of two clones of L. kaempferi × L. olgensis with different rooting capacities to study the molecular basis of adventitious root development. We analyzed two clones; clone 25-5, with strong rooting capacity, and clone 23-12, with weak rooting capacity. We constructed four cDNA libraries from 25-5 and 23-12 at two development stages. Sequencing was conducted using the 454 pyrosequencing platform. A total of 957832 raw reads was produced; 95.07% were high-quality reads, and were assembled into 45137 contigs and 61647 singletons. The functions of the unigenes, as indicated by their Gene Ontology annotation, included diverse roles in the molecular functions, biological processes, and cellular component categories. We analyzed 75 protein spots (-fold change ≄ 2, P ≀ 0.05) by 2D-DIGE, and identified the differentially expressed proteins using MALDI-TOF/TOF MS. A joint analysis of transcriptome and proteome showed genes related to two pathways, polyamine synthesis and stress response, might play an important role on adventitious root development. These results provide fundamental and important information for research on the molecular mechanism of adventitious root development. We also demonstrated for the first time the combined

  17. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    PubMed Central

    Tombesi, Sergio; Palliotti, Alberto; Poni, Stefano; Farinelli, Daniela

    2015-01-01

    Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L) (a hard-to-root specie) leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non-saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation. PMID:26635821

  18. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings

    PubMed Central

    Cano, Antonio; Sånchez-García, Ana Belén; Albacete, Alfonso; Gonzålez-Bayón, Rebeca; Justamante, María Salud; Ibåñez, Sergio; Acosta, Manuel; Pérez-Pérez, José Manuel

    2018-01-01

    Commercial carnation (Dianthus caryophyllus) cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR) formation in two carnation cultivars with contrasting rooting performance, “2101–02 MFR” and “2003 R 8”, as well as in the reference cultivar “Master”. We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the “2003 R 8” cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of “2003 R 8”. Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings. PMID:29755501

  19. Mini-incubators improve the adventitious rooting performance of Corymbia and Eucalyptus microcuttings according to the environment in which they are conditioned.

    PubMed

    Brondani, Gilvano E; Oliveira, Leandro S DE; Konzen, Enéas R; Silva, André L L DA; Costa, Jefferson L

    2017-10-16

    We addressed a major challenge in the in vitro clonal propagation of Corymbia citriodora, Eucalyptus urophylla and E. benthamii by using an ex vitro adventitious rooting strategy in a mini-incubator. Mini-incubators were placed in four environments for rooting. A shade house with no fogging system and a greenhouse with no ventilation but with a fogging environment had the best performance in terms of rooting, root growth and survival of microcuttings. Daily recording of the temperature within each mini-incubator in each environment allowed the verification of negative correlations between the maximum average temperature and the survival, adventitious rooting and root growth. The ideal maximum air temperature for the efficient production of clonal plants was 28.4°C (± 5.5°C), and the minimum was 20.3°C (± 6.2°C). E. benthamii was more sensitive to higher temperatures than C. citriodora and E. urophylla. Nevertheless, placing mini-incubators in the shade house with no fogging system resulted in a stable and uniform performance among the three species, with 100.0% survival and 81.4% rooting. Histological sections of the adventitious roots revealed connection with the stem vascular cambium. Therefore, our experimental system demonstrated the potential of mini-incubators coupled with the proper environment to optimize the adventitious rooting performance of microcuttings.

  20. HPLC-ESI-MS(n) Analysis, Fed-Batch Cultivation Enhances Bioactive Compound Biosynthesis and Immune-Regulative Effect of Adventitious Roots in Pseudostellaria heterophylla.

    PubMed

    Wang, Juan; Li, Jing; Li, Hongfa; Wu, Xiaolei; Gao, Wenyuan

    2015-09-01

    A electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed in order to identify the active composition in Pseudostellaria heterophylla adventitious roots. Pseudostellarin A, C, D, and G were identified from P. heterophylla adventitious roots on the basis of LC-MS(n) analysis. The culture conditions of adventitious roots were optimized, and datasets were subjected to a partial least squares discriminant analysis (PLS-DA), in which the growth ratio and some compounds showed a positive correlation with an aeration volume of 0.3 vvm and inoculum density of 0.15 %. Fed-batch cultivation enhanced the contents of total saponin, polysaccharides, and specific oxygen uptaker rate (SOUR). The maximum dry root weight (4.728 g l(-1)) was achieved in the 3/4 Murashige and Skoog (MS) medium group. PLS-DA showed that polysaccharides contributed significantly to the clustering of different groups and showed a positive correlation in the MS medium group. The delayed-type hypersensitivity (DTH) reaction on the mice induced by 2,4-dinitrofluorobenzene (DNFB) was applied to compare the immunocompetence effects of adventitious roots (AR) with field native roots (NR) of P. heterophylla. As a result, AR possessed a similar immunoregulation function as NR.

  1. Influence of Explant Position on Growth of Talinum paniculatum Gaertn. Adventitious Root in Solid Medium and Enhance Production Biomass in Balloon Type Bubble Bioreactor

    NASA Astrophysics Data System (ADS)

    Solim, M. H.; Kristanti, A. N.; Manuhara, Y. S. W.

    2017-03-01

    Talinum paniculatum Gaertn. is one of traditional medicinal plant in Indonesia as an aphrodisiac. This plant has various compounds which is accumulated in roots. In vitro culture of this plant can enhance production of adventitious roots. The aim of this research was to know the influence of explants position on growth of T. paniculatum Gaertn. adventitious root in MS solid medium and enhance the production of biomass in balloon type bubble bioreactor. Explants from leaf were cultured at abaxial and adaxial positions in solid MS medium supplemented with IBA 2 mgL-1. Adventitious roots were cultured in bioreactor with various treatments (without IBA, supplemented with IBA 2 mgL-1 and supplemented with IBA 2 mgL-1 + buffer NaHCO3). Result showed that the main growth of abaxial root was higher than adaxial, however, the total of adaxial root branch was higher than abaxial. The highest biomass production of adventitious root cultured was achieved by MS medium supplemented with IBA 2 mgL-1 + buffer NaHCO3. This treatment has produced fresh biomass two fold of initial inoculum.

  2. Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses.

    PubMed

    Li, Shi-Weng; Zeng, Xiao-Ying; Leng, Yan; Feng, Lin; Kang, Xiao-Hu

    2018-06-08

    In vitro experiments were performed to determine whether auxin can mediate the formation of adventitious roots in response to heavy metal and drought stresses using a model rooting plant, mung bean [Vigna radiata (L.) Wilczek]. The treatments with CdCl 2 or mannitol alone significantly inhibited the formation and growth of adventitious roots in mung bean seedlings. In contrast, when CdCl 2 or mannitol was applied together with indole-3-butyric acid (IBA), IBA considerably cancelled the inhibition of adventitious rooting by stresses. Treatment with CdCl 2 or mannitol alone significantly increased the soluble protein and malondialdehyde (MDA) contents. CdCl 2 and mannitol stress each induced differentially significant changes in the activities of antioxidative enzyme and antioxidant levels during adventitious rooting. Notably, both CdCl 2 and mannitol stress strongly reduced the peroxidase (POD) and ascorbate peroxidase (APX) activities and glutathione (GSH) and phenols levels. Catalase and superoxide dismutase (SOD) activity were enhanced by CdCl 2 but reduced by mannitol. CdCl 2 increased the ascorbate acid (ASA) level, which was decreased by mannitol. Furthermore, when CdCl 2 or mannitol was applied together with IBA, IBA counteracted the CdCl 2 - or mannitol-induced increase or decrease in certain antioxidants, MDA, and antioxidative enzymes. These results suggest that Cd and mannitol stress inhibition of adventitious rooting is associated with the regulation of antioxidative enzymes and antioxidants in cells to defense the oxidative stress. Moreover, IBA alleviates the effects of Cd and mannitol stress on the rooting process partially through the regulation of antioxidative defense systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. AOX1-Subfamily Gene Members in Olea europaea cv. "Galega Vulgar"-Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting.

    PubMed

    Velada, Isabel; Grzebelus, Dariusz; Lousa, Diana; M Soares, ClĂĄudio; Santos Macedo, Elisete; Peixe, Augusto; Arnholdt-Schmitt, Birgit; G Cardoso, HĂ©lia

    2018-02-17

    Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar "Galega vulgar". The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.

  4. Origin, timing, and gene expression profile of adventitious rooting in Arabidopsis hypocotyls and stems.

    PubMed

    Welander, Margareta; Geier, Thomas; Smolka, Anders; Ahlman, Annelie; Fan, Jing; Zhu, Li-Hua

    2014-02-01

    Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.

  5. AOX1-Subfamily Gene Members in Olea europaea cv. “Galega Vulgar”—Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting

    PubMed Central

    Lousa, Diana; M. Soares, ClĂĄudio; Santos Macedo, Elisete; Arnholdt-Schmitt, Birgit

    2018-01-01

    Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar ”Galega vulgar”. The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars. PMID:29462998

  6. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings.

    PubMed

    Sånchez-García, Ana Belén; Ibåñez, Sergio; Cano, Antonio; Acosta, Manuel; Pérez-Pérez, José Manuel

    2018-01-01

    Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.). To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation.

  7. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings

    PubMed Central

    Cano, Antonio; Acosta, Manuel

    2018-01-01

    Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.). To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation. PMID:29709027

  8. Bacterial stimulation of adventitious rooting on in vitro cultured slash pine (Pinus elliottii Engelm.) seedling explants.

    PubMed

    Burns, J A; Schwarz, O J

    1996-02-01

    A bacterium has been isolated that initiates adventitious rooting when co-cultured under in vitro conditions with seedling-produced hypocotylary explants of slash pine (Pinus elliottii). Rooting efficiencies produced through bacterial-explant co-culture range from approximately 15% to greater than 90% over non-treated controls. Explant exposure to the root inducing bacterium has produced no obvious pathology in the regenerated plantlets. Seedling explants rooted by bacterial-explant co-culture have been successfully transitioned to ambient greenhouse conditions.

  9. Petunia as model for elucidating adventitious root formation and mycorrhizal symbiosis: at the nexus of physiology, genetics, microbiology and horticulture.

    PubMed

    Druege, Uwe; Franken, Philipp

    2018-05-17

    Adventitious root formation in cuttings and establishment of arbuscular mycorrhizal symbiosis reflect the enormous plasticity of plants and are key factors in the efficient and sustainable clonal propagation and production of ornamental crops. Based on the high importance of Petunia hybrida for the European and US annual bedding plant markets and its suitability as a model for basic plant sciences, petunia has been established as an experimental system for elucidating the molecular and physiological processes underlying adventitious root formation and mycorrhizal symbiosis. In the present review, we introduce the tools of the Petunia model system. Then, we discuss findings regarding the hormonal and metabolic control of adventitious rooting in the context of diverse environmental factors as well as findings on the function of arbuscular mycorrhiza related to nutrient uptake and resistance to root pathogens. Considering the recent publication of the genomes of the parental species of P. hybrida and other tools available in the petunia scientific community, we will outline the quality of petunia as a model for future system-oriented analysis of root development and function in the context of environmental and genetic control, which are at the heart of modern horticulture. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Genetic linkage map and QTL identification for adventitious rooting traits in red gum eucalypts.

    PubMed

    Sumathi, Murugan; Bachpai, Vijaya Kumar Waman; Mayavel, A; Dasgupta, Modhumita Ghosh; Nagarajan, Binai; Rajasugunasekar, D; Sivakumar, Veerasamy; Yasodha, Ramasamy

    2018-05-01

    The eucalypt species, Eucalyptus tereticornis and Eucalyptus camaldulensis , show tolerance to drought and salinity conditions, respectively, and are widely cultivated in arid and semiarid regions of tropical countries. In this study, genetic linkage map was developed for interspecific cross E. tereticornis  ×  E. camaldulensis using pseudo-testcross strategy with simple sequence repeats (SSRs), intersimple sequence repeats (ISSRs), and sequence-related amplified polymorphism (SRAP) markers. The consensus genetic map comprised totally 283 markers with 84 SSRs, 94 ISSRs, and 105 SRAP markers on 11 linkage groups spanning 1163.4 cM genetic distance. Blasting the SSR sequences against E. grandis sequences allowed an alignment of 64% and the average ratio of genetic-to-physical distance was 1.7 Mbp/cM, which strengths the evidence that high amount of synteny and colinearity exists among eucalypts genome. Blast searches also revealed that 37% of SSRs had homologies with genes, which could potentially be used in the variety of downstream applications including candidate gene polymorphism. Quantitative trait loci (QTL) analysis for adventitious rooting traits revealed six QTL for rooting percent and root length on five chromosomes with interval and composite interval mapping. All the QTL explained 12.0-14.7% of the phenotypic variance, showing the involvement of major effect QTL on adventitious rooting traits. Increasing the density of markers would facilitate the detection of more number of small-effect QTL and also underpinning the genes involved in rooting process.

  11. Carbon Monoxide Is Involved in Hydrogen Gas-Induced Adventitious Root Development in Cucumber under Simulated Drought Stress

    PubMed Central

    Chen, Yue; Wang, Meng; Hu, Linli; Liao, Weibiao; Dawuda, Mohammed M.; Li, Chunlan

    2017-01-01

    Hydrogen gas (H2) and carbon monoxide (CO) are involved in plant growth and developmental processes and may induce plant tolerance to several stresses. However, the independent roles and interaction effect of H2 and CO in adventitious root development under drought conditions have still not received the needed research attention. We hypothesize that there exists crosstalk between H2 and CO during adventitious root development under drought stress. The results of our current study revealed that 50% (v/v) hydrogen-rich water (HRW), 500 ÎŒM Hemin (the CO donor) and 30% (w/v) CO aqueous solution apparently promoted the development of adventitious roots in cucumber explants (Cucumis Sativus L.) under drought stress. H2 and CO increased relative water content (RWC), leaf chlorophyll content (chlorophyll a, b, and a+b), and chlorophyll fluorescence parameters [photochemical efficiency of photosystem II (PSII), PSII actual photochemical efficiency and photochemical quench coefficient] under drought condition. When the CO scavenger hemoglobin (Hb) or zinc protoporphyrin IX (ZnPPIX) was added to HRW/CO aqueous solution, the positive effect of HRW/CO aqueous solution on RWC, leaf chlorophyll content, and chlorophyll fluorescence parameters were reversed. Additionally, superoxide dismutases, peroxidase, catalase, and ascorbate peroxidase was significantly increased in the explants treated with HRW and CO aqueous solution under drought stress, thus alleviating oxidative damage, as indicated by decreases in thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and superoxide radical (O2-) levels. H2 and CO also improved the levels of water soluble carbohydrate, total soluble protein, and proline content. However, the above CO/H2-mediated effects were reversed by CO scavenger Hb or CO specific synthetic inhibitor ZnPPIX. Therefore, CO may be involved in H2-induced adventitious rooting under drought stress and alleviate oxidative damage by enhancing RWC, leaf

  12. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.).

    PubMed

    Knipfer, Thorsten; Fricke, Wieland

    2011-01-01

    Prior to an assessment of the role of aquaporins in root water uptake, the main path of water movement in different types of root and driving forces during day and night need to be known. In the present study on hydroponically grown barley (Hordeum vulgare L.) the two main root types of 14- to 17-d-old plants were analysed for hydraulic conductivity in dependence of the main driving force (hydrostatic, osmotic). Seminal roots contributed 92% and adventitious roots 8% to plant water uptake. The lower contribution of adventitious compared with seminal roots was associated with a smaller surface area and number of roots per plant and a lower axial hydraulic conductance, and occurred despite a less-developed endodermis. The radial hydraulic conductivity of the two types of root was similar and depended little on the prevailing driving force, suggesting that water uptake occurred along a pathway that involved crossing of membrane(s). Exudation experiments showed that osmotic forces were sufficient to support night-time transpiration, yet transpiration experiments and cuticle permeance data questioned the significance of osmotic forces. During the day, 90% of water uptake was driven by a tension of about -0.15 MPa.

  13. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.)

    PubMed Central

    Knipfer, Thorsten; Fricke, Wieland

    2011-01-01

    Prior to an assessment of the role of aquaporins in root water uptake, the main path of water movement in different types of root and driving forces during day and night need to be known. In the present study on hydroponically grown barley (Hordeum vulgare L.) the two main root types of 14- to 17-d-old plants were analysed for hydraulic conductivity in dependence of the main driving force (hydrostatic, osmotic). Seminal roots contributed 92% and adventitious roots 8% to plant water uptake. The lower contribution of adventitious compared with seminal roots was associated with a smaller surface area and number of roots per plant and a lower axial hydraulic conductance, and occurred despite a less-developed endodermis. The radial hydraulic conductivity of the two types of root was similar and depended little on the prevailing driving force, suggesting that water uptake occurred along a pathway that involved crossing of membrane(s). Exudation experiments showed that osmotic forces were sufficient to support night-time transpiration, yet transpiration experiments and cuticle permeance data questioned the significance of osmotic forces. During the day, 90% of water uptake was driven by a tension of about –0.15 MPa. PMID:20974734

  14. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  15. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    PubMed Central

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626

  16. BIG LEAF is a regulator of organ size and adventitious root formation in poplar.

    PubMed

    Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.

  17. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE PAGES

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...

    2017-07-07

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  18. Control of root meristem establishment in conifers.

    PubMed

    Brunoni, Federica; Ljung, Karin; Bellini, Catherine

    2018-06-19

    The evolution of terrestrial plant life was made possible by the establishment of a root system, which enabled plants to migrate from aquatic to terrestrial habitats. During evolution, root organization has gradually progressed from a very simple to a highly hierarchical architecture. Roots are initiated during embryogenesis and branch afterwards through lateral root formation. Additionally, adventitious roots can be formed post-embryonically from aerial organs. Induction of adventitious roots forms the basis of the vegetative propagation via cuttings in horticulture, agriculture and forestry. This method, together with somatic embryogenesis, is routinely used to clonally multiply conifers. In addition to being utilized as propagation techniques, adventitious rooting and somatic embryogenesis have emerged as versatile models to study cellular and molecular mechanisms of embryo formation and organogenesis of coniferous species. Both formation of the embryonic root and the adventitious root primordia require the establishment of auxin gradients within cells that coordinate the developmental response. These processes also share key elements of the genetic regulatory networks that, for example, are triggering cell fate. This minireview gives an overview of the molecular control mechanisms associated with root development in conifers, from initiation in the embryo to post-embryonic formation in cuttings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. The Tomato (Solanum Lycopersicum cv. Micro-Tom) Natural Genetic Variation Rg1 and the DELLA Mutant Procera Control the Competence Necessary to Form Adventitious Roots and Shoots

    PubMed Central

    Peres, LĂĄzaro EustĂĄquio Pereira

    2012-01-01

    Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively. PMID:22915742

  20. The tomato (Solanum lycopersicum cv. Micro-Tom) natural genetic variation Rg1 and the DELLA mutant procera control the competence necessary to form adventitious roots and shoots.

    PubMed

    Lombardi-Crestana, Simone; da Silva Azevedo, Mariana; e Silva, Geraldo Felipe Ferreira; Pino, LĂ­lian Ellen; Appezzato-da-GlĂłria, Beatriz; Figueira, Antonio; Nogueira, Fabio Tebaldi Silveira; Peres, LĂĄzaro EustĂĄquio Pereira

    2012-09-01

    Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.

  1. Gonadotropin Promotion of Adventitious Root Production on Cuttings of Begonia semperflorens and Vitis vinifera 1

    PubMed Central

    Leshem, Y.; Lunenfeld, B.

    1968-01-01

    Adventitious rooting of Begonia semperflorens cv. Indian Maid and Vitis vinifera cv. Semillon stem cuttings was significantly promoted by human chorionic gonadotropin (HCG). Basal sections of HCG treated cuttings upon which promoted rooting took place had markedly less endogenous gibberellin (GA) activity than non-treated controls or apical sections of treated ones, while changes in auxin levels were not found. HCG also inhibited GA3-induced reducing sugar release from embryoless barley endosperm halves. These findings are discussed in the light of a possible analogy to gonadotropin action in animal systems. PMID:5641189

  2. Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings.

    PubMed

    Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan; Zhou, Yuan

    2016-01-12

    Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known. The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1

  3. Spectral lights trigger biomass accumulation and production of antioxidant secondary metabolites in adventitious root cultures of Stevia rebaudiana (Bert.).

    PubMed

    Idrees, Muhammad; Sania, Bibi; Hafsa, Bibi; Kumari, Sana; Khan, Haji; Fazal, Hina; Ahmad, Ishfaq; Akbar, Fazal; Ahmad, Naveed; Ali, Sadeeq; Ahmad, Nisar

    2018-05-30

    Stevia rebaudiana (S. rebaudiana) is the most important therapeutic plant species and has been accepted as such worldwide. It has a tendency to accumulate steviol glycosides, which are 300 times sweeter than marketable sugar. Recently, diabetic patients commonly use this plant as a sugar substitute for sweet taste. In the present study, the effects of different spectral lights were investigated on biomass accumulation and production of secondary metabolites in adventitious root cultures of S. rebaudiana. For callus development, leaf explants were excised from seed-derived plantlets and inoculated on a Murashige and Skoog (MS) medium containing the combination of 2,4-dichlorophenoxy acetic acid (2, 4-D, 2.0mg/l) and 6-benzyladenine (BA, 2.0mg/l), while 0.5mg/l naphthalene acetic acid (NAA) was used for adventitious root culture. Adventitious root cultures were exposed to different spectral lights (blue, green, violet, red and yellow) for a 30-day period. White light was used as control. The growth kinetics was studied for 30days with 3-day intervals. In this study, the violet light showed the maximum accumulation of fresh biomass (2.495g/flask) as compared to control (1.63g/flask), while red light showed growth inhibition (1.025g/flask) as compared to control. The blue light enhanced the highest accumulation of phenolic content (TPC; 6.56mg GAE/g DW), total phenolic production (TPP; 101mg/flask) as compared to control (5.44mg GAE/g DW; 82.2mg GAE/g DW), and exhibited a strong correlation with dry biomass. Blue light also improved the accumulation of total flavonoid content (TFC; 4.33mg RE/g DW) and total flavonoid production (TFP; 65mg/flask) as compared to control. The violet light showed the highest DPPH inhibition (79.72%), while the lowest antioxidant activity was observed for control roots (73.81%). Hence, we concluded that the application of spectral lights is an auspicious strategy for the enhancement of the required antioxidant secondary metabolites in

  4. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq

    PubMed Central

    Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan

    2015-01-01

    Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77%) were annotated using BLASTx. Among them, 28,225 (35.75%) and 28,119 (35.62%) unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr) databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2) during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3%) with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles reveal

  5. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq.

    PubMed

    Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan

    2015-01-01

    Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77%) were annotated using BLASTx. Among them, 28,225 (35.75%) and 28,119 (35.62%) unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr) databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2) during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3%) with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles reveal

  6. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings.

    PubMed

    Li, Shi-Weng; Leng, Yan; Shi, Rui-Fang

    2017-02-17

    Hydrogen peroxide (H 2 O 2 ) has been known to function as a signalling molecule involved in the modulation of various physiological processes in plants. H 2 O 2 has been shown to act as a promoter during adventitious root formation in hypocotyl cuttings. In this study, RNA-Seq was performed to reveal the molecular mechanisms underlying H 2 O 2 -induced adventitious rooting. RNA-Seq data revealed that H 2 O 2 treatment greatly increased the numbers of clean reads and expressed genes and abundance of gene expression relative to the water treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that a profound change in gene function occurred in the 6-h H 2 O 2 treatment and that H 2 O 2 mainly enhanced gene expression levels at the 6-h time point but reduced gene expression levels at the 24-h time point compared with the water treatment. In total, 4579 differentially expressed (2-fold change > 2) unigenes (DEGs), of which 78.3% were up-regulated and 21.7% were down-regulated; 3525 DEGs, of which 64.0% were up-regulated and 36.0% were down-regulated; and 7383 DEGs, of which 40.8% were up-regulated and 59.2% were down-regulated were selected in the 6-h, 24-h, and from 6- to 24-h treatments, respectively. The number of DEGs in the 6-h treatment was 29.9% higher than that in the 24-h treatment. The functions of the most highly regulated genes were associated with stress response, cell redox homeostasis and oxidative stress response, cell wall loosening and modification, metabolic processes, and transcription factors (TFs), as well as plant hormone signalling, including auxin, ethylene, cytokinin, gibberellin, and abscisic acid pathways. Notably, a large number of genes encoding for heat shock proteins (HSPs) and heat shock transcription factors (HSFs) were significantly up-regulated during H 2 O 2 treatments. Furthermore, real-time quantitative PCR (qRT-PCR) results showed that, during H 2 O 2 treatments

  7. An Efficient Method for Adventitious Root Induction from Stem Segments of Brassica Species

    PubMed Central

    Srikanth, Sandhya; Choong, Tsui Wei; Yan, An; He, Jie; Chen, Zhong

    2016-01-01

    Plant propagation via in vitro culture is a very laborious and time-consuming process. The growth cycle of some of the crop species is slow even in the field and the consistent commercial production is hard to maintain. Enhanced methods of reduced cost, materials and labor significantly impact the research and commercial production of field crops. In our studies, stem-segment explants of Brassica species were found to generate adventitious roots (AR) in aeroponic systems in less than a week. As such, the efficiency of rooting from stem explants of six cultivar varieties of Brassica spp was tested without using any plant hormones. New roots and shoots were developed from Brassica alboglabra (Kai Lan), B. oleracea var. acephala (purple kale), B. rapa L. ssp. chinensis L (Pai Tsai, Nai Bai C, and Nai Bai T) explants after 3 to 5 days of growing under 20 ± 2°C cool root zone temperature (C-RZT) and 4 to 7 days in 30 ± 2°C ambient root zone temperature (A-RZT). At the base of cut end, anticlinal and periclinal divisions of the cambial cells resulted in secondary xylem toward pith and secondary phloem toward cortex. The continuing mitotic activity of phloem parenchyma cells led to a ring of conspicuous white callus. Root initials formed from the callus which in turn developed into ARs. However, B. rapa var. nipposinica (Mizuna) explants were only able to root in C-RZT. All rooted explants were able to develop into whole plants, with higher biomass obtained from plants that grown in C-RZT. Moreover, explants from both RZTs produced higher biomass than plants grown from seeds (control plants). Rooting efficiency was affected by RZTs and explant cuttings of donor plants. Photosynthetic CO2 assimilation rate (Asat) and stomatal conductance (gssat) were significantly differentiated between plants derived from seeds and explants at both RZTs. All plants in A-RZT had highest transpiration rates. PMID:27446170

  8. Effects of light regime and IBA concentration on adventitious rooting of an eastern cottonwood (Populus deltoides) clone

    Treesearch

    Alexander P. Hoffman; Joshua P. Adams; Andrew Nelson

    2016-01-01

    Eastern cottonwood (Populus deltoides) has received a substantial amount of interest from invitro studies within the past decade. The ability to efficiently multiply the stock of established clones such as clone 110412 is a valuable asset for forest endeavors. However, a common problem encountered is initiating adventitious rooting in new micropropagation protocols....

  9. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress.

    PubMed

    Li, Shi-Weng; Leng, Yan; Feng, Lin; Zeng, Xiao-Ying

    2014-01-01

    In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 ΌM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0-12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.

  10. Triterpene and Flavonoid Biosynthesis and Metabolic Profiling of Hairy Roots, Adventitious Roots, and Seedling Roots of Astragalus membranaceus.

    PubMed

    Park, Yun Ji; Thwe, Aye Aye; Li, Xiaohua; Kim, Yeon Jeong; Kim, Jae Kwang; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2015-10-14

    Astragalus membranaceus is an important traditional Chinese herb with various medical applications. Astragalosides (ASTs), calycosin, and calycosin-7-O-ÎČ-d-glucoside (CG) are the primary metabolic components in A. membranaceus roots. The dried roots of A. membranaceus have various medicinal properties. The present study aimed to investigate the expression levels of genes related to the biosynthetic pathways of ASTs, calycosin, and CG to investigate the differences between seedling roots (SRs), adventitious roots (ARs), and hairy roots (HRs) using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR study revealed that the transcription level of genes involved in the AST biosynthetic pathway was lowest in ARs and showed similar patterns in HRs and SRs. Moreover, most genes involved in the synthesis of calycosin and CG exhibited the highest expression levels in SRs. High-performance liquid chromatography (HPLC) analysis indicated that the expression level of the genes correlated with the content of ASTs, calycosin, and CG in the three different types of roots. ASTs were the most abundant in SRs. CG accumulation was greater than calycosin accumulation in ARs and HRs, whereas the opposite was true in SRs. Additionally, 40 metabolites were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). Principal component analysis (PCA) documented the differences among SRs, ARs, and HRs. PCA comparatively differentiated among the three samples. The results of PCA showed that HRs were distinct from ARs and SRs on the basis of the dominant amounts of sugars and clusters derived from closely similar biochemical pathways. Also, ARs had a higher concentration of phenylalanine, a precursor for the phenylpropanoid biosynthetic pathway, as well as CG. TCA cycle intermediates levels including succinic acid and citric acid indicated a higher amount in SRs than in the others.

  11. Root Formation in Ethylene-Insensitive Plants1

    PubMed Central

    Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.

    1999-01-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660

  12. Tamarack and black spruce adventitious root patterns are similar in their ability to estimate organic layer depths in northern temperate forests

    Treesearch

    Timothy J. Veverica; Evan S. Kane; Eric S. Kasischke

    2012-01-01

    Organic layer consumption during forest fires is hard to quantify. These data suggest that the adventitious root methods developed for reconstructing organic layer depths following wildfires in boreal black spruce forests can also be applied to mixed tamarack forests growing in temperate regions with glacially transported soils.

  13. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill.

    PubMed

    de Almeida, MĂĄrcia R; Ruedell, Carolina M; Ricachenevsky, Felipe K; Sperotto, Raul A; Pasquali, Giancarlo; Fett-Neto, Arthur G

    2010-09-20

    Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs identified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based on the AGO1 relative expression

  14. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill

    PubMed Central

    2010-01-01

    Background Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. Results By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs indentified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Conclusion Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based

  15. Microarray Analyses of Gene Expression during Adventitious Root Development in Pinus contorta1[w

    PubMed Central

    Brinker, Monika; van Zyl, Leonel; Liu, Wenbin; Craig, Deborah; Sederoff, Ronald R.; Clapham, David H.; von Arnold, Sara

    2004-01-01

    In order to investigate the gene expression pattern during adventitious root development, RNA of Pinus contorta hypocotyls, pulse-treated with the auxin indole-3-butyric acid and harvested at distinct developmental time points of root development, was hybridized to microarrays containing 2,178 cDNAs from Pinus taeda. Over the period of observation of root development, the transcript levels of 220 genes changed significantly. During the root initiation phase, genes involved in cell replication and cell wall weakening and a transcript encoding a PINHEAD/ZWILLE-like protein were up-regulated, while genes related to auxin transport, photosynthesis, and cell wall synthesis were down-regulated. In addition, there were changes in transcript abundance of genes related to water stress. During the root meristem formation phase the transcript abundances of genes involved in auxin transport, auxin responsive transcription, and cell wall synthesis, and of a gene encoding a B-box zinc finger-like protein, increased, while those encoding proteins involved in cell wall weakening decreased. Changes of transcript abundance of genes related to water stress during the root meristem formation and root formation phase indicate that the plant roots had become functional in water transport. Simultaneously, genes involved in auxin transport were up-regulated, while genes related to cell wall modification were down-regulated. Finally, during the root elongation phase down-regulation of transcripts encoding proteins involved in cell replication and stress occurred. Based on the observed changes in transcript abundances, we suggest hypotheses about the relative importance of various physiological processes during the auxin-induced development of roots in P. contorta. PMID:15247392

  16. Jasmonates act positively in adventitious root formation in petunia cuttings.

    PubMed

    Lischweski, Sandra; Muchow, Anne; Guthörl, Daniela; Hause, Bettina

    2015-09-22

    Petunia is a model to study the process of adventitious root (AR) formation on leafy cuttings. Excision of cuttings leads to a transient increase in jasmonates, which is regarded as an early, transient and critical event for rooting. Here, the role of jasmonates in AR formation on petunia cuttings has been studied by a reverse genetic approach. To reduce the endogenous levels of jasmonates, transgenic plants were generated expressing a Petunia hybrida ALLENE OXIDE CYCLASE (PhAOC)-RNAi construct. The transgenic plants exhibited strongly reduced PhAOC transcript and protein levels as well as diminished accumulation of cis-12-oxo-phytodienoic acid, jasmonic acid and jasmonoyl-isoleucine after wounding in comparison to wild type and empty vector expressing plants. Reduced levels of endogenous jasmonates resulted in formation of lower numbers of ARs. However, this effect was not accompanied by altered levels of auxin and aminocyclopropane carboxylate (ACC, precursor of ethylene) or by impaired auxin and ethylene-induced gene expression. Neither activity of cell-wall invertases nor accumulation of soluble sugars was altered by jasmonate deficiency. Diminished numbers of AR in JA-deficient cuttings suggest that jasmonates act as positive regulators of AR formation in petunia wild type. However, wound-induced rise in jasmonate levels in petunia wild type cuttings seems not to be causal for increased auxin and ethylene levels and for sink establishment.

  17. iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple

    PubMed Central

    Lei, Chao; Fan, Sheng; Li, Ke; Meng, Yuan; Mao, Jiangping; Han, Mingyu; Zhao, Caiping; Bao, Lu; Zhang, Dong

    2018-01-01

    Adventitious root (AR) formation, which is controlled by endogenous and environmental factors, is indispensable for vegetative asexual propagation. However, comprehensive proteomic data on AR formation are still lacking. The aim of this work was to study indole-3-butyric acid (IBA)-induced AR formation in the dwarf apple rootstock ‘T337’. In this study, the effect of IBA on AR formation was analysed. Subsequent to treatment with IBA, both the rooting rate and root length of ‘T337’ increased significantly. An assessment of hormone levels in basal stem cuttings suggested that auxin, abscisic acid, and brassinolide were higher in basal stem cuttings that received the exogenous IBA application; while zeatin riboside, gibberellins, and jasmonic acid were lower than non-treated basal stem cuttings. To explore the underlying molecular mechanism, an isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic technique was employed to identify the expression profiles of proteins at a key period of adventitious root induction (three days after IBA treatment). In total, 3355 differentially expressed proteins (DEPs) were identified. Many DEPs were closely related to carbohydrate metabolism and energy production, protein homeostasis, reactive oxygen and nitric oxide signaling, and cell wall remodeling biological processes; as well as the phytohormone signaling, which was the most critical process in response to IBA treatment. Further, RT-qPCR analysis was used to evaluate the expression level of nine genes that are involved in phytohormone signaling and their transcriptional levels were mostly in accordance with the protein patterns. Finally, a putative work model was proposed. Our study establishes a foundation for further research and sheds light on IBA-mediated AR formation in apple as well as other fruit rootstock cuttings. PMID:29495482

  18. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara.

    PubMed

    Dawood, Thikra; Yang, Xinping; Visser, Eric J W; Te Beek, Tim A H; Kensche, Philip R; Cristescu, Simona M; Lee, Sangseok; FlokovĂĄ, KristĂœna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo

    2016-04-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. In Vitro Culture Conditions and OeARF and OeH3 Expressions Modulate Adventitious Root Formation from Oleaster (Olea europaea L. subsp. europaea var. sylvestris) Cuttings

    PubMed Central

    Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency. PMID:24587768

  20. In vitro culture conditions and OeARF and OeH3 expressions modulate adventitious root formation from oleaster (Olea europaea L. subsp. europaea var. sylvestris) cuttings.

    PubMed

    Chiappetta, Adriana; Gagliardi, Cinzia; Bruno, Leonardo; Bitonti, Maria Beatrice

    2014-01-01

    Olea europaea L. subsp. europaea var. sylvestris, also named oleaster, is the wild form of olive and it is used as rootstock and pollen donor for many cultivated varieties. An efficient procedure for in vitro propagation of oleaster was established in this study. A zeatin concentration of 2.5 mg/L was effective to induce an appreciable vegetative growth. Also high rooting efficiency was obtained by using a short IBA pulse, followed by two different IBA concentrations in the culture medium. With the aim to enlarge knowledge on the molecular aspects of adventitious rooting, we also evaluated the transcriptional modulation of an ARFs member and HISTONE H3 genes, involved in auxin signaling and cell replication, respectively, during the root induction phase of cuttings. The obtained results suggest that the selected genes, as markers of the induction phase, could be very useful for setting up efficient culture conditions along the rooting process, thus increasing micropropagation efficiency.

  1. [Induction and in vitro culture of hairy roots of Dianthus caryophyllus and its plant regeneration].

    PubMed

    Shi, Heping; Zhu, Yuanfeng; Wang, Bei; Sun, Jiangbing; Huang, Shengqin

    2014-11-01

    To use Agrobacterium rhizogenes-induced hairy roots to create new germplasm of Dianthus caryophyllus, we transformed D. caryophyllus with A. rhizogenes by leaf disc for plant regeneration from hairy roots. The white hairy roots could be induced from the basal surface of leaf explants of D. caryophyllus 12 days after inoculation with A. rhizogenes ATCC15834. The percentage of the rooting leaf explants was about 90% 21 days after inoculation. The hairy roots could grow rapidly and autonomously in liquid or solid phytohormone-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and silica gel thin-layer chromatography of opines from D. caryophyllus hairy roots. Hairy roots could form light green callus after cultured on MS+6-BA 1.0-3.0 mg/L + NAA 0.1-0.2 mg/L for 15 days. The optimum medium for adventitious shoots formation was MS + 6-BA 2.0 mg/L + NAA 0.02 mg/L, where the rate of adventitious shoot induction was 100% after cultured for 6 weeks. The mean number of adventitious shoot per callus was 30-40. The adventitious shoots can form roots when cultured on phytohormone-free 1/2 MS or 1/2 MS +0.5 mg/L NAA for 10 days. When the rooted plantlets transplanted in the substrate mixed with perlite sand and peat (volume ratio of 1:2), the survival rate was above 95%.

  2. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus

    DOE PAGES

    Ribeiro, Cintia L.; Silva, Cynthia M.; Drost, Derek R.; ...

    2016-03-16

    In this study, adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. As a result, parental individuals andmore » progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7–10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. In conclusion, this study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of

  3. Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light.

    PubMed

    Klopotek, Yvonne; Haensch, Klaus-Thomas; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2010-05-01

    The effect of temporary dark exposure on adventitious root formation (ARF) in Petuniaxhybrida 'Mitchell' cuttings was investigated. Histological and metabolic changes in the cuttings during the dark treatment and subsequent rooting in the light were recorded. Excised cuttings were exposed to the dark for seven days at 10 degrees C followed by a nine-day rooting period in perlite or were rooted immediately for 16 days in a climate chamber at 22/20 degrees C (day/night) and a photosynthetic photon flux density (PPFD) of 100micromolm(-2)s(-1). Dark exposure prior to rooting increased, accelerated and synchronized ARF. The rooting period was reduced from 16 days (non-treated cuttings) to 9 days (treated cuttings). Under optimum conditions, despite the reduced rooting period, dark-exposed cuttings produced a higher number and length of roots than non-treated cuttings. An increase in temperature to 20 degrees C during the dark treatment or extending the cold dark exposure to 14 days caused a similar enhancement of root development compared to non-treated cuttings. Root meristem formation had already started during the dark treatment and was enhanced during the subsequent rooting period. Levels of soluble sugars (glucose, fructose and sucrose) and starch in leaf and basal stem tissues significantly decreased during the seven days of dark exposure. This depletion was, however, compensated during rooting after 6 and 24h for soluble sugars in leaves and the basal stem, respectively, whereas the sucrose level in the basal stem was already increased at 6h. The association of higher carbohydrate levels with improved rooting in previously dark-exposed versus non-treated cuttings indicates that increased post-darkness carbohydrate availability and allocation towards the stem base contribute to ARF under the influence of dark treatment and provide energy for cell growth subject to a rising sink intensity in the base of the cutting. Copyright 2009 Elsevier GmbH. All rights reserved.

  4. Production of the quinone-methide triterpene maytenin by in vitro adventitious roots of Peritassa campestris (Cambess.) A.C.Sm. (Celastraceae) and rapid detection and identification by APCI-IT-MS/MS.

    PubMed

    Paz, Tiago Antunes; dos Santos, VĂąnia A F F M; InĂĄcio, Marielle Cascaes; Pina, Edieidia Souza; Pereira, Ana Maria Soares; Furlan, Maysa

    2013-01-01

    Establishment of adventitious root cultures of Peritassa campestris (Celastraceae) was achieved from seed cotyledons cultured in semisolid Woody Plant Medium (WPM) supplemented with 2% sucrose, 0.01% PVP, and 4.0 mg L⁻Âč IBA. Culture period on accumulation of biomass and quinone-methide triterpene maytenin in adventitious root were investigated. The accumulation of maytenin in these roots was compared with its accumulation in the roots of seedlings grown in a greenhouse (one year old). A rapid detection and identification of maytenin by direct injection into an atmospheric-pressure chemical ionization ion trap tandem mass spectrometer (APCI-IT-MS/MS) were performed without prior chromatographic separation. In vitro, the greatest accumulation of biomass occurred within 60 days of culture. The highest level of maytenin--972.11  ÎŒ g·g⁻Âč dry weight--was detected at seven days of cultivation; this value was 5.55-fold higher than that found in the roots of seedlings grown in a greenhouse.

  5. Production of the Quinone-Methide Triterpene Maytenin by In Vitro Adventitious Roots of Peritassa campestris (Cambess.) A.C.Sm. (Celastraceae) and Rapid Detection and Identification by APCI-IT-MS/MS

    PubMed Central

    Paz, Tiago Antunes; dos Santos, VĂąnia A. F. F. M.; InĂĄcio, Marielle Cascaes; Pina, Edieidia Souza; Pereira, Ana Maria Soares; Furlan, Maysa

    2013-01-01

    Establishment of adventitious root cultures of Peritassa campestris (Celastraceae) was achieved from seed cotyledons cultured in semisolid Woody Plant Medium (WPM) supplemented with 2% sucrose, 0.01% PVP, and 4.0 mg L−1 IBA. Culture period on accumulation of biomass and quinone-methide triterpene maytenin in adventitious root were investigated. The accumulation of maytenin in these roots was compared with its accumulation in the roots of seedlings grown in a greenhouse (one year old). A rapid detection and identification of maytenin by direct injection into an atmospheric-pressure chemical ionization ion trap tandem mass spectrometer (APCI-IT-MS/MS) were performed without prior chromatographic separation. In vitro, the greatest accumulation of biomass occurred within 60 days of culture. The highest level of maytenin—972.11 Όg·g−1 dry weight—was detected at seven days of cultivation; this value was 5.55-fold higher than that found in the roots of seedlings grown in a greenhouse. PMID:24205504

  6. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    PubMed

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  7. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments.

    PubMed

    Li, Yun-He; Zou, Ming-Hong; Feng, Bi-Hong; Huang, Xia; Zhang, Zhi; Sun, Guang-Ming

    2012-06-01

    Polar auxin transport (PAT) plays an important role in the adventitious root formation of mango cotyledon segments, but the molecular mechanism remains unclear. In this study, we cloned a gene encoding an auxin efflux carrier (designated as MiPIN1), and we cloned four genes encoding auxin influx carriers (designated as MiAUX1, MiAUX2, MiAUX3 and MiAUX4). The results of a phylogenetic tree analysis indicated that MiPIN1 and the MiAUXs belong to plant PIN and AUXs/LAXs groups. Quantitative real-time PCR indicated that the expression of MiPIN1 and the MiAUXs was lowest at 0 days but sharply increased on and after day 4. During the root formation in the mango cotyledon segments, the MiPIN1 expression in the distal cut surface (DCS) was always higher than the expression in the proximal cut surface (PCS) whereas the expression of the MiAUXs in the PCS was usually higher than in the DCS. This expression pattern might be result in the PAT from the DCS to the PCS, which is essential for the adventitious root formation in the PCS. Our previous study indicated that a pre-treatment of embryos with indole-3-butyric acid (IBA) significantly promoted adventitious rooting in PCS whereas a pre-treatment with 2,3,5-triiodobenzoic acid (TIBA) completely inhibited this rooting. In this study, however, IBA and TIBA pre-treatments slightly changed the expression of MiPIN1. In contrast, while the MiAUX3 and MiAUX4 expression levels were significantly up-regulated by the IBA pre-treatment, the expression levels were down-regulated by the TIBA pre-treatment. These findings imply that MiAUX3 and MiAUX4 are more sensitive to the IBA and TIBA treatments and that they might play important roles during adventitious root formation in mango cotyledon segments. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill.

    PubMed

    Aumond, MĂĄrcio L; de Araujo, Artur T; de Oliveira Junkes, Camila F; de Almeida, MĂĄrcia R; Matsuura, HĂ©lio N; de Costa, Fernanda; Fett-Neto, Arthur G

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus , the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1 , a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1 , suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression ( TPL , IAA12 ) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1 , showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process.

  9. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill

    PubMed Central

    Aumond, MĂĄrcio L.; de Araujo, Artur T.; de Oliveira Junkes, Camila F.; de Almeida, MĂĄrcia R.; Matsuura, HĂ©lio N.; de Costa, Fernanda; Fett-Neto, Arthur G.

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus, the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1, a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1, suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression (TPL, IAA12) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1, showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process. PMID:29067033

  10. Control of Adventitious Root Architecture in Rice by Darkness, Light, and Gravity.

    PubMed

    Lin, Chen; Sauter, Margret

    2018-02-01

    Rice ( Oryza sativa ) is a semiaquatic plant that is well adapted to partial flooding. Rice stems develop adventitious root (AR) primordia at each node that slowly mature but emerge only when the plant gets flooded, leading to the formation of a whole new secondary root system upon flooding. AR growth is induced by ethylene that accumulates in submerged plant tissues due to its lowered diffusion rate in water. Here, we report that the architecture of the secondary root system in flooded rice plants is controlled not only by altered gas diffusion but also by gravity and light. While ethylene promotes the emergence and growth of ARs, gravity and light determine their gravitropic setpoint angle (i.e. the deviation of growth direction relative to vertical). ARs grow upward at about 120° in the dark and downward at 54° in the light. The upward growth direction is conserved in indica and japonica rice varieties, suggestive of a conserved trait in rice. Experiments with a klinostat and with inverted stem orientation revealed that gravity promotes upward growth by about 10°. Red, far-red, and blue light lead to negative phototropism in a dose-dependent manner, with blue light being most effective, indicating that phytochrome and blue light signaling control AR system architecture. The cpt1 ( coleoptile phototropism1 ) mutant, which lacks one of the phototropin-interacting CPT proteins, shows reduced sensitivity to blue light. Hence, the gravitropic setpoint angle of rice ARs is controlled by genetic and environmental factors that likely balance the need for oxygen supply (upward growth) with avoidance of root desiccation (downward growth). © 2018 American Society of Plant Biologists. All Rights Reserved.

  11. Isolation, characterization and expression analysis of the BABY BOOM (BBM) gene from Larix kaempferi × L. olgensis during adventitious rooting.

    PubMed

    Li, Kui-Peng; Sun, Xiao-Mei; Han, Hua; Zhang, Shou-Gong

    2014-11-10

    The full-length cDNA and genomic sequences of the BABY BOOM (BBM) gene, designated LkBBM, were isolated from Larix kaempferi × Larix olgensis. The 3324 bp cDNA was cloned and its open reading frame (ORF) consists of 2370 nucleotides. The deduced 789 amino acid protein contains two AP2 domains and a BBM specific motif. Four conserved motifs between BBM and PLT were identified, which may be conducive to the similar function of BBM and PLT. The three dimensional (3D) structure of LkBBM was predicted and ÎČ-sheets in the AP2-R2 domain of LkBBM might recognize the specific base pairs in the major groove. Analysis of the LkBBM gene structure indicates that the gene has eight introns and nine exons. In the 5'-flanking promoter region of LkBBM, many important potential cis-acting elements were identified, such as the TATABOX5 element (a functional TATA element), ROOTMOTIFTAPOX1 element (element of root specificity), AUXREPSIAA4 element (element involved in auxin responsiveness and gene expression in root meristem), MYB1AT element (element involved in MYB recognition), ARR1AT element (element involved in cytokinin responsiveness), GARE1OSREP1 element (element involved in gibberellin responsiveness) and PYRIMIDINEBOXHVEPB1 element (element involved in abscisic acid responsiveness), which all suggested that the expression of LkBBM is highly regulated. Compared with gene expression levels in the stem, stem tip and leaf, LkBBM shows a specific expression in the root, which indicates that LkBBM plays a key role in regulating the development and growth of root in larch. In the processing of larch adventitious root formation, LkBBM started to express on the eighth day after rooting treatment and its transcript level increased continuously afterwards. According to the gene characteristics, LkBBM is proposed as a molecular marker for root primordia of larch, and the initial period of LkBBM expression may be the formation period of root primordia in the processing of adventitious

  12. Enhancement of Anti-Inflammatory Activity of Aloe vera Adventitious Root Extracts through the Alteration of Primary and Secondary Metabolites via Salicylic Acid Elicitation

    PubMed Central

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10–11 and 5–13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment. PMID:24358188

  13. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara1[OPEN

    PubMed Central

    Dawood, Thikra; Kensche, Philip R.; Cristescu, Simona M.; Mariani, Celestina

    2016-01-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara. Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. PMID:26850278

  14. Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus.

