Sample records for adventitious shoot buds

  1. Factors influencing axillary shoot proliferation and adventitious budding in cedar.

    PubMed

    Renau-Morata, Begoña; Ollero, Javier; Arrillaga, Isabel; Segura, Juan

    2005-04-01

    We developed procedures for in vitro cloning of Cedrus atlantica Manetti and C. libani A. Rich explants from juvenile and mature plants. Explant size was one determinant of the frequency of axillary bud break in both species. Shoot tips and nodal explants mainly developed calli, whereas bud sprouting occurred in defoliated microcuttings cultured on a modified Murashige and Skoog medium without growth regulators. Isolation and continuous subculture of sprouted buds on the same medium allowed cloning of microcuttings from C. atlantica and C. libani seedlings and bicentennial C. libani trees, thus providing a desirable alternative for multiplying mature trees that have demonstrated superior characteristics. We also report adventitious bud differentiation from isolated embryos of C. atlantica. Neither auxin treatments nor other methods tested, including infection with Agrobacterium rhizogenes, were effective in inducing root initiation.

  2. [Impact of TDZ and NAA on adventitious bud induction and cluster bud multiplication in Tulipa edulis].

    PubMed

    Zhu, Li-Fang; Xu, Chao; Zhu, Zai-Biao; Yang, He-Tong; Guo, Qiao-Sheng; Xu, Hong-jian; Ma, Hong-Jian; Zhao, Gui-Hua

    2014-08-01

    To explore the method of explants directly induced bud and establish the tissue culture system of mutiple shoot by means of direct organogenesis, core bud and daughter bulbs (the top of bud stem expanded to form daughter bulb) of T. edulis were used as explants and treated with thidiazuron (TDZ) and 1-naphthlcetic acid (NAA). The results showed that the optimal medium for bud inducted form core bud and daughter bulb were MS + TDZ 2.0 mg x L(-1) + NAA 4.0 mg x L(-1) and MS +TDZ 2.0 mg x L(-1) + NAA 2.0 mg x L(-1) respectively, both of them had a bud induction rate of 72.92%, 79.22%. The optimal medium for cluster buds multiplication was MS + TDZ 0.2 mg x L(-1) + NAA 0.2 mg x L(-1), and proliferation coefficient was 2.23. After proliferation, cluster buds rooting occurred on MS medium with IBA 1.0 mg x L(-1) and the rooting rate was 52.6%, three to five seedlings in each plant. Using core bud and daughter bulb of T. edulis, the optimum medium for adventitious bud directly inducted from daughter bulb, core bud and cluster bud multiplication were screened out and the tissue culture system of multiple shoot by means of direct organogenesis was established.

  3. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L.

    PubMed

    Naz, Ruphi; Anis, M

    2012-11-01

    In the current study attempts were made to investigate the effects of three different phases of callus induction followed by adventitious regeneration from leaf segments (central and lateral vein). Callus induction was observed in Murashige and Skoog's (MS) medium supplemented with 15.0 μM 2,4-dichloro phenoxy acetic acid (2,4-D). Adventitious shoot buds formation was achieved on MS medium supplemented with 7.5 μM 2,4-D and 20.0 μM AdS in liquid medium as it induced 19.2 ± 0.58 buds in central vein explants. Addition of different growth regulators (cytokinins-6-benzyladenine, kinetin and 2-isopentenyl adenine alone or in combination with auxins-indole-3-acetic acid, indole-3-butyric acid and α-naphthalene acetic acid, improved the shoot regeneration efficiency, in which 5.0 μM 6-benzyl adenine along with 0.25 μM α-naphthalene acetic acid was shown to be the most effective medium for maximum shoot regeneration (81.3 %) with 24.6 number of shoots and 4.4 ± 0.08 cm shoot length per explant. Leaf culture of central veins led to better shoot formation capacity in comparison to lateral vein. Rooting was readily achieved on the differentiated shoots on 1/2 MS medium augmented with 20.0 μM indole-3-butyric acid. The plants were successfully hardened off in sterile soilrite followed by their establishment in garden soil with 80 % survival rate.

  4. Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea cotyledons by subtractive hybridization and quantitative PCR.

    PubMed

    Alonso, Pablo; Cortizo, Millán; Cantón, Francisco R; Fernández, Belén; Rodríguez, Ana; Centeno, Maria L; Cánovas, Francisco M; Ordás, Ricardo J

    2007-12-01

    As part of a study aimed at understanding the physiological and molecular mechanisms involved in adventitious shoot bud formation in pine cotyledons, we conducted a transcriptome analysis to identify early-induced genes during the first phases of adventitious caulogenesis in Pinus pinea L. cotyledons cultured in the presence of benzyladenine. A subtractive cDNA library with more than 700 clones was constructed. Of these clones, 393 were sequenced, analyzed and grouped according to their putative function. Quantitative real-time PCR analysis was performed to confirm the differential expression of 30 candidate genes. Results are contrasted with available data for other species.

  5. In vitro propagation of Cymbidium goeringii Reichenbach fil. through direct adventitious shoot regeneration.

    PubMed

    Park, Han Yong; Kang, Kyung Won; Kim, Doo Hwan; Sivanesan, Iyyakkannu

    2018-03-01

    The influence of 2,4-dichlorophenoxyacetic acid (2,4-D), benzyladenine (BA), and thidiazuron (TDZ) on direct rhizome induction and shoot formation from rhizome explants of Cymbidium goeringii was explored. Rhizome segments obtained from in vitro seed cultures of C. goeringii were placed on Murashige and Skoog (MS) medium incorporated with 5, 10, 20, or 40 µM 2,4-D and 1, 2, 4, or 8 µM BA or TDZ alone or in combination with 20 µM 2,4-D. The explants developed only rhizomes on MS medium with or without 2,4-D. The highest percent of rhizome formation (100%) was obtained on MS medium incorporated with 20 μM of 2,4-D. The morphology and number of rhizomes varied with the level of 2,4-D in the medium. Direct adventitious shoot formation was achieved on medium incorporated with BA or TDZ. The adventitious shoots produced per explant significantly increased with the supplementation of 2,4-D to cytokinin-containing medium. The highest mean of 21.8 ± 1.8 shoot buds per rhizome segment was obtained in medium fortified with 20 μM 2,4-D and 2 μM TDZ. The greatest percent of root induction (100%) and the mean of 5.3 ± 1.1 roots per shoot were achieved on ½ MS medium incorporated with 2 μM of α-naphthaleneacetic acid. About 97% of the in vitro-produced plantlets acclimatized in the greenhouse. An efficient in vitro propagation protocol was thus developed for C. goeringii using rhizome explants.

  6. Bud Dormancy and Growth

    USDA-ARS?s Scientific Manuscript database

    Nearly all land plants produce ancillary meristems in the form of axillary or adventitious buds in addition to the shoot apical meristem. Outgrowth of these buds has a significant impact on plant architecture and the ability of plants to compete with neighboring plants, as well as to respond to and ...

  7. Bud development and shoot morphology in relation to crown location

    PubMed Central

    Kukk, Maarja; Sõber, Anu

    2015-01-01

    Plant architecture is shaped by endogenous growth processes interacting with the local environment. The current study investigated crown development in young black alder trees, assessing the effects of local light conditions and branch height on individual bud mass and contents. In addition, we examined the characteristics of parent shoots [the cross-sectional area (CSA) of stem and total leaf area, shoot length, the number of nodes, the number and total mass of buds per shoot] and leaf–stem as well as bud–stem allometry, as several recent studies link bud development to hydraulic architecture. We sampled shoots from top branches and two lower-crown locations: one subjected to deep shade and the other resembling the upper branches in light availability. Sampling was carried out three times between mid-July and late October, spanning from the early stages of bud growth to dormancy. Individual bud mass and shoot characteristics varied in response to light conditions, whereas leaf–stem allometry depended on branch height, most likely compensating for the increasing length of hydraulic pathways. Despite the differences in individual bud mass, the number of preformed leaves varied little across the crown, indicating that the plasticity in shoot characteristics was mainly achieved by neoformation. The relationship between total bud mass and stem CSA scaled similarly across crown locations. However, scaling slopes gradually decreased throughout the sampling period, driven by bud rather than by stem growth. This suggests that the allometry of total bud mass and CSA of stem is regulated locally, instead of resulting from crown-level processes. PMID:26187607

  8. Multiple bud cultures of 'Barhee' date palm (Phoenix dactylifera) and physiological status of regenerated plants.

    PubMed

    Fki, Lotfi; Bouaziz, Neila; Kriaa, Walid; Benjemaa-Masmoudi, Raja; Gargouri-Bouzid, Radhia; Rival, Alain; Drira, Noureddine

    2011-09-15

    Adventitious bud clusters of date palm 'Barhee' were successfully established from juvenile leaves (<1cm) using reduced amounts of 2,4-D (0.2mgL(-1)) to limit the risk of somaclonal variation. An average of 8.4 adventitious buds per explant were obtained. Histological examination showed that the superficial cell layers of leaves had the highest caulogenic capacity. High sucrose concentration (70gL(-1)) was used for the conversion of initial buds to multiple bud clusters. The promoting effect of temporary immersion on shoot proliferation was found to be significant when compared to cultivation on solid media. Elongation of shoots was also better using a thin film of PGR-free liquid medium instead of a solid medium. Anatomical observations indicated that roots from vitroplants were potentially functional at various developmental stages. However, only 12-month-old vitroplants were found to be physiologically able to control transpirational vapor loss. Additionally, the photochemical activity of photosystem II in these vitroplants was close to that measured in plants that were already acclimatized. As a result, 83.3% of regenerated plants were successfully acclimatized. No phenotypic variation was observed among more than 500 adventitious bud-derived plants. All regenerants survived after field transplantation. We found that the production of adventitious bud clusters in small bioreactors was able to provide an efficient micropropagation system for date palm cv. 'Barhee'. An in vitro hardening step was a prerequisite for the successful transfer of vitroplants in soil. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. [Genetic regulation of plant shoot stem cells].

    PubMed

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  10. Adventitious shoot regeneration from in vitro leaf explants of Fraxinus nigra

    Treesearch

    Jun Hyung Lee; Paula M. Pijut

    2017-01-01

    Black ash (Fraxinus nigra) is an endangered hardwood tree species under threat of extirpation by the emerald ash borer (EAB), an aggressive exotic phloemfeeding beetle. We have developed an efficient regeneration system through adventitious shoot organogenesis in F. nigra using in vitro-derived leaf explants. Two types of leaf...

  11. Effects of light and growth regulators on adventitious bud formation in horseradish (Armoracia rusticana).

    PubMed

    Kamada, H; Tachikawa, Y; Saitou, T; Harada, H

    1995-07-01

    To clarify that the presence of Ri T-DNA genes are not prerequisite for the light-induced bud formation in horseradish (Armoracia rusticana) hairy roots, leaf and root segments of nontransformed horseradish plants were used as explants. Bud formation from nontransformed tissues was observed in hormone-free medium under 16 h daylight conditions, but not under continuous darkness. To investigate the effects of growth regulators on bud formation, leaf and root explants were treated with auxin (1-naphthaleneacetic acid; NAA) and / or cytokinin (6-benzyl-aminopurine; BA). The most effective treatment in the dark to stimulate bud formation was BA at 1 mg·1(-1). These results show that adventitious bud formation in horseradish can be induced by light and growth regulators, and especially cytokinin, may be involved in bud formation, irrespective of whether the tissues were transformed with Ri T-DNA.

  12. Comparison of phytohormone levels and transcript profiles during seasonal dormancy transitions in underground adventitious buds of leafy spurge

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge (Euphorbia esula L.) is an herbaceous perennial weed that maintains its perennial growth habit through generation of underground adventitious buds (UABs) on the crown and lateral roots. These UABs undergo seasonal phases of dormancy under natural conditions, namely para-, endo-, and eco...

  13. Ectopic expression of class 1 KNOX genes induce adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L).

    PubMed

    Srinivasan, C; Liu, Zongrang; Scorza, Ralph

    2011-04-01

    Transgenic plants of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L) were produced by transforming with the apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KNOX1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a medium lacking cytokinin. Ectopic expression of KNOX genes retarded shoot growth by suppressing elongation of internodes in transgenic tobacco plants. Expression of each of the three KNOX1 genes induced malformation and extensive lobbing in tobacco leaves. In situ regeneration of adventitious shoots was observed from leaves and roots of transgenic tobacco plants expressing each of the three KNOX genes. In vitro culture of leaf explants and internode sections excised from in vitro grown MdKN1 expressing tobacco shoots regenerated adventitious shoots on MS (Murashige and Skoog 1962) basal medium in the absence of exogenous cytokinin. Transgenic plum plants that expressed the MdKN2 or corn KNOX1 gene grew normally but MdKN1 caused a significant reduction in plant height, leaf shape and size and produced malformed curly leaves. A high frequency of adventitious shoot regeneration (96%) was observed in cultures of leaf explants excised from corn KNOX1-expressing transgenic plum shoots. In contrast to KNOX1-expressing tobacco, leaf and internode explants of corn KNOX1-expressing plum required synthetic cytokinin (thidiazuron) in the culture medium to induce adventitious shoot regeneration. The induction of high-frequency regeneration of adventitious shoots in vitro from leaves and stem internodal sections of plum through the ectopic expression of a KNOX1 gene is the first such report for a woody perennial fruit trees.

  14. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    PubMed Central

    Tombesi, Sergio; Palliotti, Alberto; Poni, Stefano; Farinelli, Daniela

    2015-01-01

    Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L) (a hard-to-root specie) leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non-saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation. PMID:26635821

  15. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.).

    PubMed

    Xing, Libo; Zhang, Dong; Zhao, Caiping; Li, Youmei; Ma, Juanjuan; An, Na; Han, Mingyu

    2016-02-01

    Flower induction in apple (Malus domestica Borkh.) trees plays an important life cycle role, but young trees produce fewer and inferior quality flower buds. Therefore, shoot bending has become an important cultural practice, significantly promoting the capacity to develop more flower buds during the growing seasons. Additionally, microRNAs (miRNAs) play essential roles in plant growth, flower induction and stress responses. In this study, we identified miRNAs potentially involved in the regulation of bud growth, and flower induction and development, as well as in the response to shoot bending. Of the 195 miRNAs identified, 137 were novel miRNAs. The miRNA expression profiles revealed that the expression levels of 68 and 27 known miRNAs were down-regulated and up-regulated, respectively, in response to shoot bending, and that the 31 differentially expressed novel miRNAs between them formed five major clusters. Additionally, a complex regulatory network associated with auxin, cytokinin, abscisic acid (ABA) and gibberellic acid (GA) plays important roles in cell division, bud growth and flower induction, in which related miRNAs and targets mediated regulation. Among them, miR396, 160, 393, and their targets associated with AUX, miR159, 319, 164, and their targets associated with ABA and GA, and flowering-related miRNAs and genes, regulate bud growth and flower bud formation in response to shoot bending. Meanwhile, the flowering genes had significantly higher expression levels during shoot bending, suggesting that they are involved in this regulatory process. This study provides a framework for the future analysis of miRNAs associated with multiple hormones and their roles in the regulation of bud growth, and flower induction and formation in response to shoot bending in apple trees. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Dehydration-induced endodormancy in crown buds of leafy spurge highlights involvement of MAF3- and RVE1-like homologs, and hormone signaling cross-talk

    USDA-ARS?s Scientific Manuscript database

    Vegetative shoot growth from underground adventitious buds of leafy spurge is critical for survival of this invasive perennial weed after episodes of severe abiotic stress. To determine the impact that dehydration-stress has on molecular mechanisms associated with vegetative reproduction of leafy sp...

  17. Bud removal affects shoot, root, and callus development of hardwood Populus cuttings

    Treesearch

    A.H. Wiese; J.A. Zalesny; D.M. Donner; Ronald S., Jr. Zalesny

    2006-01-01

    The inadvertent removal and/or damage of buds during processing and planting of hardwood poplar (Populus spp.) cuttings are a concern because of their potential impact on shoot and root development during establishment. The objective of the current study was to test for differences in shoot dry mass, root dry mass, number of roots, length of the...

  18. Bud structure, position and fate generate various branching patterns along shoots of closely related Rosaceae species: a review

    PubMed Central

    Costes, Evelyne; Crespel, Laurent; Denoyes, Béatrice; Morel, Philippe; Demene, Marie-Noëlle; Lauri, Pierre-Eric; Wenden, Bénédicte

    2014-01-01

    Branching in temperate plants is closely linked to bud fates, either floral or vegetative. Here, we review how the fate of meristematic tissues contained in buds and their position along a shoot imprint specific branching patterns which differ among species. Through examples chosen in closely related species in different genera of the Rosaceae family, a panorama of patterns is apparent. Patterns depend on whether vegetative and floral buds are borne individually or together in mixed buds, develop as the shoot grows or after a rest period, and are located in axillary or terminal positions along the parent shoot. The resulting branching patterns are conserved among varieties in a given species but progressively change with the parent shoot length during plant ontogeny. They can also be modulated by agronomic and environmental conditions. The existence of various organizations in the topology and fate of meristematic tissues and their appendages in closely related species questions the between-species conservation of physiological and molecular mechanisms leading to bud outgrowth vs. quiescence and to floral induction vs. vegetative development. PMID:25520729

  19. Foliar glyphosate treatment alters transcript and hormone profiles in crown buds of leafy spurge and induces dwarfed and bushy phenotypes throughout its perennial life cycle

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge (Euphorbia esula) is an invasive weed of North America and its perennial nature is attributed to underground adventitious buds (UABs) that undergo seasonal cycles of para-, endo- and eco-dormancy. Recommended field rates of glyphosate (~1 kg/ha) destroys above-ground shoots of leafy spu...

  20. In vitro clonal multiplication of an apple rootstock by culture of shoot apices and axillary buds.

    PubMed

    Kaushal, N; Modgil, M; Thakur, M; Sharma, D R

    2005-06-01

    In vitro clonal multiplication of apple rootstock MM 111 using axillary buds and shoot apices were carried out. Vegetative axillary buds of the size of 0.2-2.0 cm and shoot apices measuring 4 mm in length were initiated to shoot proliferation on MS medium supplemented with BA (0.5 - 1.0 mgl(-1)), GA3(0.5 mgl(-1)), with or without IBA(0.05 - 0.1 mgl(-1)). Small size explants showed less phenol exudation and less contamination. Following establishment phase, the small shoots emerged from explants were subcultured on MS medium supplemented with different combinations and concentrations of growth regulators. BA (1.0 mgl(-1)) and GA3 (0.5 mgl(-1)) combination showed highest multiplication rate (1:5), andcl also produced longer shoots. Two step rooting was done by transferring microcuttings to auxin free solid medium after root initiation in dark on 1/2 strength MS liquid medium containing IBA (0.5 mgl(-1) ). Rooted plantlets were transferred to peat containing paper cups and resulting plants of MM 111 acclimated successfully for transfer to field.

  1. The role of gravity in apical dominance: effects of clinostating on shoot inversion-induced ethylene production, shoot elongation and lateral bud growth

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1987-01-01

    Shoot inversion-induced release of apical dominance in Pharbitis nil is inhibited by rotating the plant at 0.42 revolutions per minute in a vertical plane perpendicular to the axis of rotation of a horizontal clinostat. Clinostating prevented lateral bud outgrowth, apparently by negating the restriction of the shoot elongation via reduction of ethylene production in the inverted shoot. Radial stem expansion was also decreased. Data from experiments with intact tissue and isolated segments indicated that shoot-inversion stimulates ethylene production by increasing the activity of 1-aminocyclopropane-1-carboxylic acid synthase. The results support the hypothesis that shoot inversion-induced release of apical dominance in Pharbitis nil is due to gravity stress and is mediated by ethylene-induced retardation of the elongation of the inverted shoot.

  2. Shoot regeneration and embryogenesis in lily shoot tips cryopreserved by droplet vitrification

    USDA-ARS?s Scientific Manuscript database

    Shoot regeneration and embryogenesis were, for the first time, achieved directly in shoot tips of Lilium Oriental hybrid ‘Siberia’ following cryopreservation by droplet-vitrification. Shoot tips (2 mm in length) including 2-3 leaf primordia were excised from 4-week-old adventitious shoots directly r...

  3. Temperature dependence of needle and shoot elongation before bud break in Scots pine.

    PubMed

    Schiestl-Aalto, Pauliina; Mäkelä, Annikki

    2017-03-01

    Knowledge about the early part of needle growth is deficient compared with what is known about shoot growth. It is however important to understand growth of different organs to be able to estimate the changes in whole tree growth in a changing environment. The onset of growth in spring has been observed to occur over some certain threshold value of momentary temperature or temperature accumulation. We measured the length growth of Scots pine (Pinus sylvestris L.) needles and shoots from March until bud break over 3 years. We first compared needle growth with concurrent shoot growth. Then, we quantified threshold temperature of growth (i) with a logistic regression based on momentary temperatures and (ii) with the temperature sum accumulation method. Temperature sum was calculated with combinations of various time steps, starting dates and threshold temperature values. Needle elongation began almost concurrently with shoot elongation and proceeded linearly in relation to shoot growth until bud break. When studying the threshold temperature for growth, the method with momentary temperature effect on growth onset yielded ambiguous results in our conditions. The best fit of an exponential regression between needle growth or length and temperature sum was obtained with threshold temperatures -1 to +2 °C, with several combinations of starting date and time step. We conclude that although growth onset is a momentary event the process leading to it is a long-term continuum where past time temperatures have to be accounted for, rather than a sudden switch from quiescence to active growth. Further, our results indicate that lower temperatures than the commonly used +5 °C are sufficient for actuating the growth process. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Multiple shoot induction from axillary bud cultures of the medicinal orchid, Dendrobium longicornu

    PubMed Central

    Dohling, Stadwelson; Kumaria, Suman; Tandon, Pramod

    2012-01-01

    Background and aims Dendrobium longicornu, commonly known as the ‘Long-horned Dendrobium’, is an endangered and medicinally important epiphytic orchid. Over-exploitation and habitat destruction seriously threaten this orchid in Northeast India. Our objective was to develop an efficient protocol for the mass propagation of D. longicornu using axillary bud segments. Methodology and principal results Axillary buds cultured in Murashige and Skoog semi-solid medium supplemented with α-naphthalene acetic acid (NAA), 2,4-dichlorophenoxy acetic acid (2,4-D) and 6-benzylaminopurine (BAP) readily developed into plantlets. These formed either directly from shoot buds or from intermediary protocorm-like bodies (PLBs). The maximum explant response (86.6 %) was obtained in medium supplemented with NAA at 30 µM, while the maximum number of shoots (4.42) and maximum bud-forming capacity (3.51) were observed in medium containing 15 µM BAP and 5 µM NAA in combination. Protocorm-like bodies were obtained when the medium contained 2,4-D. The maximum number of explants forming PLBs (41.48 %) was obtained in medium containing 15 µM BAP and 15 µM 2,4-D. Well-developed plantlets obtained after 20–25 weeks of culture were acclimatized and eventually transferred to the greenhouse. Over 60 % of these survived to form plants ∼3–4 cm tall after 90 days in glasshouse conditions using a substrate of crushed brick and charcoal, shredded bark and moss. Conclusions The method described can readily be used for the rapid and large-scale regeneration of D. longicornu. Its commercial adoption would reduce the collection of this medicinally important and increasingly rare orchid from the wild. PMID:23136638

  5. Dehydration-induced endodormancy in crown buds of leafy spurge highlights involvement of MAF3- and RVE1-like homologs, and hormone signaling cross-talk.

    PubMed

    Doğramacı, Münevver; Horvath, David P; Anderson, James V

    2014-11-01

    Vegetative shoot growth from underground adventitious buds of leafy spurge is critical for survival of this invasive perennial weed after episodes of severe abiotic stress. To determine the impact that dehydration-stress has on molecular mechanisms associated with vegetative reproduction of leafy spurge, greenhouse plants were exposed to mild- (3-day), intermediate- (7-day), severe- (14-day) and extended- (21-day) dehydration treatments. Aerial tissues of treated plants were then decapitated and soil was rehydrated to determine the growth potential of underground adventitious buds. Compared to well-watered plants, mild-dehydration accelerated new vegetative shoot growth, whereas intermediate- through extended-dehydration treatments both delayed and reduced shoot growth. Results of vegetative regrowth further confirmed that 14 days of dehydration induced a full-state of endodormancy in crown buds, which was correlated with a significant (P < 0.05) change in abundance of 2,124 transcripts. Sub-network enrichment analyses of transcriptome data obtained from the various levels of dehydration treatment also identified central hubs of over-represented genes involved in processes such as hormone signaling (i.e., ABA, auxin, ethylene, GA, and JA), response to abiotic stress (DREB1A/2A, RD22) and light (PIF3), phosphorylation (MPK4/6), circadian regulation (CRY2, PHYA), and flowering (AGL20, AP2, FLC). Further, results from this and previous studies highlight homologs most similar to Arabidopsis HY5, MAF3, RVE1 and RD22 as potential molecular markers for endodormancy in crown buds of leafy spurge. Early response to mild dehydration also highlighted involvement of upstream ethylene and JA-signaling, whereas severe dehydration impacted ABA-signaling. The identification of conserved ABRE- and MYC-consensus, cis-acting elements in the promoter of leafy spurge genomic clones similar to Arabidopsis RVE1 (AT5G17300) implicates a potential role for ABA-signaling in its dehydration

  6. An efficient in vitro regeneration protocol for a natural dye yielding plant, Strobilanthes flaccidifolious Nees., from nodal explants.

    PubMed

    Deb, Chitta Ranjan; Arenmongla, T

    2012-11-01

    Adventitious shoot buds formation from axillary buds of nodal segments of S. flaccidifolious was achieved on MS medium containing sucrose (3%, w/v), and a-naphthalene acetic acid (NAA; 3 microM) and benzyl adenine (3 microM) in combination. The nodal segments were primed on 'Growtak Sieve' for 48 h on MS medium containing sucrose (2%), polyvinyl pyrollidone (200 mgL(-1)) as antioxidant. About 80% of primed nodal segments responded positively and formed approximately 12 adventitious shoot buds per explants from explants collected during October-November months of every year. The shoot buds converted into plantlets on MS medium containing sucrose (3%) and kinetin (3 microM) where approximately 7 micro shoots developed per subculture after 8 weeks of culture. The regenerated micro shoots induced average 14 roots/plant on medium containing NAA (3 microM). The regenerates were hardened for 6-7 weeks on medium with 1/2MS salt solution and sucrose (2%) under normal laboratory condition before transferring to potting mix. About 70% transplants survived after two months of transfer.

  7. Micropropagation of Codiaeum variegatum (L.) Blume and regeneration induction via adventitious buds and somatic embryogenesis.

    PubMed

    Radice, Silvia

    2010-01-01

    Codiaeum variegatum (L) Blume cv. "Corazon de oro" and cv. "Norma" are successfully micropropagated when culture are initiated with explants taken from newly sprouted shoots. The establishment and multiplication steps are possible when 1 mg/L BA or 1 mg/L IAA and 3 mg/L 2iP are added to MS medium, according to the cultivar respectively selected.Adventive organogenesis and somatic embryogenesis are induced from leaf explants taken from in vitro buds of croton. On leaf-sectioned of "Corazon de oro" cultured in vitro, 1 mg/L BA stimulates continuous somatic embryos development and induces some shoots too. Replacing BA with 1 mg/L TDZ induces up to 100% bud regeneration in the same explants. On the other hand, leaf-sectioned of C. variegatum cv. Norma does not start somatic embryo differentiation if 1 mg/L TDZ is not added to the MS basal medium. Incipient callus is observed after 30 days of culture, and then, subculture to MS with 1 mg/L BA allows the same process to show on the "Corazon de oro" cultivar. Somatic embryos show growth arrest that is partially overcome by transfer to hormone-free basal medium with activated charcoal. Root induction is possible on basal medium plus 1 mg/L IBA. Plantlets in the greenhouse have variegated leaves true-to-type.

  8. Shoot inversion-induced ethylene in Pharbitis nil induces the release of apical dominance by restricting shoot elongation

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1985-01-01

    Shoot inversion induces outgrowth of the highest lateral bud (HLB) adjacent to the bend in the stem in Pharbitis nil. In order to determine whether or not ethylene produced by shoot inversion plays a direct role in promoting or inhibiting bud outgrowth, comparisons were made of endogenous levels of ethylene in the HLB and HLB node of plants with and without inverted shoots. That no changes were found suggests that the control of apical dominance does not involve the direction action of ethylene. This conclusion is further supported by evidence that the direct application of ethylene inhibitors or ethrel to inactive or induced lateral buds has no significant effect on bud outgrowth. The hypothesis that ethylene evolved during shoot inversion indirectly promotes the outgrowth of the highest lateral bud (HLB) in restricting terminal bud (TB) growth is found to be supported by the following observations: (1) the restriction of TB growth appears to occur before the beginning of HLB outgrowth; (2) the treatment of the inverted portion of the shoot with AgNO3, an inhibitor of ethylene action, dramatically eliminates both the restriction of TB growth and the promotion of HLB outgrowth which usually accompany shoot inversion; and (3) the treatment of the upper shoot of an upright plant with ethrel mimics shoot inversion by retarding upper shoot growth and inducing outgrowth of the lateral bud basipetal to the treated region.

  9. Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds.

    PubMed

    Tokuhara, K; Mii, M

    1993-11-01

    Green Protocorm-like Bodies (PLB) with high multiplication capacity were induced from shoot tips of flower stalk buds having 1 or 2 leaf primordia using New Dogashima Medium (NDM) containing 0.1 mg l(-1) α-naphthaleneacetic acid (NAA) and 1 mg 1(-1) 6-benzylaminopurine (BAP). These PLB were subcultured on the same medium. More than 10,000 PLBs were obtained from a few buds on a single flower stalk within one year. After transfer onto NDM containing no plant growth regulator (PGR), the PLB developed into plantlets. The micropropagation method formulated in this study was applicable to 12 different genotypes. These results suggest that the methodology could be used on a commercial scale for vegetative propagation of Phalaenopsis and Doritaenopsis.

  10. Augmenting in vitro shoot multiplication by vipul (triacontanol) and adventitious rhizogenesis by rice bran extract in Dendrocalamus strictus.

    PubMed

    Mishra, Y; Rana, P K; Shirin, F; Ansari, S A

    2001-02-01

    Like other bamboo species, Dendrocalamus strictus flowers gregariously after a prolonged intermast period of 48 years and constitutes an ideal material for in vitro clonal propagation. In this study, MS liquid medium containing 0.5, 1.0 and 2.0 mL/L vipul (Godrej Agrovet, Ltd., Sachin, India), a commercial formulation of triacontanol, with or without BA (3.0 mg/L) was tested for in vitro shoot multiplication and 1.0, 2.5 and 5.0 mL/L of 20% (w/v) alcoholic/aqueous rice bran extract (alone or in combination) with NAA (3 mg/L) used for in vitro adventitious rhizogenesis in single node culture derived shoots of Dendrocalamus strictus.. After a multiplication cycle for 4-5 week, vipul (0.5 mL/L) with BA (3.0 mg/L) in the culture medium induced 4.59 fold shoot multiplication rate whereas application of BA and vipul alone had corresponding values of 3.29 and 0.53 fold respectively. Maximum vipul concentration (2 mL/L) with BA (3 mg/L) exhibited shoot multiplication higher than (or equal to) that of BA alone. Maximum in vitro rooting percentage (55.66%) was obtained on half MS medium enriched with alcoholic rice bran extract (2.5 mL/L) and NAA (3 mg/L). This is the first investigation reporting amelioration of in vitro shoot multiplication rate by triacontanol and rooting percentage by rice bran extract in explants from mature bamboo culms. The protocol is economical and rapid for in vitro clonal propagation of Dendrocalamus strictus.

  11. Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis[W

    PubMed Central

    Gutierrez, Laurent; Mongelard, Gaëlle; Floková, Kristýna; Păcurar, Daniel I.; Novák, Ondřej; Staswick, Paul; Kowalczyk, Mariusz; Păcurar, Monica; Demailly, Hervé; Geiss, Gaia; Bellini, Catherine

    2012-01-01

    Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other’s expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways. PMID:22730403

  12. Efficient regeneration of sorghum, Sorghum bicolor (L.) Moench, from shoot-tip explant.

    PubMed

    Syamala, D; Devi, Prathibha

    2003-12-01

    Novel protocols for production of multiple shoot-tip clumps and somatic embryos of Sorghum bicolor (L.) Moench were developed with long-term goal of crop improvement through genetic transformation. Multiple shoot-tip clumps were developed in vitro from shoot-tip explant of one-week old seedling, cultured on MS medium containing only BA (0.5, 1 or 2 mg/l) or both BA (1 or 2 mg/l) and 2,4-D (0.5 mg/l) with bi-weekly subculture. Somatic embryos were directly produced on the enlarged dome shaped growing structures that developed from the shoot-tips of one-week old seedling explants (without any callus formation) when cultured on MS medium supplemented with both 2,4-D (0.5 mg/l) and BA (0.5 mg/l). However, the supplementation of MS medium with only 2,4-D (0.5 mg/l) induced compact callus without any plantlet regeneration. Each multiple shoot-clump was capable of regenerating more than 80 shoots via an intensive differentiation of both axillary and adventitious shoot buds, the somatic embryos were capable of 90% germination, plant conversion and regeneration. The regenerated shoots could be efficiently rooted on MS medium containing indole-3-butyric acid (IBA 1 mg/l). The plants were successfully transplanted to glasshouse and grown to maturity with a survival rate of 98%. Morphogenetic response of the explants was found to be genotypically independent.

  13. Annual cycle of shoot development in sugar maple

    Treesearch

    Robert A. Gregory

    1980-01-01

    Cytohistology and the development and morphogenesis of sugar maple (Acer saccharum Marsh.) shoots were studied. Three types were recognized: short shoots, long shoots entirely preformed in the bud (Epf long), and long shoots partially preformed in the bud (heterophyllous). The three shoot types varied not only in the size and number of internodes...

  14. Root-zone temperatures affect phenology of bud break, flower cluster development, shoot extension growth and gas exchange of 'Braeburn' (Malus domestica) apple trees.

    PubMed

    Greer, Dennis H; Wünsche, Jens N; Norling, Cara L; Wiggins, Harry N

    2006-01-01

    We investigated the effects of root-zone temperature on bud break, flowering, shoot growth and gas exchange of potted mature apple (Malus domestica (Borkh.)) trees with undisturbed roots. Soil respiration was also determined. Potted 'Braeburn' apple trees on M.9 rootstock were grown for 70 days in a constant day/night temperature regime (25/18 degrees C) and one of three constant root-zone temperatures (7, 15 and 25 degrees C). Both the proportion and timing of bud break were significantly enhanced as root-zone temperature increased. Rate of floral cluster opening was also markedly increased with increasing root-zone temperature. Shoot length increased but shoot girth growth declined as root-zone temperatures increased. Soil respiration and leaf photosynthesis generally increased as root-zone temperatures increased. Results indicate that apple trees growing in regions where root zone temperatures are < or = 15 degrees C have delayed bud break and up to 20% fewer clusters than apple trees exposed to root zone temperatures of > or = 15 degrees C. The effect of root-zone temperature on shoot performance may be mediated through the mobilization of root reserves, although the role of phytohormones cannot be discounted. Variation in leaf photosynthesis across the temperature treatments was inadequately explained by stomatal conductance. Given that root growth increases with increasing temperature, changes in sink activity induced by the root-zone temperature treatments provide a possible explanation for the non-stomatal effect on photosynthesis. Irrespective of underlying mechanisms, root-zone temperatures influence bud break and flowering in apple trees.

  15. Effects of carbon ion beam irradiation on the shoot regeneration from in vitro axillary bud explants of the Impatiens hawkeri

    NASA Astrophysics Data System (ADS)

    Zhou, Libin; Zhou, Libin; Li, Wenjian; Li, Ping; Dong, Xicun; Qu, Ying; Ma, Shuang; Li, Qiang

    Accelerated ion beams is an excellent mutagen in plant breeding which can induce higher mutation frequencies and wider mutation spectrum than those of low linear energy transfer (LET) irradiations, such as X-rays (Okamura et al. 2003, Yamaguchi et al. 2003). Mutation breeding operation of two Saintpaulia ionahta cultivars using the method combining plant tissue culture technique and carbon ion beam irradiations were set out at Institute of Modern Physics from 2005 (Zhou et al. 2006). The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiations on regenerated shoots of Impatiens hawkeri from another kind of explants named in vitro axillary buds explants were studied recently. The biology endpoints in this study included relative number of roots (RNR), relative length of roots (RLR), relative height of shoots (RHS), relative number of nodes (RNN), survival fraction (SF) and morphology changes in the regenerated shoots. The experimental results showed that carbon ion beams inhibited the root and stem developments of axillary bud explants more severely than X-rays did. And the 50% lethal dose (LD50 ) is about 23.3 Gy for the carbon ion beam and 49.1 Gy for the X-rays, respectively. Relative biological effectiveness (RBE) of Impatiens hawkeri with respect to X-rays according to 50% SF was about two. Secondly, the percentage of shoots regenerated with malformed shoots including curliness, carnification, nicks in all Impatiens hawkeri axillary bud explants irradiated with carbon ion beam at 20 Gy accounted for 55.6%, while the highest number for the 40 Gy X-ray irradiation was 40%. Last, many regenerated shoots whose vascular bundle fused together were obtained only from explants irradiated with carbon ion beams. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the axillary explants of Impatiens hawkeri is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy

  16. Mevalonate kinase activity during different stages of plant regeneration from nodular callus cultures in white pine (Pinus strobus).

    PubMed

    Tang, Wei; Newton, Ronald J

    2006-02-01

    Mevalonate kinase (MK) catalyzes a step in the isoprenoid biosynthetic pathway, which leads to a huge number of compounds that play important roles in plant growth and development. Here, we report on changes in MK activity in white pine (Pinus strobus L.) during plant regeneration by adventitious shoot organogenesis from cotyledons of mature embryos, including nodular callus induction, shoot formation and rooting. Nodular calli were induced from Pinus strobus (PS) embryos by culture in nodular callus induction medium in a 0-, 8- or 16-h photoperiod. Mevalonate kinase activity peaked in nodular calli after three weeks of culture on nodular callus induction medium in a 16-h photoperiod, whereas frequency of nodular callus formation peaked after 4 weeks of culture on nodular callus induction medium in darkness. During adventitious shoot formation, MK activity peaked in shoots derived from dark-grown nodular calli after 3 weeks on bud formation medium, and frequency of shoot formation was highest in dark-grown nodular calli cultured on bud formation medium for 4 weeks. During rooting, MK activity peaked 2 weeks after transfer of adventitious shoots to rooting medium and rooting frequency was highest in adventitious shoots after 3 weeks on rooting medium. Although during nodular callus induction in darkness MK activity was inversely related to frequency of nodular callus formation, MK activity was highly correlated with frequency of shoot formation and with rooting frequency. The observed increase in MK activity preceding rooting suggests that MK could serve as a marker for rooting of white pine shoots in vitro.

  17. In Vitro Flower Induction from Shoots Regenerated from Cultured Axillary Buds of Endangered Medicinal Herb Swertia chirayita H. Karst.

    PubMed Central

    Kamal, Barkha; Srivastava, Nidhi; Dobriyal, Anoop Kumar; Jadon, Vikash Singh

    2014-01-01

    In vitro flowering and effective micropropagation protocol were studied in Swertia chirayita, an important medicinal plant using axillary bud explants. The Murashige and Skoog's medium (MS) supplemented with benzyl amino purine (BAP) 1.0 mg L−1 and adenine sulfate 70.0 mg L−1 was found optimum for production of multiple shoots. In the present study, incubation of flowering cultures on BAP supplemented medium (during shoot multiplication) was found necessary for flowering (6 weeks). However, concentrations of auxins-like IBA (0–2.0 mg/L) were ineffective to form reproductive buds. Subculture duration, photoperiod, and carbon source type do have influence on the in vitro flowering. The mature purple flowers were observed when the cultures were maintained in the same medium. This is the very first report that describes in vitro flowering system to overcome problems associated with flower growth and development as well as lay foundation for fruit and seed production in vitro in Swertia chirayita. PMID:24707404

  18. Effect of extending the photoperiod with low-intensity red or far-red light on the timing of shoot elongation and flower-bud formation of 1-year-old Japanese pear (Pyrus pyrifolia).

    PubMed

    Ito, Akiko; Saito, Takanori; Nishijima, Takaaki; Moriguchi, Takaya

    2014-05-01

    To investigate the effects of light quality (wavelength) on shoot elongation and flower-bud formation in Japanese pear (Pyrus pyrifolia (Burm. f.) Nakai), we treated 1-year-old trees with the following: (i) 8 h sunlight + 16 h dark (SD); (ii) 8 h sunlight + 16 h red light (LD(SD + R)); or (iii) 8 h sunlight + 16 h far-red (FR) light (LD(SD + FR)) daily for 4 months from early April (before the spring flush) until early August in 2009 and 2010. In both years, shoot elongation stopped earlier in the LD(SD + FR) treatment than in the SD and LD(SD + R) treatments. After 4 months of treatments, 21% (2009) or 40% (2010) of LD(SD + FR)-treated trees formed flower buds in the shoot apices, whereas all the shoot apices from SD or LD(SD + R)-treated plants remained vegetative. With an additional experiment conducted in 2012, we confirmed that FR light at 730 nm was the most efficacious wavelength to induce flower-bud formation. Reverse transcription-quantitative polymerase chain reaction revealed that the expression of two floral meristem identity gene orthologues, LEAFY (PpLFY2a) and APETALA1 (PpMADS2-1a), were up-regulated in the shoot apex of LD(SD + FR). In contrast, the expression of a flowering repressor gene, TERMINAL FLOWER 1 (PpTFL1-1a, PpTFL1-2a), was down-regulated. In addition, expression of an orthologue of the flower-promoting gene FLOWERING LOCUS T (PpFT1a) was positively correlated with flower-bud formation, although the expression of another orthologue, PpFT2a, was negatively correlated with shoot growth. Biologically active cytokinin and gibberellic acid concentrations in shoot apices were reduced with LD(SD + FR) treatment. Taken together, our results indicate that pear plants are able to regulate flowering in response to the R : FR ratio. Furthermore, LD(SD + FR) treatment terminated shoot elongation and subsequent flower-bud formation in the shoot apex at an earlier time, possibly by influencing the expression of flowering-related genes and modifying

  19. Shoot Morphogenesis Associated With Flowering in Populus deltoides (Salicaceae)

    Treesearch

    Cetin Yuceer; Samuel B. Land; Mark E. Kubiske; Richard L. Harkess

    2003-01-01

    Temporal and spatial formation and differentiation of axillary buds in developing shoots of mature eastern cottonwood (Populus deltoides) were investigated. Shoots sequentially initiate early vegetative, floral, and late vegetative buds. Associated with these buds is the formation of three distinct leaf types. In May of the first growing season, the...

  20. In-vitro morphogenesis of corn (Zea mays L.) : I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips.

    PubMed

    Zhong, H; Srinivasan, C; Sticklen, M B

    1992-07-01

    In-vitro methods have been developed to regenerate clumps of multiple shoots and somatic embryos at high frequency from shoot tips of aseptically-grown seedlings as well as from shoot apices of precociously-germinated immature zygotic embryos of corn (Zea mays L.). About 500 shoots were produced from a shoot tip after eight weeks of culture (primary culture and one subculture of four weeks) in darkness on Murashige and Skoog basal medium (MS) supplemented with 500 mg/L casein hydrolysate (CH) and 9 μM N(6)-benzyladenine (BA). In this medium, shoots formed in shoot tips as tightly packed "multiple shoot clumps" (MSC), which were composed of some axillary shoots and many adventitious shoots. When the shoot tips were cultured on MS medium containing 500 mg/L CH, 9 μM BA and 2.25 μM 2,4-dichlorophenoxyacetic acid (2,4-D), most of the shoots in the clumps were adventitious in origin. Similar shoot tips cultured on MS medium containing 500 mg/L CH, 4.5 μM BA and 2.25 μM 2,4-D regenerated many somatic embryos within eight weeks of culture. Somatic embryos were produced either directly from the shoot apical meristems or from calli derived from the shoots apices. Both the MSC and the embryos produced normal shoots on MS medium containing 2.25 μM BA and 1.8 μM indole-3-butyric acid (IBA). These shoots were rooted on MS medium containing 3.6 μM IBA, and fertile corn plants were grown in the greenhouse. The sweet-corn genotype, Honey N Pearl, was used for the experiments described above, but shoot-tip cultures from all of 19 other corn genotypes tested also formed MSC on MS medium containing 500 mg/L CH and 9 μM BA.

  1. A Growing Stem Inhibits Bud Outgrowth - The Overlooked Theory of Apical Dominance.

    PubMed

    Kebrom, Tesfamichael H

    2017-01-01

    Three theories of apical dominance, direct, diversion, and indirect, were proposed in the 1930s to explain how auxin synthesized in the shoot apex might inhibit axillary bud outgrowth, and thus shoot branching. The direct and diversion theories of apical dominance have been investigated in detail, and they are replaced with the current auxin transport canalization and second messenger theories, respectively. These two current theories still cannot entirely explain the phenomenon of apical dominance. Although there is ample evidence that the inhibition of bud outgrowth by auxin from the shoot apex is linked to stem elongation and highly branched auxin biosynthesis or signaling mutants are dwarf, the third theory proposed in the 1930s, the indirect theory, that explains apical dominance as auxin-induced stem growth indirectly inhibits bud outgrowth has been overlooked. The indirect theory did not propose how a growing stem might inhibit bud outgrowth. Recent discoveries indicate bud dormancy (syn. quiescence, paradormancy) in response to intrinsic and environmental factors in diverse species is linked to enhanced growth of the main shoot and reduced sugar level in the buds. Since a growing stem is a strong sink for sugars, and sugar is indispensable for shoot branching, the indirect theory of apical dominance might now be explained as auxin-induced stem growth inhibits bud outgrowth by diverting sugars away from buds. Detailed study of the indirect theory and the effect of source-sink status on dormancy and outgrowth of axillary buds will advance our knowledge of apical dominance and shoot branching in plants.