    PubMed

    de Almeida, MĂĄrcia Rodrigues; de Bastiani, Daniela; Gaeta, Marcos Letaif; de AraĂșjo Mariath, Jorge Ernesto; de Costa, Fernanda; Retallick, Jeffrey; Nolan, Lana; Tai, Helen H; Strömvik, Martina V; Fett-Neto, Arthur Germano

    2015-10-01

    Adventitious rooting (AR) is essential in clonal propagation. Eucalyptus globulus is relevant for the cellulose industry due to its low lignin content. However, several useful clones are recalcitrant to AR, often requiring exogenous auxin, adding cost to clonal garden operations. In contrast, E. grandis is an easy-to-root species widely used in clonal forestry. Aiming at contributing to the elucidation of recalcitrance causes in E. globulus, we conducted a comparative analysis with these two species differing in rooting competence, combining gene expression and anatomical techniques. Recalcitrance in E. globulus is reversed by exposure to exogenous indole-3-acetic acid (IAA), which promotes important gene expression modifications in both species. The endogenous content of IAA was significantly higher in E. grandis than in E. globulus. The cambium zone was identified as an active area during AR, concentrating the first cell divisions. Immunolocalization assay showed auxin accumulation in cambium cells, further indicating the importance of this region for rooting. We then performed a cambium zone-specific gene expression analysis during AR using laser microdissection. The results indicated that the auxin-related genes TOPLESS and IAA12/BODENLOS and the cytokinin-related gene ARR1may act as negative regulators of AR, possibly contributing to the hard-to-root phenotype of E. globulus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Bioreactor with Ipomoea hederifolia adventitious roots and its endophyte Cladosporium cladosporioides for textile dye degradation.

    PubMed

    Patil, Swapnil M; Chandanshive, Vishal V; Rane, Niraj R; Khandare, Rahul V; Watharkar, Anuprita D; Govindwar, Sanjay P

    2016-04-01

    In vitro grown untransformed adventitious roots (AR) culture of Ipomoea hederifolia and its endophytic fungus (EF) Cladosporium cladosporioides decolorized Navy Blue HE2R (NB-HE2R) at a concentration of 20 ppm up to 83.3 and 65%, respectively within 96h. Whereas the AR-EF consortium decolorized the dye more efficiently and gave 97% removal within 36h. Significant inductions in the enzyme activities of lignin peroxidase, tyrosinase and laccase were observed in roots, while enzymes like tyrosinase, laccase and riboflavin reductase activities were induced in EF. Metabolites of dye were analyzed using UV-vis spectroscopy, FTIR and gas chromatography-mass spectrometry. Possible metabolic pathways of NB-HE2R were proposed with AR, EF and AR-EF systems independently. Looking at the superior efficacy of AR-EF system, a rhizoreactor was developed for the treatment of NB-HE2R at a concentration of 1000 ppm. Control reactor systems with independently grown AR and EF gave 94 and 85% NB-HE2R removal, respectively within 36h. The AR-EF rhizoreactor, however, gave 97% decolorization. The endophyte colonization additionally increased root and shoot lengths of candidate plants through mutualism. Combined bioreactor strategies can be effectively used for future eco-friendly remediation purposes. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A specific role of iron in promoting meristematic cell division during adventitious root formation.

    PubMed

    Hilo, Alexander; Shahinnia, Fahimeh; Druege, Uwe; Franken, Philipp; Melzer, Michael; Rutten, Twan; von Wirén, Nicolaus; Hajirezaei, Mohammad-Reza

    2017-07-10

    Adventitious root (AR) formation is characterized by a sequence of physiological and morphological processes and determined by external factors, including mineral nutrition, the impacts of which remain largely elusive. Morphological and anatomical evaluation of the effects of mineral elements on AR formation in leafy cuttings of Petunia hybrida revealed a striking stimulation by iron (Fe) and a promotive action of ammonium (NH4+). The optimal application period for these nutrients corresponded to early division of meristematic cells in the rooting zone and coincided with increased transcript levels of mitotic cyclins. Fe-localization studies revealed an enhanced allocation of Fe to the nuclei of meristematic cells in AR initials. NH4+ supply promoted AR formation to a lesser extent, most likely by favoring the availability of Fe. We conclude that Fe acts locally by promoting cell division in the meristematic cells of AR primordia. These results highlight a specific biological function of Fe in AR development and point to an unexploited importance of Fe for the vegetative propagation of plants from cuttings. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. A higher sink competitiveness of the rooting zone and invertases are involved in dark stimulation of adventitious root formation in Petunia hybrida cuttings.

    PubMed

    Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2016-02-01

    The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).

    PubMed

    Abiko, Tomomi; Kotula, Lukasz; Shiono, Katsuhiro; Malik, Al Imran; Colmer, Timothy David; Nakazono, Mikio

    2012-09-01

    Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging-tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis. © 2012 Blackwell Publishing Ltd.

  19. Effect of Naphthalene Acetic Acid on Adventitious Root Development and Associated Physiological Changes in Stem Cutting of Hemarthria compressa

    PubMed Central

    Zhang, Xin-Quan; Yang, Wen-Yu; Wan, Yan; Ma, Ying-Mei; Zhu, Yong-Qun; Peng, Yan; Huang, Lin-Kai

    2014-01-01

    In order to find a way to induce rooting on cuttings of Hemarthria compressa cv. Ya’an under controlled conditions, a project was carried out to study the effect of naphthalene acetic acid (NAA) on rooting in stem cuttings and related physiological changes during the rooting process of Hemarthria compressa. The cuttings were treated with five concentrations of NAA (0, 100, 200 300, 400 mg/l) at three soaking durations (10, 20, 30 minutes), and cuttings without treatment were considered as control. Samples were planted immediately into pots after treatment. IAA-oxidase (IAAO) activity, peroxidase (POD) activity and polyphenol oxidase (PPO) activity were determined after planting. Results showed that NAA had positive effect on rooting at the concentration of 200 mg/l compared to other concentrations at 30 days after planting (DAP). Among the three soaking durations, 20 minutes (min) of 200 mg/l NAA resulted in higher percentages of rooting, larger numbers of adventitious roots and heavier root dry weight per cutting. The lowest IAAO activity was obtained when soaked at 200 mg/l NAA for 20 min soaking duration. This was consistent with the best rooting ability, indicating that the lower IAAO activity, the higher POD activity and PPO activity could be used as an indicator of better rooting ability for whip grass cuttings and might serve as a good marker for rooting ability in cuttings. PMID:24595064

  20. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots.

    PubMed

    de Vries, Jan; Fischer, Angela Melanie; Roettger, Mayo; Rommel, Sophie; Schluepmann, Henriette; BrÀutigam, Andrea; Carlsbecker, Annelie; Gould, Sven Bernhard

    2016-01-01

    The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Control of Adventitious Root Architecture in Rice by Darkness, Light, and Gravity1[OPEN

    PubMed Central

    2018-01-01

    Rice (Oryza sativa) is a semiaquatic plant that is well adapted to partial flooding. Rice stems develop adventitious root (AR) primordia at each node that slowly mature but emerge only when the plant gets flooded, leading to the formation of a whole new secondary root system upon flooding. AR growth is induced by ethylene that accumulates in submerged plant tissues due to its lowered diffusion rate in water. Here, we report that the architecture of the secondary root system in flooded rice plants is controlled not only by altered gas diffusion but also by gravity and light. While ethylene promotes the emergence and growth of ARs, gravity and light determine their gravitropic setpoint angle (i.e. the deviation of growth direction relative to vertical). ARs grow upward at about 120° in the dark and downward at 54° in the light. The upward growth direction is conserved in indica and japonica rice varieties, suggestive of a conserved trait in rice. Experiments with a klinostat and with inverted stem orientation revealed that gravity promotes upward growth by about 10°. Red, far-red, and blue light lead to negative phototropism in a dose-dependent manner, with blue light being most effective, indicating that phytochrome and blue light signaling control AR system architecture. The cpt1 (coleoptile phototropism1) mutant, which lacks one of the phototropin-interacting CPT proteins, shows reduced sensitivity to blue light. Hence, the gravitropic setpoint angle of rice ARs is controlled by genetic and environmental factors that likely balance the need for oxygen supply (upward growth) with avoidance of root desiccation (downward growth). PMID:29242375

  2. A novel life cycle arising from leaf segments in plants regenerated from horseradish hairy roots.

    PubMed

    Mano, Y; Matsuhashi, M

    1995-03-01

    Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.

  3. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation

    USDA-ARS?s Scientific Manuscript database

    In plants, the formation of hypocotyl-derived adventitious roots (AR) is an important morphological acclimation to waterlogging stress, but its genetic basis is largely unknown. In the present study, with combined use of bulked segregant analysis-based high throughput next-gen whole genome sequencin...

  4. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings

    PubMed Central

    da Costa, Cibele T.; de Almeida, MĂĄrcia R.; Ruedell, Carolina M.; Schwambach, Joseli; Maraschin, Felipe S.; Fett-Neto, Arthur G.

    2013-01-01

    Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins

  5. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings.

    PubMed

    da Costa, Cibele T; de Almeida, MĂĄrcia R; Ruedell, Carolina M; Schwambach, Joseli; Maraschin, Felipe S; Fett-Neto, Arthur G

    2013-01-01

    Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins

  6. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple.

    PubMed

    You, Chun-Xiang; Zhao, Qiang; Wang, Xiao-Fei; Xie, Xing-Bin; Feng, Xiao-Ming; Zhao, Ling-Ling; Shu, Huai-Rui; Hao, Yu-Jin

    2014-02-01

    Although numerous miRNAs have been already isolated from fruit trees, knowledge about miRNA biogenesis is largely unknown in fruit trees. Double-strand RNA-binding (DRB) protein plays an important role in miRNA processing and maturation; however, its role in the regulation of economically important traits is not clear yet in fruit trees. EST blast and RACE amplification were performed to isolate apple MdDRB1 gene. Following expression analysis, RNA binding and protein interaction assays, MdDRB1 was transformed into apple callus and in vitro tissue cultures to characterize the functions of MdDRB1 in miRNA biogenesis, adventitious rooting, leaf development and tree growth habit. MdDRB1 contained two highly conserved DRB domains. Its transcripts existed in all tissues tested and are induced by hormones. It bound to double-strand RNAs and interacted with AtDCL1 (Dicer-Like 1) and MdDCL1. Chip assay indicated its role in miRNA biogenesis. Transgenic analysis showed that MdDRB1 controls adventitious rooting, leaf curvature and tree architecture by modulating the accumulation of miRNAs and the transcript levels of miRNA target genes. Our results demonstrated that MdDRB1 functions in the miRNA biogenesis in a conserved way and that it is a master regulator in the formation of economically important traits in fruit trees. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida.

    PubMed

    Zerche, Siegfried; Haensch, Klaus-Thomas; Druege, Uwe; Hajirezaei, Mohammad-Reza

    2016-10-10

    Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (N t ), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how elevated N t contents with a combined dark exposure of cuttings influence their internal N-pools including free amino acids and considered early anatomic events of AR formation as well as further root development in Petunia hybrida cuttings. Enhanced N t contents of unrooted cuttings resulted in elevated total free amino acid levels and in particular glutamate (glu) and glutamine (gln) in leaf and basal stem. N-allocation to mobile N-pools increased whereas the allocation to insoluble protein-N declined. A dark exposure of cuttings conserved initial N t and nitrate-N, while it reduced insoluble protein-N and increased soluble protein, amino- and amide-N. The increase of amino acids mainly comprised asparagine (asn), aspartate (asp) and arginine (arg) in the leaves, with distinct tissue specific responses to an elevated N supply. Dark exposure induced an early transient rise of asp followed by a temporary increase of glu. A strong positive N effect of high N t contents of cuttings on AR formation after 384 h was observed. Root meristematic cells developed at 72 h with a negligible difference for two N t levels. After 168 h, an enhanced N t accelerated AR formation and gave rise to first obvious fully developed roots while only meristems were formed with a low N t . However, dark exposure for 168 h promoted AR formation particularly in cuttings with a low N t to such an extent so that the benefit of the enhanced N t was almost compensated. Combined dark exposure and low N t of

  8. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity.

    PubMed

    Fattorini, L; Veloccia, A; Della Rovere, F; D'Angeli, S; Falasca, G; Altamura, M M

    2017-07-11

    Indole-3-acetic acid (IAA), and its precursor indole-3-butyric acid (IBA), control adventitious root (AR) formation in planta. Adventitious roots are also crucial for propagation via cuttings. However, IBA role(s) is/are still far to be elucidated. In Arabidopsis thaliana stem cuttings, 10 ΌM IBA is more AR-inductive than 10 ΌM IAA, and, in thin cell layers (TCLs), IBA induces ARs when combined with 0.1 ΌM kinetin (Kin). It is unknown whether arabidopsis TCLs produce ARs under IBA alone (10 ΌM) or IAA alone (10 ΌM), and whether they contain endogenous IAA/IBA at culture onset, possibly interfering with the exogenous IBA/IAA input. Moreover, it is unknown whether an IBA-to-IAA conversion is active in TCLs, and positively affects AR formation, possibly through the activity of the nitric oxide (NO) deriving from the conversion process. Revealed undetectable levels of both auxins at culture onset, showing that arabidopsis TCLs were optimal for investigating AR-formation under the total control of exogenous auxins. The AR-response of TCLs from various ecotypes, transgenic lines and knockout mutants was analyzed under different treatments. It was shown that ARs are better induced by IBA than IAA and IBA + Kin. IBA induced IAA-efflux (PIN1) and IAA-influx (AUX1/LAX3) genes, IAA-influx carriers activities, and expression of ANTHRANILATE SYNTHASE -alpha1 (ASA1), a gene involved in IAA-biosynthesis. ASA1 and ANTHRANILATE SYNTHASE -beta1 (ASB1), the other subunit of the same enzyme, positively affected AR-formation in the presence of exogenous IBA, because the AR-response in the TCLs of their mutant wei2wei7 was highly reduced. The AR-response of IBA-treated TCLs from ech2ibr10 mutant, blocked into IBA-to-IAA-conversion, was also strongly reduced. Nitric oxide, an IAA downstream signal and a by-product of IBA-to-IAA conversion, was early detected in IAA- and IBA-treated TCLs, but at higher levels in the latter explants. Altogether, results showed that IBA induced

  9. Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana.

    PubMed

    Veloccia, A; Fattorini, L; Della Rovere, F; Sofo, A; D'Angeli, S; Betti, C; Falasca, G; Altamura, M M

    2016-12-01

    Adventitious roots (ARs) are post-embryonic roots essential for plant survival and propagation. Indole-3-acetic acid (IAA) is the auxin that controls AR formation; however, its precursor indole-3-butyric acid (IBA) is known to enhance it. Ethylene affects many auxin-dependent processes by affecting IAA synthesis, transport and/or signaling, but its role in AR formation has not been elucidated. This research investigated the role of ethylene in AR formation in dark-grown Arabidopsis thaliana seedlings, and its interaction with IAA/IBA. A number of mutants/transgenic lines were exposed to various treatments, and mRNA in situ hybridizations were carried out and hormones were quantified In the wild-type, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) at 0.1 ΌM enhanced AR formation when combined with IBA (10 ΌM), but reduced it when applied alone; this effect did not occur in the ein3eil1 ethylene-insensitive mutant. ACC inhibited the expression of the IAA-biosynthetic genes WEI2, WEI7, and YUC6, but enhanced IBA-to-IAA conversion, as shown by the response of the ech2ibr10 mutant and an increase in the endogenous levels of IAA. The ethylene effect was independent of auxin-signaling by TIR1-AFB2 and IBA-efflux by ABCG carriers, but it was dependent on IAA-influx by AUX1/LAX3.Taken together, the results demonstrate that a crosstalk involving ethylene signaling, IAA-influx, and IBA-to-IAA conversion exists between ethylene and IAA in the control of AR formation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  11. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings.

    PubMed

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  12. Involvement of alternative oxidase (AOX) in adventitious rooting of Olea europaea L. microshoots is linked to adaptive phenylpropanoid and lignin metabolism.

    PubMed

    Santos Macedo, E; Sircar, D; Cardoso, H G; Peixe, A; Arnholdt-Schmitt, B

    2012-09-01

    Alternative oxidase (AOX) has been proposed as a functional marker candidate in a number of events involving cell differentiation, including rooting efficiency in semi-hardwood shoot cuttings of olive (Olea europaea L.). To ascertain the general importance of AOX in olive rooting, the auxin-induced rooting process was studied in an in vitro system for microshoot propagation. Inhibition of AOX by salicylhydroxamic acid (SHAM) significantly reduced rooting efficiency. However, the inhibitor failed to exhibit any effect on the preceding calli stage. This makes the system appropriate for distinguishing dedifferentiation and de novo differentiation during root induction. Metabolite analyses of microshoots showed that total phenolics, total flavonoids and lignin contents were significantly reduced upon SHAM treatment. It was concluded that the influence of alternative respiration on root formation was associated to adaptive phenylpropanoid and lignin metabolism. Transcript profiles of two olive AOX genes (OeAOX1a and OeAOX2) were examined during the process of auxin-induced root induction. Both genes displayed stable transcript accumulation in semi-quantitative RT-PCR analysis during all experimental stages. In contrary, when the reverse primer for OeAOX2 was designed from the 3'-UTR instead of the ORF, differential transcript accumulation was observed suggesting posttranscriptional regulation of OeAOX2 during metabolic acclimation. This result confirms former observations in olive semi-hardwood shoot cuttings on differential OeAOX2 expression during root induction. It further points to the importance of future studies on the functional role of sequence and length polymorphisms in the 3'-UTR of this gene. The manuscript reports the general importance of AOX in olive adventitious rooting and the association of alternative respiration to adaptive phenylpropanoid and lignin metabolism.

  13. In vitro cultured primary roots derived from stem segments of cassava (Manihot esculenta) can behave like storage organs.

    PubMed

    Medina, Ricardo D; Faloci, Mirta M; Gonzalez, Ana M; Mroginski, Luis A

    2007-03-01

    Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0.54 microM 1-naphthaleneacetic acid and 0.44 microM 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly influenced by hormone treatments. The storage

  14. In vitro Cultured Primary Roots Derived from Stem Segments of Cassava (Manihot esculenta) Can Behave Like Storage Organs

    PubMed Central

    Medina, Ricardo D.; Faloci, Mirta M.; Gonzalez, Ana M.; Mroginski, Luis A.

    2007-01-01

    Background and Aims Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Methods Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Key Results Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0·54 Όm 1-naphthaleneacetic acid and 0·44 Όm 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly

  15. In vitro root induction of faba bean (Vicia faba L.).

    PubMed

    Ismail, Roba M; Elazab, Heba E M; Hussein, Gihan M H; Metry, Emad A

    2011-01-01

    A major challenge for regeneration of faba bean (Vicia faba L.) plants is the difficulty of in vitro root induction. In the present study, in vitro rooting and its architecture have been studied. Adventitious root formation was successfully induced from regenerated faba bean shoots of four Egyptian cultivars, i.e., Giza 461, Giza 40, Giza 834 and Giza 716 on hormone free MS medium supplemented with 5 mg/l silver nitrate. Among the four cultivars, Giza 461 and Giza 40 were recorded as the highest root formation response (75 % and 65) followed by cultivars Giza716 and Giza843 (20%, and 10%). Anatomical study proved that the produced roots are initiated as the adventitious lateral root (LR) with tri-arch xylem strands as compared with the penta-arch of the primary roots of the intact faba bean seedling. The obtained results overcome the root induction problem in faba bean.

  16. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings.

    PubMed

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.

  17. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin. PMID

  18. Cystic adventitial degeneration: ectopic ganglia from adjacent joint capsules.

    PubMed

    Ortmann, J; Widmer, M K; Gretener, S; Do, D D; Willenberg, T; Daliri, A; Baumgartner, I

    2009-11-01

    Cystic adventitial degeneration is a rare non-atherosclerotic cause of peripheral arterial occlusive disease, mainly seen in young men without other evidence of vascular disease. Diagnosis will be established by clinical findings and by ultrasound or angiography and can be treated by excision or enucleation of the affected arterial segment or by percutaneous ultrasound-guided aspiration. However, the etiology of adventitial cysts remains unknown. We report a case of cystic adventitial degeneration showing a connection between the joint capsule and the adventitial cyst, supporting the theory that cystic adventitial degeneration may represent ectopic ganglia from adjacent joint capsules.

  19. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings

    PubMed Central

    Nordström, Ann-Caroline; Jacobs, Fernando Alvarado; Eliasson, Lennart

    1991-01-01

    The influence of exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on the internal levels of these auxins was studied during the first 4 days of adventitious root formation in cuttings of Pisum sativum L. The quantitations were done by high performance liquid chromatography with spectrofluorometric detection. IBA, identified by combined gas chromatography-mass spectrometry (GC-MS), was found to naturally occur in this plant material. The root inducing ability of exogenous IBA was superior to that of IAA. The IAA level in the tissue increased considerably on the first day after application of IAA, but rapidly decreased again, returning to a level twice the control by day 3. The predominant metabolic route was conjugation with aspartic acid, as reflected by the increase in the level of indole-3-acetylaspartic acid. The IBA treatment resulted in increases in the levels of IBA, IAA, and indole-3-acetylaspartic acid. The IAA content rapidly returned to control levels, whereas the IBA level remained high throughout the experimental period. High amounts of indole-3-butyrylaspartic acid were found in the tissue after feeding with IBA. The identity of the conjugate was confirmed by 1H-nuclear magnetic resonance and GC-MS. IBA was much more stable in solution than IAA. No IAA was detected after 48 hours, whereas 70% IBA was still recovered after this time. The relatively higher root inducing ability of IBA is ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. Adventitious root formation is discussed on the basis of these findings. PMID:16668265

  20. Comparison of phytohormone levels and transcript profiles during seasonal dormancy transitions in underground adventitious buds of leafy spurge

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge (Euphorbia esula L.) is an herbaceous perennial weed that maintains its perennial growth habit through generation of underground adventitious buds (UABs) on the crown and lateral roots. These UABs undergo seasonal phases of dormancy under natural conditions, namely para-, endo-, and eco...

  1. Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants.

    PubMed

    Ruedell, Carolina Michels; de Almeida, MĂĄrcia Rodrigues; Fett-Neto, Arthur Germano

    2015-12-01

    Economically important plant species, such as Eucalyptus globulus, are often rooting recalcitrant. We have previously shown that far-red light enrichment applied to E. globulus donor-plants improved microcutting rooting competence and increased rooting zone/shoot carbohydrate ratio. To better understand this developmental response, the relative expression profiles of genes involved in auxin signaling (ARF6, ARF8, AGO1), biosynthesis (YUC3) and transport (AUX1, PIN1, PIN2); sucrose cleavage (SUS1, CWINV1), transport (SUC5), hexose phosphorylation (HXK1, FLN1) and starch biosynthesis (SS3) were quantified during adventitious rooting of E. globulus microcuttings derived from donor plants exposed to far-red or white light. Expression of auxin transport-related genes increased in the first days of root induction. Far-red enrichment of donor plants induced ARF6, ARF8 and AGO1 in microcuttings. The first two gene products could activate GH3 and other rooting related genes, whereas AGO1 deregulation of the repressor ARF17 may relief rooting inhibition. Increased sink strength at the basal stem with sucrose unloading in root tissue mediated by SUC and subsequent hydrolysis by SUS1 were also supported by gene expression profile. Fructose phosphorylation and starch biosynthesis could also contribute to proper carbon allocation at the site of rooting, as evidenced by increased expression of related genes. These data are in good agreement with increased contents of hexoses and starch at the cutting base severed from far-red exposed donor plants. To sum up, pathways integrating auxin and carbohydrate metabolism were activated in microcuttings derived from donor plants exposed to far red light enrichment, thereby improving rooting response in E. globulus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Cross-Sectional Imaging in a Case of Adventitial Cystic Disease of the Popliteal Artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, Paolo; Panzetti, Claudio; Mastantuono, Marco

    1999-01-15

    Adventitial cystic disease of the popliteal artery is an unusual condition of uncertain etiology, in which a mucin-containing cyst forms in the wall of the artery and produces lower extremity claudication, typically in young and middle-aged men. A diagnosis of adventitial cystic disease of the popliteal artery was made preoperatively in a 47-year-old man by means of several imaging modalities, including angiography, magnetic resonance imaging, and ultrasound. The pathological findings confirmed the suggested diagnosis.

  3. Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida.

    PubMed

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase.

  4. Simulation of root forms using cellular automata model

    NASA Astrophysics Data System (ADS)

    Winarno, Nanang; Prima, Eka Cahya; Afifah, Ratih Mega Ayu

    2016-02-01

    This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled "A New Kind of Science" discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram's investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation used four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations.

  5. Simulation of root forms using cellular automata model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winarno, Nanang, E-mail: nanang-winarno@upi.edu; Prima, Eka Cahya; Afifah, Ratih Mega Ayu

    This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled “A New Kind of Science” discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram’s investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation usedmore » four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations.« less

  6. Shoot size significantly affects rooting response of sugar maple softwood cuttings

    Treesearch

    John R. Donnelly

    1974-01-01

    Three hundred softwood cuttings were collected from each of three mature sugar maple trees to test the effect of shoot size on adventitious root formation. One of the trees was a good rooter (61 percent rooted); one was a poor rooter (19 percent rooted); and the third was a non-rooter (1 percent rooted). There was an insufficient number of rooted cuttings from the...

  7. Analysis of gene expression profiles for cell wall modifying proteins and ACC synthases in soybean cyst nematode colonized roots, adventitious rooting hypocotyls, root tips, flooded roots, and IBA and ACC treatment roots

    USDA-ARS?s Scientific Manuscript database

    We hypothesized that soybean cyst nematode (SCN) co-opts a part or all of one or more innate developmental process in soybean to establish its feeding structure, syncytium, in soybean roots. The syncytium in soybean roots is formed in a predominantly lateral direction within the vascular bundle by ...

  8. Variation in Virus Symptom Development and Root Architecture Attributes at the Onset of Storage Root Initiation in ‘Beauregard’ Sweetpotato Plants Grown with or without Nitrogen

    PubMed Central

    Villordon, Arthur Q.; Clark, Christopher A.

    2014-01-01

    It has been shown that virus infections, often symptomless, significantly limit sweetpotato productivity, especially in regions characterized by low input agricultural systems. In sweetpotatoes, the successful emergence and development of lateral roots (LRs), the main determinant of root architecture, determines the competency of adventitious roots to undergo storage root initiation. This study aimed to investigate the effect of some plant viruses on root architecture attributes during the onset of storage root initiation in ‘Beauregard’ sweetpotatoes that were grown with or without the presence of nitrogen. In two replicate experiments, virus-tested plants consistently failed to show visible symptoms at 20 days regardless of nitrogen treatment. In both experiments, the severity of symptom development among infected plants ranged from 25 to 118% when compared to the controls (virus tested plants grown in the presence of nitrogen). The presence of a complex of viruses (Sweet potato feathery mottle virus, Sweet potato virus G, Sweet potato virus C, and Sweet potato virus 2) was associated with 51% reduction in adventitious root number among plants grown without nitrogen. The effect of virus treatments on first order LR development depended on the presence or absence of nitrogen. In the presence of nitrogen, only plants infected with Sweet potato chlorotic stunt virus showed reductions in first order LR length, number, and density, which were decreased by 33%, 12%, and 11%, respectively, when compared to the controls. In the absence of nitrogen, virus tested and infected plants manifested significant reductions for all first order LR attributes. These results provide evidence that virus infection directly influences sweetpotato yield potential by reducing both the number of adventitious roots and LR development. These findings provide a framework for understanding how virus infection reduces sweetpotato yield and could lead to the development of novel strategies

  9. Comprehensive Transcriptome Analysis Unravels the Existence of Crucial Genes Regulating Primary Metabolism during Adventitious Root Formation in Petunia hybrida

    PubMed Central

    Ahkami, Amirhossein; Scholz, Uwe; Steuernagel, Burkhard; Strickert, Marc; Haensch, Klaus-Thomas; Druege, Uwe; Reinhardt, Didier; Nouri, Eva; von Wirén, Nicolaus; Franken, Philipp; Hajirezaei, Mohammad-Reza

    2014-01-01

    To identify specific genes determining the initiation and formation of adventitious roots (AR), a microarray-based transcriptome analysis in the stem base of the cuttings of Petunia hybrida (line W115) was conducted. A microarray carrying 24,816 unique, non-redundant annotated sequences was hybridized to probes derived from different stages of AR formation. After exclusion of wound-responsive and root-regulated genes, 1,354 of them were identified which were significantly and specifically induced during various phases of AR formation. Based on a recent physiological model distinguishing three metabolic phases in AR formation, the present paper focuses on the response of genes related to particular metabolic pathways. Key genes involved in primary carbohydrate metabolism such as those mediating apoplastic sucrose unloading were induced at the early sink establishment phase of AR formation. Transcriptome changes also pointed to a possible role of trehalose metabolism and SnRK1 (sucrose non-fermenting 1- related protein kinase) in sugar sensing during this early step of AR formation. Symplastic sucrose unloading and nucleotide biosynthesis were the major processes induced during the later recovery and maintenance phases. Moreover, transcripts involved in peroxisomal beta-oxidation were up-regulated during different phases of AR formation. In addition to metabolic pathways, the analysis revealed the activation of cell division at the two later phases and in particular the induction of G1-specific genes in the maintenance phase. Furthermore, results point towards a specific demand for certain mineral nutrients starting in the recovery phase. PMID:24978694

  10. Clonal variation in lateral and basal rooting of Populus irrigated with landfill leachate

    Treesearch

    R.S. Zalesny Jr.; J.A. Zalesny

    2011-01-01

    Successful establishment and productivity of Populus depends upon adventitious rooting from: 1) lateral roots that develop from either preformed or induced primordia and 2) basal roots that differentiate from callus at the base of the cutting in response to wounding. Information is needed for phytotechnologies about the degree to which ...

  11. Effects of light and growth regulators on adventitious bud formation in horseradish (Armoracia rusticana).

    PubMed

    Kamada, H; Tachikawa, Y; Saitou, T; Harada, H

    1995-07-01

    To clarify that the presence of Ri T-DNA genes are not prerequisite for the light-induced bud formation in horseradish (Armoracia rusticana) hairy roots, leaf and root segments of nontransformed horseradish plants were used as explants. Bud formation from nontransformed tissues was observed in hormone-free medium under 16 h daylight conditions, but not under continuous darkness. To investigate the effects of growth regulators on bud formation, leaf and root explants were treated with auxin (1-naphthaleneacetic acid; NAA) and / or cytokinin (6-benzyl-aminopurine; BA). The most effective treatment in the dark to stimulate bud formation was BA at 1 mg·1(-1). These results show that adventitious bud formation in horseradish can be induced by light and growth regulators, and especially cytokinin, may be involved in bud formation, irrespective of whether the tissues were transformed with Ri T-DNA.

  12. Hypoperfusion of the Adventitial Vasa Vasorum Develops an Abdominal Aortic Aneurysm

    PubMed Central

    Sasaki, Takeshi; Sano, Masaki; Yamamoto, Naoto; Saito, Takaaki; Inuzuka, Kazunori; Hayasaka, Takahiro; Goto-Inoue, Naoko; Sugiura, Yuki; Sato, Kohji; Kugo, Hirona; Moriyama, Tatsuya; Konno, Hiroyuki; Setou, Mitsutoshi; Unno, Naoki

    2015-01-01

    The aortic wall is perfused by the adventitial vasa vasorum (VV). Tissue hypoxia has previously been observed as a manifestation of enlarged abdominal aortic aneurysms (AAAs). We sought to determine whether hypoperfusion of the adventitial VV could develop AAAs. We created a novel animal model of adventitial VV hypoperfusion with a combination of a polyurethane catheter insertion and a suture ligation of the infrarenal abdominal aorta in rats. VV hypoperfusion caused tissue hypoxia and developed infrarenal AAA, which had similar morphological and pathological characteristics to human AAA. In human AAA tissue, the adventitial VV were stenotic in both small AAAs (30–49 mm in diameter) and in large AAAs (> 50 mm in diameter), with the sac tissue in these AAAs being ischemic and hypoxic. These results indicate that hypoperfusion of adventitial VV has critical effects on the development of infrarenal AAA. PMID:26308526

  13. Adventitial nab-rapamycin injection reduces porcine femoral artery luminal stenosis induced by balloon angioplasty via inhibition of medial proliferation and adventitial inflammation.

    PubMed

    Gasper, Warren J; Jimenez, Cynthia A; Walker, Joy; Conte, Michael S; Seward, Kirk; Owens, Christopher D

    2013-12-01

    Endovascular interventions on peripheral arteries are limited by high rates of restenosis. Our hypothesis was that adventitial injection of rapamycin nanoparticles would be safe and reduce luminal stenosis in a porcine femoral artery balloon angioplasty model. Eighteen juvenile male crossbred swine were included. Single-injury (40%-60% femoral artery balloon overstretch injury; n=2) and double-injury models (endothelial denudation injury 2 weeks before a 20%-30% overstretch injury; n=2) were compared. The double-injury model produced significantly more luminal stenosis at 28 days, P=0.002, and no difference in medial fibrosis or inflammation. Four pigs were randomized to the double-injury model and adventitial injection of saline (n=2) or 500 ÎŒg of nanoparticle albumin-bound rapamycin (nab-rapamycin; n=2) with an endovascular microinfusion catheter. There was 100% procedural success and no difference in endothelial regeneration. At 28 days, nab-rapamycin led to significant reductions in luminal stenosis, 17% (interquartile range, 12%-35%) versus 10% (interquartile range, 8.3%-14%), P=0.001, medial cell proliferation, P<0.001, and fibrosis, P<0.001. There were significantly fewer adventitial leukocytes at 3 days, P<0.001, but no difference at 28 days. Pharmacokinetic analysis (single-injury model) found rapamycin concentrations 1500× higher in perivascular tissues than in blood at 1 hour. Perivascular rapamycin persisted ≄8 days and was not detectable at 28 days. Adventitial nab-rapamycin injection was safe and significantly reduced luminal stenosis in a porcine femoral artery balloon angioplasty model. Observed reductions in early adventitial leukocyte infiltration and late medial cell proliferation and fibrosis suggest an immunosuppressive and antiproliferative mechanism. An intraluminal microinfusion catheter for adventitial injection represents an alternative to stent- or balloon-based local drug delivery.

  14. [Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis].

    PubMed

    Zhu, Li-Fang; Xu, Chao; Zhu, Zai-Biao; Yang, He-Tong; Guo, Qiao-Sheng; Xu, Hong-jian; Ma, Hong-Jian; Zhao, Gui-Hua

    2014-08-01

    To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established.

  15. Automatic adventitious respiratory sound analysis: A systematic review.

    PubMed

    Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11

  16. Automatic adventitious respiratory sound analysis: A systematic review

    PubMed Central

    Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Background Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. Objective To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. Data sources A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Study selection Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Data extraction Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. Data synthesis A total of 77 reports from the literature were included in this review. 55 (71.43%) of the

  17. Improved rooting of western white pine shoots from tissue cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amerson, H.V.; Mott, R.L.

    1982-01-01

    Adventitious shoots of Pinus monticola obtained from embryonic tissue were exposed to 4 combinations of growth regulators (6-benzylaminopurine/NAA/IAA/IBA), either continuously for 6 weeks or by pulse treatment for 7 days, followed by 5 weeks culture without growth regulators. After 6 weeks of continuous exposure, rooting of shoots varied between 0 and 20%. Pulse treatment resulted in 40-64% rooting. In paired comparisons pulse treatments always provided better rooting percentages than did constant exposure treatments. Pulse treatments also produced longer (less than 2 mm) roots and more multiple roots.

  18. Analysis of genetic and environmental effects on hybrid poplar rooting in Central and Northern Minnesota, USA

    Treesearch

    Ronald S., Jr. Zalesny; Don Riemenschneider; Edmund Bauer

    2000-01-01

    We studied genetic and environmental effects on adventitious root initiation and growth because rooting is biologically prerequisite to the establishment of hybrid poplar plantations. Six clones from two pedigrees (pure Populus deltoides "cottonwoods" and P. deltoides x P. maximowiczii hybrids) were...

  19. Rapid auxin-induced nitric oxide accumulation and subsequent tyrosine nitration of proteins during adventitious root formation in sunflower hypocotyls

    PubMed Central

    Yadav, Sunita; David, Anisha; BaluĆĄka, FrantiĆĄek; Bhatla, Satish C.

    2013-01-01

    Using NO specific probe (MNIP-Cu), rapid nitric oxide (NO) accumulation as a response to auxin (IAA) treatment has been observed in the protoplasts from the hypocotyls of sunflower seedlings (Helianthus annuus L.). Incubation of protoplasts in presence of NPA (auxin efflux blocker) and PTIO (NO scavenger) leads to significant reduction in NO accumulation, indicating that NO signals represent an early signaling event during auxin-induced response. A surge in NO production has also been demonstrated in whole hypocotyl explants showing adventitious root (AR) development. Evidence of tyrosine nitration of cytosolic proteins as a consequence of NO accumulation has been provided by western blot analysis and immunolocalization in the sections of AR producing hypocotyl segments. Most abundant anti-nitrotyrosine labeling is evident in proteins ranging from 25–80 kDa. Tyrosine nitration of a particular protein (25 kDa) is completely absent in presence of NPA (which suppresses AR formation). Similar lack of tyrosine nitration of this protein is also evident in other conditions which do not allow AR differentiation. Immunofluorescent localization experiments have revealed that non-inductive treatments (such as PTIO) for AR develpoment from hypocotyl segments coincide with symplastic and apoplastic localization of tyrosine nitrated proteins in the xylem elements, in contrast with negligible (and mainly apoplastic) nitration of proteins in the interfascicular cells and phloem elements. Application of NPA does not affect tyrosine nitration of proteins even in the presence of an external source of NO (SNP). Tyrosine nitrated proteins are abundant around the nuclei in the actively dividing cells of the root primordium. Thus, NO-modulated rapid response to IAA treatment through differential distribution of tyrosine nitrated proteins is evident as an inherent aspect of the AR development. PMID:23299324

  20. Arabidopsis SHR and SCR transcription factors and AUX1 auxin influx carrier control the switch between adventitious rooting and xylogenesis in planta and in in vitro cultured thin cell layers.

    PubMed

    Della Rovere, F; Fattorini, L; D'Angeli, S; Veloccia, A; Del Duca, S; Cai, G; Falasca, G; Altamura, M M

    2015-03-01

    Adventitious roots (ARs) are essential for vegetative propagation. The Arabidopsis thaliana transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) affect primary/lateral root development, but their involvement in AR formation is uncertain. LAX3 and AUX1 auxin influx carriers contribute to primary/lateral root development. LAX3 expression is regulated by SHR, and LAX3 contributes to AR tip auxin maximum. In contrast, AUX1 involvement in AR development is unknown. Xylogenesis is induced by auxin plus cytokinin as is AR formation, but the genes involved are largely unknown. Stem thin cell layers (TCLs) form ARs and undergo xylogenesis under the same auxin plus cytokinin input. The aim of this research was to investigate SHR, SCR, AUX1 and LAX3 involvement in AR formation and xylogenesis in intact hypocotyls and stem TCLs in arabidopsis. Hypocotyls of scr-1, shr-1, lax3, aux1-21 and lax3/aux1-21 Arabidopsis thaliana null mutant seedlings grown with or without auxin plus cytokinin were examined histologically, as were stem TCLs cultured with auxin plus cytokinin. SCR and AUX1 expression was monitored using pSCR::GFP and AUX1::GUS lines, and LAX3 expression and auxin localization during xylogenesis were monitored by using LAX3::GUS and DR5::GUS lines. AR formation was inhibited in all mutants, except lax3. SCR was expressed in pericycle anticlinally derived AR-forming cells of intact hypocotyls, and in cell clumps forming AR meristemoids of TCLs. The apex was anomalous in shr and scr ARs. In all mutant hypocotyls, the pericycle divided periclinally to produce xylogenesis. Xylary element maturation was favoured by auxin plus cytokinin in shr and aux1-21. Xylogenesis was enhanced in TCLs, and in aux1-21 and shr in particular. AUX1 was expressed before LAX3, i.e. in the early derivatives leading to either ARs or xylogenesis. AR formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR

  1. Polymorphisms in the AOX2 gene are associated with the rooting ability of olive cuttings.

    PubMed

    Hedayati, Vahideh; Mousavi, Amir; Razavi, Khadijeh; Cultrera, NicolĂČ; Alagna, Fiammetta; Mariotti, Roberto; Hosseini-Mazinani, Mehdi; Baldoni, Luciana

    2015-07-01

    Different rooting ability candidate genes were tested on an olive cross progeny. Our results demonstrated that only the AOX2 gene was strongly induced. OeAOX2 was fully characterised and correlated to phenotypical traits. The formation of adventitious roots is a key step in the vegetative propagation of trees crop species, and this ability is under strict genetic control. While numerous studies have been carried out to identify genes controlling adventitious root formation, only a few loci have been characterised. In this work, candidate genes that were putatively involved in rooting ability were identified in olive (Olea europaea L.) by similarity with orthologs identified in other plant species. The mRNA levels of these genes were analysed by real-time PCR during root induction in high- (HR) and low-rooting (LR) individuals. Interestingly, alternative oxidase 2 (AOX2), which was previously reported to be a functional marker for rooting in olive cuttings, showed a strong induction in HR individuals. From the OeAOX2 full-length gene, alleles and effective polymorphisms were distinguished and analysed in the cross progeny, which were segregated based on rooting. The results revealed a possible correlation between two single nucleotide polymorphisms of OeAOX2 gene and rooting ability.

  2. In vitro propagation of Cymbidium goeringii Reichenbach fil. through direct adventitious shoot regeneration.

    PubMed

    Park, Han Yong; Kang, Kyung Won; Kim, Doo Hwan; Sivanesan, Iyyakkannu

    2018-03-01

    The influence of 2,4-dichlorophenoxyacetic acid (2,4-D), benzyladenine (BA), and thidiazuron (TDZ) on direct rhizome induction and shoot formation from rhizome explants of Cymbidium goeringii was explored. Rhizome segments obtained from in vitro seed cultures of C. goeringii were placed on Murashige and Skoog (MS) medium incorporated with 5, 10, 20, or 40 ”M 2,4-D and 1, 2, 4, or 8 ”M BA or TDZ alone or in combination with 20 ”M 2,4-D. The explants developed only rhizomes on MS medium with or without 2,4-D. The highest percent of rhizome formation (100%) was obtained on MS medium incorporated with 20 ΌM of 2,4-D. The morphology and number of rhizomes varied with the level of 2,4-D in the medium. Direct adventitious shoot formation was achieved on medium incorporated with BA or TDZ. The adventitious shoots produced per explant significantly increased with the supplementation of 2,4-D to cytokinin-containing medium. The highest mean of 21.8 ± 1.8 shoot buds per rhizome segment was obtained in medium fortified with 20 ΌM 2,4-D and 2 ΌM TDZ. The greatest percent of root induction (100%) and the mean of 5.3 ± 1.1 roots per shoot were achieved on œ MS medium incorporated with 2 ΌM of α-naphthaleneacetic acid. About 97% of the in vitro-produced plantlets acclimatized in the greenhouse. An efficient in vitro propagation protocol was thus developed for C. goeringii using rhizome explants.

  3. Factors influencing axillary shoot proliferation and adventitious budding in cedar.

    PubMed

    Renau-Morata, Begoña; Ollero, Javier; Arrillaga, Isabel; Segura, Juan

    2005-04-01

    We developed procedures for in vitro cloning of Cedrus atlantica Manetti and C. libani A. Rich explants from juvenile and mature plants. Explant size was one determinant of the frequency of axillary bud break in both species. Shoot tips and nodal explants mainly developed calli, whereas bud sprouting occurred in defoliated microcuttings cultured on a modified Murashige and Skoog medium without growth regulators. Isolation and continuous subculture of sprouted buds on the same medium allowed cloning of microcuttings from C. atlantica and C. libani seedlings and bicentennial C. libani trees, thus providing a desirable alternative for multiplying mature trees that have demonstrated superior characteristics. We also report adventitious bud differentiation from isolated embryos of C. atlantica. Neither auxin treatments nor other methods tested, including infection with Agrobacterium rhizogenes, were effective in inducing root initiation.

  4. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch.

    PubMed

    Li, Jing; Wang, Juan; Li, Jinxin; Liu, Dahui; Li, Hongfa; Gao, Wenyuan; Li, Jianli; Liu, Shujie

    2016-02-01

    In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4-0.6-0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g(-1)) and glycyrrhetinic acid (0.18 mg g(-1)) occurred at a dose of 400 mg L(-1) of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g(-1)) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), ÎČ-amyrin synthase (ÎČ-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity.

  5. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize.

    PubMed

    Yamauchi, Takaki; Tanaka, Akihiro; Mori, Hitoshi; Takamure, Itsuro; Kato, Kiyoaki; Nakazono, Mikio

    2016-10-01

    In roots of gramineous plants, lysigenous aerenchyma is created by the death and lysis of cortical cells. Rice (Oryza sativa) constitutively forms aerenchyma under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. However, maize (Zea mays) develops aerenchyma only under oxygen-deficient conditions. Ethylene is involved in lysigenous aerenchyma formation. Here, we investigated how ethylene-dependent aerenchyma formation is differently regulated between rice and maize. For this purpose, in rice, we used the reduced culm number1 (rcn1) mutant, in which ethylene biosynthesis is suppressed. Ethylene is converted from 1-aminocyclopropane-1-carboxylic acid (ACC) by the action of ACC oxidase (ACO). We found that OsACO5 was highly expressed in the wild type, but not in rcn1, under aerobic conditions, suggesting that OsACO5 contributes to aerenchyma formation in aerated rice roots. By contrast, the ACO genes in maize roots were weakly expressed under aerobic conditions, and thus ACC treatment did not effectively induce ethylene production or aerenchyma formation, unlike in rice. Aerenchyma formation in rice roots after the initiation of oxygen-deficient conditions was faster and greater than that in maize. These results suggest that the difference in aerenchyma formation in rice and maize is due to their different mechanisms for regulating ethylene biosynthesis. © 2016 John Wiley & Sons Ltd.

  6. Effect of polyvinyl alcohol on in vitro rooting capacity of shoots in pear clones (Pyrus communis L.) of different ploidy

    USDA-ARS?s Scientific Manuscript database

    Poor adventitious root formation is a major obstacle in micropropagation. In this study, intense efforts have been made for improvement of rooting procedures for triploid, tetraploid, and mixploid clones of the pear cultivar, 'Fertility', obtained by in vitro colchicine treatment. An efficient roo...

  7. Endogenous isoflavone methylation correlates with the in vitro rooting phases of Spartium junceum L. (Leguminosae).

    PubMed

    Clematis, Francesca; Viglione, Serena; Beruto, Margherita; Lanzotti, Virginia; Dolci, Paola; Poncet, Christine; Curir, Paolo

    2014-09-01

    Spartium junceum L. (Leguminosae) is a perennial shrub, native to the Mediterranean region in southern Europe, widespread in all the Italian regions and, as a leguminous species, it has a high isoflavone content. An in vitro culture protocol was developed for this species starting from stem nodal sections of in vivo plants, and isoflavone components of the in vitro cultured tissues were studied by means of High Performance Liquid Chromatography (HPLC) analytical techniques. Two main isoflavones were detected in the S. junceum tissues during the in vitro propagation phases: Genistein (4',5,7-Trihydroxyisoflavone), already reported in this species, and its methylated form 4',5,7-Trimethoxyisoflavone, detected for the first time in this plant species (0.750 ± 0.02 mg g(-1) dry tissue). The presence of both of these compounds in S. junceum tissues was consistently detected during the in vitro multiplication phase. The absence of the methylated form within plant tissues in the early phases of the in vitro adventitious root formation was correlated with its negative effect displayed on root induction and initiation phases, while its presence in the final "root manifestation" phase influenced positively the rooting process. The unmethylated form, although detectable in tissues in the precocious rooting phases, was no longer present in the final rooting phase. Its effect on rooting, however, proved always to be beneficial. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    PubMed

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Våzquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. GENOME ENABLED MODIFICATION OF POPLAR ROOT DEVELOPMENT FOR INCREASED CARBON SEQUESTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busov, Victor

    DR5 as a reporter system to study auxin response in Populus Plant Cell Reports 32:453-463 Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stemmore » sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar. The Populus AINTEGUMENTA LIKE 1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia. Plant Physiol. 160: 1996-2006 Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described the transcriptional profiles that are associated with the developmental stages of adventitious root formation in the model tree poplar (Populus trichocarpa). Transcriptome analyses indicate a highly specific temporal induction of the AINTEGUMENTA LIKE1 (PtAIL1) transcription factor of the AP2 family during adventitious root formation. Transgenic poplar samples that overexpressed PtAIL1 were

  10. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation.

    PubMed

    Xu, Xuewen; Ji, Jing; Xu, Qiang; Qi, Xiaohua; Weng, Yiqun; Chen, Xuehao

    2018-03-01

    In plants, the formation of hypocotyl-derived adventitious roots (ARs) is an important morphological acclimation to waterlogging stress; however, its genetic basis remains fragmentary. Here, through combined use of bulked segregant analysis-based whole-genome sequencing, SNP haplotyping and fine genetic mapping, we identified a candidate gene for a major-effect QTL, ARN6.1, that was responsible for waterlogging tolerance due to increased AR formation in the cucumber line Zaoer-N. Through multiple lines of evidence, we show that CsARN6.1 is the most possible candidate for ARN6.1 which encodes an AAA ATPase. The increased formation of ARs under waterlogging in Zaoer-N could be attributed to a non-synonymous SNP in the coiled-coil domain region of this gene. CsARN6.1 increases the number of ARs via its ATPase activity. Ectopic expression of CsARN6.1 in Arabidopsis resulted in better rooting ability and lateral root development in transgenic plants. Transgenic cucumber expressing the CsARN6.1 Asp allele from Zaoer-N exhibited a significant increase in number of ARs compared with the wild type expressing the allele from Pepino under waterlogging conditions. Taken together, these data support that the AAA ATPase gene CsARN6.1 has an important role in increasing cucumber AR formation and waterlogging tolerance. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  11. Theory and practice of conventional adventitious virus testing.

    PubMed

    Gregersen, Jens-Peter

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) For decades conventional tests in cell cultures and in laboratory animals have served as standard methods for broad-spectrum screening for adventitious viruses. New virus detection methods based on molecular biology have broadened and improved our knowledge about potential contaminating viruses and about the suitability of the conventional test methods. This paper summarizes and discusses practical aspects of conventional test schemes, such as detectability of various viruses, questionable or false-positive results, animal numbers needed, time and cost of testing, and applicability for rapidly changing starting materials. Strategies to improve the virus safety of biological medicinal products are proposed. The strategies should be based upon a flexible application of existing and new methods along with a scientifically based risk assessment. However, testing alone does not guarantee the absence of adventitious agents and must be accompanied by virus removing or virus inactivating process steps for critical starting materials, raw materials, and for the drug product.

  12. Non-destructive digital imaging in poplar allows detailed analysis of adventitious rooting dynamics

    Treesearch

    R.J. Kodrzycki; R.B. Michaels; A.L. Friend; R.S. Zalesny; Ch.P. Mawata; D.W. McDonald

    2008-01-01

    The dynamics of root formation are difficult to observe directly over time without disturbing the rooting environment. A novel system for a non-destructive, non-invasive root analysis (RootViz FS, Phenotype Screening Corp.) was evaluated for its ability to analyze root formation from cuttings over a 32 day period in three poplar genotypes (DN70, P. Deltoides x...

  13. Clonal variation in morphology of Populus root systems following irrigation with landfill leachate or water during 2 years of establishment

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; David R. Coyle; Richard B. Hall; Edmund O. Bauer

    2009-01-01

    Increased municipal solid waste generation in North America has prompted the use of Populus for phytoremediation of waste waters including landfill leachate. Populus species and hybrids are ideal for such applications because of their high water usage rates, fast growth, and extensive root systems. Adventitious rooting (i.e.,...

  14. Overexpression of OsRAA1 Causes Pleiotropic Phenotypes in Transgenic Rice Plants, including Altered Leaf, Flower, and Root Development and Root Response to Gravity1

    PubMed Central

    Ge, Lei; Chen, Hui; Jiang, Jia-Fu; Zhao, Yuan; Xu, Ming-Li; Xu, Yun-Yuan; Tan, Ke-hui; Xu, Zhi-Hong; Chong, Kang

    2004-01-01

    There are very few root genes that have been described in rice as a monocotyledonous model plant so far. Here, the OsRAA1 (Oryza sativa Root Architecture Associated 1) gene has been characterized molecularly. OsRAA1 encodes a 12.0-kD protein that has 58% homology to the AtFPF1 (Flowering Promoting Factor 1) in Arabidopsis, which has not been reported as modulating root development yet. Data of in situ hybridization and OsRAA1∷GUS transgenic plant showed that OsRAA1 expressed specifically in the apical meristem, the elongation zone of root tip, steles of the branch zone, and the young lateral root. Constitutive expression of OsRAA1 under the control of maize (Zea mays) ubiquitin promoter resulted in phenotypes of reduced growth of primary root, increased number of adventitious roots and helix primary root, and delayed gravitropic response of roots in seedlings of rice (Oryza sativa), which are similar to the phenotypes of the wild-type plant treated with auxin. With overexpression of OsRAA1, initiation and growth of adventitious root were more sensitive to treatment of auxin than those of the control plants, while their responses to 9-hydroxyfluorene-9-carboxylic acid in both transgenic line and wild type showed similar results. OsRAA1 constitutive expression also caused longer leaves and sterile florets at the last stage of plant development. Analysis of northern blot and GUS activity staining of OsRAA1∷GUS transgenic plants demonstrated that the OsRAA1 expression was induced by auxin. At the same time, overexpression of OsRAA1 also caused endogenous indole-3-acetic acid to increase. These data suggested that OsRAA1 as a new gene functions in the development of rice root systems, which are mediated by auxin. A positive feedback regulation mechanism of OsRAA1 to indole-3-acetic acid metabolism may be involved in rice root development in nature. PMID:15247372

  15. Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L).

    PubMed

    Srinivasan, C; Liu, Zongrang; Scorza, Ralph

    2011-04-01

    Transgenic plants of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L) were produced by transforming with the apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KNOX1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a medium lacking cytokinin. Ectopic expression of KNOX genes retarded shoot growth by suppressing elongation of internodes in transgenic tobacco plants. Expression of each of the three KNOX1 genes induced malformation and extensive lobbing in tobacco leaves. In situ regeneration of adventitious shoots was observed from leaves and roots of transgenic tobacco plants expressing each of the three KNOX genes. In vitro culture of leaf explants and internode sections excised from in vitro grown MdKN1 expressing tobacco shoots regenerated adventitious shoots on MS (Murashige and Skoog 1962) basal medium in the absence of exogenous cytokinin. Transgenic plum plants that expressed the MdKN2 or corn KNOX1 gene grew normally but MdKN1 caused a significant reduction in plant height, leaf shape and size and produced malformed curly leaves. A high frequency of adventitious shoot regeneration (96%) was observed in cultures of leaf explants excised from corn KNOX1-expressing transgenic plum shoots. In contrast to KNOX1-expressing tobacco, leaf and internode explants of corn KNOX1-expressing plum required synthetic cytokinin (thidiazuron) in the culture medium to induce adventitious shoot regeneration. The induction of high-frequency regeneration of adventitious shoots in vitro from leaves and stem internodal sections of plum through the ectopic expression of a KNOX1 gene is the first such report for a woody perennial fruit trees.

  16. Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa.

    PubMed

    Smith, Matthew E; Henkel, Terry W; Williams, Gwendolyn C; Aime, M Catherine; Fremier, Alexander K; Vilgalys, Rytas

    2017-07-01

    Temperate ectomycorrhizal (ECM) fungi show segregation whereby some species dominate in organic layers and others favor mineral soils. Weak layering in tropical soils is hypothesized to decrease niche space and therefore reduce the diversity of ectomycorrhizal fungi. The Neotropical ECM tree Dicymbe corymbosa forms monodominant stands and has a distinct physiognomy with vertical crown development, adventitious roots and massive root mounds, leading to multi-stemmed trees with spatially segregated rooting environments: aerial litter caches, aerial decayed wood, organic root mounds and mineral soil. We hypothesized that these microhabitats host distinct fungal assemblages and therefore promote diversity. To test our hypothesis, we sampled D. corymbosa ectomycorrhizal root tips from the four microhabitats and analyzed community composition based on pyrosequencing of fungal internal transcribed spacer (ITS) barcode markers. Several dominant fungi were ubiquitous but analyses nonetheless suggested that communities in mineral soil samples were statistically distinct from communities in organic microhabitats. These data indicate that distinctive rooting zones of D. corymbosa contribute to spatial segregation of the fungal community and likely enhance fungal diversity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-ÎșB pathway.

    PubMed

    Wang, Jun; Si, Yanfang; Wu, Chen; Sun, Lu; Ma, Yudong; Ge, Aili; Li, Baomin

    2012-10-17

    Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-ÎșB (NF-ÎșB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-ÎșB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-ÎČ1 (TGF-ÎČ1). Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-ÎșB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of

  18. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-ÎșB pathway

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-ÎșB (NF-ÎșB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-ÎșB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-ÎČ1 (TGF-ÎČ1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-ÎșB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to

  19. Adventitious viruses in insect cell lines used for recombinant protein expression.

    PubMed

    Geisler, Christoph; Jarvis, Donald L

    2018-04-01

    Insect cells are widely used for recombinant protein expression, typically as hosts for recombinant baculovirus vectors, but also for plasmid-mediated transient transfection or stable genetic transformation. Insect cells are used to express proteins for research, as well as to manufacture biologicals for human and veterinary medicine. Recently, several insect cell lines used for recombinant protein expression were found to be persistently infected with adventitious viruses. This has raised questions about how these infections might affect research performed using those cell lines. Furthermore, these findings raised serious concerns about the safety of biologicals produced using those cell lines. In response, new insect cell lines lacking adventitious viruses have been isolated for use as improved research tools and safer biological manufacturing platforms. Here, we review the scientific and patent literature on adventitious viruses found in insect cell lines, affected cell lines, and new virus-free cell lines. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Host Genotype and Nitrogen Form Shape the Root Microbiome of Pinus radiata.

    PubMed

    Gallart, Marta; Adair, Karen L; Love, Jonathan; Meason, Dean F; Clinton, Peter W; Xue, Jianming; Turnbull, Matthew H

    2018-02-01

    A central challenge in community ecology is understanding the role that phenotypic variation among genotypes plays in structuring host-associated communities. While recent studies have investigated the relationship between plant genotype and the composition of soil microbial communities, the effect of genotype-by-environment interactions on the plant microbiome remains unclear. In this study, we assessed the influence of tree genetics (G), nitrogen (N) form and genotype-by-environment interaction (G x N) on the composition of the root microbiome. Rhizosphere communities (bacteria and fungi) and root-associated fungi (including ectomycorrhizal and saprotrophic guilds) were characterised in two genotypes of Pinus radiata with contrasting physiological responses to exogenous organic or inorganic N supply. Genotype-specific responses to N form influenced the composition of the root microbiome. Specifically, (1) diversity and composition of rhizosphere bacterial and root-associated fungal communities differed between genotypes that had distinct responses to N form, (2) shifts in the relative abundance of individual taxa were driven by the main effects of N form or host genotype and (3) the root microbiome of the P. radiata genotype with the most divergent growth responses to organic and inorganic N was most sensitive to differences in N form. Our results show that intraspecific variation in tree response to N form has significant consequences for the root microbiome of P. radiata, demonstrating the importance of genotype-by-environment interactions in shaping host-associated communities.

  1. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Fang; Ji Jian; Li Li

    2007-01-19

    The role of the adventitia in vascular function and vascular lesion formation has been largely ignored. This study observed the activation of the adventitia and specifically the fibroblasts in the development of atherosclerosis in the apoE(-/-) mouse. The results showed a gradual increase in expression of collagen types I and III after 2, 4, and 8 weeks of hyperlipidic diet. The earliest expression of monocyte chemoattractant protein-1 (MCP-1) protein and mRNA was detected in the adventitial fibroblast before the formation of intimal lesions. Proliferation, too, was first found in the adventitial fibroblasts. We hypothesize that the adventitial fibroblast is activatedmore » in the early stage of atherosclerosis. Adventitial inflammation may be an early event in the development of atherosclerotic lesions.« less

  2. Fibronectin type III domain containing 5 attenuates NLRP3 inflammasome activation and phenotypic transformation of adventitial fibroblasts in spontaneously hypertensive rats.

    PubMed

    Ling, Li; Chen, Dan; Tong, Ying; Zang, Ying-Hao; Ren, Xing-Sheng; Zhou, Hong; Qi, Xiao-Hong; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2018-05-01

    Phenotypic transformation of adventitial fibroblasts is important in the pathogenesis of hypertension. This study was designed to determine whether fibronectin type III domain containing 5 (FNDC5) alleviates the phenotypic transformation of adventitial fibroblasts in hypertension and the underlying mechanisms. Experiments were carried out in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) and primary aortic adventitial fibroblasts. FNDC5 was downregulated and NLRP3 inflammasome was activated in aortic adventitia of SHR. FNDC5 overexpression attenuated adventitial fibroblasts phenotypic transformation, excessive synthesis and secretion of matrix components, NLRP3 inflammasome activation and inflammation in adventitial fibroblasts from SHR. Moreover, FNDC5 overexpression reduced NADPH oxidase 2 (NOX2) expression and reactive oxygen species (ROS) production in adventitial fibroblasts from SHR. Similarly, exogenous FNDC5 inhibited adventitial fibroblasts phenotypic transformation, expression of matrix components, NLRP3 inflammasome activation and NOX2 expression in adventitial fibroblasts from SHR. FNDC5 overexpression in rats attenuated phenotypic transformation, inflammation and reactive oxygen species (ROS) production in the aortic adventitia of SHR. Furthermore, FNDC5 overexpression reduced blood pressure and alleviated vascular remodeling in SHR. FNDC5 reduces NOX2-derived ROS production, NLRP3 inflammasome activation and phenotypic transformation in adventitial fibroblasts of SHR. FNDC5 plays a beneficial role in attenuating vascular inflammation, vascular remodeling and hypertension in SHR.

  3. Astigmatism at nearpoint: adventitious, purposeful, and environmental influences.

    PubMed

    Nicholson, S B; Garzia, R P

    1988-12-01

    Previous studies indicate that a number of individuals display significant differences between astigmatism measured at farpoint and nearpoint. Adventitious effects, purposeful lenticular changes and adaptations in response to environmental forces are reviewed as possible sources of this astigmatic variability.

  4. Control of in vitro rooting and plant development in Corymbia maculata by silver nitrate, silver thiosulfate and thiosulfate ion.

    PubMed

    Steinitz, Benjamin; Barr, Nurit; Tabib, Yona; Vaknin, Yiftach; Bernstein, Nirit

    2010-11-01

    Plant regeneration and transformation in vitro is often improved by adding silver ion (Ag(+)) to the culture media as AgNO(3) or silver thiosulfate (STS). Ag(+) reacts with substances to form insoluble precipitates, while thiosulfate (S(2)O(3) (2-)) interferes with these reactions. We studied the implications of silver precipitation and S(2)O(3) (2-) in the medium for culture development by (1) examining formation of Ag(+) precipitates from AgNO(3) versus STS in agar gels and their possible dependence on agar type; (2) comparing Corymbia maculata culture responses to AgNO(3) and STS and determining which better suits control of culture development; (3) clarifying whether STS-dependent alterations in culture development are due to Ag(+) alone or also to a separate influence of S(2)O(3) (2-). Silver precipitates appeared in aqueous gels of four agar brands supplemented with AgNO(3), but not in Phytagel(ℱ), which remained transparent. No precipitation was observed in gels with STS. Indole-3-butyric acid (IBA)-mediated adventitious root induction and shoot growth were higher in C. maculata shoot tips cultured on gels with STS versus AgNO(3) (6-25 ΌM Ag(+)). IBA-treated shoot tips exhibited enhanced adventitious root regeneration, accelerated root elongation, increased frequency of lateral root formation, and stimulated shoot growth mediated by 100-250 ΌM sodium thiosulfate (Na(2)S(2)O(3)) in medium without Ag(+). The potency of S(2)O(3) (2-) in facilitating culture development has never been recognized. It is inferred that superiority of STS in stimulating multiple responses of C. maculata culture results from sustained biological activity of Ag(+) through prevention of its precipitation, and from impact of S(2)O(3) (2-) on cell differentiation and growth.

  5. An algorithm for propagating the square-root covariance matrix in triangular form

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Choe, C. Y.

    1976-01-01

    A method for propagating the square root of the state error covariance matrix in lower triangular form is described. The algorithm can be combined with any triangular square-root measurement update algorithm to obtain a triangular square-root sequential estimation algorithm. The triangular square-root algorithm compares favorably with the conventional sequential estimation algorithm with regard to computation time.

  6. A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.

    1988-01-01

    Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.

  7. Aeroponics for adventitious rhizogenesis in evergreen haloxeric tree Tamarix aphylla (L.) Karst.: influence of exogenous auxins and cutting type.

    PubMed

    Sharma, Udit; Kataria, Vinod; Shekhawat, N S

    2018-02-01

    Tamarix aphylla (L.) Karst., a drought resistant halophyte tree, is an agroforestry species which can be used for reclamation of waterlogged saline and marginal lands. Due to very low seed viability and unsuitable conditions for seed germination, the tree is becoming rare in Indian Thar desert. Present study concerns the evaluation of aeroponics technique for vegetative propagation of T. aphylla . Effect of various exogenous auxins (indole-3-acetic acid, indole-3-butyric acid, naphthalene acetic acid) at different concentrations (0.0, 1.0, 2.0, 3.0, 5.0, 10.0 mg l -1 ) was examined for induction of adventitious rooting and other morphological features. Among all three auxins tested individually, maximum rooting response (79%) was observed with IBA 2.0 mg l -1 . However, stem cuttings treated with a combination of auxins (2.0 mg l -1 IBA and 1.0 mg l -1 IAA) for 15 min resulted in 87% of rooting response. Among three types of stem cuttings (apical shoot, newly sprouted cuttings, mature stem cuttings), maximum rooting (~ 90%) was observed on mature stem cuttings. Number of roots and root length were significantly higher in aeroponically rooted stem cuttings as compared to stem cuttings rooted in soil conditions. Successfully rooted and sprouted plants were transferred to polybags with 95% survival rate. This is the first report on aeroponic culture of Tamarix aphylla which can be utilized in agroforestry practices, marginal land reclamation and physiological studies.

  8. Morphological and Physiological Factors Affecting Formation of Adventitious Roots on Sugar Maple Stem Cuttings

    Treesearch

    John R. Donnelly

    1977-01-01

    Sugar maple cuttings were collected twice a week throughout June from four mature trees. Some of the cuttings were analyzed for carbohydrate (starch and sugars) and nitrogen content; the others were stuck in rooting beds. Rooting response showed significant daily and clonal variations. Cuttings rooted best when their terminal leaves were mature, as judged by size and...

  9. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max).

    PubMed

    Valliyodan, Babu; Van Toai, Tara T; Alves, Jose Donizeti; de FĂĄtima P Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J Grover; Nguyen, Henry T

    2014-09-29

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be

  10. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max)

    PubMed Central

    Valliyodan, Babu; Van Toai, Tara T.; Alves, Jose Donizeti; de FĂĄtima P. Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B.; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J. Grover; Nguyen, Henry T.

    2014-01-01

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be

  11. Histopathological Evidence of Adventitial or Medial Injury Is a Strong Predictor of Restenosis During Directional Atherectomy for Peripheral Artery Disease.

    PubMed

    Tarricone, Arthur; Ali, Ziad; Rajamanickam, Anitha; Gujja, Karthik; Kapur, Vishal; Purushothaman, K-Raman; Purushothaman, Meerarani; Vasquez, Miguel; Zalewski, Adrian; Parides, Micheal; Overbey, Jessica; Wiley, Jose; Krishnan, Prakash

    2015-10-01

    To investigate the impact on restenosis rates of deep injury to the adventitial layer during directional atherectomy. Between 2007 and 2010, 116 consecutive patients (mean age 69.6 years; 56 men) with symptomatic femoropopliteal stenoses were treated with directional atherectomy at a single center. All patients had claudication and TASC A/B lesions in the superficial femoral or popliteal arteries. Histopathology analysis of atherectomy specimens was performed to identify adventitial injury. Clinical follow-up included physical examination and duplex ultrasound scans at 3, 6, and 12 months in all patients. The primary endpoint was the duplex-documented 1-year rate of restenosis, which was determined by a peak systolic velocity ratio <2.4. Patients were dichotomized by the presence or absence of adventitial or medial cuts as evaluated by histopathology. Adventitial injury were identified in 62 (53%) of patients. There were no differences in baseline demographic and clinical features (p>0.05), lesion length (58.7±12.8 vs 56.2±13.6 mm, p=0.40), or vessel runoff (1.9±0.6 vs 2.0±0.6, p=0.37) between patients with and without adventitial injury, respectively. The overall 1-year incidence of restenosis was 57%, but the rate was significantly higher (p<0.0001) in patients with adventitial or medial injury (97%, 60/62) as compared with those without (11%, 6/54). Lack of adventitial injury after atherectomy for femoropopliteal stenosis is strongly related to patency at 1 year. © The Author(s) 2015.

  12. CsSCL1 is differentially regulated upon maturation in chestnut microshoots and is specifically expressed in rooting-competent cells.

    PubMed

    Vielba, JesĂșs M; DĂ­az-Sala, Carmen; Ferro, Enrique; Rico, Saleta; Lamprecht, MarĂ­a; Abarca, Dolores; Ballester, Antonio; SĂĄnchez, Conchi

    2011-10-01

    The Castanea sativa SCL1 gene (CsSCL1) has previously been shown to be induced by auxin during adventitious root (AR) formation in rooting-competent microshoots. However, its expression has not previously been analyzed in rooting-incompetent shoots. This study focuses on the regulation of CsSCL1 during maturation and the role of the gene in the formation of AR. The expression of CsSCL1 in rooting-incompetent microshoots and other tissues was investigated by quantitative reverse transcriptase--polymerase chain reaction. The analysis was complemented by in situ hybridization of the basal segments of rooting-competent and --incompetent microshoots during AR induction, as well as in AR and lateral roots. It was found that CsSCL1 is upregulated by auxin in a cell-type- and phase-dependent manner during the induction of AR. In root-forming shoots, CsSCL1 mRNA was specifically located in the cambial zone and derivative cells, which are rooting-competent cells, whereas in rooting-incompetent shoots the hybridization signal was more diffuse and evenly distributed through the phloem and parenchyma. CsSCL1 expression was also detected in lateral roots and axillary buds. The different CsSCL1 expression patterns in rooting-competent and -incompetent microshoots, together with the specific location of transcripts in cell types involved in root meristem initiation and in the root primordia of AR and lateral roots, indicate an important role for the gene in determining whether certain cells will enter the root differentiation pathway and its involvement in meristem maintenance.

  13. Optimization of protease-inhibitor interactions by randomizing adventitious contacts

    PubMed Central

    Komiyama, Tomoko; VanderLugt, Bryan; FugĂšre, Martin; Day, Robert; Kaufman, Randal J.; Fuller, Robert S.

    2003-01-01

    Polypeptide protease inhibitors are often found to inhibit targets with which they did not coevolve, as in the case of high-affinity inhibition of bacterial subtilisin by the leech inhibitor eglin c. Two kinds of contacts exist in such complexes: (i) reactive site loop-active site contacts and (ii) interactions outside of these that form the broader enzyme-inhibitor interface. We hypothesized that the second class of “adventitious” contacts could be optimized to generate significant increases in affinity for a target enzyme or discrimination of an inhibitor for closely related target proteases. We began with a modified eglin c, Arg-42–Arg-45–eglin, in which the reactive site loop had been optimized for subtilisin-related processing proteases of the Kex2/furin family. We randomized 10 potential adventitious contact residues and screened for inhibition of soluble human furin. Substitutions at one of these sites, Y49, were also screened against yeast Kex2 and human PC7. These screens identified not only variants that exhibited increased affinity (up to 20-fold), but also species that exhibited enhanced selectivity, that is, increased discrimination between the target enzymes (up to 41-fold for furin versus PC7 and 20-fold for PC7 versus furin). One variant, Asp-49–Arg-42–Arg-45–eglin, exhibited a Ki of 310 pM for furin and blocked furin-dependent processing of von Willebrand factor in COS-1 cells when added to the culture medium of the cells. The exploitation of adventitious contact sites may provide a versatile technique for developing potent, selective inhibitors for newly discovered proteases and could in principle be applied to optimize numerous protein–protein interactions. PMID:12832612

  14. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L.

    PubMed

    Naz, Ruphi; Anis, M

    2012-11-01

    In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog's (MS) medium supplemented with 15.0 ΌM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 ΌM 2,4-D and 20.0 ΌM AdS in liquid medium as it induced 19.2 ± 0.58 buds in central vein explants. Addition of different growth regulators (cytokinins-6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins-indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 ΌM 6-benzyl adenine along with 0.25 ΌM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4 ± 0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 ΌM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.

  15. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.

    PubMed

    Zhang, Wangxiang; Fan, Junjun; Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25-47.4% and increased the rooting percentages of cuttings by 0.9-1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting.

  16. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings

    PubMed Central

    Tan, Qianqian; Zhao, Mingming; Zhou, Ting; Cao, Fuliang

    2017-01-01

    Malus hupehensis is an excellent Malus rootstock species, known for its strong adverse-resistance and apomixes. In the present study, stem cuttings of M. hupehensis were treated with three types of exogenous hormones, including indole acetic acid (IAA), naphthalene acetic acid (NAA), or green growth regulator (GGR). The effects and mechanisms of exogenous hormone treatment and antioxidant enzyme activity on adventitious root formation were investigated. The results showed that the apparent morphology of the adventitious root had four stages, including root pre-emergence stage (S0), early stage of root formation (S1), massive root formation stage (S2), and later stage of root formation (S3). The suitable concentrations of the three exogenous hormones, IAA, NAA and GGR, were 100 mg·L-1, 300 mg·L-1, and 300 mg·L-1, respectively. They shortened the rooting time by 25–47.4% and increased the rooting percentages of cuttings by 0.9–1.3 times, compared with that in the control. The dispersion in S0 stage was 3.6 times of that in the S1 stage after exogenous hormone application. The earlier the third critical point (P3) appeared, the shorter the rooting time and the greater the rooting percentage of the cuttings. During rhizogenesis, the activities of three antioxidant enzymes (POD, SOD, and PPO) showed an A-shaped trend. However, peak values of enzyme activity appeared at different points, which were 9 d before the P3, P3, and the fourth critical point (P4), respectively. Exogenous hormone treatment reduced the time to reach the peak value by 18 days, although the peak values of the enzymatic activities did not significantly changed. Our results suggested that exogenous hormone treatment mainly acted during the root pre-emergence stage, accelerated the synthesis of antioxidant enzymes, reduced the rooting time, and consequently promoted root formation. The three kinds of antioxidant enzymes acted on different stages of rooting. PMID:28231330

  17. Quantifying Adventitious Error in a Covariance Structure as a Random Effect

    PubMed Central

    Wu, Hao; Browne, Michael W.

    2017-01-01

    We present an approach to quantifying errors in covariance structures in which adventitious error, identified as the process underlying the discrepancy between the population and the structured model, is explicitly modeled as a random effect with a distribution, and the dispersion parameter of this distribution to be estimated gives a measure of misspecification. Analytical properties of the resultant procedure are investigated and the measure of misspecification is found to be related to the RMSEA. An algorithm is developed for numerical implementation of the procedure. The consistency and asymptotic sampling distributions of the estimators are established under a new asymptotic paradigm and an assumption weaker than the standard Pitman drift assumption. Simulations validate the asymptotic sampling distributions and demonstrate the importance of accounting for the variations in the parameter estimates due to adventitious error. Two examples are also given as illustrations. PMID:25813463

  18. Nitrogen Ion Form and Spatio-temporal Variation in Root Distribution Mediate Nitrogen Effects on Lifespan of Ectomycorrhizal Roots

    NASA Astrophysics Data System (ADS)

    Kou, L.; McCormack, M. L.; Chen, W.; Guo, D.; Wang, H.; Li, S.; Gao, W.; Yang, H.

    2017-12-01

    Background and Aims Absorptive roots active in soil resource uptake are often intimately associated with mycorrhizal fungi, yet it remains unclear how nitrogen (N) loading affects lifespan of absorptive roots associating with ectomycorrhizal (ECM) fungi. Methods Through a three-year minirhizotron experiment, we investigated the responses of ECM lifespan to different rates of N addition and examined the roles of N ion form, rooting depth, seasonal root cohort, and ECM morphotype in mediating the N effects on ECM lifespan in a slash pine (Pinus elliottii) forest in subtropical China. Results High rates of NH4Cl significantly decreased foliar P concentrations and increased foliar N: P ratios, and mean ECM lifespan was negatively correlated to foliar P concentration. N additions generally increased the lifespan of most ectomycorrhizas, but the specific differences were context dependent. N rates and forms exerted significant positive effects on ECM lifespan with stronger effects occurring at high N rates and under ammonium N addition. N additions extended lifespan of ectomycorrhizas in shallower soil and born in spring and autumn, but shortened lifespan of ectomycorrhizas in deeper soil and born in summer and winter. N additions reduced lifespan of dichotomous ectomycorrhizas, but increased lifespan of coralloid ectomycorrhizas. Conclusions The increased ECM lifespan in response to N additions may primarily be driven by the persistent and aggravated P limitation to plants. Our findings highlight the importance of environmental contexts in controlling ECM lifespan and the need to consider potential differences among mycorrhizal morphotypes when studying N—lifespan relationships of absorptive roots in the context of N deposition.

  19. Potential Role of Axonal Chemorepellent Slit2 in Modulating Adventitial Inflammation in a Rat Carotid Artery Balloon Injury Model

    PubMed Central

    Liu, Dong; Xiao, Yan; Subramanian, Romesh R.; Okamoto, Ei-ichi; Wilcox, Josiah N.; Anderson, Leonard; De Leon, Hector

    2016-01-01

    Leukocyte infiltration of adventitial and perivascular tissues is an early event in the development of vascular remodeling after injury. We investigated whether Slit/Robo—an axonal chemorepellent system in vertebrate and invertebrate development—is activated during the inflammatory phase that follows endothelial denudation. Using the rat carotid artery model of angioplasty, we conducted a time course analysis of mRNAs encoding Slit ligands (Slit2 and Slit3) and Robo receptors (Robo1, Robo2 and Robo4), as well as proinflammatory cell adhesion molecule (CAM) genes. Adventitial inflammatory cells were counted in immunostained arterial sections. E-selectin, vascular CAM-1 (VCAM-1), and intercellular CAM-1 (ICAM-1) were upregulated 2–3 hr after injury, followed by infiltration of neutrophils and monocytes as evidenced by real-time PCR, in situ hybridization, and immunohistochemistry. Slit2, Slit3, and Robo genes exhibited no expression changes at 3 hr; however, they were markedly upregulated 1 day after angioplasty. ICAM-1 expression was reduced by 50%, and the number of adventitial neutrophils decreased by >75% one day after angioplasty. Slit2 has been shown to be a potent chemorepelent of leukocytes, endothelial cells and smooth muscle cells. Thus, we decided to further investigate the localization of Slit2 in injured vessels. Immunohistochemical stainings revealed the presence of Slit2 within the vessel wall and in the perivascular vasa vasorum of naive and injured arteries. Double immunohistochemical analyses showed that infiltrating monocytes expressed Slit2 in the perivascular and adventitial tissues of injured arteries 1 and 3 days postangioplasty. In addition, recombinant full-length Slit2 and Slit2-N/1118, an N-terminal fragment of Slit2, inhibited stromal cell-derived factor 1 (SDF-1)-mediated migration of circulating rat peripheral blood mononuclear cells. In summary, adventitial activation of CAM genes and neutrophil infiltration preceded upregulation

  20. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants.

    PubMed

    Valverde-Barrantes, Oscar J; Freschet, Grégoire T; Roumet, Catherine; Blackwood, Christopher B

    2017-09-01

    Fine-root traits play key roles in ecosystem processes, but the drivers of fine-root trait diversity remain poorly understood. The plant economic spectrum (PES) hypothesis predicts that leaf and root traits evolved in coordination. Mycorrhizal association type, plant growth form and climate may also affect root traits. However, the extent to which these controls are confounded with phylogenetic structuring remains unclear. Here we compiled information about root and leaf traits for > 600 species. Using phylogenetic relatedness, climatic ranges, growth form and mycorrhizal associations, we quantified the importance of these factors in the global distribution of fine-root traits. Phylogenetic structuring accounts for most of the variation for all traits excepting root tissue density, with root diameter and nitrogen concentration showing the strongest phylogenetic signal and specific root length showing intermediate values. Climate was the second most important factor, whereas mycorrhizal type had little effect. Substantial trait coordination occurred between leaves and roots, but the strength varied between growth forms and clades. Our analyses provide evidence that the integration of roots and leaves in the PES requires better accounting of the variation in traits across phylogenetic clades. Inclusion of phylogenetic information provides a powerful framework for predictions of belowground functional traits at global scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms.

    PubMed

    Larson, Julie E; Funk, Jennifer L

    2016-05-01

    Root trait variation and plasticity could be key factors differentiating plant performance under drought. However, water manipulation and root measurements are rarely coupled empirically across growth forms to identify whether belowground strategies are generalizable across species. We measured seedling root traits across three moisture levels in 18 Mediterranean forbs, grasses, and woody species. Drought increased the root mass fraction (RMF) and decreased the relative proportion of thin roots (indicated by increased root diameters and decreased specific root length (SRL)), rates of root elongation and growth, plant nitrogen uptake, and plant growth. Although responses varied across species, plasticity was not associated with growth form. Woody species differed from forbs and grasses in many traits, but herbaceous groups were similar. Across water treatments, trait correlations suggested a single spectrum of belowground trade-offs related to resource acquisition and plant growth. While effects of SRL and RMF on plant growth shifted with drought, root elongation rate consistently represented this spectrum. We demonstrate that general patterns of root morphology and plasticity are identifiable across diverse species. Root trait measurements should enhance our understanding of belowground strategy and performance across growth forms, but it will be critical to incorporate plasticity and additional aspects of root function into these efforts. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Silicon enhances suberization and lignification in roots of rice (Oryza sativa).

    PubMed

    Fleck, Alexander T; Nye, Thandar; Repenning, Cornelia; Stahl, Frank; Zahn, Marc; Schenk, Manfred K

    2011-03-01

    The beneficial element silicon (Si) may affect radial oxygen loss (ROL) of rice roots depending on suberization of the exodermis and lignification of sclerenchyma. Thus, the effect of Si nutrition on the oxidation power of rice roots, suberization and lignification was examined. In addition, Si-induced alterations of the transcript levels of 265 genes related to suberin and lignin synthesis were studied by custom-made microarray and quantitative Real Time-PCR. Without Si supply, the oxidation zone of 12 cm long adventitious roots extended along the entire root length but with Si supply the oxidation zone was restricted to 5 cm behind the root tip. This pattern coincided with enhanced suberization of the exodermis and lignification of sclerenchyma by Si supply. Suberization of the exodermis started, with and without Si supply, at 4-5 cm and 8-9 cm distance from the root tip (drt), respectively. Si significantly increased transcript abundance of 12 genes, while two genes had a reduced transcript level. A gene coding for a leucine-rich repeat protein exhibited a 25-fold higher transcript level with Si nutrition. Physiological, histochemical, and molecular-biological data showing that Si has an active impact on rice root anatomy and gene transcription is presented here.

  3. Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots.

    PubMed

    Fresno, Teresa; Peñalosa, JesĂșs M; Santner, Jakob; Puschenreiter, Markus; Prohaska, Thomas; Moreno-JimĂ©nez, Eduardo

    2016-09-01

    Arsenic is a non-threshold carcinogenic metalloid. Thus, human exposure should be minimised, e.g. by chemically stabilizing As in soil. Since iron is a potential As immobiliser, it was investigated whether root iron plaque, formed under aerobic conditions, affects As uptake, metabolism and distribution in Lupinus albus plants. White lupin plants were cultivated in a continuously aerated hydroponic culture containing Fe/EDDHA or FeSO4 and exposed to arsenate (5 or 20 ΌM). Only FeSO4 induced surficial iron plaque in roots. LA-ICP-MS analysis accomplished on root sections corroborated the association of As to this surficial Fe. Additionally, As(V) was the predominant species in FeSO4-treated roots, suggesting less efficient As uptake in the presence of iron plaque. Fe/EDDHA-exposed roots neither showed such surficial FeAs co-localisation nor As(V) accumulation; in contrast As(III) was the predominant species in root tissue. Furthermore, FeSO4-treated plants showed reduced shoot-to-root As ratios, which were >10-fold lower compared to Fe/EDDHA treatment. Our results highlight the role of an iron plaque formed in roots of white lupin under aerobic conditions on As immobilisation. These findings, to our knowledge, have not been addressed before for this plant and have potential implications on soil remediation (phytostabilisation) and food security (minimising As in crops). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A quantitative risk assessment of exposure to adventitious agents in a cell culture-derived subunit influenza vaccine.

    PubMed

    Gregersen, Jens-Peter

    2008-06-19

    A risk-assessment model has demonstrated the ability of a new cell culture-based vaccine manufacturing process to reduce the level of any adventitious agent to a million-fold below infectious levels. The cell culture-derived subunit influenza vaccine (OPTAFLU), Novartis Vaccines and Diagnostics) is produced using Madin-Darby canine kidney (MDCK) cells to propagate seasonal viral strains, as an alternative to embryonated chicken-eggs. As only a limited range of mammalian viruses can grow in MDCK cells, similar to embryonated eggs, MDCK cells can act as an effective filter for a wide range of adventitious agents that might be introduced during vaccine production. However, the introduction of an alternative cell substrate (for example, MDCK cells) into a vaccine manufacturing process requires thorough investigations to assess the potential for adventitious agent risk in the final product, in the unlikely event that contamination should occur. The risk assessment takes into account the entire manufacturing process, from initial influenza virus isolation, through to blending of the trivalent subunit vaccine and worst-case residual titres for the final vaccine formulation have been calculated for >20 viruses or virus families. Maximum residual titres for all viruses tested were in the range of 10(-6) to 10(-16) infectious units per vaccine dose. Thus, the new cell culture-based vaccine manufacturing process can reduce any adventitious agent to a level that is unable to cause infection.

  5. Adventitious shoot regeneration from in vitro leaf explants of Fraxinus nigra

    Treesearch

    Jun Hyung Lee; Paula M. Pijut

    2017-01-01

    Black ash (Fraxinus nigra) is an endangered hardwood tree species under threat of extirpation by the emerald ash borer (EAB), an aggressive exotic phloemfeeding beetle. We have developed an efficient regeneration system through adventitious shoot organogenesis in F. nigra using in vitro-derived leaf explants. Two types of leaf...

  6. Anatomical aspects of angiosperm root evolution

    PubMed Central

    Seago, James L.; Fernando, Danilo D.

    2013-01-01

    Background and Aims Anatomy had been one of the foundations in our understanding of plant evolutionary trends and, although recent evo-devo concepts are mostly based on molecular genetics, classical structural information remains useful as ever. Of the various plant organs, the roots have been the least studied, primarily because of the difficulty in obtaining materials, particularly from large woody species. Therefore, this review aims to provide an overview of the information that has accumulated on the anatomy of angiosperm roots and to present possible evolutionary trends between representatives of the major angiosperm clades. Scope This review covers an overview of the various aspects of the evolutionary origin of the root. The results and discussion focus on angiosperm root anatomy and evolution covering representatives from basal angiosperms, magnoliids, monocots and eudicots. We use information from the literature as well as new data from our own research. Key Findings The organization of the root apical meristem (RAM) of Nymphaeales allows for the ground meristem and protoderm to be derived from the same group of initials, similar to those of the monocots, whereas in Amborellales, magnoliids and eudicots, it is their protoderm and lateral rootcap which are derived from the same group of initials. Most members of Nymphaeales are similar to monocots in having ephemeral primary roots and so adventitious roots predominate, whereas Amborellales, Austrobaileyales, magnoliids and eudicots are generally characterized by having primary roots that give rise to a taproot system. Nymphaeales and monocots often have polyarch (heptarch or more) steles, whereas the rest of the basal angiosperms, magnoliids and eudicots usually have diarch to hexarch steles. Conclusions Angiosperms exhibit highly varied structural patterns in RAM organization; cortex, epidermis and rootcap origins; and stele patterns. Generally, however, Amborellales, magnoliids and, possibly

  7. Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer

    PubMed Central

    Kou, Meng; Tang, Zhonghou; Zhang, Aijun; Li, Hongmin; Wei, Meng

    2017-01-01

    Humic acid (HA), not only promote the growth of crop roots, they can be combined with nitrogen (N) to increase fertilizer use efficiency and yield. However, the effects of HA urea fertilizer (HA-N) on root growth and yield of sweet potato has not been widely investigated. Xushu 28 was used as the experimental crop to investigate the effects of HA-N on root morphology, active oxygen metabolism and yield under field conditions. Results showed that nitrogen application alone was not beneficial for root growth and storage root formation during the early growth stage. HA-N significantly increased the dry weight of the root system, promoted differentiation from adventitious root to storage root, and increased the overall root activity, total root length, root diameter, root surface area, as well as root volume. HA-N thus increased the activity of superoxide dismutase (SOD), peroxidase (POD), and Catalase (CAT) as well as increasing the soluble protein content of roots and decreasing the malondialdehyde (MDA) content. HA-N significantly increased both the number of storage roots per plant increased by 14.01%, and the average fresh weight per storage root increased by 13.7%, while the yield was also obviously increased by 29.56%. In this study, HA-N increased yield through a synergistic increase of biological yield and harvest index. PMID:29253886

  8. Studying microstructure and microstructural changes in plant tissues by advanced diffusion magnetic resonance imaging techniques

    PubMed Central

    Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon

    2017-01-01

    Abstract As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6–10 ÎŒm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed. PMID:28398563

  9. A new approach for detecting adventitious viruses shows Sf-rhabdovirus-negative Sf-RVN cells are suitable for safe biologicals production.

    PubMed

    Geisler, Christoph

    2018-02-07

    Adventitious viral contamination in cell substrates used for biologicals production is a major safety concern. A powerful new approach that can be used to identify adventitious viruses is a combination of bioinformatics tools with massively parallel sequencing technology. Typically, this involves mapping or BLASTN searching individual reads against viral nucleotide databases. Although extremely sensitive for known viruses, this approach can easily miss viruses that are too dissimilar to viruses in the database. Moreover, it is computationally intensive and requires reference cell genome databases. To avoid these drawbacks, we set out to develop an alternative approach. We reasoned that searching genome and transcriptome assemblies for adventitious viral contaminants using TBLASTN with a compact viral protein database covering extant viral diversity as the query could be fast and sensitive without a requirement for high performance computing hardware. We tested our approach on Spodoptera frugiperda Sf-RVN, a recently isolated insect cell line, to determine if it was contaminated with one or more adventitious viruses. We used Illumina reads to assemble the Sf-RVN genome and transcriptome and searched them for adventitious viral contaminants using TBLASTN with our viral protein database. We found no evidence of viral contamination, which was substantiated by the fact that our searches otherwise identified diverse sequences encoding virus-like proteins. These sequences included Maverick, R1 LINE, and errantivirus transposons, all of which are common in insect genomes. We also identified previously described as well as novel endogenous viral elements similar to ORFs encoded by diverse insect viruses. Our results demonstrate TBLASTN searching massively parallel sequencing (MPS) assemblies with a compact, manually curated viral protein database is more sensitive for adventitious virus detection than BLASTN, as we identified various sequences that encoded virus

  10. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing

    PubMed Central

    Mee, Edward T.; Preston, Mark D.; Minor, Philip D.; Schepelmann, Silke; Huang, Xuening; Nguyen, Jenny; Wall, David; Hargrove, Stacey; Fu, Thomas; Xu, George; Li, Li; Cote, Colette; Delwart, Eric; Li, Linlin; Hewlett, Indira; Simonyan, Vahan; Ragupathy, Viswanath; Alin, Voskanian-Kordi; Mermod, Nicolas; Hill, Christiane; OttenwÀlder, Birgit; Richter, Daniel C.; Tehrani, Arman; Jacqueline, Weber-Lehmann; Cassart, Jean-Pol; Letellier, Carine; Vandeputte, Olivier; Ruelle, Jean-Louis; Deyati, Avisek; La Neve, Fabio; Modena, Chiara; Mee, Edward; Schepelmann, Silke; Preston, Mark; Minor, Philip; Eloit, Marc; Muth, Erika; Lamamy, Arnaud; Jagorel, Florence; Cheval, Justine; Anscombe, Catherine; Misra, Raju; Wooldridge, David; Gharbia, Saheer; Rose, Graham; Ng, Siemon H.S.; Charlebois, Robert L.; Gisonni-Lex, Lucy; Mallet, Laurent; Dorange, Fabien; Chiu, Charles; Naccache, Samia; Kellam, Paul; van der Hoek, Lia; Cotten, Matt; Mitchell, Christine; Baier, Brian S.; Sun, Wenping; Malicki, Heather D.

    2016-01-01

    Background Unbiased deep sequencing offers the potential for improved adventitious virus screening in vaccines and biotherapeutics. Successful implementation of such assays will require appropriate control materials to confirm assay performance and sensitivity. Methods A common reference material containing 25 target viruses was produced and 16 laboratories were invited to process it using their preferred adventitious virus detection assay. Results Fifteen laboratories returned results, obtained using a wide range of wet-lab and informatics methods. Six of 25 target viruses were detected by all laboratories, with the remaining viruses detected by 4–14 laboratories. Six non-target viruses were detected by three or more laboratories. Conclusion The study demonstrated that a wide range of methods are currently used for adventitious virus detection screening in biological products by deep sequencing and that they can yield significantly different results. This underscores the need for common reference materials to ensure satisfactory assay performance and enable comparisons between laboratories. PMID:26709640

  11. Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv.

    PubMed

    Delaplace, Pierre; Delory, Benjamin M; Baudson, Caroline; Mendaluk-Saunier de Cazenave, Magdalena; Spaepen, Stijn; Varin, SĂ©bastien; Brostaux, Yves; du Jardin, Patrick

    2015-08-12

    Plant growth-promoting rhizobacteria are increasingly being seen as a way of complementing conventional inputs in agricultural systems. The effects on their host plants are diverse and include volatile-mediated growth enhancement. This study sought to assess the effects of bacterial volatiles on the biomass production and root system architecture of the model grass Brachypodium distachyon (L.) Beauv. An in vitro experiment allowing plant-bacteria interaction throughout the gaseous phase without any physical contact was used to screen 19 bacterial strains for their growth-promotion ability over a 10-day co-cultivation period. Five groups of bacteria were defined and characterised based on their combined influence on biomass production and root system architecture. The observed effects ranged from unchanged to greatly increased biomass production coupled with increased root length and branching. Primary root length was increased only by the volatile compounds emitted by Enterobacter cloacae JM22 and Bacillus pumilus T4. Overall, the most significant results were obtained with Bacillus subtilis GB03, which induced an 81 % increase in total biomass, as well as enhancing total root length, total secondary root length and total adventitious root length by 88.5, 201.5 and 474.5 %, respectively. This study is the first report on bacterial volatile-mediated growth promotion of a grass plant. Contrasting modulations of biomass production coupled with changes in root system architecture were observed. Most of the strains that increased total plant biomass also modulated adventitious root growth. Under our screening conditions, total biomass production was strongly correlated with the length and branching of the root system components, except for primary root length. An analysis of the emission kinetics of the bacterial volatile compounds is being undertaken and should lead to the identification of the compounds responsible for the observed growth-promotion effects. Within the

  12. Clinical assessment of adventitious movements.

    PubMed

    Brasić, J R; Barnett, J Y; Sheitman, B B; Lafargue, R T; Ahn, S C

    1998-12-01

    Many procedures with variable validity and reliability have been developed in research settings to evaluate adventitious movements and related phenomena in specific populations, e.g., people with schizophrenia treated with dopamine antagonists, but these only provide global assessments or rate specific movements. A battery for rating individuals with possible movements disorders in a comprehensive way in clinical settings is needed so a protocol to assess briefly and thoroughly potential movement disorders was videotaped for five prepubertal boys with autistic disorder and severe mental retardation in a clinical trial. Utilizing a Movement Assessment Battery, four raters independently scored videotapes of 10-16 movements assessments of each of the five subjects. Experienced raters attained agreement of 59% to 100% on ratings of tardive dyskinesia and 48% to 100% on tics. Hindrances to reliability included poor quality of some tapes, high activity of subjects, and fatigue of raters.