  2. An efficient, widely applicable cryopreservation of Lilium shoot tips by droplet vitrification

    USDA-ARS?s Scientific Manuscript database

    We report a straightforward and widely applicable cryopreservation method for Lilium shoot tips. This method uses adventitious shoots that were induced from leaf segments cultured for 4 weeks on a shoot regeneration medium containing 1 mg L-1 a-naphthaleneacetic acid (NAA) and 0.5 mg L-1 thidiazuron...

  3. Expression of grape ACS1 in tomato decreases ethylene and alters the balance between auxin and ethylene during shoot and root formation.

    PubMed

    Ye, Xia; Fu, Mengmeng; Liu, Yu; An, Dongliang; Zheng, Xianbo; Tan, Bin; Li, Jidong; Cheng, Jun; Wang, Wei; Feng, Jiancan

    2018-05-04

    Ethylene plays an important role in the grape rachis, where its production can be 10 times higher than in the berry. VvACS1 is the only rachis-specific ACC synthase (ACS) gene, and its expression is coincident with ethylene production in the rachis of Vitis vinifera 'Thompson seedless'. VvACS1 was cloned and ectopically expressed in tomato (Solanum lycopersicum 'Moneymaker'). Lateral buds were increased in two- or four-week-old 35s∷VvACS1 transgenic tomato plants after transplanting. Compared with wild-type (WT) plants, the transgenic tomato plants showed higher expression of the VvACS1 gene in the flowers, leaves, rachis, and fruits. There was no obvious difference of ACS activity in the fruit of tomato, and only increased ACS activity in the rachis of tomato. Ethylene production was decreased in flowers, leaves, and fruits (seven weeks after full bloom), while the relative expression of endogenous tomato ACS1 and ACS6 genes was not down-regulated by the ectopic expression of VvACS1. These results imply that post-transcriptional or post-translational regulation of ACS may occur, resulting in lower ethylene production in the transgenic tomato plants. Moreover, expression of VvACS1 in tomato resulted in decreased auxin and increased zeatin contents in the lateral buds, as well as reduced or delayed formation of adventitious roots in lateral bud cuttings. RNA-Seq and qRT-PCR analyses of rooted lateral bud cuttings indicated that the relative expression levels of the genes for zeatin O-glucosyltransferase-like, auxin repressed/dormancy-associated protein, and ERF transcription factors were higher in transgenic tomatoes than in WT, suggesting that ethylene may regulate auxin transport and distribution in shoots and that adventitious root formation employs coordination between auxin and ethylene. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Developmental anatomy of blueberry (Vaccinium corymbosum L. ‘Aurora’) shoot regeneration

    USDA-ARS?s Scientific Manuscript database

    The culture of Vaccinium corymbosum L. ’Aurora’ leaves on regeneration medium results in the regeneration of adventitious shoots. We present anatomical evidence that these new shoot apices are directly regenerated from the cultured blades. Mounds of densely staining cells, which formed from epidermi...

  5. Somaclonal variation in hybrid poplars for resistance to Septoria leaf spot

    Treesearch

    M.E. Ostry; D. D. Skilling

    1987-01-01

    Tissue culture techniques have been used to obtain hybrid poplars with putative resistance to leaf spot caused by Septoria musiva from clones previously susceptible to the disease. Stem internode explants were used to obtain proliferating callus cultures. Adventitious bud formation and shoot proliferation were then induced. Elongated shoots were excised and rooted in a...

  6. Bud Composition, Branching Patterns and Leaf Phenology in Cerrado Woody Species

    PubMed Central

    DAMASCOS, M. A.; PRADO, C. H. B. A.; RONQUIM, C. C.

    2005-01-01

    • Background and Aims Plants have complex mechanisms of aerial biomass exposition, which depend on bud composition, the period of the year in which shoot extension occurs, branching pattern, foliage persistence, herbivory and environmental conditions. • Methods The influence of water availability and temperature on shoot growth, the bud composition, the leaf phenology, and the relationship between partial leaf fall and branching were evaluated over 3 years in Cerrado woody species Bauhinia rufa (BR), Leandra lacunosa (LL) and Miconia albicans (MA). • Key Results Deciduous BR preformed organs in buds and leaves flush synchronously at the transition from the dry to the wet season. The expansion time of leaves is <1 month. Main shoots (first-order axis, A1 shoots) extended over 30 d and they did not branch. BR budding and foliage unfolds were brought about independently of inter-annual rainfall variations. By contrast, in LL and MA evergreen species, the shoot extension rate and the neoformation of aerial organs depended on rainfall. Leaf emergence was continuous for 2–6 months and lamina expansion took place over 1–4 months. The leaf life span was 5–20 months and the main A1 shoot extension happened over 122–177 d. Both evergreen species allocated biomass to shoots, leaves or flowers continuously during the year, branching in the middle of the wet season to form second-order (A2 shoots) and third-order (A3 shoots) axis in LL and A2 shoots in MA. Partial shed of A1 shoot leaves would facilitate a higher branching intensity A2 shoot production in LL than in MA. MA presented a longer leaf life span, produced a lower percentage of A2 shoots but had a higher meristem persistence on A1 and A2 shoots than LL. • Conclusions It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be

  7. Complex bud architecture and cell-specific chemical patterns enable supercooling of Picea abies bud primordial

    USDA-ARS?s Scientific Manuscript database

    Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to -50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D-reconstruction, supercooling and freezing patterns by infrared video thermog...

  8. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum: Bud outgrowth is sensitive to leaf area

    DOE PAGES

    Kebrom, Tesfamichael H.; Mullet, John E.

    2014-12-12

    Shoot branches or tillers develop from axillary buds. The dormancy versus outgrowth fates of buds depends on genetic, environmental and hormonal signals. Defoliation inhibits bud outgrowth indicating the role of leaf-derived metabolic factors such as sucrose in bud outgrowth. In this study, the sensitivity of bud outgrowth to selective defoliation was investigated. At 6 d after planting (6 DAP), the first two leaves of sorghum were fully expanded and the third was partially emerged. Therefore, the leaves were selectively defoliated at 6 DAP and the length of the bud in the first leaf axil was measured at 8 DAP. Budmore » outgrowth was inhibited by defoliation of only 2 cm from the tip of the second leaf blade. The expression of dormancy and sucrose-starvation marker genes was up-regulated and cell cycle and sucrose-inducible genes was down-regulated during the first 24 h postdefoliation of the second leaf.At 48 h, the expression of these genes was similar to controls as the defoliated plant recovers. Our results demonstrate that small changes in photosynthetic leaf area affect the propensity of tiller buds for outgrowth. Therefore, variation in leaf area and photosynthetic activity should be included when integrating sucrose into models of shoot branching.« less

  9. Adventitious root production and plastic resource allocation to biomass determine burial tolerance in woody plants from central Canadian coastal dunes.

    PubMed

    Dech, Jeffery P; Maun, M Anwar

    2006-11-01

    Burial is a recurrent stress imposed upon plants of coastal dunes. Woody plants are buried on open coastal dunes and in forested areas behind active blowouts; however, little is known about the burial responses and adaptive traits of these species. The objectives of this study were: (a) to determine the growth and morphological responses to burial in sand of seven woody plant species native to central Canadian coastal dunes; and (b) to identify traits that determine burial tolerance in these species. Field experiments were conducted to determine the responses of each species to burial. Saplings were exposed to burial treatments of 0, 10, 25, 50 and 75 % of their height. Burial responses were evaluated based on regressions of total biomass, height, adventitious root production and percentage allocation to shoot, root and adventitious root biomass on percentage burial. Pinus strobus and Picea glauca lacked burial tolerance. In response to the burial gradient, these species showed a strong linear decline in total biomass, minimal adventitious root production that peaked at moderate levels (25-50 % burial) and no change in allocation to shoots vs. roots. The tolerant species Juniperus virginiana, Thuja occidentalis and Picea mariana showed a quadratic response to burial, with little change in biomass up to 50 % burial, but a large decline at 75 %. These species produced abundant adventitious roots up to 50 % burial, but did not alter allocation patterns over the range of burial levels. Populus balsamifera and Salix cordata were stimulated by burial. These species showed linear increases in biomass with increasing burial, produced copious adventitious roots across the gradient and showed a clear shift in allocation to vertical shoot growth and adventitious root production at the expense of the original roots under high burial conditions. Adventitious root production and plastic resource allocation to biomass are adaptive traits of coastal dune woody plants in central

  10. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas

    PubMed Central

    Ni, Jun; Gao, Congcong; Chen, Mao-Sheng; Pan, Bang-Zhen; Ye, Kaiqin; Xu, Zeng-Fu

    2015-01-01

    Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants. PMID:26076970

  11. Preformation in vegetative buds of pistachio (Pistacia vera): relationship to shoot morphology, crown structure and rootstock vigor.

    PubMed

    Spann, Timothy M; Beede, Robert H; Dejong, Theodore M

    2007-08-01

    Effects of rootstock, shoot carbohydrate status, crop load and crown position on the number of preformed leaf primordia in the dormant terminal and lateral buds of mature and immature 'Kerman' pistachio (Pistacia vera L.) trees were investigated to determine if rootstock vigor is associated with greater shoot preformation. There was no significant variation in preformation related to the factors studied, suggesting strong genetic control of preformation in 'Kerman' pistachio. The growth differences observed among trees on different rootstocks were associated with greater stimulation of neoformed growth in trees on the more vigorous rootstocks. However, most annual extension growth in mature tree crowns was preformed, contrasting with the relatively high rate of neoformation found in young tree crowns. Large amounts of neoformed growth in young trees may allow the trees to become established quickly and secure resources, whereas predominantly preformed growth in mature trees may allow for continued crown expansion without outgrowing available resources. We hypothesized that the stimulation of neoformed growth by the more vigorous rootstocks is associated with greater resource uptake or transport, or both. Understanding the source of variation in shoot extension growth on different rootstocks has important implications for orchard management practices.

  12. Apical bud toughness tests and tree sway movements to examine crown abrasion: preliminary results

    Treesearch

    Tyler Brannon; Wayne Clatterbuck

    2012-01-01

    Apical bud toughness differences were examined for several species to determine if crown abrasion affects shoot growth of determinate and indeterminate species during stand development. Determinate buds will set and harden after initial shoot elongation in the spring, while the indeterminate shoots form leaves from the apical meristem continuously based on the...

  13. Bud development and hydraulics

    PubMed Central

    Cochard, Hervé

    2008-01-01

    The distal zone of one-year-old apple (Malus domestica) shoots was studied on five cultivars for bud size and composition (number of appendages) and hydraulic conductance before bud burst. Our hypothesis was that bud development was related to hydraulic conductance of the sap pathway to the bud independent of an acrotonic (proximal vs. distal) effect. Bud size and composition, and hydraulic conductance, were highly variable for all cultivars. A positive correlation was demonstrated between both the number of cataphylls and green-leaf primordia and hydraulic conductance. Cultivar and bud size affected the intercept of these relationships more than the slope suggesting similar scaling between these variables but different hydraulic efficiencies. A great proportion of small buds were also characterized by null values of hydraulic conductance. Our study suggests that hydraulically mediated competitions exist between adjacent buds within a same branching zone prefiguring the variability of lateral types in the following growing season. It is hypothesized that this developmental patterning is driven by hydraulic characteristics of the whole-metamer, including the subtending leaf, during bud development. PMID:19704779

  14. Effect of Thawing Time, Cooling Rate and Boron Nutrition on Freezing Point of the Primordial Shoot in Norway Spruce Buds

    PubMed Central

    RÄISÄNEN, MIKKO; REPO, TAPANI; LEHTO, TARJA

    2006-01-01

    • Background Effects of cooling rates on bud frost hardiness have been studied but there is little information on bud responses to thawing. Since the cell wall pore size has been found to increase with boron (B) deficiency, B deficiency may affect the supercooling ability of buds in winter. • Methods The effects of duration of thawing time and rate of cooling on bud frost hardiness of Norway spruce (Picea abies) were studied in a B fertilization trial in February 2003 and March 2005. Frost hardiness of apical buds was determined by differential thermal analysis (DTA) and visual scoring of damage. • Key Results In 2003, the freezing point of primordial shoots of buds (Tf), i.e. the low-temperature exotherm (LTE), was, on average, −39 °C when buds were thawed for less than 3 h and the Tf increased to −21 °C after 18 h of thawing. During the first 4 h of thawing, the rate of dehardening was 6 °C h−1. In 2005, buds dehardened linearly from −39 °C to −35 °C at a rate of 0·7 °C h−1. In 2003, different cooling rates of 1–5 °C h−1 had a minor effect on Tf but in 2005 with slow cooling rates Tf decreased. In both samplings, at cooling rates of 2 and 1 °C h−1, Tf was slightly higher in B-fertilized than in non-fertilized trees. By contrast, at very short thawing times in 2003, Tf was somewhat lower in B-fertilized trees. • Conclusions There was little evidence of reduced frost hardiness in trees with low B status. This study showed that buds deharden rapidly when exposed to above-freezing temperatures in winter, but if cooled again they reharden more slowly. According to this study, rapid dehardening of buds has to be taken into account in assessments of frost hardiness. PMID:16464880

  15. Field application of glyphosate induces molecular changes affecting vegetative growth processes in leafy spurge

    USDA-ARS?s Scientific Manuscript database

    Recommended rates of glyphosate for non-cultivated areas destroy the aboveground shoots of the perennial plant leafy spurge. However, such applications cause little or no damage to underground adventitious buds (UABs), and thus the plant readily regenerates vegetatively. High concentrations of glyph...

  16. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas.

    PubMed

    Ni, Jun; Gao, Congcong; Chen, Mao-Sheng; Pan, Bang-Zhen; Ye, Kaiqin; Xu, Zeng-Fu

    2015-08-01

    Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  17. The Tomato (Solanum Lycopersicum cv. Micro-Tom) Natural Genetic Variation Rg1 and the DELLA Mutant Procera Control the Competence Necessary to Form Adventitious Roots and Shoots

    PubMed Central

    Peres, Lázaro Eustáquio Pereira

    2012-01-01

    Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively. PMID:22915742

  18. The tomato (Solanum lycopersicum cv. Micro-Tom) natural genetic variation Rg1 and the DELLA mutant procera control the competence necessary to form adventitious roots and shoots.

    PubMed

    Lombardi-Crestana, Simone; da Silva Azevedo, Mariana; e Silva, Geraldo Felipe Ferreira; Pino, Lílian Ellen; Appezzato-da-Glória, Beatriz; Figueira, Antonio; Nogueira, Fabio Tebaldi Silveira; Peres, Lázaro Eustáquio Pereira

    2012-09-01

    Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.

  19. Coordinating expression of FLOWERING LOCUS T by DORMANCY ASSOCIATED MADS-BOX-like genes in leafy spurge

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge is a noxious perennial weed that produces underground adventitious buds, which are crucial for generating new vegetative shoots following periods of freezing temperatures or exposure to various control measures. DORMANCY ASSOCIATED MADS-BOX (DAM) genes have been proposed to play a direc...

  20. Carbon dioxide exchange of buds and developing shoots of boreal Norway spruce exposed to elevated or ambient CO2 concentration and temperature in whole-tree chambers.

    PubMed

    Hall, Marianne; Räntfors, Mats; Slaney, Michelle; Linder, Sune; Wallin, Göran

    2009-04-01

    Effects of ambient and elevated temperature and atmospheric carbon dioxide concentration ([CO2]) on CO2 assimilation rate and the structural and phenological development of shoots during their first growing season were studied in 45-year-old Norway spruce trees (Picea abies (L.) Karst.) enclosed in whole-tree chambers. Continuous measurements of net assimilation rate (NAR) in individual buds and shoots were made from early bud development to late August in two consecutive years. The largest effect of elevated temperature (TE) was manifest early in the season as an earlier start and completion of shoot length development, and a 1-3-week earlier shift from negative to positive NAR compared with the ambient temperature (TA) treatments. The largest effect of elevated [CO2] (CE) was found later in the season, with a 30% increase in maximum NAR compared with trees in the ambient [CO2] treatments (CA), and shoots assimilating their own mass in terms of carbon earlier in the CE treatments than in the CA treatments. Once the net carbon assimilation compensation point (NACP) had been reached, TE had little or no effect on the development of NAR performance, whereas CE had little effect before the NACP. No interactive effects of TE and CE on NAR were found. We conclude that in a climate predicted for northern Sweden in 2100, current-year shoots of P. abies will assimilate their own mass in terms of carbon 20-30 days earlier compared with the current climate, and thereby significantly contribute to canopy assimilation during their first year.

  1. Auxin flow-mediated competition between axillary buds to restore apical dominance

    PubMed Central

    Balla, Jozef; Medveďová, Zuzana; Kalousek, Petr; Matiješčuková, Natálie; Friml, Jiří; Reinöhl, Vilém; Procházka, Stanislav

    2016-01-01

    Apical dominance is one of the fundamental developmental phenomena in plant biology, which determines the overall architecture of aerial plant parts. Here we show apex decapitation activated competition for dominance in adjacent upper and lower axillary buds. A two-nodal-bud pea (Pisum sativum L.) was used as a model system to monitor and assess auxin flow, auxin transport channels, and dormancy and initiation status of axillary buds. Auxin flow was manipulated by lateral stem wounds or chemically by auxin efflux inhibitors 2,3,5-triiodobenzoic acid (TIBA), 1-N-naphtylphtalamic acid (NPA), or protein synthesis inhibitor cycloheximide (CHX) treatments, which served to interfere with axillary bud competition. Redirecting auxin flow to different points influenced which bud formed the outgrowing and dominant shoot. The obtained results proved that competition between upper and lower axillary buds as secondary auxin sources is based on the same auxin canalization principle that operates between the shoot apex and axillary bud. PMID:27824063

  2. Shoot growth and heterophylly in ginko biloba

    Treesearch

    William B. Critchfield

    1970-01-01

    Ginkgo biloba resembles other woody plants with long and short shoots in having variable leaves, and this variability in shape and other characteristics is closely related to the specialization of the shoots. The unlobed or bilobed early leaves of short shoots are preformed in the winter bud, and their nearly synchronous expansion in the spring is not accompanied by...

  3. Shoot regeneration and somatic embryogenesis from needles of redwood (Sequoia sempervirens (D.Don.) Endl.).

    PubMed

    Liu, Cuiqiong; Xia, Xinli; Yin, Weilun; Huang, Lichun; Zhou, Jianghong

    2006-07-01

    A rapid and effective system of somatic embryogenesis and organogenesis from the in vitro needles of redwood (Sequoia sempervirens (D.Don.) Endl.) had been established. The influences of plant growth regulators (PGRs) and days of seedlings in vitro on adventitious bud regeneration and somatic embryogenesis were studied. The process of somatic embryo formation was also observed. The results showed that embryogenic callus was induced and proliferated on Schenk and Hildebrandt (SH) medium with BA (0.5 mg/l), KT (0.5 mg/l) and IBA (1.0 mg/l). SH medium containing BA (0.5 mg/l), KT (0.2 mg/l) and IBA (0.2 mg/l) effectively promoted adventitious bud regeneration. The highest frequency (66.3%) of direct somatic embryogenesis was obtained in the combination of BA (0.5 mg/l) and IBA (0.5 mg/l). The optimal days of seedling in vitro for adventitious bud and somatic embryogenesis were 30 days and 30-40 days, respectively. The developments of somatic embryos were similar to that of zygotic embryogenesis. The result of histocytological studies indicated that proteins were gradually accumulated in the process of somatic embryo formation and there were two peaks of starch grains accumulation that one was in the embryogenic callus and the other was in the globular embryos. These results indicated that starch and protein were closely related with the energy supply and the molecular base of somatic embryogenesis, respectively.

  4. The gravity-regulated growth of axillary buds is mediated by a mechanism different from decapitation-induced release.

    PubMed

    Kitazawa, Daisuke; Miyazawa, Yutaka; Fujii, Nobuharu; Hoshino, Atsushi; Iida, Shigeru; Nitasaka, Eiji; Takahashi, Hideyuki

    2008-06-01

    When the upper part of the main shoot of the Japanese morning glory (Pharbitis nil or Ipomoea nil) is bent down, the axillary bud situated on the uppermost node of the bending region is released from apical dominance and elongates. Here, we demonstrate that this release of axillary buds from apical dominance is gravity regulated. We utilized two agravitropic mutants of morning glory defective in gravisensing cell differentiation, weeping (we) and weeping2 (we2). Bending the main shoots of either we or we2 plants resulted in minimal elongation of their axillary buds. This aberration was genetically linked to the agravitropism phenotype of the mutants, which implied that shoot bending-induced release from apical dominance required gravisensing cells. Previous studies have shown that basipetal translocation of auxin from the apical bud inhibits axillary bud growth, whereas cytokinin promotes axillary bud outgrowth. We therefore compared the roles of auxin and cytokinin in bending- or decapitation-induced axillary bud growth. In the wild-type and we plants, decapitation increased cytokinin levels and reduced auxin response. In contrast, shoot bending did not cause significant changes in either cytokinin level or auxin response, suggesting that the mechanisms underlying gravity- and decapitation-regulated release from apical dominance are distinct and unique.

  5. An Indirect Role for Ethylene in Shoot-inversion Release of Apical Dominance in Pharbitis Nil

    NASA Technical Reports Server (NTRS)

    Cline, M. G.

    1985-01-01

    Evidence is presented which indicated that ethylene does not play a direct role in promoting or inhibiting bud outgrowth as a gravity response. It is concluded that the treatment of inactive or induced lateral buds with ethylene inhibitors or ethrel has no significant effect on bud outgrowth and that no changes occur in ethylene emanation in the Highest Lateral Bud (HLB) or HLB node following shoot inversion. Possible mechanisms by which ethylene released by shoot inversion may indirectly promote outgrowth of the HLB is presented.

  6. Dynamics of Aerenchyma Distribution in the Cortex of Sulfate-deprived Adventitious Roots of Maize

    PubMed Central

    BOURANIS, DIMITRIS L.; CHORIANOPOULOU, STYLIANI N.; KOLLIAS, CHARALAMBOS; MANIOU, PHILIPPA; PROTONOTARIOS, VASSILIS E.; SIYIANNIS, VASSILIS F.; HAWKESFORD, MALCOLM J.

    2006-01-01

    • Background and Aims Aerenchyma formation in maize adventitious roots is induced in nutrient solution by the deprivation of sulfate (S) under well-oxygenated conditions. The aim of this research was to examine the extent of aerenchyma formation in the cortex of sulfate-deprived adventitious roots along the root axis, in correlation with the presence of reactive oxygen species (ROS), calcium levels and pH of cortex cells and root lignification. • Methods The morphometry of the second whorl of adventitious (W2) roots, subject to S-deprivation conditions throughout development, was recorded in terms of root length and lateral root length and distribution. W2 roots divided into sectors according to the mean length of lateral roots, and cross-sections of each were examined for aerenchyma. In-situ detection of alterations in ROS presence, calcium levels and pH were performed by means of fluorescence microscopy using H2DCF-DA, fluo-3AM and BCECF, respectively. Lignification was detected using the Wiesner test. • Key Results S-deprivation reduced shoot growth and enhanced root proliferation. Aerenchyma was found in the cortex of 77 % of the root length, particularly in the region of emerging or developing lateral roots. The basal and apical sectors had no aerenchyma and no aerenchyma connection was found with the shoot. S-deprivation resulted in alterations of ROS, calcium levels and pH in aerenchymatous sectors compared with the basal non-aerenchymatous region. Lignified epidermal layers were located at the basal and the proximal sectors. S-deprivation resulted in shorter lateral roots in the upper sectors and in a limited extension of the lignified layers towards the next lateral root carrying sector. • Conclusions Lateral root proliferation is accompanied by spatially localized induced cell death in the cortex of developing young maize adventitious roots during S-deprivation. PMID:16481362

  7. Complex bud architecture and cell‐specific chemical patterns enable supercooling of Picea abies bud primordia

    PubMed Central

    Munkler, Caspar; Resnyak, Anna; Zimmermann, Sonja; Tuong, Tan D.; Gierlinger, Notburga; Müller, Thomas; Livingston, David P.; Neuner, Gilbert

    2017-01-01

    Abstract Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to −50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D—reconstruction, supercooling and freezing patterns by infrared video thermography, freeze dehydration and extraorgan freezing by water potential measurements, and cell‐specific chemical patterns by Raman microscopy and mass spectrometry imaging. A bowl‐like ice barrier tissue insulates primordia from entrance by intrinsic ice. Water repellent and densely packed bud scales prevent extrinsic ice penetration. At −18 °C, break‐down of supercooling was triggered by intrinsic ice nucleators whereas the ice barrier remained active. Temperature‐dependent freeze dehydration (−0.1 MPa K−1) caused accumulation of extraorgan ice masses that by rupture of the shoot, pith tissue are accommodated in large voids. The barrier tissue has exceptionally pectin‐rich cell walls and intercellular spaces, and the cell lumina were lined or filled with proteins, especially near the primordium. Primordial cells close to the barrier accumulate di, tri and tetrasaccharides. Bud architecture efficiently prevents ice penetration, but ice nucleators become active inside the primordium below a temperature threshold. Biochemical patterns indicate a complex cellular interplay enabling supercooling and the necessity for cell‐specific biochemical analysis. PMID:28960368

  8. Extended Low Temperature Impacts Dormancy Status, Flowering Competence, and Transcript Profiles in Crown Buds of Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge (Euphorbia esula) is an herbaceous perennial weed that reproduces vegetatively from an abundance of underground adventitious buds. In this study we report the effects of different growth conditions on vegetative reproduction and flowering competence, and determine molecular mechanisms a...

  9. Evaluation of twig pre-harvest temperature for effective cryopreservation of Vaccinium dormant buds

    USDA-ARS?s Scientific Manuscript database

    Cryopreservation of plant material by dormant buds is less expensive than using shoot tips; however currently, dormant buds are used only for preservation of selected temperate tree and shrub species. Using dormant buds could be an efficient strategy for long-term preservation of blueberry (Vacciniu...

  10. Clonal propagation of Stevia rebaudiana Bertoni by stem-tip culture.

    PubMed

    Tamura, Y; Nakamura, S; Fukui, H; Tabata, M

    1984-10-01

    Clonal propagation of Stevia rebaudiana has been established by culturing stem-tips with a few leaf primordia on an agar medium supplemented with a high concentration (10 mg/l) of kinetin. Anatomical examination has suggested that these multiple shoots originate from a number of adventitious buds formed on the margin of the leaf. Innumerable shoots can be obtained by repeating the cycle of multiple-shoot formation from a single stem-tip of Stevia. These shoots produce roots when transferred to a medium containing NAA (0.1 mg/l) without kinetin. The regenerated plantlets can be transplanted to soil.

  11. Dehydration and vernalization treatments identify overlapping molecular networks impacting endodormancy maintenance in leafy spurge crown buds

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge (Euphorbia esula L.) is an herbaceous perennial weed that reproduces vegetatively from an abundance of underground adventitious buds (UABs), which undergo well-defined phases of seasonal dormancy (para-, endo- and eco-dormancy). In this study, the effects of dehydration-stress on vegeta...

  12. Increase in ACC oxidase levels and activities during paradormancy release of leafy spurge (Euphorbia esula) buds

    USDA-ARS?s Scientific Manuscript database

    The plant hormone ethylene is known to affect various developmental processes including dormancy and growth. Yet, little information is available about ethylene’s role during paradormancy break in adventitious buds of leafy spurge. In this study, we examined changes in ethylene evolution and the eth...

  13. Mass propagation of Rauwolfia serpentina L. Benth.

    PubMed

    Salma, U; Rahman, M S M; Islam, S; Haque, N; Khatun, M; Jubair, T A; Paul, B C

    2008-05-01

    A protocol for mass propagation through axillary bud proliferation was established for Rauwolfia serpentina L. Benth. (Apocynaceae). MS medium supplemented with 1.5 mg L(-1) BA and 0.2 mg L(-1) NAA elicited the maximum number of shoots (4 multiple shoots) from nodal explants. These adventitious shoots were best rooted on half strength MS medium supplemented with 1.0 mg L(-1) each of IBA and IAA. The in vitro raised plants were acclimatized in glass house and successfully transplanted to field condition with almost 95% survival.

  14. Multiple shoot production from seedling explants of slash pine (Pinus elliottii, Engelm.).

    PubMed

    Burns, J A; Schwarz, O J; Schlarbaum, S E

    1991-11-01

    Hypocotylary explants obtained from 30- to 40-day-old slash pine (Pinus elliottii, Engelm.) seedlings treated with 6-benzylaminopurine produced multiple buds that eventually elongated into axillary shoots. The explants were pulse treated (45-s dip) with 6-benzylaminopurine (22.2, 111, 222 μM) plus a control and cultured on three different basal media containing activated charcoal (0.5% w/v). Hormonal concentration and basal medium were compared for the number and size of axillary shoots induced after 12 and 29 days. The greatest number of axillary shoots was produced by explants that were pulse treated with 111 μM 6-benzylaminopurine and cultured on Gresshoff and Doy medium. The axillary shoots were fewer in number per explant than shoots previously reported resulting from hormonally induced advantitious buds of slash pine, but the axillary shoots developed more rapidly.

  15. Improved rooting of western white pine shoots from tissue cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amerson, H.V.; Mott, R.L.

    1982-01-01

    Adventitious shoots of Pinus monticola obtained from embryonic tissue were exposed to 4 combinations of growth regulators (6-benzylaminopurine/NAA/IAA/IBA), either continuously for 6 weeks or by pulse treatment for 7 days, followed by 5 weeks culture without growth regulators. After 6 weeks of continuous exposure, rooting of shoots varied between 0 and 20%. Pulse treatment resulted in 40-64% rooting. In paired comparisons pulse treatments always provided better rooting percentages than did constant exposure treatments. Pulse treatments also produced longer (less than 2 mm) roots and more multiple roots.

  16. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding

    PubMed Central

    2012-01-01

    Background Flooding reduces supply of oxygen to the roots affecting plant water uptake. Some flooding-tolerant tree species including tamarack (Larix laricina (Du Roi) K. Koch) produce adventitious roots in response to flooding. These roots were reported to have higher hydraulic conductivity under flooding conditions compared with non-adventitious roots. In the present study, we examined structural and functional modifications in adventitious roots of tamarack seedlings to explain their flooding tolerance. Results Seedlings were subjected to the flooding treatment for six months, which resulted in an almost complete disintegration of the existing root system and its replacement with adventitious roots. We compared gas exchange parameters and water relations of flooded plants with the plants growing in well-drained soil and examined the root structures and root water transport properties. Although flooded seedlings had lower needle chlorophyll concentrations, their stomatal conductance, net photosynthesis rates and shoot water potentials were similar to non-flooded plants, indicative of flooding tolerance. Flooded adventitious roots had higher activation energy and a higher ratio of apoplastic to cell-to-cell water flow compared with non-flooded control roots as determined with the 1-hydroxypirene 3,6,8-trisulfonic acid apoplastic tracer dye. The adventitious roots in flooded plants also exhibited retarded xylem and endodermal development and accumulated numerous starch grains in the cortex. Microscopic examination of root sections treated with the PIP1 and PIP2 antibodies revealed high immunoreactivity in the cortex of non-flooded roots, as compared with flooded roots. Conclusions Structural modifications of adventitious roots suggest increased contribution of apoplastic bypass to water flow. The reduced dependence of roots on the hypoxia-sensitive aquaporin-mediated water transport is likely among the main mechanisms allowing tamarack seedlings to maintain water

  17. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding.

    PubMed

    Calvo-Polanco, Mónica; Señorans, Jorge; Zwiazek, Janusz J

    2012-06-27

    Flooding reduces supply of oxygen to the roots affecting plant water uptake. Some flooding-tolerant tree species including tamarack (Larix laricina (Du Roi) K. Koch) produce adventitious roots in response to flooding. These roots were reported to have higher hydraulic conductivity under flooding conditions compared with non-adventitious roots. In the present study, we examined structural and functional modifications in adventitious roots of tamarack seedlings to explain their flooding tolerance. Seedlings were subjected to the flooding treatment for six months, which resulted in an almost complete disintegration of the existing root system and its replacement with adventitious roots. We compared gas exchange parameters and water relations of flooded plants with the plants growing in well-drained soil and examined the root structures and root water transport properties. Although flooded seedlings had lower needle chlorophyll concentrations, their stomatal conductance, net photosynthesis rates and shoot water potentials were similar to non-flooded plants, indicative of flooding tolerance. Flooded adventitious roots had higher activation energy and a higher ratio of apoplastic to cell-to-cell water flow compared with non-flooded control roots as determined with the 1-hydroxypirene 3,6,8-trisulfonic acid apoplastic tracer dye. The adventitious roots in flooded plants also exhibited retarded xylem and endodermal development and accumulated numerous starch grains in the cortex. Microscopic examination of root sections treated with the PIP1 and PIP2 antibodies revealed high immunoreactivity in the cortex of non-flooded roots, as compared with flooded roots. Structural modifications of adventitious roots suggest increased contribution of apoplastic bypass to water flow. The reduced dependence of roots on the hypoxia-sensitive aquaporin-mediated water transport is likely among the main mechanisms allowing tamarack seedlings to maintain water balance and gas exchange under

  18. Epicormic branching in red oak crop trees five years after thinning and fertilizer application in a bottomland hardwood stand

    Treesearch

    Brian Roy Lockhart; Alexander J. Michalek; Matthew W. Lowe

    2006-01-01

    Epicormic branches are defined as shoots arising from adventitious or dormant buds on the stem or branch of a woody plant, often following exposure to increased light levels or fire. They are a serious concern to hardwood forest managers because epicormic branches are considered defects and reduce the monetary value of logs and the lumber cut from them. The presence of...

  19. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara

    PubMed Central

    Zhang, Qian; Visser, Eric J. W.; de Kroon, Hans; Huber, Heidrun

    2015-01-01

    Background and Aims Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Methods Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Key Results Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. Conclusions The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant’s life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow

  20. The Sprouting Potential of Dormant Buds on the Bole of Pole-Size Sugar Maple

    Treesearch

    Richard M. Godman; Gilbert A. Mattson

    1970-01-01

    A study of epicormic sprouting in pole-size sugar maples showed that all visible dormant buds on the bole were capable of producing epicormic shoots. The buds were induced to break dormancy by applying four methods of crown removal known to stimulate sprouting. The amount of crown removed determined the year that the buds broke dormancy; this may be accounted for by...

  1. Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1,3-β-glucanase genes during branching in hybrid aspen

    PubMed Central

    Rinne, Päivi L.H.; Paul, Laju K.; Vahala, Jorma; Kangasjärvi, Jaakko; van der Schoot, Christiaan

    2016-01-01

    Axillary buds (AXBs) of hybrid aspen (Populus tremula×P. tremuloides) contain a developing dwarfed shoot that becomes para-dormant at the bud maturation point. Para-dormant AXBs can grow out after stem decapitation, while dormant AXBs pre-require long-term chilling to release them from dormancy. The latter is mediated by gibberellin (GA)-regulated 1,3-β-glucanases, but it is unknown if GA is also important in the development, activation, and outgrowth of para-dormant AXBs. The present data show that para-dormant AXBs up-regulate GA receptor genes during their maturation, but curtail GA biosynthesis by down-regulating the rate-limiting GIBBERELLIN 3-OXIDASE2 (GA3ox2), which is characteristically expressed in the growing apex. However, decapitation significantly up-regulated GA3ox2 and GA4-responsive 1,3-β-glucanases (GH17-family; α-clade). In contrast, decapitation down-regulated γ-clade 1,3-β-glucanases, which were strongly up-regulated in maturing AXBs concomitant with lipid body accumulation. Overexpression of selected GH17 members in hybrid aspen resulted in characteristic branching patterns. The α-clade member induced an acropetal branching pattern, whereas the γ-clade member activated AXBs in recurrent flushes during transient cessation of apex proliferation. The results support a model in which curtailing the final step in GA biosynthesis dwarfs the embryonic shoot, while high levels of GA precursors and GA receptors keep AXBs poised for growth. GA signaling, induced by decapitation, reinvigorates symplasmic supply routes through GA-inducible 1,3-β-glucanases that hydrolyze callose at sieve plates and plasmodesmata. PMID:27697786

  2. Partial shoot reiteration in Wollemia nobilis (Araucariaceae) does not arise from ‘axillary meristems’

    PubMed Central

    Tomlinson, P. B.; Huggett, Brett A.

    2011-01-01

    Background and Aims Conifers are characterized by the paucity of axillary buds which in dicotyledonous trees usually occur at every node. To compensate, conifers also produce ‘axillary meristems’, which may be stimulated to late development. In juvenile material of Wollemia nobilis (Araucariaceae: Massart's model) first-order (plagiotropic) branches lack both axillary buds and, seemingly, axillary meristems. This contrasts with orthotropic (trunk) axes, which produce branches, either within the terminal bud or as reiterated orthotropic axes originating from axillary meristems. However, plagiotropic axes do produce branches if they are decapitated. This study investigated how this can occur if axillary meristems are not the source. Methods The terminal buds of a series of plagiotropic branches on juvenile trees were decapitated in order to generate axillary shoots. Shoots were culled at about weekly intervals to obtain stages in lateral shoot development. Serial sections were cut with a sliding microtome from the distal end of each sample and scanned sequentially for evidence of axillary meristems and early bud development. Key Results Anatomical search produced no clear evidence of pre-existing axillary meristems but did reveal stages of bud initiation. Buds were initiated in a group of small starch-rich cortical cells. Further development involved de-differentiation of these small cells and the development of contrasting outer and inner regions. The outer part becomes meristematic and organizes the apex of the new branch. The inner part develops a callus-like tissue of vacuolated cells within which vascular cambia are developed. This kind of insertion of a branch on the parent axis seems not to have been described before. Conclusions Axillary meristems in Wollemia characterize the leaf axils of trunk axes so that the origin of reiterated shoots is clear. Plagiotropic axes seemingly lack axillary meristems but still produce axillary branches by distinctive

  3. Micropropagation of Hedychium coronarium J. Koenig through rhizome bud.

    PubMed

    Mohanty, Pritam; Behera, Shashikanta; Swain, Swasti S; Barik, Durga P; Naik, Soumendra K

    2013-10-01

    An optimized protocol was developed for in vitro plant regeneration of a medicinally important herb Hedychium coronarium J. Koenig using sprouted buds of rhizomes. The rhizomes with sprouted bud were inoculated on Murashige and Skoog (Physiol Plant 15:473-497, 1962) medium (MS) supplemented with either N(6)-benzyladenine (BA) alone (1.0-4.0 mg L(-1)) or in combination with 0.5 mg L(-1) naphthalene acetic acid (NAA). Of these combinations, MS supplemented with a combination of 2.0 mg L(-1) BA and 0.5 mg L(-1) NAA was most effective. In this medium, best shoots (3.6) and roots (4.0) regeneration was observed simultaneously with an average shoot and root length of 4.7 cm and 4.2 cm respectively. Regeneration of shoots and roots in the same medium at the same time (One step shoot and root regeneration) reduced the time for production of in vitro plantlets and eliminates the media cost of rooting. Cent-percent (100 %) success in plant establishment was observed in both gradual acclimatization process as well as when plants were directly transferred to outdoor in clay pots containing a mixture of garden soil and sand (2:1) without any sequential acclimatization stage.

  4. Effect of adenine sulphate interaction on growth and development of shoot regeneration and inhibition of shoot tip necrosis under in vitro condition in adult Syzygium cumini L.--a multipurpose tree.

    PubMed

    Naaz, Afshan; Shahzad, Anwar; Anis, Mohammad

    2014-05-01

    An efficient method for cloning Syzygium cumini (above 40 years old) through mature nodal segments has been successfully developed and that could be exploited for large-scale production of this valuable multipurpose tree. Nodal segments from mature tree were taken as explants and cultured on MS basal medium with different cytokinins (BA, Kin, AdS). The application of BA proved to be the best responsive cytokinin for the induction of shoot buds and shoots, but the proliferated shoots exhibited slower and stunted growth accompanied with abscission of leaves and shoot tip necrosis (STN). The problem of leaf abscission and STN was considerably reduced by the application of an adjuvant, adenine sulphate (AdS) in the optimal medium which led to the production of a maximum of 14 shoots. Further improvement in shoot bud regeneration and improved growth pattern of the regenerating tissue was obtained on the media comprised of MS + BA (10 μM) + GA3 (2.5 μM). A total number of 15 shoots with mean shoot length of 5.9 cm was obtained. The healthy elongated shoots were then rooted on MS basal augmented with NAA (5 μM). The plantlets obtained were healthy and were successfully acclimatized and transferred under field condition with 70 % survival rate.

  5. Productive potential of cassava plants (Manihot esculenta Crantz) propagated by leaf buds.

    PubMed

    Neves, Reizaluamar J; Diniz, Rafael P; Oliveira, Eder J DE

    2018-04-23

    New techniques of rapid multiplication of cassava (Manihot esculenta Crantz) have been developed, requiring technical support for large-scale use. This work main to evaluate the agronomic performance of plantlets obtained by leaf buds technique against stem cuttings in the field conditions. The work was conducted using the randomized block design in a factorial scheme with 3 varieties (BRS Kiriris, 98150-06, 9624-09) × 4 origins of the plantlets (conventional - stem cuttings of 20 cm length, leaf buds of the upper, middle and inferior stem part) × 2 agrochemicals (control and treated). There was a remarkable decrease in some agronomic traits that ranged from 23% (number of branches) to 62% (shoot weight) when using leaf buds plantlets. The treatment of plantlets with agrochemicals promoted significant increases in all traits, ranging from 26% (number of roots per plant) to 46% (shoot weight). The plantlets originating from leaf buds of the upper and middle parts were able to generate stem-like plants similar to stem-derived ones. Despite its lower agronomic performance under field conditions, multiplication by leaf buds may generate five times the number of propagules in comparison with the conventional multiplication, and therefore it could be a viable alternative for rapid cassava multiplication.

  6. Shoot size significantly affects rooting response of sugar maple softwood cuttings

    Treesearch

    John R. Donnelly

    1974-01-01

    Three hundred softwood cuttings were collected from each of three mature sugar maple trees to test the effect of shoot size on adventitious root formation. One of the trees was a good rooter (61 percent rooted); one was a poor rooter (19 percent rooted); and the third was a non-rooter (1 percent rooted). There was an insufficient number of rooted cuttings from the...

  7. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara.

    PubMed

    Zhang, Qian; Visser, Eric J W; de Kroon, Hans; Huber, Heidrun

    2015-08-01

    Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant's life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants. © The Author 2015. Published by

  8. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    PubMed

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.

  9. Proliferation and ajmalicine biosynthesis of Catharanthus roseus (L). G. Don adventitious roots in self-built temporary immersion system

    NASA Astrophysics Data System (ADS)

    Phuc, Vo Thanh; Trung, Nguyen Minh; Thien, Huynh Tri; Tien, Le Thi Thuy

    2017-09-01

    Periwinkle (Catharanthus roseus (L.) G. Don) is a medicinal plant containing about 130 types of alkaloids that have important pharmacological effects. Ajmalicine in periwinkle root is an antihypertensive drug used in treatment of high blood pressure. Adventitious roots obtained from periwinkle leaves of in vitro shoots grew well in quarter-strength MS medium supplemented with 0.3 mg/l IBA and 20 g/l sucrose. Dark condition was more suitable for root growth than light. However, callus formation also took place in addition to the growth of adventitious roots. Temporary immersion system was applied in the culture of adventitious roots in order to reduce the callus growth rate formed in shake flask cultures. The highest growth index of roots was achieved using the system with 5-min immersion every 45 min (1.676 ± 0.041). The roots cultured in this system grew well without callus formation. Ajmalicine content was highest in the roots cultured with 5-min immersion every 180 min (950 μg/g dry weight).

  10. Surface disinfection procedure and in vitro regeneration of grapevine (Vitis vinifera L.) axillary buds.

    PubMed

    Lazo-Javalera, M F; Troncoso-Rojas, R; Tiznado-Hernández, M E; Martínez-Tellez, M A; Vargas-Arispuro, I; Islas-Osuna, M A; Rivera-Domínguez, M

    2016-01-01

    Establishment of an efficient explants surface disinfection protocol is essential for in vitro cell and tissue culture as well as germplasm conservation, such as the case of Grapevine (Vitis spp.) culture. In this research, different procedures for disinfection and regeneration of field-grown grapevine cv. 'Flame seedless' axillary buds were evaluated. The buds were disinfected using either NaOCl or allyl, benzyl, phenyl and 2-phenylethyl isothiocyanates. Two different media for shooting and four media for rooting were tested. Shoot and root development per buds were registered. The best disinfection procedure with 90 % of tissue survival involved shaking for 60 min in a solution containing 20 % Clorox with 50 drops/L Triton(®) X-100. These tissues showed the potential to regenerate a complete plant. Plant regeneration was conducted using full strength Murashigue and Skoog (MS) medium supplemented with 8 µM benzyl aminopurine for shoot induction and multiplication, whereas rooting was obtained on half strength MS supplemented with 2 mg L(-1) of indole-3-butyric acid and 200 mg L(-1) of activated charcoal. In this work, it was designed the protocols for obtaining sterile field-grown grapevine buds and in vitro plant development. This methodology showed potential to produce vigorous and healthy plants in 5 weeks for clonal grapevine propagation. Regenerated plants were successfully established in soil.