  13. Biofilm forming ability of bacteria isolated from necrotic roots canals of teeth

    NASA Astrophysics Data System (ADS)

    Alwan, Merriam Ghadhanfar; Usup, Gires; Heng, Lee Yook; Ahmad, Asmat

    2018-04-01

    The growth of microbes in biofilms are associated with repeated and chronic human infections and are extremely resistant to antimicrobial agents. The purpose of this study was to determine the diversity of bacteria from necrotic roots canals of teeth and to detect their biofilm formation ability. A total of 42 bacterial isolates were isolated and identified as belonging to 11 genera. These are Enterococcus sp. (21.4%) followed by Streptococcus sp. (16.8%), Bacillus sp. (11.9%), Peptostreptococcus sp. (9.5%), Staphylococcus sp. (9.5%), Bacteroides sp. (7.1%), Clostridium sp. (7.1%), Actinomyces sp. (7.1%), Fusobacterium sp. (4.76%), Provotella sp. (2.4%) and Chromobacterium sp. (2.4%). Three screening methods for biofilm forming ability were used. Congo Red Agar method (CRA), Tube method (TM) and Microtitre Plate (MTP). From the results, MTP method is a more reliable and quantitative method for the screening and detection of microorganism's ability to form biofilm. This method can be recommended and suggested as a general screening method for the detection of biofilm forming bacteria isolated from roots canals of teeth.

  14. Genetic diversity of root anatomy in wild and cultivated Manihot species.

    PubMed

    Bomfim, N N; Graciano-Ribeiro, D; Nassar, N M A

    2011-04-05

    An anatomical study of roots was conducted on two wild Manihot species, namely M. glaziovii and M. fortalezensis, and two cassava varieties, M. esculenta Crantz variety UnB 201 and M. esculenta variety UnB 122, to identify taxonomic differences in primary growth. Anatomical characters of cassava roots have been rarely investigated. Their study may help cassava breeders to identify varieties with economically important characters, such as tolerance to drought. We investigated tap and lateral adventitious roots of two specimens of each clone or species. Free-hand cross-sections of roots were drawn; these had been clarified with 20% sodium hypochlorite solution, stained with 1% safranin-alcian blue ethanolic solution, dehydrated in ethanol series and butyl acetate and mounted in synthetic resin. Anatomical differences among Manihot species and varieties were found in the epidermal and exodermal cell shape and wall thickness, content of cortical parenchyma, and number of xylem poles. Wall thickness of the epidermis and exodermis of tap root were similar in all species, while in the lateral root there were differences in cell shape and wall thickness. Epidermal cells with thick walls were found in the tap root of all species and in lateral roots of cassava varieties. This character is apparently associated with tolerance to drought and disease. The variation in the number of xylem poles of cassava varieties was larger (4-8) than in wild species (4-6), and appears to support the hybrid origin of cassava.

  15. Bilateral Adventitial Cystic Disease of the Popliteal Artery: A Case Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz M, William R.; Lopera, Jorge E., E-mail: Jorge.lopera@utsouthwestern.edu; Gimenez, Carlos R.

    2006-04-15

    Adventitial cystic disease (ACD) of the popliteal artery is an uncommon vascular condition of unknown etiology. In the present case report, we describe a case of bilateral ACD of the popliteal artery in a 58-year-old male. To the best of our knowledge, this is the first case of bilateral ACD of the popliteal artery reported in the literature.

  16. Root phototropism: how light and gravity interact in shaping plant form

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Correll, Melanie J.; Mullen, Jack L.; Hangarter, Roger P.; Edelmann, Richard E.

    2003-01-01

    The interactions among tropisms can be critical in determining the final growth form of plants and plant organs. We have studied tropistic responses in roots as an example of these type of interactions. While gravitropism is the predominant tropistic response in roots, phototropism also plays a role in the oriented growth in this organ in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism. In the flowering plant Arabidopsis, the photosensitive pigments phytochrome A (phyA) and phytochrome B (phyB) mediate this positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. While blue-light-based negative phototropism is primarily mediated by the phototropin family of photoreceptors, the phyA and phyAB mutants (but not phyB) were inhibited in this response relative to the WT. The differences observed in phototropic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in plants and that phytochrome plays a key role in integrating multiple environmental stimuli.

  17. Root phototropism: how light and gravity interact in shaping plant form.

    PubMed

    Kiss, John Z; Correll, Melanie J; Mullen, Jack L; Hangarter, Roger P; Edelmann, Richard E

    2003-06-01

    The interactions among tropisms can be critical in determining the final growth form of plants and plant organs. We have studied tropistic responses in roots as an example of these type of interactions. While gravitropism is the predominant tropistic response in roots, phototropism also plays a role in the oriented growth in this organ in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism. In the flowering plant Arabidopsis, the photosensitive pigments phytochrome A (phyA) and phytochrome B (phyB) mediate this positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. While blue-light-based negative phototropism is primarily mediated by the phototropin family of photoreceptors, the phyA and phyAB mutants (but not phyB) were inhibited in this response relative to the WT. The differences observed in phototropic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in plants and that phytochrome plays a key role in integrating multiple environmental stimuli.

  18. Form matters: morphological aspects of lateral root development

    PubMed Central

    Szymanowska-PuƂka, Joanna

    2013-01-01

    Background The crucial role of roots in plant nutrition, and consequently in plant productivity, is a strong motivation to study the growth and functioning of various aspects of the root system. Numerous studies on lateral roots, as a major determinant of the root system architecture, mostly focus on the physiological and molecular bases of developmental processes. Unfortunately, little attention is paid either to the morphological changes accompanying the formation of a lateral root or to morphological defects occurring in lateral root primordia. The latter are observed in some mutants and occasionally in wild-type plants, but may also result from application of external factors. Scope and Conclusions In this review various morphological aspects of lateral branching in roots are analysed. Morphological events occurring during the formation of a typical lateral root are described. This process involves dramatic changes in the geometry of the developing organ that at early stages are associated with oblique cell divisions, leading to breaking of the symmetry of the cell pattern. Several types of defects in the morphology of primordia are indicated and described. Computer simulations show that some of these defects may result from an unstable field of growth rates. Significant changes in both primary and lateral root morphology may also be a consequence of various mutations, some of which are auxin-related. Examples reported in the literature are considered. Finally, lateral root formation is discussed in terms of mechanics. In this approach the primordium is considered as a physical object undergoing deformation and is characterized by specific mechanical properties. PMID:24190952

  19. Heterotrimeric G Protein Signaling Is Required for Epidermal Cell Death in Rice[W][OA

    PubMed Central

    Steffens, Bianka; Sauter, Margret

    2009-01-01

    In rice (Oryza sativa) adventitious root primordia are formed at the nodes as part of normal development. Upon submergence of rice plants, adventitious roots emerge from the nodes preceded by death of epidermal cells above the root primordia. Cell death is induced by ethylene and mediated by hydrogen peroxide (H2O2). Pharmacological experiments indicated that epidermal cell death was dependent on signaling through G proteins. Treatment with GTP-Îł-S induced epidermal cell death, whereas GDP-ÎČ-S partially inhibited ethylene-induced cell death. The dwarf1 (d1) mutant of rice has repressed expression of the Gα subunit RGA1 of heterotrimeric G protein. In d1 plants, cell death in response to ethylene and H2O2 was nearly completely abolished, indicating that signaling through Gα is essential. Ethylene and H2O2 were previously shown to alter gene expression in epidermal cells that undergo cell death. Transcriptional regulation was not generally affected in the d1 mutant, indicating that altered gene expression is not sufficient to trigger cell death in the absence of Gα. Analysis of genes encoding proteins related to G protein signaling revealed that four small GTPase genes, two GTPase-activating protein genes, and one GDP dissociation inhibitor gene but not RGA1 were differentially expressed in epidermal cells above adventitious roots, indicating that Gα activity is regulated posttranscriptionally. PMID:19656904

  20. Relative abundance of chemical forms of Cu(II) and Cd(II) on soybean roots as influenced by pH, cations and organic acids

    PubMed Central

    Zhou, Qin; Liu, Zhao-dong; Liu, Yuan; Jiang, Jun; Xu, Ren-kou

    2016-01-01

    Little information is available on chemical forms of heavy metals on integrate plant roots. KNO3 (1 M), 0.05M EDTA at pH6 and 0.01 M HCl were used sequentially to extract the exchangeable, complexed and precipitated forms of Cu(II) and Cd(II) from soybean roots and then to investigate chemical form distribution of Cu(II) and Cd(II) on soybean roots. Cu(II) and Cd(II) adsorbed on soybean roots were mainly exchangeable form, followed by complexed form, while their precipitated forms were very low under acidic conditions. Soybean roots had a higher adsorption affinity to Cu(II) than Cd(II), leading to higher toxic of Cu(II) than Cd(II). An increase in solution pH increased negative charge on soybean and thus increased exchangeable Cu(II) and Cd(II) on the roots. Ca2+, Mg2+ and NH4+ reduced exchangeable Cu(II) and Cd(II) levels on soybean roots and these cations showed greater effects on Cd(II) than Cu(II) due to greater adsorption affinity of the roots to Cu(II) than Cd(II). L-malic and citric acids decreased exchangeable and complexed Cu(II) on soybean roots. In conclusion, Cu(II) and Cd(II) mainly existed as exchangeable and complexed forms on soybean roots. Ca2+ and Mg2+ cations and citric and L-malic acids can potentially alleviate Cu(II) and Cd(II) toxicity to plants. PMID:27805020

  1. An endogenous growth pattern of roots is revealed in seedlings grown in microgravity.

    PubMed

    Millar, Katherine D L; Johnson, Christina M; Edelmann, Richard E; Kiss, John Z

    2011-10-01

    In plants, sensitive and selective mechanisms have evolved to perceive and respond to light and gravity. We investigated the effects of microgravity on the growth and development of Arabidopsis thaliana (ecotype Landsberg) in a spaceflight experiment. These studies were performed with the Biological Research in Canisters (BRIC) hardware system in the middeck region of the space shuttle during mission STS-131 in April 2010. Seedlings were grown on nutrient agar in Petri dishes in BRIC hardware under dark conditions and then fixed in flight with paraformaldehyde, glutaraldehyde, or RNAlater. Although the long-term objective was to study the role of the actin cytoskeleton in gravity perception, in this article we focus on the analysis of morphology of seedlings that developed in microgravity. While previous spaceflight studies noted deleterious morphological effects due to the accumulation of ethylene gas, no such effects were observed in seedlings grown with the BRIC system. Seed germination was 89% in the spaceflight experiment and 91% in the ground control, and seedlings grew equally well in both conditions. However, roots of space-grown seedlings exhibited a significant difference (compared to the ground controls) in overall growth patterns in that they skewed to one direction. In addition, a greater number of adventitious roots formed from the axis of the hypocotyls in the flight-grown plants. Our hypothesis is that an endogenous response in plants causes the roots to skew and that this default growth response is largely masked by the normal 1 g conditions on Earth.

  2. Influence of Microgravity Environment on Root Growth, Soluble Sugars, and Starch Concentration of Sweetpotato Stem Cuttings

    PubMed Central

    Mortley, Desmond G.; Bonsi, Conrad K.; Hill, Walter A.; Morris, Carlton E.; Williams, Carol S.; Davis, Ceyla F.; Williams, John W.; Levine, Lanfang H.; Petersen, Barbara V.; Wheeler, Raymond M.

    2009-01-01

    Because sweetpotato [Ipomoea batatas (L.) Lam.] stem cuttings regenerate very easily and quickly, a study of their early growth and development in microgravity could be useful to an understanding of morphological changes that might occur under such conditions for crops that are propagated vegetatively. An experiment was conducted aboard a U.S. Space Shuttle to investigate the impact of microgravity on root growth, distribution of amyloplasts in the root cells, and on the concentration of soluble sugars and starch in the stems of sweetpotatoes. Twelve stem cuttings of ‘Whatley/Loretan’ sweetpotato (5 cm long) with three to four nodes were grown in each of two plant growth units filled with a nutrient agarose medium impregnated with a half-strength Hoagland solution. One plant growth unit was flown on Space Shuttle Colombia for 5 days, whereas the other remained on the ground as a control. The cuttings were received within 2 h postflight and, along with ground controls, processed in ≈45 min. Adventitious roots were counted, measured, and fixed for electron microscopy and stems frozen for starch and sugar assays. Air samples were collected from the headspace of each plant growth unit for postflight determination of carbon dioxide, oxygen, and ethylene levels. All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. Amyloplasts in root cap cells of ground-based controls were evenly sedimented toward one end compared with a more random distribution in the flight samples. The concentration of soluble sugars, glucose, fructose, and sucrose and total starch concentration were all substantially greater in the stems of

  3. Ecophysiology of wetland plant roots: A modelling comparison of aeration in relation to species distribution

    USGS Publications Warehouse

    Sorrell, B.K.; Mendelssohn, I.A.; McKee, K.L.; Woods, R.A.

    2000-01-01

    This study examined the potential for inter-specific differences in root aeration to determine wetland plant distribution in nature. We compared aeration in species that differ in the type of sediment and depth of water they colonize. Differences in root anatomy, structure and physiology were applied to aeration models that predicted the maximum possible aerobic lengths and development of anoxic zones in primary adventitious roots. Differences in anatomy and metabolism that provided higher axial fluxes of oxygen allowed deeper root growth in species that favour more reducing sediments and deeper water. Modelling identified factors that affected growth in anoxic soils through their effects on aeration. These included lateral root formation, which occurred at the expense of extension of the primary root because of the additional respiratory demand they imposed, reducing oxygen fluxes to the tip and stele, and the development of stelar anoxia. However, changes in sediment oxygen demand had little detectable effect on aeration in the primary roots due to their low wall permeability and high surface impedance, but appeared to reduce internal oxygen availability by accelerating loss from laterals. The development of pressurized convective gas flow in shoots and rhizomes was also found to be important in assisting root aeration, as it maintained higher basal oxygen concentrations at the rhizome-root junctions in species growing into deep water. (C) 2000 Annals of Botany Company.

  4. Results of Survey Regarding Prevalence of Adventitial Infections in Mice and Rats at Biomedical Research Facilities.

    PubMed

    Marx, James O; Gaertner, Diane J; Smith, Abigail L

    2017-09-01

    Control of rodent adventitial infections in biomedical research facilities is of extreme importance in assuring both animal welfare and high-quality research results. Sixty-three U.S. institutions participated in a survey reporting the methods used to detect and control these infections and the prevalence of outbreaks from 1 January 2014 through 31 December 2015. These results were then compared with the results of 2 similar surveys published in 1998 and 2008. The results of the current survey demonstrated that the rate of viral outbreaks in mouse colonies was decreasing, particularly in barrier facilities, whereas the prevalence of parasitic outbreaks has remained constant. These results will help our profession focus its efforts in the control of adventitial rodent disease outbreaks to the areas of the greatest needs.

  5. New method for propagating the square root covariance matrix in triangular form. [using Kalman-Bucy filter

    NASA Technical Reports Server (NTRS)

    Choe, C. Y.; Tapley, B. D.

    1975-01-01

    A method proposed by Potter of applying the Kalman-Bucy filter to the problem of estimating the state of a dynamic system is described, in which the square root of the state error covariance matrix is used to process the observations. A new technique which propagates the covariance square root matrix in lower triangular form is given for the discrete observation case. The technique is faster than previously proposed algorithms and is well-adapted for use with the Carlson square root measurement algorithm.

  6. Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea cotyledons by subtractive hybridization and quantitative PCR.

    PubMed

    Alonso, Pablo; Cortizo, Millån; Cantón, Francisco R; Fernåndez, Belén; Rodríguez, Ana; Centeno, Maria L; Cånovas, Francisco M; Ordås, Ricardo J

    2007-12-01

    As part of a study aimed at understanding the physiological and molecular mechanisms involved in adventitious shoot bud formation in pine cotyledons, we conducted a transcriptome analysis to identify early-induced genes during the first phases of adventitious caulogenesis in Pinus pinea L. cotyledons cultured in the presence of benzyladenine. A subtractive cDNA library with more than 700 clones was constructed. Of these clones, 393 were sequenced, analyzed and grouped according to their putative function. Quantitative real-time PCR analysis was performed to confirm the differential expression of 30 candidate genes. Results are contrasted with available data for other species.

  7. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum.

    PubMed

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere.

  8. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum

    PubMed Central

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G.

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere. PMID:26236301

  9. Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations.

    PubMed

    Roger, Isolda; Symes, Mark D

    2015-11-04

    Electrolytic water oxidation using earth-abundant elements is a key challenge in the quest to develop cheap, large surface area arrays for solar-to-hydrogen conversion. There have been numerous studies in this area in recent years, but there remains an imperative to demonstrate that the current densities reported are indeed due to the species under consideration and not due to the presence of adventitious (yet possibly highly active) contaminants at low levels. Herein, we show that adventitious nickel at concentrations as low as 17 nM can act as a water oxidation catalyst in mildly basic aqueous solutions, achieving stable (tens of hours) current densities of 1 mA cm(-2) at overpotentials as low as 540 mV at pH 9.2 and 400 mV at pH 13. This nickel was not added to the electrolysis baths deliberately, but it was found to be present in the electrolytes as an impurity by ICP-MS. The presence of nickel on anodes from extended-time bulk electrolysis experiments was confirmed by XPS. In showing that such low levels of nickel can perform water oxidation at overpotentials comparable to many recently reported water oxidation catalysts, this work serves to raise the burden of proof required of new materials in this field: contamination by adventitious metal ions at trace loadings must be excluded as a possible cause of any observed water oxidation activity.

  10. Cognitive aspects of haptic form recognition by blind and sighted subjects.

    PubMed

    Bailes, S M; Lambert, R M

    1986-11-01

    Studies using haptic form recognition tasks have generally concluded that the adventitiously blind perform better than the congenitally blind, implicating the importance of early visual experience in improved spatial functioning. The hypothesis was tested that the adventitiously blind have retained some ability to encode successive information obtained haptically in terms of a global visual representation, while the congenitally blind use a coding system based on successive inputs. Eighteen blind (adventitiously and congenitally) and 18 sighted (blindfolded and performing with vision) subjects were tested on their recognition of raised line patterns when the standard was presented in segments: in immediate succession, or with unfilled intersegmental delays of 5, 10, or 15 seconds. The results did not support the above hypothesis. Three main findings were obtained: normally sighted subjects were both faster and more accurate than the other groups; all groups improved in accuracy of recognition as a function of length of interstimulus interval; sighted subjects tended to report using strategies with a strong verbal component while the blind tended to rely on imagery coding. These results are explained in terms of information-processing theory consistent with dual encoding systems in working memory.

  11. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings.

    PubMed

    Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-10-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.

  12. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    PubMed Central

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  13. Mevalonate kinase activity during different stages of plant regeneration from nodular callus cultures in white pine (Pinus strobus).

    PubMed

    Tang, Wei; Newton, Ronald J

    2006-02-01

    Mevalonate kinase (MK) catalyzes a step in the isoprenoid biosynthetic pathway, which leads to a huge number of compounds that play important roles in plant growth and development. Here, we report on changes in MK activity in white pine (Pinus strobus L.) during plant regeneration by adventitious shoot organogenesis from cotyledons of mature embryos, including nodular callus induction, shoot formation and rooting. Nodular calli were induced from Pinus strobus (PS) embryos by culture in nodular callus induction medium in a 0-, 8- or 16-h photoperiod. Mevalonate kinase activity peaked in nodular calli after three weeks of culture on nodular callus induction medium in a 16-h photoperiod, whereas frequency of nodular callus formation peaked after 4 weeks of culture on nodular callus induction medium in darkness. During adventitious shoot formation, MK activity peaked in shoots derived from dark-grown nodular calli after 3 weeks on bud formation medium, and frequency of shoot formation was highest in dark-grown nodular calli cultured on bud formation medium for 4 weeks. During rooting, MK activity peaked 2 weeks after transfer of adventitious shoots to rooting medium and rooting frequency was highest in adventitious shoots after 3 weeks on rooting medium. Although during nodular callus induction in darkness MK activity was inversely related to frequency of nodular callus formation, MK activity was highly correlated with frequency of shoot formation and with rooting frequency. The observed increase in MK activity preceding rooting suggests that MK could serve as a marker for rooting of white pine shoots in vitro.

  14. Clomipramine ameliorates adventitious movements and compulsions in prepubertal boys with autistic disorder and severe mental retardation.

    PubMed

    Brasic, J R; Barnett, J Y; Kaplan, D; Sheitman, B B; Aisemberg, P; Lafargue, R T; Kowalik, S; Clark, A; Tsaltas, M O; Young, J G

    1994-07-01

    In an open, nonblind clinical trial, clomipramine reduced adventitious movements and compulsions in five previously medicated prepubertal boys with autistic disorder and severe mental retardation. Poorly adapted rating scales, interrater variability, subject heterogeneity, different treatment histories, and environmental stresses confounded the assessment of treatment effects.

  15. Augmenting in vitro shoot multiplication by vipul (triacontanol) and adventitious rhizogenesis by rice bran extract in Dendrocalamus strictus.

    PubMed

    Mishra, Y; Rana, P K; Shirin, F; Ansari, S A

    2001-02-01

    Like other bamboo species, Dendrocalamus strictus flowers gregariously after a prolonged intermast period of 48 years and constitutes an ideal material for in vitro clonal propagation. In this study, MS liquid medium containing 0.5, 1.0 and 2.0 mL/L vipul (Godrej Agrovet, Ltd., Sachin, India), a commercial formulation of triacontanol, with or without BA (3.0 mg/L) was tested for in vitro shoot multiplication and 1.0, 2.5 and 5.0 mL/L of 20% (w/v) alcoholic/aqueous rice bran extract (alone or in combination) with NAA (3 mg/L) used for in vitro adventitious rhizogenesis in single node culture derived shoots of Dendrocalamus strictus.. After a multiplication cycle for 4-5 week, vipul (0.5 mL/L) with BA (3.0 mg/L) in the culture medium induced 4.59 fold shoot multiplication rate whereas application of BA and vipul alone had corresponding values of 3.29 and 0.53 fold respectively. Maximum vipul concentration (2 mL/L) with BA (3 mg/L) exhibited shoot multiplication higher than (or equal to) that of BA alone. Maximum in vitro rooting percentage (55.66%) was obtained on half MS medium enriched with alcoholic rice bran extract (2.5 mL/L) and NAA (3 mg/L). This is the first investigation reporting amelioration of in vitro shoot multiplication rate by triacontanol and rooting percentage by rice bran extract in explants from mature bamboo culms. The protocol is economical and rapid for in vitro clonal propagation of Dendrocalamus strictus.

  16. Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss.

    PubMed

    Kulichikhin, Konstantin; Yamauchi, Takaki; Watanabe, Kohtaro; Nakazono, Mikio

    2014-10-01

    The formation of a barrier to radial oxygen (O2 ) loss (ROL) in the root is an important adaptation of plants to root flooding, but the biochemical changes in plant roots where the barrier is formed are unclear. In this study, we analysed metabolic profiles and gene expression profiles in roots of rice (Oryza sativa L.) plants grown under stagnant deoxygenated conditions, which induce suberization in the outer cell layers of the roots and formation of barrier to ROL. Under these conditions, two distinctive biochemical features of the roots were the accumulations of malic acid and very long chain fatty acids (VLCFAs). We also showed that the expressions of some genes encoding plastid-localized enzymes, which convert malic acid to acetyl coenzyme A (AcCoA), were simultaneously up-regulated under stagnant conditions. The expression levels of these genes in specific root tissues isolated by laser microdissection suggested that malic acid is converted to AcCoA predominantly in the plastids in the outer cell layers of rice roots. We propose that the physiological role of malic acid accumulation in rice roots grown under stagnant conditions is to provide a substrate for the biosynthesis of fatty acids, which, in turn, are used in the biosynthesis of suberin. © 2014 John Wiley & Sons Ltd.

  17. Antimicrobial activity of root canal irrigants against biofilm forming pathogens- An in vitro study

    PubMed Central

    Ghivari, Sheetal Basavraj; Bhattacharya, Haimanti; Bhat, Kishore G.; Pujar, Madhu A.

    2017-01-01

    Aims: The aim of the study was to check the antimicrobial activity of the 5% Sodium hypochlorite, 2% Chlorhexidine, 0.10% Octenidine (OCT), and 2% Silver Zeolite (SZ) at different time intervals against a single species biofilm of Enterococcus faecalis, Staphylococcus aureus, and Candida albicans model prepared on a nitrocellulose membrane. Settings and Design: In vitro nitrocellulose biofilm model was used to check antibacterial efficacy of root canal irrigants. Materials and Methods: The in vitro nitrocellulose biofilm model was used to check the antibacterial activity of root canal irrigants. Single species biofilms were suspended into 96-well microtiter plate and treated with root canal irrigants for 1, 5, 10, 15, 30, and 60 s, respectively. The remaining microbial load in the form of colony-forming unit/ml after antimicrobial treatment was tabulated and data were statistically analyzed. Statistical Analysis: SPSS version 17, Kruskal–Wallis ANOVA, Mann–Whitney U-test, and Wilcoxon matched pair test (P < 0.05) were used. Results: All tested microorganisms were eliminated within 30 s by all the antimicrobial substances tested except normal saline. 2% chlorhexidine and 0.10% OCT were equally effective against C. albicans at 30 s. Conclusion: The newly tested irrigants have shown considerable antibacterial activity against selected single species biofilm. OCT (0.10%) can be used as an alternative endodontic irrigant. PMID:29279615

  18. Primary Fatty Alcohols Are Major Components of Suberized Root Tissues of Arabidopsis in the Form of Alkyl Hydroxycinnamates1[OPEN

    PubMed Central

    Delude, Camille; Fouillen, Laetitia; Bhar, Palash; Cardinal, Marie-Josée; Pascal, Stephanie; Kosma, Dylan K.; JoubÚs, JérÎme

    2016-01-01

    Suberin is a complex hydrophobic polymer that acts as a barrier controlling water and solute fluxes and restricting pathogen infections. Suberin is deposited immediately outside of the plasmalemma in the cell wall of certain tissues such as endodermis of roots, aerial and underground periderms, and seed coats. Suberin consists of a variety of fatty acid derivatives polymerized with glycerol and phenolics. In this study, we show using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry techniques that most of the fatty alcohols not covalently linked to the suberin polymer are in the form of alkyl hydroxycinnamates (AHCs), with alkyl caffeates predominating. Such compounds are not restricted to the periderm of mature roots but also are present in the endodermis of younger roots, where they are not extracted by rapid dipping in chloroform. Analysis of several mutants affected in key enzymes involved in the biosynthesis and export of suberin monomers suggests that the formation of the suberin polymer and associated waxes involves common pathways and occurs concomitantly in Arabidopsis (Arabidopsis thaliana) roots. Although fatty alcohols represent only minor components of the suberin polymer in Arabidopsis roots, this study demonstrates that they constitute the major aliphatics of suberin-associated waxes in the form of AHCs. Therefore, our results indicate that esterified fatty alcohols, both soluble and polymerized forms, represent major constituents of Arabidopsis root suberized barriers, being as abundant as α,ω-dicarboxylic and unsubstituted fatty acids. In addition, our results show that suberized layers represent a major sink for acyl-lipid metabolism in Arabidopsis roots. PMID:27231100

  19. Peroxidases, lignin and anatomy during in vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots.

    PubMed

    Hatzilazarou, Stefanos P; Syros, Thomas D; Yupsanis, Traianos A; Bosabalidis, Artemios M; Economou, Athanasios S

    2006-07-01

    In vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots with or without indolic-3-butyric acid (IBA) was studied in order to improve acclimatization of microplants after root formation and transplantation. Peroxidase (POD) activity and isoforms, lignin content and anatomical observations were evaluated in the course of the three interdependent phases (induction, initiation and expression) of microshoot rooting. Microshoots treated or not treated with IBA achieved high rooting percentages both in vitro and ex vitro. At the end of the 2-week acclimatization period, the percentage of surviving microplants ranged from 80% to 100%, for in vitro and ex vitro rooted microshoots, respectively. Microshoots rooted in vitro and ex vitro showed a relationship between rooting and POD activity but in a different time course. It appeared that root formation occurred after the microshoots had reached and passed a peak of maximum enzyme activity. In all treatments, electrophoretic analysis (native PAGE) of PODs revealed the appearance of one anionic and three cationic POD isoforms (C(1), C(3) and C(4)). An additional cationic POD isoform (C(2)) appeared only in the ex vitro rooting. The lignin content was similar in microshoots rooted both in vitro and ex vitro. The sequential anatomical changes during the rooting process were similar in both in vitro and ex vitro rooting treatments. In the case of in vitro rooting, pith cells had vacuoles entirely filled with a dark substance, while in the case of ex vitro rooting, pith cells contained many amyloplasts. The origin of the adventitious roots, in both rooting conditions, was located in the cambial ring. Roots with organized tissue systems emerged from the microshoot stem 10-14 days after the root induction treatments; on day 10 for rooting in vitro, while a 4-day delay was noted in microshoots rooted ex vitro.

  20. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis.

    PubMed

    Wu, Bei; Li, Yun-He; Wu, Jian-Yong; Chen, Qi-Zhu; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2011-06-01

    An auxin response factor 2 gene, MiARF2, was cloned in our previous study [1] from the cotyledon section of mango (Mangifera indica L. cv. Zihua) during adventitious root formation, which shares an 84% amino acid sequence similarity to Arabidopsis ARF2. This study was to examine the effects of over-expression of the full-length MiARF2 open reading frame on the root and hypocotyl growth in Arabidopsis. Phenotype analysis showed that the T(3) transgenic lines had about 20-30% reduction in the length of hypocotyls and roots of the seedlings in comparison with the wild-type. The transcription levels of ANT and ARGOS genes which play a role in controlling organ size and cell proliferation in the transgenic seedlings also decreased. Therefore, the inhibited root and hypocotyl growth in the transgenic seedlings may be associated with the down-regulated transcription of ANT and ARGOS by the over-expression of MiARF2. This study also suggests that although MiARF2 only has a single DNA-binding domain (DBD), it can function as other ARF-like proteins containing complete DBD, middle region (MR) and carboxy-terminal dimerization domain (CTD).

  1. Do root hydraulic properties change during the early vegetative stage of plant development in barley (Hordeum vulgare)?

    PubMed Central

    Suku, Shimi; Knipfer, Thorsten; Fricke, Wieland

    2014-01-01

    Background and Aims As annual crops develop, transpirational water loss increases substantially. This increase has to be matched by an increase in water uptake through the root system. The aim of this study was to assess the contributions of changes in intrinsic root hydraulic conductivity (Lp, water uptake per unit root surface area, driving force and time), driving force and root surface area to developmental increases in root water uptake. Methods Hydroponically grown barley plants were analysed during four windows of their vegetative stage of development, when they were 9–13, 14–18, 19–23 and 24–28 d old. Hydraulic conductivity was determined for individual roots (Lp) and for entire root systems (Lpr). Osmotic Lp of individual seminal and adventitious roots and osmotic Lpr of the root system were determined in exudation experiments. Hydrostatic Lp of individual roots was determined by root pressure probe analyses, and hydrostatic Lpr of the root system was derived from analyses of transpiring plants. Key Results Although osmotic and hydrostatic Lp and Lpr values increased initially during development and were correlated positively with plant transpiration rate, their overall developmental increases (about 2-fold) were small compared with increases in transpirational water loss and root surface area (about 10- to 40-fold). The water potential gradient driving water uptake in transpiring plants more than doubled during development, and potentially contributed to the increases in plant water flow. Osmotic Lpr of entire root systems and hydrostatic Lpr of transpiring plants were similar, suggesting that the main radial transport path in roots was the cell-to-cell path at all developmental stages. Conclusions Increase in the surface area of root system, and not changes in intrinsic root hydraulic properties, is the main means through which barley plants grown hydroponically sustain an increase in transpirational water loss during their vegetative

  2. Do root hydraulic properties change during the early vegetative stage of plant development in barley (Hordeum vulgare)?

    PubMed

    Suku, Shimi; Knipfer, Thorsten; Fricke, Wieland

    2014-02-01

    As annual crops develop, transpirational water loss increases substantially. This increase has to be matched by an increase in water uptake through the root system. The aim of this study was to assess the contributions of changes in intrinsic root hydraulic conductivity (Lp, water uptake per unit root surface area, driving force and time), driving force and root surface area to developmental increases in root water uptake. Hydroponically grown barley plants were analysed during four windows of their vegetative stage of development, when they were 9-13, 14-18, 19-23 and 24-28 d old. Hydraulic conductivity was determined for individual roots (Lp) and for entire root systems (Lp(r)). Osmotic Lp of individual seminal and adventitious roots and osmotic Lp(r) of the root system were determined in exudation experiments. Hydrostatic Lp of individual roots was determined by root pressure probe analyses, and hydrostatic Lp(r) of the root system was derived from analyses of transpiring plants. Although osmotic and hydrostatic Lp and Lp(r) values increased initially during development and were correlated positively with plant transpiration rate, their overall developmental increases (about 2-fold) were small compared with increases in transpirational water loss and root surface area (about 10- to 40-fold). The water potential gradient driving water uptake in transpiring plants more than doubled during development, and potentially contributed to the increases in plant water flow. Osmotic Lp(r) of entire root systems and hydrostatic Lp(r) of transpiring plants were similar, suggesting that the main radial transport path in roots was the cell-to-cell path at all developmental stages. Increase in the surface area of root system, and not changes in intrinsic root hydraulic properties, is the main means through which barley plants grown hydroponically sustain an increase in transpirational water loss during their vegetative development.

  3. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus camaldulensis Dehnh.

    PubMed

    Ikka, Takashi; Ogawa, Tsuyoshi; Li, Donghua; Hiradate, Syuntaro; Morita, Akio

    2013-10-01

    Eucalyptus (Eucalyptus camaldulensis) has relatively high resistance to aluminum (Al) toxicity than the various herbaceous plants and model plant species. To investigate Al-tolerance mechanism, the metabolism of organic acids and the chemical forms of Al in the target site (root tips) in Eucalyptus was investigated. To do this, 2-year old rooted cuttings of E. camaldulensis were cultivated in half-strength Hoagland solution (pH 4.0) containing Al (0, 0.25, 0.5, 1.0, 2.5 and 5.0mM) salts for 5weeks; growth was not affected at concentrations up to 2.5mM even with Al concentration reaching 6000Όgg(-1) DW. In roots, the citrate content also increased with increasing Al application. Concurrently, the activities of aconitase and NADP(+)-isocitrate dehydrogenase, which catalyze the decomposition of citrate, decreased. On the other hand, the activity of citrate synthase was not affected at concentrations up to 2.5mM Al. (27)Al-NMR spectroscopic analyses were carried out where it was found that Al-citrate complexes were a major chemical form present in cell sap of root tips. These findings suggested that E. camaldulensis detoxifies Al by forming Al-citrate complexes, and that this is achieved through Al-induced citrate accumulation in root tips via suppression of the citrate decomposition pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings

    PubMed Central

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca2+]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca2+] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development. PMID:26076049

  5. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings.

    PubMed

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca(2+)]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca(2+)] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.

  6. Expression of grape ACS1 in tomato decreases ethylene and alters the balance between auxin and ethylene during shoot and root formation.

    PubMed

    Ye, Xia; Fu, Mengmeng; Liu, Yu; An, Dongliang; Zheng, Xianbo; Tan, Bin; Li, Jidong; Cheng, Jun; Wang, Wei; Feng, Jiancan

    2018-05-04

    Ethylene plays an important role in the grape rachis, where its production can be 10 times higher than in the berry. VvACS1 is the only rachis-specific ACC synthase (ACS) gene, and its expression is coincident with ethylene production in the rachis of Vitis vinifera 'Thompson seedless'. VvACS1 was cloned and ectopically expressed in tomato (Solanum lycopersicum 'Moneymaker'). Lateral buds were increased in two- or four-week-old 35s∷VvACS1 transgenic tomato plants after transplanting. Compared with wild-type (WT) plants, the transgenic tomato plants showed higher expression of the VvACS1 gene in the flowers, leaves, rachis, and fruits. There was no obvious difference of ACS activity in the fruit of tomato, and only increased ACS activity in the rachis of tomato. Ethylene production was decreased in flowers, leaves, and fruits (seven weeks after full bloom), while the relative expression of endogenous tomato ACS1 and ACS6 genes was not down-regulated by the ectopic expression of VvACS1. These results imply that post-transcriptional or post-translational regulation of ACS may occur, resulting in lower ethylene production in the transgenic tomato plants. Moreover, expression of VvACS1 in tomato resulted in decreased auxin and increased zeatin contents in the lateral buds, as well as reduced or delayed formation of adventitious roots in lateral bud cuttings. RNA-Seq and qRT-PCR analyses of rooted lateral bud cuttings indicated that the relative expression levels of the genes for zeatin O-glucosyltransferase-like, auxin repressed/dormancy-associated protein, and ERF transcription factors were higher in transgenic tomatoes than in WT, suggesting that ethylene may regulate auxin transport and distribution in shoots and that adventitious root formation employs coordination between auxin and ethylene. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Rhabdovirus-like endogenous viral elements in the genome of Spodoptera frugiperda insect cells are actively transcribed: implications for adventitious virus detection

    PubMed Central

    Geisler, Christoph; Jarvis, Donald L.

    2016-01-01

    Spodoptera frugiperda (Sf) cell lines are used to produce several biologicals for human and veterinary use. Recently, it was discovered that all tested Sf cell lines are persistently infected with Sf-rhabdovirus, a novel rhabdovirus. As part of an effort to search for other adventitious viruses, we searched the Sf cell genome and transcriptome for sequences related to Sf-rhabdovirus. To our surprise, we found intact Sf-rhabdovirus N- and P-like ORFs, and partial Sf-rhabdovirus G- and L-like ORFs. The transcribed and genomic sequences matched, indicating the transcripts were derived from the genomic sequences. These appear to be endogenous viral elements (EVEs), which result from the integration of partial viral genetic material into the host cell genome. It is theoretically impossible for the Sf-rhabdovirus-like EVEs to produce infectious virus particles as 1) they are disseminated across 4 genomic loci, 2) the G and L ORFs are incomplete, and 3) the M ORF is missing. Our finding of transcribed virus-like sequences in Sf cells underscores that MPS-based searches for adventitious viruses in cell substrates used to manufacture biologics should take into account both genomic and transcribed sequences to facilitate the identification of transcribed EVE's, and to avoid false positive detection of replication-competent adventitious viruses. PMID:27236849

  8. Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens.

    PubMed

    Argus, R E; Colmer, T D; Grierson, P F

    2015-06-01

    We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water-limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches. © 2014 John Wiley & Sons Ltd.

  9. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  10. Through form to function: root hair development and nutrient uptake

    NASA Technical Reports Server (NTRS)

    Gilroy, S.; Jones, D. L.

    2000-01-01

    Root hairs project from the surface of the root to aid nutrient and water uptake and to anchor the plant in the soil. Their formation involves the precise control of cell fate and localized cell growth. We are now beginning to unravel the complexities of the molecular interactions that underlie this developmental regulation. In addition, after years of speculation, nutrient transport by root hairs has been demonstrated clearly at the physiological and molecular level, with evidence for root hairs being intense sites of H(+)-ATPase activity and involved in the uptake of Ca(2+), K(+), NH(4)(+), NO(3)(-), Mn(2+), Zn(2+), Cl(-) and H(2)PO(4)(-).

  11. Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development.

    PubMed

    Nan, Wenbin; Wang, Xiaomin; Yang, Lei; Hu, Yanfeng; Wei, Yuantao; Liang, Xiaolei; Mao, Lina; Bi, Yurong

    2014-04-01

    The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays an important role in plant development and responses to stress. Recent studies indicated that cGMP is a secondary signal generated in response to auxin stimulation. cGMP also mediates auxin-induced adventitious root formation in mung bean and gravitropic bending in soybean. Nonetheless, the mechanism of the participation of cGMP in auxin signalling to affect these growth and developmental processes is largely unknown. In this report we provide evidence that indole-3-acetic acid (IAA) induces cGMP accumulation in Arabidopsis roots through modulation of the guanylate cyclase activity. Application of 8-bromo-cGMP (a cell-permeable cGMP derivative) increases auxin-dependent lateral root formation, root hair development, primary root growth, and gene expression. In contrast, inhibitors of endogenous cGMP synthesis block these processes induced by auxin. Data also showed that 8-bromo-cGMP enhances auxin-induced degradation of Aux/IAA protein modulated by the SCF(TIR1) ubiquitin-proteasome pathway. Furthermore, it was found that 8-bromo-cGMP is unable to directly influence the auxin-dependent TIR1-Aux/IAA interaction as evidenced by pull-down and yeast two-hybrid assays. In addition, we provide evidence for cGMP-mediated modulation of auxin signalling through cGMP-dependent protein kinase (PKG). Our results suggest that cGMP acts as a mediator to participate in auxin signalling and may govern this process by PKG activity via its inïŹ‚uence on auxin-regulated gene expression and auxin/IAA degradation.

  12. Rhabdovirus-like endogenous viral elements in the genome of Spodoptera frugiperda insect cells are actively transcribed: Implications for adventitious virus detection.

    PubMed

    Geisler, Christoph; Jarvis, Donald L

    2016-07-01

    Spodoptera frugiperda (Sf) cell lines are used to produce several biologicals for human and veterinary use. Recently, it was discovered that all tested Sf cell lines are persistently infected with Sf-rhabdovirus, a novel rhabdovirus. As part of an effort to search for other adventitious viruses, we searched the Sf cell genome and transcriptome for sequences related to Sf-rhabdovirus. To our surprise, we found intact Sf-rhabdovirus N- and P-like ORFs, and partial Sf-rhabdovirus G- and L-like ORFs. The transcribed and genomic sequences matched, indicating the transcripts were derived from the genomic sequences. These appear to be endogenous viral elements (EVEs), which result from the integration of partial viral genetic material into the host cell genome. It is theoretically impossible for the Sf-rhabdovirus-like EVEs to produce infectious virus particles as 1) they are disseminated across 4 genomic loci, 2) the G and L ORFs are incomplete, and 3) the M ORF is missing. Our finding of transcribed virus-like sequences in Sf cells underscores that MPS-based searches for adventitious viruses in cell substrates used to manufacture biologics should take into account both genomic and transcribed sequences to facilitate the identification of transcribed EVE's, and to avoid false positive detection of replication-competent adventitious viruses. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  13. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-ÎČ and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediatedmore » Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: ‱ Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. ‱ PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. ‱ Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.« less

  14. Vegetative propagation of Cecropia obtusifolia (Cecropiaceae).

    PubMed

    LaPierre, L M

    2001-01-01

    Cecropia is a relatively well-known and well-studied genus in the Neotropics. Methods for the successful propagation of C. obtusifolia Bertoloni, 1840 from cuttings and air layering are described, and the results of an experiment to test the effect of two auxins, naphthalene acetic acid (NAA) and indole butyric acid (IBA), on adventitious root production in cuttings are presented. In general, C. obtusifolia cuttings respond well to adventitious root production (58.3% of cuttings survived to root), but air layering was the better method (93% of cuttings survived to root). The concentration of auxins used resulted in an overall significantly lower quality of roots produced compared with cuttings without auxin treatment. Future experiments using Cecropia could benefit from the use of isogenic plants produced by vegetative propagation.

  15. Role of housing modalities on management and surveillance strategies for adventitious agents of rodents.

    PubMed

    Shek, William R

    2008-01-01

    Specific pathogen-free (SPF) rodents for modern biomedical research need to be free of pathogens and other infectious agents that may not produce disease but nevertheless cause research interference. To meet this need, rodents have been rederived to eliminate adventitious agents and then housed in room- to cage-level barrier systems to exclude microbial contaminants. Because barriers can and do fail, routine health monitoring (HM) is necessary to verify the SPF status of colonies. Testing without strict adherence to biosecurity practices, however, can lead to the inadvertent transfer of unrecognized, inapparent agents among institutions and colonies. Microisolation caging systems have become popular for housing SPF rodents because they are versatile and provide a highly effective cage-level barrier to the entry and spread of adventitious agents. But when a microisolation-caged colony is contaminated, the cage-level barrier impedes the spread of infection and so the prevalence of infection is often low, which increases the chance of missing a contamination and complicates the corroboration of unexpected positive findings. The expanding production of genetically engineered mutant (GEM) rodent strains at research institutions, where biosecurity practices vary and the risk of microbial contamination can be high, underscores the importance of accurate HM results in mitigating the risk of the introduction and spread of microbial contaminants with the exchange of mutant rodent strains among investigators and institutions.

  16. Root decisions.

    PubMed

    Hodge, Angela

    2009-06-01

    Root systems have recognizable developmental plans when grown in solution or agar; however, these plans often must be modified to cope with the prevailing conditions in the soil environment such as the avoidance of obstacles and the exploitation of nutrient-rich patches or water zones. The modular structure of roots enables them to respond to their environment, and roots are very adaptive at modifying growth throughout the root system to concentrate their efforts in the areas that are the most profitable. Roots also form associations with microorganisms as a strategy to enhance resource capture. However, while the responses of roots in nutrient patches are well-recognized, overall 'rules of response' and variation in strategy among plant species that can be applied in a number of different environments are still lacking. Finally, there is increasing evidence that root-root interactions are much more sophisticated than previously thought, and the evidence for roots to identify self from non-self roots will be briefly discussed.

  17. Custom-made, root-analogue direct laser metal forming implant: a case report.

    PubMed

    Mangano, Francesco Guido; Cirotti, Bruno; Sammons, Rachel Lilian; Mangano, Carlo

    2012-11-01

    In the last few years, the application of digital technology in dentistry has become widespread with the introduction of cone beam computed tomography (CBCT) scan technology, and considerable progress has been made in the development of computer-aided design/ computer-aided manufacturing (CAD/CAM) techniques, including direct laser metal forming (DLMF). DLMF is a technology which allows solids with complex geometry to be produced by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model. For dental implants, the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer by layer, the desired object. At present, the combined use of CBCT 3D data and CAD/CAM technology makes it possible to manufacture custom-made, root-analogue implants (RAI) with sufficient precision. This report demonstrates the successful clinical use of a custom-made, root-analogue DLMF implant. CBCT images of a non-restorable right maxillary first premolar were acquired and transformed into a 3D model. From this model, a custom-made, root-analogue DLMF implant was fabricated. Immediately after tooth extraction, the RAI with a pre-operatively designed abutment was placed in the extraction socket and restored with a single crown. At the 1-year follow-up examination, the RAI showed a good functional and aesthetic integration. The introduction of DLMF technology signals the start of a new revolutionary era for implant dentistry as its immense potential for producing highly complex macro- and microstructures is receiving vast interest in different medical fields.

  18. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    PubMed

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  19. Adventitial adipogenic degeneration is an unidentified contributor to aortic wall weakening in the abdominal aortic aneurysm.

    PubMed

    Doderer, Stefan A; GĂ€bel, Gabor; Kokje, Vivianne B C; Northoff, Bernd H; Holdt, Lesca M; Hamming, Jaap F; Lindeman, Jan H N

    2018-06-01

    The processes driving human abdominal aortic aneurysm (AAA) progression are not fully understood. Although antiinflammatory and proteolytic strategies effectively quench aneurysm progression in preclinical models, so far all clinical interventions failed. These observations hint at an incomplete understanding of the processes involved in AAA progression and rupture. Interestingly, strong clinical and molecular associations exist between popliteal artery aneurysms (PAAs) and AAAs; however, PAAs have an extremely low propensity to rupture. We thus reasoned that differences between these aneurysms may provide clues toward (auxiliary) processes involved in AAA-related wall debilitation. A better understanding of the pathophysiologic processes driving AAA growth can contribute to pharmaceutical treatments in the future. Aneurysmal wall samples were collected during open elective and emergency repair. Control perirenal aorta was obtained during kidney transplantation, and reference popliteal tissue obtained from the anatomy department. This study incorporates various techniques including (immuno)histochemistry, Western Blot, quantitative polymerase chain reaction, microarray, and cell culture. Histologic evaluation of AAAs, PAAs, and control aorta shows extensive medial (PAA) and transmural fibrosis (AAA), and reveals abundant adventitial adipocytes aggregates as an exclusive phenomenon of AAAs (P < .001). Quantitative polymerase chain reaction, immunohistochemistry, Western blotting, and microarray analysis showed enrichment of adipogenic mediators (C/EBP family P = .027; KLF5 P < .000; and peroxisome proliferator activated receptor-γ, P = .032) in AAA tissue. In vitro differentiation tests indicated a sharply increased adipogenic potential of AAA adventitial mesenchymal cells (P < .0001). Observed enrichment of adipocyte-related genes and pathways in ruptured AAA (P < .0003) supports an association between the extent of fatty degeneration and rupture. This

  20. Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus.

    PubMed

    Busov, Victor; Meilan, Richard; Pearce, David W; Rood, Stewart B; Ma, Caiping; Tschaplinski, Timothy J; Strauss, Steven H

    2006-07-01

    In Arabidopsis and other plants, gibberellin (GA)-regulated responses are mediated by proteins including GAI, RGA and RGL1-3 that contain a functional DELLA domain. Through transgenic modification, we found that DELLA-less versions of GAI (gai) and RGL1 (rgl1) in a Populus tree have profound, dominant effects on phenotype, producing pleiotropic changes in morphology and metabolic profiles. Shoots were dwarfed, likely via constitutive repression of GA-induced elongation, whereas root growth was promoted two- to threefold in vitro. Applied GA(3 )inhibited adventitious root production in wild-type poplar, but gai/rgl1 poplars were unaffected by the inhibition. The concentrations of bioactive GA(1) and GA(4) in leaves of gai- and rgl1-expressing plants increased 12- to 64-fold, while the C(19) precursors of GA(1) (GA(53), GA(44) and GA(19)) decreased three- to ninefold, consistent with feedback regulation of GA 20-oxidase in the transgenic plants. The transgenic modifications elicited significant metabolic changes. In roots, metabolic profiling suggested increased respiration as a possible mechanism of the increased root growth. In leaves, we found metabolite changes suggesting reduced carbon flux through the lignin biosynthetic pathway and a shift towards allocation of secondary storage and defense metabolites, including various phenols, phenolic glucosides, and phenolic acid conjugates.

  1. Azacytidine and miR156 promote rooting in adult but not in juvenile Arabidopsis tissues.

    PubMed

    Massoumi, Mehdi; Krens, Frans A; Visser, Richard G F; De Klerk, Geert-Jan M

    2017-01-01

    Poor adventitious root (AR) formation is a major obstacle in micropropagation and conventional vegetative propagation of many crops. It is affected by many endogenous and exogenous factors. With respect to endogenous factors, the phase change from juvenile to adult has a major influence on AR formation and rooting is usually much reduced or even fully inhibited in adult tissues. It has been reported that the phase change is characterized by an increase in DNA-methylation and a decrease in the expression of microRNA156 (miR156). In this paper, we examined the effect of azacytidine (AzaC) and miR156 on AR formation in adult and juvenile Arabidopsis tissues. To identify the ontogenetic state researchers have used flowering or leaf morphology. We have used the rootability which allows - in contrast with both other characteristics- to examine the ontogenetic state at the cellular level. Overexpression of miR156 promoted only the rooting of adult tissues indicating that the phase change-associated loss in tissues' competence to develop ARs is also under the control of miR156. Azacytidine inhibits DNA methylation during DNA replication. Azacytidine treatment also promoted AR formation in nonjuvenile tissues but had no or little effect in juvenile tissues. Its addition during seedling growth (by which all tissues become hypomethylated) or during the rooting treatment (by which only those cells become hypomethylated that are generated after taking the explant) are both effective in the promotion of rooting. An AzaC treatment may be useful in tissue culture for crops that are recalcitrant to root. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions.

    PubMed

    Kato, Yoichiro; Okami, Midori

    2011-09-01

    Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Κ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Κ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Κ(leaf). Κ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Κ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.

  3. Comparative evaluation of rotary ProTaper, Profile, and conventional stepback technique on reduction in Enterococcus faecalis colony-forming units and vertical root fracture resistance of root canals.

    PubMed

    Singla, Mamta; Aggarwal, Vivek; Logani, Ajay; Shah, Naseem

    2010-03-01

    The purpose of this in vitro study was to evaluate the effect of various root canal instrumentation techniques with different instrument tapers on cleaning efficacy and resultant vertical root fracture (VRF) strength of the roots. Fifty human mandibular first premolar roots were enlarged to ISO size 20, inoculated with Enterococcus faecalis [ATCC2912] for 72 hours and divided into 5 groups: group I: prepared with .02 taper hand instruments ISO size 40; group II: Profile .04 taper size 40; group III: Profile .06 taper size 40; group IV: ProTaper size F4; and group V (control group) further divided into: Va: with bacterial inoculation and no mechanical instrumentation; and Group Vb: neither bacterial inoculation nor mechanical instrumentation. Cleaning efficacy was evaluated in terms of reduction of colony forming units (CFUs). The VRF strength was evaluated using D11 spreader as wedge in an Instron testing machine. Root canals instrumented with ProTaper and 6% Profile instruments showed maximum reduction in CFUs, with statistically insignificant difference between them. The VRF resistance decreased in all instrumented groups. The difference of VRF between 2% and 4% taper Profile groups was statistically insignificant (P = .195). One-way analysis of variance showed that canals instrumented with ProTaper F4 showed maximum reduction in VRF resistance compared with control uninstrumented group. Profile 6% taper instruments offer the advantage of maximum debridement without significant reduction in root fracture resistance. Copyright 2010 Mosby, Inc. All rights reserved.

  4. Shifts in symbiotic associations in plants capable of forming multiple root symbioses across a long-term soil chronosequence.

    PubMed

    Albornoz, Felipe E; Lambers, Hans; Turner, Benjamin L; Teste, François P; Laliberté, Etienne

    2016-04-01

    Changes in soil nutrient availability during long-term ecosystem development influence the relative abundances of plant species with different nutrient-acquisition strategies. These changes in strategies are observed at the community level, but whether they also occur within individual species remains unknown. Plant species forming multiple root symbioses with arbuscular mycorrhizal (AM) fungi, ectomycorrhizal (ECM) fungi, and nitrogen-(N) fixing microorganisms provide valuable model systems to examine edaphic controls on symbioses related to nutrient acquisition, while simultaneously controlling for plant host identity. We grew two co-occurring species, Acacia rostellifera (N2-fixing and dual AM and ECM symbioses) and Melaleuca systena (AM and ECM dual symbioses), in three soils of contrasting ages (c. 0.1, 1, and 120 ka) collected along a long-term dune chronosequence in southwestern Australia. The soils differ in the type and strength of nutrient limitation, with primary productivity being limited by N (0.1 ka), co-limited by N and phosphorus (P) (1 ka), and by P (120 ka). We hypothesized that (i) within-species root colonization shifts from AM to ECM with increasing soil age, and that (ii) nodulation declines with increasing soil age, reflecting the shift from N to P limitation along the chronosequence. In both species, we observed a shift from AM to ECM root colonization with increasing soil age. In addition, nodulation in A. rostellifera declined with increasing soil age, consistent with a shift from N to P limitation. Shifts from AM to ECM root colonization reflect strengthening P limitation and an increasing proportion of total soil P in organic forms in older soils. This might occur because ECM fungi can access organic P via extracellular phosphatases, while AM fungi do not use organic P. Our results show that plants can shift their resource allocation to different root symbionts depending on nutrient availability during ecosystem development.

  5. A comparative scanning electron microscopic investigation of the smear layer after the use of sodium hypochlorite gel and solution forms as root canal irrigants.

    PubMed

    Zand, Vahid; Lotfi, Mehrdad; Rahimi, Saeed; Mokhtari, Hadi; Kazemi, Ali; Sakhamanesh, Vahideh

    2010-07-01

    The effect of sodium hypochlorite (NaOCl) gel along with EDTA on the removal of the smear layer has not been studied; therefore, the aim of the present study was to compare the efficacy of gel and solution forms of NaOCl in removal of the smear layer from root canal walls. A total of 40 single-rooted teeth with minimum curvature (<5 degrees) were selected and divided into two experimental groups, each containing 15 teeth and one positive control group containing 10 teeth. The canals of all the teeth were prepared with rotary RaCe instruments up to #35. In the NaOCl solution group, the root canals were flushed with 2.5% NaOCl solution during instrumentation and in NaOCl gel group, the instruments were coated with gel form of NaOCl and used inside the root canals; then saline was used for root canal irrigation. Finally, 1 mL of 17% EDTA was used to rinse inside the root canals and remained in the root canals for 2 minutes in the both experimental groups; in the saline group, only saline was used for irrigation. The amount of the smear layer was quantified according to the Torabinejad method using a scanning electron microscope. Data were analyzed by the Kruskal-Wallis and Mann-Whitney tests. All the statistical analyses were set with a significance level of alpha = 0.05. There were no significant differences between NaOCl gel and solution forms in the coronal, middle, and apical thirds of root canals. There were significant differences between NaOCl solution and saline groups in the three parts of root canal walls and between NaOCl gel and saline in the coronal, middle, and apical thirds. The use of NaOCl gel can be as effective as NaOCl solution along with EDTA in smear layer removal in the three parts of root canal walls. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots.

    PubMed

    Cheniany, Monireh; Ganjeali, Ali

    2016-12-01

    Phenylalanine-ammonia-lyase and cinnamate-4-hydroxylase play important role in the phenylpropanoid pathway, which produces many biologically important secondary metabolites participating in normal plant development. Flavonol quercetin is the main representant of these compounds that has been identified in numerous Juglans spp. In this survey, the developmental expression patterns of PAL and C4H genes during in vitro rooting of two walnut cultivars 'Sunland' and 'Howard' was examined by RT-PCR. To understand the potential role in rooting, the changing pattern of endogenous content of quercetin was also analyzed by HPLC. The 'Sunland' with better capacity to root had more quercetin content during the "inductive phase" of rooting than 'Howard'. In each cultivar, the level of PAL transcripts showed the same behavior with the changing patterns of quercetin during root formation of microshoots. The positive correlation between the changes of quercetin and PAL-mRNA indicated that PAL gene may have an immediate effect on flavonoid pathway metabolites including quercetin. Although the behavioral change of C4H expression was similar in both cultivars during root formation (with significantly more level for 'Howard'), it was not coincide with the changes of quercerin concentrations. Our results showed that C4H function is important for the normal development, but its transcriptional regulation does not correlate with quercetin as an efficient phenolic compound for walnut rhizogenesis.

  7. Presence and Possible Mode of Action of a Proteinaceous Gonadotropin-like Growth Regulating Factor in Plant Systems 1

    PubMed Central

    Leshem, Y.; Avtalion, R. R.; Schwarz, M.; Kahana, S.

    1969-01-01

    Antiserum to human chorionic gonadotropin (HCG) caused marked inhibition of adventitious rooting of Begonia semperflorens and Chrysanthemum morifolium stem cuttings. Immuno-absorption of crude protein extract from chrysanthemum foliage through a column of polymerized and unsolubilized HCG antibodies resulted in a significant reduction in adventitious root promoting activity of the extract. These results are discussed in the light of a hypothesis that an endogenous protein growth regulating substance which immunologically resembles HCG exists in plant systems. Further experimentation with HCG suggests that its mode of action is possibly via the regulation of peroxidase enzymatic control of auxin levels. PMID:5775851

  8. An adventitious interaction of filamin A with RhoGDI2(Tyr153Glu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mia; He, Qianjing; Berk, Benjamin-Andreas

    2016-01-15

    Filamin A (FLNA) is an actin filament crosslinking protein with multiple intracellular binding partners. Mechanical force exposes cryptic FLNA binding sites for some of these ligands. To identify new force-dependent binding interactions, we used a fusion construct composed of two FLNA domains, one of which was previously identified as containing a force-dependent binding site as a bait in a yeast two-hybrid system and identified the Rho dissociation inhibitor 2 (RhoGDI2) as a potential interacting partner. A RhoGDI2 truncate with 81 N-terminal amino acid residues and a phosphomimetic mutant, RhoGDI(Tyr153Glu) interacted with the FLNA construct. However, neither wild-type or full-length RhoGDI2 phosphorylatedmore » at Y153 interacted with FLNA. Our interpretation of these contradictions is that truncation and/or mutation of RhoGDI2 perturbs its conformation to expose a site that adventitiously binds FLNA and is not a bona–fide interaction. Therefore, previous studies reporting that a RhoGDI(Y153E) mutant suppresses the metastasis of human bladder cancer cells must be reinvestigated in light of artificial interaction of this point mutant with FLNA. - Highlights: ‱ RhoGDI2 is identified as a potential filamin A (FLNA)-binding partner. ‱ Phosphomimetic mutant, RhoGDI2(Tyr153Glu) interacts with FLNA. ‱ RhoGDI2 phosphorylated (Tyr153) by src kinase does not interact with FLNA. ‱ Mutation of Tyr-153 to Glu of RhoGDI2 does not mimic phosphorylation. ‱ RhoGDI2(Tyr153Glu) provokes an adventitious interaction with FLNA.« less

  9. How rice roots form their surrounding: Distinctive sub-zones of oxides, silicates and organic matter

    NASA Astrophysics Data System (ADS)

    Koelbl, Angelika; Mueller, Carsten; Hoeschen, Carmen; Lugmeier, Johann; Said-Pullicino, Daniel; Romani, Marco; Koegel-Knabner, Ingrid

    2016-04-01

    Most of the rice (Oryza sativa) worldwide is grown under flooded conditions in bunded fields (paddies). Inundation during long periods of the year leads to anoxic conditions in the soil. The rice plant is well adapted to these conditions by being able to transport oxygen via aerenchyma from the atmosphere to the roots. This plant mediated O2 transport also influences the adjacent soil. Driven by the O2 leakage into the rhizosphere, reddish ferric oxides and ferric hydroxides precipitate along the root channels. Thus, radial gradients of ferric Fe and with it co-precipitated organic substances form. Detailed investigations of element gradients on a submicron scale within the oxide coatings are still missing. Nano-scale secondary ion mass spectrometry (NanoSIMS) analyses can help to visualize and study the interplay of the various soil components at a submicron scale like, e.g., the attachment of organic material to minerals or the architecture of microstructures. The aim of the present study was to evaluate the composition and size of oxide coatings around rice roots concerning the distribution of organic matter and its spatial relation to oxides and silicates. Samples were taken from the plough pan of a paddy field close to the National Rice Research Centre, Castello d'Agogna (Pavia, Italy). Intact soil aggregates were air-dried, embedded in epoxy resin and then cut and polished in order to obtain a surface with low topography. Reflected-light microscopy was used (mm to ÎŒm scale) to visualize the aggregate architecture and to identify root channels in the embedded aggregate. In the next step, scanning electron microscopy (SEM) was applied to obtain images of high resolution and to define distinctive spots for subsequent NanoSIMS analyses. Using the Cameca NanoSIMS 50L at TU MĂŒnchen, we simultaneously detected 12C-, 12C14N-, 28Si-, 32S-, 27Al16O- and 56Fe16O- at several areas around root channels in order to distinguish between organic material and different

  10. Modeling gene flow distribution within conventional fields and development of a simplified sampling method to quantify adventitious GM contents in maize

    PubMed Central

    Melé, Enric; Nadal, Anna; Messeguer, Joaquima; Melé-Messeguer, Marina; Palaudelmàs, Montserrat; Peñas, Gisela; Piferrer, Xavier; Capellades, Gemma; Serra, Joan; Pla, Maria

    2015-01-01

    Genetically modified (GM) crops have been commercially grown for two decades. GM maize is one of 3 species with the highest acreage and specific events. Many countries established a mandatory labeling of products containing GM material, with thresholds for adventitious presence, to support consumers’ freedom of choice. In consequence, coexistence systems need to be introduced to facilitate commercial culture of GM and non-GM crops in the same agricultural area. On modeling adventitious GM cross-pollination distribution within maize fields, we deduced a simple equation to estimate overall GM contents (%GM) of conventional fields, irrespective of its shape and size, and with no previous information on possible GM pollen donor fields. A sampling strategy was designed and experimentally validated in 19 agricultural fields. With 9 samples, %GM quantification requires just one analytical GM determination while identification of the pollen source needs 9 additional analyses. A decision support tool is provided. PMID:26596213

  11. Sublethal concentrations of salicylic acid decrease the formation of reactive oxygen species but maintain an increased nitric oxide production in the root apex of the ethylene-insensitive Never ripe tomato mutants

    PubMed Central

    PoĂłr, PĂ©ter; GĂ©mes, Katalin

    2011-01-01

    The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive Never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv Ailsa Craig). ROS were upregulated, while NO remained at the control level in apical root tissues of wildtype plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of ROS and a higher NO content in the apical root cells. In wild-type plants NO production seems to be ROS(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant ROS accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10−3 M SA. This suggests that a functional ethylene signaling pathway is necessary for the control of ROS and NO production induced by SA. PMID:21847015

  12. Histological characterization of Passiflora pohlii Mast. root tips cryopreserved using the V-Cryo-plate technique.

    PubMed

    SimĂŁo, Mariela J; Collin, Myriam; Garcia, Renata O; Mansur, Elisabeth; Pacheco, Georgia; Engelmann, Florent

    2018-05-01

    Cryopreservation stands out as the main strategy to ensure safe and cost efficient long-term conservation of plant germplasm, especially for biotechnological materials. However, the injuries associated with the procedure may result in structural damage and low recovery rates after cooling. Histological analysis provides useful information on the effects of osmotic dehydration, LN exposure, and recovery conditions on cellular integrity and tissue organization, allowing the determination of the critical steps of the cryopreservation protocol and, thus, the use of optimized treatments. Passiflora pohlii Mast. (Passifloraceae) is a native species from Brazil with potential agronomic interest. Recent studies showed the presence of saponins in its roots, which presented antioxidant activity. The goal of this work was to develop a cryopreservation technique for root tips of in vitro-derived plants of P. pohlii using the V-Cryo-plate technique and to characterize the anatomical alterations that occurred during the successive steps of the protocol. Root tips were excised from in vitro plants and precultured before adhesion to cryo-plates and then treated for different periods with the plant vitrification solutions PVS2 or PVS3. Treatment with PVS2 for 45 min resulted in higher recovery (79%) when compared with PVS3 (43%). The greatest number of adventitious roots per cryopreserved explant was also observed after a 45-min exposure to PVS2. Plasmolysis levels were higher in cortical cells of cryopreserved explants treated with PVS2, while pericycle and central cylinder cells were not damaged after this treatment. Thirty days after rewarming, no plasmolysis could be detected, regardless of the experimental conditions.

  13. Functional traits and root morphology of alpine plants

    PubMed Central

    Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian

    2011-01-01

    Background and Aims Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. Methods In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Key Results Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. Conclusions The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level. PMID:21795278

  14. Risk Mitigation in Preventing Adventitious Agent Contamination of Mammalian Cell Cultures.

    PubMed

    Shiratori, Masaru; Kiss, Robert

    2017-11-14

    Industrial-scale mammalian cell culture processes have been contaminated by viruses during the culturing phase. Although the historical frequency of such events has been quite low, the impact of contamination can be significant for the manufacturing company and for the supply of the product to patients. This chapter discusses sources of adventitious agent contamination risk in a cell culture process, provides a semiquantitative assessment of such risks, and describes potential process barriers that can be used to reduce contamination risk. High-temperature, short-time (HTST) heat treatment is recommended as the process barrier of choice, when compatible with the process. A case study assessing the compatibility of HTST heat treatment with a cell culture medium is presented, and lessons learned are shared from our experiences over many years of developing and implementing virus barriers in mammalian cell culture processes. Graphical Abstract.

  15. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  16. Vegetative regeneration

    Treesearch

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  17. Autotransplantation of third molars with completely formed roots into surgically created sockets and fresh extraction sockets: a 10-year comparative study.

    PubMed

    Yu, H J; Jia, P; Lv, Z; Qiu, L X

    2017-04-01

    The aim of this study was to analyze and compare the long-term clinical outcomes of mature third molar autotransplantation in surgically created sockets and fresh extraction sockets with regard to survival and functional success rates. A total of 65 third molars with completely formed roots were autotransplanted in 60 patients (average age 33.1 years). Thirty-six of the teeth were autotransplanted into surgically created sockets with or without guided bone regeneration (GBR; delayed autotransplantation), while 29 were autotransplanted into fresh extraction sockets (immediate autotransplantation; control group). All patients underwent annual clinical and radiographic examinations (average follow-up 9.9 years, range 7-13 years). The survival rates for the control, GBR, and no GBR groups were 93.1%, 95.2%, and 80.0%, respectively, with no significant differences among the groups. There were no statistically significant differences among the groups with regard to the frequency of inflammatory root resorption or root ankylosis. Age did not influence the clinical outcomes. These results suggest that the autotransplantation of third molars with completely formed roots is effective in both surgically created and fresh extraction sockets and provides a high long-term success rate if cases are selected and treated appropriately. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Pectate hydrolases of parsley (Petroselinum crispum) roots.

    PubMed

    FlodrovĂĄ, Dana; DzĂșrovĂ€, MĂĄria; LiskovĂĄ, Desana; Mohand, Fairouz Ait; MislovicovĂĄ, Danica; MalovĂ­covĂĄ, Anna; Voburka, Zdenek; OmelkovĂĄ, Jirina; StratilovĂĄ, Eva

    2007-01-01

    The presence of various enzyme forms with terminal action pattern on pectate was evaluated in a protein mixture obtained from parsley roots. Enzymes found in the soluble fraction of roots (juice) were purified to homogeneity according to SDS-PAGE, partially separated by preparative isoelectric focusing and characterized. Three forms with pH optima 3.6, 4.2 and 4.6 clearly preferred substrates with a lower degree of polymerization (oligogalacturonates) while the form with pH optimum 5.2 was a typical exopolygalacturonase [EC 3. 2.1.67] with relatively fast cleavage of polymeric substrate. The forms with pH optima 3.6, 4.2 and 5.2 were released from the pulp, too. The form from the pulp with pH optimum 4.6 preferred higher oligogalacturonates and was not described in plants previously. The production of individual forms in roots was compared with that produced by root cells cultivated on solid medium and in liquid one.

  19. nip, a Symbiotic Medicago truncatula Mutant That Forms Root Nodules with Aberrant Infection Threads and Plant Defense-Like Response1

    PubMed Central

    Veereshlingam, Harita; Haynes, Janine G.; Penmetsa, R. Varma; Cook, Douglas R.; Sherrier, D. Janine; Dickstein, Rebecca

    2004-01-01

    To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses

  20. Rhizobial infection in Adesmia bicolor (Fabaceae) roots.

    PubMed

    Bianco, Luciana

    2014-09-01

    The native legume Adesmia bicolor shows nitrogen fixation efficiency via symbiosis with soil rhizobia. The infection mechanism by means of which rhizobia infect their roots has not been fully elucidated to date. Therefore, the purpose of the present study was to identify the infection mechanism in Adesmia bicolor roots. To this end, inoculated roots were processed following conventional methods as part of our root anatomy study, and the shape and distribution of root nodules were analyzed as well. Neither root hairs nor infection threads were observed in the root system, whereas infection sites-later forming nodules-were observed in the longitudinal sections. Nodules were found to form between the main root and the lateral roots. It can be concluded that in Adesmia bicolor, a bacterial crack entry infection mechanism prevails and that such mechanism could be an adaptive strategy of this species which is typical of arid environments.

  1. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    USGS Publications Warehouse

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  2. Evolution and genetics of root hair stripes in the root epidermis.

    PubMed

    Dolan, L; Costa, S

    2001-03-01

    Root hair pattern develops in a number of different ways in angiosperm. Cells in the epidermis of some species undergo asymmetric cell divisions to form a smaller daughter cell from which a hair grows, and a larger cell that forms a non-hair epidermal cell. In other species any cell in the epidermis can form a root hair. Hair cells are arranged in files along the Arabidopsis root, located in the gaps between underlying cortical cell files. Epidermal cells overlying a single cortical cell file develop as non-hair epidermal cells. Genetic analysis has identified a transcription factor cascade required for the formation of this pattern. WEREWOLF (WER) and GLABRA2 (GL2) are required for the formation of non-hair epidermal cells while CAPRICE (CPC) is required for hair cell development. Recent analyses of the pattern of epidermal cells among the angiosperms indicate that this striped pattern of cell organization evolved from non-striped ancestors independently in a number of diverse evolutionary lineages. The genetic basis for the evolution of epidermal pattern in angiosperms may now be examined.

  3. Parallel evolution of storage roots in morning glories (Convolvulaceae).

    PubMed

    Eserman, Lauren A; Jarret, Robert L; Leebens-Mack, James H

    2018-05-29

    Storage roots are an ecologically and agriculturally important plant trait that have evolved numerous times in angiosperms. Storage roots primarily function to store carbohydrates underground as reserves for perennial species. In morning glories, storage roots are well characterized in the crop species sweetpotato, where starch accumulates in storage roots. This starch-storage tissue proliferates, and roots thicken to accommodate the additional tissue. In morning glories, storage roots have evolved numerous times. The primary goal of this study is to understand whether this was through parallel evolution, where species use a common genetic mechanism to achieve storage root formation, or through convergent evolution, where storage roots in distantly related species are formed using a different set of genes. Pairs of species where one forms storage roots and the other does not were sampled from two tribes in the morning glory family, the Ipomoeeae and Merremieae. Root anatomy in storage roots and fine roots was examined. Furthermore, we sequenced total mRNA from storage roots and fine roots in these species and analyzed differential gene expression. Anatomical results reveal that storage roots of species in the Ipomoeeae tribe, such as sweetpotato, accumulate starch similar to species in the Merremieae tribe but differ in vascular tissue organization. In both storage root forming species, more genes were found to be upregulated in storage roots compared to fine roots. Further, we find that fifty-seven orthologous genes were differentially expressed between storage roots and fine roots in both storage root forming species. These genes are primarily involved in starch biosynthesis, regulation of starch biosynthesis, and transcription factor activity. Taken together, these results demonstrate that storage roots of species from both morning glory tribes are anatomically different but utilize a common core set of genes in storage root formation. This is consistent with a

  4. Demonstrations at School Level of the Effects of IAA

    ERIC Educational Resources Information Center

    Falk, Peter

    1973-01-01

    Describes demonstrations suitable for secondary school biology classes relating to the effects of the hormone IAA on plant growth. Demonstrations illustrate how hormone treatments affect stem elongation, callus formation, inhibition of axillary buds, stimulation of secondary growth and initiation of adventitious root development, root elongation,


  5. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    PubMed Central

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, MikaĂ«l; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, MarĂšme N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; GuĂ©don, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  6. Inhibition of fucosylation of cell wall components by 2-fluoro 2-deoxy-L-fucose induces defects in root cell elongation.

    PubMed

    Dumont, Marie; Lehner, Arnaud; Bardor, Muriel; Burel, Carole; Vauzeilles, Boris; Lerouxel, Olivier; Anderson, Charles T; Mollet, Jean-Claude; Lerouge, Patrice

    2015-12-01

    Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 Όm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. Root cause analysis of oxide scale forming and shedding in high temperature reheater of a 200MW super high pressure boiler

    NASA Astrophysics Data System (ADS)

    Bo, Jiang; Hao, Weidong; Hu, Zhihong; Liu, Fuguo

    2015-12-01

    In order to solve the problem of over temperature tube-burst caused by oxide scale shedding and blocking tubes of high temperature reheater of a 200MW super high pressure power plant boiler, this paper expounds the mechanism of scale forming and shedding, and analyzes the probable causes of the tube-burst failure. The results show that the root cause of scale forming is that greater steam extraction flow after reforming of the second extraction leads to less steam flow into reheater, which causes over temperature to some of the heated tubes; and the root cause of scale shedding is that long term operation in AGC-R mode brings about great fluctuations of unit load, steam temperature and pressure, accelerating scale shedding. In conclusion, preventive measures are drawn up considering the operation mode of the unit.

  8. Assessment of Root Resorption and Root Shape by Periapical and Panoramic Radiographs: A Comparative Study.

    PubMed

    Ahuja, Puneeta D; Mhaske, Sheetal P; Mishra, Gaurav; Bhardwaj, Atul; Dwivedi, Ruby; Mangalekar, Sachin B

    2017-06-01

    One of the common findings encountered by the clinician at the end of orthodontic treatment is the apical root resorption. Root resorption occurs to various degrees. A severe form of root resorption is characterized by shortening of root for more than 4 mm or more than one-third of the total tooth length. A low incidence rate of resorption is observed based on radiographic findings for the diagnosis of root resorption, panoramic radiography, and periapical radiography. Hence, we evaluated the accuracy of panoramic radiographic films for assessing the root resorption in comparison with the periapical films. This study included the assessment of all the cases in which pre- and post-treatment radiographs were available for analysis of the assessment of the amount of root resorption. Complete records of 80 patients were analyzed. Examination of a total of 900 teeth was done. Mean age of the patients in this study was 21 years ranging from 11 to 38 years. The majority of the patients in the present study were females. All the treatments were carried out by registered experienced orthodontists having minimum experience of more than 10 years. All the cases were divided into two study groups. Group I comprised panoramic radiographic findings, while group II consisted of periapical radiographic findings. For the measurement of crown portion, root portion, and the complete root length, magnification loops of over 100 powers with parallax correction with inbuilt grids were used. Assessment of the tooth length and the crown length was done by the same observers. All the results were analyzed by Statistical Package for the Social Sciences software version 6.0. Maximum amount of root resorption was observed in case of maxillary central incisors and canines among group I and II cases respectively. However, nonsignificant difference was obtained while comparing the mean root resorption in relation to maxillary incisors and canines among the two study groups. While comparing the

  9. In vitro antifungal activity of extracts obtained from Hypericum perforatum adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of Malassezia furfur.

    PubMed

    Simonetti, Giovanna; Tocci, Noemi; Valletta, Alessio; Brasili, Elisa; D'Auria, Felicia Diodata; Idoux, Alicia; Pasqua, Gabriella

    2016-01-01

    Xanthone-rich extracts from Hypericum perforatum root cultures grown in a Mist Bioreactor as antifungal agents against Malassezia furfur. Extracts of Hypericum perforatum roots grown in a bioreactor showed activity against planktonic cells and biofilm of Malassezia furfur. Dried biomass, obtained from roots grown under controlled conditions in a ROOTec mist bioreactor, has been extracted with solvents of increasing polarity (i.e. chloroform, ethyl acetate and methanol). The methanolic fraction was the richest in xanthones (2.86 ± 0.43 mg g(-1) DW) as revealed by HPLC. The minimal inhibitory concentration of the methanol extract against M. furfur planktonic cells was 16 Όg mL(-1). The inhibition percentage of biofilm formation, at a concentration of 16 Όg mL(-1), ranged from 14% to 39%. The results show that H. perforatum root extracts could be used as new antifungal agents in the treatment of Malassezia infections.

  10. High Spatial Resolution MRI of Cystic Adventitial Disease of the Iliofemoral Vein Communicating with the Hip Joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaelides, Michael, E-mail: mihalismihailidis@gmail.com; Papas, Stylianos, E-mail: vascular@drpapas.com; Pantziara, Maria, E-mail: mgpantziara@gmail.com

    2013-05-14

    Venous cystic adventitial disease (CAD) is an extremely rare entity, and so far less than 20 cases have been described in the literature. Herein, we describe the imaging findings of CAD of iliofemoral vein in a 51-year-old woman who presented with leg swelling with special emphasis on high spatial resolution MRI, which demonstrated communication of the cyst with the hip joint. To our knowledge, this is the first description of high spatial resolution MRI findings in venous CAD supporting a new theory about the pathogenesis of venous CAD.

  11. Rooting stem cuttings of northern red oak (Quercus rubra L.) utilizing hedged stump sprouts formed on recently felled trees

    Treesearch

    Matthew H. Gocke; Daniel J. Robinson

    2010-01-01

    The ability to root stem cuttings collected from hedged stump sprouts formed on recently felled trees was evaluated for 26 codominant northern red oak (Quercus rubra L.) trees growing in Durham County, NC. Sprouting occurred, the same year as felling, on 23 of the 26 tree stumps and sprout number was significantly and positively correlated with stump diameter. The...

  12. Root form and canal morphology of maxillary first premolars of a Yemeni population.

    PubMed

    Senan, Elham M; Alhadainy, Hatem A; Genaid, Thuraia M; Madfa, Ahmed A

    2018-05-31

    The purpose of this study was to investigate variations in the root canal systems of permanent maxillary first premolars in a Yemeni population using a clearing technique. Two hundred fifty permanent maxillary first premolar teeth extracted from Yemeni individuals were collected. A small hole in the center of the occlusal surface of each tooth was prepared and pulp tissue was removed by immersion in 5.25% sodium hypochlorite. Teeth were stored in 5-10% nitric acid solution for 5-6 days. Next, teeth were rinsed, dried, and dehydrated using ascending concentrations of ethanol (70, 95, and 100%) successively for 12 h each. Waterproof black ink was injected into the dried dehydrated teeth. Stained teeth were then rendered clear by immersion in methyl salicylate solution (98%) until evaluation. Root canal morphology of each tooth was then examined. 54.8% of teeth were single-rooted, while 44.4% were double-rooted and only 0.8% had three separated roots. The most common canal system configuration was Vertucci type IV (55.6%). Eight specimens of the single-rooted premolars (3.2%) had new canal configurations that have not been recognized in previous published studies. Accessory canals and inter-canal communications were detected in a total of 52.8 and 34.4% of the specimens, respectively. The apical foramen was located centrally to the apex in 84.9% and apical deltas were found in 13.2% of the studied sample. Yemeni permanent maxillary first premolars are mainly single-rooted and predominantly present Vertucci type IV canal morphology. The finding of additional canal configurations in this study is low but should be kept in mind when performing endodontic therapy for these teeth.

  13. Heuristic aspect of the lateral root initiation index: A case study of the role of nitric oxide in root branching.

    PubMed

    Lira-Ruan, VerĂłnica; Mendivil, Selene Napsucialy; Dubrovsky, Joseph G

    2013-10-01

    Lateral root (LR) initiation (LRI) is a central process in root branching. Based on LR and/or LR primordium densities, it has been shown that nitric oxide (NO) promotes LRI. However, because NO inhibits primary root growth, we hypothesized that NO may have an opposite effect if the analysis is performed on a cellular basis. Using a previously proposed parameter, the LRI index (which measures how many LRI events take place along a root portion equivalent to the length of a single file of 100 cortical cells of average length), we addressed this hypothesis and illustrate here that the LRI index provides a researcher with a tool to uncover hidden but important information about root initiation. ‱ Arabidopsis thaliana roots were treated with an NO donor (sodium nitroprusside [SNP]) and/or an NO scavenger (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide [cPTIO]). LRI was analyzed separately in the root portions formed before and during the treatment. In the latter, SNP caused root growth inhibition and an increase in the LR density accompanied by a decrease in LRI index, indicating overall inhibitory outcome of the NO donor on branching. The inhibitory effect of SNP was reversed by cPTIO, showing the NO-specific action of SNP on LRI. ‱ Analysis of the LRI index permits the discovery of otherwise unknown modes of action of a substance on the root system formation. NO has a dual action on root branching, slightly promoting it in the root portion formed before the treatment and strongly inhibiting it in the root portion formed during the treatment.

  14. The Potential of Dark Septate Endophytes to Form Root Symbioses with Ectomycorrhizal and Ericoid Mycorrhizal Middle European Forest Plants

    PubMed Central

    LukeĆĄovĂĄ, Tereza; Kohout, Petr; VětrovskĂœ, TomĂĄĆĄ; VohnĂ­k, Martin

    2015-01-01

    The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.—Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without

  15. Induction of bulb organogenesis in in vitro cultures of tarda tulip (Tulipa tarda Stapf.) from seed-derived explants.

    PubMed

    Maƛlanka, MaƂgorzata; Bach, Anna

    2014-01-01

    A protocol for obtaining bulbs via in vitro organogenesis was developed for tarda tulip ( Tulipa tarda Stapf). Scale explants were obtained from bulbs formed at the base of seedlings or from adventitious bulbs that developed from callus tissue forming on stolons or on germinating seeds. Some explants were subjected to chilling at 5°C for 12 wk. The culture media contained 3 or 6% sucrose and was supplemented with either no growth regulators, either 0.5 ΌM 6-benzyl-aminopurine (BAP) or 18.9 or 94.6 ΌM abscisic acid (ABA). Cultures were maintained in the dark at 20°C. Callus tissue developed mainly on media without growth regulators or with BAP. Callus was formed from up to 96% of explants derived from non-chilled adventitious bulbs that were treated with 3% sucrose and 0.5 ΌM BAP. Less callus was formed from chilled explants compared with non-chilled explants. Newly formed adventitious bulbs appeared on the explants via direct and indirect organogenesis. The media with BAP promoted the formation of adventitious bulbs at a rate of 56-92% from non-chilled explants, whereas a maximum rate of 36% was observed from chilled explants. ABA inhibited the induction of adventitious bulbs and callus. The adventitious bulbs obtained in these experiments contained a meristem, which was evidence that they had developed properly.

  16. cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation1[OPEN

    PubMed Central

    Steenackers, Ward; Corneillie, Sander; AraĂșjo, Pedro; Viaene, Tom; Nowack, Moritz K.; Blakeslee, Joshua J.; NovĂĄk, Ondƙej; ZaĆŸĂ­malovĂĄ, Eva

    2017-01-01

    Auxin steers numerous physiological processes in plants, making the tight control of its endogenous levels and spatiotemporal distribution a necessity. This regulation is achieved by different mechanisms, including auxin biosynthesis, metabolic conversions, degradation, and transport. Here, we introduce cis-cinnamic acid (c-CA) as a novel and unique addition to a small group of endogenous molecules affecting in planta auxin concentrations. c-CA is the photo-isomerization product of the phenylpropanoid pathway intermediate trans-CA (t-CA). When grown on c-CA-containing medium, an evolutionary diverse set of plant species were shown to exhibit phenotypes characteristic for high auxin levels, including inhibition of primary root growth, induction of root hairs, and promotion of adventitious and lateral rooting. By molecular docking and receptor binding assays, we showed that c-CA itself is neither an auxin nor an anti-auxin, and auxin profiling data revealed that c-CA does not significantly interfere with auxin biosynthesis. Single cell-based auxin accumulation assays showed that c-CA, and not t-CA, is a potent inhibitor of auxin efflux. Auxin signaling reporters detected changes in spatiotemporal distribution of the auxin response along the root of c-CA-treated plants, and long-distance auxin transport assays showed no inhibition of rootward auxin transport. Overall, these results suggest that the phenotypes of c-CA-treated plants are the consequence of a local change in auxin accumulation, induced by the inhibition of auxin efflux. This work reveals a novel mechanism how plants may regulate auxin levels and adds a novel, naturally occurring molecule to the chemical toolbox for the studies of auxin homeostasis. PMID:27837086

  17. Long-term control of root growth

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin.

  18. Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells

    NASA Technical Reports Server (NTRS)

    Zheng, H. Q.; Staehelin, L. A.

    2001-01-01

    The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.

  19. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    PubMed Central

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  20. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply.

    PubMed

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C; Yang, Ru-Ping; Siddique, Kadambot H M; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [ Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg -1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  1. 7 CFR 201.56-9 - Mallow family, Malvaceae.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reserve: Cotyledons, which are convoluted in the seed; they expand and become thin, leaf-like, and... with weak secondary or adventitious roots. (5) Seedling: (i) One or more essential structures impaired...

  2. 7 CFR 201.56-9 - Mallow family, Malvaceae.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reserve: Cotyledons, which are convoluted in the seed; they expand and become thin, leaf-like, and... with weak secondary or adventitious roots. (5) Seedling: (i) One or more essential structures impaired...

  3. 7 CFR 201.56-9 - Mallow family, Malvaceae.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reserve: Cotyledons, which are convoluted in the seed; they expand and become thin, leaf-like, and... with weak secondary or adventitious roots. (5) Seedling: (i) One or more essential structures impaired...

  4. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes.

    PubMed

    Tuberosa, Roberto; Sanguineti, Maria Corinna; Landi, Pierangelo; Giuliani, Marcella Michela; Salvi, Silvio; Conti, Sergio

    2002-01-01

    We investigated the overlap among quantitative trait loci (QTLs) in maize for seminal root traits measured in hydroponics with QTLs for grain yield under well-watered (GY-WW) and water-stressed (GY-WS) field conditions as well as for a drought tolerance index (DTI) computed as GY-WS/GY-WW. In hydroponics, 11, 7, 9, and 10 QTLs were identified for primary root length (R1L), primary root diameter (R1D), primary root weight (R1W), and for the weight of the adventitious seminal roots (R2W), respectively. In the field, 7, 8, and 9 QTLs were identified for GY-WW, GY-WS, and DTI, respectively. Despite the weak correlation of root traits in hydroponics with GY-WW, GY-WS, and DTI, a noticeable overlap between the corresponding QTLs was observed. QTLs for R2W most frequently and consistently overlapped with QTLs for GY-WW, GY-WS, and/or DTI. At four QTL regions, an increase in R2W was positively associated with GY-WW, GY-WS, and/or DTI. A 10 cM interval on chromosome 1 between PGAMCTA205 and php20644 showed the strongest effect on R1L, R1D, R2W, GY-WW, GY-WS, and DTI. These results indicate the feasibility of using hydroponics in maize to identify QTL regions controlling root traits at an early growth stage and also influencing GY in the field. A comparative analysis of the QTL regions herein identified with those described in previous studies investigating root traits in different maize populations revealed a number of QTLs in common.

  5. Influence of Laser Activated Irrigation with two Erbium Lasers on Bond Strength of Inidividually Formed Fiber Reinforced Composite Posts to Root Canal Dentin.

    PubMed

    Parčina, Ivana; AmiĆŸić; Miletić, Ivana; Ionescu, Andrei C; Brambilla, Eugenio; Gabrić, Dragana; Baraba, Anja

    2016-12-01

    The aim of this in vitro study was to investigate the effect of laser activated irrigation (LAI) using two erbium lasers on bond strength of individually formed fiber-reinforced composite (FRC) posts to root canal dentin. Twenty-seven single-rooted human teeth were endodontically treated and after post space preparation divided into three groups (n=9 per group), according to the pre-treatment of post space preparation: 1) Conventional syringe irrigation (CSI) and saline; 2) Er.YAG photon-induced photoacoustic streaming (PIPS) technique and saline; 3) Er,Cr:YSGG activated irrigation with RFT2 tip. Two specimens from each group were used for SEM analysis. The remaining specimens (n=7 per group) received individually formed FRC post, everStick POST, luted with self-adhesive cement, G-CEM LinkAce. After cementation, the roots were perpendicularly sectioned into 1 mm thin sections and a push-out test was carried out (0.5 mm/min). The data were calculated as megapascals and were log transformed and statistically analysed using one-way ANOVA at the level of significance set at 5%. In the control group, the smear layer was still present. In the Er:YAG group, the smear layer was removed. In the Er,Cr:YSGG group, the smear layer was partially removed. The Er,Cr:YSGG group achieved the highest bond strength values, followed by the control group and then the Er:YAG group, but no statistically significant difference was found in bond strength values in the tested group of post space pretreatment (p=0.564). LAI using two erbium lasers, with PIPS or RFT2 tip, did not affect the bond strength of individually formed FRC posts to root canal dentin.

  6. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice.

    PubMed

    Lo, Shuen-Fang; Yang, Show-Ya; Chen, Ku-Ting; Hsing, Yue-Ie; Zeevaart, Jan A D; Chen, Liang-Jwu; Yu, Su-May

    2008-10-01

    Gibberellin 2-oxidases (GA2oxs) regulate plant growth by inactivating endogenous bioactive gibberellins (GAs). Two classes of GA2oxs inactivate GAs through 2beta-hydroxylation: a larger class of C(19) GA2oxs and a smaller class of C(20) GA2oxs. In this study, we show that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination. Using mutant and transgenic analysis, C(20) GA2oxs were shown to play pleiotropic roles regulating rice growth and architecture. In particular, rice overexpressing these GA2oxs exhibited early and increased tillering and adventitious root growth. GA negatively regulated expression of two transcription factors, O. sativa homeobox 1 and TEOSINTE BRANCHED1, which control meristem initiation and axillary bud outgrowth, respectively, and that in turn inhibited tillering. One of three conserved motifs unique to the C(20) GA2oxs (motif III) was found to be important for activity of these GA2oxs. Moreover, C(20) GA2oxs were found to cause less severe GA-defective phenotypes than C(19) GA2oxs. Our studies demonstrate that improvements in plant architecture, such as semidwarfism, increased root systems and higher tiller numbers, could be induced by overexpression of wild-type or modified C(20) GA2oxs.

  7. Aspen Root Sucker Formation and Apical Dominance

    Treesearch

    Robert E. Farmer

    1962-01-01

    Root suckering is the primary mode of regeneration in the aspens, Populus tremuloides Michx. and P. grandidentata Michx. When stems of these species are cut, numerous suckers originating in the root pericycle are formed on their extensive lateral root systems. During their first season of growth, suckers ordinarily reach a height...

  8. Analysis of the dental morphology of Plio-Pleistocene hominids. IV. Mandibular postcanine root morphology.

    PubMed Central

    Wood, B A; Abbott, S A; Uytterschaut, H

    1988-01-01

    The subocclusal morphology of 168 permanent mandibular premolars (N = 77) and molars (N = 91) of Plio-Pleistocene hominids has been investigated. The taxonomic allocation of the teeth, which represent at least 46 individuals, was based on nondental evidence. Specimens were allocated to one of two major taxonomic categories, (EAFROB or EAFHOM), East African Homo erectus (EAFHER), or their taxonomic affinity was regarded as 'unknown' (N = 17). Information about the root system was derived from radiography and direct observation. Morphometric data were in the form of nine linear and two angular measurements based on eighteen reference points. Root form was also assessed using a scheme which recognised four classes of root morphology. Data were compared using both univariate and multivariate techniques, including Principal Component and Canonical Variate analysis. Posterior probabilities derived from the latter were used (in a two-taxon design model) to assess the affinities of the 'unknown' specimens. The variation in hominid mandibular premolar root form was interpreted as two morphoclines, based on the presumed primitive condition of the P3 (with mesiobuccal and distal roots, 2R: MB and D) and P4 (with mesial and distal root, 2R: M and D) root systems. One trend apparently leads towards root reduction (i.e. P3 = 1 R; P4 = 1 R), and the other to root elaboration (i.e. P3 and P4 = 2R: M and D). The extreme form of the latter is the 'molarisation' of the premolar roots seen in EAFROB. Despite major differences in root form there was relatively little taxonomic variation in root metrics, except for a more robust distal root system in EAFROB. Molar root form showed little interspecific variation except for M2 in which the roots in EAFROB were larger and more robust, with differences in root height being greater for the distal than for the mesial roots. Root form and metrics enable four of the 'unknown' specimens (KMN-ER 819, 1482, 1483 and 1801) to be tentatively

  9. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  10. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    PubMed

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  11. Adventitious shoot regeneration and rooting of Fraxinus americana

    Treesearch

    Kaitlin J. Palla; Paula M. Pijut

    2010-01-01

    White ash (Fraxinus americana) trees provide both ecological and economic benefits. Loss of this North American endemic would disturb the environment. The urban ash tree industry in the United States would also suffer, as would manufacturers of baseball bats, furniture, and cabinets.

  12. Are root letters compulsory for lexical access in Semitic languages? The case of masked form-priming in Arabic.

    PubMed

    Perea, Manuel; Mallouh, Reem Abu; Carreiras, Manuel

    2014-09-01

    Do Semitic and Indo-European languages differ at a qualitative level? Recently, it has been claimed that lexical space in Semitic languages (e.g., Hebrew, Arabic) is mainly determined by morphological constraints, while lexical space in Indo-European languages is mainly determined by orthographic constraints (Frost, Kugler, Deutsch, & Forster, 2005). One of the key findings supporting the qualitative difference between Semitic and Indo-European languages is the absence of masked form priming in Hebrew/Arabic with productive words. Here we examined whether masked form priming occurs in Arabic words when one of the letters from the productive root is replaced in the prime stimulus by another letter. Results showed a significant masked form priming effect with the lexical decision task in three experiments (including yes/no, go/no-go, and sandwich priming), to a similar degree to that reported in previous research with Indo-European languages. These data support the view that the processing of word forms in Semitic vs. Indo-European languages differs more at a quantitative than at a qualitative level. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Tree-root control of shallow landslides

    NASA Astrophysics Data System (ADS)

    Cohen, Denis; Schwarz, Massimiliano

    2017-08-01

    in tension can prevent failure by reducing soil compressive forces downslope. When root reinforcement is limited, a crack parallel to the slope forms near the top of the hillslope. Simulations with roots that fail across this crack always resulted in a landslide. Slopes that did not form a crack could either fail or remain stable, depending on root reinforcement. Tree spacing is important for the location of weak zones but tree location on the slope (with respect to where a crack opens) is as important. Finally, for the specific cases tested here, intermediate-sized roots (5 to 20 mm in diameter) appear to contribute most to root reinforcement. Our results show more complex behaviors than can be obtained with the traditional slope-uniform, apparent-cohesion approach. A full understanding of the mechanisms of shallow landslide triggering requires a complete re-evaluation of this traditional approach that cannot predict where and how forces are mobilized and distributed in roots and soils, and how these control shallow landslides shape, size, location, and timing.