  11. Phenology and density of balsam twig aphid, Mindarus abietinus Koch (Homoptera: Aphididae) in relation to bud break, shoot damage, and value of fir Christmas trees.

    PubMed

    Fondren, K M; McCullough, D G

    2003-12-01

    The balsam twig aphid, Mindarus abietinus Koch (Homoptera: Aphididae), is a major insect pest of balsam and Fraser fir grown for Christmas trees. Our objectives in this study were to 1) monitor the phenology of A. abietinus in fir plantations; 2) assess relationships among M. abietinus density, tree phenology, and damage to tree foliage; and 3) develop an esthetic injury level for M. abietinus on Christmas trees. We monitored phenology of M. abietinus and fir trees on three commercial Christmas tree plantations in central and northern Lower Michigan for 3 yr (1999-2001). Phenology of M. abietinus fundatrices and sexuparae was strongly correlated with accumulated degree-days (DD) base 10 degrees C. Fundatrices matured by approximately 83 DD(10 degrees C) and sexuparae were first observed at approximately 83-111 DD(10 degrees C). Trees that broke bud approximately 1 wk later than other trees in the same field escaped M. abietinus damage and shoot expansion rate in spring was generally positively correlated with M. abietinus damage. Retail customers surveyed at a choose-and-cut Christmas plantation in 2 yr did not consistently differentiate between similarly sized trees with no, light, and moderate M. abietinus damage, but heavy damage (>50% damaged shoots) did affect customer perception. Similarly, when wholesale grades were assigned, the high quality Grade 1 trees had up to 40% shoot damage, whereas Grade 2 trees had 32-62% shoot damage. Two trees ranked as unsaleable had sparse canopies and distorted needles on 42% to almost 100% of the shoots.

  12. Effects of disbudding on shoot mortality and stem deformity in black cherry

    Treesearch

    Charles O. Rexrode

    1979-01-01

    Insect damage was simulated by the removal of buds from black cherry trees to determine the effects on stem mortality and tree form. Black cherry was very sensitive to disbudding. All degrees of disbudding caused terminal deformities and stem deformity nearly always occurred after the terminal bud was destroyed. Shoot mortality usually occurred after half or more of...

  13. Rejuvenation of Sequoia sempervirens by Repeated Grafting of Shoot Tips onto Juvenile Rootstocks in Vitro 1

    PubMed Central

    Huang, Li-Chun; Lius, Suwenza; Huang, Bau-Lian; Murashige, Toshio; Mahdi, El Fatih M.; Van Gundy, Richard

    1992-01-01

    Repeated grafting of 1.5-centimeter long shoot tips from an adult Sequoia sempervirens tree onto fresh, rooted juvenile stem cuttings in vitro resulted in progressive restoration of juvenile traits. After four successive grafts, stem cuttings of previously adult shoots rooted as well, branched as profusely, and grew with as much or more vigor as those of seedling shoots. Reassays disclosed retention for 3 years of rooting competence at similar levels as originally restored. Adventitious shoot formation was remanifested and callus development was depressed in stem segments from the repeatedly grafted adult. The reversion was associated with appearance and disappearance of distinctive leaf proteins. Neither gibberellic acid nor N6-beneyladenine as nutrient supplements duplicated the graft effects. ImagesFigure 2Figure 5Figure 8 PMID:16668609

  14. Micropropagation of Vaccinium sp. by in vitro axillary shoot proliferation.

    PubMed

    Litwińczuk, Wojciech

    2013-01-01

    The Vaccinium genus contains several valuable fruit and ornamental species, among others: highbush blueberry (Vaccinium × corymbosum L.), cranberry (Vaccinium macrocarpon Ait.), and lingonberry (Vaccinium vitis-idaea L.). In some most popular and valuable cultivars, the conventional propagation methods, exploiting hard or soft wood cuttings, are inefficient. The demand for nursery plants could be fulfilled only by micropropagation. In principle cultivars are propagated in vitro through similar three-stage method, based on subculture of shoot explants on different culture media supplemented with IAA (0-4 mg/L) and 2iP (5-10 mg/L), and rooting shoots in vivo. The obtained plantlets are transferred to peat substrate and grown in the glasshouse until the end of growing period. The development of adventitious shoots should be monitored and controlled during in vitro stages. Many clones have specific requirements for growing conditions and/or are recalcitrant.

  15. Growth and carbon balance are differently regulated by tree and shoot fruiting contexts: an integrative study on apple genotypes with contrasted bearing patterns.

    PubMed

    Pallas, Benoît; Bluy, Sylvie; Ngao, Jérôme; Martinez, Sébastien; Clément-Vidal, Anne; Kelner, Jean-Jacques; Costes, Evelyne

    2018-01-09

    In plants, carbon source-sink relationships are assumed to affect their reproductive effort. In fruit trees, carbon source-sink relationships are likely to be involved in their fruiting behavior. In apple, a large variability in fruiting behaviors exists, from regular to biennial, which has been related to the within-tree synchronization vs desynchronization of floral induction in buds. In this study, we analyzed if carbon assimilation, availability and fluxes as well as shoot growth differ in apple genotypes with contrasted behaviors. Another aim was to determine the scale of plant organization at which growth and carbon balance are regulated. The study was carried out on 16 genotypes belonging to three classes: (i) biennial, (ii) regular with a high production of floral buds every year and (iii) regular, displaying desynchronized bud fates in each year. Three shoot categories, vegetative and reproductive shoots with or without fruits, were included. This study shows that shoot growth and carbon balance are differentially regulated by tree and shoot fruiting contexts. Shoot growth was determined by the shoot fruiting context, or by the type of shoot itself, since vegetative shoots were always longer than reproductive shoots whatever the tree crop load. Leaf photosynthesis depended on the tree crop load only, irrespective of the shoot category or the genotypic class. Starch content was also strongly affected by the tree crop load with some adjustments of the carbon balance among shoots since starch content was lower, at least at some dates, in shoots with fruits compared with the shoots without fruits within the same trees. Finally, the genotypic differences in terms of shoot carbon balance partly matched with genotypic bearing patterns. Nevertheless, carbon content in buds and the role of gibberellins produced by seeds as well as the distances at which they could affect floral induction should be further analyzed. © The Author(s) 2018. Published by Oxford

  16. Micropropagation of Crataeva adansonii D.C. Prodr: an ornamental avenue tree.

    PubMed

    Tyagi, Purnima; Sharma, P K; Kothari, S L

    2010-01-01

    In this chapter, we describe multiplication of the superior and elite tree of Crataeva adansonii using plant tissue culture techniques. An ornamental and avenue tree, it is not available in abundance because of poor seed germination and seedling establishment. It reproduces in nature by root suckers, but that restricts its distribution to very limited areas. Efficient procedures are outlined for plant regeneration through direct shoot bud formation, indirect organogenesis, and somatic embryogenesis through callus formation. Different explants were utilized for separate pathways of regeneration. Murashige and Skoog's (MS) medium containing 3 mg/L BA and 0.05-0.1 mg/L NAA is most effective in direct induction of axillary buds from nodal explants and shoot tips. Adventitious shoots developed from leaves on MS medium containing 3 mg/L BA and 0.1 mg/L NAA. De novo shoots were obtained from the anthers on MS medium supplemented with 3 mg/L BA. Somatic embryos developed on half strength MS medium containing 0.1 mg/L 2, 4-D. Roots were induced at the cut ends of shoots on MS basal medium devoid of growth regulators. The plantlets were then transferred to pots.

  17. Molecular events of apical bud formation in white spruce, Picea glauca.

    PubMed

    El Kayal, Walid; Allen, Carmen C G; Ju, Chelsea J-T; Adams, Eri; King-Jones, Susanne; Zaharia, L Irina; Abrams, Suzanne R; Cooke, Janice E K

    2011-03-01

    Bud formation is an adaptive trait that temperate forest trees have acquired to facilitate seasonal synchronization. We have characterized transcriptome-level changes that occur during bud formation of white spruce [Picea glauca (Moench) Voss], a primarily determinate species in which preformed stem units contained within the apical bud constitute most of next season's growth. Microarray analysis identified 4460 differentially expressed sequences in shoot tips during short day-induced bud formation. Cluster analysis revealed distinct temporal patterns of expression, and functional classification of genes in these clusters implied molecular processes that coincide with anatomical changes occurring in the developing bud. Comparing expression profiles in developing buds under long day and short day conditions identified possible photoperiod-responsive genes that may not be essential for bud development. Several genes putatively associated with hormone signalling were identified, and hormone quantification revealed distinct profiles for abscisic acid (ABA), cytokinins, auxin and their metabolites that can be related to morphological changes to the bud. Comparison of gene expression profiles during bud formation in different tissues revealed 108 genes that are differentially expressed only in developing buds and show greater transcript abundance in developing buds than other tissues. These findings provide a temporal roadmap of bud formation in white spruce. © 2011 Blackwell Publishing Ltd.

  18. The Physiology of Adventitious Roots1

    PubMed Central

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  19. Impacts of strigolactone on shoot branching under phosphate starvation in chrysanthemum (Dendranthema grandiflorum cv. Jinba)

    PubMed Central

    Xi, Lin; Wen, Chao; Fang, Shuang; Chen, Xiaoli; Nie, Jing; Chu, JinFang; Yuan, Cunquan; Yan, Cunyu; Ma, Nan; Zhao, Liangjun

    2015-01-01

    Chrysanthemum (Dendranthema grandiflorum cv. Jinba) shoot branching is determined by bud outgrowth during the vegetative growth stage. The degree of axillary bud outgrowth is highly influenced by environmental conditions, such as nutrient availability. Here, we demonstrated that phosphorus (Pi) starvation significantly reduces axillary bud outgrowth in chrysanthemum. A strigolactone (SL) biosynthesis gene, DgCCD7, was isolated and characterized as an ortholog of MAX3/DAD3/RMS5/D17. By using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), three putative SLs were identified and levels of all three SLs showed strong increase under Pi starvation conditions. Determinations of the distribution of SLs and regulation of DgCCD7/8 in response to Pi changes in root indicate that SL acts systemically. However, temporal expression patterns of biosynthesis and signaling genes in nodes revealed that Pi starvation causes a local response of SL pathway. Treatment of node segments with or without auxin and Pi revealed that in the absence of exogenous auxin, Pi delayed axillary buds outgrowth and up-regulated local SL pathway genes. These data indicated that an auxin-SL regulatory loop responded to Pi starvation for delaying bud outgrowth locally, root biosynthesized SLs were transported acropetally and functioned in shoot branching inhibition under Pi starvation. We proposed that SLs contributed to chrysanthemum shoot branching control in response to Pi-limiting conditions in a systemic way. PMID:26442011

  20. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.).

    PubMed

    Fichtner, Franziska; Barbier, Francois F; Feil, Regina; Watanabe, Mutsumi; Annunziata, Maria Grazia; Chabikwa, Tinashe G; Höfgen, Rainer; Stitt, Mark; Beveridge, Christine A; Lunn, John E

    2017-11-01

    Trehalose 6-phosphate (Tre6P) is a signal of sucrose availability in plants, and has been implicated in the regulation of shoot branching by the abnormal branching phenotypes of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) mutants with altered Tre6P metabolism. Decapitation of garden pea (Pisum sativum) plants has been proposed to release the dormancy of axillary buds lower down the stem due to changes in sucrose supply, and we hypothesized that this response is mediated by Tre6P. Decapitation led to a rapid and sustained rise in Tre6P levels in axillary buds, coinciding with the onset of bud outgrowth. This response was suppressed by simultaneous defoliation that restricts the supply of sucrose to axillary buds in decapitated plants. Decapitation also led to a rise in amino acid levels in buds, but a fall in phosphoenolpyruvate and 2-oxoglutarate. Supplying sucrose to stem node explants in vitro triggered a concentration-dependent increase in the Tre6P content of the buds that was highly correlated with their rate of outgrowth. These data show that changes in bud Tre6P levels are correlated with initiation of bud outgrowth following decapitation, suggesting that Tre6P is involved in the release of bud dormancy by sucrose. Tre6P might also be linked to a reconfiguration of carbon and nitrogen metabolism to support the subsequent growth of the bud into a new shoot. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  1. Influence of four nematodes on root and shoot growth parameters in grape.

    PubMed

    Anwar, S A; Van Gundy, S D

    1989-04-01

    Two grape cultivars, susceptible French Colombard and tolerant Rubired, and four nematodes, Meloidogyne incognita, Pratylenchus vulnus, Tylenchulus semipenetrans, and Xiphinema index, were used to quantify the equilibrium between root (R) and shoot (S) growth. Root and shoot growth of French Colombard was retarded by M. incognita, P. vulnus, and X. index but not by T. semipenetrans. Although the root growth of Rubired was limited by all the nematodes, the shoot growth was limited only by X. index. The R:S ratios of Rubired were higher than those of French Colombard. The reduced R:S ratios of Rubired were primarily an expression of reduction in root systems without an equal reduction in shoot growth, whereas in French Colombard the reduced R:S ratios were due to a reduction in both shoot growth and root growth and to a greater reduction in root growth than shoot growth. All nematodes reproduced equally well on both cultivars. Both foliage and root growth of French Colombard were significantly reduced by M. incognita and P. vulnus. Nematodes reduced the shoot length by reducing the internode length. Accumulative R:S ratios in inoculated plants were significantly smaller than those in controls in all nematode treatments but not at individual harvest dates. Bud break was delayed by X. index and was initiated earlier by P. vulnus and M. incognita. All buds in nematode treatments were less vigorous than in controls.

  2. Developmental Morphology of the Shoot in Weddellina squamulosa and Implications for Shoot Evolution in the Podostemaceae

    PubMed Central

    Koi, Satoshi; Kato, Masahiro

    2007-01-01

    Background and Aims In angiosperms, the shoot apical meristem produces a shoot system composed of stems, leaves and axillary buds. Podostemoideae, one of three subfamilies of the river-weed family Podostemaceae, have a unique ‘shoot’ that lacks a shoot apical meristem and is composed only of leaves. Tristichoideae have been interpreted to have a shoot apical meristem, although its branching pattern is uncertain. The shoot developmental pattern in Weddellinoideae has not been investigated with a focus on the meristem. Weddellinoideae are in a phylogenetically key position to reveal the process of shoot evolution in Podostemaceae. Methods The shoot development of Weddellina squamulosa, the sole species of Weddellinoideae, was investigated using scanning electron microscopy and semi-thin serial sections. Key Results The shoot of W. squamulosa has a tunica–corpus-organized apical meristem. It is determinate and successively initiates a new branch extra-axillarily at the base of an immediately older branch, resulting in a sympodial, approximately plane branching pattern. Large scaly leaves initiate acropetally on the flanks of the apical meristem, as is usual in angiosperms, whereas small scaly leaves scattered on the stem initiate basipetally in association with the elongation of internodes. Conclusions Weddellinoideae, like Tristichoideae, have a shoot apical meristem, leading to the hypothesis that the meristem was lost in Podostemoideae. The patterns of leaf formation in Podostemoideae and shoot branching in Weddellinoideae are similar in that these organs arise at the bases of older organs. This similarity leads to another hypothesis that the ‘branch’ in Weddellinoideae (and possibly Tristichoideae) and the ‘leaf’ in Podostemoideae are comparable, and that the shoot apical meristem disappeared in the early evolution of Podostemaceae. PMID:17468112

  3. Light Signaling in Bud Outgrowth and Branching in Plants

    PubMed Central

    Leduc, Nathalie; Roman, Hanaé; Barbier, François; Péron, Thomas; Huché-Thélier, Lydie; Lothier, Jérémy; Demotes-Mainard, Sabine; Sakr, Soulaiman

    2014-01-01

    Branching determines the final shape of plants, which influences adaptation, survival and the visual quality of many species. It is an intricate process that includes bud outgrowth and shoot extension, and these in turn respond to environmental cues and light conditions. Light is a powerful environmental factor that impacts multiple processes throughout plant life. The molecular basis of the perception and transduction of the light signal within buds is poorly understood and undoubtedly requires to be further unravelled. This review is based on current knowledge on bud outgrowth-related mechanisms and light-mediated regulation of many physiological processes. It provides an extensive, though not exhaustive, overview of the findings related to this field. In parallel, it points to issues to be addressed in the near future. PMID:27135502

  4. Cystic adventitial degeneration: ectopic ganglia from adjacent joint capsules.

    PubMed

    Ortmann, J; Widmer, M K; Gretener, S; Do, D D; Willenberg, T; Daliri, A; Baumgartner, I

    2009-11-01

    Cystic adventitial degeneration is a rare non-atherosclerotic cause of peripheral arterial occlusive disease, mainly seen in young men without other evidence of vascular disease. Diagnosis will be established by clinical findings and by ultrasound or angiography and can be treated by excision or enucleation of the affected arterial segment or by percutaneous ultrasound-guided aspiration. However, the etiology of adventitial cysts remains unknown. We report a case of cystic adventitial degeneration showing a connection between the joint capsule and the adventitial cyst, supporting the theory that cystic adventitial degeneration may represent ectopic ganglia from adjacent joint capsules.

  5. Light and temperature sensing and signaling in induction of bud dormancy in woody plants.

    PubMed

    Olsen, Jorunn E

    2010-05-01

    In woody species cycling between growth and dormancy must be precisely synchronized with the seasonal climatic variations. Cessation of apical growth, resulting from exposure to short photoperiod (SD) and altered light quality, is gating the chain of events resulting in bud dormancy and cold hardiness. The relative importance of these light parameters, sensed by phytochromes and possibly a blue light receptor, varies with latitude. Early in SD, changes in expression of light signaling components dominate. In Populus active shoot elongation is linked to high expression of FLOWERING LOCUS T (FT) resulting from coincidence of high levels of CONSTANS and light at the end of days longer than a critical one. In Picea, PaFT4 expression increases substantially in response to SD. Thus, in contrast to Populus-FT, PaFT4 appears to function in inhibition of shoot elongation or promotion of growth cessation. Accordingly, different FT-genes appear to have opposite effects in photoperiodic control of shoot elongation. Reduction in gibberellin under SD is involved in control of growth cessation and bud formation, but not further dormancy development. Coinciding with formation of a closed bud, abscisic acid activity increases and cell-proliferation genes are down-regulated. When dormancy is established very few changes in gene expression occur. Thus, maintenance of dormancy is not dependent on comprehensive transcriptional regulation. In some species low temperature induces growth cessation and dormancy, in others temperature affects photoperiod requirement. The temperature under SD affects both the rate of growth cessation, bud formation and depth of dormancy. As yet, information on the molecular basis of these responses to temperature is scarce.

  6. Cryopreservation of redwood (Sequoia sempervirens) in vitro buds using vitrification-based techniques.

    PubMed

    Ozudogru, E A; Kirdok, E; Kaya, E; Capuana, M; Benelli, C; Engelmann, E

    2011-01-01

    In this study, the efficiency of three vitrification-based cryopreservation techniques, i.e. vitrification, encapsulation-vitrification and droplet-vitrification were compared for cryopreserving Sequoia sempervirens apical and basal buds sampled from in vitro shoot cultures. The effect of cold-hardening of mother-plants and of bud culture medium and sucrose preculture was also investigated. Culture of apical and basal buds sampled from cold-hardened mother-plants on Quoirin and Lepoivre medium with activated charcoal had a positive effect on regrowth. Only droplet-vitrification ensured survival and regrowth after cryopreservation. After cryopreservation, regeneration of apical buds was possible for PVS2 exposure durations between 90 and 180 min but it remained low, with a maximum of 18 percent after 135 min treatment. With basal buds, regeneration after cryopreservation was possible over a larger range of PVS2 treatment durations, between 30 and 180 min. The highest regeneration percentage was slightly higher (22 percent) than that measured with apical buds, and was also achieved after 135 min PVS2 exposure.

  7. Response to stem bending in forest shrubs: stem or shoot reorientation and shoot release.

    PubMed

    Wilson, B F

    1997-10-01

    Shrubs in the forest understory may be bent by their own weight or by overstory debris. To maintain height growth they must respond to bending by vertical growth of new shoots, reorientation of older axes, or by releasing preventitious buds to form epicormic shoots. I tested for these responses in Ilex verticillata L., Cornus amomum Mill., Gaylussacia baccata (Wang.) K. Koch, Viburnum cassinoides L., Hamamelis virginiana L., and Kalmia latifolia L. For each species, I removed potentially supporting vegetation adjacent to 20 stems, left 10 stems untreated to test for bending by self weight, and bent the remaining 10 stems to 45 degrees to simulate effects of fallen debris. Stem angles and curvatures were measured from before leaf out until just before leaf fall to detect either sagging from self weight or upward bending from tension wood action. Control stems initially leaned out of vertical and five of six species sagged further into a cantilever form. Several control stems failed and bent to the ground. Stems of H. virginiana, I. verticillata, and C. amomum formed tension wood, but only the first two species bent upward. Viburnum cassinoides, G. baccata, and K. latifolia formed no tension wood and sagged further down after being bent. Epicormic shoots formed with varying frequencies in all species except K. latifolia. Epicormic shoots were the major response in C. amomum, V. cassinoides, and G. baccata. New terminal shoots on bent stems recovered toward vertical in I. verticillata and K. latifolia. Negative gravitropic response of shoots was the only recovery mechanism for K. latifolia.

  8. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures.

    PubMed

    Viherä-Aarnio, Anneli; Sutinen, Sirkka; Partanen, Jouni; Häkkinen, Risto

    2014-05-01

    The timing of budburst of temperate trees is known to be controlled by complicated interactions of temperature and photoperiod. To improve the phenological models of budburst, better knowledge of the internal bud development preceding budburst in relation to environmental cues is needed. We studied the effect of accumulated chilling and forcing temperatures on the internal development of vegetative buds preceding budburst in Norway spruce [Picea abies (L.) Karst.]. Branches from 17-year-old trees of southern Finnish origin were transferred eight times at 1- to 2-week intervals from October to December 2007 from the field at Punkaharju (61°48'N, 29°20'E) to the greenhouse with forcing conditions (day length 12 h, +20 °C). After seven different durations of forcing, the developmental phase and primordial shoot growth of the buds were analysed at the stereomicroscopic level. Air temperature was recorded hourly throughout the study period. The accumulated chilling unit sum had a significant effect on the temperature sum that was required to attain a certain developmental phase; a higher amount of chilling required a lower amount of forcing. The variation in the rate of development of different buds within each sample branch in relation to the chilling unit and forcing temperature sum was low. Regarding primordial shoot growth, there was also an inverse relation between accumulated chilling and forcing, i.e., a higher accumulated chilling unit sum before forcing required a lower temperature sum to initiate primordial shoot growth and resulted in a stronger effect of accumulated forcing. A second-order regression model with an interaction of chilling and forcing explained the variation of primordial shoot growth with high precision (R(2) = 0.88). However, further studies are required to determine the final parameter values to be used in phenological modelling. © The Author 2014. Published by Oxford University Press. All rights reserved.

  9. Assessment of regeneration potential in the clonal macrophyte Miscanthus sacchariflorus (Poaceae) after burial disturbance based on bud bank size and sprouting capacity.

    PubMed

    Chen, Xinsheng; Cao, Chenshu; Deng, Zhengmiao; Xie, Yonghong; Li, Feng; Hou, Zhiyong; Li, Xu

    2015-01-01

    The demography of the bud bank and its sprouting capacity are important for understanding the population dynamics of clonal plants and their potential responses to disturbances. To this end, we investigated the size and composition of the bud bank of Miscanthus sacchariflorus (Maxim.) Hack. immediately after flooding (November), in winter (January), in spring (March), and before flooding (May) in the wetlands of Dongting Lake. We then examined the sprouting capacity of axillary buds after sediment burial at 0, 5, 10, 15, and 20 cm. Total bud density of M. sacchariflorus ranged from 2524 buds m(-2) in November to 4293 buds m(-2) in March. Rhizome segments with inactive axillary buds, which represented the majority of the bud population (88.7% in November, 93.3% in May), did not sprout during the 140 days of the experiment (n = 250). The sprouting ratio was the highest for active axillary buds buried at 0 cm (64%) and decreased when buried at 10-20 cm (34%-40%). Due to the large number of active axillary buds in the bud bank (211-277 buds m(-2) from November to the following March), M. sacchariflorus could completely replace its aboveground shoot population, except in May (142 buds m(-2)). Increasing burial depth delayed bud emergence and reduced the growth period of shoots; however, burial depth did not affect the resulting plant height and only reduced the accumulated biomass at 20 cm. Therefore, the belowground bud bank and its strong sprouting capacity are important factors in the maintenance of local populations and colonization of new habitats for M. sacchariflorus after burial disturbances. The present methodology, which combined measurements of bud bank demography and sprouting capacity, may reflect the regeneration potential of clonal plants after burial disturbances.

  10. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds.

    PubMed

    González-Grandío, Eduardo; Pajoro, Alice; Franco-Zorrilla, José M; Tarancón, Carlos; Immink, Richard G H; Cubas, Pilar

    2017-01-10

    Shoot-branching patterns determine key aspects of plant life and are important targets for crop breeding. However, we are still largely ignorant of the genetic networks controlling locally the most important decision during branch development: whether the axillary bud, or branch primordium, grows out to give a lateral shoot or remains dormant. Here we show that, inside the buds, the TEOSINTE BRANCHED1, CYCLOIDEA, PCF (TCP) transcription factor BRANCHED1 (BRC1) binds to and positively regulates the transcription of three related Homeodomain leucine zipper protein (HD-ZIP)-encoding genes: HOMEOBOX PROTEIN 21 (HB21), HOMEOBOX PROTEIN 40 (HB40), and HOMEOBOX PROTEIN 53 (HB53). These three genes, together with BRC1, enhance 9-CIS-EPOXICAROTENOID DIOXIGENASE 3 (NCED3) expression, lead to abscisic acid accumulation, and trigger hormone response, thus causing suppression of bud development. This TCP/HD-ZIP genetic module seems to be conserved in dicot and monocotyledonous species to prevent branching under light-limiting conditions.

  11. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways.

    PubMed

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.

  12. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways

    PubMed Central

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia. PMID:26157452

  13. Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea1[C][W][OA

    PubMed Central

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B.; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-01-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776

  14. EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees

    PubMed Central

    Yordanov, Yordan S.; Ma, Cathleen; Strauss, Steven H.; Busov, Victor B.

    2014-01-01

    Trees from temperate latitudes transition between growth and dormancy to survive dehydration and freezing stress during winter months. We used activation tagging to isolate a dominant mutation affecting release from dormancy and identified the corresponding gene EARLY BUD-BREAK 1 (EBB1). We demonstrate through positioning of the tag, expression analysis, and retransformation experiments that EBB1 encodes a putative APETALA2/Ethylene responsive factor transcription factor. Transgenic up-regulation of the gene caused early bud-flush, whereas down-regulation delayed bud-break. Native EBB1 expression was highest in actively growing apices, undetectable during the dormancy period, but rapidly increased before bud-break. The EBB1 transcript was localized in the L1/L2 layers of the shoot meristem and leaf primordia. EBB1-overexpressing transgenic plants displayed enlarged shoot meristems, open and poorly differentiated buds, and a higher rate of cell division in the apex. Transcriptome analyses of the EBB1 transgenics identified 971 differentially expressed genes whose expression correlated with the EBB1 expression changes in the transgenic plants. Promoter analysis among the differentially expressed genes for the presence of a canonical EBB1-binding site identified 65 putative target genes, indicative of a broad regulatory context of EBB1 function. Our results suggest that EBB1 has a major and integrative role in reactivation of meristem activity after winter dormancy. PMID:24951507

  15. Annual and spatial variation in shoot demography associated with masting in Betula grossa: comparison between mature trees and saplings

    PubMed Central

    Ishihara, Masae Iwamoto; Kikuzawa, Kihachiro

    2009-01-01

    Backgrounds and Aims Shoot demography affects the growth of the tree crown and the number of leaves on a tree. Masting may cause inter-annual and spatial variation in shoot demography of mature trees, which may in turn affect the resource budget of the tree. The aim of this study was to evaluate the effect of masting on the temporal and spatial variations in shoot demography of mature Betula grossa. Methods The shoot demography was analysed in the upper and lower parts of the tree crown in mature trees and saplings over 7 years. Mature trees and saplings were compared to differentiate the effect of masting from the effect of exogenous environment on shoot demography. The fate of different shoot types (reproductive, vegetative, short, long), shoot length and leaf area were investigated by monitoring and by retrospective survey using morphological markers on branches. The effects of year and branch position on demographic parameters were evaluated. Key Results Shoot increase rate, production of long shoots, bud mortality, length of long shoots and leaf area of a branch fluctuated periodically from year to year in mature trees over 7 years, in which two masting events occurred. Branches within a crown showed synchronized annual variation, and the extent of fluctuation was larger in the upper branches than the lower branches. Vegetative shoots varied in their bud differentiation each year and contributed to the dynamic shoot demography as much as did reproductive shoots, suggesting physiological integration in shoot demography through hormonal regulation and resource allocation. Conclusions Masting caused periodic annual variation in shoot demography of the mature trees and the effect was spatially variable within a tree crown. Since masting is a common phenomenon among tree species, annual variation in shoot demography and leaf area should be incorporated into resource allocation models of mature masting trees. PMID:19734164

  16. Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants

    PubMed Central

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Li, Siqi; van Bodegom, Peter M.; Cornelissen, Johannes H. C.

    2016-01-01

    Background and Aims Flooding imposes stress upon terrestrial plants because it results in oxygen deficiency, which is considered a major problem for submerged plants. A common response of terrestrial plants to flooding is the formation of aquatic adventitious roots. Some studies have shown that adventitious roots on submerged plants are capable of absorbing water and nutrients. However, there is no experimental evidence for the possible oxygen uptake function of adventitious roots or for how important this function might be for the survival of plants during prolonged submergence. This study aims to investigate whether adventitious roots absorb oxygen from the water column, and whether this new function is beneficial to the survival of completely submerged plants. Methods Taking Alternanthera philoxeroides (Mart.) Griseb. as a representative species, the profiling of the underwater oxygen gradient towards living and dead adventitious roots on completely submerged plants was conducted, the oxygen concentration in stem nodes with and without adventitious roots was measured, and the growth, survival and non-structural carbohydrate content of completely submerged plants with and without adventitious roots was investigated. Key Results Oxygen profiles in the water column of adventitious roots showed that adventitious roots absorbed oxygen from water. It is found that the oxygen concentration in stem nodes having adventitious roots was higher than that in stem nodes without adventitious roots, which implies that the oxygen absorbed by adventitious roots from water was subsequently transported from the roots to other plant tissues. Compared with plants whose adventitious roots had been pruned, those with intact adventitious roots had slower leaf shedding, slower plant mass reduction, more efficient carbohydrate economy and prolonged survival when completely submerged. Conclusions The adventitious roots of A. philoxeroides formed upon submergence can absorb oxygen from

  17. Expression of almond KNOTTED1 homologue (PdKn1) anticipates adventitious shoot initiation

    USDA-ARS?s Scientific Manuscript database

    Background and Aims: The transcription factor encoded by the gene Knotted1 is a nuclear homeodomain protein, regulating meristematic cells at the shoot apical meristem. It has been proven that Knotted1 (KN1) has a role in the switch from an indeterminate to determinate cell fate and as such this gen...

  18. Twig pre-harvest temperature significantly influences effective cryopreservation of Vaccinium dormant buds.

    PubMed

    Jenderek, Maria M; Tanner, Justin D; Ambruzs, Barbara D; West, Mark; Postman, Joseph D; Hummer, Kim E

    2017-02-01

    Cryopreservation of temperate woody-plant material by dormant buds is less expensive than using shoot tips isolated from tissue cultured plants; however currently, dormant buds are used only for preservation of selected temperate tree and shrub species. Using dormant buds could be an efficient strategy for long-term preservation of blueberry (Vaccinium L.) genetic resources. In this study, viability of V. hybrid 'Northsky' (PI 554943) dormant buds was evaluated at 30 harvest dates over three consecutive fall/winter seasons to determine the optimal harvest time that promotes high post cryopreservation viability. Twigs with dormant buds were cut into 70 mm segments containing at least two nodes, desiccated, slowly cooled, stored in liquid nitrogen vapor and tested for post-cryopreservation regrowth. The highest regrowth of cryopreserved dormant buds was observed for buds harvested in mid-December and during the first half of January. Pearson's correlation coefficients were computed to evaluate the association between bud characteristics and viability at harvest date and logistic regression models were fit to test the ability of twig characteristics and temperatures to predict post cryopreservation bud viability. Post-cryopreservation viability was negatively correlated (p < 0.05) with average minimum, maximum and daily mean temperature preceding the bud harvest but was not correlated with the dormant bud initial and end moisture content, twig diameter, the number of dormant buds/cm of twig length and the number of days in desiccation. Regression tree analysis suggested post-cryopreservation viability to be between 52 and 80% for dormant buds harvested after a 10 day average maximum air temperature of <11.2 °C. Pre-harvest air temperature was a significant indicator of optimal dormant bud harvest time to produce adequate viability for long term preservation of blueberry genetic resources. Published by Elsevier Inc.

  19. Metabolic analysis of the increased adventitious rooting mutant of Artemisia annua reveals a role for the plant monoterpene borneol in adventitious root formation.

    PubMed

    Tian, Na; Liu, Shuoqian; Li, Juan; Xu, Wenwen; Yuan, Lin; Huang, Jianan; Liu, Zhonghua

    2014-08-01

    Adventitious root (AR) formation is a critical process for plant clonal propagation. The role of plant secondary metabolites in AR formation is still poorly understood. Chemical and physical mutagenesis in combination with somatic variation were performed on Artemisia annua in order to obtain a mutant with changes in adventitious rooting and composition of plant secondary metabolites. Metabolic and morphological analyses of the iar (increased adventitious rooting) mutant coupled with in vitro assays were used to elucidate the relationship between plant secondary metabolites and AR formation. The only detected differences between the iar mutant and wild-type were rooting capacity and borneol/camphor content. Consistent with this, treatment with borneol in vitro promoted adventitious rooting in wild-type. The enhanced rooting did not continue upon removal of borneol. The iar mutant displayed no significant differences in AR formation upon treatment with camphor. Together, our results suggest that borneol promotes adventitious rooting whereas camphor has no effect on AR formation. © 2013 Scandinavian Plant Physiology Society.

  20. Apple dwarfing rootstocks and interstocks affect the type of growth units produced during the annual growth cycle: precocious transition to flowering affects the composition and vigour of annual shoots.

    PubMed

    Seleznyova, Alla N; Tustin, D Stuart; Thorp, T Grant

    2008-04-01

    Precocious flowering in apple trees is often associated with a smaller tree size. The hypothesis was tested that floral evocation in axillary buds, induced by dwarfing rootstocks, reduces the vigour of annual shoots developing from these buds compared with shoots developing from vegetative buds. The experimental system provided a wide range of possible tree vigour using 'Royal Gala' scions and M.9 (dwarfing) and MM.106 (non-dwarfing) as rootstocks and interstocks. Second-year annual shoots were divided into growth units corresponding to periods (flushes) of growth namely, vegetative spur, extension growth unit, uninterrupted growth unit, floral growth unit (bourse) and extended bourse. The differences between the floral and vegetative shoots were quantified by the constituent growth units produced. The dwarfing influence was expressed, firstly, in reduced proportions of shoots that contained at least one extension growth unit and secondly, in reduced proportions of bicyclic shoots (containing two extension growth units) and shoots with an uninterrupted growth unit. In treatments where floral shoots were present, they were markedly less vigorous than vegetative shoots with respect to both measures. In treatments with M.9 rootstock, vegetative and floral shoots produced on average 0.52 and 0.17 extension growth units, compared with 0.77 extension growth units per shoot in the MM.106 rootstock treatment. Remarkably, the number of nodes per extension growth unit was not affected by the rootstock/interstock treatments. These results showed that rootstocks/interstocks affect the type of growth units produced during the annual growth cycle, reducing the number of extension growth units, thus affecting the composition and vigour of annual shoots. This effect is particularly amplified by the transition to flowering induced by dwarfing rootstocks. The division of annual shoot into growth units will also be useful for measuring and modelling effects of age on apple tree

  1. Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting

    PubMed Central

    2014-01-01

    Background In saffron (Crocus sativus), new corms develop at the base of every shoot developed from the maternal corm, a globular underground storage stem. Since the degree of bud sprouts influences the number and size of new corms, and strigolactones (SLs) suppress growth of pre-formed axillary bud, it was considered appropriate to investigate SL involvement in physiology and molecular biology in saffron. We focused on two of the genes within the SL pathway, CCD7 and CCD8, encoding carotenoid cleavage enzymes required for the production of SLs. Results The CsCCD7 and CsCCD8 genes are the first ones isolated and characterized from a non-grass monocotyledonous plant. CsCCD7 and CsCCD8 expression showed some overlapping, although they were not identical. CsCCD8 was highly expressed in quiescent axillary buds and decapitation dramatically reduced its expression levels, suggesting its involvement in the suppression of axillary bud outgrowth. Furthermore, in vitro experiments showed also the involvement of auxin, cytokinin and jasmonic acid on the sprouting of axillary buds from corms in which the apical bud was removed. In addition, CsCCD8 expression, but not CsCCD7, was higher in the newly developed vascular tissue of axillary buds compared to the vascular tissue of the apical bud. Conclusions We showed that production and transport of auxin in saffron corms could act synergistically with SLs to arrest the outgrowth of the axillary buds, similar to the control of above-ground shoot branching. In addition, jasmonic acid seems to play a prominent role in bud dormancy in saffron. While cytokinins from roots promote bud outgrowth. In addition the expression results of CsCCD8 suggest that SLs could positively regulate procambial activity and the development of new vascular tissues connecting leaves with the mother corm. PMID:24947472

  2. Effects of ABA application on cessation of shoot elongation in long-day grown Norway spruce seedlings.

    PubMed

    Heide, O M

    1986-06-01

    Abscisic acid (ABA) was applied in lanolin to apical buds of Norway spruce (Picea abies (L.) Karst.) seedlings actively growing in a 24 h photoperiod. At a rate of 100 microg per plant, ABA suspended shoot elongation for about three weeks in the majority of plants but failed to induce normal winter buds. The role of ABA in the induction of dormancy is thus uncertain in conifers as well as in deciduous woody plants.

  3. The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating RAX Genes in Arabidopsis

    PubMed Central

    Guo, Dongshu; Zhang, Jinzhe; Wang, Xinlei; Han, Xiang; Wei, Baoye; Yu, Hao; Huang, Qingpei

    2015-01-01

    Plant shoot branching is pivotal for developmental plasticity and crop yield. The formation of branch meristems is regulated by several key transcription factors including REGULATOR OF AXILLARY MERISTEMS1 (RAX1), RAX2, and RAX3. However, the regulatory network of shoot branching is still largely unknown. Here, we report the identification of EXCESSIVE BRANCHES1 (EXB1), which affects axillary meristem (AM) initiation and bud activity. Overexpression of EXB1 in the gain-of-function mutant exb1-D leads to severe bushy and dwarf phenotypes, which result from excessive AM initiation and elevated bud activities. EXB1 encodes the WRKY transcription factor WRKY71, which has demonstrated transactivation activities. Disruption of WRKY71/EXB1 by chimeric repressor silencing technology leads to fewer branches, indicating that EXB1 plays important roles in the control of shoot branching. We demonstrate that EXB1 controls AM initiation by positively regulating the transcription of RAX1, RAX2, and RAX3. Disruption of the RAX genes partially rescues the branching phenotype caused by EXB1 overexpression. We further show that EXB1 also regulates auxin homeostasis in control of shoot branching. Our data demonstrate that EXB1 plays pivotal roles in shoot branching by regulating both transcription of RAX genes and auxin pathways. PMID:26578700

  4. Developmental morphology of flattened shoots in Dalzellia ubonensis and Indodalzellia gracilis with implications for the evolution of diversified shoot morphologies in the subfamily Tristichoideae (Podostemaceae).

    PubMed

    Fujinami, Rieko; Imaichi, Ryoko

    2015-06-01

    Podostemaceae is a unique family of aquatic angiosperms that grow in swift-running water on rock surfaces in the tropics. Their plant bodies show a remarkable adaptation: the main plant body is mostly creeping or flattened, or in extreme cases foliose, functioning as an adhering and photosynthetic organ. In the subfamily Podostemoideae, the root is foliose, whereas in the subfamily Tristichoideae, the shoot is foliose. An evolutionary scenario for the foliose root has already been proposed, but that for the foliose shoot remains to be addressed. Shoots of Indodalzellia gracilis and Dalzellia ubonensis (subfamily Tristichoideae) were observed using light microscopy and scanning electron microscopy. Gene expression patterns of orthologs of marker genes for the shoot apical meristem, i.e., SHOOT MERISTEMLESS and WUSCHEL, in D. ubonensis were analyzed. When very young, the phyllotaxis is tristichous in both genera: a set of one dorsal and two marginal leaves forms. When the shoot branches, extra-axillary buds of two subsequent marginal leaves form as new (lateral) shoots, and the original shoot stops growing; this growth pattern is called sympodial branching. Due to zonal growth in the common zone just below the original and lateral shoot apices, flattened or foliose shoots result. The expression patterns of DuSTM and DuWUS in the shoot apices of Dalzellia were similar to those published for Terniopsis. The foliose shoots of Indodalzellia and Dalzellia evolved as a result of congenital fusion among several original and lateral branches, each of which grows separately in other Tristichoideae. © 2015 Botanical Society of America, Inc.

  5. Shoot growth and leaf dimorphism in Boston ivy (Parthenocissus tricuspidata)

    Treesearch

    William B. Critchfield

    1970-01-01

    Boston ivy, a common ornamental vine in the grape family, successively produces two kinds of leaves during the growing season. The two "early leaves" at the base of each shoot are preformed in the winter bud, and their expansion in the spring is accompanied by little stem elongation. At maturity they have large three-lobed blades and long petioles. Most short...

  6. Gibberellin-enhanced elongation of inverted Pharbitis nil shoot prevents the release of apical dominance

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1987-01-01

    Ethylene evolution resulting from the gravity stress of shoot inversion appears to induce the release of apical dominance in Pharbitis nil (L.) by inhibiting elongation of the inverted shoot. It has been previously demonstrated that this shoot inversion release of apical dominance can be prevented by promoting elongation in the inverted shoot via interference with ethylene synthesis or action. In the present study it was shown that apical dominance release can also be prevented by promoting elongation of the inverted shoot via treatment with gibberellic acid (GA3). A synergistic effect was observed when AgNO3, the ethylene action inhibitor, was applied with GA3. Both GA3 and AgNO3 increased ethylene production in the inverted shoot. These results are consistent with the view that it is ethylene-induced inhibition of elongation and not any direct effect of ethylene per se which is responsible for the outgrowth of the highest lateral bud.

  7. Distinct modes of adventitious rooting in Arabidopsis thaliana.

    PubMed

    Correa, L da Rocha; Troleis, J; Mastroberti, A A; Mariath, J E A; Fett-Neto, A G

    2012-01-01

    The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species.

  8. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots.

    PubMed

    de Vries, Jan; Fischer, Angela Melanie; Roettger, Mayo; Rommel, Sophie; Schluepmann, Henriette; Bräutigam, Andrea; Carlsbecker, Annelie; Gould, Sven Bernhard

    2016-01-01

    The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. The anillin-related region of Bud4 is the major functional determinant for Bud4's function in septin organization during bud growth and axial bud site selection in budding yeast.

    PubMed

    Wu, Huan; Guo, Jia; Zhou, Ya-Ting; Gao, Xiang-Dong

    2015-03-01

    The anillin-related protein Bud4 of Saccharomyces cerevisiae is required for axial bud site selection by linking the axial landmark to the septins, which localize at the mother bud neck. Recent studies indicate that Bud4 plays a role in septin organization during cytokinesis. Here we show that Bud4 is also involved in septin organization during bud growth prior to cytokinesis, as bud4Δ shs1Δ cells displayed an elongated bud morphology and defective septin organization at 18°C. Bud4 overexpression also affected septin organization during bud growth in shs1Δ cells at 30°C. Bud4 was previously thought to associate with the septins via its central region, while the C-terminal anillin-related region was not involved in septin association. Surprisingly, we found that the central region of Bud4 alone targets to the bud neck throughout the cell cycle, unlike full-length Bud4, which localizes to the bud neck only during G2/M phase. We identified the anillin-related region to be a second targeting domain that cooperates with the central region for proper septin association. In addition, the anillin-related region could largely mediate Bud4's function in septin organization during bud growth and bud site selection. We show that this region interacts with the C terminus of Bud3 and the two segments depend on each other for association with the septins. Moreover, like the bud4Δ mutant, the bud3Δ mutant genetically interacts with shs1Δ and cdc12-6 mutants in septin organization, suggesting that Bud4 and Bud3 may cooperate in septin organization during bud growth. These observations provide new insights into the interaction of Bud4 with the septins and Bud3. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Inhibition of strigolactones promotes adventitious root formation

    PubMed Central

    Beveridge, Christine A.; Geelen, Danny

    2012-01-01

    Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate here that fluridone can be used to promote adventitious rooting in the model species Pisum sativum (pea). In addition, in the garden species Plumbago auriculata and Jasminium polyanthum fluridone was equally as successful at promoting roots as a commercial rooting compound containing NAA and IBA. Our findings demonstrate that inhibition of strigolactone signaling has the potential to be used to improve adventitious rooting in commercially relevant species. PMID:22580687

  11. Ice barriers promote supercooling and prevent frost injury in reproductive buds, flowers and fruits of alpine dwarf shrubs throughout the summer.