  14. Immediate Implant Placement of a Single Central Incisor Using a CAD/CAM Crown-Root Form Technique: Provisional to Final Restoration.

    PubMed

    Vafiadis, Dean; Goldstein, Gary; Garber, David; Lambrakos, Anthony; Kowalski, Bj

    2017-02-01

    Preserving soft and hard tissues after extraction and implant placement is crucial for anterior esthetics. This technique will show how the information gathered from a cone-beam computed tomography (CBCT) scan of the maxillary left central incisor and an intra-oral digital impression can be merged to fabricate a CAD/CAM crown-root matrix to be used as an immediate provisional restoration that mimics the natural anatomy. Due to trauma, a left central incisor appeared to be fractured and was scheduled for extraction and implant placement. The crown-root configuration captured by the CBCT scan was merged with the digital files from an intra-oral digital impression. A CAD/CAM crown-root matrix was fabricated. Because the matrix shell was fabricated with the exact anatomy of the natural tooth, it replicated the position and three dimensional anatomy of the soft and hard tissue. It was connected to the implant with a customized provisional abutment. A digital impression of a coded healing abutment was made to fabricate the final implant abutment and final restoration. Throughout the treatment time and 36 months after completion, the thickness of tissue, emergence profile, and adjacent papilla was analyzed by clinical evaluation and photography and seemed to be maintained. The use of a pre-operative intra-oral digital scan of the clinical crown-root architecture and the CBCT scan of the bone/root anatomy, can be used together to fabricate a CAD/CAM crown-root form provisional matrix. This digital design helps in the preservation of the 3D tissue topography, as well as the final restoration. The preservation of soft and hard tissue after extraction and implant placement has always been paramount for ideal anterior implant esthetics. Using the information from digital files from CBCT scans and intra-oral scans may help the clinician identify critical anatomical features that can be replicated in the provisional and final CAD/CAM restoration. (J Esthet Restor Dent 29

  15. Role of Root Hairs and Lateral Roots in Silicon Uptake by Rice

    PubMed Central

    Ma, Jian Feng; Goto, Shoko; Tamai, Kazunori; Ichii, Masahiko

    2001-01-01

    The rice plant (Oryza sativa L. cv Oochikara) is known to be a Si accumulator, but the mechanism responsible for the high uptake of Si by the roots is not well understood. We investigated the role of root hairs and lateral roots in the Si uptake using two mutants of rice, one defective in the formation of root hairs (RH2) and another in that of lateral roots (RM109). Uptake experiments with nutrient solution during both a short term (up to 12 h) and relatively long term (26 d) showed that there was no significant difference in Si uptake between RH2 and the wild type (WT), whereas the Si uptake of RM109 was much less than that of WT. The number of silica bodies formed on the third leaf in RH2 was similar to that in WT, but the number of silica bodies in RM109 was only 40% of that in WT, when grown in soil amended with Si under flooded conditions. There was also no difference in the shoot Si concentration between WT and RH2 when grown in soil under upland conditions. Using a multi-compartment transport box, the Si uptake at the root tip (0–1 cm, without lateral roots and root hairs) was found to be similar in WT, RH2, and RM109. However, the Si uptake in the mature zone (1–4 cm from root tip) was significantly lower in RM109 than in WT, whereas no difference was found in Si uptake between WT and RH2. All these results clearly indicate that lateral roots contribute to the Si uptake in rice plant, whereas root hairs do not. Analysis of F2 populations between RM109 and WT showed that Si uptake was correlated with the presence of lateral roots and that the gene controlling formation of lateral roots and Si uptake is a dominant gene. PMID:11743120

  16. Promotion of adventitious root formation of difficult-to-root hardwood tree species

    Treesearch

    Paula M. Pijut; Keith E. Woeste; Charles H. Michler

    2011-01-01

    North American hardwood tree species, such as alder (Alnus spp.), ash (Fraxinus spp.), basswood (Tilia spp.), beech (Fagus spp.), birch (Betula spp.), black cherry (Prunus seratina), black walnut (Juglans nigra), black willow (...

  17. Matching roots to their environment

    PubMed Central

    White, Philip J.; George, Timothy S.; Gregory, Peter J.; Bengough, A. Glyn; Hallett, Paul D.; McKenzie, Blair M.

    2013-01-01

    Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers. Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future. PMID:23821619

  18. Underground tuning: quantitative regulation of root growth.

    PubMed

    Satbhai, Santosh B; Ristova, Daniela; Busch, Wolfgang

    2015-02-01

    Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. A journey from basic stem cell discovery to clinical application: the case of adventitial progenitor cells.

    PubMed

    Spencer, Helen L; Slater, Sadie C; Rowlinson, Jonathan; Morgan, Tom; Culliford, Lucy A; Guttridge, Martin; Emanueli, Costanza; Angelini, Gianni; Madeddu, Paolo

    2015-01-01

    Ischemia is a leading cause of death in the western world. Regenerative medicine aims to improve healing of ischemic injury by complementing pharmacologic/interventional treatments. Navigating regenerative therapies from 'bench-to-bedside' is a multistep time-consuming process, balancing cell expansion, purity, safety and efficacy while complying with regulatory guidelines. Studies started in academic laboratories unused to long-term planning often fail because of poor strategy design, lack of contingency plans or funding. We provide a strategic insight into our translation of saphenous vein-derived adventitial progenitor cells into a clinical grade product to treat angina. We discuss discovery phases, introduction of standard operating procedures and upgrade to clinical standards. We also examine contractual aspects of transferring to GMP-accredited facilities for clinical production and unexpected hurdles.

  20. Clonal propagation of Stevia rebaudiana Bertoni by stem-tip culture.

    PubMed

    Tamura, Y; Nakamura, S; Fukui, H; Tabata, M

    1984-10-01

    Clonal propagation of Stevia rebaudiana has been established by culturing stem-tips with a few leaf primordia on an agar medium supplemented with a high concentration (10 mg/l) of kinetin. Anatomical examination has suggested that these multiple shoots originate from a number of adventitious buds formed on the margin of the leaf. Innumerable shoots can be obtained by repeating the cycle of multiple-shoot formation from a single stem-tip of Stevia. These shoots produce roots when transferred to a medium containing NAA (0.1 mg/l) without kinetin. The regenerated plantlets can be transplanted to soil.

  1. Naturally developed seedling roots of five western conifers.

    Treesearch

    William I. Stein

    1978-01-01

    Two-year-old seedlings grown from seed outdoors in three southwestern Oregon soils were excavated to determine their root development. Roots of Douglas-fir, ponderosa pine, sugar pine, grand fir, and incense-cedar seedlings differed substantially in total extent, form, and balance in relation to tops. Information on the natural development of roots provides a benchmark...

  2. Rooting depths of plants relative to biological and environmental factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxx, T S; Tierney, G D; Williams, J M

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance.

  3. Adventitial Drug Delivery of Dexamethasone to Improve Primary Patency in the Treatment of Superficial Femoral and Popliteal Artery Disease: 12-Month Results From the DANCE Clinical Trial.

    PubMed

    Razavi, Mahmood K; Donohoe, Dennis; D'Agostino, Ralph B; Jaff, Michael R; Adams, George

    2018-05-28

    This study was designed to evaluate outcomes of adventitial dexamethasone delivery adjunctive to standard endovascular revascularization in femoropopliteal peripheral artery disease. Drug-coated balloons and drug-eluting stents improve patency of endovascular interventions with passive diffusion of antiproliferative drugs. Adventitial dexamethasone delivery targets the initial triggers of the inflammatory reaction to injury, thus potentially providing a potent antirestenotic strategy. The single-arm DANCE (Dexamethasone to the Adventitia to Enhance Clinical Efficacy After Femoropopliteal Revascularization) trial enrolled 262 subjects (283 limbs) with symptomatic peripheral artery disease (Rutherford category 2 to 4) receiving percutaneous transluminal angioplasty (PTA) (n = 124) or atherectomy (ATX) (n = 159) in femoropopliteal lesions ≀15 cm in length. A mixture of dexamethasone/contrast medium (80%/20%) was delivered to the adventitia and perivascular tissues surrounding target lesions in all subjects. Thirty-day assessments included major adverse limb events (MALE) and post-operative death. Twelve-month assessments included primary patency, freedom from clinically driven target lesion revascularization (CD-TLR), Rutherford scoring, and walking impairment questionnaire. At 12 months, primary patency rates in DANCE-ATX and -PTA per-protocol populations were 78.4% (74.8% intent-to-treat [ITT]) and 75.5% (74.3% ITT), respectively. Rates of CD-TLR in DANCE-ATX and -PTA subjects were 10.0% (13.1% ITT) and 11.0% (13.7% ITT), respectively. There were no 30-day MALE + post-operative death events nor 12-month device- or drug-related deaths or MALE. Direct adventitial delivery of dexamethasone appears to be an effective and safe therapy to prevent restenosis. Randomized studies are needed to further test this possibility. (Dexamethasone to the Adventitia to Enhance Clinical Efficacy After Femoropopliteal Revascularization [DANCE]; NCT01983449). Copyright © 2018

  4. An efficient in vitro regeneration protocol for a natural dye yielding plant, Strobilanthes flaccidifolious Nees., from nodal explants.

    PubMed

    Deb, Chitta Ranjan; Arenmongla, T

    2012-11-01

    Adventitious shoot buds formation from axillary buds of nodal segments of S. flaccidifolious was achieved on MS medium containing sucrose (3%, w/v), and a-naphthalene acetic acid (NAA; 3 microM) and benzyl adenine (3 microM) in combination. The nodal segments were primed on 'Growtak Sieve' for 48 h on MS medium containing sucrose (2%), polyvinyl pyrollidone (200 mgL(-1)) as antioxidant. About 80% of primed nodal segments responded positively and formed approximately 12 adventitious shoot buds per explants from explants collected during October-November months of every year. The shoot buds converted into plantlets on MS medium containing sucrose (3%) and kinetin (3 microM) where approximately 7 micro shoots developed per subculture after 8 weeks of culture. The regenerated micro shoots induced average 14 roots/plant on medium containing NAA (3 microM). The regenerates were hardened for 6-7 weeks on medium with 1/2MS salt solution and sucrose (2%) under normal laboratory condition before transferring to potting mix. About 70% transplants survived after two months of transfer.

  5. New phytotoxic diterpenoids from Vellozia gigantea (Velloziaceae), an endemic neotropical plant living in the endangered Brazilian biome Rupestrian grasslands

    USDA-ARS?s Scientific Manuscript database

    Vellozia gigantea is a rare, ancient and endemic neotropical plant present in the Brazilian Rupestrian grasslands. The dichloromethane extract of V. gigantea adventitious roots was phytotoxic against Lactuca sativa, Agrostis stolonifera and Lemna paucicostata, and showed larvicidal activity against ...

  6. Agrobacterium rhizogenes - based transformation of soybean roots to form composite plants

    USDA-ARS?s Scientific Manuscript database

    Composite plants are a powerful tool to rapidly analyze the effects of gene overexpression, gene silencing, and examine test promoter expression in transgenic roots. No sterile tissue culture is needed. This avoids loss of valuable material due to contamination of sterile cultures. This method uses ...

  7. Enhancing Students' Understanding of Square Roots

    ERIC Educational Resources Information Center

    Wiesman, Jeff L.

    2015-01-01

    Students enrolled in a middle school prealgebra or algebra course often struggle to conceptualize and understand the meaning of radical notation when it is introduced. For example, although it is important for students to approximate the decimal value of a number such as [square root of] 30 and estimate the value of a square root in the form of


  8. Modeling the Kinetics of Root Gravireaction

    NASA Astrophysics Data System (ADS)

    Kondrachuk, Alexander V.; Starkov, Vyacheslav N.

    2011-02-01

    The known "sun-flower equation" (SFE), which was originally proposed to model root circumnutating, was used to describe the simplest tip root graviresponse. Two forms of the SFE (integro-differential and differential-delayed) were solved, analyzed and compared with each other. The numerical solutions of these equations were found to be matching with arbitrary accuracy. The analysis of the solutions focused on time-lag effects on the kinetics of tip root bending. The results of the modeling are in good correlation with an experiment at the initial stages of root tips graviresponse. Further development of the model calls for its systematic comparison with some specially designed experiments, which would include measuring the kinetics of root tip bending before gravistimulation over the period of time longer than the time lag.

  9. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 ÎŒm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  10. A Novel Class of Gibberellin 2-Oxidases Control Semidwarfism, Tillering, and Root Development in Rice[W

    PubMed Central

    Lo, Shuen-Fang; Yang, Show-Ya; Chen, Ku-Ting; Hsing, Yue-Ie; Zeevaart, Jan A.D.; Chen, Liang-Jwu; Yu, Su-May

    2008-01-01

    Gibberellin 2-oxidases (GA2oxs) regulate plant growth by inactivating endogenous bioactive gibberellins (GAs). Two classes of GA2oxs inactivate GAs through 2ÎČ-hydroxylation: a larger class of C19 GA2oxs and a smaller class of C20 GA2oxs. In this study, we show that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination. Using mutant and transgenic analysis, C20 GA2oxs were shown to play pleiotropic roles regulating rice growth and architecture. In particular, rice overexpressing these GA2oxs exhibited early and increased tillering and adventitious root growth. GA negatively regulated expression of two transcription factors, O. sativa homeobox 1 and TEOSINTE BRANCHED1, which control meristem initiation and axillary bud outgrowth, respectively, and that in turn inhibited tillering. One of three conserved motifs unique to the C20 GA2oxs (motif III) was found to be important for activity of these GA2oxs. Moreover, C20 GA2oxs were found to cause less severe GA-defective phenotypes than C19 GA2oxs. Our studies demonstrate that improvements in plant architecture, such as semidwarfism, increased root systems and higher tiller numbers, could be induced by overexpression of wild-type or modified C20 GA2oxs. PMID:18952778

  11. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize

    PubMed Central

    Wu, Qian; PagĂšs, LoĂŻc; Wu, Jie

    2016-01-01

    Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field. Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars. Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals. Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models. PMID:26744490

  12. Differential effects of fine root morphology on water dynamics in the root-soil interface

    NASA Astrophysics Data System (ADS)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  13. Quantitative determination of secoiridoid and gamma-pyrone compounds in Gentiana lutea cultured in vitro.

    PubMed

    Menković, N; Savikin-Fodulović, K; Momcilović, I; Grubisić, D

    2000-02-01

    The production of secondary metabolites was studied in shoots, roots, and hairy roots of Gentiana lutea obtained in vitro. In shoots, both secoiridoid and gamma-pyrone compounds were detected in amounts similar to those found in aerial parts of plants collected from nature. The most abundant secoiridoid was gentiopicrin while mangiferin was the main compound among the gamma-pyrones. The adventitious roots obtained in vitro showed a poor biosynthetic capacity. Upon infection with Agrobacterium rhizogenes, nine hairy root clones were established which differed in the amount of secondary metabolites.

  14. Epidermal Cell Death in Rice Is Regulated by Ethylene, Gibberellin, and Abscisic Acid

    PubMed Central

    Steffens, Bianka; Sauter, Margret

    2005-01-01

    Programmed cell death (PCD) of epidermal cells that cover adventitious root primordia in deepwater rice (Oryza sativa) is induced by submergence. Early suicide of epidermal cells may prevent injury to the growing root that emerges under flooding conditions. Induction of PCD is dependent on ethylene signaling and is further promoted by gibberellin (GA). Ethylene and GA act in a synergistic manner, indicating converging signaling pathways. Treatment of plants with GA alone did not promote PCD. Treatment with the GA biosynthesis inhibitor paclobutrazol resulted in increased PCD in response to ethylene and GA presumably due to an increased sensitivity of epidermal cells to GA. Abscisic acid (ABA) was shown to efficiently delay ethylene-induced as well as GA-promoted cell death. The results point to ethylene signaling as a target of ABA inhibition of PCD. Accumulation of ethylene and GA and a decreased ABA level in the rice internode thus favor induction of epidermal cell death and ensure that PCD is initiated as an early response that precedes adventitious root growth. PMID:16169967

  15. Striated fibers in trichomonads: costa proteins represent a new class of proteins forming striated roots.

    PubMed

    Viscogliosi, E; Brugerolle, G

    1994-01-01

    The production of monoclonal antibodies and the use of biochemical techniques revealed that B-type costa proteins in trichomonads are composed of several major polypeptides with molecular weight detected between 100 and 135 kDa similar to those found in the A-type costae. Although differences were observed between the two types in their fine structure, we tested whether proteins composing the two costa types belong to the same protein family. A polyclonal antibody produced against the 118 kDa costa protein of Trichomonas vaginalis also recognized a 118 kDa costa protein in all other trichomonad genera studied so far whether they have A- or B-type costae. Moreover biochemical characteristics of costa proteins indicated that these proteins might represent a novel class of striated root-forming proteins in addition to centrin, giardin, and assemblin.

  16. Light requirement for shoot regeneration in horseradish hairy roots.

    PubMed

    Saitou, T; Kamada, H; Harada, H

    1992-08-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions.

  17. Root Doctors as Providers of Primary Care

    PubMed Central

    Stitt, Van J.

    1983-01-01

    Physicians in primary care recognize that as many as 65 percent of the patients seen in their offices are there for psychological reasons. In any southern town with a moderate population of blacks, there are at least two “root doctors.” These root doctors have mastered the power of autosuggestion and are treating these patients with various forms of medication and psychological counseling. This paper updates the practicing physician on root doctors who practice primary care. PMID:6887277

  18. Molar crown and root size relationship in anthropoid primates.

    PubMed

    Kupczik, Kornelius; Olejniczak, Anthony J; Skinner, Matthew M; Hublin, Jean-Jacques

    2009-01-01

    Mandibular corpus form is thought to reflect masticatory function and the size of the dentition, but there is no universal association between crown dimensions and corpus size across anthropoids. Previous research was based on the assumption that crown size is an appropriate proxy for overall tooth size, but this hypothesis remains largely untested. This study assesses the relationship between the volume and surface area of molar crowns and roots by examining two main hypotheses: (1) crown size correlates significantly with root size, and (2) the proportion of root-to-crown surface area is related to dietary proclivity. Permanent M2s (n=58) representing 19 anthropoid species were CT scanned and the volume and surface area of the crown and root were measured. Interspecific correlation and regression analyses reveal significant isometric relationships between crown and root volume and a positive allometric relationship between root and crown surface area (i.e. as crown surface area increases, root surface area becomes disproportionately greater). Intraspecifically, crown and root surface area correlate significantly in some species where such analyses were possible. In general, hard object feeders exhibit relatively larger root surface area per unit crown surface area compared to soft and tough object feeders. The results also show that despite differences in food specialization closely related species have similar root-to-crown surface area proportions, thus indicating a strong phylogenetic influence. Since it is possible that, at least in some species, crown and root size vary independently, future studies should elucidate the relationship between tooth root size and mandible form. Copyright (c) 2009 S. Karger AG, Basel.

  19. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica.

    PubMed

    Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan

    2013-06-01

    Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the

  20. The interaction of transient receptor potential melastatin 7 with macrophages promotes vascular adventitial remodeling in transverse aortic constriction rats.

    PubMed

    Li, Yan; Jiang, Hui; Ruan, Chengchao; Zhong, Jiuchang; Gao, Pingjin; Zhu, Dingliang; Niu, Wenquan; Guo, Shujie

    2014-01-01

    Transient receptor potential melastatin 7 (TRPM7), a novel channel kinase, has been recently identified in the vasculature. However, its regulation and function in vascular diseases remain poorly understood. To address this lack of knowledge, we sought to examine whether TRPM7 can mediate the vascular remodeling process induced by pressure overload in the right common carotid artery proximal to the band (RCCA-B) in male Sprague-Dawley rats with transverse aortic constriction (TAC). The contribution of TRPM7 to amplified vascular remodeling after TAC was tested using morphometric and western blot analyses. Pressure overload-induced vascular wall thickening, especially in the adventitia, was readily detected in RCCA-B. The TRPM7 level was increased with a simultaneous accumulation of macrophages in the adventitia of RCCA-B, whereas the anti-inflammatory molecule annexin-1, a TRPM7 downstream target, was decreased. After the addition of the TRPM7 inhibitor 2-aminoethoxydiphenyl borate (2-APB), significant reductions in macrophage accumulation as well as the expression of monocyte chemotactic protein-1, SM-22-α and collagen I were observed, whereas annexin-1 was rescued. Finally, in cultured vascular adventitial fibroblasts treated with macrophage-conditioned medium, there were marked increases in the expression of TRPM7 and SM-22-α with a concurrent reduction in annexin-1 expression; these effects were largely prevented by treatment with 2-APB and specific anti-TRPM7 small interfering RNA. Our findings provide the first demonstration of the potential regulatory roles of TRPM7 in the vascular inflammation, pressure overload-mediated vascular adventitial collagen accumulation and cell phenotypic transformation in TAC rats. The targeting of TRPM7 has potential therapeutic importance for vascular diseases.

  1. [Analysis of different forms Linderae Radix based on HPLC and NIRS fingerprints].

    PubMed

    Du, Wei-Feng; Yue, Xian-Ke; Wu, Yao; Ge, Wei-Hong; Lu, Tu-Lin; Wang, Zhi-Min

    2016-10-01

    Three different forms of Linderae Radix were evaluated by HPLC combined with NIRS fingerprint. The Linderae Radix was divided into three forms, including spindle root, straight root and old root. The HPLC fingerprints were developed, and then cluster analysis was performed using the SPSS software. The near-infrared spectra of Linderae Radix was collected, and then established the discriminant analysis model. The similarity values of the spindle root and straight root all were above 0.990, while the similarity value of the old root was less than 0.850. Two forms of Linderae Radix were obviously divided into three parts by the NIRS model and Cluster analysis. The results of HPLC and FT-NIR analysis showed the quality of Linderae Radix old root was different from the spindle root and straight root. The combined use of the two methods could identify different forms of Linderae Radix quickly and accurately. Copyright© by the Chinese Pharmaceutical Association.

  2. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  3. Rhizophores in Rhizophora mangle L: an alternative interpretation of so-called ''aerial roots''.

    PubMed

    Menezes, Nanuza L de

    2006-06-01

    Rhizophora mangle L., one of the most common mangrove species, has an aerial structure system that gives it stability in permanently swampy soils. In fact, these structures, known as "aerial roots" or "stilt roots", have proven to be peculiar branches with positive geotropism, which form a large number of roots when in contact with swampy soils. These organs have a sympodial branching system, wide pith, slightly thickened cortex, collateral vascular bundles, polyarch stele and endarch protoxylem, as in the stem, and a periderm produced by a phellogen at the apex similar to a root cap. They also have the same type of trichosclereid that occurs in the stem, with negative geotropism, unlike true Rhizophora roots, which do not form trichosclereids at all. On the other hand, these branches do not form leaves and in this respect they are similar to roots. These peculiar branches are rhizophores or special root-bearing branches, analogous to those found in Lepidodendrales and other Carboniferous tree ferns that grew in swampy soils.

  4. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon

    PubMed Central

    Kim, Chul Min

    2016-01-01

    Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms—monocots and eudicots—despite the dramatically different patterns of root hair cell development. PMID:27494519

  5. Feasibility for Application of Soil Bioengineering Techniques to Natural Wastewater Treatment Systems

    DTIC Science & Technology

    1992-12-01

    surface erosion control technique, providing shallow soil protection against the impact of heavy rains and running water. As adventitious rooting... soil protection against the impact of heavy rains and running water (Schiechtl, 1980). Figure 13 shows a typical brushmattress used as streambank

  6. Revisiting the iron pools in cucumber roots: identification and localization.

    PubMed

    KovĂĄcs, Krisztina; PechouĆĄek, Jiƙí; Machala, Libor; Zboƙil, Radek; KlencsĂĄr, ZoltĂĄn; Solti, ÁdĂĄm; TĂłth, Brigitta; MĂŒller, Brigitta; Pham, Hong Diep; KristĂłf, ZoltĂĄn; Fodor, Ferenc

    2016-07-01

    Fe deficiency responses in Strategy I causes a shift from the formation of partially removable hydrous ferric oxide on the root surface to the accumulation of Fe-citrate in the xylem. Iron may accumulate in various chemical forms during its uptake and assimilation in roots. The permanent and transient Fe microenvironments formed during these processes in cucumber which takes up Fe in a reduction based process (Strategy I) have been investigated. The identification of Fe microenvironments was carried out with (57)Fe Mössbauer spectroscopy and immunoblotting, whereas reductive washing and high-resolution microscopy was applied for the localization. In plants supplied with (57)Fe(III)-citrate, a transient presence of Fe-carboxylates in removable forms and the accumulation of partly removable, amorphous hydrous ferric oxide/hydroxyde have been identified in the apoplast and on the root surface, respectively. The latter may at least partly be the consequence of bacterial activity at the root surface. Ferritin accumulation did not occur at optimal Fe supply. Under Fe deficiency, highly soluble ferrous hexaaqua complex is transiently formed along with the accumulation of Fe-carboxylates, likely Fe-citrate. As (57)Fe-citrate is non-removable from the root samples of Fe deficient plants, the major site of accumulation is suggested to be the root xylem. Reductive washing results in another ferrous microenvironment remaining in the root apoplast, the Fe(II)-bipyridyl complex, which accounts for ~30 % of the total Fe content of the root samples treated for 10 min and rinsed with CaSO4 solution. When (57)Fe(III)-EDTA or (57)Fe(III)-EDDHA was applied as Fe-source higher soluble ferrous Fe accumulation was accompanied by a lower total Fe content, confirming that chelates are more efficient in maintaining soluble Fe in the medium while less stable natural complexes as Fe-citrate may perform better in Fe accumulation.

  7. Need for new technologies for detection of adventitious agents in vaccines and other biological products.

    PubMed

    Mallet, Laurent; Gisonni-Lex, Lucy

    2014-01-01

    From an industrial perspective, the conventional in vitro and in vivo assays used for detection of viral contaminants have shown their limitations, as illustrated by the unfortunate detection of porcine circovirus contamination in a licensed rotavirus vaccine. This contamination event illustrates the gaps within the existing adventitious agent strategy and the potential use of new broader molecular detection methods. This paper serves to summarize current testing approaches and challenges, along with opportunities for the use of these new technologies. Testing of biological products is required to ensure the safety of patients. Recently, a licensed vaccine was found to be contaminated with a virus. This contamination did not cause a safety concern to the patients; however, it highlights the need for using new testing methods to control our biological products. This paper introduces the benefits of these new tests and outlines the challenges with the current tests. © PDA, Inc. 2014.

  8. Response to lead pollution: mycorrhizal Pinus sylvestris forms the biomineral pyromorphite in roots and needles.

    PubMed

    Bizo, Maria L; Nietzsche, Sandor; Mansfeld, Ulrich; Langenhorst, Falko; Majzlan, Juraj; Göttlicher, Jörg; Ozunu, Alexandru; Formann, Steffi; Krause, Katrin; Kothe, Erika

    2017-06-01

    The development of mycorrhized pine seedlings grown in the presence of lead was assessed in order to investigate how higher plants can tolerate lead pollution in the environment. Examination with scanning electron microscopy (SEM) revealed that Pb uptake was prominent in the roots, while a smaller amount was found in pine needles, which requires symplastic uptake and root-to-shoot transfer. Lead was concentrated in nanocrystalline aggregates attached to the cell wall and, according to elemental microanalyses, is associated with phosphorus and chlorine. The identification of the nanocrystalline phase in roots and needles was performed by transmission electron microscopy (TEM) and synchrotron X-ray micro-diffraction (Ό-XRD), revealing the presence of pyromorphite, Pb 5 [PO 4 ] 3 (Cl, OH), in both roots and needles. The extracellular embedding of pyromorphite within plant cell walls, featuring an indented appearance of the cell wall due to a callus-like outcrop of minerals, suggests a biogenic origin. This biomineralization is interpreted as a defense mechanism of the plant against lead pollution.

  9. Cell wall properties play an important role in the emergence of lateral root primordia from the parent root.

    PubMed

    Roycewicz, Peter S; Malamy, Jocelyn E

    2014-05-01

    Plants adapt to their unique soil environments by altering the number and placement of lateral roots post-embryonic. Mutants were identified in Arabidopsis thaliana that exhibit increased lateral root formation. Eight mutants were characterized in detail and were found to have increased lateral root formation due to at least three distinct mechanisms. The causal mutation in one of these mutants was found in the XEG113 gene, recently shown to be involved in plant cell wall biosynthesis. Lateral root primordia initiation is unaltered in this mutant. In contrast, synchronization of lateral root initiation demonstrated that mutation of XEG113 increases the rate at which lateral root primordia develop and emerge to form lateral roots. The effect of the XEG113 mutation was specific to the root system and had no apparent effect on shoot growth. Screening of 17 additional cell wall mutants, altering a myriad of cell wall components, revealed that many (but not all) types of cell wall defects promote lateral root formation. These results suggest that proper cell wall biosynthesis is necessary to constrain lateral root primordia emergence. While previous reports have shown that lateral root emergence is accompanied by active remodelling of cell walls overlying the primordia, this study is the first to demonstrate that alteration of the cell wall is sufficient to promote lateral root formation. Therefore, inherent cell wall properties may play a previously unappreciated role in regulation of root system architecture.

  10. Hydrologic regulation of plant rooting depth

    PubMed Central

    Miguez-Macho, Gonzalo; JobbĂĄgy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-01-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∌1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant–water feedback pathway that may be critical to understanding plant-mediated global change. PMID:28923923

  11. Hydrologic regulation of plant rooting depth.

    PubMed

    Fan, Ying; Miguez-Macho, Gonzalo; JobbĂĄgy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos

    2017-10-03

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∌1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  12. Hydrologic regulation of plant rooting depth

    NASA Astrophysics Data System (ADS)

    Fan, Ying; Miguez-Macho, Gonzalo; JobbĂĄgy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-10-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  13. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer.

    PubMed

    Khorolragchaa, Altanzul; Kim, Yu-Jin; Rahimi, Shadi; Sukweenadhi, Johan; Jang, Moon-Gi; Yang, Deok-Chun

    2014-02-15

    Glycosyltransferases are members of the multigene family of plants that can transfer single or multiple activated sugars to a range of plant molecules, resulting in the glycosylation of plant compounds. Although the activities of many glycosyltransferases and their products have been recognized for a long time, only in recent years were some glycosyltransferase genes identified and few have been functionally characterized in detail. Korean ginseng (Panax ginseng Meyer), belonging to Araliaceae, has been well known as a popular mysterious medicinal herb in East Asia for over 2,000 years. A total of 704 glycosyltransferase unique sequences have been found from a ginseng expressed sequence tag (EST) library, and these sequences encode enzymes responsible for the secondary metabolite biosynthesis. Finally, twelve UDP glycosyltransferases (UGTs) were selected as the candidates most likely to be involved in triterpenoid synthesis. In this study, we classified the candidate P. ginseng UGTs (PgUGTs) into proper families and groups, which resulted in eight UGT families and six UGT groups. We also investigated those gene candidates encoding for glycosyltransferases by analysis of gene expression in methyl jasmonate (MeJA)-treated ginseng adventitious roots and different tissues from four-year-old ginseng using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). For organ-specific expression, most of PgUGT transcription levels were higher in leaves and roots compared with flower buds and stems. The transcription of PgUGTs in adventitious roots treated with MeJA increased as compared with the control. PgUGT1 and PgUGT2, which belong to the UGT71 family genes expressed in MeJA-treated adventitious roots, were especially sensitive, showing 33.32 and 38.88-fold expression increases upon 24h post-treatments, respectively. © 2013 Elsevier B.V. All rights reserved.

  14. Light Requirement for Shoot Regeneration in Horseradish Hairy Roots 1

    PubMed Central

    Saitou, Tsutomu; Kamada, Hiroshi; Harada, Hiroshi

    1992-01-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions. PMID:16669041

  15. Indole-3-Butyric Acid Induces Ectopic Formation of Metaxylem in the Hypocotyl of Arabidopsis thaliana without Conversion into Indole-3-Acetic Acid and with a Positive Interaction with Ethylene.

    PubMed

    Fattorini, Laura; Della Rovere, Federica; Andreini, Eleonora; Ronzan, Marilena; Falasca, Giuseppina; Altamura, Maria Maddalena

    2017-11-21

    The role of the auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and of the auxin-interacting phytohormone ethylene, on the ectopic formation of primary xylem (xylogenesis in planta) is still little known. In particular, auxin/ethylene-target tissue(s), modality of the xylary process (trans-differentiation vs. de novo formation), and the kind of ectopic elements formed (metaxylem vs. protoxylem) are currently unknown. It is also unclear whether IBA may act on the process independently of conversion into IAA. To investigate these topics, histological analyses were carried out in the hypocotyls of Arabidopsis wild type seedlings and ech2ibr10 and ein3eil1 mutants, which are blocked in IBA-to-IAA conversion and ethylene signalling, respectively. The seedlings were grown under darkness with either IAA or IBA, combined or not with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Adventitious root formation was also investigated because this process may compete with xylogenesis. Our results show that ectopic formation of protoxylem and metaxylem occurred as an indirect process starting from the pericycle periclinal derivatives of the hypocotyl basal part. IAA favoured protoxylem formation, whereas IBA induced ectopic metaxylem with ethylene cooperation through the EIN3EIL1 network. Ectopic metaxylem differentiation occurred independently of IBA-to-IAA conversion as mediated by ECH2 and IBR10, and in the place of IBA-induced adventitious root formation.

  16. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil.

    PubMed

    Fan, Pingping; Guo, Dali

    2010-06-01

    Among tree fine roots, the distal small-diameter lateral branches comprising first- and second-order roots lack secondary (wood) development. Therefore, these roots are expected to decompose more rapidly than higher order woody roots. But this prediction has not been tested and may not be correct. Current evidence suggests that lower order roots may decompose more slowly than higher order roots in tree species associated with ectomycorrhizal (EM) fungi because they are preferentially colonized by fungi and encased by a fungal sheath rich in chitin (a recalcitrant compound). In trees associated with arbuscular mycorrhizal (AM) fungi, lower order roots do not form fungal sheaths, but they may have poorer C quality, e.g. lower concentrations of soluble carbohydrates and higher concentrations of acid-insolubles than higher order roots, thus may decompose more slowly. In addition, litter with high concentrations of acid insolubles decomposes more slowly under higher N concentrations (such as lower order roots). Therefore, we propose that in both AM and EM trees, lower order roots decompose more slowly than higher order roots due to the combination of poor C quality and high N concentrations. To test this hypothesis, we examined decomposition of the first six root orders in Fraxinus mandshurica (an AM species) and Larix gmelinii (an EM species) using litterbag method in northeastern China. We found that lower order roots of both species decomposed more slowly than higher order roots, and this pattern appears to be associated mainly with initial C quality and N concentrations. Because these lower order roots have short life spans and thus dominate root mortality, their slow decomposition implies that a substantial fraction of the stable soil organic matter pool is derived from these lower order roots, at least in the two species we studied.

  17. Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research

    PubMed Central

    Benfey, Philip N.; Bennett, Malcolm; Schiefelbein, John

    2010-01-01

    Summary Prior to the availability of the genome sequence, the root of Arabidopsis had attracted a small but ardent group of researchers drawn to its accessibility and developmental simplicity. Roots are easily observed when grown on the surface of nutrient agar media, facilitating analysis of responses to stimuli such as gravity and touch. Developmental biologists were attracted to the simple radial organization of primary root tissues, which form a series of concentric cylinders around the central vascular tissue. Equally attractive was the mode of propagation, with stem cells at the tip giving rise to progeny that were confined to cell files. These properties of root development reduced the normal four-dimensional problem of development (three spatial dimensions and time) to a two-dimensional problem, with cell type on the radial axis and developmental time along the longitudinal axis. The availability of the complete Arabidopsis genome sequence has dramatically accelerated traditional genetic research on root biology, and has also enabled entirely new experimental strategies to be applied. Here we review examples of the ways in which availability of the Arabidopsis genome sequence has enhanced progress in understanding root biology. PMID:20409273

  18. Unearthing the hidden world of roots: Root biomass and architecture differ among species within the same guild

    PubMed Central

    2017-01-01

    The potential benefits of planting trees have generated significant interest with respect to sequestering carbon and restoring other forest based ecosystem services. Reliable estimates of carbon stocks are pivotal for understanding the global carbon balance and for promoting initiatives to mitigate CO2 emissions through forest management. There are numerous studies employing allometric regression models that convert inventory into aboveground biomass (AGB) and carbon (C). Yet the majority of allometric regression models do not consider the root system nor do these equations provide detail on the architecture and shape of different species. The root system is a vital piece toward understanding the hidden form and function roots play in carbon accumulation, nutrient and plant water uptake, and groundwater infiltration. Work that estimates C in forests as well as models that are used to better understand the hydrologic function of trees need better characterization of tree roots. We harvested 40 trees of six different species, including their roots down to 2 mm in diameter and created species-specific and multi-species models to calculate aboveground (AGB), coarse root belowground biomass (BGB), and total biomass (TB). We also explore the relationship between crown structure and root structure. We found that BGB contributes ~27.6% of a tree’s TB, lateral roots extend over 1.25 times the distance of crown extent, root allocation patterns varied among species, and that AGB is a strong predictor of TB. These findings highlight the potential importance of including the root system in C estimates and lend important insights into the function roots play in water cycling. PMID:29023553

  19. Water distribution at the root-soil interface: is there more water next to roots?

    NASA Astrophysics Data System (ADS)

    Carminati, A.; Moradi, A.; Oswald, S.; Vetterlein, D.; Weller, U.; Vogel, H.-J.

    2009-04-01

    Plants are big water movers and have a significant impact on soil water dynamics as well as on the global water cycle. Despite the relevance of root water uptake in terrestrial ecology, the movement of water from soil to roots still presents important open questions, e.g the following two. Which are the properties of the soil near the roots? And what effect do these properties have on soil plant water relations? Most models are based on brute-force spatial averaging of soil properties and assume that the bulk soil has the same properties as the rhizosphere. However, there is evidence in the literature that the rhizosphere has specific properties that may affect water and nutrient uptake (Young 1995, Gregory 2007). In order to investigate the rhizosphere hydraulic properties and their effect on soil plant water relations, we used neutron radiography and neutron tomography to image the water content distribution in soils during plant transpiration. Rectangular (quasi-2D) and cylindrical containers were filled with sandy soil and planted with lupins (Lupinus albus). Three weeks after planting, the samples were equilibrated at water potentials of -10 and 30 hPa and have been imaged for 5 days at intervals of 6 hours. At day 5 the samples were irrigated again via capillary rise and the water distribution was monitored for 4 more days. During the first day of the drying period, regions of water depletion formed around the central part of the tap root where first order laterals were present. As the soil dried up, the picture changed: instead of less water around the roots, as commonly supposed by models, we observed that more water was present around the lateral roots. Interestingly, these regions during drying were retaining high water content, but after irrigation remained markedly drier than the bulk soil. Our hypothesis is that high water content near roots during drying and lower water content during rewetting are explained by the presence of bio-polymers exuded by

  20. Helical Root Buckling: A Transient Mechanism for Stiff Interface Penetration

    NASA Astrophysics Data System (ADS)

    Silverberg, Jesse; Noar, Roslyn; Packer, Michael; Harrison, Maria; Cohen, Itai; Henley, Chris; Gerbode, Sharon

    2011-03-01

    Tilling in agriculture is commonly used to loosen the topmost layer of soil and promote healthy plant growth. As roots navigate this mechanically heterogeneous environment, they encounter interfaces between the compliant soil and the underlying compacted soil. Inspired by this problem, we used 3D time-lapse imaging of Medicago Truncatula plants to study root growth in two-layered transparent hydrogels. The layers are mechanically distinct; the top layer is more compliant than the bottom. We observe that the roots form a transient helical structure as they attempt to penetrate the bi-layer interface. Interpreting this phenotype as a form of buckling due to root elongation, we measured the helix size as a function of the surrounding gel modulus. Our measurements show that by twisting the root tip during growth, the helical structure recruits the surrounding medium for an enhanced penetration force allowing the plants access to the lower layer of gel.

  1. Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity

    NASA Astrophysics Data System (ADS)

    Inselsbacher, Erich; Schmidt, Susanne; NÀsholm, Torgny; Robinson, Nicole; Guillou, Stéphane; Vinall, Kerry; Lakshmanan, Prakash; Brackin, Richard

    2016-04-01

    Nitrogen (N) uptake by agricultural crops is a key constituent of the global N cycle, as N captured by roots has a markedly different fate than N remaining in the soil. Global evidence indicates that only approximately 50% of applied N fertilizer is captured by crops, and the remainder can cause pollution via runoff and gaseous emissions. This inefficiency is of global concern, and requires innovation based on improved understanding of which N forms are available for and ultimately taken up by crops. However, current soil analysis methods based on destructive soil sampling provide little insight into delivery and acquisition of N forms by roots. Here, we present the results of a study in sugarcane fields receiving different fertilizer regimes comparing soil N supply rates with potential root N uptake rates. We applied microdialysis, a novel technique for in situ quantification of soil nutrient fluxes, to measure flux rates of inorganic N and amino acid N, and analyzed N uptake capacities of sugarcane roots using 15N labelled tracers. We found that in fertilized sugarcane soils, fluxes of inorganic N exceed the uptake capacities of sugarcane roots by several orders of magnitude. Contrary, fluxes of organic N closely matched roots' uptake capacity. These results indicate root uptake capacity constrains plant acquisition of inorganic N. This mismatch between soil N supply and root N uptake capacity is a likely key driver for low N efficiency in the studied crop system. Our results also suggest that the relative contribution of inorganic N for plant nutrition may be overestimated when relying on soil extracts as indicators for root-available N, and organic N may contribute more to crop N supply than is currently assumed. Overall, we show a new approach for examining in situ N relations in soil in context of crop N physiology, which provides a new avenue towards tailoring N fertilizer supply to match the specific uptake abilities and N demand of crops over the growth

  2. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems.

    PubMed

    Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A; Nakhforoosh, Alireza

    2017-02-01

    Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems

    PubMed Central

    Zhao, Jiangsan; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A.; Nakhforoosh, Alireza

    2017-01-01

    Abstract Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. PMID:28168270

  4. Initiation and elongation of lateral roots in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  5. Underground riparian wood: Reconstructing the processes influencing buried stem and coarse root structures of Black Poplar (Populus nigra L.)

    NASA Astrophysics Data System (ADS)

    Holloway, James V.; Rillig, Matthias C.; Gurnell, Angela M.

    2017-02-01

    Following analysis of morphological (including dendrochronological and sedimentological) aspects of buried stem and coarse root structures of eight mature P. nigra individuals located within two sites along the middle to lower Tagliamento River, Italy (Holloway et al., 2017), this paper introduces information on the historical processes of vegetation development and river flow and links this to the form of these eight trees. Aerial images and flow time series are assembled to reconstruct the flood history, potential recruitment periods, and vegetation cover development in the vicinity of the studied trees. This information is combined with previous morphological evidence to reconstruct the development history of each tree via three-element summary diagrams showing (i) a time series of floods, aerial imagery dates, and potential recruitment periods, with colour-coded bars indicating likely key stages in the development of the tree; (ii) colour-coded overlays on an SfM photogrammetric model of each tree; and (iii) colour-coded text boxes providing explanatory annotations. The combined morphology-process analysis reveals complex three-dimensional underground structures, incorporating buried stems, shoots, and adventitious roots that are sometimes joined by grafting, linking the standing tree with the buried gravel surface on which it was recruited. Analysis of process data provides a firm basis for identifying and dating influential flow disturbance events and recruitment windows and shows that a relatively small number of flood events have significantly impacted the studied trees, which are mainly but not exclusively the largest floods in the record. Nevertheless, we stress that all suggested dates are best estimates in the light of the combined evidence. There is undoubted potential for building different interpretations of belowground woody structure development in light of such evidence, but we feel that the form and timing of the developmental trajectories we

  6. Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined

    PubMed Central

    Malik, Al Imran; English, Jeremy Parker; Colmer, Timothy David

    2009-01-01

    Background and Aims When root-zone O2 deficiency occurs together with salinity, regulation of shoot ion concentrations is compromised even more than under salinity alone. Tolerance was evaluated amongst 34 accessions of Hordeum marinum, a wild species in the Triticeae, to combined salinity and root-zone O2 deficiency. Interest in H. marinum arises from the potential to use it as a donor for abiotic stress tolerance into wheat. Methods Two batches of 17 H. marinum accessions, from (1) the Nordic Gene Bank and (2) the wheat belt of Western Australia, were exposed to 0·2 or 200 mol m−3 NaCl in aerated or stagnant nutrient solution for 28–29 d. Wheat (Triticum aestivum) was included as a sensitive check species. Growth, root porosity, root radial O2 loss (ROL) and leaf ion (Na+, K+, Cl−) concentrations were determined. Key Results Owing to space constraints, this report is focused mainly on the accessions from the Nordic Gene Bank. The 17 accessions varied in tolerance; relative growth rate was reduced by 2–38 % in stagnant solution, by 8–42 % in saline solution (aerated) and by 39–71 % in stagnant plus saline treatment. When in stagnant solution, porosity of adventitious roots was 24–33 %; salinity decreased the root porosity in some accessions, but had no effect in others. Roots grown in stagnant solution formed a barrier to ROL, but variation existed amongst accessions in apparent barrier ‘strength’. Leaf Na+ concentration was 142–692 ”mol g−1 d. wt for plants in saline solution (aerated), and only increased to 247–748 ”mol g−1 d. wt in the stagnant plus saline treatment. Leaf Cl− also showed only small effects of stagnant plus saline treatment, compared with saline alone. In comparison with H. marinum, wheat was more adversely affected by each stress alone, and particularly when combined; growth reductions were greater, adventitious root porosity was 21 %, it lacked a barrier to ROL, leaf K+ declined to lower levels, and leaf Na+ and

  7. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies.

    PubMed

    Comas, Louise H; Callahan, Hilary S; Midford, Peter E

    2014-08-01

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (K = 0.44-0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (r PIC = -0.77) and thicker root diameter (r PIC = -0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (r PIC = 0.85, -0.87), suggesting constraints on colonization linked to the evolution of root morphology.

  8. Light Sheet Tomography (LST) for in situ imaging of plant roots.

    PubMed

    Yang, Zhengyi; Downie, Helen; Rozbicki, Emil; Dupuy, Lionel X; MacDonald, Michael P

    2013-07-15

    The production of crops capable of efficient nutrient use is essential for addressing the problem of global food security. The ability of a plant's root system to interact with the soil micro-environment determines how effectively it can extract water and nutrients. In order to assess this ability and develop the fast and cost effective phenotyping techniques which are needed to establish efficient root systems, in situ imaging in soil is required. To date this has not been possible due to the high density of scatterers and absorbers in soil or because other growth substrates do not sufficiently model the heterogeneity of a soil's microenvironment. We present here a new form of light sheet imaging with novel transparent soil containing refractive index matched particles. This imaging method does not rely on fluorescence, but relies solely on scattering from root material. We term this form of imaging Light Sheet Tomography (LST). We have tested LST on a range of materials and plant roots in transparent soil and gel. Due to the low density of root structures, i.e. relatively large spaces between adjacent roots, long-term monitoring of lettuce root development in situ with subsequent quantitative analysis was achieved.

  9. Root phenology at Harvard Forest and beyond

    NASA Astrophysics Data System (ADS)

    Abramoff, R. Z.; Finzi, A.

    2013-12-01

    Roots are hidden from view and heterogeneously distributed making them difficult to study in situ. As a result, the causes and timing of root production are not well understood. Researchers have long assumed that above and belowground phenology is synchronous; for example, most parameterizations of belowground carbon allocation in terrestrial biosphere models are based on allometry and represent a fixed fraction of net C uptake. However, using results from metaanalysis as well as empirical data from oak and hemlock stands at Harvard Forest, we show that synchronous root and shoot growth is the exception rather than the rule. We collected root and shoot phenology measurements from studies across four biomes (boreal, temperate, Mediterranean, and subtropical). General patterns of root phenology varied widely with 1-5 production peaks in a growing season. Surprisingly, in 9 out of the 15 studies, the first root production peak was not the largest peak. In the majority of cases maximum shoot production occurred before root production (Offset>0 in 32 out of 47 plant sample means). The number of days offset between maximum root and shoot growth was negatively correlated with median annual temperature and therefore differs significantly across biomes (ANOVA, F3,43=9.47, p<0.0001). This decline in offset with increasing temperature may reflect greater year-round coupling between air and soil temperature in warm biomes. Growth form (woody or herbaceous) also influenced the relative timing of root and shoot growth. Woody plants had a larger range of days between root and shoot growth peaks as well as a greater number of growth peaks. To explore the range of phenological relationships within woody plants in the temperate biome, we focused on above and belowground phenology in two common northeastern tree species, Quercus rubra and Tsuga canadensis. Greenness index, rate of stem growth, root production and nonstructural carbohydrate content were measured beginning in April

  10. Root architecture impacts on root decomposition rates in switchgrass

    NASA Astrophysics Data System (ADS)

    de Graaff, M.; Schadt, C.; Garten, C. T.; Jastrow, J. D.; Phillips, J.; Wullschleger, S. D.

    2010-12-01

    Roots strongly contribute to soil organic carbon accrual, but the rate of soil carbon input via root litter decomposition is still uncertain. Root systems are built up of roots with a variety of different diameter size classes, ranging from very fine to very coarse roots. Since fine roots have low C:N ratios and coarse roots have high C:N ratios, root systems are heterogeneous in quality, spanning a range of different C:N ratios. Litter decomposition rates are generally well predicted by litter C:N ratios, thus decomposition of roots may be controlled by the relative abundance of fine versus coarse roots. With this study we asked how root architecture (i.e. the relative abundance of fine versus coarse roots) affects the decomposition of roots systems in the biofuels crop switchgrass (Panicum virgatum L.). To understand how root architecture affects root decomposition rates, we collected roots from eight switchgrass cultivars (Alamo, Kanlow, Carthage, Cave-in-Rock, Forestburg, Southlow, Sunburst, Blackwell), grown at FermiLab (IL), by taking 4.8-cm diameter soil cores from on top of the crown and directly next to the crown of individual plants. Roots were carefully excised from the cores by washing and analyzed for root diameter size class distribution using WinRhizo. Subsequently, root systems of each of the plants (4 replicates per cultivar) were separated in 'fine' (0-0.5 mm), 'medium' (0.5-1 mm) and 'coarse' roots (1-2.5 mm), dried, cut into 0.5 cm (medium and coarse roots) and 2 mm pieces (fine roots), and incubated for 90 days. For each of the cultivars we established five root-treatments: 20g of soil was amended with 0.2g of (1) fine roots, (2) medium roots, (3) coarse roots, (4) a 1:1:1 mixture of fine, medium and coarse roots, and (5) a mixture combining fine, medium and coarse roots in realistic proportions. We measured CO2 respiration at days 1, 3, 7, 15, 30, 60 and 90 during the experiment. The 13C signature of the soil was -26‰, and the 13C signature

  11. Blackfoot Dictionary of Stems, Roots, and Affixes. Second Edition.

    ERIC Educational Resources Information Center

    Frantz, Donald G.; Russell, Norma Jean

    The dictionary of stems, roots, and affixes for the Blackfoot language provides, for each entry, information on the item's morphological type (e.g., noun stem, verb stem, root), subclassification if relevant, English index, and certain diagnostic inflectional forms (full words or sentences), each with an English translation. In addition, entries


  12. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies

    PubMed Central

    Comas, Louise H; Callahan, Hilary S; Midford, Peter E

    2014-01-01

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (K = 0.44–0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (rPIC = −0.77) and thicker root diameter (rPIC = −0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (rPIC = 0.85, −0.87), suggesting constraints on colonization linked to the evolution of root morphology. PMID:25247056

  13. Red-light-induced positive phototropism in Arabidopsis roots

    NASA Technical Reports Server (NTRS)

    Ruppel, N. J.; Hangarter, R. P.; Kiss, J. Z.

    2001-01-01

    The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots of Arahidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable in plants with a normal gravitropic response.

  14. Red-light-induced positive phototropism in Arabidopsis roots.

    PubMed

    Ruppel, N J; Hangarter, R P; Kiss, J Z

    2001-02-01

    The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots of Arahidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable in plants with a normal gravitropic response.

  15. Various forms of organic and inorganic P fertilizers did not negatively affect soil- and root-inhabiting AM fungi in a maize-soybean rotation system.

    PubMed

    Beauregard, M S; Gauthier, M-P; Hamel, C; Zhang, T; Welacky, T; Tan, C S; St-Arnaud, M

    2013-02-01

    Arbuscular mycorrhizal (AM) fungi are key components of most agricultural ecosystems. Therefore, understanding the impact of agricultural practices on their community structure is essential to improve nutrient mobilization and reduce plant stress in the field. The effects of five different organic or mineral sources of phosphorus (P) for a maize-soybean rotation system on AM fungal diversity in roots and soil were assessed over a 3-year period. Total DNA was extracted from root and soil samples collected at three different plant growth stages. An 18S rRNA gene fragment was amplified and taxa were detected and identified using denaturing gradient gel electrophoresis followed by sequencing. AM fungal biomass was estimated by fatty acid methyl ester analysis. Soil P fertility parameters were also monitored and analyzed for possible changes related with fertilization or growth stages. Seven AM fungal ribotypes were detected. Fertilization significantly modified soil P flux, but had barely any effect on AM fungi community structure or biomass. There was no difference in the AM fungal community between plant growth stages. Specific ribotypes could not be significantly associated to P treatment. Ribotypes were associated with root or soil samples with variable detection frequencies between seasons. AM fungal biomass remained stable throughout the growing seasons. This study demonstrated that roots and soil host distinct AM fungal communities and that these are very temporally stable. The influence of contrasting forms of P fertilizers was not significant over 3 years of crop rotation.

  16. Adventitious sounds identification and extraction using temporal-spectral dominance-based features.

    PubMed

    Jin, Feng; Krishnan, Sridhar Sri; Sattar, Farook

    2011-11-01

    Respiratory sound (RS) signals carry significant information about the underlying functioning of the pulmonary system by the presence of adventitious sounds (ASs). Although many studies have addressed the problem of pathological RS classification, only a limited number of scientific works have focused on the analysis of the evolution of symptom-related signal components in joint time-frequency (TF) plane. This paper proposes a new signal identification and extraction method for various ASs based on instantaneous frequency (IF) analysis. The presented TF decomposition method produces a noise-resistant high definition TF representation of RS signals as compared to the conventional linear TF analysis methods, yet preserving the low computational complexity as compared to those quadratic TF analysis methods. The discarded phase information in conventional spectrogram has been adopted for the estimation of IF and group delay, and a temporal-spectral dominance spectrogram has subsequently been constructed by investigating the TF spreads of the computed time-corrected IF components. The proposed dominance measure enables the extraction of signal components correspond to ASs from noisy RS signal at high noise level. A new set of TF features has also been proposed to quantify the shapes of the obtained TF contours, and therefore strongly, enhances the identification of multicomponents signals such as polyphonic wheezes. An overall accuracy of 92.4±2.9% for the classification of real RS recordings shows the promising performance of the presented method.

  17. Use of an exchange method to estimate the association and dissociation rate constants of cadmium complexes formed with low-molecular-weight organic acids commonly exuded by plant roots.

    PubMed

    Schneider, André; Nguyen, Christophe

    2011-01-01

    Organic acids released from plant roots can form complexes with cadmium (Cd) in the soil solution and influence metal bioavailability not only due to the nature and concentration of the complexes but also due to their lability. The lability of a complex influences its ability to buffer changes in the concentration of free ions (Cd); it depends on the association (, m mol s) and dissociation (, s) rate constants. A resin exchange method was used to estimate and (m mol s), which is the conditional estimate of depending on the calcium (Ca) concentration in solution. The constants were estimated for oxalate, citrate, and malate, three low-molecular-weight organic acids commonly exuded by plant roots and expected to strongly influence Cd uptake by plants. For all three organic acids, the and estimates were around 2.5 10 m mol s and 1.3 × 10 s, respectively. Based on the literature, these values indicate that the Cd- low-molecular-weight organic acids complexes formed between Cd and low-molecular-weight organic acids may be less labile than complexes formed with soil soluble organic matter but more labile than those formed with aminopolycarboxylic chelates. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Root rots

    Treesearch

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  19. Distinct cellular distributions of Kv4 pore-forming and auxiliary subunits in rat dorsal root ganglion neurons.

    PubMed

    Matsuyoshi, Hiroko; Takimoto, Koichi; Yunoki, Takakazu; Erickson, Vickie L; Tyagi, Pradeep; Hirao, Yoshihiko; Wanaka, Akio; Yoshimura, Naoki

    2012-09-17

    Dorsal root ganglia contain heterogeneous populations of primary afferent neurons that transmit various sensory stimuli. This functional diversity may be correlated with differential expression of voltage-gated K(+) (Kv) channels. Here, we examine cellular distributions of Kv4 pore-forming and ancillary subunits that are responsible for fast-inactivating A-type K(+) current. Expression pattern of Kv α-subunit, ÎČ-subunit and auxiliary subunit was investigated using immunohistochemistry, in situ hybridization and RT-PCR technique. The two pore-forming subunits Kv4.1 and Kv4.3 show distinct cellular distributions: Kv4.3 is predominantly in small-sized C-fiber neurons, whereas Kv4.1 is seen in DRG neurons in various sizes. Furthermore, the two classes of Kv4 channel auxiliary subunits are also distributed in different-sized cells. KChIP3 is the only significantly expressed Ca(2+)-binding cytosolic ancillary subunit in DRGs and present in medium to large-sized neurons. The membrane-spanning auxiliary subunit DPP6 is seen in a large number of DRG neurons in various sizes, whereas DPP10 is restricted in small-sized neurons. Distinct combinations of Kv4 pore-forming and auxiliary subunits may constitute A-type channels in DRG neurons with different physiological roles. Kv4.1 subunit, in combination with KChIP3 and/or DPP6, form A-type K(+) channels in medium to large-sized A-fiber DRG neurons. In contrast, Kv4.3 and DPP10 may contribute to A-type K(+) current in non-peptidergic, C-fiber somatic afferent neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Endodontic management of an unusual maxillary first molar with a single buccal root.

    PubMed

    Nayak, Gurudutt; Dahiya, Surya; Singh, Inderpreet; Mohammad, Faiz Hasan

    2014-05-01

    The aim of this clinical article is to describe the unusual anatomy that was detected in a maxillary first molar during routine endodontic treatment. Variation in Root and Root canal morphology especially in multirooted teeth presents a constant challenge for a clinician in their detection and management. The literature is replete with cases that have extra canal or Root but cases with fused Root and fewer numbers of canals are sparse. This case report describes the endodontic management of one such unusual case of maxillary first molar presenting with a single fused buccal and a palatal Root. The confirmatory diagnosis of this morphologic aberration was done with the help of spiral computerized tomography, which revealed that the contralateral tooth also had a similar morphology. Dental practitioners should always be aware of the fact that abnormalities need not be in form of extra Roots or Root canals; anomalies can also be in form of fewer number of Roots or Root canals. A thorough knowledge of the complexities and variations of the Root canal system would help in avoiding some of the common iatrogenic access opening errors like perforations and excessive tooth removal caused during the search for the missing or extracanal.

  1. Hydrologic Regulation of Plant Rooting Depth and Vice Versa

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Miguez-Macho, G.

    2017-12-01

    How deep plant roots go and why may hold the answer to several questions regarding the co-evolution of terrestrial life and its environment. In this talk we explore how plant rooting depth responds to the hydrologic plumbing system in the soil/regolith/bedrocks, and vice versa. Through analyzing 2200 root observations of >1000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients, we found strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to groundwater capillary fringe. We explore the global significance of this framework using an inverse model, and the implications to the coevolution of deep roots and the CZ in the Early-Mid Devonian when plants colonized the upland environments.

  2. Infection, Reproduction Potential, and Root Galling by Root-knot Nematode Species and Concomitant Populations on Peanut and Tobacco

    PubMed Central

    Hirunsalee, Anan; Barker, K. R.; Beute, M. K.

    1995-01-01

    Single populations of Meloidogyne arenaria races 1 (MA1) and 2 (MA2) and M. hapla (MH), and mixed populations of MA1 + MA2 and MA1 + MH with four inoculum levels of eggs were tested on peanut cv. 'Florigiant' and M. incognita-resistant tobacco cv. 'McNair 373' in a greenhouse experiment. Root infection, female development, and reproduction of MA2 on peanut and MA1 on resistant tobacco were limited at 2 and 6 weeks. MA1, MH, and MA1 + MH on peanut had similar root infection (total parasitic forms per root unit) at both 2 and 6 weeks, and similar female development and reproduction potentials at 6 weeks. MA2 tended to depress root infection, female development, and reproduction of MA1 on peanut. MH had little effect on MA1 on this crop. On tobacco, MA2 population had greater incidence of root infection than did MH at 2 weeks. The two nematode species had similar development in roots at 6 weeks. All of these processes were restricted when either MA2 or MH was present together with MA1. As initial inoculum level of parasitically fit populations increased, relative infection ratio on both peanut and tobacco, and reproduction factor on peanut decreased. Populations that had high infection incidence and reproduction rates induced greater root galling than did other populations. Root galling was suppressed in the presence of antagonistic response between nematode populations. PMID:19277277

  3. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength.

    PubMed

    Haling, Rebecca E; Brown, Lawrie K; Bengough, A Glyn; Young, Iain M; Hallett, Paul D; White, Philip J; George, Timothy S

    2013-09-01

    Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems.

  4. Regeneration of plants from Fraxinus pennsylvanica hypocotyls and cotyledons

    Treesearch

    Ningxia Du; Paula M. Pijut

    2008-01-01

    An adventitious shoot regeneration and rooting protocol was developed for green ash (Fraxinus pennsylvanica) seedling explants. The best regeneration medium for freshly isolated hypocotyls and cotyledons was Murashige and Skoog (MS) supplemented with 13.3 ”M6-benzylaminopurine (BA) plus 4.5 ”M thidiazuron (TDZ), and 22.2 ”M...

  5. Percutaneous Image-Guided Aspiration and Sclerosis of Adventitial Cystic Disease of the Femoral Vein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jason M.; Kiankhooy, Armin; Bertges, Daniel J.

    2009-07-15

    Adventitial cystic disease (ACD), also known as cystic mucoid or myxomatous degeneration, is a rare vascular disease mainly seen in arteries. Seventeen cases have been reported in the world literature. We report the first known case of ACD successfully treated with percutaneous image-guided ethanol sclerosis. Computed tomography showed a cystic mass adherent to the wall of the common femoral vein. An ultrasound examination revealed a deep venous thrombosis of the leg, secondary to extrinsic compression of the common femoral vein. Three years prior to our procedure, the cyst was aspirated, which partially relieved the patient's symptoms. Over the following 3more » years the patient's symptoms worsened and a 10-cm discrepancy in thigh size developed, in addition to the deep venous thrombosis associated with lower-extremity edema. Using ultrasound guidance and fluoroscopic control, the cyst was drained and then sclerosed with absolute ethanol. The patient's symptoms and leg swelling resolved completely within several weeks. Follow-up physical examination and duplex ultrasound 6 months following sclerosis demonstrated resolution of the symptoms and elimination of the extrinsic compression effect of the ACD on the common femoral vein.« less

  6. Bacterial killing by several root filling materials and methods in an ex vivo infected root canal model.

    PubMed

    Özcan, E; Eldeniz, A U; Arı, H

    2011-12-01

    To evaluate the ability of two root canal sealers (Epoxy resin-based AH Plus or polydimethylsiloxane-based GuttaFlow) and five root filling techniques (continuous wave of condensation, Thermafil, lateral condensation, matched taper single gutta-percha point, laterally condensed-matched taper gutta-percha point) to kill bacteria in experimentally infected dentinal tubules. An infected dentine block model was used. One hundred and twenty extracted, single-rooted human teeth were randomly divided into 10 test (n = 10) and 2 control (n = 10) groups. The roots, except negative controls, were infected with Enterococcus faecalis for 21 days. The root canals were then filled using the test materials and methods. Positive controls were not filled. Sterile roots were used as negative controls. Dentine powder was obtained from all root canals using gates glidden drills using a standard method. The dentine powder was diluted and inoculated into bacterial growth media. Total colony-forming units (CFU) were calculated for each sample. Statistical analysis was performed using the Kruskal-Wallis and Mann-Whitney U test. The epoxy resin-based sealer was effective in killing E. faecalis except when using Thermafil (P < 0.05), but the polydimethylsiloxane-based sealer was not effective in killing this microorganism except in the continuous wave group (P < 0.05). In the test model, AH Plus killed bacteria in infected dentine more effectively than GuttaFlow. The filling method was less important than the sealer material. © 2011 International Endodontic Journal.

  7. Apical and root canal space sealing abilities of resin and glass ionomer-based root canal obturation systems.

    PubMed

    Royer, Kinga; Liu, Xue Jun; Zhu, Qiang; Malmstrom, Hans; Ren, Yan-Fang

    2013-01-01

    To investigate the apical sealing ability of glass ionomer and resin-based root canal obturation systems in comparison to a conventional vertical compaction of warm guttapercha. Forty-five extracted human teeth were randomly assigned into 3 groups of 15 each: a resin-based (EndoRez), a glass ionomer-based (Activ GP), and a conventional gutta-percha plus pulp sealer obturation system (GP/EWT). Apical and root canal space sealing abilities were assessed on five cross-sections 1.0 mm apart starting from the apex. Cross-section images were analysed using a focus-variation 3D scanning microscope and unsealed space was calculated as the percentage of total root canal space occupied by voids and debris. EndoRez had significantly higher rate of apical leakage and deeper dye penetration as compared to GP/EWT and Activ GP. EndoRez group had also more voids and debris (22.5%) in the root canal spaces as compared to GP/EWT (10.5%) and Activ GP (10.8%). Apical leakages occurred not only along the root canal walls, but also along the gutta-percha cones with EndoRez as a result of significant polymerisation shrinkage of the resin sealer. Resin-based EndoRez did not form an adequate apical seal of filled root canals. Glass ionomer-based Activ GP was comparable to a vertical compaction of warm guttapercha plus EWT sealer in sealing root canal spaces.

  8. Ammonium affects cell viability to inhibit root growth in Arabidopsis * #

    PubMed Central

    Qin, Cheng; Yi, Ke-ke; Wu, Ping

    2011-01-01

    Ammonium (NH4 +) is an important form of nitrogen nutrient for most plants, yet is also a stressor for many of them. However, the primary events of NH4 + toxicity at the cellular level are still unclear. Here, we showed that NH4 + toxicity can induce the root cell death in a temporal pattern which primarily occurs in the cells of root maturation and elongation zones, and then spreads to the cells in the meristem and root cap. The results from the NH4 +-hypersensitive mutant hsn1 further confirmed our findings. Taken together, NH4 + toxicity inhibits primary root growth by inhibiting cell elongation and division and inducing root cell death. PMID:21634041

  9. Integration of root phenes revealed by intensive phenotyping of root system architecture, anatomy, and physiology in cereals

    NASA Astrophysics Data System (ADS)

    York, Larry

    2015-04-01

    whorls in maize is introduced, and field work demonstrated how the variation within the root crown has functional significance for nitrogen acquisition. Nodal root number was decomposed to more elemental phenes including the number of nodes and the occupancies of each node. Simulations demonstrated that root systems forming fewer nodal roots and with delayed emergence perform well in low nitrogen soils. Nitrate uptake kinetics (NUK) also varied within the maize root system, and simulations showing a lack of interaction between NUK and RSA reflects a knowledge gap in the costs of NUK at the molecular level. Finally, maize RSA among hybrids from different era periods over the past 100 years suggests evolution towards more nitrogen efficient root phene states. This work will be discussed within the context of next-generation root phenotyping of cereals, the dilemma between extensive and intensive phenotyping, and the need for linking across scales and methods.

  10. New nitrogen uptake strategy: specialized snow roots.

    PubMed

    Onipchenko, Vladimir G; Makarov, Mikhail I; van Logtestijn, Richard S P; Ivanov, Viktor B; Akhmetzhanova, Assem A; Tekeev, Dzhamal K; Ermak, Anton A; Salpagarova, Fatima S; Kozhevnikova, Anna D; Cornelissen, Johannes H C

    2009-08-01

    The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental (15)N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.

  11. Root Uptake of Lipophilic Zinc−Rhamnolipid Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, Samuel P.; McLaughlin, Michael J.; Cakmak, Ismail

    This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Brassica napus var. Pinnacle roots in {sup 65}Zn-spiked ice-cold solutions, compared with ZnSO{sub 4} alone. Therefore, rhamnolipid appeared to facilitate Zn absorption via a nonmetabolically mediated pathway. Synchrotron XRF and XAS showed that Zn was present in roots as Zn-phytate-like compounds when roots were treated with Zn-free solutions, ZnSO{sub 4}, or Zn-EDTA. With rhamnolipid application, Zn was predominantly found in roots as the Zn-rhamnolipid complex. When appliedmore » to a calcareous soil, rhamnolipids increased dry matter production and Zn concentrations in durum (Triticum durum L. cv. Balcali-2000) and bread wheat (Triticum aestivum L. cv. BDME-10) shoots. Rhamnolipids either increased total plant uptake of Zn from the soil or increased Zn translocation by reducing the prevalence of insoluble Zn-phytate-like compounds in roots.« less

  12. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  13. Systematic Evaluation of In Vitro and In Vivo Adventitious Virus Assays for the Detection of Viral Contamination of Cell Banks and Biological Products1

    PubMed Central

    Gombold, James; Karakasidis, Stephen; Niksa, Paula; Podczasy, John; Neumann, Kitti; Richardson, James; Sane, Nandini; Johnson-Leva, Renita; Randolph, Valerie; Sadoff, Jerald; Minor, Phillip; Schmidt, Alexander; Duncan, Paul; Sheets, Rebecca L.

    2015-01-01

    Viral vaccines and the cell substrates used to manufacture them are subjected to tests for adventitious agents, including viruses, which might contaminant them. Some of the compendial methods (in vivo and in vitro in cell culture) were established in the mid-20th century. These methods have not been subjected to current assay validation, as new methods would need to be. This study was undertaken to provide insight into the breadth (selectivity) and sensitivity (limit of detection) of the routine methods, two such validation parameters. Sixteen viral stocks were prepared and characterized. These stocks were tested in serial dilutions by the routine methods to establish which viruses were detected by which methods and above what limit of detection. Sixteen out of sixteen viruses were detected in vitro, though one (bovine viral diarrhea virus) required special conditions to detect and another (rubella virus) was detected with low sensitivity. Many were detected at levels below 1 TCID50 or PFU (titers were established on the production cell line in most cases). In contrast, in vivo, only 6/11 viruses were detected, and 4 of these were detected only at amounts one or more logs above 1 TCID50 or PFU. Only influenza virus and vesicular stomatitis virus were detected at lower amounts in vivo than in vitro. Given the call to reduce, refine, or replace (3 R's) the use of animals in product safety testing and the emergence of new technologies for the detection of viruses, a re-examination of the current adventitious virus testing strategies seems warranted. Suggested pathways forward are offered. PMID:24681273

  14. The Rhizobium sp. strain NGR234 systemically suppresses arbuscular mycorrhizal root colonization in a split-root system of barley (Hordeum vulgare).

    PubMed

    Khaosaad, Thanasan; Staehelin, Christian; Steinkellner, Siegrid; Hage-Ahmed, Karin; Ocampo, Juan Antonio; Garcia-Garrido, Jose Manuel; Vierheilig, Horst

    2010-11-01

    Nitrogen-fixing bacteria (rhizobia) form a nodule symbiosis with legumes, but also induce certain effects on non-host plants. Here, we used a split-root system of barley to examine whether inoculation with Rhizobium sp. strain NGR234 on one side of a split-root system systemically affects arbuscular mycorrhizal (AM) root colonization on the other side. Mutant strains of NGR234 deficient in Nod factor production (strain NGRΔnodABC), perception of flavonoids (strain NGRΔnodD1) and secretion of type 3 effector proteins (strain NGRΩrhcN) were included in this study. Inoculation resulted in a systemic reduction of AM root colonization with all tested strains. However, the suppressive effect of strain NGRΩrhcN was less pronounced. Moreover, levels of salicylic acid, an endogenous molecule related to plant defense, were increased in roots challenged with rhizobia. These data indicate that barley roots perceived NGR234 and that a systemic regulatory mechanism of AM root colonization was activated. The suppressive effect appears to be Nod factor independent, but enhanced by type 3 effector proteins of NGR234. Copyright © Physiologia Plantarum 2010.

  15. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  16. Somaclonal variation in hybrid poplars for resistance to Septoria leaf spot

    Treesearch

    M.E. Ostry; D. D. Skilling

    1987-01-01

    Tissue culture techniques have been used to obtain hybrid poplars with putative resistance to leaf spot caused by Septoria musiva from clones previously susceptible to the disease. Stem internode explants were used to obtain proliferating callus cultures. Adventitious bud formation and shoot proliferation were then induced. Elongated shoots were excised and rooted in a...

  17. Root hairs increase root exudation and rhizosphere extension

    NASA Astrophysics Data System (ADS)

    Holz, Maire; Zarebandanadkouki, Mohsen; Kuzyakov, Yakov; Carmintati, Andrea

    2017-04-01

    Plant roots employ various mechanisms to increase their access to limited soil resources. An example of such strategies is the production of root hairs. Root hairs extend the root surface and therefore increase the access to nutrients. Additionally, carbon release from root hairs might facilitate nutrient uptake by spreading of carbon in the rhizosphere and enhancing microbial activity. The aim of this study was to test: i) how root hairs change the allocation of carbon in the soil-plant system; ii) whether root hairs exude carbon into the soil and iii) how differences in C release between plants with and without root hairs affect rhizosphere extension. We grew barley plants with and without root hairs (wild type: WT, bald root barley: brb) in rhizoboxes filled with a sandy soil. Root elongation was monitored over time. After 4 weeks of growth, plants were labelled with 14CO2. A filter paper was placed on the soil surface before labelling and was removed after 36 h. 14C imaging of the soil surface and of the filter paper was used to quantify the allocation of 14C into the roots and the exudation of 14C, respectively. Plants were sampled destructively one day after labeling to quantify 14C in the plant-soil system. 14CO2 release from soil over time (17 d) was quantified by trapping CO2 in NaOH with an additional subset of plants. WT and brb plants had a similar aboveground biomass and allocated similar amounts of 14C into shoots (170 KBq for WT; 152 KBq for brb) and roots one day after labelling. Biomass of root, rhizosphere soil as well as root elongation were lower for brb compared to the wild type. WT plants transported more C from the shoots to the roots (22.8% for WT; 13.8% for brb) and from the root into the rhizosphere (8.8% for WT 3.5% for brb). Yet lower amounts of 14CO2 were released from soil over time for WT. Radial and longitudinal rhizosphere extension was increased for WT compared to brb (4.7 vs. 2.6 mm; 5.6 vs. 3.1 cm). The total exudation which was

  18. Unique Cellular Organization in the Oldest Root Meristem.

    PubMed

    Hetherington, Alexander J; Dubrovsky, Joseph G; Dolan, Liam

    2016-06-20

    Roots and shoots of plant bodies develop from meristems-cell populations that self-renew and produce cells that undergo differentiation-located at the apices of axes [1].The oldest preserved root apices in which cellular anatomy can be imaged are found in nodules of permineralized fossil soils called coal balls [2], which formed in the Carboniferous coal swamp forests over 300 million years ago [3-9]. However, no fossil root apices described to date were actively growing at the time of preservation [3-10]. Because the cellular organization of meristems changes when root growth stops, it has been impossible to compare cellular dynamics as stem cells transition to differentiated cells in extinct and extant taxa [11]. We predicted that meristems of actively growing roots would be preserved in coal balls. Here we report the discovery of the first fossilized remains of an actively growing root meristem from permineralized Carboniferous soil with detail of the stem cells and differentiating cells preserved. The cellular organization of the meristem is unique. The position of the Körper-Kappe boundary, discrete root cap, and presence of many anticlinal cell divisions within a broad promeristem distinguish it from all other known root meristems. This discovery is important because it demonstrates that the same general cellular dynamics are conserved between the oldest extinct and extant root meristems. However, its unique cellular organization demonstrates that extant root meristem organization and development represents only a subset of the diversity that has existed since roots first evolved. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. In Vitro Propagation, Phytochemical Analysis, and Evaluation of Free Radical Scavenging Property of Scrophularia kakudensis Franch Tissue Extracts.

    PubMed

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    The current study deals with in vitro propagation, antioxidant property estimation, and assessment of acacetin content in Scrophularia kakudensis Franch. Adventitious shoot induction was achieved from the nodal explant with the highest number of adventitious shoots per explant (17.4) on Murashige and Skoog's (MS) medium fortified with 2.0 mg·L(-1) 6-benzyladenine (BA) and 0.5 mg L(-1) indole-3-acetic acid (IAA). Maximum number of roots per plant (16.5) was noted in half strength MS medium supplemented with 0.5 mg·L(-1) IAA. The regenerated plants displayed successful survival ratio (95%) in the greenhouse. The highest content of acacetin, a pharmaceutically important flavonoid, was observed in the shoot extracts (in vitro: 32.83 ”g·g(-1) FW; in vivo: 30.05 ”g·g(-1) FW) followed by root extracts. Total phenol and flavonoid contents along with free radical scavenging assays revealed the occurrence of larger amount of antioxidants in shoot extract in comparison with callus and root extracts of S. kakudensis. Thus, the outcome of the present study can be highly beneficial for the germplasm conservation and commercial cultivation of S. kakudensis for therapeutic purposes.

  20. Isolation and chemical analysis of nanoparticles from English ivy (Hedera helix L.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenaghan, Scott C; Burris, Jason N; Chourey, Karuna

    It was discovered that adventitious roots of English ivy secreted a high strength adhesive containing uniform nanoparticles. These nanoparticles were hypothesized to be organic in nature. Subsequent studies have revealed several applications for these nanoparticles, but their chemical composition remained unknown. Here, we describe an isolation procedure to obtain gram quantities of ivy nanoparticles from adventitious roots. In addition, ultraviolet/visible (UV/Vis) spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), elemental analysis, fourier transform infrared spectroscopy (FTIR), and gel electrophoresis were conducted to identify the chemical nature of the ivy nanoparticles. Based on this comprehensive analysis, we conclude that the ivy nanoparticlesmore » are proteinaceous consisting of 51.77% carbon, 4.72% nitrogen, and 0.32% sulfur, without the presence of metals. Liquid chromatography tandem mass spectrometry (LC-MS/MS) based protein profiling revealed the presence of at least 6 proteins, including heat shock proteins and other large molecular weight proteins. Identification of these protein candidates will facilitate gene discovery and bioproduction of ivy nanoparticles.« less

  1. Multiple idiopathic external apical root resorption: report of four cases.

    PubMed

    Cholia, S S; Wilson, P H R; Makdissi, J

    2005-07-01

    Multiple idiopathic external root resorption is an unusual condition that may present in a cervical or an apical form. In this article, we review the published literature relating to multiple idiopathic external apical root resorption and present four clinical cases. We consider the aetiology of this condition and discuss the various treatment options.

  2. The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.

    PubMed

    Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, HĂ©lĂšne; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam

    2016-12-05

    To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

    PubMed

    Huang, Ling; Schiefelbein, John

    2015-08-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants. © 2015 American Society of Plant Biologists. All rights reserved.

  4. Apical closure of mature molar roots with the use of calcium hydroxide.

    PubMed

    Rotstein, I; Friedman, S; Katz, J

    1990-11-01

    Calcium hydroxide may induce apical root closure in affected mature teeth as well as in immature teeth. Once an apical hard tissue barrier is formed, a permanent root canal filling can be safely condensed. Two cases are described in which calcium hydroxide induced apical root closure in mature molar teeth where the apical constriction was lost because of chronic inflammatory process.

  5. Liquid bridges at the root-soil interface

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Benard, Pascal; Ahmed, Mutez; Zarebanadkouki, Mohsen

    2017-04-01

    The role of the root-soil interface on soil-plant water relations is unclear. Despite many experimental studies proved that the soil close to the root surface, the rhizosphere, has different properties compared to the adjacent bulk soil, the mechanisms underlying such differences are poorly understood and the implications for plant-water relations remain largely speculative. The objective of this contribution is to discuss the key elements affecting water dynamics in the rhizosphere. Special attention is dedicated to the role of mucilage exuded by roots in shaping the hydraulic properties of the rhizosphere. We identified three key properties: 1) mucilage adsorbs water decreasing its water potential; 2) mucilage decreases the surface tension of the soil solution; 3) mucilage increases the viscosity of the soil solution. These three properties determine the retention and spatial configuration of the liquid phase in porous media. The increase in viscosity and the decrease in surface tension (quantified by the Ohnesorge number) allow the persistence of long liquid filaments even at very negative water potentials. At high mucilage concentrations these filaments form a network that creates an additional matric potential and maintains the continuity of the liquid phase during drying. The biophysical interactions between mucilage and the pore space determine the physical properties of the rhizosphere. Mucilage forms a network that provides mechanical stability to soils upon drying and that maintains the continuity of the liquid phase across the soil-root interface. Such biophysical properties are functional to create an interconnected matrix that maintains the roots in contact with the soil, which is of particular importance when the soil is drying and the transpiration rate is high.

  6. A three-dimensional topology optimization model for tooth-root morphology.

    PubMed

    Seitz, K-F; Grabe, J; Köhne, T

    2018-02-01

    To obtain the root of a lower incisor through structural optimization, we used two methods: optimization with Solid Isotropic Material with Penalization (SIMP) and Soft-Kill Option (SKO). The optimization was carried out in combination with a finite element analysis in Abaqus/Standard. The model geometry was based on cone-beam tomography scans of 10 adult males with healthy bone-tooth interface. Our results demonstrate that the optimization method using SIMP for minimum compliance could not adequately predict the actual root shape. The SKO method, however, provided optimization results that were comparable to the natural root form and is therefore suitable to set up the basic topology of a dental root.

  7. Auxin, the organizer of the hormonal/environmental signals for root hair growth

    PubMed Central

    Lee, Richard D.-W.; Cho, Hyung-Taeg

    2013-01-01

    The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears to form the most intensive networks with the pathways from environmental factors and hormones. Moreover, auxin action for root hair development is genetically located immediately upstream of the root hair-morphogenetic genes. These observations suggest that auxin plays as an organizing node for environmental/hormonal pathways to modulate root hair growth. PMID:24273547

  8. Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity

    PubMed Central

    Brackin, Richard; NÀsholm, Torgny; Robinson, Nicole; Guillou, Stéphane; Vinall, Kerry; Lakshmanan, Prakash; Schmidt, Susanne; Inselsbacher, Erich

    2015-01-01

    Globally only ≈50% of applied nitrogen (N) fertilizer is captured by crops, and the remainder can cause pollution via runoff and gaseous emissions. Synchronizing soil N supply and crop demand will address this problem, however current soil analysis methods provide little insight into delivery and acquisition of N forms by roots. We used microdialysis, a novel technique for in situ quantification of soil nutrient fluxes, to measure N fluxes in sugarcane cropping soils receiving different fertilizer regimes, and compare these with N uptake capacities of sugarcane roots. We show that in fertilized sugarcane soils, fluxes of inorganic N exceed the uptake capacities of sugarcane roots by several orders of magnitude. Contrary, fluxes of organic N closely matched roots’ uptake capacity. These results indicate root uptake capacity constrains plant acquisition of inorganic N. This mismatch between soil N supply and root N uptake capacity is a likely key driver for low N efficiency in the studied crop system. Our results also suggest that (i) the relative contribution of inorganic N for plant nutrition may be overestimated when relying on soil extracts as indicators for root-available N, and (ii) organic N may contribute more to crop N supply than is currently assumed. PMID:26496834

  9. Symbiotic root nodule bacteria isolated from yam bean (Pachyrhizus erosus).

    PubMed

    Fuentes, Jenet B; Abe, Mikiko; Uchiumi, Toshiki; Suzuki, Akihiro; Higashi, Shiro

    2002-08-01

    A total of 25 isolates from root nodules of yam bean (Pachyrhizus erosus L. Urban), a tuber-producing leguminous plant, were characterized. All isolates formed effective nodules mainly on lateral roots while edible tubers were developed on the taproot. The root nodules formed were identified as the typical determinate type. By an analysis of the partial sequences of the 16S rRNA gene (approximately 300 bp) of 10 strains which were selected randomly, the isolated root nodule bacteria of yam bean were classified into two different genera, Rhizobium and Bradyrhizobium. Two strains, YB2 (Bradyrhizobium group) and YB4 (Rhizobium group) were selected and used for further analyses. The generation time of each strain was shown to be 22.5 h for strain YB2 and 0.8 h for strain YB4, respectively. Differences between strains YB2 and YB4 were also reflected in the bacteroid state in the symbiosome. Symbiosome in nodule cells for the strain YB4 contained one bacteroid cell in a peribacteroid membrane, whereas a symbiosome for strain YB2 contained several bacteroid cells.

  10. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    NASA Astrophysics Data System (ADS)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  11. Properties of multivariable root loci. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yagle, A. E.

    1981-01-01

    Various properties of multivariable root loci are analyzed from a frequency domain point of view by using the technique of Newton polygons, and some generalizations of the SISO root locus rules to the multivariable case are pointed out. The behavior of the angles of arrival and departure is related to the Smith-MacMillan form of G(s) and explicit equations for these angles are obtained. After specializing to first order and a restricted class of higher order poles and zeros, some simple equations for these angles that are direct generalizations of the SISO equations are found. The unusual behavior of root loci on the real axis at branch points is studied. The SISO root locus rules for break-in and break-out points are shown to generalize directly to the multivariable case. Some methods for computing both types of points are presented.

  12. Exogenous hydrogen peroxide reversibly inhibits root gravitropism and induces horizontal curvature of primary root during grass pea germination.

    PubMed

    Jiang, Jinglong; Su, Miao; Wang, Liyan; Jiao, Chengjin; Sun, Zhengxi; Cheng, Wei; Li, Fengmin; Wang, Chongying

    2012-04-01

    During germination in distilled water (dH(2)O) on a horizontally positioned Petri dish, emerging primary roots of grass pea (Lathyrus sativus L.) grew perpendicular to the bottom of the Petri dish, due to gravitropism. However, when germinated in exogenous hydrogen peroxide (H(2)O(2)), the primary roots grew parallel to the bottom of the Petri dish and asymmetrically, forming a horizontal curvature. Time-course experiments showed that the effect was strongest when H(2)O(2) was applied prior to the emergence of the primary root. H(2)O(2) failed to induce root curvature when applied post-germination. Dosage studies revealed that the frequency of primary root curvature was significantly enhanced with increased H(2)O(2) concentrations. This curvature could be directly counteracted by dimethylthiourea (DMTU), a scavenger of H(2)O(2), but not by diphenylene iodonium (DPI) and pyridine, inhibitors of H(2)O(2) production. Exogenous H(2)O(2) treatment caused both an increase in the activities of H(2)O(2)-scavenging enzymes [including ascorbate peroxidase (APX: EC 1.11.1.11), catalase (CAT: EC 1.11.1.6) and peroxidase (POD: EC 1.11.1.7)] and a reduction in endogenous H(2)O(2) levels and root vitality. Although grass pea seeds absorbed exogenous H(2)O(2) during seed germination, DAB staining of paraffin sections revealed that exogenous H(2)O(2) only entered the root epidermis and not inner tissues. These data indicated that exogenously applied H(2)O(2) could lead to a reversible loss of the root gravitropic response and a horizontal curvature in primary roots during radicle emergence of the seedling. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Rooting gene trees without outgroups: EP rooting.

    PubMed

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  14. jsc2018m000256_Rooting_for_Answers

    NASA Image and Video Library

    2018-03-22

    Rooting for Answers: Simulating G-Force in Plants---------On Earth, plants use gravity and light to orient their roots and shoots, but in space, microgravity is too weak to provide a growth cue. The Gravity Perception Systems (Plant Gravity Perception) investigation germinates normal and variant forms of thale cress, a model research plant, to study the plants’ gravity and light perception. Results provide new information about plants’ ability to detect gravity and adapt to an environment without it. The investigation continues efforts to grow plants for food on future missions.

  15. Inversion induced Manihot esculenta stem tubers express key tuberization genes; Mec1, RZF, SuSy1 and PIN2.

    PubMed

    Bowrin, Valerie; Sutton, Fedora

    2016-01-01

    Cassava (M. esculenta) gives rise to unique underground stem tubers when stem cuttings are planted in an inverted orientation. The nutritional profile of the stem and root tubers were similar except for protein content which was higher in stem than in root tubers. RT-PCR revealed that several key genes (Mec1, RZF, SuSy1 and PIN2) involved in root tuberization were also expressed in these stem tubers. At five weeks post planting, these genes were expressed in roots and underground stems as in the mature tubers. However at 15 weeks post planting, they were expressed in both root and stem tubers but not in adventitious roots or in the non-tuberized stems. Expression of, the root auxin efflux carrier gene PIN2 in the stem tubers indicate a role for auxin in the stem tuberization process.

  16. RootJS: Node.js Bindings for ROOT 6

    NASA Astrophysics Data System (ADS)

    Beffart, Theo; FrĂŒh, Maximilian; Haas, Christoph; Rajgopal, Sachin; Schwabe, Jonas; Wolff, Christoph; Szuba, Marek

    2017-10-01

    We present rootJS, an interface making it possible to seamlessly integrate ROOT 6 into applications written for Node.js, the JavaScript runtime platform increasingly commonly used to create high-performance Web applications. ROOT features can be called both directly from Node.js code and by JIT-compiling C++ macros. All rootJS methods are invoked asynchronously and support callback functions, allowing non-blocking operation of Node.js applications using them. Last but not least, our bindings have been designed to platform-independent and should therefore work on all systems supporting both ROOT 6 and Node.js. Thanks to rootJS it is now possible to create ROOT-aware Web applications taking full advantage of the high performance and extensive capabilities of Node.js. Examples include platforms for the quality assurance of acquired, reconstructed or simulated data, book-keeping and e-log systems, and even Web browser-based data visualisation and analysis.

  17. Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures.

    PubMed

    Richter, Ute; Rothe, Grit; Fabian, Anne-Katrin; Rahfeld, Bettina; DrÀger, Birgit

    2005-02-01

    The medicinally applied tropane alkaloids hyoscyamine and scopolamine are produced in Atropa belladonna L. and in a small number of other Solanaceae. Calystegines are nortropane alkaloids that derive from a branching point in the tropane alkaloid biosynthetic pathway. In A. belladonna root cultures, calystegine molar concentration is 2-fold higher than that of hyoscyamine and scopolamine. In this study, two tropinone reductases forming a branching point in the tropane alkaloid biosynthesis were overexpressed in A. belladonna. Root culture lines with strong overexpression of the transcripts contained more enzyme activity of the respective reductase and enhanced enzyme products, tropine or pseudotropine. High pseudotropine led to an increased accumulation of calystegines in the roots. Strong expression of the tropine-forming reductase was accompanied by 3-fold more hyoscyamine and 5-fold more scopolamine compared with control roots, and calystegine levels were decreased by 30-90% of control. In some of the transformed root cultures, an increase of total tropane alkaloids was observed. Thus, transformation with cDNA of tropinone reductases successfully altered the ratio of tropine-derived alkaloids versus pseudotropine-derived alkaloids.

  18. Characterization of a type-A response regulator differentially expressed during adventitious caulogenesis in Pinus pinaster.

    PubMed

    Alvarez, José M; Cortizo, Millån; Ordås, Ricardo J

    2012-12-15

    The molecular cloning and characterization of PipsRR1, a type-A response regulator in Pinus pinaster, is reported here. Type-A response regulators mediate downstream responses to cytokinin and act as negative feedback regulators of the signal transduction pathway. Some type-A response regulators in Arabidopsis have been related to de novo meristem formation. However, little information exists in Pinus spp. The PipsRR1 gene contains 5 exons, as do all type-A response regulators in Arabidopsis, and the deduced protein contains a receiver domain with the conserved DDK residues and a short C terminal extension. Expression analysis showed that the PipsRR1 gene is differentially expressed during the first phases of adventitious caulogenesis induced by benzyladenine in P. pinaster cotyledons, suggesting that PipsRR1 plays a role in caulogenesis in conifers. Additionally, a binary vector carrying the PipsRR1 promoter driving GFP:GUS expression was constructed to analyze the promoter activity in P. pinaster somatic embryos. The results of genetic transformation showed GUS activity during somatic embryo mass proliferation and embryo maturation. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Compensatory Root Water Uptake of Overlapping Root Systems

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  20. High Levels of Hemoglobin Promote Carotid Adventitial Vasa Vasorum Neoangiogenesis in Chronic Kidney Disease

    PubMed Central

    Martinez-Alonso, Montserrat; Belart, Montserrat; Vilar, Ana; MartĂ­n, Marisa; Craver, Lourdes; Betriu, Àngels; Valdivielso, JosĂ© Manuel; FernĂĄndez, Elvira

    2017-01-01

    Chronic kidney disease (CKD) patients, characterized by traditional and nontraditional risk factors, are prone to develop atheromatosis and thus cardiovascular events and mortality. The angiogenesis of the adventitial vasa vasorum (aVV) surrounding the carotid has been described as the atheromatosis initiator. Therefore, the aim of the study was to (1) evaluate if the carotid aVV in CKD patients increases in comparison to its physiological value of healthy patients; (2) explore which traditional or nontraditional risk factor including inflammation, bone and mineral metabolism, and anemia could be related to the aVV angiogenesis. CKD patients without previous cardiovascular events (44, stages 3-4; 37, stage 5D) and 65 healthy subjects were compared. The carotid aVV and the intima-media thickness (cIMT) were evaluated by ultrasound. CKD patients at stages 3-4 showed higher aVV of the right carotid artery even after adjusting for age. Importantly, a multiple linear regression model showed hemoglobin levels > 12.5 g/dL as the factor for an estimated higher aVV of the right carotid artery. In conclusion, the association of hemoglobin with higher aVV could suggest the role of high hemoglobin in the higher incidence of adverse cardiovascular outcomes in CKD patients. PMID:28133420

  1. Morpho-anatomy and ontogeny of the underground system of Chrysolaena simplex (Less.) Dematt. (Asteraceae).

    PubMed

    Santos, Vanessa S; Souza, Vinicius P; Vilhalva, Divina A A; Ferreira, Fernanda P S; Paula, José R; Rezende, Maria Helena

    2016-03-01

    The occurrence of thickened underground systems in Asteraceae is widely reported in the literature. Given the great complexity of underground systems, which may originate from roots, stems, or both, morpho-anatomical analyses are essential to ensure the use of correct terminology. The goals of this study were to describe the morpho-anatomy and ontogeny, investigate the occurrence of secondary metabolites and evaluate the effects of seasonality on the underground system of Chrysolaena simplex (Less.) Dematt. Samples were studied using standard protocols of plant anatomy, scanning electron microscopy, histochemical and phytochemical. The underground system of C. simplex was categorised as a rhizophore which started from cotyledonary node. In adult individuals, with rhizophores completely developed, the primary roots degenerated and adventitious radicular systems are formed. The buds in the subterranean portions promote the rhizophore growing, and form aerial stems when exposed to light. Lipophilic droplets were evident in the parenchymatous cells of the cortex and pith, endodermis and buds. Inulin-type fructans were observed in the stem axis and buds of the rhizophore. The presence of buds, secondary metabolites and the storage of fructans and lipids in the rhizophore can be seen as adaptive traits.

  2. Rooting Gene Trees without Outgroups: EP Rooting

    PubMed Central

    Sinsheimer, Janet S.; Little, Roderick J. A.; Lake, James A.

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167–181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301–316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60–76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489–493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763–766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–260). PMID:22593551

  3. Genome duplication improves rice root resistance to salt stress

    PubMed Central

    2014-01-01

    Background Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress. Results Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na+ content, H+ (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na+ in tetraploid rice roots significantly decreased while root tip H+ efflux in tetraploid rice significantly increased. Conclusions Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na+ entrance into the roots. PMID:25184027

  4. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  5. The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides

    PubMed Central

    Weiller, Florent; Young, Philip; Driouich, Azeddine; Vivier, Melané A.

    2017-01-01

    Background and Aims Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana, have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1–4) have previously been characterized from Heliophila coronopifolia, a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Methods Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia. Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. Key Results BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1–4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. Conclusions This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests

  6. Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Gilroy, Simon

    2003-01-01

    Plants must sense and respond to diverse stimuli to optimize the architecture of their root system for water and nutrient scavenging and anchorage. We have therefore analyzed how information from two of these stimuli, touch and gravity, are integrated to direct root growth. In Arabidopsis thaliana, touch stimulation provided by a glass barrier placed across the direction of growth caused the root to form a step-like growth habit with bends forming in the central and later the distal elongation zones. This response led to the main root axis growing parallel to, but not touching the obstacle, whilst the root cap maintained contact with the barrier. Removal of the graviperceptive columella cells of the root cap using laser ablation reduced the bending response of the distal elongation zone. Similarly, although the roots of the gravisensing impaired pgm1-1 mutant grew along the barrier at the same average angle as wild-type, this angle became more variable with time. These observations imply a constant gravitropic re-setting of the root tip response to touch stimulation from the barrier. In wild-type plants, transient touch stimulation of root cap cells, but not other regions of the root, inhibited both subsequent gravitropic growth and amyloplast sedimentation in the columella. Taken together, these results suggest that the cells of the root cap sense touch stimuli and their subsequent signaling acts on the columella cells to modulate their graviresponse. This interaction of touch and gravity signaling would then direct root growth to avoid obstacles in the soil while generally maintaining downward growth.