    PubMed

    Kuprian, Edith; Briceño, Verónica F; Wagner, Johanna; Neuner, Gilbert

    2014-10-01

    Over-wintering reproductive buds of many woody plants survive frost by supercooling. The bud tissues are isolated from acropetally advancing ice by the presence of ice barriers that restrict ice growth. Plants living in alpine environments also face the risk of ice formation in summer months. Little knowledge exists, how reproductive structures of woody alpine plants are protected from frost injury during episodic summer frosts. In order to address this question, frost resistance of three common dwarf shrubs, Calluna vulgaris , Empetrum hermaphroditum and Loiseleuria procumbens was measured and ice formation and propagation were monitored in twigs bearing reproductive shoots during various stages of reproductive development (bud, anthesis, and fruit) throughout the alpine summer. Results indicated that, in the investigated species, ice barriers were present at all reproductive stages, isolating the reproductive shoots from ice advancing from the subtending vegetative shoot. Additionally, in the reproductive stems ice nucleating agents that are active at warm, sub-zero temperatures, were absent. The ice barriers were 100% effective, with the exception of L. procumbens , where in 13% of the total observations, the ice barrier failed. The ice barriers were localized at the base of the pedicel, at the anatomical junction of the vegetative and reproductive shoot. There, structural aspects of the tissue impede or prevent ice from advancing from the frozen stem into the pedicel of the reproductive shoot. Under the experimental conditions used in this study, ice nucleation initially occurred in the stem of the vegetative shoot at species-specific mean temperatures in the range of -4.7 to -5.8 °C. Reproductive shoots, however, remained supercooled and ice free down to a range of -7.2 to -18.2 °C or even below -22 °C, the lowest temperature applied in the study. This level of supercooling is sufficient to prevent freezing of reproductive structures at the lowest air

  12. Ice barriers promote supercooling and prevent frost injury in reproductive buds, flowers and fruits of alpine dwarf shrubs throughout the summer☆

    PubMed Central

    Kuprian, Edith; Briceño, Verónica F.; Wagner, Johanna; Neuner, Gilbert

    2014-01-01

    Over-wintering reproductive buds of many woody plants survive frost by supercooling. The bud tissues are isolated from acropetally advancing ice by the presence of ice barriers that restrict ice growth. Plants living in alpine environments also face the risk of ice formation in summer months. Little knowledge exists, how reproductive structures of woody alpine plants are protected from frost injury during episodic summer frosts. In order to address this question, frost resistance of three common dwarf shrubs, Calluna vulgaris, Empetrum hermaphroditum and Loiseleuria procumbens was measured and ice formation and propagation were monitored in twigs bearing reproductive shoots during various stages of reproductive development (bud, anthesis, and fruit) throughout the alpine summer. Results indicated that, in the investigated species, ice barriers were present at all reproductive stages, isolating the reproductive shoots from ice advancing from the subtending vegetative shoot. Additionally, in the reproductive stems ice nucleating agents that are active at warm, sub-zero temperatures, were absent. The ice barriers were 100% effective, with the exception of L. procumbens, where in 13% of the total observations, the ice barrier failed. The ice barriers were localized at the base of the pedicel, at the anatomical junction of the vegetative and reproductive shoot. There, structural aspects of the tissue impede or prevent ice from advancing from the frozen stem into the pedicel of the reproductive shoot. Under the experimental conditions used in this study, ice nucleation initially occurred in the stem of the vegetative shoot at species-specific mean temperatures in the range of −4.7 to −5.8 °C. Reproductive shoots, however, remained supercooled and ice free down to a range of −7.2 to −18.2 °C or even below −22 °C, the lowest temperature applied in the study. This level of supercooling is sufficient to prevent freezing of reproductive structures at the

  13. The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating RAX Genes in Arabidopsis.

    PubMed

    Guo, Dongshu; Zhang, Jinzhe; Wang, Xinlei; Han, Xiang; Wei, Baoye; Wang, Jianqiao; Li, Boxun; Yu, Hao; Huang, Qingpei; Gu, Hongya; Qu, Li-Jia; Qin, Genji

    2015-11-01

    Plant shoot branching is pivotal for developmental plasticity and crop yield. The formation of branch meristems is regulated by several key transcription factors including REGULATOR OF AXILLARY MERISTEMS1 (RAX1), RAX2, and RAX3. However, the regulatory network of shoot branching is still largely unknown. Here, we report the identification of EXCESSIVE BRANCHES1 (EXB1), which affects axillary meristem (AM) initiation and bud activity. Overexpression of EXB1 in the gain-of-function mutant exb1-D leads to severe bushy and dwarf phenotypes, which result from excessive AM initiation and elevated bud activities. EXB1 encodes the WRKY transcription factor WRKY71, which has demonstrated transactivation activities. Disruption of WRKY71/EXB1 by chimeric repressor silencing technology leads to fewer branches, indicating that EXB1 plays important roles in the control of shoot branching. We demonstrate that EXB1 controls AM initiation by positively regulating the transcription of RAX1, RAX2, and RAX3. Disruption of the RAX genes partially rescues the branching phenotype caused by EXB1 overexpression. We further show that EXB1 also regulates auxin homeostasis in control of shoot branching. Our data demonstrate that EXB1 plays pivotal roles in shoot branching by regulating both transcription of RAX genes and auxin pathways. © 2015 American Society of Plant Biologists. All rights reserved.

  14. Structure–Function Relationships in Highly Modified Shoots of Cactaceae

    PubMed Central

    MAUSETH, JAMES D.

    2006-01-01

    • Background and Aims Cacti are extremely diverse structurally and ecologically, and so modified as to be intimidating to many biologists. Yet all have the same organization as most dicots, none differs fundamentally from Arabidopsis or other model plants. This review explains cactus shoot structure, discusses relationships between structure, ecology, development and evolution, and indicates areas where research on cacti is necessary to test general theories of morphogenesis. • Scope Cactus leaves are diverse; all cacti have foliage leaves; many intermediate stages in evolutionary reduction of leaves are still present; floral shoots often have large, complex leaves whereas vegetative shoots have microscopic leaves. Spines are modified bud scales, some secrete sugar as extra-floral nectaries. Many cacti have juvenile/adult phases in which the flowering adult phase (a cephalium) differs greatly from the juvenile; in some, one side of a shoot becomes adult, all other sides continue to grow as the juvenile phase. Flowers are inverted: the exterior of a cactus ‘flower’ is a hollow vegetative shoot with internodes, nodes, leaves and spines, whereas floral organs occur inside, with petals physically above stamens. Many cacti have cortical bundles vascularizing the cortex, however broad it evolves to be, thus keeping surface tissues alive. Great width results in great weight of weak parenchymatous shoots, correlated with reduced branching. Reduced numbers of shoot apices is compensated by great increases in number of meristematic cells within individual SAMs. Ribs and tubercles allow shoots to swell without tearing during wet seasons. Shoot epidermis and cortex cells live and function for decades then convert to cork cambium. Many modifications permit water storage within cactus wood itself, adjacent to vessels. PMID:16820405

  15. Structure-function relationships in highly modified shoots of cactaceae.

    PubMed

    Mauseth, James D

    2006-11-01

    Cacti are extremely diverse structurally and ecologically, and so modified as to be intimidating to many biologists. Yet all have the same organization as most dicots, none differs fundamentally from Arabidopsis or other model plants. This review explains cactus shoot structure, discusses relationships between structure, ecology, development and evolution, and indicates areas where research on cacti is necessary to test general theories of morphogenesis. Cactus leaves are diverse; all cacti have foliage leaves; many intermediate stages in evolutionary reduction of leaves are still present; floral shoots often have large, complex leaves whereas vegetative shoots have microscopic leaves. Spines are modified bud scales, some secrete sugar as extra-floral nectaries. Many cacti have juvenile/adult phases in which the flowering adult phase (a cephalium) differs greatly from the juvenile; in some, one side of a shoot becomes adult, all other sides continue to grow as the juvenile phase. Flowers are inverted: the exterior of a cactus 'flower' is a hollow vegetative shoot with internodes, nodes, leaves and spines, whereas floral organs occur inside, with petals physically above stamens. Many cacti have cortical bundles vascularizing the cortex, however broad it evolves to be, thus keeping surface tissues alive. Great width results in great weight of weak parenchymatous shoots, correlated with reduced branching. Reduced numbers of shoot apices is compensated by great increases in number of meristematic cells within individual SAMs. Ribs and tubercles allow shoots to swell without tearing during wet seasons. Shoot epidermis and cortex cells live and function for decades then convert to cork cambium. Many modifications permit water storage within cactus wood itself, adjacent to vessels.

  16. Hypoperfusion of the Adventitial Vasa Vasorum Develops an Abdominal Aortic Aneurysm

    PubMed Central

    Sasaki, Takeshi; Sano, Masaki; Yamamoto, Naoto; Saito, Takaaki; Inuzuka, Kazunori; Hayasaka, Takahiro; Goto-Inoue, Naoko; Sugiura, Yuki; Sato, Kohji; Kugo, Hirona; Moriyama, Tatsuya; Konno, Hiroyuki; Setou, Mitsutoshi; Unno, Naoki

    2015-01-01

    The aortic wall is perfused by the adventitial vasa vasorum (VV). Tissue hypoxia has previously been observed as a manifestation of enlarged abdominal aortic aneurysms (AAAs). We sought to determine whether hypoperfusion of the adventitial VV could develop AAAs. We created a novel animal model of adventitial VV hypoperfusion with a combination of a polyurethane catheter insertion and a suture ligation of the infrarenal abdominal aorta in rats. VV hypoperfusion caused tissue hypoxia and developed infrarenal AAA, which had similar morphological and pathological characteristics to human AAA. In human AAA tissue, the adventitial VV were stenotic in both small AAAs (30–49 mm in diameter) and in large AAAs (> 50 mm in diameter), with the sac tissue in these AAAs being ischemic and hypoxic. These results indicate that hypoperfusion of adventitial VV has critical effects on the development of infrarenal AAA. PMID:26308526

  17. Role of TCP Gene BRANCHED1 in the Control of Shoot Branching in Arabidopsis.

    PubMed

    Poza-Carrión, César; Aguilar-Martínez, José Antonio; Cubas, Pilar

    2007-11-01

    Branching patterns are major determinants of plant architecture. They depend both on leaf phillotaxy (branch primordia are formed in the axils of leaves) and on the decision of buds to grow out to give a branch or to remain dormant. In Arabidopsis, several genes involved in the long-distance signalling of the control of branch outgrowth have been identified. However, the genes acting inside the buds to cause growth arrest remained unknown until now. In the February issue of Plant Cell we have described the function of BRANCHED1 (BRC1), an Arabidopsis gene coding for a plant-specific transcription factor of the TCP family that is expressed in the buds and prevents their development. Loss of BRC1 function leads to accelerated AM initiation, precocious progression of bud development and excess of shoot branching. BRC1 transcription is affected by endogenous and environmental signals controlling branching and we have shown that BRC1 function mediates the response to these stimuli. Therefore we have proposed that BRC1 function represents the point at which signals controlling branching are integrated within axillary buds.

  18. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study.

    PubMed

    de Almeida, Marcilio; de Almeida, Cristina Vieira; Mendes Graner, Erika; Ebling Brondani, Gilvano; Fiori de Abreu-Tarazi, Monita

    2012-08-01

    The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to

  19. The timing of bud break in warming conditions: variation among seven sympatric conifer species from Eastern Canada

    NASA Astrophysics Data System (ADS)

    Rossi, Sergio; Isabel, Nathalie

    2017-11-01

    Phenological changes are expected with the ongoing global warming, which could create mismatches in the growth patterns among sympatric species or create synchrony with insect herbivores. In this study, we performed a comparative assessment of the timings of bud break among seven conifer species of Eastern Canada by evaluating seedling development in growth chambers under different temperatures (16, 20 and 24 °C). Bud break occurred earliest in Larix laricina, while Pinus strobus and Pinus resinosa had the latest. Warmer conditions advanced bud break, with the greatest effects being observed at the lower temperatures. Mixed models estimated that one additional degree of temperature produced advancements of 5.3 and 2.1 days at 16 and 20 °C, respectively. The hypothesis of an asynchronous change between species under warming was demonstrated only for the last phenological phases (split buds and exposed shoots), and principally in pines. Abies balsamea showed changes in bud break comparable with the other species analysed, rejecting the hypothesis of mismatches under warmer conditions. The observed non-linear responses of the timings of bud break to warming suggest that the major changes in bud phenology should be expected at the lowest temperatures.

  20. Adventitious root formation in tree species: involvement of transcription factors.

    PubMed

    Legué, Valérie; Rigal, Adeline; Bhalerao, Rishikesh P

    2014-06-01

    Adventitious rooting is an essential step in the vegetative propagation of economically important horticultural and woody species. Populus has emerged as an experimental model for studying processes that are important in tree growth and development. It is highly useful for molecular genetic analysis of adventitious roots in trees. In this short review, we will highlight the recent progress made in the identification of transcription factors involved in the control of adventitious rooting in woody species. Their regulation will be discussed. © 2014 Scandinavian Plant Physiology Society.

  1. Adventitial nab-rapamycin injection reduces porcine femoral artery luminal stenosis induced by balloon angioplasty via inhibition of medial proliferation and adventitial inflammation.

    PubMed

    Gasper, Warren J; Jimenez, Cynthia A; Walker, Joy; Conte, Michael S; Seward, Kirk; Owens, Christopher D

    2013-12-01

    Endovascular interventions on peripheral arteries are limited by high rates of restenosis. Our hypothesis was that adventitial injection of rapamycin nanoparticles would be safe and reduce luminal stenosis in a porcine femoral artery balloon angioplasty model. Eighteen juvenile male crossbred swine were included. Single-injury (40%-60% femoral artery balloon overstretch injury; n=2) and double-injury models (endothelial denudation injury 2 weeks before a 20%-30% overstretch injury; n=2) were compared. The double-injury model produced significantly more luminal stenosis at 28 days, P=0.002, and no difference in medial fibrosis or inflammation. Four pigs were randomized to the double-injury model and adventitial injection of saline (n=2) or 500 μg of nanoparticle albumin-bound rapamycin (nab-rapamycin; n=2) with an endovascular microinfusion catheter. There was 100% procedural success and no difference in endothelial regeneration. At 28 days, nab-rapamycin led to significant reductions in luminal stenosis, 17% (interquartile range, 12%-35%) versus 10% (interquartile range, 8.3%-14%), P=0.001, medial cell proliferation, P<0.001, and fibrosis, P<0.001. There were significantly fewer adventitial leukocytes at 3 days, P<0.001, but no difference at 28 days. Pharmacokinetic analysis (single-injury model) found rapamycin concentrations 1500× higher in perivascular tissues than in blood at 1 hour. Perivascular rapamycin persisted ≥8 days and was not detectable at 28 days. Adventitial nab-rapamycin injection was safe and significantly reduced luminal stenosis in a porcine femoral artery balloon angioplasty model. Observed reductions in early adventitial leukocyte infiltration and late medial cell proliferation and fibrosis suggest an immunosuppressive and antiproliferative mechanism. An intraluminal microinfusion catheter for adventitial injection represents an alternative to stent- or balloon-based local drug delivery.

  2. Automatic adventitious respiratory sound analysis: A systematic review.

    PubMed

    Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11

  3. Automatic adventitious respiratory sound analysis: A systematic review

    PubMed Central

    Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Background Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. Objective To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. Data sources A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Study selection Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Data extraction Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. Data synthesis A total of 77 reports from the literature were included in this review. 55 (71.43%) of the

  4. Overexpression of DEMETER, a DNA demethylase, promotes early apical bud maturation in poplar.

    PubMed

    Conde, Daniel; Moreno-Cortés, Alicia; Dervinis, Christopher; Ramos-Sánchez, José M; Kirst, Matias; Perales, Mariano; González-Melendi, Pablo; Allona, Isabel

    2017-11-01

    The transition from active growth to dormancy is critical for the survival of perennial plants. We identified a DEMETER-like (CsDML) cDNA from a winter-enriched cDNA subtractive library in chestnut (Castanea sativa Mill.), an economically and ecologically important species. Next, we characterized this DNA demethylase and its putative ortholog in the more experimentally tractable hybrid poplar (Populus tremula × alba), under the signals that trigger bud dormancy in trees. We performed phylogenetic and protein sequence analysis, gene expression profiling, and 5-methyl-cytosine methylation immunodetection studies to evaluate the role of CsDML and its homolog in poplar, PtaDML6. Transgenic hybrid poplars overexpressing CsDML were produced and analysed. Short days and cold temperatures induced CsDML and PtaDML6. Overexpression of CsDML accelerated short-day-induced bud formation, specifically from Stages 1 to 0. Buds acquired a red-brown coloration earlier than wild-type plants, alongside with the up-regulation of flavonoid biosynthesis enzymes and accumulation of flavonoids in the shoot apical meristem and bud scales. Our data show that the CsDML gene induces bud formation needed for the survival of the apical meristem under the harsh conditions of winter. © 2017 John Wiley & Sons Ltd.

  5. Gene expression analysis of bud and leaf color in tea.

    PubMed

    Wei, Kang; Zhang, Yazhen; Wu, Liyun; Li, Hailin; Ruan, Li; Bai, Peixian; Zhang, Chengcai; Zhang, Fen; Xu, Liyi; Wang, Liyuan; Cheng, Hao

    2016-10-01

    Purple shoot tea attributing to the high anthocyanin accumulation is of great interest for its wide health benefits. To better understand potential mechanisms involved in purple buds and leaves formation in tea plants, we performed transcriptome analysis of six green or purple shoot tea individuals from a F1 population using the Illumina sequencing method. Totally 292 million RNA-Seq reads were obtained and assembled into 112,233 unigenes, with an average length of 759 bp and an N50 of 1081 bp. Moreover, totally 2193 unigenes showed significant differences in expression levels between green and purple tea samples, with 1143 up- and 1050 down-regulated in the purple teas. Further real time PCR analysis confirmed RNA-Seq results. Our study identified 28 differentially expressed transcriptional factors and A CsMYB gene was found to be highly similar to AtPAP1 in Arabidopsis. Further analysis of differentially expressed genes involved in anthocyanin biosynthesis and transportation showed that the late biosynthetic genes and genes involved in anthocyanin transportation were largely affected but the early biosynthetic genes were less or none affected. Overall, the identification of a large number of differentially expressed genes offers a global view of the potential mechanisms associated with purple buds and leaves formation, which will facilitate molecular breeding in tea plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Morpho-anatomical features of underground systems in six Asteraceae species from the Brazilian Cerrado.

    PubMed

    Appezzato-da-Glória, Beatriz; Cury, Graziela

    2011-09-01

    In the Brazilian Cerrado (neotropical savanna), the development of bud-bearing underground systems as adaptive structures to fire and dry periods can comprise an important source of buds for this ecosystem, as already demonstrated in the Brazilian Campos grasslands and North American prairies. Asteraceae species from both woody and herbaceous strata have subterranean organs that accumulate carbohydrates, reinforcing the adaptive strategy of these plants to different environmental conditions. This study aims to analyse the morpho-anatomy of underground systems of six species of Asteraceae (Mikania cordifolia L.f. Willd., Mikania sessilifolia DC, Trixis nobilis (Vell.) Katinas, Pterocaulon alopecuroides (Lam.) DC., Vernonia elegans Gardner and Vernonia megapotamica Spreng.), to describe these structures and to verify the occurrence and origin of shoot buds, and to analyse the presence of reserve substances. Individuals sampled in Cerrado areas in São Paulo State showed thick underground bud-bearing organs, with adventitious or lateral roots and presence of fructans. Xylopodium was found in all studied species, except for Trixis nobilis, which had stem tuber. The presence of fructans as reserve, and the capacity of structures in the formation of buds indicate the potential of herbaceous species of Asteraceae in forming a viable bud bank for vegetation regeneration in the Brazilian Cerrado.

  7. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  8. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    PubMed Central

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626

  9. BIG LEAF is a regulator of organ size and adventitious root formation in poplar.

    PubMed

    Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.

  10. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE PAGES

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...

    2017-07-07

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  11. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).

    PubMed

    Abiko, Tomomi; Kotula, Lukasz; Shiono, Katsuhiro; Malik, Al Imran; Colmer, Timothy David; Nakazono, Mikio

    2012-09-01

    Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging-tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis. © 2012 Blackwell Publishing Ltd.

  12. Micropropagation of Helleborus through axillary budding.

    PubMed

    Beruto, Margherita; Viglione, Serena; Bisignano, Alessandro

    2013-01-01

    Helleborus genus, belonging to the Ranunculaceae family, has 20 species of herbaceous perennial flowering plants. The commercial exploitation of this plant is dependent on the selection and propagation of appropriate lines. High propagation rate could be accomplished by using a suitable tissue culture method enabling the rapid introduction of valuable selections in the market. However, in vitro cultivation of Helleborus is still very difficult. Thereby the development of reliable in vitro propagation procedures is crucial for future production systems. Axillary buds cultured on agar-solidified Murashige and Skoog medium supplemented with 1 mg/L benzyladenine, 0.1 mg/L β-naphthoxyacetic acid, and 2 mg/L isopentenyl adenine develop shoots after 16 weeks of culture under 16 h light regime, 50-60 μmol/s/m(2), and 19 ± 1°C. The multiplication rate ranges from 1.4 to 2.1. However, the genotype and the number of subcultures affect the efficiency of the micropropagation process. The rooting of shoots is about 80% in solidified MS medium containing 1 mg/L 1-naphthaleneacetic acid and 3 mg/L indole-3-butyric acid. The described protocol provides information which can contribute to the commercial production of Helleborus plants.

  13. Red to Far-Red Light Ratio Modulates Hormonal and Genetic Control of Axillary bud Outgrowth in Chrysanthemum (Dendranthema grandiflorum 'Jinba').

    PubMed

    Yuan, Cunquan; Ahmad, Sagheer; Cheng, Tangren; Wang, Jia; Pan, Huitang; Zhao, Liangjun; Zhang, Qixiang

    2018-05-28

    Single-flower cut Chrysanthemum ( Dendranthema grandiflorum 'Jinba') holds a unique status in global floriculture industry. However, the extensive axillary bud outgrowth presents a major drawback. Shade is an environment cue that inhibits shoot branching. Present study was aimed at investigating the effect of ratio of red to far-red light (R:FR) in regulating the lateral bud outgrowth of Chrysanthemum and the detailed mechanism. Results showed that the fate of axillary buds at specific positions in stem exhibited difference in response to R:FR. Decreasing R:FR resulted in elevation of abscisic acid (ABA) accumulation in axillary buds. Expression of ABA, indole-3-acetic acid (IAA) and strigolactones (SL) -related metabolism and signal transduction genes was significantly changed in response to low R:FR. In addition, low R:FR caused the re-distribution of sucrose across the whole plant, driving more sucrose towards bottom buds. Our results indicate that low R:FR not always inhibits bud outgrowth, rather its influence depends on the bud position in the stem. ABA, SL and auxin pathways were involved in the process. Interestingly, sucrose also appears to be involved in the process which is necessary to pay attention in the further studies. The present study also lays the foundation for developing methods to regulate axillary bud outgrowth in Chrysanthemum.

  14. Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis.

    PubMed

    Benelli, Carla; De Carlo, Anna; Engelmann, Florent

    2013-01-01

    This paper presents the advances made over the last decade in cryopreservation of economically important vegetatively propagated fruit trees. Cryopreservation protocols have been established using both dormant buds sampled on field-grown plants and shoot tips sampled on in vitro plantlets. In the case of dormant buds, scions are partially dehydrated by storage at -5 °C, and then cooled slowly to -30 °C using low cooling rates (c.a. 1 °C/h) before immersion in liquid nitrogen. After slow rewarming and rehydration of samples, regrowth takes place either through grafting of buds on rootstocks or excision of apices and inoculation in vitro. In the case of shoot tips of in vitro plantlets, the cryopreservation techniques employed are the following: controlled rate cooling procedures involving slow prefreezing followed by immersion in liquid nitrogen or vitrification-based procedures including encapsulation-dehydration, vitrification, encapsulation-vitrification and droplet-vitrification. The current status of cryopreservation for a series of fruit tree species including Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis is presented. Routine application of cryopreservation for long-term germplasm storage in genebanks is currently limited to apple and pear, for which large cryopreserved collections have been established at NCGRP, Fort Collins (USA), using dormant buds and in vitro shoot tips, respectively. However, there are a growing number of examples of pilot scale testing experiments under way for different species in various countries. Progress in the further development and application of cryopreservation techniques will be made through a better understanding of the mechanisms involved in the induction of tolerance to dehydration and cryopreservation in frozen explants. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Expressed sequence tag analysis of functional genes associated with adventitious rooting in Liriodendron hybrids.

    PubMed

    Zhong, Y D; Sun, X Y; Liu, E Y; Li, Y Q; Gao, Z; Yu, F X

    2016-06-24

    Liriodendron hybrids (Liriodendron chinense x L. tulipifera) are important landscaping and afforestation hardwood trees. To date, little genomic research on adventitious rooting has been reported in these hybrids, as well as in the genus Liriodendron. In the present study, we used adventitious roots to construct the first cDNA library for Liriodendron hybrids. A total of 5176 expressed sequence tags (ESTs) were generated and clustered into 2921 unigenes. Among these unigenes, 2547 had significant homology to the non-redundant protein database representing a wide variety of putative functions. Homologs of these genes regulated many aspects of adventitious rooting, including those for auxin signal transduction and root hair development. Results of quantitative real-time polymerase chain reaction showed that AUX1, IRE, and FB1 were highly expressed in adventitious roots and the expression of AUX1, ARF1, NAC1, RHD1, and IRE increased during the development of adventitious roots. Additionally, 181 simple sequence repeats were identified from 166 ESTs and more than 91.16% of these were dinucleotide and trinucleotide repeats. To the best of our knowledge, the present study reports the identification of the genes associated with adventitious rooting in the genus Liriodendron for the first time and provides a valuable resource for future genomic studies. Expression analysis of selected genes could allow us to identify regulatory genes that may be essential for adventitious rooting.

  16. Growth and branching habit of rooted cuttings collected from epicormic shoots of Betula pendula Roth.

    PubMed

    Cameron, A D; Sani, H

    1994-04-01

    Patterns of shoot growth and branching were studied over two growing seasons in rooted cuttings collected from both epicormic shoots and seedlings of Betula pendula Roth. Epicormic shoots were induced to sprout on stumps and small logs of 5-, 10- and 30-year-old trees. The use of epicormic shoots enhanced the rooting capacity of stem cuttings collected from these shoots but did not appear to reverse the process of maturation. In this study, maturation was based on characteristics typical of mature trees but not necessarily those of the mother plant, because it was not possible to root cuttings, for comparison, from 5-, 10- and 30-year-old ortets, other than from epicormic shoots. There was evidence of the persistence of mature characteristics through an increase in shoot plagiotropism with increasing ortet age. Rooted cuttings from both seedlings and epicormic shoots, however, assumed an increasingly orthotropic habit with a smaller shoot angle at the end of the first growing season than at the beginning and this continued into the second growing season. Other indications of maturation, such as delayed bud flushing and the incidence of flowering with increasing ortet age, were also evident in rooted cuttings from epicormic shoots. There was a clear difference in branching habit depending on cutting source. Rooted cuttings derived from epicormic shoots produced nearly twice as many lateral branches compared with rooted cuttings collected from seedlings, but this was not an effect of maturation. There was some evidence that rooted cuttings derived from seedlings grew taller than rooted cuttings from epicormic shoots.

  17. Mechanical perturbation-induced ethylene releases apical dominance in Pharbitis nil by restricting shoot growth

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1985-01-01

    Mechanical perturbation (MP, rubbing) or internodes of Pharbitis nil shoots initiates release of lateral buds (LB) from apical dominance within 48 h. Evidence is presented which suggests that MP promotion of LB outgrowth is mediated by ethylene-induced restriction of main shoot growth. Ethylene production in the internodes is stimulated by MP within 2 h. Effects of MP are mimicked by treatments with 1-aminocyclopropane-1-carboxylic acid (ACC) and are negated by the inhibitors of ethylene production or action, aminoethoxy vinylglycine (AVG) and AgNO3. The fact that effects of MP, ACC, and ethylene inhibitors are observed to occur on main shoot growth at least 24 h before they are observed to occur on LB growth suggests a possible cause and effect relationship. MP also causes an increase in internode diameter. MP stimulation of ethylene production appears to be mediated by ACC synthase. The results of this study and our previous studies suggest that apical dominance may be released by any mechanism which induces ethylene restriction of main shoot growth.

  18. A gene co-expression network model identifies yield-related vicinity networks in Jatropha curcas shoot system.

    PubMed

    Govender, Nisha; Senan, Siju; Mohamed-Hussein, Zeti-Azura; Wickneswari, Ratnam

    2018-06-15

    The plant shoot system consists of reproductive organs such as inflorescences, buds and fruits, and the vegetative leaves and stems. In this study, the reproductive part of the Jatropha curcas shoot system, which includes the aerial shoots, shoots bearing the inflorescence and inflorescence were investigated in regard to gene-to-gene interactions underpinning yield-related biological processes. An RNA-seq based sequencing of shoot tissues performed on an Illumina HiSeq. 2500 platform generated 18 transcriptomes. Using the reference genome-based mapping approach, a total of 64 361 genes was identified in all samples and the data was annotated against the non-redundant database by the BLAST2GO Pro. Suite. After removing the outlier genes and samples, a total of 12 734 genes across 17 samples were subjected to gene co-expression network construction using petal, an R library. A gene co-expression network model built with scale-free and small-world properties extracted four vicinity networks (VNs) with putative involvement in yield-related biological processes as follow; heat stress tolerance, floral and shoot meristem differentiation, biosynthesis of chlorophyll molecules and laticifers, cell wall metabolism and epigenetic regulations. Our VNs revealed putative key players that could be adapted in breeding strategies for J. curcas shoot system improvements.

  19. FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce.

    PubMed

    Karlgren, Anna; Gyllenstrand, Niclas; Clapham, David; Lagercrantz, Ulf

    2013-10-01

    The timing of bud set, as one determinant of the annual growth rhythm, is critical for local adaptation of the conifer Norway spruce (Picea abies). Previous gene expression and population genetic studies have suggested a role for P. abies FLOWERING LOCUS T/TERMINAL FLOWER1-Like2 (PaFTL2) in the control of growth cessation and bud set in Norway spruce as well as in local adaptation resulting in clinal variation for timing of bud set. Using transgenic plants with PaFTL2 driven by an inducible promoter, we found that PaFTL2 indeed induces bud set and most probably also growth cessation. PaFTL2 shows high expression around the procambium and vascular tissue and in the crown region in buds of both seedlings and older trees. Furthermore, PaFTL2 expression is induced in vegetative shoots and all bud types in late summer, when growth cessation occurs. This supports the notion that PaFTL2 is involved in growth cessation. A close paralog to PaFTL2, PaFTL1, is strongly expressed in meristems during the summer, possibly to repress meristem activity and the formation of needle primordia during this period. The temporal and spatial expression of PaFTL1 and PaFTL2 largely complement each other, which suggests that they act in concert to control perennial growth in Norway spruce.

  20. The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes.

    PubMed

    Holalu, Srinidhi V; Finlayson, Scott A

    2017-02-01

    Arabidopsis thaliana shoot branching is inhibited by a low red light to far red light ratio (R:FR, an indicator of competition), and by loss of phytochrome B function. Prior studies have shown that phytochrome B deficiency suppresses bud growth by elevating systemic auxin signalling, and that increasing the R:FR promotes the growth of buds suppressed by low R:FR by inhibiting bud abscisic acid (ABA) accumulation and signalling. Here, systemic auxin signalling and bud ABA signalling were examined in the context of rapid bud responses to an increased R:FR. Increasing the R:FR promoted the growth of buds inhibited by a low R:FR within 6 h. Relative to a low R:FR, bud ABA accumulation and signalling in plants given a high R:FR showed a sustained decline within 3 h, prior to increased growth. Main stem auxin levels and signalling showed a weak, transient response. Systemic effects and those localised to the bud were further examined by decapitating plants maintained either under a low R:FR or provided with a high R:FR. Increasing the R:FR promoted bud growth before decapitation, but decapitated plants eventually formed longer branches. The data suggest that rapid responses to an increased R:FR may be mediated by changes in bud ABA physiology, although systemic auxin signalling is necessary for sustained bud repression under a low R:FR. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Theory and practice of conventional adventitious virus testing.

    PubMed

    Gregersen, Jens-Peter

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) For decades conventional tests in cell cultures and in laboratory animals have served as standard methods for broad-spectrum screening for adventitious viruses. New virus detection methods based on molecular biology have broadened and improved our knowledge about potential contaminating viruses and about the suitability of the conventional test methods. This paper summarizes and discusses practical aspects of conventional test schemes, such as detectability of various viruses, questionable or false-positive results, animal numbers needed, time and cost of testing, and applicability for rapidly changing starting materials. Strategies to improve the virus safety of biological medicinal products are proposed. The strategies should be based upon a flexible application of existing and new methods along with a scientifically based risk assessment. However, testing alone does not guarantee the absence of adventitious agents and must be accompanied by virus removing or virus inactivating process steps for critical starting materials, raw materials, and for the drug product.

  2. [Effects of culture conditions on biomass and active components of adventitious roots culture in Panax ginseng].

    PubMed

    Huang, Tao; Gao, Wenyuan; Wang, Juan; Cao, Yu

    2010-01-01

    To optimize the culture condition of adventitious roots of Panax ginseng. The adventitious roots were obtained through tissue culture by manipulation of inoculum, various sucrose concentrations and salt strength. The contents of ginsenosides Re, Rb1 and Rg1 were determined by HPLC while the contents of polysaccharides were determined by ultraviolet spectrophotometry. The multiplication of adventitious roots reached the peak when the inoculum was 20 g x L(-1). The effects of sucrose concentration and salt strength on adventitious roots were observed. The contents of polysaccharides were higher when the medium contained more sucrose. 40 g x L(-1) sucrose was favorable for roots growth and biosynthesis of Re, while 30 g x L(-1) was favorable for the biosynthesis of Rb1 and Rg1. 3/4MS medium was benefit for the growth of adventitious roots and the biosynthesis of ginsenosides. The contents of polysaccharides were decreased with the increase of salt strength. The results showed that inoculum, various sucrose concentrations and salt strength have significant influences on adventitious roots growth, secondary metabolite and polysaccharide synthesis in P. ginseng.

  3. Adventitious Root Formation of Forest Trees and Horticultural Plants - From Genes to Applications

    USDA-ARS?s Scientific Manuscript database

    Adventitious root formation is a key step in the clonal propagation of forest trees and horticultural crops. Difficulties in forming adventitious roots (ARs) on stem cuttings and plants produced in vitro hinders the propagation of elite trees and efficient production of many horticultural plant spec...

  4. Bioengineered Tooth Buds Exhibit Features of Natural Tooth Buds.

    PubMed

    Smith, E E; Angstadt, S; Monteiro, N; Zhang, W; Khademhosseini, A; Yelick, P C

    2018-06-01

    Tooth loss is a significant health issue currently affecting millions of people worldwide. Artificial dental implants, the current gold standard tooth replacement therapy, do not exhibit many properties of natural teeth and can be associated with complications leading to implant failure. Here we propose bioengineered tooth buds as a superior alternative tooth replacement therapy. We describe improved methods to create highly cellularized bioengineered tooth bud constructs that formed hallmark features that resemble natural tooth buds such as the dental epithelial stem cell niche, enamel knot signaling centers, transient amplifying cells, and mineralized dental tissue formation. These constructs were composed of postnatal dental cells encapsulated within a hydrogel material that were implanted subcutaneously into immunocompromised rats. To our knowledge, this is the first report describing the use of postnatal dental cells to create bioengineered tooth buds that exhibit evidence of these features of natural tooth development. We propose future bioengineered tooth buds as a promising, clinically relevant tooth replacement therapy.

  5. Transcriptome Profiling of Tiller Buds Provides New Insights into PhyB Regulation of Tillering and Indeterminate Growth in Sorghum1

    PubMed Central

    2016-01-01

    Phytochrome B (phyB) enables plants to modify shoot branching or tillering in response to varying light intensities and ratios of red and far-red light caused by shading and neighbor proximity. Tillering is inhibited in sorghum genotypes that lack phytochrome B (58M, phyB-1) until after floral initiation. The growth of tiller buds in the first leaf axil of wild-type (100M, PHYB) and phyB-1 sorghum genotypes is similar until 6 d after planting when buds of phyB-1 arrest growth, while wild-type buds continue growing and develop into tillers. Transcriptome analysis at this early stage of bud development identified numerous genes that were up to 50-fold differentially expressed in wild-type/phyB-1 buds. Up-regulation of terminal flower1, GA2oxidase, and TPPI could protect axillary meristems in phyB-1 from precocious floral induction and decrease bud sensitivity to sugar signals. After bud growth arrest in phyB-1, expression of dormancy-associated genes such as DRM1, GT1, AF1, and CKX1 increased and ENOD93, ACCoxidase, ARR3/6/9, CGA1, and SHY2 decreased. Continued bud outgrowth in wild-type was correlated with increased expression of genes encoding a SWEET transporter and cell wall invertases. The SWEET transporter may facilitate Suc unloading from the phloem to the apoplast where cell wall invertases generate monosaccharides for uptake and utilization to sustain bud outgrowth. Elevated expression of these genes was correlated with higher levels of cytokinin/sugar signaling in growing buds of wild-type plants. PMID:26893475

  6. The timing of bud burst and its effect on tree growth.

    PubMed

    Rötzer, T; Grote, R; Pretzsch, H

    2004-02-01

    A phenology model for estimating the timings of bud burst--one of the most influential phenological phases for the simulation of tree growth--is presented in this study. The model calculates the timings of the leafing of beech (Fagus sylvatica L.) and oak (Quercus robur L.) and the May shoot of Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.) on the basis of the daily maximum temperature. The data for parameterisation and validation of the model have been taken from 40 climate and 120 phenological stations in southern Germany with time series for temperature and bud burst of up to 30 years. The validation of the phenology module by means of an independent data set showed correlation coefficients for comparisons between observed and simulated values of 54% (beech), 55% (oak), 59% (spruce) and 56% (pine) with mean absolute errors varying from 4.4 days (spruce) to 5.0 days (pine). These results correspond well with the results of other--often more complex--phenology models. After the phenology module had been implemented in the tree-growth model BALANCE, the growth of a mixed forest stand with the former static and the new dynamic timings for the bud burst was simulated. The results of the two simulation runs showed that phenology has to be taken into account when simulating forest growth, particularly in mixed stands.

  7. Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation.

    PubMed

    Pacurar, Daniel Ioan; Pacurar, Monica Lacramioara; Bussell, John Desmond; Schwambach, Joseli; Pop, Tiberia Ioana; Kowalczyk, Mariusz; Gutierrez, Laurent; Cavel, Emilie; Chaabouni, Salma; Ljung, Karin; Fett-Neto, Arthur Germano; Pamfil, Doru; Bellini, Catherine

    2014-04-01

    The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process.

  8. Cytokinin induced shoot regeneration and flowering of Scoparia dulcis L. (Scrophulariaceae)-an ethnomedicinal herb

    PubMed Central

    Premkumar, G; Sankaranarayanan, R; Jeeva, S; Rajarathinam, K

    2011-01-01

    Objective To develop an improved protocol for micropropagation of ethnomedicinally important Scoparia dulcis (S. dulcis) L. Methods Explants were inoculated on MS basal medium supplemented with kinetin and 6-benzylaminopurine for shoot bud induction. To enhance the shoot induction, various auxins like 3-indoleacetic acid or 3-indolebutyric acid or α-naphthylacetic acid were tested along with 2.32 M KI and 4.44 µM BAP. The regenerated shoots were rooted in half strength MS medium supplemented with various concentrations of IAA, IBA or NAA. After roots were developed, the plantlets were transplanted to pots filled with vermiculate and sand and kept in growth chamber with 70%–80% humidity under 16 h photoperiod. After acclimatization, the plantlets were transferred to the garden and survival percentage was calculated. Data were statistically analyzed and means were compared using Duncan's multiple range test (P<0.05). Results An in vitro method was developed to induce high frequency shoots regeneration from stem, mature leaf and young leaf explants of S. dulcis. Shoot induction on young leaf explants was most successful in MS medium supplemented with combination of two cytokinins (2.32 µM KI and 4.44 µM BAP) 2.85 µM IAA, 10% CM and 1 483.79 µM adenine sulfate. A single young leaf explant was capable of producing 59 shoots after 13 days of culture. Flower was induced in medium supplemented with combination of KI and BAP. Conclusions Cytokinins are the key factor to induce the direct shoot regeneration and flowering of S. dulcis. PMID:23569752

  9. Cytokinin induced shoot regeneration and flowering of Scoparia dulcis L. (Scrophulariaceae)-an ethnomedicinal herb.

    PubMed

    Premkumar, G; Sankaranarayanan, R; Jeeva, S; Rajarathinam, K

    2011-06-01

    To develop an improved protocol for micropropagation of ethnomedicinally important Scoparia dulcis (S. dulcis) L. Explants were inoculated on MS basal medium supplemented with kinetin and 6-benzylaminopurine for shoot bud induction. To enhance the shoot induction, various auxins like 3-indoleacetic acid or 3-indolebutyric acid or α-naphthylacetic acid were tested along with 2.32 M KI and 4.44 µM BAP. The regenerated shoots were rooted in half strength MS medium supplemented with various concentrations of IAA, IBA or NAA. After roots were developed, the plantlets were transplanted to pots filled with vermiculate and sand and kept in growth chamber with 70%-80% humidity under 16 h photoperiod. After acclimatization, the plantlets were transferred to the garden and survival percentage was calculated. Data were statistically analyzed and means were compared using Duncan's multiple range test (P<0.05). An in vitro method was developed to induce high frequency shoots regeneration from stem, mature leaf and young leaf explants of S. dulcis. Shoot induction on young leaf explants was most successful in MS medium supplemented with combination of two cytokinins (2.32 µM KI and 4.44 µM BAP) 2.85 µM IAA, 10% CM and 1 483.79 µM adenine sulfate. A single young leaf explant was capable of producing 59 shoots after 13 days of culture. Flower was induced in medium supplemented with combination of KI and BAP. Cytokinins are the key factor to induce the direct shoot regeneration and flowering of S. dulcis.

  10. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis

    PubMed Central

    Rasmussen, Amanda; Hosseini, Seyed Abdollah; Hajirezaei, Mohammed-Reza; Druege, Uwe; Geelen, Danny

    2015-01-01

    Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue’s auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation. PMID:25540438

  11. Proliferation and glucosinolates accumulation of broccoli adventitious roots in liquid medium

    NASA Astrophysics Data System (ADS)

    Nhut, Nguyen Minh; Tien, Le Thi Thuy

    2017-09-01

    Cotyledons from 7-day-old in vitro broccoli seedling were used as explant source in adventitious root induction on MS medium supplemented with 30 g/l sucrose, 1.6 mg/l IBA and 7 g/l agar. Adventitious roots from cotyledons were transferred to liquid medium containing the same components as rooting medium for two weeks, then subcultured to MS medium with diferent sugar, macrominerals and casein hydrolysate concentrations. The best adventitious root growth was observed in half-strength MS medium supplemented with 40 g/l sucrose, 600 mg/l casein hydrolysate and 1.6 mg/l IBA (growth index of 4.00 in about 14 culture days with inoculum density of 1.0 g fresh weight / 30 ml of culture medium). The culturing process can be stopped on the 28th day for root biomass and on the 35th day for glucosinolates.

  12. FLOWERING LOCUS T/TERMINAL FLOWER1-Like Genes Affect Growth Rhythm and Bud Set in Norway Spruce1[W][OPEN

    PubMed Central

    Karlgren, Anna; Gyllenstrand, Niclas; Clapham, David; Lagercrantz, Ulf

    2013-01-01

    The timing of bud set, as one determinant of the annual growth rhythm, is critical for local adaptation of the conifer Norway spruce (Picea abies). Previous gene expression and population genetic studies have suggested a role for P. abies FLOWERING LOCUS T/TERMINAL FLOWER1-Like2 (PaFTL2) in the control of growth cessation and bud set in Norway spruce as well as in local adaptation resulting in clinal variation for timing of bud set. Using transgenic plants with PaFTL2 driven by an inducible promoter, we found that PaFTL2 indeed induces bud set and most probably also growth cessation. PaFTL2 shows high expression around the procambium and vascular tissue and in the crown region in buds of both seedlings and older trees. Furthermore, PaFTL2 expression is induced in vegetative shoots and all bud types in late summer, when growth cessation occurs. This supports the notion that PaFTL2 is involved in growth cessation. A close paralog to PaFTL2, PaFTL1, is strongly expressed in meristems during the summer, possibly to repress meristem activity and the formation of needle primordia during this period. The temporal and spatial expression of PaFTL1 and PaFTL2 largely complement each other, which suggests that they act in concert to control perennial growth in Norway spruce. PMID:23958861

  13. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture.

    PubMed

    Song, Xiaolin; Wu, Hao; Yin, Zhenhao; Lian, Meilan; Yin, Chengri

    2017-05-23

    Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endophytic bacterial elicitors on biomass and ginsenoside production in adventitious roots cultures of Panax ginseng . Endophyte LB 5-3 as an elicitor could increase biomass and ginsenoside accumulation in ginseng adventitious root culture. After 6 days elicitation with a 10.0 mL of strain LB 5-3, the content of total ginsenoside was 2.026 mg g -1 which was four times more than that in unchallenged roots. The combination of methyl jasmonate and strain LB 5-3 had a negative effect on ginseng adventitious root growth and ginsenoside production. The genomic DNA of strain LB 5-3 was sequenced, and was found to be most closely related to Bacillus altitudinis (KX230132.1). The challenged ginseng adventitious root extracts exerted inhibitory effect against the HepG2 cells, which IC 50 value was 0.94 mg mL -1 .

  14. Differences in proleptic and epicormic shoot structures in relation to water deficit and growth rate in almond trees (Prunus dulcis)

    PubMed Central

    Negrón, Claudia; Contador, Loreto; Lampinen, Bruce D.; Metcalf, Samuel G.; Guédon, Yann; Costes, Evelyne; DeJong, Theodore M.

    2014-01-01

    Background and Aims Shoot characteristics differ depending on the meristem tissue that they originate from and environmental conditions during their development. This study focused on the effects of plant water status on axillary meristem fate and flowering patterns along proleptic and epicormic shoots, as well as on shoot growth rates on ‘Nonpareil’ almond trees (Prunus dulcis). The aims were (1) to characterize the structural differences between proleptic and epicormic shoots, (2) to determine whether water deficits modify shoot structures differently depending on shoot type, and (3) to determine whether shoot structures are related to shoot growth rates. Methods A hidden semi-Markov model of the axillary meristem fate and number of flower buds per node was built for two shoot types growing on trees exposed to three plant water status treatments. The models segmented observed shoots into successive homogeneous zones, which were compared between treatments. Shoot growth rates were calculated from shoot extension measurements made during the growing season. Key Results Proleptic shoots had seven successive homogeneous zones while epicormic shoots had five zones. Shoot structures were associated with changes in growth rate over the season. Water deficit (1) affected the occurrence and lengths of the first zones of proleptic shoots, but only the occurrence of the third zone was reduced in epicormic shoots; (2) had a minor effect on zone flowering patterns and did not modify shoot or zone composition of axillary meristem fates; and (3) reduced growth rates, although patterns over the season were similar among treatments. Conclusions Two meristem types, with different latency durations, produced shoots with different growth rates and distinct structures. Differences between shoot type structure responses to water deficit appeared to reflect their ontogenetic characteristics and/or resource availability for their development. Tree water deficit appeared to stimulate

  15. Differences in proleptic and epicormic shoot structures in relation to water deficit and growth rate in almond trees (Prunus dulcis).

    PubMed

    Negrón, Claudia; Contador, Loreto; Lampinen, Bruce D; Metcalf, Samuel G; Guédon, Yann; Costes, Evelyne; DeJong, Theodore M

    2014-02-01

    Shoot characteristics differ depending on the meristem tissue that they originate from and environmental conditions during their development. This study focused on the effects of plant water status on axillary meristem fate and flowering patterns along proleptic and epicormic shoots, as well as on shoot growth rates on 'Nonpareil' almond trees (Prunus dulcis). The aims were (1) to characterize the structural differences between proleptic and epicormic shoots, (2) to determine whether water deficits modify shoot structures differently depending on shoot type, and (3) to determine whether shoot structures are related to shoot growth rates. A hidden semi-Markov model of the axillary meristem fate and number of flower buds per node was built for two shoot types growing on trees exposed to three plant water status treatments. The models segmented observed shoots into successive homogeneous zones, which were compared between treatments. Shoot growth rates were calculated from shoot extension measurements made during the growing season. Proleptic shoots had seven successive homogeneous zones while epicormic shoots had five zones. Shoot structures were associated with changes in growth rate over the season. Water deficit (1) affected the occurrence and lengths of the first zones of proleptic shoots, but only the occurrence of the third zone was reduced in epicormic shoots; (2) had a minor effect on zone flowering patterns and did not modify shoot or zone composition of axillary meristem fates; and (3) reduced growth rates, although patterns over the season were similar among treatments. Two meristem types, with different latency durations, produced shoots with different growth rates and distinct structures. Differences between shoot type structure responses to water deficit appeared to reflect their ontogenetic characteristics and/or resource availability for their development. Tree water deficit appeared to stimulate a more rapid progression through ontogenetic states.

  16. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis.

    PubMed

    Rasmussen, Amanda; Hosseini, Seyed Abdollah; Hajirezaei, Mohammed-Reza; Druege, Uwe; Geelen, Danny

    2015-03-01

    Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue's auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway.

    PubMed

    Wang, Jun; Si, Yanfang; Wu, Chen; Sun, Lu; Ma, Yudong; Ge, Aili; Li, Baomin

    2012-10-17

    Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of

  18. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to

  19. [Effects of Ca2+ on nitric oxide-induced adventitious rooting in cucumber under drought stress].

    PubMed

    Li, Chun Lan; Niu, Li Juan; Hu, Lin Li; Liao, Wei Biao; Chen, Yue

    2017-11-01

    Cucumber (Cucumis sativus L. 'Xinchun 4') was used to explore the relationship between nitric oxide (NO) and calcium (Ca 2+ ) during adventitious rooting under drought stress. Rooting parameters, endogenous Ca 2+ fluorescent intensity and the antioxidant enzymes activity (SOD, CAT and APX) in cucumber explants under drought stress were investigated. The results showed that treatment with 200 μmol·L -1 CaCl 2 and 0.05% PEG significantly improved the number and length of adventitious root in cucumber explants under drought stress, while the application of Ca 2+ chelating agent (EGTA) and channel inhibitor (BAPTA/AM) significantly decreased NO-induced number and length of adventitious root under drought stress. Under drought stress, the fluorescence intensity of Ca 2+ in hypocotyls treated with NO and CaCl 2 was improved, however, the Ca 2+ fluorescence intensity in the hypocotyls treated with NO scavenger (cPTIO) was significantly lower than that in the hypocotyls treated with NO. Under drought stress, the activities of antioxidant enzymes in the cucumber explants were significantly promoted by the treatments with NO and CaCl 2 , however, Ca 2+ chelating agent and channel inhibitor significantly decreased the activity of antioxidant enzymes induced by NO. In conclusion, Ca 2+ might be involved in the process of NO-adjusted antioxidant enzymes activity during adventitious rooting under drought stress, which alleviated the negative effects of drought on the adventitious rooting and promoted the formation of adventitious roots.

  20. Long-shoot/short-shoot phenomenon in woody plants

    Treesearch

    Ronald E. Sosebee

    2001-01-01

    Shoot growth in shrubs is often overlooked as an important component of phenological development in woody plants. However, shoot growth dictates the pattern of growth of deciduous trees or shrubs, especially following defoliation or canopy damage. In general, woody shoots are divided into short- and long-shoots. Short-shoots, sometimes called "spurs," are...

  1. Microclonal Multipication of Wild Cherry (Prunus Avium L.) from Shoot Tips and Root Sucker Buds

    Treesearch

    Branka Pevalek-Kozlina; Charles H. Michler; Sibila Jelaska

    1994-01-01

    The effects of different combinations and concentrations of the growth regulators: 6-benzylaminopurine (BA), 6 furfurylaminopurine (KIN), N6- (2-isopentenyl) adenine (2iP), indole-3-butyric acid (IBA), indole-3-acetic acid (IAA) and a-naphthaleneacetic acid (NAA) on axillary shoot multiplication rates for wild cherry (Prunus aviurn...

  2. Adventitious viruses in insect cell lines used for recombinant protein expression.

    PubMed

    Geisler, Christoph; Jarvis, Donald L

    2018-04-01

    Insect cells are widely used for recombinant protein expression, typically as hosts for recombinant baculovirus vectors, but also for plasmid-mediated transient transfection or stable genetic transformation. Insect cells are used to express proteins for research, as well as to manufacture biologicals for human and veterinary medicine. Recently, several insect cell lines used for recombinant protein expression were found to be persistently infected with adventitious viruses. This has raised questions about how these infections might affect research performed using those cell lines. Furthermore, these findings raised serious concerns about the safety of biologicals produced using those cell lines. In response, new insect cell lines lacking adventitious viruses have been isolated for use as improved research tools and safer biological manufacturing platforms. Here, we review the scientific and patent literature on adventitious viruses found in insect cell lines, affected cell lines, and new virus-free cell lines. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia.

    PubMed

    Baskaran, P; Jayabalan, N

    2009-07-01

    Psoralea corylifolia is an endangered plant producing various compounds of medical importance. Adventitious roots and hairy roots were induced in cultures prepared from hypocotyl explants. Psoralen content was evaluated in both root types grown either in suspension cultures or on agar solidified medium. Psoralen content was approximately 3 mg g(-1) DW in suspension grown hairy roots being higher than in solid grown hairy roots and in solid and suspension-grown adventitious roots.

  4. Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca(2+) pathways.

    PubMed

    Cui, Weiti; Qi, Fang; Zhang, Yihua; Cao, Hong; Zhang, Jing; Wang, Ren; Shen, Wenbiao

    2015-03-01

    Methane-rich water triggered adventitious rooting by regulating heme oxygenase1/carbon monoxide and calcium pathways in cucumber explants. Heme oxygenase1/carbon monoxide (HO1/CO) and calcium (Ca(2+)) were reported as the downstream signals in auxin-induced cucumber adventitious root (AR) formation. Here, we observed that application of methane-rich water (MRW; 80% saturation) obviously induced AR formation in IAA-depleted cucumber explants. To address the universality, we checked adventitious rooting in soybean and mung bean explants, and found that MRW (50 and 10% saturation, respectively) exhibited the similar inducing results. To further determine if the HO1/CO system participated in MRW-induced adventitious rooting, MRW, HO1 inducer hemin, its activity inhibitor zinc protoporphyrin IX (ZnPP), and its catalytic by-products CO, bilirubin, and Fe(2+) were used to detect their effects on cucumber adventitious rooting in IAA-depleted explants. Subsequent results showed that MRW-induced adventitious rooting was blocked by ZnPP and further reversed by 20% saturation CO aqueous solution. However, the other two by-products of HO1, bilirubin and Fe(2+), failed to induce AR formation. Above responses were consistent with the MRW-induced increases of HO1 transcript and corresponding protein level. Further molecular evidence indicted that expression of marker genes, including auxin signaling-related genes and cell cycle regulatory genes, were modulated by MRW alone but blocked by the cotreatment with ZnPP, the latter of which could be significantly rescued by the addition of CO. By using the Ca(2+)-channel blocker and Ca(2+) chelator, the involvement of Ca(2+) pathway in MRW-induced adventitious rooting was also suggested. Together, our results indicate that MRW might serve as a stimulator of adventitious rooting, which was partially mediated by HO1/CO and Ca(2+) pathways.

  5. Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber.

    PubMed

    Zhu, Yongchao; Liao, Weibiao; Niu, Lijuan; Wang, Meng; Ma, Zhanjun

    2016-06-28

    Adventitious root development is a complex process regulated through a variety of signaling molecules. Hydrogen gas (H2) and nitric oxide (NO), two new signaling molecules are both involved in plant development and stress tolerance. To investigate the mechanism of adventitious root development induced by hydrogen-rich water (HRW), a combination of fluorescence microscopy and molecular approaches was used to study cell cycle activation and cell cycle-related gene expression in cucumber (Cucumis sativus 'Xinchun 4') explants. The results revealed that the effect of HRW on adventitious root development was dose-dependent, with maximal biological responses at 50 % HRW. HRW treatment increased NO content in a time-dependent fashion. The results also indicated that HRW and NO promoted the G1-to-S transition and up-regulated cell cycle-related genes: CycA (A-type cyclin), CycB (B-type cyclin), CDKA (cyclin-dependent kinase A) and CDKB (cyclin-dependent kinase B) expression. Additionally, target genes related to adventitious rooting were up-regulated by HRW and NO in cucumber explants. While, the responses of HRW-induced adventitious root development and increase of NO content were partially blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt, NO synthase (NOS)-like enzyme inhibitor N(G) -nitro-L-arginine methylester hydrochloride, or nitrate reductase inhibitors tungstate and NaN3. These chemicals also partially reversed the effect of HRW on cell cycle activation and the transcripts of cell cycle regulatory genes and target genes related adventitious root formation. Together, NO may emerge as a downstream signaling molecule in H2-induced adventitious root organogenesis. Additionally, H2 mediated cell cycle activation via NO pathway during adventitious root formation.

  6. Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.)

    Treesearch

    Micah E Stevens; Keith E Woeste; Paula M Pijut

    2018-01-01

    Cutting propagation plays a large role in the forestry and horticulture industries where superior genotypes need to be clonally multiplied. Integral to this process is the ability of cuttings to form adventitious roots. Recalcitrance to adventitious root development is a serious hurdle for many woody plant propagation systems including black walnut (Juglans...

  7. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Fang; Ji Jian; Li Li

    2007-01-19

    The role of the adventitia in vascular function and vascular lesion formation has been largely ignored. This study observed the activation of the adventitia and specifically the fibroblasts in the development of atherosclerosis in the apoE(-/-) mouse. The results showed a gradual increase in expression of collagen types I and III after 2, 4, and 8 weeks of hyperlipidic diet. The earliest expression of monocyte chemoattractant protein-1 (MCP-1) protein and mRNA was detected in the adventitial fibroblast before the formation of intimal lesions. Proliferation, too, was first found in the adventitial fibroblasts. We hypothesize that the adventitial fibroblast is activatedmore » in the early stage of atherosclerosis. Adventitial inflammation may be an early event in the development of atherosclerotic lesions.« less

  8. Efficient transmission of cassava brown streak disease viral pathogens by chip bud grafting.

    PubMed

    Wagaba, Henry; Beyene, Getu; Trembley, Cynthia; Alicai, Titus; Fauquet, Claude M; Taylor, Nigel J

    2013-12-06

    Techniques to study plant viral diseases under controlled growth conditions are required to fully understand their biology and investigate host resistance. Cassava brown streak disease (CBSD) presents a major threat to cassava production in East Africa. No infectious clones of the causal viruses, Cassava brown streak virus (CBSV) or Ugandan cassava brown streak virus (UCBSV) are available, and mechanical transmission to cassava is not effective. An improved method for transmission of the viruses, both singly and as co-infections has been developed using bud grafts. Axillary buds from CBSD symptomatic plants infected with virulent isolates of CBSV and UCBSV were excised and grafted onto 6-8 week old greenhouse-grown, disease-free cassava plants of cultivars Ebwanateraka, TME204 and 60444. Plants were assessed visually for development of CBSD symptoms and by RT-PCR for presence of the viruses in leaf and storage root tissues. Across replicated experiments, 70-100% of plants inoculated with CBSV developed CBSD leaf and stem symptoms 2-6 weeks after bud grafting. Infected plants showed typical, severe necrotic lesions in storage roots at harvest 12-14 weeks after graft inoculation. Sequential grafting of buds from plants infected with UCBSV followed 10-14 days later by buds carrying CBSV, onto the same test plant, resulted in 100% of the rootstocks becoming co-infected with both pathogens. This dual transmission rate was greater than that achieved by simultaneous grafting with UCBSV and CBSV (67%), or when grafting first with CBSV followed by UCBSV (17%). The bud grafting method described presents an improved tool for screening cassava germplasm for resistance to CBSD causal viruses, and for studying pathogenicity of this important disease. Bud grafting provides new opportunities compared to previously reported top and side grafting systems. Test plants can be inoculated as young, uniform plants of a size easily handled in a small greenhouse or large growth chamber and

  9. Fibronectin type III domain containing 5 attenuates NLRP3 inflammasome activation and phenotypic transformation of adventitial fibroblasts in spontaneously hypertensive rats.

    PubMed

    Ling, Li; Chen, Dan; Tong, Ying; Zang, Ying-Hao; Ren, Xing-Sheng; Zhou, Hong; Qi, Xiao-Hong; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2018-05-01

    Phenotypic transformation of adventitial fibroblasts is important in the pathogenesis of hypertension. This study was designed to determine whether fibronectin type III domain containing 5 (FNDC5) alleviates the phenotypic transformation of adventitial fibroblasts in hypertension and the underlying mechanisms. Experiments were carried out in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) and primary aortic adventitial fibroblasts. FNDC5 was downregulated and NLRP3 inflammasome was activated in aortic adventitia of SHR. FNDC5 overexpression attenuated adventitial fibroblasts phenotypic transformation, excessive synthesis and secretion of matrix components, NLRP3 inflammasome activation and inflammation in adventitial fibroblasts from SHR. Moreover, FNDC5 overexpression reduced NADPH oxidase 2 (NOX2) expression and reactive oxygen species (ROS) production in adventitial fibroblasts from SHR. Similarly, exogenous FNDC5 inhibited adventitial fibroblasts phenotypic transformation, expression of matrix components, NLRP3 inflammasome activation and NOX2 expression in adventitial fibroblasts from SHR. FNDC5 overexpression in rats attenuated phenotypic transformation, inflammation and reactive oxygen species (ROS) production in the aortic adventitia of SHR. Furthermore, FNDC5 overexpression reduced blood pressure and alleviated vascular remodeling in SHR. FNDC5 reduces NOX2-derived ROS production, NLRP3 inflammasome activation and phenotypic transformation in adventitial fibroblasts of SHR. FNDC5 plays a beneficial role in attenuating vascular inflammation, vascular remodeling and hypertension in SHR.

  10. Survival and genetic stability of Dendranthema grandiflora Tzvelev shoot apices after cryopreservation by vitrification and encapsulation-dehydration.

    PubMed

    Martín, Carmen; González-Benito, M Elena

    2005-12-01

    The aim of this study was to compare the genetic stability of chrysanthemum (cv. Pasodoble) apices cryopreserved using two different methods: encapsulation-dehydration and vitrification. The assessment of the genetic stability was developed using RAPDs markers. Assessment of stability was evaluated in pot-cultivated mother plants (from which buds were excised for micropropagation), in shoots (leave tissue) from which apices were extracted for cryopreservation, and in shoots regenerated from cryopreserved apices 30 days after recovery and after further 3 months in culture. Throughout the process the origin of the apices (in vitro-shoot from which they were excised) was recorded. Twenty one regenerants cryopreserved by vitrification and 25 by encapsulation-dehydration were assessed. Only one cryopreserved regenerant from the encapsulation-dehydration method showed a different band pattern. These results support the necessity of monitoring the genetic stability of the regenerants obtained after cryopreservation, as this is a very useful technique for the conservation of plant genetic resources.

  11. Astigmatism at nearpoint: adventitious, purposeful, and environmental influences.

    PubMed

    Nicholson, S B; Garzia, R P

    1988-12-01

    Previous studies indicate that a number of individuals display significant differences between astigmatism measured at farpoint and nearpoint. Adventitious effects, purposeful lenticular changes and adaptations in response to environmental forces are reviewed as possible sources of this astigmatic variability.

  12. In vitro propagation of peanut (Arachis hypogaea L.) by shoot tip culture.

    PubMed

    Ozudogru, Elif Aylin; Kaya, Ergun; Lambardi, Maurizio

    2013-01-01

    Peanut (Arachis hypogaea L.), also known as groundnut, is the most important species of Arachis genus, originating from Brazil and Peru. Peanut seeds contain high seed oil, proteins, amino acids, and vitamin E, and are consumed worldwide as edible nut, peanut butter, or candy, and peanut oil extracted from the seeds. The meal remaining after oil extraction is also used for animal feed. However, its narrow germplasm base, together with susceptibility to diseases, pathogens, and weeds, decreases yield and seed quality and causes great economic losses annually. Hence, the optimization of efficient in vitro propagation procedures would be highly effective for peanut propagation, as it would raise yield and improve seed quality and flavor. Earlier reports on traditional micropropagation methods, based on axillary bud proliferation which guarantees the multiplication of true-to-type plants, are still limited. This chapter describes a micropropagation protocol to improve multiple shoot formation from shoot-tip explants by using AgNO(3) in combination with plant growth regulators.

  13. Establishment of in vitro adventitious root cultures and analysis of andrographolide in Andrographis paniculata.

    PubMed

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar

    2013-08-01

    Andrographolide is the principal bioactive component of the medicinal plant Andrographis paniculata, to which various diverse pharmacological properties are attributed. Traditionally, andrographolide was extracted from the leaves, stems and other parts of the plant. Leaves have the highest andrographolide content (2-3%) in comparison with the other plant parts. Adventitious root culture of leaf explants of A. paniculata was studied using different strength MS medium supplemented by different concentrations of auxins and a combination of NAA + kinetin for growth and andrographolide production. Among the different auxin treatments in adventitious root culture, only NAA was able to induce adventitious roots. Adventitious roots grown in modified strength MS medium showed the highest root growth (26.7 +/- 1.52), as well as the highest amount of andrographolide (133.3 +/- 1.5 mg/g DW) as compared with roots grown in half- and full-strength MS medium. Growth kinetics showed maximum biomass production after five weeks of culture in different strength MS liquid medium. The produced andrographolide content was 3.5 - 5.5 folds higher than that of the natural plant, depending on the medium strength.

  14. Larval densities and trends of insect species associated with spruce budworms in buds and shoots in Oregon and Washington.

    Treesearch

    V.M. Carolin

    1980-01-01

    Sampling studies on western spruce budworm and Modoc budworm disclosed a substantial number of associated insect species at the time larvae were in opening buds. About 20 species occur with sufficient regularity to justify identification by field crews.

  15. Quantitative analysis of taste bud cell numbers in fungiform and soft palate taste buds of mice.

    PubMed

    Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2011-01-07

    Mammalian taste bud cells (TBCs) consist of several cell types equipped with different taste receptor molecules, and hence the ratio of cell types in a taste bud constitutes the taste responses of the taste bud. Here we show that the population of immunohistochemically identified cell types per taste bud is proportional to the number of total TBCs in the taste bud or the area of the taste bud in fungiform papillae, and that the proportions differ among cell types. This result is applicable to soft palate taste buds. However, the density of almost all cell types, the population of cell types divided by the area of the respective taste buds, is significantly higher in soft palates. These results suggest that the turnover of TBCs is regulated to keep the ratio of each cell type constant, and that taste responsiveness is different between fungiform and soft palate taste buds. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Cultivar-Dependent Direct Organogenesis of Date Palm from Shoot Tip Explants.

    PubMed

    Abahmane, Larbi

    2017-01-01

    A number of public and private laboratories are working on date palm micropropagation to meet the increasing worldwide demand for date palm planting material. A standardized direct organogenesis protocol exists for the production of date palm plantlets to maintain the genetic fidelity of regenerated plants. Organogenesis has the advantage of using low concentrations of plant growth regulators and avoiding the callus phase. In addition, direct regeneration of vegetative buds minimizes the risk of somaclonal variation among plant regenerants. However, in vitro multiplication cycles should be limited in duration by frequent renewal of plant material. This chapter describes a simple and routine organogenesis protocol for date palm multiplication using shoot tip explants.

  17. Comparison of axillary bud growth and patatin accumulation in potato leaf cuttings as assays for tuber induction

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Hannapel, D. J.; Tibbitts, T. W.

    1988-01-01

    Single-node leaf cuttings from potatoes (Solanum tuberosum L.) cvs. Norland, Superior, Norchip, and Kennebec, were used to assess tuber induction in plants grown under 12, 16, and 20 h daily irradiation (400 micromol s-1 m-2 PPF). Leaf cuttings were taken from plants at four, six and 15 weeks after planting and cultured for 14 d in sand trays in humid environments. Tuber induction was determined by visually rating the type of growth at the attached axillary bud, and by measuring the accumulation of the major tuber protein, patatin, in the base of the petioles. Axillary buds from leaf cuttings of plants grown under the 12 h photoperiod consistently formed round, sessile tubers at the axils for all four cultivars at all harvests. Buds from cuttings of plants grown under the 16 and 20 h photoperiods exhibited mixed tuber, stolon, and leafy shoot growth. Patatin accumulation was highest in petioles of cuttings taken from 12 h plants for all cultivars at all harvests, with levels in 16 and 20 h cuttings approx. one-half that of the 12 h cuttings. Trends, both in visual ratings of axillary buds and in petiole patatin accumulation, followed the harvest index (ratio of tuber to total plant dry matter), suggesting that either method is an acceptable assay for tuber induction in the potato.

  18. Rapid multiplication of Dalbergia sissoo Roxb.: a timber yielding tree legume through axillary shoot proliferation and ex vitro rooting.

    PubMed

    Vibha, J B; Shekhawat, N S; Mehandru, Pooja; Dinesh, Rachana

    2014-01-01

    An efficient and improved method for in vitro propagation of mature tree of Dalbergia sissoo, an ecologically and commercially important timber yielding species, has been developed through axillary shoot proliferation. Bud breaking occurred from nodal shoot segments derived from rejuvenated shoots produced during early spring from a 20-25-year-old lopped tree, on MS medium containing 8.88 μM benzylaminopurine (BAP). Multiple shoots differentiated (20-21shoots/node) on re-culture of explants on half-strength agar gelled amended MS medium with a combination of 2.22 μM of BAP and 0.002 μM of thidiazuron (TDZ) with 1.0 mM each of Ca(NO3)2, K2SO4, KCl, and NH4(SO4)2. The maximum shoot multiplication (29-30 shoots/node) was achieved on subculturing in the above mentioned but liquid medium. Furthermore, the problem of shoot tip necrosis and defoliation observed on solid medium were overcome by the use of liquid medium. Ex vitro rooting was achieved on soilrite after basal treatment of microshoots with 984 μM of indole-3-butyric acid (IBA) for 2 min. About 90 % microshoots were rooted on soilrite within 2-3 weeks under the greenhouse conditions. From 20 nodal shoot segments, about 435 hardened plants were acclimatized and transplanted. This is the first report for rapid in vitro propagation of mature trees of D. sissoo on liquid medium followed by ex vitro rooting.

  19. Herbivory modifies conifer phenology: induced amelioration by a specialist folivore.

    PubMed

    Carroll, Allan L; Quiring, Dan T

    2003-06-01

    Herbivory by Zeiraphera canadensis Mut. & Free. (Lepidoptera: Tortricidae), an early season folivore of white spruce [ Picea glauca(Moench) Voss], has been associated with a shift in the timing of bud burst by its host during the subsequent year. We tested the hypothesis that a herbivory-induced shift in the phenology of bud development improves the window for colonisation of white spruce buds by Z. canadensis. Feeding on cortical tissue of elongating shoots caused the destruction of apical buds and an interruption of apical dominance in the year following herbivory. White spruce compensated for damage with the activation of dormant buds; mainly at proximal positions along shoots. As a result, half of all active buds on previously damaged branches were located immediately adjacent egg sites (i.e. previous year's bud scales), whereas <10% of active buds on intact shoots were situated there. More than 40% of newly emerged larvae colonised the basal buds of damaged shoots versus just 10% for intact shoots. Previous herbivory also influenced the initiation of bud burst. All buds flushed 2 days earlier on damaged shoots and date of bud burst was inversely correlated to bud density, indicating that short damaged shoots with large numbers of buds were stronger sinks for nutrients required for bud development. Egg hatch was best synchronized with early bursting buds on damaged branches. As a consequence, 89% of first-instar larvae successfully colonised buds on damaged branches while only 55% were successful on undamaged branches. Improved survival of larvae in the year following herbivory was a direct result of the evolved response by white spruce to the interruption of apical dominance. The pattern of herbivory by Z. canadensis may have evolved as a strategy to enhance the quality of white spruce for their offspring.

  20. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  1. Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments.

    PubMed

    Li, Yun-He; Zhang, Hong-Na; Wu, Qing-Song; Muday, Gloria K

    2017-06-01

    A total of 74,745 unigenes were generated and 1975 DEGs were identified. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment were revealed. Adventitious root formation is a crucial step in plant vegetative propagation, but the molecular mechanism of adventitious root formation remains unclear. Adventitious roots formed only at the proximal cut surface (PCS) of mango cotyledon segments, whereas no roots were formed on the opposite, distal cut surface (DCS). To identify the transcript abundance changes linked to adventitious root development, RNA was isolated from PCS and DCS at 0, 4 and 7 days after culture, respectively. Illumina sequencing of libraries generated from these samples yielded 62.36 Gb high-quality reads that were assembled into 74,745 unigenes with an average sequence length of 807 base pairs, and 33,252 of the assembled unigenes at least had homologs in one of the public databases. Comparative analysis of these transcriptome databases revealed that between the different time points at PCS there were 1966 differentially expressed genes (DEGs), while there were only 51 DEGs for the PCS vs. DCS when time-matched samples were compared. Of these DEGs, 1636 were assigned to gene ontology (GO) classes, the majority of that was involved in cellular processes, metabolic processes and single-organism processes. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment are predicted to encode polar auxin transport carriers, auxin-regulated proteins, cell wall remodeling enzymes and ethylene-related proteins. In order to validate RNA-sequencing results, we further analyzed the expression profiles of 20 genes by quantitative real-time PCR. This study expands the transcriptome information for Mangifera indica and identifies candidate genes involved in adventitious root formation in cotyledon segments of mango.

  2. In vitro plantlet regeneration from nodal segments and shoot tips of Capsicum chinense Jacq. cv. Naga King Chili.

    PubMed

    Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2012-03-01

    An in vitro regeneration protocol was developed for Capsicum chinense Jacq. cv. Naga King Chili, a very pungent chili cultivar and an important horticultural crop of Nagaland (Northeast India). Maximum number of shoot (13 ± 0.70) was induced with bud-forming capacity (BFC) index of 10.8, by culturing nodal segments in Murashige and Skoog (MS) medium supplemented with 18.16 μM Thidiazuron (TDZ) followed by 35.52 μM 6-benzylaminopurine (BAP). Using shoot tips as explants, multiple shoot (10 ± 0.37) (BFC 8.3) was also induced in MS medium fortified with either 18.16 μM TDZ or 35.52 μM BAP. Elongated shoots were best rooted in MS medium containing 5.70 μM indole-3-acetic acid (IAA). Rooted plantlets thus developed were hardened in 2-3 weeks time in plastic cups containing potting mixture of a 1:1 mix of soil and cow dung manure and then subsequently transferred to earthen pots. The regenerated plants did not show any variation in the morphology and growth as compared to the parent plant.

  3. Early Summer Drought Stress During the First Growing Year Stimulates Extra Shoot Growth in Oak Seedlings (Quercus petraea)

    PubMed Central

    Turcsán, Arion; Steppe, Kathy; Sárközi, Edit; Erdélyi, Éva; Missoorten, Marc; Mees, Ghislain; Mijnsbrugge, Kristine V.

    2016-01-01

    More severe summer droughts are predicted for mid-latitudes in Europe. To evaluate the impact on forest ecosystems and more specifically on forest regeneration, we studied the response to summer drought in oak seedlings (Quercus petraea). Acorns were collected from different mother trees in three stands in Belgium, sown in pots and grown in non-heated greenhouse conditions. We imposed drought on the seedlings in early summer by first watering the pots to saturation and then stopping any watering. Weight of the pots and stomatal conductance were regularly measured. Re-watering followed this drought period of 5 weeks. Height of the seedlings and apical bud development were observed. Stomatal resistance increased toward the end of the experiment in the drought-treated group and was restored after re-watering. The seedlings from the drought treatment displayed a higher probability to produce additional shoot growth after re-watering (p ≤ 0.05). A higher competition for water (two plants per pot) increased this chance. Although this chance was also higher for smaller seedlings, the actual length of the extra growth after re-watering was higher for larger seedlings (p ≤ 0.01). Both in the drought-treated and in the control group the autochthonous provenance growing on a xeric site produced less extra shoots compared to the two other provenances. Finally, stressed plants showed less developed apical buds compared to the control group after re-watering, suggesting a phenological effect on the growth cycle of oaks (p ≤ 0.0001). The higher chance for an extra shoot growth after the drought period can be considered as a compensation for the induced growth arrest during the drought period. PMID:26941760

  4. A study of crown development mechanisms using a shoot-based tree model and segmented terrestrial laser scanning data.

    PubMed

    Sievänen, Risto; Raumonen, Pasi; Perttunen, Jari; Nikinmaa, Eero; Kaitaniemi, Pekka

    2018-05-24

    Functional-structural plant models (FSPMs) allow simulation of tree crown development as the sum of modular (e.g. shoot-level) responses triggered by the local environmental conditions. The actual process of space filling by the crowns can be studied. Although the FSPM simulations are at organ scale, the data for their validation have usually been at more aggregated levels (whole-crown or whole-tree). Measurements made by terrestrial laser scanning (TLS) that have been segmented into elementary units (internodes) offer a phenotyping tool to validate the FSPM predictions at levels comparable with their detail. We demonstrate the testing of different formulations of crown development of Scots pine trees in the LIGNUM model using segmented TLS data. We made TLS measurements from four sample trees growing in a forest on a relatively poor soil from sapling size to mature stage. The TLS data were segmented into internodes. The segmentation also produced information on whether needles were present in the internode. We applied different formulations of crown development (flushing of buds and length of growth of new internodes) in LIGNUM. We optimized the parameter values of each formulation using genetic algorithms to observe the best fit of LIGNUM simulations to the measured trees. The fitness function in the estimation combined both tree-level characteristics (e.g. tree height and crown length) and measures of crown shape (e.g. spatial distribution of needle area). Comparison of different formulations against the data indicates that the Extended Borchert-Honda model for shoot elongation works best within LIGNUM. Control of growth by local density in the crown was important for all shoot elongation formulations. Modifying the number of lateral buds as a function of local density in the crown was the best way to accomplish density control. It was demonstrated how segmented TLS data can be used in the context of a shoot-based model to select model components.

  5. Micropropagation of globe artichoke (Cynara cardunculus L. var. scolymus).

    PubMed

    Iapichino, Giovanni

    2013-01-01

    The globe artichoke (Cynara cardunculus L. var. scolymus) is a perennial plant cultivated in the Mediterranean region and the Americas for its edible young flower heads. Although vegetative propagation by offshoots or by "ovoli" (underground dormant axillary buds) has been the primary method of propagation, the potential for the diffusion of diseases and the phenotypic variability can be very high. The propagation of this species by axillary shoot proliferation from in vitro-cultured meristems produces systemic pathogen-free plants and a higher multiplication rate as compared to that obtained by conventional agamic multiplication. Axillary shoot proliferation can be induced from excised shoot apices cultured on Murashige and Skoog agar solidified medium supplemented with various concentrations of cytokinins and auxins, depending on genotype. For the production of virus-free plants, meristems, 0.3-0.8 mm long are excised from shoot apices and surface sterilized. The transfer of artichoke microshoots to a medium lacking cytokinins or with low cytokinin concentration is critical for rooting. Adventitious roots develop within 3-5 weeks after transfer to root induction MS medium containing NAA or IAA at various concentrations. However, in vitro rooting frequency rate is dependent on the genotype and the protocol used. Acclimatization of in vitro microshoots having 3-4 roots is successfully accomplished; plantlets develop new roots in ex vitro conditions and continue to grow.

  6. Biosynthesis of Diterpenoids in Tripterygium Adventitious Root Cultures1[OPEN

    PubMed Central

    Inabuy, Fainmarinat S.; Fischedick, Justin T.; Lange, Iris; Xu, Meimei

    2017-01-01

    Adventitious root cultures were developed from Tripterygium regelii, and growth conditions were optimized for the abundant production of diterpenoids, which can be collected directly from the medium. An analysis of publicly available transcriptome data sets collected with T. regelii roots and root cultures indicated the presence of a large gene family (with 20 members) for terpene synthases (TPSs). Nine candidate diterpene synthase genes were selected for follow-up functional evaluation, of which two belonged to the TPS-c, three to the TPS-e/f, and four to the TPS-b subfamilies. These genes were characterized by heterologous expression in a modular metabolic engineering system in Escherichia coli. Members of the TPS-c subfamily were characterized as copalyl diphosphate (diterpene) synthases, and those belonging to the TPS-e/f subfamily catalyzed the formation of precursors of kaurane diterpenoids. The TPS-b subfamily encompassed genes coding for enzymes involved in abietane diterpenoid biosynthesis and others with activities as monoterpene synthases. The structural characterization of diterpenoids accumulating in the medium of T. regelii adventitious root cultures, facilitated by searching the Spektraris online spectral database, enabled us to formulate a biosynthetic pathway for the biosynthesis of triptolide, a diterpenoid with pharmaceutical potential. Considering the significant enrichment of diterpenoids in the culture medium, fast-growing adventitious root cultures may hold promise as a sustainable resource for the large-scale production of triptolide. PMID:28751314

  7. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  8. Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum)

    PubMed Central

    Liang, Jianli; Zhao, Liangjun; Challis, Richard; Leyser, Ottoline

    2010-01-01

    Previous studies of highly branched mutants in pea (rms1–rms5), Arabidopsis thaliana (max1–max4), petunia (dad1–dad3), and rice (d3, d10, htd1/d17, d14, d27) identified strigolactones or their derivates (SLs), as shoot branching inhibitors. This recent discovery offers the possibility of using SLs to regulate branching commercially, for example, in chrysanthemum, an important cut flower crop. To investigate this option, SL physiology and molecular biology were studied in chrysanthemum (Dendranthema grandiflorum), focusing on the CCD8/MAX4/DAD1/RMS1/D10 gene. Our results suggest that, as has been proposed for Arabidopsis, the ability of SLs to inhibit bud activity depends on the presence of a competing auxin source. The chrysanthemum SL biosynthesis gene, CCD8 was cloned, and found to be regulated in a similar, but not identical way to known CCD8s. Expression analyses revealed that DgCCD8 is predominantly expressed in roots and stems, and is up-regulated by exogenous auxin. Exogenous SL can down-regulate DgCCD8 expression, but this effect can be overridden by apical auxin application. This study provides evidence that SLs are promising candidates to alter the shoot branching habit of chrysanthemum. PMID:20478970

  9. Involvement of heme oxygenase-1 in β-cyclodextrin-hemin complex-induced cucumber adventitious rooting process.

    PubMed

    Lin, Yuting; Li, Meiyue; Huang, Liqin; Shen, Wenbiao; Ren, Yong

    2012-09-01

    Our previous results showed that β-cyclodextrin-hemin complex (CDH) exhibited a vital protective role against cadmium-induced oxidative damage and toxicity in alfalfa seedling roots by the regulation of heme oxygenase-1 (HO-1) gene expression. In this report, we further test whether CDH exhibited the hormonal-like response. The application of CDH and an inducer of HO-1, hemin, were able to induce the up-regulation of cucumber HO-1 gene (CsHO1) expression and thereafter the promotion of adventitious rooting in cucumber explants. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blocked the above responses triggered by CDH, and the inhibitory effects were reversed further when 30% saturation of CO aqueous solution was added together. Further, molecular evidence showed that CDH triggered the increases of the HO-1-mediated target genes responsible for adventitious rooting, including one DnaJ-like gene (CsDNAJ-1) and two calcium-dependent protein kinase (CDPK) genes (CsCDPK1 and CsCDPK5), and were inhibited by ZnPP and reversed by CO. The calcium (Ca2+) chelator ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and the Ca2+ channel blocker lanthanum chloride (LaCl3) not only compromised the induction of adventitious rooting induced by CDH but also decreased the transcripts of above three target genes. However, the application of ascorbic acid (AsA), a well-known antioxidant in plants, failed to exhibit similar inducible effect on adventitious root formation. In short, above results illustrated that the response of CDH in the induction of cucumber adventitious rooting might be through HO-1-dependent mechanism and calcium signaling. Physiological, pharmacological and molecular evidence showed that β-cyclodextrin-hemin complex (CDH) was able to induce cucumber adventitious rooting through heme oxygenase-1 (HO-1)-dependent mechanism and calcium signaling.

  10. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress

    PubMed Central

    Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M.

    2017-01-01

    Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca2+) on the process of adventitious rooting in cucumber (Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 μM NO donor nitroprusside (SNP) or 200 μM Ca2+. The application of Ca2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca2+/CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na2WO4) and sodium azide (NaN3). This gives an indication that Ca2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca2+/CaM may act as a downstream signaling molecule in NO-induced development of adventitious root under simulated osmotic

  11. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress.

    PubMed

    Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M

    2017-01-01

    Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca 2+ ) on the process of adventitious rooting in cucumber ( Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca 2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 μM NO donor nitroprusside (SNP) or 200 μM Ca 2+ . The application of Ca 2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca 2+ /CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca 2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na 2 WO 4 ) and sodium azide (NaN 3 ) . This gives an indication that Ca 2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca 2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca 2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca 2+ /CaM may act as a downstream signaling molecule in NO-induced development of adventitious root

  12. An efficient regeneration and rapid micropropagation protocol for Almond using dormant axillary buds as explants.

    PubMed

    Choudhary, Ravish; Chaudhury, Rekha; Malik, Surendra Kumar; Sharma, Kailash Chandra

    2015-07-01

    An efficient in vitro protocol was standardized for Almond (Prunus dulcis) propagation using dormant axillary buds as explants. Explants were cultured on Murashige and Skoog (MS) and woody plant medium (WPM) supplemented with different concentration/combination(s) of phytohormones. MS basal medium showed lowest shoot induction and took longest duration for shoot initiation. Multiple shoots were induced in MS medium supplemented with the combination of BAP (0.5 mgL(-1)). Cultures showed poor response for rooting in all combinations of plant growth regulators (PGRs) and took 90 days for initiation. Rooting was higher in half strength of MS than in full-strength. The highest root induction (33.33%) was recorded in half MS medium supplemented with 0.1 mgL(-1) IBA (indole-3-butyric acid) followed by full strength of MS medium (20%) supplemented with IBA (0.1 mgL(-1)). α-Naphthalene acetic acid (NAA) was less effective for rooting than IBA. The highest root induction (25%) was found in half strength of MS medium supplemented with 0.1 mgL(-1) NAA followed by full strength of MS medium (20%). The protocol developed would be of use in mass propagation of almond and also support in vitro conservation.

  13. Large Scale Culture of Ginseng Adventitious Roots for Production of Ginsenosides

    NASA Astrophysics Data System (ADS)

    Paek, Kee-Yoeup; Murthy, Hosakatte Niranjana; Hahn, Eun-Joo; Zhong, Jian-Jiang

    Ginseng (Panax ginseng C. A. Meyer) is one of the most famous oriental medicinal plants used as crude drugs in Asian countries, and now it is being used worldwide for preventive and therapeutic purposes. Among diverse constituents of ginseng, saponins (ginsenosides) have been found to be major components responsible for their biological and pharmacological actions. On the other hand, difficulties in the supply of pure ginsenosides in quantity prevent the development of ginseng for clinical medicines. Cultivation of ginseng in fields takes a long time, generally 5-7 years, and needs extensive effort regarding quality control since growth is susceptible to many environmental factors including soil, shade, climate, pathogens and pests. To solve the problems, cell and tissue cultures have been widely explored for more rapid and efficient production of ginseng biomass and ginsenosides. Recently, cell and adventitious root cultures of P. ginseng have been established in large scale bioreactors with a view to commercial application. Various physiological and engineering parameters affecting the biomass production and ginsenoside accumulation have been investigated. Advances in adventitious root cultures including factors for process scale-up are reviewed in this chapter. In addition, biosafety analyses of ginseng adventitious roots are also discussed for real application.

  14. Cross-Sectional Imaging in a Case of Adventitial Cystic Disease of the Popliteal Artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, Paolo; Panzetti, Claudio; Mastantuono, Marco

    1999-01-15

    Adventitial cystic disease of the popliteal artery is an unusual condition of uncertain etiology, in which a mucin-containing cyst forms in the wall of the artery and produces lower extremity claudication, typically in young and middle-aged men. A diagnosis of adventitial cystic disease of the popliteal artery was made preoperatively in a 47-year-old man by means of several imaging modalities, including angiography, magnetic resonance imaging, and ultrasound. The pathological findings confirmed the suggested diagnosis.

  15. A novel life cycle arising from leaf segments in plants regenerated from horseradish hairy roots.

    PubMed

    Mano, Y; Matsuhashi, M

    1995-03-01

    Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.

  16. Actin cable dynamics in budding yeast

    PubMed Central

    Yang, Hyeong-Cheol; Pon, Liza A.

    2002-01-01

    Actin cables, bundles of actin filaments that align along the long axis of budding yeast, are crucial for establishment of cell polarity. We fused green fluorescent protein (GFP) to actin binding protein 140 (Abp140p) and visualized actin cable dynamics in living yeast. We detected two populations of actin cables: (i) bud-associated cables, which extend from the bud along the mother-bud axis, and (ii) randomly oriented cables, which are relatively short. Time-lapse imaging of Abp140p–GFP revealed an apparent increase in the length of bud-associated actin cables. Analysis of movement of Abp140p–GFP fiduciary marks on bud-associated cables and fluorescence loss in photobleaching experiments revealed that this apparent elongation occurs by assembly of new material at the end of the cable within the bud and movement of the opposite end of the cable toward the tip of the mother cell distal to the bud. The rate of extension of the tip of an elongating actin cable is 0.29 ± 0.08 μm/s. Latrunculin A (Lat-A) treatment completely blocked this process. We also observed movement of randomly oriented cables around the cortex of cells at a rate of 0.59 ± 0.14 μm/s. Mild treatment with Lat-A did not affect the velocity of movement of randomly oriented cables. However, Lat-A treatment did increase the number of randomly oriented, motile cables per cell. Our observations suggest that establishment of bud-associated actin cables during the cell cycle is accomplished not by realignment of existing cables but by assembly of new cables within the bud or bud neck, followed by elongation. PMID:11805329

  17. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.