  7. C-shaped root canal in a maxillary first molar: a case report.

    PubMed

    Yilmaz, Z; Tuncel, B; Serper, A; Calt, S

    2006-02-01

    This case report presents an unusual C-shaped root canal system in a maxillary first molar tooth. Although C-shaped root canals are most frequently seen in the mandibular second molar, they may also appear in maxillary molars. A literature search revealed only a few case reports of C-shaped root canal systems in maxillary molars. The present case describes a C-shaped canal in the buccal root of a maxillary first molar. The endodontic access cavity displayed two canal orifices, one leading to the canal system in the buccal root, the other into the palatal root canal system. In the buccal root, what appeared to be the mesial and distal canals joined to form a single C-shaped canal. --Careful examination of radiographs and the internal anatomy of teeth is essential.-- The location and morphology of root canals should be identified at high magnification under the microscope.

  8. Biotechnological production of hyperforin for pharmaceutical formulation.

    PubMed

    Gaid, Mariam; Biedermann, Eline; FĂŒller, Jendrik; Haas, Paul; Behrends, Sönke; Krull, Rainer; Scholl, Stephan; Wittstock, Ute; MĂŒller-Goymann, Christel; Beerhues, Ludger

    2018-05-01

    Hyperforin is a major active constituent of Hypericum perforatum (St. John's wort). It has amazing pharmacological activities, such as antidepressant properties, but it is labile and difficult to synthesize. Its sensitivity and lipophilicity are challenges for processing and formulation. Its chemical complexity provokes approaches of biotechnological production and modification. Dedifferentiated H. perforatum cell cultures lack appropriate storage sites and hence appreciable hyperforin levels. Shoot cultures are capable of forming hyperforin but less suitable for biomass up-scaling in bioreactors. Roots commonly lack hyperforin but a recently established adventitious root line has been demonstrated to produce hyperforin and derivatives at promising levels. The roots also contained lupulones, the typical constituents of hop (Humulus lupulus). Although shear-sensitive, these root cultures provide a potential production platform for both individual compounds and extracts with novel combinations of constituents and pharmacological activities. Besides in vitro cultivation techniques, the reconstruction of hyperforin biosynthesis in microorganisms is a promising alternative for biotechnological production. The biosynthetic pathway is under study, with omics-technologies being increasingly implemented. These biotechnological approaches may not only yield hyperforin at reasonable productivity but also allow for modifications of its chemical structure and pharmacological profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    PubMed Central

    Olmo, RocĂ­o; Cabrera, Javier; Moreno-Risueno, Miguel A.; Fukaki, Hidehiro; Fenoll, Carmen; Escobar, Carolina

    2017-01-01

    Root-knot nematodes (RKNs; Meloidogyne spp.) induce feeding cells (giant cells; GCs) inside a pseudo-organ (gall) from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN–plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT)-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs), auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19, slr, and alf4. Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those prevalent

  10. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    PubMed

    Olmo, RocĂ­o; Cabrera, Javier; Moreno-Risueno, Miguel A; Fukaki, Hidehiro; Fenoll, Carmen; Escobar, Carolina

    2017-01-01

    Root-knot nematodes (RKNs; Meloidogyne spp.) induce feeding cells (giant cells; GCs) inside a pseudo-organ (gall) from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN-plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT)-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs), auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19 , slr , and alf4 . Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those prevalent

  11. Current advancements and challenges in soil-root interactions modelling

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Huber, Katrin; Abesha, Betiglu; Meunier, Felicien; Leitner, Daniel; Roose, Tiina; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry

    2015-04-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  12. Current Advancements and Challenges in Soil-Root Interactions Modelling

    NASA Astrophysics Data System (ADS)

    Schnepf, A.; Huber, K.; Abesha, B.; Meunier, F.; Leitner, D.; Roose, T.; Javaux, M.; Vanderborght, J.; Vereecken, H.

    2014-12-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  13. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    PubMed

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  14. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster

    PubMed Central

    Danjon, Frédéric; Caplan, Joshua S.; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately. PMID

  15. Mandibular molar root morphology in Neanderthals and Late Pleistocene and recent Homo sapiens.

    PubMed

    Kupczik, Kornelius; Hublin, Jean-Jacques

    2010-11-01

    Neanderthals have a distinctive suite of dental features, including large anterior crown and root dimensions and molars with enlarged pulp cavities. Yet, there is little known about variation in molar root morphology in Neanderthals and other recent and fossil members of Homo. Here, we provide the first comprehensive metric analysis of permanent mandibular molar root morphology in Middle and Late Pleistocene Homo neanderthalensis, and Late Pleistocene (Aterian) and recent Homo sapiens. We specifically address the question of whether root form can be used to distinguish between these groups and assess whether any variation in root form can be related to differences in tooth function. We apply a microtomographic imaging approach to visualise and quantify the external and internal dental morphologies of both isolated molars and molars embedded in the mandible (n=127). Univariate and multivariate analyses reveal both similarities (root length and pulp volume) and differences (occurrence of pyramidal roots and dental tissue volume proportion) in molar root morphology among penecontemporaneous Neanderthals and Aterian H. sapiens. In contrast, the molars of recent H. sapiens are markedly smaller than both Pleistocene H. sapiens and Neanderthals, but share with the former the dentine volume reduction and a smaller root-to-crown volume compared with Neanderthals. Furthermore, we found the first molar to have the largest average root surface area in recent H. sapiens and Neanderthals, although in the latter the difference between M(1) and M(2) is small. In contrast, Aterian H. sapiens root surface areas peak at M(2). Since root surface area is linked to masticatory function, this suggests a distinct occlusal loading regime in Neanderthals compared with both recent and Pleistocene H. sapiens. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Stable centrosomal roots disentangle to allow interphase centriole independence

    PubMed Central

    2018-01-01

    The centrosome is a non–membrane-bound cellular compartment consisting of 2 centrioles surrounded by a protein coat termed the pericentriolar material (PCM). Centrioles generally remain physically associated together (a phenomenon called centrosome cohesion), yet how this occurs in the absence of a bounding lipid membrane is unclear. One model posits that pericentriolar fibres formed from rootletin protein directly link centrioles, yet little is known about the structure, biophysical properties, or assembly kinetics of such fibres. Here, I combine live-cell imaging of endogenously tagged rootletin with cell fusion and find previously unrecognised plasticity in centrosome cohesion. Rootletin forms large, diffusionally stable bifurcating fibres, which amass slowly on mature centrioles over many hours from anaphase. Nascent centrioles (procentrioles), in contrast, do not form roots and must be licensed to do so through polo-like kinase 1 (PLK1) activity. Transient separation of roots accompanies centriolar repositioning during the interphase, suggesting that centrioles organize as independent units, each containing discrete roots. Indeed, forced induction of duplicate centriole pairs allows independent reshuffling of individual centrioles between the pairs. Therefore collectively, these findings suggest that progressively nucleated polymers mediate the dynamic association of centrioles as either 1 or 2 interphase centrosomes, with implications for the understanding of how non–membrane-bound organelles self-organise. PMID:29649211

  17. The evolution of root hairs and rhizoids.

    PubMed

    Jones, Victor A S; Dolan, Liam

    2012-07-01

    Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively. Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts. A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period.

  18. The evolution of root hairs and rhizoids

    PubMed Central

    Jones, Victor A.S.; Dolan, Liam

    2012-01-01

    Background Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively. Scope Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts. Conclusions A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period. PMID:22730024

  19. A split-root technique for measuring root water potential.

    PubMed

    Adeoye, K B; Rawlins, S L

    1981-07-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem.In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium.

  20. A Split-Root Technique for Measuring Root Water Potential

    PubMed Central

    Adeoye, Kingsley B.; Rawlins, Stephen L.

    1981-01-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem. In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium. Images PMID:16661886

  1. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes

    DOE PAGES

    McCormack, M. Luke; Dickie, Ian A.; Eissenstat, David M.; ...

    2015-03-10

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain due to challenges in consistent measurement and interpretation of fine-root systems. We define fine roots as all roots less than or equal to 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. We demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, finemore » roots are separated into either individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine root pool. Furthermore, using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally a ca. 30% reduction from previous estimates assuming a single fine-root pool. In the future we hope to develop tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi in fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand belowground processes in the terrestrial biosphere.« less

  2. Apoplastic interactions between plants and plant root intruders.

    PubMed

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  3. Apoplastic interactions between plants and plant root intruders

    PubMed Central

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant–parasite interactions. PMID:26322059

  4. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  5. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).

    PubMed

    Valenzuela-Estrada, Luis R; Vera-Caraballo, Vivianette; Ruth, Leah E; Eissenstat, David M

    2008-12-01

    Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.

  6. Effect of Peracetic Acid as A Final Rinse on Push Out Bond Strength of Root Canal Sealers to Root Dentin.

    PubMed

    Gaddala, Naresh; Veeramachineni, Chandrasekhar; Tummala, Muralidhar

    2015-05-01

    Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but not statistically significant than smear clear.

  7. Effect of Peracetic Acid as A Final Rinse on Push Out Bond Strength of Root Canal Sealers to Root Dentin

    PubMed Central

    Gaddala, Naresh; Veeramachineni, Chandrasekhar

    2015-01-01

    Background Smear layer which was formed during the instrumentation of root canals hinders the penetration of root canal sealers to root dentin and affect the bond strength of root canal sealers to root dentin. Final irrigant such as demineralizing agents are used to remove the inorganic portion of the smear layer. In the present study, peracetic acid used as a final rinse, to effect the bond strength of root canal sealers to root dentin. Aim The purpose of the present study was to evaluate the efficacy of peracetic acid as a final irrigant on bond strength of root canal sealers to root dentin. Materials and Methods Sixty six freshly extracted human single rooted mandibular premolars were used for this study. After decoronation the samples were instrumented with Protaper upto F3 and irrigated with 5.25% NaOcl. The teeth were then divided into three groups based on final irrigant used: Group-1(control group) Canals were irrigated with distilled water. Group-2: Canals were irrigated with peracetic acid. Group-3: Canals were irrigated with smear clear. Each group was further divided into three subgroups (n=30) based on the sealer used to obturate the canals. Subgroup-1: kerr, Subgroup-2: Apexit plus, Subgroup-3: AH PLUS. Each sealer was mixed and coated to master cone and placed in the canal. The bonding between sealer and dentin surface was evaluated using push out bond strength by universal testing machine. The mean bond strength values of each group were statistically evaluated using Two-way ANOVA followed by Tukey post-hoc test. Results Significant difference was found among the bond strength of the sealers. But, there is no statistically significant difference between the groups irrigated with peracetic acid and smear clear compared to control group. AH Plus showed highest bond strength irrespective of the final irrigant used. Conclusion Peracetic acid when employed as final irrigant improved the bond strength of root canal sealers compared to control group but

  8. Proper PIN1 Distribution Is Needed for Root Negative Phototropism in Arabidopsis

    PubMed Central

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism. PMID:24465665

  9. Proper PIN1 distribution is needed for root negative phototropism in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.

  10. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    PubMed Central

    Fusconi, Anna

    2014-01-01

    Background Arbuscular mycorrhizae (AMs) form a widespread root–fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. Scope This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Conclusions Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions. PMID:24227446

  11. Fine root morphological traits determine variation in root respiration of Quercus serrata.

    PubMed

    Makita, Naoki; Hirano, Yasuhiro; Dannoura, Masako; Kominami, Yuji; Mizoguchi, Takeo; Ishii, Hiroaki; Kanazawa, Yoichi

    2009-04-01

    Fine root respiration is a significant component of carbon cycling in forest ecosystems. Although fine roots differ functionally from coarse roots, these root types have been distinguished based on arbitrary diameter cut-offs (e.g., 2 or 5 mm). Fine root morphology is directly related to physiological function, but few attempts have been made to understand the relationships between morphology and respiration of fine roots. To examine relationships between respiration rates and morphological traits of fine roots (0.15-1.4 mm in diameter) of mature Quercus serrata Murr., we measured respiration of small fine root segments in the field with a portable closed static chamber system. We found a significant power relationship between mean root diameter and respiration rate. Respiration rates of roots<0.4 mm in mean diameter were high and variable, ranging from 3.8 to 11.3 nmol CO2 g(-1) s(-1), compared with those of larger diameter roots (0.4-1.4 mm), which ranged from 1.8 to 3.0 nmol CO2 g(-1) s(-1). Fine root respiration rate was positively correlated with specific root length (SRL) as well as with root nitrogen (N) concentration. For roots<0.4 mm in diameter, SRL had a wider range (11.3-80.4 m g(-1)) and was more strongly correlated with respiration rate than diameter. Our results indicate that a more detailed classification of fine roots<2.0 mm is needed to represent the heterogeneity of root respiration and to evaluate root biomass and root morphological traits.

  12. Maxillary first molar with an O-shaped root morphology: report of a case.

    PubMed

    Shin, Yooseok; Kim, Yemi; Roh, Byoung-Duck

    2013-12-01

    This case report is to present a maxillary first molar with one O-shaped root, which is an extended C-shaped canal system. Patient with chronic apical periodontitis in maxillary left first molar underwent replantation because of difficulty in negotiating all canals. Periapical radiographs and cone-beam computed tomography (CBCT) were taken. All roots were connected and fused to one root, and all canals seemed to be connected to form an O-shape. The apical 3 mm of the root were resected and retrograde filled with resin-modified glass ionomer. Intentional replantation as an alternative treatment could be considered in a maxillary first molar having an unusual O-shaped root.

  13. Endodontic treatment of mandibular molars with atypical root canal anatomy: reports of 4 cases.

    PubMed

    Chauhan, Raju; Singh, Shweta

    2015-01-01

    The variations in root canal anatomy of multirooted teeth represent a continuous challenge to endodontic diagnosis and treatment. Although the most common configuration of mandibular molars is one containing 2 roots and 3 root canals, there are many different combinations. Very rarely, an additional third (supernumerary) root is seen. When it is located distolingually to the main distal root, this third root is called radix entomolaris (RE), and when it is located mesiobuccally to the mesial root, it is called radix paramolaris (RP). Variations of root canal systems need not always be in the form of extra roots or extra canals. Single roots with single canals can also occur. A general dentist should be aware of these unusual root canal morphologies in mandibular molars for the success of endodontic treatment. These case reports describe the root canal treatment of a case of RE in the mandibular first molar, 2 rare cases of RP (1 each in the mandibular first and second molars), and a mandibular second molar with a single root and root canal.

  14. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex.

    PubMed

    Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis

    2013-03-01

    Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  15. Seedling root targets

    Treesearch

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  16. Effect of Root Moisture Content and Diameter on Root Tensile Properties.

    PubMed

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation.

  17. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    PubMed Central

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  18. The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides.

    PubMed

    Weiller, Florent; Moore, John P; Young, Philip; Driouich, Azeddine; Vivier, Melané A

    2017-03-01

    Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana , have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1-4) have previously been characterized from Heliophila coronopifolia , a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia . Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1-4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection. © The

  19. Nonsurgical root canal therapy of large cyst-like inflammatory periapical lesions and inflammatory apical cysts.

    PubMed

    Lin, Louis M; Ricucci, Domenico; Lin, Jarshen; Rosenberg, Paul A

    2009-05-01

    It is a general belief that large cyst-like periapical lesions and apical true cysts caused by root canal infection are less likely to heal after nonsurgical root canal therapy. Nevertheless, there is no direct evidence to support this assumption. A large cyst-like periapical lesion or an apical true cyst is formed within an area of apical periodontitis and cannot form by itself. Therefore, both large cyst-like periapical lesions and apical true cysts are of inflammatory and not of neoplastic origin. Apical periodontitis lesions, regardless of whether they are granulomas, abscesses, or cysts, fail to heal after nonsurgical root canal therapy for the same reason, intraradicular and/or extraradicular infection. If the microbial etiology of large cyst-like periapical lesions and inflammatory apical true cysts in the root canal is removed by nonsurgical root canal therapy, the lesions might regress by the mechanism of apoptosis in a manner similar to the resolution of inflammatory apical pocket cysts. To achieve satisfactory periapical wound healing, surgical removal of an apical true cyst must include elimination of root canal infection.

  20. Nitrogen affects cluster root formation and expression of putative peptide transporters

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Schenk, Peer M.; Lonhienne, Thierry G. A.; Brackin, Richard; Meier, Stefan; Rentsch, Doris; Schmidt, Susanne

    2009-01-01

    Non-mycorrhizal Hakea actites (Proteaceae) grows in heathland where organic nitrogen (ON) dominates the soil nitrogen (N) pool. Hakea actites uses ON for growth, but the role of cluster roots in ON acquisition is unknown. The aim of the present study was to ascertain how N form and concentration affect cluster root formation and expression of peptide transporters. Hydroponically grown plants produced most biomass with low molecular weight ON>inorganic N>high molecular weight ON, while cluster roots were formed in the order no-N>ON>inorganic N. Intact dipeptide was transported into roots and metabolized, suggesting a role for the peptide transporter (PTR) for uptake and transport of peptides. HaPTR4, a member of subgroup II of the NRT1/PTR transporter family, which contains most characterized di- and tripeptide transporters in plants, facilitated transport of di- and tripeptides when expressed in yeast. No transport activity was demonstrated for HaPTR5 and HaPTR12, most similar to less well characterized transporters in subgroup III. The results provide further evidence that subgroup II of the NRT1/PTR family contains functional di- and tripeptide transporters. Green fluorescent protein fusion proteins of HaPTR4 and HaPTR12 localized to tonoplast, and plasma- and endomembranes, respectively, while HaPTR5 localized to vesicles of unknown identity. Grown in heathland or hydroponic culture with limiting N supply or starved of nutrients, HaPTR genes had the highest expression in cluster roots and non-cluster roots, and leaf expression increased upon re-supply of ON. It is concluded that formation of cluster roots and expression of PTR are regulated in response to N supply. PMID:19380419

  1. Genetic and Phenotypic Analysis of Lateral Root Development in Arabidopsis thaliana.

    PubMed

    Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G

    2018-01-01

    Root system formation to a great extent depends on lateral root (LR) formation. In Arabidopsis thaliana, LRs are initiated within a parent root in pericycle that is an external tissue of the stele. LR initiation takes place in a strictly acropetal pattern, whereas posterior lateral root primordium (LRP) formation is asynchronous. In this chapter, we focus on methods of genetic and phenotypic analysis of LR initiation, LRP morphogenesis, and LR emergence in Arabidopsis. We provide details on how to make cleared root preparations and how to identify the LRP stages. We also pay attention to the categorization of the LRP developmental stages and their variations and to the normalization of the number of LRs and LRPs formed, per length of the primary root, and per number of cells produced within a root. Hormonal misbalances and mutations affect LRP morphogenesis significantly, and the evaluation of LRP abnormalities is addressed as well. Finally, we deal with various molecular markers that can be used for genetic and phenotypic analyses of LR development.

  2. Climate, soil and plant functional types as drivers of global fine-root trait variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.

    Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two

  3. Climate, soil and plant functional types as drivers of global fine-root trait variation

    DOE PAGES

    Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.; ...

    2017-03-08

    Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two

  4. Global root zone storage capacity from satellite-based evaporation

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim G. M.; Gao, Hongkai; JĂ€germeyr, Jonas; Senay, Gabriel B.; van Dijk, Albert I. J. M.; Guerschman, Juan P.; Keys, Patrick W.; Gordon, Line J.; Savenije, Hubert H. G.

    2016-04-01

    This study presents an "Earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale independent. In contrast to a traditional look-up table approach, our method captures the variability in root zone storage capacity within land cover types, including in rainforests where direct measurements of root depths otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM (Simple Terrestrial Evaporation to Atmosphere Model) improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. Our results suggest that several forest types are able to create a large storage to buffer for severe droughts (with a very long return period), in contrast to, for example, savannahs and woody savannahs (medium length return period), as well as grasslands, shrublands, and croplands (very short return period). The presented method to estimate root zone storage capacity eliminates the need for poor resolution soil and rooting depth data that form a limitation for achieving progress in the global land surface modelling community.

  5. Visualizing Rhizosphere Soil Structure Around Living Roots

    NASA Astrophysics Data System (ADS)

    Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.

    2008-12-01

    The rhizosphere, a thin layer of soil (0 to 2 mm) surrounding a living root, is an important interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 ĂŹm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.

  6. High-resolution quantification of root dynamics in split-nutrient rhizoslides reveals rapid and strong proliferation of maize roots in response to local high nitrogen

    PubMed Central

    in ‘t Zandt, Dina; Le MariĂ©, Chantal; Kirchgessner, Norbert; Visser, Eric J.W.; Hund, Andreas

    2015-01-01

    The plant’s root system is highly plastic, and can respond to environmental stimuli such as high nitrogen (N) in patches. A root may respond to an N patch by selective placement of new lateral roots, and therewith increases root N uptake. This may be a desirable trait in breeding programmes, since it decreases NO3 - leaching and N2O emission. Roots of maize (Zea mays L.) were grown without N in split-nutrient rhizoslides. One side of the slides was exposed to high N after 15 d of root development, and root elongation was measured for another 15 d, described in a time course model and parameterized. The elongation rates of crown axile roots on the N-treated side of the plant followed a logistic increase to a maximum of 5.3cm d-1; 95% of the maximum were reached within 4 d. At the same time, on the untreated side, axile root elongation dropped linearly to 1.2cm d-1 within 6.4 d and stayed constant thereafter. Twice as many lateral roots were formed on the crown axis on the N side compared to the untreated side. Most strikingly, the elongation rates of laterals of the N side increased linearly with most of the roots reaching an asymptote ~8 d after start of the N treatment. By contrast, laterals on the side without N did not show any detectable elongation beyond the first day after their emergence. We conclude that split-nutrient rhizoslides have great potential to improve our knowledge about nitrogen responsiveness and selection for contrasting genotypes. PMID:26105997

  7. Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tran H.; Brechenmacher, Laurent; Aldrich, Joshua T.

    2012-11-11

    Root hairs are single hair-forming cells on roots that function to increase root surface area, enhancing water and nutrient uptake. In leguminous plants, root hairs also play a critical role as the site of infection by symbiotic nitrogen fixing rhizobia, leading to the formation of a novel organ, the nodule. The initial steps in the rhizobia-root hair infection process are known to involve specific receptor kinases and subsequent kinase cascades. Here, we characterize the phosphoproteome of the root hairs and the corresponding stripped roots (i.e., roots from which root hairs were removed) during rhizobial colonization and infection to gain insightmore » into the molecular mechanism of root hair cell biology. We chose soybean (Glycine max L.), one of the most important crop plants in the legume family, for this study because of its larger root size, which permits isolation of sufficient root hair material for phosphoproteomic analysis. Phosphopeptides derived from root hairs and stripped roots, mock inoculated or inoculated with the soybean-specific rhizobium Bradyrhizobium japonicum, were labeled with the isobaric tag 8-plex ITRAQ, enriched using Ni-NTA magnetic beads and subjected to nRPLC-MS/MS analysis using HCD and decision tree guided CID/ETD strategy. A total of 1,625 unique phosphopeptides, spanning 1,659 non-redundant phosphorylation sites, were detected from 1,126 soybean phosphoproteins. Among them, 273 phosphopeptides corresponding to 240 phosphoproteins were found to be significantly regulated (>1.5 fold abundance change) in response to inoculation with B. japonicum. The data reveal unique features of the soybean root hair phosphoproteome, including root hair and stripped root-specific phosphorylation suggesting a complex network of kinase-substrate and phosphatase-substrate interactions in response to rhizobial inoculation.« less

  8. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Yuan, Ting-Ting; Zhang, Liang; Lu, Ying-Tang

    2013-10-01

    Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN-FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue-light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue-light-induced PIN3 polarization were modulated by a brefeldin A-sensitive, GNOM-dependent, trafficking pathway and by phot1-regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue-light-induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  9. Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength1[OPEN

    PubMed Central

    Kirchgessner, Norbert; Walter, Achim

    2017-01-01

    Increased soil strength due to soil compaction or soil drying is a major limitation to root growth and crop productivity. Roots need to exert higher penetration force, resulting in increased penetration stress when elongating in soils of greater strength. This study aimed to quantify how the genotypic diversity of root tip geometry and root diameter influences root elongation under different levels of soil strength and to determine the extent to which roots adjust to increased soil strength. Fourteen wheat (Triticum aestivum) varieties were grown in soil columns packed to three bulk densities representing low, moderate, and high soil strength. Under moderate and high soil strength, smaller root tip radius-to-length ratio was correlated with higher genotypic root elongation rate, whereas root diameter was not related to genotypic root elongation. Based on cavity expansion theory, it was found that smaller root tip radius-to-length ratio reduced penetration stress, thus enabling higher root elongation rates in soils with greater strength. Furthermore, it was observed that roots could only partially adjust to increased soil strength. Root thickening was bounded by a maximum diameter, and root tips did not become more acute in response to increased soil strength. The obtained results demonstrated that root tip geometry is a pivotal trait governing root penetration stress and root elongation rate in soils of greater strength. Hence, root tip shape needs to be taken into account when selecting for crop varieties that may tolerate high soil strength. PMID:28600344

  10. Correlation of root dentin thickness and length of roots in mesial roots of mandibular molars.

    PubMed

    Dwivedi, Shweta; Dwivedi, Chandra Dhar; Mittal, Neelam

    2014-09-01

    The purpose of this study was to analyze the relation of tooth length and distal wall thickness of mesial roots in mandibular molars at different locations (ie, 2 mm below the furcation and at the junction between the middle and apical third). Forty-five mandibular first molars were taken, and the length of each tooth was measured. Then, specimens were divided into three groups according to their length: group I-long (24.2 mm ± 1.8), group II-medium (21 mm ± 1.5) and group III-short (16.8 mm ± 1.8). mesial root of each marked at two levels - at 2 mm below the furcation as well as at junction of apical and middle third of roots. The minimum thickness of the distal root dentine associated with the buccal and lingual canals of the mesial roots was measured, The distance between the buccal and lingual canals and the depth of concavity in the distal surface of the mesial roots were also measured. Statistical analysis was performed by using analysis of variance and the Student-Newman-Keuls test. The minimum thickness of the distal wall of the mesiobuccal canal was significantly different (P < .001) between groups 1 (long) and 3 (short). Distal wall thickness of the mesiobuccal root and distal concavity of the mesial root of mandibular first molars were found to be thinner in longer teeth compared with shorter teeth. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Three-rooted premolar analyzed by high-resolution and cone beam CT.

    PubMed

    Marca, Caroline; Dummer, Paul M H; Bryant, Susan; Vier-Pelisser, Fabiana Vieira; Só, Marcus Vinicius Reis; Fontanella, Vania; Dutra, Vinicius D'avila; de Figueiredo, José Antonio Poli

    2013-07-01

    The aim of this study was to analyze the variations in canal and root cross-sectional area in three-rooted maxillary premolars between high-resolution computed tomography (ÎŒCT) and cone beam computed tomography (CBCT). Sixteen extracted maxillary premolars with three distinct roots and fully formed apices were scanned using ÎŒCT and CBCT. Photoshop CS software was used to measure root and canal cross-sectional areas at the most cervical and the most apical points of each root third in images obtained using the two tomographic computed (CT) techniques, and at 30 root sections equidistant from both root ends using ÎŒCT images. Canal and root areas were compared between each method using the Student t test for paired samples and 95 % confidence intervals. Images using ÎŒCT were sharper than those obtained using CBCT. There were statistically significant differences in mean area measurements of roots and canals between the ÎŒCT and CBCT techniques (P < 0.05). Root and canal areas had similar variations in cross-sectional ÎŒCT images and became proportionally smaller in a cervical to apical direction as the cementodentinal junction was approached, from where the area then increased apically. Although variation was similar in the roots and canals under study, CBCT produced poorer image details than ÎŒCT. Although CBCT is a strong diagnosis tool, it still needs improvement to provide accuracy in details of the root canal system, especially in cases with anatomical variations, such as the three-rooted maxillary premolars.

  12. Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy.

    PubMed

    Achouak, Wafa; Conrod, Sandrine; Cohen, Valérie; Heulin, Thierry

    2004-08-01

    Pseudomonas brassicacearum was isolated as a major root-colonizing population from Arabidopsis thaliana. The strain NFM421 of P. brassicacearum undergoes phenotypic variation during A. thaliana and Brassica napus root colonization in vitro as well as in soil, resulting in different colony appearance on agar surfaces. Bacteria forming translucent colonies (phase II cells) essentially were localized at the surface of young roots and root tips, whereas wild-type cells (phase I cells) were localized at the basal part of roots. The ability of phase II cells to spread and colonize new sites on root surface correlates with over-production of flagellin as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of surface proteins and microsequencing. Moreover, phase II cells showed a higher ability to swim and to swarm on semisolid agar medium. Phase I and phase II cells of P. brassicacearum NFM421 were tagged genetically with green fluorescent protein and red fluorescent protein. Confocal scanning laser microscopy was used to localize phase II cells on secondary roots and root tips of A. thaliana, whereas phase I cells essentially were localized at the basal part of roots. These experiments were conducted in vitro and in soil. Phenotypic variation on plant roots is likely to be a colonization strategy that may explain the high colonization power of P. brassicacearum.

  13. Root resorption during orthodontic treatment.

    PubMed

    Walker, Sally

    2010-01-01

    Medline, Embase, LILACS, The Cochrane Library (Cochrane Database of Systematic Reviews, CENTRAL, and Cochrane Oral Health Group Trials Register) Web of Science, EBM Reviews, Computer Retrieval of Information on Scientific Project (CRISP, www.crisp.cit.nih.gov), On-Line Computer Library Center (www.oclc.org), Google Index to Scientific and Technical Proceedings, PAHO (www.paho.org), WHOLis (www.who.int/library/databases/en), BBO (Brazilian Bibliography of Dentistry), CEPS (Chinese Electronic Periodical Services), Conference materials (www.bl.uk/services/bsds/dsc/conference.html), ProQuest Dissertation Abstracts and Thesis database, TrialCentral (www.trialscentral.org), National Research Register (www.controlled-trials.com), www.Clinicaltrials.gov and SIGLE (System for Information on Grey Literature in Europe). Randomised controlled trials including split mouth design, recording the presence or absence of external apical root resorption (EARR) by treatment group at the end of the treatment period. Data were extracted independently by two reviewers using specially designed and piloted forms. Quality was also assessed independently by the same reviewers. After evaluating titles and abstracts, 144 full articles were obtained of which 13 articles, describing 11 trials, fulfilled the criteria for inclusion. Differences in the methodological approaches and reporting results made quantitative statistical comparisons impossible. Evidence suggests that comprehensive orthodontic treatment causes increased incidence and severity of root resorption, and heavy forces might be particularly harmful. Orthodontically induced inflammatory root resorption is unaffected by archwire sequencing, bracket prescription, and self-ligation. Previous trauma and tooth morphology are unlikely causative factors. There is some evidence that a two- to three-month pause in treatment decreases total root resorption. The results were inconclusive in the clinical management of root resorption, but there

  14. Hydroponic root mats for wastewater treatment-a review.

    PubMed

    Chen, Zhongbing; Cuervo, Diego Paredes; MĂŒller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; KĂ€stner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  15. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Hangarter, R. P.; Kiss, J. Z. (Principal Investigator)

    2003-01-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  16. Network modules and hubs in plant-root fungal biomes

    PubMed Central

    Toju, Hirokazu; Yamamoto, Satoshi; Tanabe, Akifumi S.; Hayakawa, Takashi; Ishii, Hiroshi S.

    2016-01-01

    Terrestrial plants host phylogenetically and functionally diverse groups of below-ground microbes, whose community structure controls plant growth/survival in both natural and agricultural ecosystems. Therefore, understanding the processes by which whole root-associated microbiomes are organized is one of the major challenges in ecology and plant science. We here report that diverse root-associated fungi can form highly compartmentalized networks of coexistence within host roots and that the structure of the fungal symbiont communities can be partitioned into semi-discrete types even within a single host plant population. Illumina sequencing of root-associated fungi in a monodominant south beech forest revealed that the network representing symbiont–symbiont co-occurrence patterns was compartmentalized into clear modules, which consisted of diverse functional groups of mycorrhizal and endophytic fungi. Consequently, terminal roots of the plant were colonized by either of the two largest fungal species sets (represented by Oidiodendron or Cenococcum). Thus, species-rich root microbiomes can have alternative community structures, as recently shown in the relationships between human gut microbiome type (i.e. ‘enterotype’) and host individual health. This study also shows an analytical framework for pinpointing network hubs in symbiont–symbiont networks, leading to the working hypothesis that a small number of microbial species organize the overall root–microbiome dynamics. PMID:26962029

  17. Root diversity in alpine plants: root length, tensile strength and plant age

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Stroude, R.; Körner, C.; Buttler, A.; Rixen, C.

    2009-04-01

    A high diversity of plant species and functional groups is hypothesised to increase the diversity of root types and their subsequent effects for soil stability. However, even basic data on root characteristics of alpine plants are very scarce. Therefore, we determined important root characteristics of 13 plant species from different functional groups, i.e. grasses, herbs and shrubs. We excavated the whole root systems of 62 plants from a machine-graded ski slope at 2625 m a.s.l. and analysed the rooting depth, the horizontal root extension, root length and diameter. Single roots of plant species were tested for tensile strength. The age of herbs and shrubs was determined by growth-ring analysis. Root characteristics varied considerably between both plant species and functional groups. The rooting depth of different species ranged from 7.2 ± 0.97 cm to 20.5 ± 2.33 cm, but was significantly larger in the herb Geum reptans (70.8 ± 10.75 cm). The woody species Salix breviserrata reached the highest horizontal root extensions (96.8 ± 25.5 cm). Most plants had their longest roots in fine diameter classes (0.5

  18. Meniscus root repair.

    PubMed

    Vyas, Dharmesh; Harner, Christopher D

    2012-06-01

    Root tears are a subset of meniscal injuries that result in significant knee joint pathology. Occurring on either the medial or lateral side, root tears are defined as radial tears or avulsions of the posterior horn attachment to bone. After a root tear, there is a significant increase in tibio-femoral contact pressure concomitant with altered knee joint kinematics. Previous cadaver studies from our institution have shown that root repair of the medial meniscus is successful in restoring joint biomechanics to within normal limits. Indications for operative management of meniscal root tears include (1) a symptomatic medial meniscus root tear with minimal arthritis and having failed non-operative treatment, and (2) a lateral root tear in associated with an ACL tear. In this review, we describe diagnosis, imaging, patient selection, and arthroscopic surgical technique of medial and lateral meniscus root injuries. In addition we highlight the pearls of repair technique, associated complications, post-operative rehabilitation regimen, and expected outcomes.

  19. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  20. The importance of root strength and deterioration rates upon edaphic stability in steepland forests

    Treesearch

    C. O' Loughlin; R. R. Ziemer

    1982-01-01

    Abstract - The additional strength provided by roots to the soil is generally considered to be in the form of a cohesive strength C which may range in magnitude from 1 kPa to 20 kPa. Studies of the tensile strength of tree roots show that small roots sampled from living trees range in mean tensile strength from about 10 MPa to about 60 MPa. After tree...

  1. Light as stress factor to plant roots – case of root halotropism

    PubMed Central

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; BaluĆĄka, FrantiĆĄek

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives. PMID:25566292

  2. [Flexible root posts].

    PubMed

    Vadachkoriia, N R; Mandzhavidze, N A; Gumberidze, N Sh

    2009-02-01

    The article discusses the current state of restoration techniques of root canal treatment. Nowadays, technical progress allows manufacturers to develop flexible fiberglass posts, aspiring not only to an excellent aesthetics and mechanical properties (first of all, in comparison with metal and cast posts), but also to maintenance of their radio density and a wide range of forms. Growth of fiberglass posts popularity testifies to their clinical efficiency that also is confirmed by results of long-term researches. Introduction of fiberglass posts in a dental practice has rendered huge influence on restoration techniques of root canal treatment. Convincing factors of fiberglass posts superiority provide restoration the appearance similar with the natural dentition; possess close to dentine elasticity; creation of monolithic structure with hard tooth tissues and composite cement, posts, in case of need, can be easily adjusted on length, adhesive linkage of posts gives them additional stability. Modern researches have confirmed that only elastic, namely carbon fiber and the fiberglass posts made of modern technologies possess similar physical properties, as tooth structure. They can create reliable biomimetic design; solve a complex of aesthetic and functional restoration problems.

  3. Characterizing root system characteristics with Electrical resistivity Tomography: a virtual rhizotron simulation

    NASA Astrophysics Data System (ADS)

    Rao, Sathyanarayan; Ehosioke, Solomon; Lesparre, Nolwenn; Nguyen, Frédéric; Javaux, Mathieu

    2017-04-01

    Electrical Resistivity Tomography (ERT) is more and more used for monitoring soil water content in a cropped soil. Yet, the impact of roots on the signal is often neglected and a topic of controversy. In several studies related to soil-root system, it has been showed that the measured root mass density statistically correlates with the electrical conductivity (EC) data obtained from ERT. In addition, some studies suggest that some roots are more electrically conductive than soil for most water content. Thus, higher EC of roots suggest that it might have a measurable impact on ERT signals. In this work, virtual rhizotrons are simulated using the software package called R-SWMS that solves water and solute transport in plant root-soil system, including root growth. The distribution of water content obtained from R-SWMS simulation is converted into EC data using pedo-physical models. The electrical properties of roots and rhizosphere are explicitly included in the EC data to form a conductivity map (CM) with a very detailed spatial resolution. Forward ERT simulations is then carried out for CM generated for various root architectures and soil conditions to study the impact of roots on ERT forward (current and voltage patterns) and inverse solutions. It is demonstrated that under typical injection schemes with lateral electrodes, root system is hardly measurable. However, it is showed that adding electrodes and constraints on the ERT inversion based on root architecture help quantifying root system mass and extent.

  4. Comparing root architectural models

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Javaux, Mathieu; Vanderborght, Jan

    2017-04-01

    Plant roots play an important role in several soil processes (Gregory 2006). Root architecture development determines the sites in soil where roots provide input of carbon and energy and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architectural models have been widely used and been further developed into functional-structural models that are able to simulate the fate of water and solutes in the soil-root system (Dunbabin et al. 2013). Still, a systematic comparison of the different root architectural models is missing. In this work, we focus on discrete root architecture models where roots are described by connected line segments. These models differ (a) in their model concepts, such as the description of distance between branches based on a prescribed distance (inter-nodal distance) or based on a prescribed time interval. Furthermore, these models differ (b) in the implementation of the same concept, such as the time step size, the spatial discretization along the root axes or the way stochasticity of parameters such as root growth direction, growth rate, branch spacing, branching angles are treated. Based on the example of two such different root models, the root growth module of R-SWMS and RootBox, we show the impact of these differences on simulated root architecture and aggregated information computed from this detailed simulation results, taking into account the stochastic nature of those models. References Dunbabin, V.M., Postma, J.A., Schnepf, A., PagĂšs, L., Javaux, M., Wu, L., Leitner, D., Chen, Y.L., Rengel, Z., Diggle, A.J. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function (2013) Plant and Soil, 372 (1-2), pp. 93 - 124. Gregory (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? European Journal of Soil Science 57: 2-12.

  5. Study of cytokinin transport from shoots to roots of wheat plants is informed by a novel method of differential localization of free cytokinin bases or their ribosylated forms by means of their specific fixation.

    PubMed

    Veselov, Stanislav Yu; Timergalina, Leila N; Akhiyarova, Guzel R; Kudoyarova, Guzel R; Korobova, Alla V; Ivanov, Igor; Arkhipova, Tatiana N; Prinsen, Els

    2018-04-10

    The aim of the present report was to demonstrate how a novel approach for immunohistochemical localization of cytokinins in the leaf and particularly in the phloem may complement to the study of their long-distance transport. Different procedures of fixation were used to conjugate either cytokinin bases or their ribosides to proteins of cytoplasm to enable visualization and differential localization of these cytokinins in the leaf cells of wheat plants. In parallel to immunolocalization of cytokinins in the leaf cells, we immunoassayed distribution of free bases of cytokinins, their nucleotides and ribosides between roots and shoots of wheat plants as well as their presence in phloem sap after incubation of leaves in a solution supplemented with either trans-zeatin or isopentenyladenine. The obtained data show ribosylation of the zeatin applied to the leaves and its elevated level in the phloem sap supported by in vivo localization showing the presence of ribosylated forms of zeatin in leaf vessels. This suggests that conversion of zeatin to its riboside is important for the shoot-to-root transport of zeatin-type cytokinins in wheat. Exogenous isopentenyladenine was not modified, but diffused from the leaves as free base. These metabolic differences may not be universal and may depend on the plant species and age. Although the measurements of cytokinins in the phloem sap and root tissue is the most defining for determining cytokinin transport, study of immunolocalization of either free cytokinin bases or their ribosylated forms may be a valuable source of information for predicting their transport in the phloem and to the roots.

  6. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  7. Root hairs aid soil penetration by anchoring the root surface to pore walls

    PubMed Central

    Bengough, A. Glyn; Loades, Kenneth; McKenzie, Blair M.

    2016-01-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3–3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0–1.5g cm−3). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm−3 soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm−3 soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm−3). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm−3 soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027

  8. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  9. Pin1At regulates PIN1 polar localization and root gravitropism

    PubMed Central

    Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng

    2016-01-01

    Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism. PMID:26791759

  10. Pin1At regulates PIN1 polar localization and root gravitropism.

    PubMed

    Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng

    2016-01-21

    Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism.

  11. The evolution of habit in Tempskya

    USGS Publications Warehouse

    Read, C.B.

    1939-01-01

    1. The genus Tempskya Corda, of Upper Cretaceous age in western America, is characterized by a markedly dichotomous solenostelic stem system sheathed in a felt of its own adventitious roots. A composite stemlike structure is thus formed which has been termed a false stem. 2. As primary bases for the discussion, it is assumed that the false stem is a composite "organ" analogous to a true stem in certain respects; that form is influenced by habit, and that lack of perfect correlation is indicative of a structural lag; and that the false stem is much more plastic than the true stem and, in consequence, a close correlation of habit and internal structure is to be expected. 3. Arguments favoring a subterranean and obliquely ascending habit for these false stemmed types are presented. Likewise, arguments suggesting an erect treefern-like habit for the radially symmetrical false stems, and a climbing habit for the dorsiventral ones are given. It is believed that the available evidence favors the erect and the liana-like habits. 4. Assuming a radial Urform, for which there is ample justification both in theoretical morphology and in the Paleozoic record, the dorsiventral morphology of fern stems may be regarded as developed towards the close of the Paleozoic as an adaptation to rigorous climates which are known to have produced striking changes in the organic landscape. 5. From one of these early dorsiventral types with a dichotomous stem system, Tempskya may have been derived through the development of the scandent and tree-climbing habit, aided by the production of a mass of adventitious roots. Thus the false stem could be developed. 6. It follows that the more primitive habit in Tempskya is logically the climbing one reflected by the dorsiventral false stem. Old age of individuals may have been characterized by self-saprophytism and finally epiphytism. 7. The radial forms, it is believed, were developed from these dorsiventral climbing types as a result of the

  12. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology.

  13. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions.

    PubMed

    Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L

    2015-01-01

    Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  14. Responses of soybean to ammonium and nitrate supplied in combination to the whole root system or separately in a split-root system

    NASA Technical Reports Server (NTRS)

    Chaillou, S.; Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    To address the questions of whether allocation of carbohydrates to roots is influenced by ionic form of nitrogen absorbed and whether allocation of carbohydrates to roots in turn influences proportionality between NH4+ and NO3- uptake from mixed sources, NH4+ and NO3- were supplied separately to halves of a split-root hydroponic system and were supplied in combination to a whole-root system. Dry matter accumulation in the split-root system was 18% less in the NH4(+)-fed axis than in the NO3(-)-fed axis. This, however, does not indicate that partitioning of carbohydrate between the two axes was different. Most of the reduction in dry matter accumulation in the NH4(+)-fed axis can be accounted for by the retransport of CH2O equivalents from the root back to the shoot with amino acids produced by NH4+ assimilation. Uptake of NH4+ or NO3- by the respective halves of the split-root system was proportional to the estimated allocation of carbohydrate to that half. When NH4+ and NO3- were supplied to separate halves of the split-root system, the cumulative NH4+ to NO3- uptake ratio was 0.81. When supplied in combination to the whole-root system, the cumulative NH4+ to NO3- uptake ratio was 1.67. Thus, while the shoot may affect total nitrogen uptake through the export of carbohydrates to roots, the shoot (common for halves of the split-root system) apparently does not exert a direct effect on proportionality of NH4+ and NO3- uptake by roots. For whole roots supplied with both NH4+ and NO3-, the restriction in uptake of NO3- may involve a stimulation of NO3- efflux rather than an inhibition of NO3- influx. While only the net uptake of NH4+ and NO3- was measured by ion chromatography, monitoring at approximately hourly intervals during the first 3 days of treatment revealed irregularly occurring intervals of both depletion (net influx) and enrichment (net efflux) in solutions. In the case of NH4+, numbers of net efflux events were similar (21 to 24 out of 65 sequential

  15. An analytical fiber bundle model for pullout mechanics of root bundles

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Schwarz, M.; Or, D.

    2011-09-01

    Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? < 1, small roots break first; if ? > 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without

  16. Adventitious shoot regeneration and rooting of Prunus serotina in vitro cultures

    Treesearch

    Ana Carolina Espinosa; Paula M. Pijut; Charles H. Michler

    2006-01-01

    A complete regeneration protocol was developed for Prunus serotina Ehrh., an important hardwood species for timber and sawlog production in the central and eastern United States. Nodal sections were cultures on Murashige and Skoog (MS) medium supplemented with 4.44 ”M 6-benzylaminopurine (BA), 0.49 ”M indole-3-butyric acid (IBA),...

  17. Root hairs aid soil penetration by anchoring the root surface to pore walls.

    PubMed

    Bengough, A Glyn; Loades, Kenneth; McKenzie, Blair M

    2016-02-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3-3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0-1.5g cm(-3)). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm(-3) soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm(-3) soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm(-3)). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm(-3) soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  19. Depth and Diameter of the Parent Roots of Aspen Root Suckers

    Treesearch

    Robert E. Farmer

    1962-01-01

    Studies of the Populus tremuloides root system by Day (1944), Sandberg (1951) and Barnes (1959) have all shown lateral roots extending as much as 30 feet from tree base. These roots may branch extensively and sometimes exhibit an "undulating" growth habit. According to the above authors, suckers occur on the segments of these lateral roots...

  20. Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker-trait associations.

    PubMed

    Parra-Londono, Sebastian; Kavka, Mareike; Samans, Birgit; Snowdon, Rod; Wieckhorst, Silke; Uptmoor, Ralf

    2018-02-12

    Roots facilitate acquisition of macro- and micronutrients, which are crucial for plant productivity and anchorage in the soil. Phosphorus (P) is rapidly immobilized in the soil and hardly available for plants. Adaptation to P scarcity relies on changes in root morphology towards rooting systems well suited for topsoil foraging. Root-system architecture (RSA) defines the spatial organization of the network comprising primary, lateral and stem-derived roots and is important for adaptation to stress conditions. RSA phenotyping is a challenging task and essential for understanding root development. In this study, 19 traits describing RSA were analysed in a diversity panel comprising 194 sorghum genotypes, fingerprinted with a 90-k single-nucleotide polymorphism (SNP) array and grown under low and high P availability. Multivariate analysis was conducted and revealed three different RSA types: (1) a small root system; (2) a compact and bushy rooting type; and (3) an exploratory root system, which might benefit plant growth and development if water, nitrogen (N) or P availability is limited. While several genotypes displayed similar rooting types in different environments, others responded to P scarcity positively by developing more exploratory root systems, or negatively with root growth suppression. Genome-wide association studies revealed significant quantitative trait loci (P < 2.9 × 10-6) on chromosomes SBI-02, SBI-03, SBI-05 and SBI-09. Co-localization of significant and suggestive (P < 5.7 × 10-5) associations for several traits indicated hotspots controlling root-system development on chromosomes SBI-02 and SBI-03. Sorghum genotypes with a compact, bushy and shallow root system provide potential adaptation to P scarcity in the field by allowing thorough topsoil foraging, while genotypes with an exploratory root system may be advantageous if N or water is the limiting factor, although such genotypes showed highest P uptake levels under the artificial conditions