    PubMed

    Basler, David; Körner, Christian

    2014-04-01

    Spring phenology of temperate forest trees is optimized to maximize the length of the growing season while minimizing the risk of freezing damage. The release from winter dormancy is environmentally mediated by species-specific responses to temperature and photoperiod. We investigated the response of early spring phenology to temperature and photoperiod at different stages of dormancy release in cuttings from four temperate tree species in controlled environments. By tracking bud development, we were able to identify the onset of bud swelling and bud growth in Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Picea abies (L.) H. Karst. At a given early stage of dormancy release, the onset and duration of the bud swelling prior to bud burst are driven by concurrent temperature and photoperiod, while the maximum growth rate is temperature dependent only, except for Fagus, where long photoperiods also increased bud growth rates. Similarly, the later bud burst was controlled by temperature and photoperiod (in the photoperiod sensitive species Fagus, Quercus and Picea). We conclude that photoperiod is involved in the release of dormancy during the ecodormancy phase and may influence bud burst in trees that have experienced sufficient chilling. This study explored and documented the early bud swelling period that precedes and defines later phenological stages such as canopy greening in conventional phenological works. It is the early bud growth resumption that needs to be understood in order to arrive at a causal interpretation and modelling of tree phenology at a large scale. Classic spring phenology events mark visible endpoints of a cascade of processes as evidenced here.

  18. Histopathological Evidence of Adventitial or Medial Injury Is a Strong Predictor of Restenosis During Directional Atherectomy for Peripheral Artery Disease.

    PubMed

    Tarricone, Arthur; Ali, Ziad; Rajamanickam, Anitha; Gujja, Karthik; Kapur, Vishal; Purushothaman, K-Raman; Purushothaman, Meerarani; Vasquez, Miguel; Zalewski, Adrian; Parides, Micheal; Overbey, Jessica; Wiley, Jose; Krishnan, Prakash

    2015-10-01

    To investigate the impact on restenosis rates of deep injury to the adventitial layer during directional atherectomy. Between 2007 and 2010, 116 consecutive patients (mean age 69.6 years; 56 men) with symptomatic femoropopliteal stenoses were treated with directional atherectomy at a single center. All patients had claudication and TASC A/B lesions in the superficial femoral or popliteal arteries. Histopathology analysis of atherectomy specimens was performed to identify adventitial injury. Clinical follow-up included physical examination and duplex ultrasound scans at 3, 6, and 12 months in all patients. The primary endpoint was the duplex-documented 1-year rate of restenosis, which was determined by a peak systolic velocity ratio <2.4. Patients were dichotomized by the presence or absence of adventitial or medial cuts as evaluated by histopathology. Adventitial injury were identified in 62 (53%) of patients. There were no differences in baseline demographic and clinical features (p>0.05), lesion length (58.7±12.8 vs 56.2±13.6 mm, p=0.40), or vessel runoff (1.9±0.6 vs 2.0±0.6, p=0.37) between patients with and without adventitial injury, respectively. The overall 1-year incidence of restenosis was 57%, but the rate was significantly higher (p<0.0001) in patients with adventitial or medial injury (97%, 60/62) as compared with those without (11%, 6/54). Lack of adventitial injury after atherectomy for femoropopliteal stenosis is strongly related to patency at 1 year. © The Author(s) 2015.

  19. Transcript expression profiling for adventitious roots of Panax ginseng Meyer.

    PubMed

    Subramaniyam, Sathiyamoorthy; Mathiyalagan, Ramya; Natarajan, Sathishkumar; Kim, Yu-Jin; Jang, Moon-Gi; Park, Jun-Hyung; Yang, Deok Chun

    2014-08-01

    Panax ginseng Meyer is one of the major medicinal plants in oriental countries belonging to the Araliaceae family which are the primary source for ginsenosides. However, very few genes were characterized for ginsenoside pathway, due to the limited genome information. Through this study, we obtained a comprehensive transcriptome from adventitious roots, which were treated with methyl jasmonic acids for different time points (control, 2h, 6h, 12h, and 24h) and sequenced by RNA 454 pyrosequencing technology. Reference transcriptome 39,304,529 (0.04GB) was obtained from 5,724,987,880 bases (5.7GB) of 22 libraries by de novo assembly and 35,266 (58.5%) transcripts were annotated with biological schemas (GO and KEGG). The digital gene expression patterns were obtained from in vitro grown adventitious root sequences which mapped to reference, from that, 3813 (6.3%) unique transcripts were involved in ≥2 fold up and downregulations. Finally, candidates for ginsenoside pathway genes were predicted from observed expression patterns. Among them, 30 transcription factors, 20 cytochromes, and 11 glycosyl transferases were predicted as ginsenoside candidates. These data can remarkably expand the existing transcriptome resources of Panax, especially to predict existence of gene networks in P. ginseng. The entity of the data provides a valuable platform to reveal more on secondary metabolism and abiotic stresses from P. ginseng in vitro grown adventitious roots. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Growth and anatomical parameters of adventitious roots formed on mung bean hypocotyls are correlated with galactoglucomannan oligosaccharides structure.

    PubMed

    Kollárová, K; Zelko, I; Henselová, M; Capek, P; Lišková, D

    2012-01-01

    The effect of galactoglucomannan oligosaccharides (GGMOs) compared with chemically modified oligosaccharides, GGMOs-g (with reduced number of D-galactose side chains) and GGMOs-r (with reduced reducing ends) on mung bean (Vigna radiata (L.) Wilczek) adventitious roots formation, elongation, and anatomical structure have been studied. All types of oligosaccharides influenced adventitious root formation in the same way: stimulation in the absence of exogenous auxin and inhibition in the presence of exogenous auxin. Both reactions are probably related with the presence/content of endogenous auxin in plant cuttings. However, the adventitious root length was inhibited by GGMOs both in the absence as well as in the presence of auxin (IBA or NAA), while GGMOs-g inhibition was significantly weaker compared with GGMOs. GGMOs-r were without significant difference on both processes, compared with GGMOs. GGMOs affected not only the adventitious root length but also their anatomy in dependence on the combination with certain type of auxin. The oligosaccharides influenced cortical cells division, which was reflected in the cortex area and in the root diameter. All processes followed were dependent on oligosaccharides chemical structure. The results suggest also that GGM-derived oligosaccharides may play an important role in adventitious roots elongation but not in their formation.

  1. Growth and Anatomical Parameters of Adventitious Roots Formed on Mung Bean Hypocotyls Are Correlated with Galactoglucomannan Oligosaccharides Structure

    PubMed Central

    Kollárová, K.; Zelko, I.; Henselová, M.; Capek, P.; Lišková, D.

    2012-01-01

    The effect of galactoglucomannan oligosaccharides (GGMOs) compared with chemically modified oligosaccharides, GGMOs-g (with reduced number of D-galactose side chains) and GGMOs-r (with reduced reducing ends) on mung bean (Vigna radiata (L.) Wilczek) adventitious roots formation, elongation, and anatomical structure have been studied. All types of oligosaccharides influenced adventitious root formation in the same way: stimulation in the absence of exogenous auxin and inhibition in the presence of exogenous auxin. Both reactions are probably related with the presence/content of endogenous auxin in plant cuttings. However, the adventitious root length was inhibited by GGMOs both in the absence as well as in the presence of auxin (IBA or NAA), while GGMOs-g inhibition was significantly weaker compared with GGMOs. GGMOs-r were without significant difference on both processes, compared with GGMOs. GGMOs affected not only the adventitious root length but also their anatomy in dependence on the combination with certain type of auxin. The oligosaccharides influenced cortical cells division, which was reflected in the cortex area and in the root diameter. All processes followed were dependent on oligosaccharides chemical structure. The results suggest also that GGM-derived oligosaccharides may play an important role in adventitious roots elongation but not in their formation. PMID:22666154

  2. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    PubMed

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  3. Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.).

    PubMed

    Tan, Ming; Li, Guofang; Qi, Siyan; Liu, Xiaojie; Chen, Xilong; Ma, Juanjuan; Zhang, Dong; Han, Mingyu

    2018-04-20

    Cytokinins (CKs) play a crucial role in promoting axillary bud outgrowth and targeting the control of CK metabolism can be used to enhance branching in plants. CK levels are maintained mainly by CK biosynthesis (isopentenyl transferase, IPT) and degradation (dehydrogenase, CKX) genes in plants. A systematic study of the IPT and CKX gene families in apple, however, has not been conducted. In the present study, 12 MdIPTs and 12 MdCKXs were identified in the apple genome. Systematic phylogenetic, structural, and synteny analyses were performed. Expression analysis of these genes in different tissues was also assessed. MdIPT and MdCKX genes exhibit distinct expression patterns in different tissues. The response of MdIPT, MdCKX, and MdPIN1 genes to various treatments (6-BA, decapitation and Lovastatin, an inhibitor of CKs synthesis) that impact branching were also investigated. Results indicated that most of the MdIPT and MdCKX, and MdPIN1 genes were upregulated by 6-BA and decapitation treatment, but inhibited by Lovastatin, a compound that effectively suppresses axillary bud outgrowth induced by decapitation. These findings suggest that cytokinin biosynthesis is required for the activation of bud break and the export of auxin from buds in apple tree with intact primary shoot apex or decapitated apple tree. MdCKX8 and MdCKX10, however, exhibited little response to decapitation, but were significantly up-regulated by 6-BA and Lovastatin, a finding that warrants further investigation in order to understand their function in bud-outgrowth. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Cloning crops in a CELSS via tissue culture: Prospects and problems

    NASA Technical Reports Server (NTRS)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  5. Hydrogen Peroxide Is a Second Messenger in the Salicylic Acid-Triggered Adventitious Rooting Process in Mung Bean Seedlings

    PubMed Central

    Yang, Wei; Zhu, Changhua; Ma, Xiaoling; Li, Guijun; Gan, Lijun; Ng, Denny; Xia, Kai

    2013-01-01

    In plants, salicylic acid (SA) is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR) and hypertensive response (HR). SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF) in mung bean (Phaseolus radiatus L) hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2) were also elucidated. Pretreatment of mung bean explants with N, N’-dimethylthiourea (DMTU), a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI), a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings. PMID:24386397

  6. [Induction and in vitro culture of hairy roots of Dianthus caryophyllus and its plant regeneration].

    PubMed

    Shi, Heping; Zhu, Yuanfeng; Wang, Bei; Sun, Jiangbing; Huang, Shengqin

    2014-11-01

    To use Agrobacterium rhizogenes-induced hairy roots to create new germplasm of Dianthus caryophyllus, we transformed D. caryophyllus with A. rhizogenes by leaf disc for plant regeneration from hairy roots. The white hairy roots could be induced from the basal surface of leaf explants of D. caryophyllus 12 days after inoculation with A. rhizogenes ATCC15834. The percentage of the rooting leaf explants was about 90% 21 days after inoculation. The hairy roots could grow rapidly and autonomously in liquid or solid phytohormone-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and silica gel thin-layer chromatography of opines from D. caryophyllus hairy roots. Hairy roots could form light green callus after cultured on MS+6-BA 1.0-3.0 mg/L + NAA 0.1-0.2 mg/L for 15 days. The optimum medium for adventitious shoots formation was MS + 6-BA 2.0 mg/L + NAA 0.02 mg/L, where the rate of adventitious shoot induction was 100% after cultured for 6 weeks. The mean number of adventitious shoot per callus was 30-40. The adventitious shoots can form roots when cultured on phytohormone-free 1/2 MS or 1/2 MS +0.5 mg/L NAA for 10 days. When the rooted plantlets transplanted in the substrate mixed with perlite sand and peat (volume ratio of 1:2), the survival rate was above 95%.

  7. Comparative evaluation of oxidative enzyme activities during adventitious rooting in the cuttings of grapevine rootstocks.

    PubMed

    Kose, Cafer; Erdal, Serkan; Kaya, Ozkan; Atici, Okkeş

    2011-03-15

    This study investigated changes in peroxidase (POX) and polyphenol oxidase (PPO) activities through adventitious rooting in hardwood cuttings of grapevine rootstocks. Three grapevine rootstocks with different propensity to produce adventitious roots were selected: recalcitrant (Ramsey), non-recalcitrant (Rupestris du Lot) and intermediate (99R) cultivars. The averages of root number at 65 days were 96 in Lot, 76 in 99R and 30 in Ramsey. Both enzyme activities characteristically increased before adventitious rooting, regardless of rooting ability of the rootstocks, and then decreased. POX activity increased in Ramsey cuttings at 22 days, in Lot and 99R cuttings at 14 days after planting, and then decreased gradually until 51 days. The highest POX activity was determined in Ramsey rootstock with the highest rooting ability and the lowest activity was determined in the rootstocks with the lowest rooting ability. PPO activity gradually increased in Ramsey rootstock cuttings from 10 days to 22 days, in Lot and 99R cuttings at 14 days, and then decreased until 51 days. A significant correlation was identified between high POX activity and adventitious rooting capability in rootstocks, but the same result was not determined with PPO activity. A recalcitrant rooting variety cannot increase POX activity sufficiently before rooting. Therefore applications that could increase POX activity in stem cuttings during rooting may facilitate increased rooting in such rootstocks. Copyright © 2011 Society of Chemical Industry.

  8. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting.

    PubMed

    Urquhart, Shelley; Foo, Eloise; Reid, James B

    2015-03-01

    The recently discovered group of plant hormones, the strigolactones, have been implicated in regulating photomorphogenesis. We examined this extensively in our strigolactone synthesis and response mutants and could find no evidence to support a major role for strigolactone signaling in classic seedling photomorphogenesis (e.g. elongation and leaf expansion) in pea (Pisum sativum), consistent with two recent independent reports in Arabidopsis. However, we did find a novel effect of strigolactones on adventitious rooting in darkness. Strigolactone-deficient mutants, Psccd8 and Psccd7, produced significantly fewer adventitious roots than comparable wild-type seedlings when grown in the dark, but not when grown in the light. This observation in dark-grown plants did not appear to be due to indirect effects of other factors (e.g. humidity) as the constitutively de-etiolated mutant, lip1, also displayed reduced rooting in the dark. This role for strigolactones did not involve the MAX2 F-Box strigolactone response pathway as Psmax2 f-box mutants did not show a reduction in adventitious rooting in the dark compared with wild-type plants. The auxin-deficient mutant bushy also reduced adventitious rooting in the dark, as did decapitation of wild-type plants. Rooting was restored by the application of indole-3-acetic acid (IAA) to decapitated plants, suggesting a role for auxin in the rooting response. However, auxin measurements showed no accumulation of IAA in the epicotyls of wild-type plants compared with the strigolactone synthesis mutant Psccd8, suggesting that changes in the gross auxin level in the epicotyl are not mediating this response to strigolactone deficiency. © 2014 Scandinavian Plant Physiology Society.

  9. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    PubMed

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Bioreactor with Ipomoea hederifolia adventitious roots and its endophyte Cladosporium cladosporioides for textile dye degradation.

    PubMed

    Patil, Swapnil M; Chandanshive, Vishal V; Rane, Niraj R; Khandare, Rahul V; Watharkar, Anuprita D; Govindwar, Sanjay P

    2016-04-01

    In vitro grown untransformed adventitious roots (AR) culture of Ipomoea hederifolia and its endophytic fungus (EF) Cladosporium cladosporioides decolorized Navy Blue HE2R (NB-HE2R) at a concentration of 20 ppm up to 83.3 and 65%, respectively within 96h. Whereas the AR-EF consortium decolorized the dye more efficiently and gave 97% removal within 36h. Significant inductions in the enzyme activities of lignin peroxidase, tyrosinase and laccase were observed in roots, while enzymes like tyrosinase, laccase and riboflavin reductase activities were induced in EF. Metabolites of dye were analyzed using UV-vis spectroscopy, FTIR and gas chromatography-mass spectrometry. Possible metabolic pathways of NB-HE2R were proposed with AR, EF and AR-EF systems independently. Looking at the superior efficacy of AR-EF system, a rhizoreactor was developed for the treatment of NB-HE2R at a concentration of 1000 ppm. Control reactor systems with independently grown AR and EF gave 94 and 85% NB-HE2R removal, respectively within 36h. The AR-EF rhizoreactor, however, gave 97% decolorization. The endophyte colonization additionally increased root and shoot lengths of candidate plants through mutualism. Combined bioreactor strategies can be effectively used for future eco-friendly remediation purposes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Gravity-dependent regulation of red light induced moss protonemata branching and gametophore bud formation

    NASA Astrophysics Data System (ADS)

    Ripetskyj, R. T.; Kit, N. A.

    Isolated leafy shoots of the moss Pottia intermedia positioned horizontally on the agar surface in vertically oriented petri dishes regenerate unbranching negatively gravitropic protonemata on upper side of the regenerant. Gravity determines the site of regeneration not the process itself. White light of low intensity unsufficient to induce positive phototropism of dark-grown protonemata can, however, provoke their branching and gametophore bud formation (Ripetskyj et al., 1998; 1999). The presented experiments have been carried out with red light in Biological Research in Canisters/Light Emitting Diode (BRIC/LED) hardware developed at Kennedy Space Center, USA. Seven-day-old dark-grown negatively gravitropic secondary P. intermedia protonemata were positioned differently with respect to gravity vector and to the source of red light of low, 1 or 2 μ mol\\cdot m-2\\cdot s-1, intensities. The light induced intensive branching of the protonemata and gametophore bud formation initiation site of both processes as well as the direction of growth of branches and buds being depent on the position of protonemata with respect to gravity and light vectors. Vertically positioned, i.e. ungravistimulated, dark grown protonemata illuminated from one side with red light of 2 μ mol\\cdot m-2\\cdot s-1 intensity produced 96,9 ± 2,2% of side branches and buds growing directly towards the light source from the lit protonema side. Horizontally disposed protonemata irradiated from below with red light of the same intensity regenerate 31,7 ± 3,9% of branches and buds on the upper, i.e. shaded protonemata side, the upward growth of which should undoubtedly be determined by gravity. In vertically disposed protonemata illuminated with red light of 1 μ mol\\cdot m-2\\cdot s-1 intensity from aside 31,9 ± 5,5% of side branches and buds arised on shaded protonema side and grew away from the light. Illumination of the protonemata in horizontal position from below increased the number of

  12. Coevolutionary patterning of teeth and taste buds.

    PubMed

    Bloomquist, Ryan F; Parnell, Nicholas F; Phillips, Kristine A; Fowler, Teresa E; Yu, Tian Y; Sharpe, Paul T; Streelman, J Todd

    2015-11-03

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.

  13. Coevolutionary patterning of teeth and taste buds

    PubMed Central

    Bloomquist, Ryan F.; Parnell, Nicholas F.; Phillips, Kristine A.; Fowler, Teresa E.; Yu, Tian Y.; Sharpe, Paul T.; Streelman, J. Todd

    2015-01-01

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium. PMID:26483492

  14. Quantifying Adventitious Error in a Covariance Structure as a Random Effect

    PubMed Central

    Wu, Hao; Browne, Michael W.

    2017-01-01

    We present an approach to quantifying errors in covariance structures in which adventitious error, identified as the process underlying the discrepancy between the population and the structured model, is explicitly modeled as a random effect with a distribution, and the dispersion parameter of this distribution to be estimated gives a measure of misspecification. Analytical properties of the resultant procedure are investigated and the measure of misspecification is found to be related to the RMSEA. An algorithm is developed for numerical implementation of the procedure. The consistency and asymptotic sampling distributions of the estimators are established under a new asymptotic paradigm and an assumption weaker than the standard Pitman drift assumption. Simulations validate the asymptotic sampling distributions and demonstrate the importance of accounting for the variations in the parameter estimates due to adventitious error. Two examples are also given as illustrations. PMID:25813463

  15. Interactions of phytochromes A, B1 and B2 in light-induced competence for adventitious shoot formation in hypocotyl of tomato (Solanum lycopersicum L.).

    PubMed

    Lercari, B; Bertram, L

    2004-02-01

    The interactions of phytochrome A (phyA), phytochrome B1 (phyB1) and phytochrome B2 (phyB2) in light-dependent shoot regeneration from the hypocotyl of tomato was analysed using all eight possible homozygous allelic combinations of the null mutants. The donor plants were pre-grown either in the dark or under red or far-red light for 8 days after sowing; thereafter hypocotyl segments (apical, middle and basal portions) were transferred onto hormone-free medium for culture under different light qualities. Etiolated apical segments cultured in vitro under white light showed a very high frequency of regeneration for all of the genotypes tested besides phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants. Evidence is provided of a specific interference of phyB2 with phyA-mediated HIR to far-red and blue light in etiolated explants. Pre-treatment of donor plants by growth under red light enhanced the competence of phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants for shoot regeneration, whereas pre-irradiation with far-red light enhanced the frequency of regeneration only in the phyAphyB1 mutant. Multiple phytochromes are involved in red light- and far-red light-dependent acquisition of competence for shoot regeneration. The position of the segments along the hypocotyl influenced the role of the various phytochromes and the interactions between them. The culture of competent hypocotyl segments under red, far-red or blue light reduced the frequency of explants forming shoots compared to those cultured under white light, with different genotypes having different response patterns.

  16. Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L.

    PubMed

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar

    2014-11-01

    Adventitious root cultures of Prunella vulgaris L. were established in shaking flask system for the production of biomass and secondary metabolites. Adventitious root cultures were induced from callus cultures obtained from leaf explants on solid Murashige and Skoog (MS) medium containing combination of 6-benzyladenine (BA; 1.0 mg l(-1)) and naphthalene acetic acid (NAA; 1.5 mg l(-1)). Thereafter, 0.49 g inoculum was transferred to liquid MS medium supplemented with different concentrations of NAA (0.5-2.0 mg l(-1)). Growth kinetics of adventitious roots was recorded with an interval of 7 days for 49 days period. Highest biomass accumulation (2.13 g/l) was observed in liquid medium containing 1.0 mg l(-1) NAA after 21 days of inoculation. However, other concentrations of NAA also showed similar accumulation pattern but the biomass gradually decreases after 49 days of inoculation. Adventitious roots were collected and dried for investigation of total phenolics (TP), total flavonoids (TF), and antioxidant activities. Higher TPC (0.995 GAE mg/g-DRB) and TFC (6.615 RE mg/g-DRB) were observed in 0.5 mg l(-1) NAA treated cultures. In contrast, higher antioxidant activity (83.53 %) was observed 1.5 mg l(-1) NAA treated cultures. These results are helpful in up scaling of root cultures into bioreactor for secondary metabolites production.

  17. Chilling of Dormant Buds Hyperinduces FLOWERING LOCUS T and Recruits GA-Inducible 1,3-β-Glucanases to Reopen Signal Conduits and Release Dormancy in Populus[W][OA

    PubMed Central

    Rinne, Päivi L.H.; Welling, Annikki; Vahala, Jorma; Ripel, Linda; Ruonala, Raili; Kangasjärvi, Jaakko; van der Schoot, Christiaan

    2011-01-01

    In trees, production of intercellular signals and accessibility of signal conduits jointly govern dormancy cycling at the shoot apex. We identified 10 putative cell wall 1,3-β-glucanase genes (glucan hydrolase family 17 [GH17]) in Populus that could turn over 1,3-β-glucan (callose) at pores and plasmodesmata (PD) and investigated their regulation in relation to FT and CENL1 expression. The 10 genes encode orthologs of Arabidopsis thaliana BG_ppap, a PD-associated glycosylphosphatidylinositol (GPI) lipid-anchored protein, the Arabidopsis PD callose binding protein PDCB, and a birch (Betula pendula) putative lipid body (LB) protein. We found that these genes were differentially regulated by photoperiod, by chilling (5°C), and by feeding of gibberellins GA3 and GA4. GA3 feeding upregulated all LB-associated GH17s, whereas GA4 upregulated most GH17s with a GPI anchor and/or callose binding motif, but only GA4 induced true bud burst. Chilling upregulated a number of GA biosynthesis and signaling genes as well as FT, but not CENL1, while the reverse was true for both GA3 and GA4. Collectively, the results suggest a model for dormancy release in which chilling induces FT and both GPI lipid-anchored and GA3-inducible GH17s to reopen signaling conduits in the embryonic shoot. When temperatures rise, the reopened conduits enable movement of FT and CENL1 to their targets, where they drive bud burst, shoot elongation, and morphogenesis. PMID:21282527

  18. The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks.

    PubMed

    Bolat, Ibrahim; Dikilitas, Murat; Ercisli, Sezai; Ikinci, Ali; Tonkaz, Tahsin

    2014-01-01

    The effects of different water stress (control, medium, and severe) on some morphological, physiological, and biochemical characteristics and bud success of M9 apple and MA quince rootstocks were determined. The results showed that water stress significantly affected most morphological, physiological, and biochemical characteristics as well as budding success on the both rootstocks. The increasing water stress decreased the relative shoot length, diameter, and plant total fresh and dry weights. Leaf relative water content and chlorophyll index decreased while electrolyte leakage increased with the increase of water stress in both rootstocks. An increase in water stress also resulted in reduction in budding success in Vista Bella/M9 (79.33% and 46.67%) and Santa Maria/MA (70.33% and 15.33%) combinations. However, the water stress in Santa Maria/MA was more prominent. The increase in water stress resulted in higher peroxidase activities as well as phenol contents in both rootstocks. Although catalase activity, anthocyanin, and proline contents increased with the impact of stress, this was not statistically significant. The results suggest that the impact of stress increased with the increase of water stress; therefore, growers should be careful when using M9 and MA rootstocks in both nursery and orchards where water scarcity is present.

  19. High-Throughput Sequencing Reveals Drastic Changes in Fungal Communities in the Phyllosphere of Norway Spruce (Picea abies) Following Invasion of the Spruce Bud Scale (Physokermes piceae).

    PubMed

    Menkis, Audrius; Marčiulynas, Adas; Gedminas, Artūras; Lynikienė, Jūratė; Povilaitienė, Aistė

    2015-11-01

    The aim of this study was to assess the diversity and composition of fungal communities in damaged and undamaged shoots of Norway spruce (Picea abies) following recent invasion of the spruce bud scale (Physokermes piceae) in Lithuania. Sampling was done in July 2013 and included 50 random lateral shoots from ten random trees in each of five visually undamaged and five damaged 40-50-year-old pure stands of P. abies. DNA was isolated from 500 individual shoots, subjected to amplification of the internal transcribed spacer of fungal ribosomal DNA (ITS rDNA), barcoded and sequenced. Clustering of 149,426 high-quality sequences resulted in 1193 non-singleton contigs of which 1039 (87.1 %) were fungal. In total, there were 893 fungal taxa in damaged shoots and 608 taxa in undamaged shoots (p < 0.0001). Furthermore, 431 (41.5 %) fungal taxa were exclusively in damaged shoots, 146 (14.0 %) were exclusively in undamaged shoots, and 462 (44.5 %) were common to both types of samples. Correspondence analysis showed that study sites representing damaged and undamaged shoots were separated from each other, indicating that in these fungal communities, these were largely different and, therefore, heavily affected by P. piceae. In conclusion, the results demonstrated that invasive alien tree pests may have a profound effect on fungal mycobiota associated with the phyllosphere of P. abies, and therefore, in addition to their direct negative effect owing physical damage of the tissue, they may also indirectly determine health, sustainability and, ultimately, distribution of the forest tree species.

  20. Organogenesis from internode-derived nodules of Humulus lupulus var. Nugget (Cannabinaceae): histological studies and changes in the starch content.

    PubMed

    Fortes, A M; Pais, M S

    2000-07-01

    The sequence of histological and histochemical events occurring during organogenesis from Humulus lupulus var. Nugget internode-derived nodules was studied. Sections were made and studies were carried out from the start of culture treatment until the development of shoot buds. Cell division was observed in both cambial and cortical regions during the first week of culture establishment. Cell division in cortical cells led to the formation of an incipient callus tissue. From the calluses prenodular structures of cambial origin appeared and gave rise to nodules from which shoot buds formed. Nodules kept separating into "daughter nodules" from which arose an increasing number of shoot buds. Iodide staining showed a strong starch accumulation in callus tissue and in prenodular structures. During shoot-bud primordia formation starch content decreased in nodules. Some starch was also noted in control explants (cultured on basal medium), however at a lower level than that observed in explants cultured on media with growth regulators. Shoot-bud regeneration was not observed in control explants.

  1. NAA-Induced Direct Organogenesis from Female Immature Inflorescence Explants of Date Palm.

    PubMed

    Khierallah, Hussam S M; Bader, Saleh M; Al-Khafaji, Makki A

    2017-01-01

    Micropropagation has great potential for the multiplication of female and male date palms of commercially grown cultivars by using inflorescences. This approach is simple, convenient, and much faster than the conventional method of using shoot-tip explants. We describe here a stepwise micropropagation procedure using inflorescence explants of Iraqi date palm cultivar Maktoom. Cultured explants were derived from 0.5-cm-long spike segments excised from 8 to 10-cm-long spathes. About 70% formed adventitious buds on Murashige and Skoog (MS) medium supplemented with 2 mg/L naphthalene acetic acid (NAA), 4 mg/L benzylaminopurine (BAP), and 40 g/L sucrose and maintained in the dark for 16 weeks before transferring to normal light conditions. The best multiplication rate was achieved with 3 mg/L 2ip and 2 mg/L; for shoot elongation, the best medium is MS containing 0.5 mg/L BAP, 0.5 mg/L 2ip, and 1 mg/L GA 3 . Well-developed shoots were cultured for rooting in half MS medium amended with 1 mg/L NAA and 45 g/L sucrose. Plantlets with well-developed roots were successfully hardened in the greenhouse. Inflorescence explants proved to be a promising alternative explant source for micropropagation of date palm cultivars.

  2. Highly Branched Phenotype of the Petunia dad1-1 Mutant Is Reversed by Grafting.

    PubMed Central

    Napoli, C.

    1996-01-01

    The recessive dad1-1 allele conditions a highly branched growth habit resulting from a proliferation of first- and second-order branches. Unlike the wild-type parent, which has lateral branching delayed until the third or fourth leaf node distal to the cotyledons, dad1-1 initiates lateral branching from each cotyledon axil. In addition to initiating lateral branching sooner than the wild type, dad1-1 sustains branching through more nodes on the main shoot axis than the wild type. In keeping with a propensity for branching at basal nodes, dad1-1 produces second-order branches at the proximal-most nodes on first-order branches and small shoots from accessory buds at basal nodes on the main shoot axis. Additional traits associated with the mutation are late flowering, adventitious root formation, shortened internodes, and mild leaf chlorosis. Graft studies show that a dad1-1 scion, when grafted onto wild-type stock, is converted to a phenotype resembling the wild type. Furthermore, a small wild-type interstock fragment inserted between a mutant root stock and a mutant scion is sufficient to convert the dad1-1 scion from mutant to a near wild-type appearance. The recessive dad1-1 phenotype combines traits associated with cytokinin overexpression, auxin overexpression, and gibberellin limitation, which suggests a complex interaction of hormones in establishing the mutant phenotype. PMID:12226274

  3. Sirococcus Shoot Blight

    Treesearch

    Thomas H. Nicholls; Kathryn Robbins

    1984-01-01

    Sirococcus shoot blight, caused by the fungus Sirococcus strobilinus Preuss, affects conifers in the Northern United States and southern Canada. The fungus infects the new shoots; diseased seedlings and saplings are especially affected. In the United States, sirococcus shoot blight has become increasingly widespread since the early 1970's. When favorable...

  4. Potential Role of Axonal Chemorepellent Slit2 in Modulating Adventitial Inflammation in a Rat Carotid Artery Balloon Injury Model

    PubMed Central

    Liu, Dong; Xiao, Yan; Subramanian, Romesh R.; Okamoto, Ei-ichi; Wilcox, Josiah N.; Anderson, Leonard; De Leon, Hector

    2016-01-01

    Leukocyte infiltration of adventitial and perivascular tissues is an early event in the development of vascular remodeling after injury. We investigated whether Slit/Robo—an axonal chemorepellent system in vertebrate and invertebrate development—is activated during the inflammatory phase that follows endothelial denudation. Using the rat carotid artery model of angioplasty, we conducted a time course analysis of mRNAs encoding Slit ligands (Slit2 and Slit3) and Robo receptors (Robo1, Robo2 and Robo4), as well as proinflammatory cell adhesion molecule (CAM) genes. Adventitial inflammatory cells were counted in immunostained arterial sections. E-selectin, vascular CAM-1 (VCAM-1), and intercellular CAM-1 (ICAM-1) were upregulated 2–3 hr after injury, followed by infiltration of neutrophils and monocytes as evidenced by real-time PCR, in situ hybridization, and immunohistochemistry. Slit2, Slit3, and Robo genes exhibited no expression changes at 3 hr; however, they were markedly upregulated 1 day after angioplasty. ICAM-1 expression was reduced by 50%, and the number of adventitial neutrophils decreased by >75% one day after angioplasty. Slit2 has been shown to be a potent chemorepelent of leukocytes, endothelial cells and smooth muscle cells. Thus, we decided to further investigate the localization of Slit2 in injured vessels. Immunohistochemical stainings revealed the presence of Slit2 within the vessel wall and in the perivascular vasa vasorum of naive and injured arteries. Double immunohistochemical analyses showed that infiltrating monocytes expressed Slit2 in the perivascular and adventitial tissues of injured arteries 1 and 3 days postangioplasty. In addition, recombinant full-length Slit2 and Slit2-N/1118, an N-terminal fragment of Slit2, inhibited stromal cell-derived factor 1 (SDF-1)-mediated migration of circulating rat peripheral blood mononuclear cells. In summary, adventitial activation of CAM genes and neutrophil infiltration preceded upregulation

  5. Oxytocin signaling in mouse taste buds.

    PubMed

    Sinclair, Michael S; Perea-Martinez, Isabel; Dvoryanchikov, Gennady; Yoshida, Masahide; Nishimori, Katsuhiko; Roper, Stephen D; Chaudhari, Nirupa

    2010-08-05

    The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite

  6. Effect of alternating day and night temperature on short day-induced bud set and subsequent bud burst in long days in Norway spruce

    PubMed Central

    Olsen, Jorunn E.; Lee, YeonKyeong; Junttila, Olavi

    2014-01-01

    Young seedlings of the conifer Norway spruce exhibit short day (SD)-induced cessation of apical growth and bud set. Although different, constant temperatures under SD are known to modulate timing of bud set and depth of dormancy with development of deeper dormancy under higher compared to lower temperature, systematic studies of effects of alternating day (DT) and night temperatures (NT) are limited. To shed light on this, seedlings of different provenances of Norway spruce were exposed to a wide range of DT-NT combinations during bud development, followed by transfer to forcing conditions of long days (LD) and 18°C, directly or after different periods of chilling. Although no specific effect of alternating DT/NT was found, the results demonstrate that the effects of DT under SD on bud set and subsequent bud break are significantly modified by NT in a complex way. The effects on bud break persisted after chilling. Since time to bud set correlated with the daily mean temperature under SD at DTs of 18 and 21°C, but not a DT of 15°C, time to bud set apparently also depend on the specific DT, implying that the effect of NT depends on the actual DT. Although higher temperature under SD generally results in later bud break after transfer to forcing conditions, the fastest bud flush was observed at intermediate NTs. This might be due to a bud break-hastening chilling effect of intermediate compared to higher temperatures, and delayed bud development to a stage where bud burst can occur, under lower temperatures. Also, time to bud burst in un-chilled seedlings decreased with increasing SD-duration, suggesting that bud development must reach a certain stage before the processes leading to bud burst are initiated. The present results also indicate that low temperature during bud development had a larger effect on the most southern compared to the most northern provenance studied. Decreasing time to bud burst was observed with increasing northern latitude of origin in un

  7. Berkeley UXO Discriminator (BUD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank

    2007-01-01

    The Berkeley UXO Discriminator (BUD) is an optimally designed active electromagnetic system that not only detects but also characterizes UXO. The system incorporates three orthogonal transmitters and eight pairs of differenced receivers. it has two modes of operation: (1) search mode, in which BUD moves along a profile and exclusively detects targets in its vicinity, providing target depth and horizontal location, and (2) discrimination mode, in which BUD, stationary above a target, from a single position, determines three discriminating polarizability responses together with the object location and orientation. The performance of the system is governed by a target size-depth curve.more » Maximum detection depth is 1.5 m. While UXO objects have a single major polarizability coincident with the long axis of the object and two equal transverse polarizabilities, scrap metal has three different principal polarizabilities. The results clearly show that there are very clear distinctions between symmetric intact UXO and irregular scrap metal, and that BUD can resolve the intrinsic polarizabilities of the target. The field survey at the Yuma Proving Ground in Arizona showed excellent results within the predicted size-depth range.« less

  8. Branch architecture in Ginkgo biloba: wood anatomy and long shoot-short shoot interactions.

    PubMed

    Little, Stefan A; Jacobs, Brooke; McKechnie, Steven J; Cooper, Ranessa L; Christianson, Michael L; Jernstedt, Judith A

    2013-10-01

    Ginkgo, centrally placed in seed plant phylogeny, is considered important in many phylogenetic and evolutionary studies. Shoot dimorphism of Ginkgo has been long noted, but no work has yet been done to evaluate the relationships between overall branch architecture and wood ring characters, shoot growth, and environmental conditions. • Branches, sampled from similar canopy heights, were mapped with the age of each long shoot segment determined by counting annual leaf-scar series on its short shoots. Transverse sections were made for each long shoot segment and an adjacent short shoot; wood ring thickness, number of rings, and number of tracheids/ring were determined. Using branch maps, we identified wood rings for each long shoot segment to year and developmental context of each year (distal short shoot growth only vs. at least one distal long shoot). Climate data were also analyzed in conjunction with developmental context. • Significantly thicker wood rings occur in years with distal long shoot development. The likelihood that a branch produced long shoots in a given year was lower with higher maximum annual temperature. Annual maximum temperature was negatively correlated with ring thickness in microsporangiate trees only. Annual minimum temperatures were correlated differently with ring thickness of megasporangiate and microsporangiate trees, depending on the developmental context. There were no significant effects associated with precipitation. • Overall, developmental context alone predicts wood ring thickness about as well as models that include temperature. This suggests that although climatic factors may be strongly correlated with wood ring data among many gymnosperm taxa, at least for Ginkgo, correlations with climate data are primarily due to changes in proportions of shoot developmental types (LS vs. SS) across branches.

  9. Influences of tree, stand, and site characteristics on the production of epicormic branches in southern bottomland hardwood forests

    Treesearch

    James S. Meadows; J.C.G. Goelz; Daniel A. Skojac

    2013-01-01

    Epicormic branches are adventitious twigs that develop from dormant buds found along the main bole of hardwood trees. These buds may be released at any time during the life of the tree in response to various types of stimuli. Epicormic branches cause defects in the underlying wood and may cause significant reductions in both log grade and subsequent lumber value....

  10. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.

    PubMed

    Agulló-Antón, María Ángeles; Ferrández-Ayela, Almudena; Fernández-García, Nieves; Nicolás, Carlos; Albacete, Alfonso; Pérez-Alfocea, Francisco; Sánchez-Bravo, José; Pérez-Pérez, José Manuel; Acosta, Manuel

    2014-03-01

    The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. A detailed analysis of the morphological changes occurring in the basal region of cultivated carnation cuttings during the early stages of adventitious rooting was carried out and the physiological modifications induced by exogenous auxin application were studied. To this end, the endogenous concentrations of five major classes of plant hormones [auxin, cytokinin (CK), abscisic acid, salicylic acid (SA) and jasmonic acid] and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid were analyzed at the base of stem cuttings and at different stages of adventitious root formation. We found that the stimulus triggering the initiation of adventitious root formation occurred during the first hours after their excision from the donor plant, due to the breakdown of the vascular continuum that induces auxin accumulation near the wounding. Although this stimulus was independent of exogenously applied auxin, it was observed that the auxin treatment accelerated cell division in the cambium and increased the sucrolytic activities at the base of the stem, both of which contributed to the establishment of the new root primordia at the stem base. Further, several genes involved in auxin transport were upregulated in the stem base either with or without auxin application, while endogenous CK and SA concentrations were specially affected by exogenous auxin application. Taken together our results indicate significant crosstalk between auxin levels, stress hormone homeostasis and sugar availability in the base of the stem cuttings in carnation during the initial steps of adventitious rooting. © 2013 Scandinavian Plant Physiology Society.

  11. An elastic model of partial budding of retroviruses

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2008-03-01

    Retroviruses are characterized by their unique infection strategy of reverse transcription, in which the genetic information flows from RNA back to DNA. The most well known representative is the human immunodeficiency virus (HIV). Unlike budding of traditional enveloped viruses, retrovirus budding happens together with the formation of spherical virus capsids at the cell membrane. Led by this unique budding mechanism, we proposed an elastic model of retrovirus budding in this work. We found that if the lipid molecules of the membrane are supplied fast enough from the cell interior, the budding always proceeds to completion. In the opposite limit, there is an optimal size of partially budded virions. The zenith angle of these partially spherical capsids, α, is given by α˜(2̂/κσ)^1/4, where κ is the bending modulus of the membrane, σ is the surface tension of the membrane, and τ characterizes the strength of capsid protein interaction. If τ is large enough such that α˜π, the budding is complete. Our model explained many features of retrovirus partial budding observed in experiments.

  12. A transcranial Doppler sonography study of shoot/don't-shoot responding.

    PubMed

    Schultz, Natasha B; Matthews, Gerald; Warm, Joel S; Washburn, David A

    2009-08-01

    The purpose of this study was to examine the relationship between changes in cerebral blood-flow velocity and performance on a speeded shoot/don't-shoot task. Brain activity as indicated by cerebral blood-flow velocity (hemovelocity) was recorded using the transcranial Doppler ultrasonography. A shoot/don't-shoot decision-making task presented participants with threat/nonthreat stimuli in the form of bull's-eye images of various colors. Participants were required to shoot threat targets using a laser-modified handgun. Results support a vigilance decrement in both the performance measures and hemovelocity. Performance, as measured by reaction time, number of hits, and marksmanship, decreased across the length of the vigil. Hemovelocity slowed across the left and right hemispheres as the task progressed, and hemovelocity was slower in the right hemisphere than in the left hemisphere.

  13. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings

    PubMed Central

    Birlanga, Virginia; Villanova, Joan; Cano, Antonio; Cano, Emilio A.; Acosta, Manuel; Pérez-Pérez, José Manuel

    2015-01-01

    Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders’ rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species. PMID:26230608

  14. A quantitative risk assessment of exposure to adventitious agents in a cell culture-derived subunit influenza vaccine.

    PubMed

    Gregersen, Jens-Peter

    2008-06-19

    A risk-assessment model has demonstrated the ability of a new cell culture-based vaccine manufacturing process to reduce the level of any adventitious agent to a million-fold below infectious levels. The cell culture-derived subunit influenza vaccine (OPTAFLU), Novartis Vaccines and Diagnostics) is produced using Madin-Darby canine kidney (MDCK) cells to propagate seasonal viral strains, as an alternative to embryonated chicken-eggs. As only a limited range of mammalian viruses can grow in MDCK cells, similar to embryonated eggs, MDCK cells can act as an effective filter for a wide range of adventitious agents that might be introduced during vaccine production. However, the introduction of an alternative cell substrate (for example, MDCK cells) into a vaccine manufacturing process requires thorough investigations to assess the potential for adventitious agent risk in the final product, in the unlikely event that contamination should occur. The risk assessment takes into account the entire manufacturing process, from initial influenza virus isolation, through to blending of the trivalent subunit vaccine and worst-case residual titres for the final vaccine formulation have been calculated for >20 viruses or virus families. Maximum residual titres for all viruses tested were in the range of 10(-6) to 10(-16) infectious units per vaccine dose. Thus, the new cell culture-based vaccine manufacturing process can reduce any adventitious agent to a level that is unable to cause infection.

  15. Innervation of single fungiform taste buds during development in rat.

    PubMed

    Krimm, R F; Hill, D L

    1998-08-17

    To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.

  16. Floral Initiation in Response to Planting Date Reveals the Key Role of Floral Meristem Differentiation Prior to Budding in Canola (Brassica napus L.).

    PubMed

    Zhang, Yaofeng; Zhang, Dongqing; Yu, Huasheng; Lin, Baogang; Fu, Ying; Hua, Shuijin

    2016-01-01

    In Brassica napus, floral development is a decisive factor in silique formation, and it is influenced by many cultivation practices including planting date. However, the effect of planting date on floral initiation in canola is poorly understood at present. A field experiment was conducted using a split plot design, in which three planting dates (early, 15 September, middle, 1 October, and late, 15 October) served as main plot and five varieties differing in maturity (1358, J22, Zhongshuang 11, Zheshuang 8, and Zheyou 50) employed as subplot. The purpose of this study was to shed light on the process of floral meristem (FM) differentiation, the influence of planting date on growth period (GP) and floral initiation, and silique formation. The main stages of FM developments can be divided into four stages: first, the transition from shoot apical meristem to FM; second, flower initiation; third, gynoecium and androecium differentiation; and fourth, bud formation. Our results showed that all genotypes had increased GPs from sowing to FM differentiation as planting date was delayed while the GPs from FM differentiation to budding varied year by year except the very early variety, 1358. Based on the number of flowers present at the different reproductive stages, the flowers produced from FM differentiation to budding closely approximated the final silique even though the FM differentiated continuously after budding and peaked generally at the middle flowering stage. The ratio of siliques to maximum flower number ranged from 48 to 80%. These results suggest that (1) the period from FM differentiation to budding is vital for effective flower and silique formation although there was no significant correlation between the length of the period and effective flowers and siliques, and (2) the increased number of flowers from budding were generally ineffective. Therefore, maximizing flower numbers prior to budding will improve silique numbers, and reducing FM degeneration should

  17. Taste buds as peripheral chemosensory processors

    PubMed Central

    Roper, Stephen D.

    2012-01-01

    Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50–100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds – Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell–cell communication shapes taste bud signaling via these transmitters. PMID:23261954

  18. Taste buds as peripheral chemosensory processors.

    PubMed

    Roper, Stephen D

    2013-01-01

    Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell-cell communication shapes taste bud signaling via these transmitters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Volumetry of human taste buds using laser scanning microscopy.

    PubMed

    Just, T; Srur, E; Stachs, O; Pau, H W

    2009-10-01

    In vivo laser scanning confocal microscopy is a relatively new, non-invasive method for assessment of oral cavity epithelia. The penetration depth of approximately 200-400 microm allows visualisation of fungiform papillae and their taste buds. This paper describes the technique of in vivo volumetry of human taste buds. Confocal laser scanning microscopy used a diode laser at 670 nm for illumination. Digital laser scanning confocal microscopy equipment consisted of the Heidelberg Retina Tomograph HRTII and the Rostock Cornea Module. Volume scans of fungiform papillae were used for three-dimensional reconstruction of the taste bud. This technique supplied information on taste bud structure and enabled measurement and calculation of taste bud volume. Volumetric data from a 23-year-old man over a nine-day period showed only a small deviation in values. After three to four weeks, phenomenological changes in taste bud structures were found (i.e. a significant increase in volume, followed by disappearance of the taste bud and appearance of a new taste bud). The data obtained indicate the potential application of this non-invasive imaging modality: to evaluate variation of taste bud volume in human fungiform papillae with ageing; to study the effects of chorda tympani nerve transection on taste bud volume; and to demonstrate recovery of taste buds in patients with a severed chorda tympani nerve who show recovery of gustatory sensibility after surgery.

  20. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching.

    PubMed

    Braun, Nils; de Saint Germain, Alexandre; Pillot, Jean-Paul; Boutet-Mercey, Stéphanie; Dalmais, Marion; Antoniadi, Ioanna; Li, Xin; Maia-Grondard, Alessandra; Le Signor, Christine; Bouteiller, Nathalie; Luo, Da; Bendahmane, Abdelhafid; Turnbull, Colin; Rameau, Catherine

    2012-01-01

    The function of PsBRC1, the pea (Pisum sativum) homolog of the maize (Zea mays) TEOSINTE BRANCHED1 and the Arabidopsis (Arabidopsis thaliana) BRANCHED1 (AtBRC1) genes, was investigated. The pea Psbrc1 mutant displays an increased shoot-branching phenotype, is able to synthesize strigolactone (SL), and does not respond to SL application. The level of pleiotropy of the SL-deficient ramosus1 (rms1) mutant is higher than in the Psbrc1 mutant, rms1 exhibiting a relatively dwarf phenotype and more extensive branching at upper nodes. The PsBRC1 gene is mostly expressed in the axillary bud and is transcriptionally up-regulated by direct application of the synthetic SL GR24 and down-regulated by the cytokinin (CK) 6-benzylaminopurine. The results suggest that PsBRC1 may have a role in integrating SL and CK signals and that SLs act directly within the bud to regulate its outgrowth. However, the Psbrc1 mutant responds to 6-benzylaminopurine application and decapitation by increasing axillary bud length, implicating a PsBRC1-independent component of the CK response in sustained bud growth. In contrast to other SL-related mutants, the Psbrc1 mutation does not cause a decrease in the CK zeatin riboside in the xylem sap or a strong increase in RMS1 transcript levels, suggesting that the RMS2-dependent feedback is not activated in this mutant. Surprisingly, the double rms1 Psbrc1 mutant displays a strong increase in numbers of branches at cotyledonary nodes, whereas branching at upper nodes is not significantly higher than the branching in rms1. This phenotype indicates a localized regulation of branching at these nodes specific to pea.

  1. Panax ginseng Adventitious Root Suspension Culture: Protocol for Biomass Production and Analysis of Ginsenosides by High Pressure Liquid Chromatography.

    PubMed

    Murthy, Hosakatte Niranjana; Paek, Kee Yoeup

    2016-01-01

    Panax ginseng C.A. Meyer (Korean ginseng) is a popular herbal medicine. It has been used in Chinese and Oriental medicines since thousands of years. Ginseng products are generally used as a tonic and an adaptogen to resist the adverse influence of a wide range of physical, chemical and biological factors, and to restore homeostasis. Ginsenosides or ginseng saponins are the principal active ingredients of ginseng. Since ginseng cultivation process is very slow and needs specific environment for field cultivation, cell and tissue cultures are sought as alternatives for the production of ginseng biomass and bioactive compounds. In this chapter, we focus on methods of induction of adventitious roots from ginseng roots, establishment of adventitious root suspension cultures using bioreactors, procedures for processing of adventitious roots, and analysis of ginsenosides by high pressure liquid chromatography.

  2. Kinetics of human immunodeficiency virus budding and assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2009-03-01

    Human immunodeficiency virus (HIV) belongs to a large family of RNA viruses, retroviruses. Unlike budding of regular enveloped viruses, retroviruses bud concurrently with the assembly of retroviral capsids on the cell membrane. The kinetics of HIV (and other retroviruses) budding and assembly is therefore strongly affected by the elastic energy of the membrane and fundamentally different from regular viruses. The main result of this work shows that the kinetics is tunable from a fast budding process to a slow and effectively trapped partial budding process, by varying the attractive energy of retroviral proteins (call Gags), relative to the membrane elastic energy. When the Gag-Gag attraction is relatively high, the membrane elastic energy provides a kinetic barrier for the two pieces of the partial capsids to merge. This energy barrier determines the slowest step in the kinetics and the budding time. In the opposite limit, the membrane elastic energy provides not only a kinetic energy barrier, but a free energy barrier. The budding and assembly is effectively trapped at local free energy minimum, corresponding to a partially budded state. The time scale to escape from this metastable state is exponentially large. In both cases, our result fit with experimental measurements pretty well.

  3. Discrete innervation of murine taste buds by peripheral taste neurons.

    PubMed

    Zaidi, Faisal N; Whitehead, Mark C

    2006-08-09

    The peripheral taste system likely maintains a specific relationship between ganglion cells that signal a particular taste quality and taste bud cells responsive to that quality. We have explored a measure of the receptoneural relationship in the mouse. By injecting single fungiform taste buds with lipophilic retrograde neuroanatomical markers, the number of labeled geniculate ganglion cells innervating single buds on the tongue were identified. We found that three to five ganglion cells innervate a single bud. Injecting neighboring buds with different color markers showed that the buds are primarily innervated by separate populations of geniculate cells (i.e., multiply labeled ganglion cells are rare). In other words, each taste bud is innervated by a population of neurons that only connects with that bud. Palate bud injections revealed a similar, relatively exclusive receptoneural relationship. Injecting buds in different regions of the tongue did not reveal a topographic representation of buds in the geniculate ganglion, despite a stereotyped patterned arrangement of fungiform buds as rows and columns on the tongue. However, ganglion cells innervating the tongue and palate were differentially concentrated in lateral and rostral regions of the ganglion, respectively. The principal finding that small groups of ganglion cells send sensory fibers that converge selectively on a single bud is a new-found measure of specific matching between the two principal cellular elements of the mouse peripheral taste system. Repetition of the experiments in the hamster showed a more divergent innervation of buds in this species. The results indicate that whatever taste quality is signaled by a murine geniculate ganglion neuron, that signal reflects the activity of cells in a single taste bud.

  4. Effects of oil on internal gas transport, radial oxygen loss, gas films and bud growth in Phragmites australis.

    PubMed

    Armstrong, Jean; Keep, Rory; Armstrong, William

    2009-01-01

    Oil pollution of wetlands is a world-wide problem but, to date, research has concentrated on its influences on salt marsh rather than freshwater plant communities. The effects of water-borne light oils (liquid paraffin and diesel) were investigated on the fresh/brackish wetland species Phragmites australis in terms of routes of oil infiltration, internal gas transport, radial O(2) loss (ROL), underwater gas films and bud growth. Pressure flow resistances of pith cavities of nodes and aerenchyma of leaf sheaths, with or without previous exposure to oil, were recorded from flow rates under applied pressure. Convective flows were measured from living excised culms with oiled and non-oiled nodes and leaf sheaths. The effect of oil around culm basal nodes on ROL from rhizome and root apices was measured polarographically. Surface gas films on submerged shoots with and without oil treatment were recorded photographically. Growth and emergence of buds through water with and without an oil film were measured. Internodes are virtually impermeable, but nodes of senesced and living culms are permeable to oils which can block pith cavity diaphragms, preventing flows at applied pressures of 1 kPa, natural convective transport to the rhizome, and greatly decreasing ROL to phyllospheres and rhizospheres. Oil infiltrating or covering living leaf sheaths prevents humidity-induced convection. Oil displaces surface gas films from laminae and leaf sheaths. Buds emerge only a few centimetres through oil and die. Oil infiltrates the gas space system via nodal and leaf sheath stomata, reducing O(2) diffusion and convective flows into the rhizome system and decreasing oxygenation of phyllospheres and rhizospheres; underwater gas exchange via gas films will be impeded. Plants can be weakened by oil-induced failure of emerging buds. Plants will be most at risk during the growing season.

  5. Taste bud cell dynamics during normal and sodium-restricted development.

    PubMed

    Hendricks, Susan J; Brunjes, Peter C; Hill, David L

    2004-04-26

    Taste bud volume increases over the postnatal period to match the number of neurons providing innervation. To clarify age-related changes in fungiform taste bud volume, the current study investigated developmental changes in taste bud cell number, proliferation rate, and life span. Taste bud growth can largely be accounted for by addition of cytokeratin-19-positive taste bud cells. Examination of taste bud cell kinetics with 3H-thymidine autoradiography revealed that cell life span and turnover periods were not altered during normal development but that cells were produced more rapidly in young rats, a prominent modification that could lead to increased taste bud size. By comparison, dietary sodium restriction instituted during pre- and postnatal development results in small taste buds at adulthood as a result of fewer cytokeratin-19-positive cells. The dietary manipulation also had profound influences on taste bud growth kinetics, including an increased latency for cells to enter the taste bud and longer life span and turnover periods. These studies provide fundamental, new information about taste bud development under normal conditions and after environmental manipulations that impact nerve/target matching. Copyright 2004 Wiley-Liss, Inc.

  6. The sweet cherry (Prunus avium) FLOWERING LOCUS T gene is expressed during floral bud determination and can promote flowering in a winter-annual Arabidopsis accession.

    PubMed

    Yarur, Antonia; Soto, Esteban; León, Gabriel; Almeida, Andrea Miyasaka

    2016-12-01

    FT gene is expressed in leaves and buds and is involved in floral meristem determination and bud development in sweet cherry. In woody fruit perennial trees, floral determination, dormancy and bloom, depends on perception of different environmental and endogenous cues which converge to a systemic signaling gene known as FLOWERING LOCUS T (FT). In long-day flowering plants, FT is expressed in the leaves on long days. The protein travels through the phloem to the shoot apical meristem, where it induces flower determination. In perennial plants, meristem determination and flowering are separated by a dormancy period. Meristem determination takes place in summer, but flowering occurs only after a dormancy period and cold accumulation during winter. The roles of FT are not completely clear in meristem determination, dormancy release, and flowering in perennial plants. We cloned FT from sweet cherry (Prunus avium) and analyzed its expression pattern in leaves and floral buds during spring and summer. Phylogenetic analysis shows high identity of the FT cloned sequence with orthologous genes from other Rosaceae species. Our results show that FT is expressed in both leaves and floral buds and increases when the daylight reached 12 h. The peak in FT expression was coincident with floral meristem identity genes expression and morphological changes typical of floral meristem determination. The Edi-0 Arabidopsis ecotype, which requires vernalization to flower, was transformed with a construct for overexpression of PavFT. These transgenic plants showed an early-flowering phenotype without cold treatment. Our results suggest that FT is involved in floral meristem determination and bud development in sweet cherry. Moreover, we show that FT is expressed in both leaves and floral buds in this species, in contrast to annual plants.

  7. Cellular Factors Required for Lassa Virus Budding

    PubMed Central

    Urata, Shuzo; Noda, Takeshi; Kawaoka, Yoshihiro; Yokosawa, Hideyoshi; Yasuda, Jiro

    2006-01-01

    It is known that Lassa virus Z protein is sufficient for the release of virus-like particles (VLPs) and that it has two L domains, PTAP and PPPY, in its C terminus. However, little is known about the cellular factor for Lassa virus budding. We examined which cellular factors are used in Lassa virus Z budding. We demonstrated that Lassa Z protein efficiently produces VLPs and uses cellular factors, Vps4A, Vps4B, and Tsg101, in budding, suggesting that Lassa virus budding uses the multivesicular body pathway functionally. Our data may provide a clue to develop an effective antiviral strategy for Lassa virus. PMID:16571837

  8. Apricot (Prunus armeniaca L.).

    PubMed

    Petri, César; Alburquerque, Nuria; Burgos, Lorenzo

    2015-01-01

    A protocol for Agrobacterium-mediated stable transformation of whole leaf explants of the apricot (Prunus armeniaca) cultivars 'Helena' and 'Canino' is described. Regenerated buds were selected using a two-step selection strategy with paromomycin sulfate and transferred to bud multiplication medium 1 week after they were detected for optimal survival. After buds were transferred to bud multiplication medium, antibiotic was changed to kanamycin and concentration increased gradually at each transfer to fresh medium in order to eliminate possible escapes and chimeras. Transformation efficiency, based on PCR analysis of individual putative transformed shoots from independent lines, was 5.6%. Green and healthy buds, surviving high kanamycin concentration, were transferred to shoot multiplication medium where they elongated in shoots and proliferated. Elongated transgenic shoots were rooted in a medium containing 70 μM kanamycin. Rooted plants were acclimatized following standard procedures. This constitutes the only transformation protocol described for apricot clonal tissues and one of the few of Prunus.

  9. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  10. TDZ pulsing evaluation on the in vitro morphogenesis of peach palm.

    PubMed

    Graner, Erika Mendes; Oberschelp, Gustavo Pedro Javier; Brondani, Gilvano Ebling; Batagin-Piotto, Katherine Derlene; de Almeida, Cristina Vieira; de Almeida, Marcílio

    2013-04-01

    Peach palm (Bactris gasipaes Kunth.) cropping is an excellent alternative to native species exploitation; nevertheless, the problems with seed germination and conventional propagation justify the use of in vitro culturing. Aiming to asses TDZ pulsing effect on B. gasipaes morphogenesis, explants obtained from unarmed microplants were maintained in two treatments, half of them in MS free medium (without growth regulator) and the other half in MS with TDZ (0.36 μM). Both groups were transferred to growth regulator-free MS medium following 14 days of culture. After 84 days of culture, TDZ pulsing increased the growth and development of the shoots, restricted the growth and development of the roots, with no influence on adventitious bud induction or somatic embryogenesis. Furthermore, development of prickles, thickening of roots and chlorotic leaves were noted under TDZ pulsing. Leaf sheath histological analysis showed an epidermal origin and no vascularization of these prickles.

  11. A new approach for detecting adventitious viruses shows Sf-rhabdovirus-negative Sf-RVN cells are suitable for safe biologicals production.

    PubMed

    Geisler, Christoph

    2018-02-07

    Adventitious viral contamination in cell substrates used for biologicals production is a major safety concern. A powerful new approach that can be used to identify adventitious viruses is a combination of bioinformatics tools with massively parallel sequencing technology. Typically, this involves mapping or BLASTN searching individual reads against viral nucleotide databases. Although extremely sensitive for known viruses, this approach can easily miss viruses that are too dissimilar to viruses in the database. Moreover, it is computationally intensive and requires reference cell genome databases. To avoid these drawbacks, we set out to develop an alternative approach. We reasoned that searching genome and transcriptome assemblies for adventitious viral contaminants using TBLASTN with a compact viral protein database covering extant viral diversity as the query could be fast and sensitive without a requirement for high performance computing hardware. We tested our approach on Spodoptera frugiperda Sf-RVN, a recently isolated insect cell line, to determine if it was contaminated with one or more adventitious viruses. We used Illumina reads to assemble the Sf-RVN genome and transcriptome and searched them for adventitious viral contaminants using TBLASTN with our viral protein database. We found no evidence of viral contamination, which was substantiated by the fact that our searches otherwise identified diverse sequences encoding virus-like proteins. These sequences included Maverick, R1 LINE, and errantivirus transposons, all of which are common in insect genomes. We also identified previously described as well as novel endogenous viral elements similar to ORFs encoded by diverse insect viruses. Our results demonstrate TBLASTN searching massively parallel sequencing (MPS) assemblies with a compact, manually curated viral protein database is more sensitive for adventitious virus detection than BLASTN, as we identified various sequences that encoded virus

  12. Hemorrhagic Fever Virus Budding Studies.

    PubMed

    Harty, Ronald N

    2018-01-01

    Independent expression of the VP40 or Z matrix proteins of filoviruses (marburgviruses and ebolaviruses) and arenaviruses (Lassa fever and Junín), respectively, gives rise to the production and release of virus-like particles (VLPs) that are morphologically identical to infectious virions. We can detect and quantify VLP production and egress in mammalian cells by transient transfection, SDS-PAGE, Western blotting, and live cell imaging techniques such as total internal reflection fluorescence (TIRF) microscopy. Since the VLP budding assay accurately mimics budding of infectious virus, this BSL-2 assay is safe and useful for the interrogation of both viral and host determinants required for budding and can be used as an initial screen to identify and validate small molecule inhibitors of virus release and spread.

  13. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing

    PubMed Central

    Mee, Edward T.; Preston, Mark D.; Minor, Philip D.; Schepelmann, Silke; Huang, Xuening; Nguyen, Jenny; Wall, David; Hargrove, Stacey; Fu, Thomas; Xu, George; Li, Li; Cote, Colette; Delwart, Eric; Li, Linlin; Hewlett, Indira; Simonyan, Vahan; Ragupathy, Viswanath; Alin, Voskanian-Kordi; Mermod, Nicolas; Hill, Christiane; Ottenwälder, Birgit; Richter, Daniel C.; Tehrani, Arman; Jacqueline, Weber-Lehmann; Cassart, Jean-Pol; Letellier, Carine; Vandeputte, Olivier; Ruelle, Jean-Louis; Deyati, Avisek; La Neve, Fabio; Modena, Chiara; Mee, Edward; Schepelmann, Silke; Preston, Mark; Minor, Philip; Eloit, Marc; Muth, Erika; Lamamy, Arnaud; Jagorel, Florence; Cheval, Justine; Anscombe, Catherine; Misra, Raju; Wooldridge, David; Gharbia, Saheer; Rose, Graham; Ng, Siemon H.S.; Charlebois, Robert L.; Gisonni-Lex, Lucy; Mallet, Laurent; Dorange, Fabien; Chiu, Charles; Naccache, Samia; Kellam, Paul; van der Hoek, Lia; Cotten, Matt; Mitchell, Christine; Baier, Brian S.; Sun, Wenping; Malicki, Heather D.

    2016-01-01

    Background Unbiased deep sequencing offers the potential for improved adventitious virus screening in vaccines and biotherapeutics. Successful implementation of such assays will require appropriate control materials to confirm assay performance and sensitivity. Methods A common reference material containing 25 target viruses was produced and 16 laboratories were invited to process it using their preferred adventitious virus detection assay. Results Fifteen laboratories returned results, obtained using a wide range of wet-lab and informatics methods. Six of 25 target viruses were detected by all laboratories, with the remaining viruses detected by 4–14 laboratories. Six non-target viruses were detected by three or more laboratories. Conclusion The study demonstrated that a wide range of methods are currently used for adventitious virus detection screening in biological products by deep sequencing and that they can yield significantly different results. This underscores the need for common reference materials to ensure satisfactory assay performance and enable comparisons between laboratories. PMID:26709640

  14. Assessing the Economic Importance of Dasineura oxycoccana (Diptera: Cecidomyiidae) in Northern Highbush Blueberries.

    PubMed

    Hahn, Noel G; Isaacs, Rufus

    2015-08-01

    Infestation by blueberry gall midge, Dasineura oxycoccana Johnson, is common in northern highbush blueberries, but its effects on crop productivity are unknown. We examined whether infestation by blueberry gall midge reduces flower bud production when compared with uninfested shoots, and how infestation at different times affects the crop response. From the fall of 2009 to the spring of 2011, the number of flower buds on infested and uninfested shoots of blueberry bushes was counted and compared. Despite causing branching of vegetative growth, there was no significant effect of infestation on flower bud production. During the summer of 2010, damaged shoots were marked throughout the growing season in June, July, or August. The number of flower buds set per shoot declined with later infestation dates, and shoots damaged in August had significantly fewer buds than those damaged in June and July. We discuss the implications of these findings for management of blueberry gall midge in northern highbush blueberry. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Development of efficient plant regeneration and transformation system for impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants.

    PubMed

    Dan, Yinghui; Baxter, Aaron; Zhang, Song; Pantazis, Christopher J; Veilleux, Richard E

    2010-08-09

    Impatiens (Impatiens walleriana) is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892) bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained multiple bud cultures as explants. This transformation system

  16. Eastern Pine Shoot Borer

    Treesearch

    Louis F. Wilson

    1978-01-01

    The eastern pineshoot borer Eucosma gloriola Heinrich 2, also known as the white pine tip moth, American pine shoot moth, white pine shoot borer, and Tordeuse americaine, du pin, injures young conifers in Northeastern North America. Because it infests the new shoots of sapling conifers, this insect is particularly destructive on planted trees destined for the Christmas...

  17. Processing umami and other tastes in mammalian taste buds.

    PubMed

    Roper, Stephen D; Chaudhari, Nirupa

    2009-07-01

    Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.

  18. Clinical assessment of adventitious movements.

    PubMed

    Brasić, J R; Barnett, J Y; Sheitman, B B; Lafargue, R T; Ahn, S C

    1998-12-01

    Many procedures with variable validity and reliability have been developed in research settings to evaluate adventitious movements and related phenomena in specific populations, e.g., people with schizophrenia treated with dopamine antagonists, but these only provide global assessments or rate specific movements. A battery for rating individuals with possible movements disorders in a comprehensive way in clinical settings is needed so a protocol to assess briefly and thoroughly potential movement disorders was videotaped for five prepubertal boys with autistic disorder and severe mental retardation in a clinical trial. Utilizing a Movement Assessment Battery, four raters independently scored videotapes of 10-16 movements assessments of each of the five subjects. Experienced raters attained agreement of 59% to 100% on ratings of tardive dyskinesia and 48% to 100% on tics. Hindrances to reliability included poor quality of some tapes, high activity of subjects, and fatigue of raters.

  19. 1-Aminocyclopropane-1-carboxylic acid concentrations in shoot-forming and non-shoot-forming tobacco callus cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, K.L.; Bassham, J.A.

    1982-09-01

    Shoot-forming tobacco (Nicotiana tabacum var. Wisconsin 38) callus tissues contain significantly lower concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid compared to non-shoot-forming callus tissues. This difference is evident 1 day after subculture to shoot-forming or non-shoot-forming medium, and is maintained through the first week of growth. The lack of auxin in shoot-forming medium is the probable cause for this difference in ACC concentrations.

  20. Outgrowth of Rice Tillers Requires Availability of Glutamine in the Basal Portions of Shoots.

    PubMed

    Ohashi, Miwa; Ishiyama, Keiki; Kojima, Soichi; Konishi, Noriyuki; Sasaki, Kazuhiro; Miyao, Mitsue; Hayakawa, Toshihiko; Yamaya, Tomoyuki

    2018-05-09

    Our previous studies concluded that metabolic disorder in the basal portions of rice shoots caused by a lack of cytosolic glutamine synthetase1;2 (GS1;2) resulted in a severe reduction in the outgrowth of tillers. Rice mutants lacking GS1;2 (gs1;2 mutants) showed a remarkable reduction in the contents of both glutamine and asparagine in the basal portions of shoots. In the current study, we attempted to reveal the mechanisms for this decrease in asparagine content using rice mutants lacking either GS1;2 or asparagine synthetase 1 (AS1). The contributions of the availability of glutamine and asparagine to the outgrowth of rice tillers were investigated. Rice has two AS genes, and the enzymes catalyse asparagine synthesis from glutamine. In the basal portions of rice shoots, expression of OsAS1, the major species in this tissue, was reduced in gs1;2 mutants, whereas OsAS2 expression was relatively constant. OsAS1 was expressed in phloem companion cells of the nodal vascular anastomoses connected to the axillary bud vasculatures in the basal portions of wild-type shoots, whereas cell-specific expression was markedly reduced in gs1;2 mutants. OsAS1 was up-regulated significantly by NH 4 + supply in the wild type but not in gs1;2 mutants. When GS reactions were inhibited by methionine sulfoximine, OsAS1 was up-regulated by glutamine but not by NH 4 + . The rice mutants lacking AS1 (as1 mutants) showed a decrease in asparagine content in the basal portions of shoots. However, glutamine content and tiller number were less affected by the lack of AS1. These results indicate that in phloem companion cells of the nodal vascular anastomoses, asparagine synthesis is largely dependent on glutamine or its related metabolite-responsive AS1. Thus, the decrease in glutamine content caused by a lack of GS1;2 is suggested to result in low expression of OsAS1, decreasing asparagine content. However, the availability of asparagine generated from AS1 reactions is apparently less

  1. Bilateral Adventitial Cystic Disease of the Popliteal Artery: A Case Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz M, William R.; Lopera, Jorge E., E-mail: Jorge.lopera@utsouthwestern.edu; Gimenez, Carlos R.

    2006-04-15

    Adventitial cystic disease (ACD) of the popliteal artery is an uncommon vascular condition of unknown etiology. In the present case report, we describe a case of bilateral ACD of the popliteal artery in a 58-year-old male. To the best of our knowledge, this is the first case of bilateral ACD of the popliteal artery reported in the literature.

  2. Taste Bud Homeostasis in Health, Disease, and Aging

    PubMed Central

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  3. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  4. Adventitious shoot regeneration of Fraxinus nigra Marsh

    Treesearch

    Rochelle R. Beasley; Paula M. Pijut

    2010-01-01

    Fraxinus nigra Marsh. (black ash) is a native ash species occurring in Newfoundland west to Manitoba and south to Iowa, Illinois, West Virginia, and Virginia. Although it is not a commercially important species, it has significant ethnobotanical importance to Native American tribes of the eastern United States.

  5. Functional cell types in taste buds have distinct longevities.

    PubMed

    Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa

    2013-01-01

    Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.

  6. Functional Cell Types in Taste Buds Have Distinct Longevities

    PubMed Central

    Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa

    2013-01-01

    Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8–12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2′-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells. PMID:23320081

  7. Surface morphology of taste buds in catfish barbels.

    PubMed

    Ovalle, W K; Shinn, S L

    1977-03-16

    External taste buds abound on barbels of the adult catfish Corydoras arcuatus. When examined by scanning electron microscopy, they are visualized as a series of punctate, conical elevations projecting from the general surface epithelium. All taste buds were found to be of one type. Both their external and internal surface features could be clearly elucidated on intact barbels and in barbels fractured transversely at various positions along their length. An extensive nerve terminal network penetrates the base of each taste bud. Two populations of elongated cells bearing prominent microvilli project through the central pore at the tip of each bud. One set of microvilli is thicker, longer and more club-shaped than its counterpart. While both are randomly distributed within each central pore, the small, short microvilli appear to outnumber the larger ones. A third population of cells, devoid of any apical microvilli, was also seen in some of the taste buds examined internally. These cells do not project to the external surface and are interpreted as "basal" cells described in previous light and transmission electron microscope studies of taste buds in other vertebrate species. The functional significance of some of these morphological findings is discussed.

  8. Expression of SHOOT MERISTEMLESS, WUSCHEL, and ASYMMETRIC LEAVES1 Homologs in the Shoots of Podostemaceae: Implications for the Evolution of Novel Shoot Organogenesis[W

    PubMed Central

    Katayama, Natsu; Koi, Satoshi; Kato, Masahiro

    2010-01-01

    Podostemaceae (the river weeds) are ecologically and morphologically unusual angiosperms. The subfamily Tristichoideae has typical shoot apical meristems (SAMs) that produce leaves, but Podostemoideae is devoid of SAMs and new leaves arise below the base of older leaves. To reveal the genetic basis for the evolution of novel shoot organogenesis in Podostemaceae, we examined the expression patterns of key regulatory genes for shoot development (i.e., SHOOT MERISTEMLESS (STM), WUSCHEL (WUS), and ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (ARP) orthologs) in Tristichoideae and Podostemoideae. In the SAM-mediated shoots of Tristichoideae, like in model plants, STM and WUS orthologs were expressed in the SAM. In the SAM-less shoots of Podostemoideae, STM and WUS orthologs were expressed in the initiating leaf/bract primordium. In older leaf/bract primordia, WUS expression disappeared and STM expression became restricted to the basal part, whereas ARP was expressed in the distal part in a complementary pattern to STM expression. In the reproductive shoots of Podostemoideae with a normal mode of flower development, STM and WUS were expressed in the floral meristem, but not in the floral organs, similar to the pattern in model plants. These results suggest that the leaf/bract of Podostemoideae is initiated as a SAM and differentiates into a single apical leaf/bract, resulting in the evolution of novel shoot-leaf mixed organs in Podostemaceae. PMID:20647344

  9. Enzyme-Linked Immunosorbent Assay Testing of Shoots Grown In Vitro and the Use of Immunocapture-Reverse Transcription-Polymerase Chain Reaction Improve the Detection of Prunus necrotic ringspot virus in Rose.

    PubMed

    Moury, B; Cardin, L; Onesto, J P; Candresse, T; Poupet, A

    2000-05-01

    We developed and evaluated two different methods to improve the detection of the most prevalent virus of rose in Europe, Prunus necrotic ring-spot virus (PNRSV). Immunocapture-reverse transcription-polymerase chain reaction was estimated to be about 100 times more sensitive than double-antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) and showed an equivalent specificity. Based on the observation that PNRSV multiplies actively in young growing tissues (axillary shoots and cuttings), an in vitro culture method allowing rapid (about 15 days) and homogeneous development of dormant axillary buds with high virus titers was standardized. ELISA tests of these young shoots showed, in some cases, a 10(4) to 10(5) increase in sensitivity in comparison to adjacent leaf tissues from the rose mother plants. Between 21 and 98% (depending on the season) more samples were identified as positive by using ELISA on samples from shoot tips grown in vitro rather than on leaves collected directly from the PNRSV-infected mother plants. This simple method of growing shoot tips in vitro improved the confidence in the detection of PNRSV and eliminated problems in sampling appropriate tissues.

  10. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings.

    PubMed

    Cano, Antonio; Sánchez-García, Ana Belén; Albacete, Alfonso; González-Bayón, Rebeca; Justamante, María Salud; Ibáñez, Sergio; Acosta, Manuel; Pérez-Pérez, José Manuel

    2018-01-01

    Commercial carnation ( Dianthus caryophyllus ) cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR) formation in two carnation cultivars with contrasting rooting performance, "2101-02 MFR" and "2003 R 8", as well as in the reference cultivar "Master". We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the "2003 R 8" cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of "2003 R 8". Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings.

  11. HPLC-ESI-MS(n) Analysis, Fed-Batch Cultivation Enhances Bioactive Compound Biosynthesis and Immune-Regulative Effect of Adventitious Roots in Pseudostellaria heterophylla.

    PubMed

    Wang, Juan; Li, Jing; Li, Hongfa; Wu, Xiaolei; Gao, Wenyuan

    2015-09-01

    A electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed in order to identify the active composition in Pseudostellaria heterophylla adventitious roots. Pseudostellarin A, C, D, and G were identified from P. heterophylla adventitious roots on the basis of LC-MS(n) analysis. The culture conditions of adventitious roots were optimized, and datasets were subjected to a partial least squares discriminant analysis (PLS-DA), in which the growth ratio and some compounds showed a positive correlation with an aeration volume of 0.3 vvm and inoculum density of 0.15 %. Fed-batch cultivation enhanced the contents of total saponin, polysaccharides, and specific oxygen uptaker rate (SOUR). The maximum dry root weight (4.728 g l(-1)) was achieved in the 3/4 Murashige and Skoog (MS) medium group. PLS-DA showed that polysaccharides contributed significantly to the clustering of different groups and showed a positive correlation in the MS medium group. The delayed-type hypersensitivity (DTH) reaction on the mice induced by 2,4-dinitrofluorobenzene (DNFB) was applied to compare the immunocompetence effects of adventitious roots (AR) with field native roots (NR) of P. heterophylla. As a result, AR possessed a similar immunoregulation function as NR.

  12. Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses.

    PubMed

    Li, Shi-Weng; Zeng, Xiao-Ying; Leng, Yan; Feng, Lin; Kang, Xiao-Hu

    2018-06-08

    In vitro experiments were performed to determine whether auxin can mediate the formation of adventitious roots in response to heavy metal and drought stresses using a model rooting plant, mung bean [Vigna radiata (L.) Wilczek]. The treatments with CdCl 2 or mannitol alone significantly inhibited the formation and growth of adventitious roots in mung bean seedlings. In contrast, when CdCl 2 or mannitol was applied together with indole-3-butyric acid (IBA), IBA considerably cancelled the inhibition of adventitious rooting by stresses. Treatment with CdCl 2 or mannitol alone significantly increased the soluble protein and malondialdehyde (MDA) contents. CdCl 2 and mannitol stress each induced differentially significant changes in the activities of antioxidative enzyme and antioxidant levels during adventitious rooting. Notably, both CdCl 2 and mannitol stress strongly reduced the peroxidase (POD) and ascorbate peroxidase (APX) activities and glutathione (GSH) and phenols levels. Catalase and superoxide dismutase (SOD) activity were enhanced by CdCl 2 but reduced by mannitol. CdCl 2 increased the ascorbate acid (ASA) level, which was decreased by mannitol. Furthermore, when CdCl 2 or mannitol was applied together with IBA, IBA counteracted the CdCl 2 - or mannitol-induced increase or decrease in certain antioxidants, MDA, and antioxidative enzymes. These results suggest that Cd and mannitol stress inhibition of adventitious rooting is associated with the regulation of antioxidative enzymes and antioxidants in cells to defense the oxidative stress. Moreover, IBA alleviates the effects of Cd and mannitol stress on the rooting process partially through the regulation of antioxidative defense systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Norepinephrine is coreleased with serotonin in mouse taste buds.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Roper, Stephen D

    2008-12-03

    ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.

  14. Sphaeropsis Shoot Blight

    Treesearch

    Jill Pokorny

    1998-01-01

    Sphaeropsis shoot blight, formerly called Diplodia shoot blight, is worldwide in distribution and can infect many conifer hosts. Although many pine species are reported hosts, this disease causes severe damage only to trees that are predisposed by unfavorable environmental conditions. Non-native, exotic pine species growing outside their natural range are especially...

  15. Investigation of plant hormone level changes in shoot tips of longan (Dimocarpus longan Lour.) treated with potassium chlorate by liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Susawaengsup, Chanthana; Rayanakorn, Mongkon; Wongpornchai, Sugunya; Wangkarn, Sunanta

    2011-08-15

    The endogenous levels of indole-3-acetic acid (IAA), gibberellins (GAs), abscisic acid (ABA) and cytokinins (CKs) and their changes were investigated in shoot tips of ten longan (Dimocarpus longan Lour.) trees for off-season flowering until 60 days after potassium chlorate treatment in comparison with those of ten control (untreated) longan trees. These analytes were extracted and interfering matrices removed with a single mixed-mode solid phase extraction under optimum conditions. The recoveries at three levels of concentration were in the range of 72-112%. The endogenous plant hormones were separated and quantified by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Detection limits based on the signal-to-noise ratio ranged from 10 ng mL(-1) for gibberellin A4 (GA4) to 200 ng mL(-1) for IAA. Within the first week after potassium chlorate treatment, dry weight (DW) amounts in the treated longan shoot tips of four gibberellins, namely: gibberellin A1(GA1), gibberellic acid (GA3), gibberellin A19 (GA19) and gibberellin A20 (GA20), were found to increase to approximately 25, 50, 20 and 60 ng g(-1) respectively, all of which were significantly higher than those of the controls. In contrast, gibberellin A8 (GA8) obtained from the treated longan was found to decrease to approximately 20 ng g(-1)DW while that of the control increased to around 80 ng g(-1)DW. Certain CKs which play a role in leaf bud induction, particularly isopentenyl adenine (iP), isopentenyl adenosine (iPR) and dihydrozeatin riboside (DHZR), were found to be present in amounts of approximately 20, 50 and 60 ng g(-1)DW in the shoot tips of the control longan. The analytical results obtained from the two-month off-season longan flowering period indicate that high GA1, GA3, GA19 and GA20 levels in the longan shoot tips contribute to flower bud induction while high levels of CKs, IAA and ABA in the control longan contribute more to the vegetative development. Copyright © 2011

  16. Violence and school shootings.

    PubMed

    Flannery, Daniel J; Modzeleski, William; Kretschmar, Jeff M

    2013-01-01

    Multiple-homicide school shootings are rare events, but when they happen they significantly impact individuals, the school and the community. We focus on multiple-homicide incidents and identified mental health issues of shooters. To date, studies of school shootings have concluded that no reliable profile of a shooter exists, so risk should be assessed using comprehensive threat assessment protocols. Existing studies primarily utilize retrospective case histories or media accounts. The field requires more empirical and systematic research on all types of school shootings including single victim incidents, those that result in injury but not death and those that are successfully averted. We discuss current policies and practices related to school shootings and the role of mental health professionals in assessing risk and supporting surviving victims.

  17. Involvements of PCD and changes in gene expression profile during self-pruning of spring shoots in sweet orange (Citrus sinensis).

    PubMed

    Zhang, Jin-Zhi; Zhao, Kun; Ai, Xiao-Yan; Hu, Chun-Gen

    2014-10-13

    Citrus shoot tips abscise at an anatomically distinct abscission zone (AZ) that separates the top part of the shoots into basal and apical portions (citrus self-pruning). Cell separation occurs only at the AZ, which suggests its cells have distinctive molecular regulation. Although several studies have looked into the morphological aspects of self-pruning process, the underlying molecular mechanisms remain unknown. In this study, the hallmarks of programmed cell death (PCD) were identified by TUNEL experiments, transmission electron microscopy (TEM) and histochemical staining for reactive oxygen species (ROS) during self-pruning of the spring shoots in sweet orange. Our results indicated that PCD occurred systematically and progressively and may play an important role in the control of self-pruning of citrus. Microarray analysis was used to examine transcriptome changes at three stages of self-pruning, and 1,378 differentially expressed genes were identified. Some genes were related to PCD, while others were associated with cell wall biosynthesis or metabolism. These results strongly suggest that abscission layers activate both catabolic and anabolic wall modification pathways during the self-pruning process. In addition, a strong correlation was observed between self-pruning and the expression of hormone-related genes. Self-pruning plays an important role in citrus floral bud initiation. Therefore, several key flowering homologs of Arabidopsis and tomato shoot apical meristem (SAM) activity genes were investigated in sweet orange by real-time PCR and in situ hybridization, and the results indicated that these genes were preferentially expressed in SAM as well as axillary meristem. Based on these findings, a model for sweet orange spring shoot self-pruning is proposed, which will enable us to better understand the mechanism of self-pruning and abscission.

  18. Involvement of alternative oxidase (AOX) in adventitious rooting of Olea europaea L. microshoots is linked to adaptive phenylpropanoid and lignin metabolism.

    PubMed

    Santos Macedo, E; Sircar, D; Cardoso, H G; Peixe, A; Arnholdt-Schmitt, B

    2012-09-01

    Alternative oxidase (AOX) has been proposed as a functional marker candidate in a number of events involving cell differentiation, including rooting efficiency in semi-hardwood shoot cuttings of olive (Olea europaea L.). To ascertain the general importance of AOX in olive rooting, the auxin-induced rooting process was studied in an in vitro system for microshoot propagation. Inhibition of AOX by salicylhydroxamic acid (SHAM) significantly reduced rooting efficiency. However, the inhibitor failed to exhibit any effect on the preceding calli stage. This makes the system appropriate for distinguishing dedifferentiation and de novo differentiation during root induction. Metabolite analyses of microshoots showed that total phenolics, total flavonoids and lignin contents were significantly reduced upon SHAM treatment. It was concluded that the influence of alternative respiration on root formation was associated to adaptive phenylpropanoid and lignin metabolism. Transcript profiles of two olive AOX genes (OeAOX1a and OeAOX2) were examined during the process of auxin-induced root induction. Both genes displayed stable transcript accumulation in semi-quantitative RT-PCR analysis during all experimental stages. In contrary, when the reverse primer for OeAOX2 was designed from the 3'-UTR instead of the ORF, differential transcript accumulation was observed suggesting posttranscriptional regulation of OeAOX2 during metabolic acclimation. This result confirms former observations in olive semi-hardwood shoot cuttings on differential OeAOX2 expression during root induction. It further points to the importance of future studies on the functional role of sequence and length polymorphisms in the 3'-UTR of this gene. The manuscript reports the general importance of AOX in olive adventitious rooting and the association of alternative respiration to adaptive phenylpropanoid and lignin metabolism.

  19. Expression of sulfonylurea receptors in rat taste buds.

    PubMed

    Liu, Dian-Xin; Liu, Xiao-Min; Zhou, Li-Hong; Feng, Xiao-Hong; Zhang, Xiao-Juan

    2011-07-01

    To test the possibility that a fast-onset promoting agent repaglinide may initiate prandial insulin secretion through the mechanism of cephalic-phase insulin release, we explored the expression and distribution character of sulfonylurea receptors in rat taste buds. Twenty male Wistar rats aged 10 weeks old were killed after general anesthesia. The circumvallate papillae, fungiform papillae and pancreas tissues were separately collected. Immunohistochemical staining was used to detect the expression and distribution of sulfonylurea receptor 1 (SUR1) or sulfonylurea receptor 2 (SUR2) in rat taste buds. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to analyze the expression of SUR1 or SUR2 mRNA. The pancreatic tissues from the same rat were used as positive control. This is the first study to report that SUR1 is uniquely expressed in the taste buds of fungiform papillae of each rat tongue, while the expression of SUR1 or SUR2 was not detected in the taste buds of circumvallate papillae. SUR1 is selectively expressed in rat taste buds, and its distribution pattern may be functionally relevant, suggesting that the rapid insulin secretion-promoting effect of repaglinide may be exerted through the cephalic-phase secretion pathway mediated by taste buds. Copyright © 2010 Elsevier GmbH. All rights reserved.

  20. Strigolactones are a new-defined class of plant hormones which inhibit shoot branching and mediate the interaction of plant-AM fungi and plant-parasitic weeds.

    PubMed

    Chen, Caiyan; Zou, Junhuang; Zhang, Shuying; Zaitlin, David; Zhu, Lihuang

    2009-08-01

    Because plants are sessile organisms, the ability to adapt to a wide range of environmental conditions is critical for their survival. As a consequence, plants use hormones to regulate growth, mitigate biotic and abiotic stresses, and to communicate with other organisms. Many plant hormones function pleiotropically in vivo, and often work in tandem with other hormones that are chemically distinct. A newly-defined class of plant hormones, the strigolactones, cooperate with auxins and cytokinins to control shoot branching and the outgrowth of lateral buds. Strigolactones were originally identified as compounds that stimulated the germination of parasitic plant seeds, and were also demonstrated to induce hyphal branching in arbuscular mycorrhizal (AM) fungi. AM fungi form symbioses with higher plant roots and mainly facilitate the absorption of phosphate from the soil. Conforming to the classical definition of a plant hormone, strigolactones are produced in the roots and translocated to the shoots where they inhibit shoot outgrowth and branching. The biosynthesis of this class of compounds is regulated by soil nutrient availability, i.e. the plant will increase its production of strigolactones when the soil phosphate concentration is limited, and decrease production when phosphates are in ample supply. Strigolactones that affect plant shoot branching, AM fungal hyphal branching, and seed germination in parasitic plants facilitate chemical synthesis of similar compounds to control these and other biological processes by exogenous application.

  1. High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis

    PubMed Central

    Xu, Xiaozhao; Li, Xu; Hu, Xingwang; Wu, Ting; Wang, Yi; Xu, Xuefeng; Zhang, Xinzhong; Han, Zhenhai

    2017-01-01

    Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156), the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we showed that in the presence of the synthetic auxin indole-3-butyric acid (IBA), semi-lignified leafy cuttings from juvenile phase (Mx-J) and rejuvenated (Mx-R) Malus xiaojinensis trees exhibited significantly higher expression of miR156, PIN-FORMED1 (PIN1), PIN10, and rootless concerning crown and seminal roots-like (RTCS-like) genes, thus resulting in higher adventitious rooting ability than those from adult phase (Mx-A) trees. However, the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE26 (SPL26) and some auxin response factor (ARF) gene family members were substantially higher in Mx-A than in Mx-R cuttings. The expression of NbRTCS-like but not NbPINs and NbARFs varied with miR156 expression in tobacco (Nicotiana benthamiana) plants transformed with 35S:MdMIR156a6 or 35S:MIM156 constructs. Overexpressing the miR156-resistant MxrSPL genes in tobacco confirmed the involvement of MxSPL20, MxSPL21&22, and MxSPL26 in adventitious root formation. Together, high expression of miR156 was necessary for auxin-induced adventitious root formation via MxSPL26, but independent of MxPINs and MxARFs expression in M. xiaojinensis leafy cuttings. PMID:28674551

  2. Influence of Explant Position on Growth of Talinum paniculatum Gaertn. Adventitious Root in Solid Medium and Enhance Production Biomass in Balloon Type Bubble Bioreactor

    NASA Astrophysics Data System (ADS)

    Solim, M. H.; Kristanti, A. N.; Manuhara, Y. S. W.

    2017-03-01

    Talinum paniculatum Gaertn. is one of traditional medicinal plant in Indonesia as an aphrodisiac. This plant has various compounds which is accumulated in roots. In vitro culture of this plant can enhance production of adventitious roots. The aim of this research was to know the influence of explants position on growth of T. paniculatum Gaertn. adventitious root in MS solid medium and enhance the production of biomass in balloon type bubble bioreactor. Explants from leaf were cultured at abaxial and adaxial positions in solid MS medium supplemented with IBA 2 mgL-1. Adventitious roots were cultured in bioreactor with various treatments (without IBA, supplemented with IBA 2 mgL-1 and supplemented with IBA 2 mgL-1 + buffer NaHCO3). Result showed that the main growth of abaxial root was higher than adaxial, however, the total of adaxial root branch was higher than abaxial. The highest biomass production of adventitious root cultured was achieved by MS medium supplemented with IBA 2 mgL-1 + buffer NaHCO3. This treatment has produced fresh biomass two fold of initial inoculum.

  3. Results of Survey Regarding Prevalence of Adventitial Infections in Mice and Rats at Biomedical Research Facilities.

    PubMed

    Marx, James O; Gaertner, Diane J; Smith, Abigail L

    2017-09-01

    Control of rodent adventitial infections in biomedical research facilities is of extreme importance in assuring both animal welfare and high-quality research results. Sixty-three U.S. institutions participated in a survey reporting the methods used to detect and control these infections and the prevalence of outbreaks from 1 January 2014 through 31 December 2015. These results were then compared with the results of 2 similar surveys published in 1998 and 2008. The results of the current survey demonstrated that the rate of viral outbreaks in mouse colonies was decreasing, particularly in barrier facilities, whereas the prevalence of parasitic outbreaks has remained constant. These results will help our profession focus its efforts in the control of adventitial rodent disease outbreaks to the areas of the greatest needs.

  4. Ubiquitin is part of the retrovirus budding machinery

    NASA Astrophysics Data System (ADS)

    Patnaik, Akash; Chau, Vincent; Wills, John W.

    2000-11-01

    Retroviruses contain relatively large amounts of ubiquitin, but the significance of this finding has been unknown. Here, we show that drugs that are known to reduce the level of free ubiquitin in the cell dramatically reduced the release of Rous sarcoma virus, an avian retrovirus. This effect was suppressed by overexpressing ubiquitin and also by directly fusing ubiquitin to the C terminus of Gag, the viral protein that directs budding and particle release. The block to budding was found to be at the plasma membrane, and electron microscopy revealed that the reduced level of ubiquitin results in a failure of mature virus particles to separate from each other and from the plasma membrane during budding. These data indicate that ubiquitin is actually part of the budding machinery.

  5. AOX1-Subfamily Gene Members in Olea europaea cv. "Galega Vulgar"-Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting.

    PubMed

    Velada, Isabel; Grzebelus, Dariusz; Lousa, Diana; M Soares, Cláudio; Santos Macedo, Elisete; Peixe, Augusto; Arnholdt-Schmitt, Birgit; G Cardoso, Hélia

    2018-02-17

    Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar "Galega vulgar". The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.

  6. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara.

    PubMed

    Dawood, Thikra; Yang, Xinping; Visser, Eric J W; Te Beek, Tim A H; Kensche, Philip R; Cristescu, Simona M; Lee, Sangseok; Floková, Kristýna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo

    2016-04-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. Dental Cell Sheet Biomimetic Tooth Bud Model

    PubMed Central

    Monteiro, Nelson; Smith, Elizabeth E.; Angstadt, Shantel; Zhang, Weibo; Khademhosseini, Ali

    2016-01-01

    Tissue engineering and regenerative medicine technologies offer promising therapies for both medicine and dentistry. Our long-term goal is to create functional biomimetic tooth buds for eventual tooth replacement in humans. Here, our objective was to create a biomimetic 3D tooth bud model consisting of dental epithelial (DE) – dental mesenchymal (DM) cell sheets (CSs) combined with biomimetic enamel organ and pulp organ layers created using GelMA hydrogels. Pig DE or DM cells seeded on temperature-responsive plates at various cell densities (0.02, 0.114 and 0.228 cells 106/cm2) and cultured for 7, 14 and 21 days were used to generate DE and DM cell sheets, respectively. Dental CSs were combined with GelMA encapsulated DE and DM cell layers to form bioengineered 3D tooth buds. Biomimetic 3D tooth bud constructs were cultured in vitro, or implanted in vivo for 3 weeks. Analyses were performed using micro-CT, H&E staining, polarized light (Pol) microscopy, immunofluorescent (IF) and immunohistochemical (IHC) analyses. H&E, IHC and IF analyses showed that in vitro cultured multilayered DE-DM CSs expressed appropriate tooth marker expression patterns including SHH, BMP2, RUNX2, tenascin and syndecan, which normally direct DE-DM interactions, DM cell condensation, and dental cell differentiation. In vivo implanted 3D tooth bud constructs exhibited mineralized tissue formation of specified size and shape, and SHH, BMP2 and RUNX2and dental cell differentiation marker expression. We propose our biomimetic 3D tooth buds as models to study optimized DE-DM cell interactions leading to functional biomimetic replacement tooth formation. PMID:27565550

  8. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings

    PubMed Central

    Cano, Antonio; Sánchez-García, Ana Belén; Albacete, Alfonso; González-Bayón, Rebeca; Justamante, María Salud; Ibáñez, Sergio; Acosta, Manuel; Pérez-Pérez, José Manuel

    2018-01-01

    Commercial carnation (Dianthus caryophyllus) cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR) formation in two carnation cultivars with contrasting rooting performance, “2101–02 MFR” and “2003 R 8”, as well as in the reference cultivar “Master”. We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the “2003 R 8” cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of “2003 R 8”. Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings. PMID:29755501

  9. Mini-incubators improve the adventitious rooting performance of Corymbia and Eucalyptus microcuttings according to the environment in which they are conditioned.

    PubMed

    Brondani, Gilvano E; Oliveira, Leandro S DE; Konzen, Enéas R; Silva, André L L DA; Costa, Jefferson L

    2017-10-16

    We addressed a major challenge in the in vitro clonal propagation of Corymbia citriodora, Eucalyptus urophylla and E. benthamii by using an ex vitro adventitious rooting strategy in a mini-incubator. Mini-incubators were placed in four environments for rooting. A shade house with no fogging system and a greenhouse with no ventilation but with a fogging environment had the best performance in terms of rooting, root growth and survival of microcuttings. Daily recording of the temperature within each mini-incubator in each environment allowed the verification of negative correlations between the maximum average temperature and the survival, adventitious rooting and root growth. The ideal maximum air temperature for the efficient production of clonal plants was 28.4°C (± 5.5°C), and the minimum was 20.3°C (± 6.2°C). E. benthamii was more sensitive to higher temperatures than C. citriodora and E. urophylla. Nevertheless, placing mini-incubators in the shade house with no fogging system resulted in a stable and uniform performance among the three species, with 100.0% survival and 81.4% rooting. Histological sections of the adventitious roots revealed connection with the stem vascular cambium. Therefore, our experimental system demonstrated the potential of mini-incubators coupled with the proper environment to optimize the adventitious rooting performance of microcuttings.

  10. Taste buds: cells, signals and synapses.

    PubMed

    Roper, Stephen D; Chaudhari, Nirupa

    2017-08-01

    The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.

  11. Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi × Larix olgensis).

    PubMed

    Han, Hua; Sun, Xiaomei; Xie, Yunhui; Feng, Jian; Zhang, Shougong

    2014-11-26

    Hybrids of larch (Larix kaempferi × Larix olgensis) are important afforestation species in northeastern China. They are routinely propagated via rooted stem cuttings. Despite the importance of rooting, little is known about the regulation of adventitious root development in larch hybrids. 454 GS FLX Titanium technology represents a new method for characterizing the transcriptomes of non-model species. This method can be used to identify differentially expressed genes, and then two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analyses can be used to analyze their corresponding proteins. In this study, we analyzed semi-lignified cuttings of two clones of L. kaempferi × L. olgensis with different rooting capacities to study the molecular basis of adventitious root development. We analyzed two clones; clone 25-5, with strong rooting capacity, and clone 23-12, with weak rooting capacity. We constructed four cDNA libraries from 25-5 and 23-12 at two development stages. Sequencing was conducted using the 454 pyrosequencing platform. A total of 957832 raw reads was produced; 95.07% were high-quality reads, and were assembled into 45137 contigs and 61647 singletons. The functions of the unigenes, as indicated by their Gene Ontology annotation, included diverse roles in the molecular functions, biological processes, and cellular component categories. We analyzed 75 protein spots (-fold change ≥ 2, P ≤ 0.05) by 2D-DIGE, and identified the differentially expressed proteins using MALDI-TOF/TOF MS. A joint analysis of transcriptome and proteome showed genes related to two pathways, polyamine synthesis and stress response, might play an important role on adventitious root development. These results provide fundamental and important information for research on the molecular mechanism of adventitious root development. We also demonstrated for the first time the combined

  12. Effect of gravity on apical dominance in Pharbitis nil.

    PubMed

    Kitazawa, Daisuke; Fujii, Nobuharu; Suge, Hiroshi; Takahashi, Hideyuki

    2003-10-01

    When the upper part of main shoot of morning glory (Pharbitis nil) is gently bent down, lateral bud on the bending region is released from apical dominance and starts to elongate. But, clinorotating the bending shoots prevents the release of the lateral bud from apical dominance. These results suggest that gravity affects apical dominance in morning glory. Here we verified the gravity-regulated apical dominance by using a weeping morning glory defective in gravitropic response due to abnormal differentiation of endodermis. That is, bending main shoot of the weeping morning glory hardly caused the lateral bud to elongate. In addition, decapitation of apical bud released the lateral bud from apical dominance, and exogenous auxin applied to the cut surface of the decapitated stem was inhibitory to the outgrowth of the lateral bud in the wild type. However, the effect of auxin was much less in the weeping morning glory. Thus, apical dominance of the weeping morning glory was weaker and less influenced by gravity than that of the wild type, which could occur due to abnormal differentiation of endodermis required for graviperception.

  13. The effect of graphene oxide on adventitious root formation and growth in apple.

    PubMed

    Li, Feihong; Sun, Chao; Li, Xuehan; Yu, Xinyi; Luo, Chao; Shen, Yanying; Qu, Shenchun

    2018-05-30

    Graphene, a new type of nanomaterial, has unique physical properties and important potential biological applications. However, few studies have been conducted on the environmental impact of graphene. Therefore, to explore the effect of graphene on plants, three-week-old, tissue-cultured 'Gala' apple plants (Malus domestica) were treated with different concentrations (0, 0.1, 1, 10 mg/L) of graphene oxide (GO) and examined after 40 days. Results indicated that adventitious root length, moisture content and the number of lateral roots were all inhibited by 0.1-10 mg/L GO. At 0.1 and 1 mg/L GO, however, the number of adventitious roots and the rooting rate exhibited a significant increase, relative to the control (no GO). Treatment with GO increased the activities of oxidative stress enzymes including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in the apple plants, relative to controls. Malondialdehyde (MDA) levels were also significantly decreased at 10 mg/L GO. Treatment of apple plantlets with 0.1 mg/L GO increased the transcript abundance of auxin efflux carrier (PIN7, ABCB1) genes and auxin influx carrier (LAX2, LAX3) genes but inhibited the transcript levels of the ARR3 gene, which involved in cytokinin biosynthesis. Additionally, the transcript levels of ARRO1, ARF19, and TTG1, which play roles in the formation of adventitious roots, lateral roots, and root hairs, respectively, were all decreased in response to treatment with 1 and 10 mg/L GO. Collectively, the results indicate that treatment of 'Gala' apple plants with 0.1 mg/L GO had a positive effect on root formation but a negative effect on root growth. This response may be related to the negative impact of GO on cellular structure and function. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Cryotolerance of apple tree bud is independent of endodormancy

    PubMed Central

    Bilavcik, Alois; Zamecnik, Jiri; Faltus, Milos

    2015-01-01

    Increasing interest in cryopreservation of dormant buds reveals the need for better understanding of the role of dormancy in cryotolerance. Dormancy stage and low-temperature survival of vegetative apple buds (Malus domestica Borkh.), cultivars ‘Sampion’ and ‘Spartan’, collected from orchard were evaluated during three seasons contrasting in temperature and precipitation throughout the arrested plant growth period. During each season, the cultivars differed either in the onset of the endodormancy or in the length of the endodormant period. A simple relation between endodormancy of the buds and their water content was not detected. The cryosurvival of vegetative apple buds of both cultivars correlated with their cold hardening without direct regard to their particular phase of dormancy. The period of the highest bud cryotolerance after low-temperature exposure overlapped with the endodormant period in some evaluated seasons. Both cultivars had the highest cryosurvival in December and January. The presented data were compared with our previous results from a dormancy study of in vitro apple culture. Endodormancy coincided with the period of successful cryosurvival of apple buds after liquid nitrogen exposure, but as such, it was not decisive for their survival and did not limit their successful cryopreservation. PMID:26442012

  15. Vegetative regeneration

    Treesearch

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  16. A permeability barrier surrounds taste buds in lingual epithelia.

    PubMed

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. Copyright © 2015 the American Physiological Society.

  17. A permeability barrier surrounds taste buds in lingual epithelia

    PubMed Central

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  18. Taste buds: cells, signals and synapses

    PubMed Central

    Roper, Stephen D.; Chaudhari, Nirupa

    2018-01-01

    The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding. PMID:28655883

  19. Inflammation activates the interferon signaling pathways in taste bud cells.

    PubMed

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  20. Selecting Populus with different adventitious root types for environmental benefits, fiber, and energy

    Treesearch

    Ronald S., Jr. Zalesny; Jill A. Zalesny

    2009-01-01

    Primary roots from seeds, sucker roots in aspens, and adventitious roots (ARs) in poplars and their hybrids are prevalent within the genus Populus. Two AR types develop on hardwood cuttings: (i) lateral roots from either preformed or induced primordia along the length of the cutting and (ii) basal roots from callus at the base of the cutting in...

  1. Ontogeny and innervation of taste buds in mouse palatal gustatory epithelium.

    PubMed

    Rashwan, Ahmed; Konishi, Hiroyuki; El-Sharaby, Ashraf; Kiyama, Hiroshi

    2016-01-01

    We investigated the relationship between mouse taste bud development and innervation of the soft palate. We employed scanning electron microscopy and immunohistochemistry using antibodies against protein gene product 9.5 and peripherin to detect sensory nerves, and cytokeratin 8 and α-gustducin to stain palatal taste buds. At E14, nerve fibers were observed along the medial border of the palatal shelves that tracked toward the epithelium. At E15.5, primordial stages of taste buds in the basal lamina of the soft palate first appeared. At E16, the taste buds became large spherical masses of columnar cells scattered in the soft palate basal lamina. At E17, the morphology and also the location of taste buds changed. At E18-19, some taste buds acquired a more elongated shape with a short neck, extending a variable distance from the soft palate basal lamina toward the surface epithelium. At E18, mature taste buds with taste pores and perigemmal nerve fibers were observed on the surface epithelium of the soft palate. The expression of α-gustducin was demonstrated at postnatal day 1 and the number of pored taste buds increased with age and they became pear-shaped at 8 weeks. The percent of pored fungiform-like papillae at birth was 58.3% of the whole palate; this increased to 83.8% at postnatal day 8 and reached a maximum of 95.7% at 12 weeks. The innervation of the soft palate was classified into three types of plexuses in relation to taste buds: basal nerve plexus, intragemmal and perigemmal nerve fibers. This study reveals that the nerve fibers preceded the development of taste buds in the palate of mice, and therefore the nerve fibers have roles in the initial induction of taste buds in the soft palate. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. 48 CFR 1419.202-70 - Acquisition screening and BUDS recommendations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BUDS recommendations. 1419.202-70 Section 1419.202-70 Federal Acquisition Regulations System DEPARTMENT... screening and BUDS recommendations. (a) For open market acquisitions estimated to exceed the SAT, the DI... document the rationale for not accepting a BUDS recommendation on DI Form 1886, under “Notes.” (See FAR 19...

  3. CsSCL1 is differentially regulated upon maturation in chestnut microshoots and is specifically expressed in rooting-competent cells.

    PubMed

    Vielba, Jesús M; Díaz-Sala, Carmen; Ferro, Enrique; Rico, Saleta; Lamprecht, María; Abarca, Dolores; Ballester, Antonio; Sánchez, Conchi

    2011-10-01

    The Castanea sativa SCL1 gene (CsSCL1) has previously been shown to be induced by auxin during adventitious root (AR) formation in rooting-competent microshoots. However, its expression has not previously been analyzed in rooting-incompetent shoots. This study focuses on the regulation of CsSCL1 during maturation and the role of the gene in the formation of AR. The expression of CsSCL1 in rooting-incompetent microshoots and other tissues was investigated by quantitative reverse transcriptase--polymerase chain reaction. The analysis was complemented by in situ hybridization of the basal segments of rooting-competent and --incompetent microshoots during AR induction, as well as in AR and lateral roots. It was found that CsSCL1 is upregulated by auxin in a cell-type- and phase-dependent manner during the induction of AR. In root-forming shoots, CsSCL1 mRNA was specifically located in the cambial zone and derivative cells, which are rooting-competent cells, whereas in rooting-incompetent shoots the hybridization signal was more diffuse and evenly distributed through the phloem and parenchyma. CsSCL1 expression was also detected in lateral roots and axillary buds. The different CsSCL1 expression patterns in rooting-competent and -incompetent microshoots, together with the specific location of transcripts in cell types involved in root meristem initiation and in the root primordia of AR and lateral roots, indicate an important role for the gene in determining whether certain cells will enter the root differentiation pathway and its involvement in meristem maintenance.

  4. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates.

    PubMed

    Barreiro-Iglesias, Antón; Villar-Cerviño, Verona; Villar-Cheda, Begoña; Anadón, Ramón; Rodicio, María Celina

    2008-12-01

    Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys. (c) 2008 Wiley-Liss, Inc.

  5. Tragedy and the meaning of school shootings.

    PubMed

    Warnick, Bryan R; Johnson, Benjamin A; Rocha, Samuel

    2010-01-01

    School shootings are traumatic events that cause a community to question itself, its values, and its educational systems. In this article Bryan Warnick, Benjamin Johnson, and Samuel Rocha explore the meanings of school shootings by examining three recent books on school violence. Topics that grow out of these books include (1) how school shootings might be seen as ceremonial rituals, (2) how schools come to be seen as appropriate places for shootings, and (3) how advice to educators relating to school shootings might change the practice of teaching. The authors present various ways of understanding school shootings that may eventually prove helpful, but they also highlight the problems, tensions, and contradictions associated with each position. In the end, the authors argue, the circumstances surrounding school shootings demonstrate the need for the "tragic sense" in education. This need for the tragic sense, while manifest in many different areas of schooling, is exemplified most clearly in targeted school shootings.

  6. Demonstrations at School Level of the Effects of IAA

    ERIC Educational Resources Information Center

    Falk, Peter

    1973-01-01

    Describes demonstrations suitable for secondary school biology classes relating to the effects of the hormone IAA on plant growth. Demonstrations illustrate how hormone treatments affect stem elongation, callus formation, inhibition of axillary buds, stimulation of secondary growth and initiation of adventitious root development, root elongation,…

  7. Project BudBurst: People, Plants, and Climate Change

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Ward, D.; Havens, K.; Gardiner, L. S.; Alaback, P.

    2010-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its third year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project BudBurst and will report on the results of the 2009 field campaign and discuss plans to expand Project BudBurst in 2010 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst co managed by the National Ecological Observatory Network and

  8. Efficient Electrocatalytic Water Oxidation at Neutral and High pH by Adventitious Nickel at Nanomolar Concentrations.

    PubMed

    Roger, Isolda; Symes, Mark D

    2015-11-04

    Electrolytic water oxidation using earth-abundant elements is a key challenge in the quest to develop cheap, large surface area arrays for solar-to-hydrogen conversion. There have been numerous studies in this area in recent years, but there remains an imperative to demonstrate that the current densities reported are indeed due to the species under consideration and not due to the presence of adventitious (yet possibly highly active) contaminants at low levels. Herein, we show that adventitious nickel at concentrations as low as 17 nM can act as a water oxidation catalyst in mildly basic aqueous solutions, achieving stable (tens of hours) current densities of 1 mA cm(-2) at overpotentials as low as 540 mV at pH 9.2 and 400 mV at pH 13. This nickel was not added to the electrolysis baths deliberately, but it was found to be present in the electrolytes as an impurity by ICP-MS. The presence of nickel on anodes from extended-time bulk electrolysis experiments was confirmed by XPS. In showing that such low levels of nickel can perform water oxidation at overpotentials comparable to many recently reported water oxidation catalysts, this work serves to raise the burden of proof required of new materials in this field: contamination by adventitious metal ions at trace loadings must be excluded as a possible cause of any observed water oxidation activity.

  9. Temporal and spatial variation of terpenoids in eastern hemlock (Tsuga canadensis) in relation to feeding by Adelges tsugae

    Treesearch

    Anthony F. Lagalante; Nyssa Lewis; Michael E. Montgomery; Kathleen S. Shields

    2006-01-01

    The terpenoid content of eastern hemlock (Tsuga canadensis) foliage was measured over an annual cycle of development from bud opening, shoot elongation, shoot maturation, to bud-break at the start of the next growing season. The objective was to determine if variation in terpenoid composition is linked with spatial and temporal feeding preferences of...

  10. Improved recovery of cryotherapy-treated shoot tips following thermotherapy of in vitro-grown stock shoots of raspberry (Rubus idaeus L.).

    PubMed

    Wang, Qiaochun; Valkonen, Jari P T

    2009-01-01

    Raspberry bushy dwarf virus (RBDV) can be efficiently eradicated from raspberry plants (Rubus idaeus) by a procedure combining thermotherapy and cryotherapy. However, the bottleneck of this procedure is that, following thermotherapy, cryopreserved shoot tips become chlorotic during regrowth and eventually die after several subcultures. In addition, survival of heat-treated stock shoots and recovery of cryopreserved shoot tips following thermotherapy are low. The present study focused towards improving regrowth of cryopreserved raspberry shoot tips following thermotherapy. Results showed that preconditioning stock shoots with salicylic acid (SA; 0.01-0.1 mM) markedly increased survival of stock shoots after 4 weeks of thermotherapy. Regrowth of cryopreserved shoot tips following thermotherapy was also significantly enhanced when SA (0.05-0.1 mM) was used for preconditioning stock shoots. Addition of either Fe-ethylenediaminetetracetic acid (Fe-EDTA, 50 mg per L) or Fe-ethylenediaminedi(o)hydroxyphenylacetic acid (Fe-EDDHA, 50 mg per L) to post-culture medium strongly promoted regrowth and totally prevented chlorosis of shoots regenerated from cryopreserved shoot tips following thermotherapy. Using the parameters optimized in the present study, about 80 percent survival of heat-treated stock shoots and about 33 percent regrowth of cryopreserved shoot tips following thermotherapy were obtained. Morphology of plants regenerated from cryopreserved shoot tips following thermotherapy was identical to that of control plants, based on observations of leaf shape and size, internode length and plant height. Optimization of the thermotherapy procedure followed by cryotherapy will facilitate the wider application of this technique to eliminate viruses which can invade meristems.

  11. Carbon Monoxide Is Involved in Hydrogen Gas-Induced Adventitious Root Development in Cucumber under Simulated Drought Stress

    PubMed Central

    Chen, Yue; Wang, Meng; Hu, Linli; Liao, Weibiao; Dawuda, Mohammed M.; Li, Chunlan

    2017-01-01

    Hydrogen gas (H2) and carbon monoxide (CO) are involved in plant growth and developmental processes and may induce plant tolerance to several stresses. However, the independent roles and interaction effect of H2 and CO in adventitious root development under drought conditions have still not received the needed research attention. We hypothesize that there exists crosstalk between H2 and CO during adventitious root development under drought stress. The results of our current study revealed that 50% (v/v) hydrogen-rich water (HRW), 500 μM Hemin (the CO donor) and 30% (w/v) CO aqueous solution apparently promoted the development of adventitious roots in cucumber explants (Cucumis Sativus L.) under drought stress. H2 and CO increased relative water content (RWC), leaf chlorophyll content (chlorophyll a, b, and a+b), and chlorophyll fluorescence parameters [photochemical efficiency of photosystem II (PSII), PSII actual photochemical efficiency and photochemical quench coefficient] under drought condition. When the CO scavenger hemoglobin (Hb) or zinc protoporphyrin IX (ZnPPIX) was added to HRW/CO aqueous solution, the positive effect of HRW/CO aqueous solution on RWC, leaf chlorophyll content, and chlorophyll fluorescence parameters were reversed. Additionally, superoxide dismutases, peroxidase, catalase, and ascorbate peroxidase was significantly increased in the explants treated with HRW and CO aqueous solution under drought stress, thus alleviating oxidative damage, as indicated by decreases in thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and superoxide radical (O2-) levels. H2 and CO also improved the levels of water soluble carbohydrate, total soluble protein, and proline content. However, the above CO/H2-mediated effects were reversed by CO scavenger Hb or CO specific synthetic inhibitor ZnPPIX. Therefore, CO may be involved in H2-induced adventitious rooting under drought stress and alleviate oxidative damage by enhancing RWC, leaf

  12. Analysis of Rhizome Development in Oryza longistaminata, a Wild Rice Species.

    PubMed

    Yoshida, Akiko; Terada, Yasuhiko; Toriba, Taiyo; Kose, Katsumi; Ashikari, Motoyuki; Kyozuka, Junko

    2016-10-01

    Vegetative reproduction is a form of asexual propagation in plants. A wide range of plants develop rhizomes, modified stems that grow underground horizontally, as a means of vegetative reproduction. In rhizomatous species, despite their distinct developmental patterns, both rhizomes and aerial shoots derive from axillary buds. Therefore, it is of interest to understand the basis of rhizome initiation and development. Oryza longistaminata, a wild rice species, develops rhizomes. We analyzed bud initiation and growth of O. longistaminata rhizomes using various methods of morphological observation. We show that, unlike aerial shoot buds that contain a few leaves only, rhizome buds initiate several leaves and bend to grow at right angles to the original rhizome. Rhizomes are maintained in the juvenile phase irrespective of the developmental phase of the aerial shoot. Stem elongation and reproductive transition are tightly linked in the aerial shoots, but are uncoupled in the rhizome. Our findings indicate that developmental programs operate independently in the rhizomes and aerial shoots. Temporal modification of the developmental pathways that are common to rhizomes and aerial shoots may be the source of developmental plasticity. Furthermore, the creation of new developmental systems appears to be necessary for rhizome development. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. AOX1-Subfamily Gene Members in Olea europaea cv. “Galega Vulgar”—Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting

    PubMed Central

    Lousa, Diana; M. Soares, Cláudio; Santos Macedo, Elisete; Arnholdt-Schmitt, Birgit

    2018-01-01

    Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar ”Galega vulgar”. The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars. PMID:29462998

  14. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of Multi-angle Imaging Spectroradiometer (MISR) nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001. Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. Image courtesy NASA/JPL/GSFC/LaRC, MISR Team

  15. Tropical Storms Bud and Dera

    NASA Image and Video Library

    2001-04-04

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. http://photojournal.jpl.nasa.gov/catalog/PIA03400

  16. Radiation effects on bovine taste bud membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shatzman, A.R.; Mossman, K.L.

    1982-11-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enrichedmore » fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy.« less

  17. Change of the human taste bud volume over time.

    PubMed

    Srur, Ehab; Stachs, Oliver; Guthoff, Rudolf; Witt, Martin; Pau, Hans Wilhelm; Just, Tino

    2010-08-01

    The specific aim of this study is to measure the taste volume in healthy human subjects over a 2.5-month period and to demonstrate morphological changes of the peripheral taste organs. Eighteen human taste buds in four fungiform papillae (fPap) were examined over a 10-week period. The fungiform papillae investigated were selected based on the form of the papillae or the arrangement of surface taste pores. Measurements were performed over 10 consecutive weeks, with five scans in a day once a week. The following parameters were measured: height and diameter of the taste bud, diameter of the fungiform papilla and diameter of the taste pore. The findings of this exploratory study indicated that (1) taste bud volumes changed over a 10-week period, (2) the interval between two volume maxima within the 10-week period was 3-5 weeks, and (3) the diameter of the fPap did not correlate with the volume of a single taste bud or with the volume of all taste buds in the fPap within the 10-week period. This exploratory in vivo study revealed changes in taste bud volumes in healthy humans with age-related gustatory sensitivity. These findings need to be considered when studying the effect of denervation of fungiform papillae in vivo using confocal microscopy. Crown Copyright 2009. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Chromatin-associated regulation of sorbitol synthesis in flower buds of peach.

    PubMed

    Lloret, Alba; Martínez-Fuentes, Amparo; Agustí, Manuel; Badenes, María Luisa; Ríos, Gabino

    2017-11-01

    PpeS6PDH gene is postulated to mediate sorbitol synthesis in flower buds of peach concomitantly with specific chromatin modifications. Perennial plants have evolved an adaptive mechanism involving protection of meristems within specialized structures named buds in order to survive low temperatures and water deprivation during winter. A seasonal period of dormancy further improves tolerance of buds to environmental stresses through specific mechanisms poorly known at the molecular level. We have shown that peach PpeS6PDH gene is down-regulated in flower buds after dormancy release, concomitantly with changes in the methylation level at specific lysine residues of histone H3 (H3K27 and H3K4) in the chromatin around the translation start site of the gene. PpeS6PDH encodes a NADPH-dependent sorbitol-6-phosphate dehydrogenase, the key enzyme for biosynthesis of sorbitol. Consistently, sorbitol accumulates in dormant buds showing higher PpeS6PDH expression. Moreover, PpeS6PDH gene expression is affected by cold and water deficit stress. Particularly, its expression is up-regulated by low temperature in buds and leaves, whereas desiccation treatment induces PpeS6PDH in buds and represses the gene in leaves. These data reveal the concurrent participation of chromatin modification mechanisms, transcriptional regulation of PpeS6PDH and sorbitol accumulation in flower buds of peach. In addition to its role as a major translocatable photosynthate in Rosaceae species, sorbitol is a widespread compatible solute and cryoprotectant, which suggests its participation in tolerance to environmental stresses in flower buds of peach.

  19. BudBurst Buddies: A New Tool for Engaging the Youngest Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Henderson, S.; Ward, D.

    2010-12-01

    BudBurst Buddies (www.budburstbuddies.org) introduces elementary school age children to the science of observing plants and the timing of phenological (life cycle) events. BudBurst Buddies is a new part of the Project BudBurst national citizen science initiative (www.budburst.org), which allows individuals to engage in the scientific process, contributing to a better understanding of climate change while increasing public awareness of phenology and the impacts of climate change on plants. As a first step towards engaging the next generation of citizen scientists, BudBurst Buddies provides the opportunity for children to gain experience with scientific research and increases awareness of how plants change throughout the year. Children can participate in BudBurst Buddies on their own, with their families, or in formal or informal education settings. Each child who participates creates a journal about a plant of his or her choosing, makes observations of the plant over the growing season and submits findings online, earning an official BudBurst Buddies certificate. An online storybook for kids tells how two children, Lily and Sage, observed plants in their neighborhood and became BudBurst Buddies. This presentation will provide an overview of the BudBurst Buddies newly developed resources. BudBurst Buddies is a part of Project BudBurst, a national citizen science program coordinated by the National Ecological Observatory Network (NEON) and the Chicago Botanic Garden. Funding for this resource was provided by NEON, NSF, NASA, and the National Geographic Education Foundation.

  20. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida.

    PubMed

    Zerche, Siegfried; Haensch, Klaus-Thomas; Druege, Uwe; Hajirezaei, Mohammad-Reza

    2016-10-10

    Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (N t ), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how elevated N t contents with a combined dark exposure of cuttings influence their internal N-pools including free amino acids and considered early anatomic events of AR formation as well as further root development in Petunia hybrida cuttings. Enhanced N t contents of unrooted cuttings resulted in elevated total free amino acid levels and in particular glutamate (glu) and glutamine (gln) in leaf and basal stem. N-allocation to mobile N-pools increased whereas the allocation to insoluble protein-N declined. A dark exposure of cuttings conserved initial N t and nitrate-N, while it reduced insoluble protein-N and increased soluble protein, amino- and amide-N. The increase of amino acids mainly comprised asparagine (asn), aspartate (asp) and arginine (arg) in the leaves, with distinct tissue specific responses to an elevated N supply. Dark exposure induced an early transient rise of asp followed by a temporary increase of glu. A strong positive N effect of high N t contents of cuttings on AR formation after 384 h was observed. Root meristematic cells developed at 72 h with a negligible difference for two N t levels. After 168 h, an enhanced N t accelerated AR formation and gave rise to first obvious fully developed roots while only meristems were formed with a low N t . However, dark exposure for 168 h promoted AR formation particularly in cuttings with a low N t to such an extent so that the benefit of the enhanced N t was almost compensated. Combined dark exposure and low N t of

  1. [In vitro flowering of cultures from a hybrid of Cymbidium goeringii and C. hybridium].

    PubMed

    Zheng, Li-Ming; Pang, Ji-Liang

    2006-06-01

    Wild-type female spring orchid (Cymbidium goeringii) was crossed with male Cymbidium hybridium. Over eight hundred protocorm clones were obtained from hybrid offsprings. Among them, one protocorm clone was identified to differentiate visible floral buds two months after subculture in vitro (Plate I). The protocorms and shoots derived from this clone were further used in studying the effects of abscisic acid (ABA) and paclobutrazol (PP333) pretreatment as well as different concentrations of 6-benzyladenine (6-BA) on floral bud differentiation. The optimum combination of hormones in floral bud induction was 6-BA 1.0 mg/L and NAA 0.1 mg/L, and total frequency of floral bud formation was up to 31% (Table 1). The optimum length of shoots used in floral bud induction was 1-2 cm, and the frequency of floral bud formation was 19% (Table 1). The increase in total frequency was not significant in floral bud induction from protocorms and shoots with length of 1-2 cm or 2-4 cm cultured on MS medium containing 6-BA 1.0 mg/L and NAA 0.1 mg/L after pretreatment on MS medium supplemented with ABA 0.5 mg/L and PP333 0.5 mg/L for 35 d (Table 2).

  2. Isolation of chicken taste buds for real-time Ca2+ imaging.

    PubMed

    Kudo, Ken-ichi; Kawabata, Fuminori; Nomura, Toumi; Aridome, Ayumi; Nishimura, Shotaro; Tabata, Shoji

    2014-10-01

    We isolated chicken taste buds and used a real-time Ca2+ imaging technique to investigate the functions of the taste cells. With RT-PCR, we found that isolated chicken taste bud-like cell subsets express chicken gustducin messenger RNA. Immunocytochemical techniques revealed that the cell subsets were also immunopositive for chicken gustducin. These results provided strong evidence that the isolated cell subsets contain chicken taste buds. The isolated cell subsets were spindle-shaped and approximately 61-75 μm wide and 88-98 μm long, and these characteristics are similar to those of sectional chicken taste buds. Using Ca2+ imaging, we observed the buds' response to 2 mmol/L quinine hydrochloride (a bitter substance) and their response to a mixture of 25 mmol/L L-glutamic acid monopotassium salt monohydrate and 1 mmol/L inosine 5'-monophosphate disodium salt, umami substances. The present study is the first morphological demonstration of isolated chicken taste buds, and our results indicate that the isolated taste buds were intact and functional approaches for examining the taste senses of the chicken using Ca2+ imaging can be informative. © 2014 Japanese Society of Animal Science.

  3. Fgf16 is essential for pectoral fin bud formation in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Ryohei; Kamei, Eriko; Hotta, Yuuhei

    2006-08-18

    Zebrafish pectoral fin bud formation is an excellent model for studying morphogenesis. Fibroblast growth factors (Fgfs) and sonic hedgehog (shh) are essential for pectoral fin bud formation. We found that Fgf16 was expressed in the apical ectodermal ridge (AER) of fin buds. A knockdown of Fgf16 function resulted in no fin bud outgrowth. Fgf16 is required for cell proliferation and differentiation in the mesenchyme and the AER of the fin buds, respectively. Fgf16 functions downstream of Fgf10, a mesenchymal factor, signaling to induce the expression of Fgf4 and Fgf8 in the AER. Fgf16 in the AER and shh in themore » zone of polarizing activity (ZPA) interact to induce and/or maintain each other's expression. These findings have revealed that Fgf16, a newly identified AER factor, plays a crucial role in pectoral fin bud outgrowth by mediating the interactions of AER-mesenchyme and AER-ZPA.« less

  4. In Vitro propagation of Jasminum officinale L.: a woody ornamental vine yielding aromatic oil from flowers.

    PubMed

    Bhattacharya, Sabita; Bhattacharyya, Sanghamitra

    2010-01-01

    The growing demand for flower extracts in perfume trade can primarily be met by increasing flower production and multiplying planting material. The major commercial aromatic flower yielding plants including Jasminum officinale L., a member of the Family Oleaceae have drawn the attention of a large section of the concerned sectors leading to a thrust upon developing advanced propagation technologies for these floral crops, in addition to conventional nature-dependent agro-techniques. This chapter describes concisely and critically, a protocol developed for in vitro propagation of Jasminum officinale by shoot regeneration from existing as well as newly developed adventitious axillary buds via proper phytohormonal stimulation. To start with nodal segments as explants, March-April is the most ideal time of the year when planting material suitable for in vitro multiplication is abundantly available. Prior to inoculation of explants in the culture medium, special care is needed to reduce microbial contamination by spraying on selected spots of the donor plant with anti-microbial agents 24 h prior to collection; treatment with antiseptic solution after final cleaning and surface sterilization by treating explants with mercuric chloride. Inoculated explants are free from brown leaching from cut ends by two consecutive subcultures within 48 h in MS basal medium. Multiplication of shoots, average 4-5 at each node, takes place in MS medium containing 4.0 mg/L BAP, 0.1 mg/L NAA, and 40 g/L sucrose over a period of 8 weeks. For elongation of regenerated shoots, cultures are transferred to MS medium, supplemented with a single growth hormone, kinetin at 2.0 mg/L. Emergence and elongation of roots from shoot base is facilitated by placing on the notch of a filter paper bridge. The hardened in vitro propagated plants are able to grow normally in soil like other conventionally propagated Jasminum officinale.

  5. Project BudBurst: Continental-scale citizen science for all seasons

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.

    2011-12-01

    Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago

  6. "Gun-shooting hearing loss": A pilot study.

    PubMed

    Sataloff, Joseph; Hawkshaw, Mary J; Sataloff, Robert T

    2010-01-01

    Gun-shooting deafness is the common terminology applied to sensorineural hearing loss caused by shooting firearms. Many characteristics of gun-shooting hearing loss have been proposed, but they have not been defined clearly or established conclusively. We studied 37 users of recreational firearms to obtain pilot data to help determine if it is true that right-handed gun shooters develop more hearing loss in the left ear and vice versa, whether everyone who frequently shoots guns develops sensorineural hearing loss, and whether significant hearing loss is typically prevented by wearing commercially available ear protectors while shooting.

  7. A higher sink competitiveness of the rooting zone and invertases are involved in dark stimulation of adventitious root formation in Petunia hybrida cuttings.

    PubMed

    Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2016-02-01

    The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. The Binomial Distribution in Shooting

    ERIC Educational Resources Information Center

    Chalikias, Miltiadis S.

    2009-01-01

    The binomial distribution is used to predict the winner of the 49th International Shooting Sport Federation World Championship in double trap shooting held in 2006 in Zagreb, Croatia. The outcome of the competition was definitely unexpected.

  9. Variation in human fungiform taste bud densities among regions and subjects.

    PubMed

    Miller, I J

    1986-12-01

    Taste sensitivity is known to vary among regions of the tongue and between subjects. The distribution of taste buds on the human tongue is examined in this report to determine if interregional and intersubject variation of taste bud density might account for some of the variation in human taste sensitivity. The subjects were ten males, aged 22-80 years, who died from acute trauma or an acute cardiovascular episode. Specimens were obtained as anatomical gifts or from autopsy. A sample of tissue about 1 cm2 was taken from the tongue tip and midlateral region; frozen sections were prepared for light microscopy; and serial sections were examined by light microscopy to count the taste buds. The average taste bud (tb) density on the tongue tip was 116 tb/cm2 with a range from 3.6 to 514 among subjects. The number of gustatory papillae on the tip averaged 24.5 papillae/cm2 with a range from 2.4 to 80. Taste bud density in the midregion averaged 25.2 tb/cm2 (range: 0-85.9), and the mean number of gustatory papillae was 8.25/cm2 (range: 0-28). The mean number of taste buds per papilla was 3.8 +/- 2.2 (s.d.) on the tip and 2.6 +/- 1.5 (s.d.) on the midregion. Subjects with the highest taste bud densities on the tip also had the highest densities in the midregion and the highest number of taste buds per papilla. Taste bud density was 4.6 times higher on the tip than the midregion, which probably accounts for some of the regional difference in taste sensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. BudBurst Buddies: Introducing Young Citizen Scientists to Plants and Environmental Change

    NASA Astrophysics Data System (ADS)

    Ward, D.; Gardiner, L. S.; Henderson, S.

    2011-12-01

    As part of Project BudBurst, the BudBurst Buddies recently moved to the National Ecological Network (NEON) as part of its Education and Public Engagement efforts. The BudBurst Buddies (www.budburstbuddies.org) were created to engage elementary school age children in the science of observing plants and the timing of phenological (life cycle) events. BudBurst Buddies is a part of the Project BudBurst national citizen science initiative (www.budburst.org), which allows individuals to engage in the scientific process, contributing to a better understanding of climate change while increasing public awareness of phenology and the impacts of climate change on plants. As a first step towards engaging the next generation of citizen scientists, BudBurst Buddies provides the opportunity for children to gain experience with scientific research and increases awareness of how plants change throughout the year. Hundreds of young students have participated in the inaugural year of BudBurst Buddies. Children can participate in BudBurst Buddies on their own, with their families, or in formal or informal education settings. The program was recently highlighted by education staff at the New York Hall of Science and numerous classrooms have been implementing this resource as part of their curriculum. Each child who participates creates a journal about a plant of his or her choosing, makes observations of the plant over the growing season and submits findings online, earning an official BudBurst Buddies certificate. An online storybook for kids tells how two children, Lily and Sage, observed plants in their neighborhood and became BudBurst Buddies. This presentation will provide an overview of the BudBurst Buddies resources including a new implementation guide and will also share feedback from the first year of implementation.

  11. New phenotypes generated by the G57R mutation of BUD23 in Saccharomyces cerevisiae.

    PubMed

    Lin, Jyun-Liang; Yu, Hui-Chia; Chao, Ju-Lan; Wang, Chung; Cheng, Ming-Yuan

    2012-12-01

    BUD23 in Saccharomyces cerevisiae encodes for a class I methyltransferase, and deletion of the gene results in slow growth and random budding phenotypes. Herein, two BUD23 mutants defective in methyltransferase activity were generated to investigate whether the phenotypes of the null mutant might be correlated with a loss in enzymatic activity. Expression at the physiological level of both D77A and G57R mutants was able to rescue the phenotypes of the bud23-null mutant. The result implied that the methyltransferase activity of the protein was not necessary for supporting normal growth and bud site selection of the cells. High-level expression of Bud23 (G57R), but not Bud23 or Bud23 (D77A), in BUD23 deletion cells failed to complement these phenotypes. However, just like Bud23, Bud23 (G57R) was localized in a DAPI-poor region in the nucleus. Distinct behaviour in Bud23 (G57R) could not be originated from a mislocalization of the protein. Over-expression of Bud23 (G57R) in null cells also produced changes in actin organization and additional septin mutant-like phenotypes. Therefore, the absence of Bud23, Bud23 (G57R) at a high level might affect the cell division of yeast cells through an as yet unidentified mechanism. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Taste bud development and patterning in sighted and blind morphs of Astyanax mexicanus.

    PubMed

    Varatharasan, Nirupa; Croll, Roger P; Franz-Odendaal, Tamara

    2009-12-01

    In the blind cave-dwelling morph of A. mexicanus, the eye degenerates while other sensory systems, such as gustation, are expanded compared to their sighted (surface-dwelling) ancestor. This study compares the development of taste buds along the jaws of each morph. To determine whether cavefish have an altered onset or rate of taste bud development, we fluorescently labeled basal and receptor cells within taste buds over a developmental series. Our results show that taste bud number increases during development in both morphs. The rate of development is, however, accelerated in cavefish; a small difference in taste bud number exists at 5 dpf reaching threefold by 22 dpf. The expansion of taste buds in cavefish is, therefore, detectable after the onset of eye degeneration. This study provides important insights into the timing of taste bud expansion in cavefish as well as enhances our understanding of taste bud development in teleosts in general. (c) 2009 Wiley-Liss, Inc.

  13. Gravity-induced buds formation from protonemata apical cells in the mosses

    NASA Astrophysics Data System (ADS)

    Kyyak, Natalia; Khorkavtsiv, Yaroslava

    The acceleration of moss protonemata development after the exit it to light from darkness is important gravidependent morphogenetic manifestation of the moss protonemata. The accelerated development of mosses shows in transformation of apical protonemata cells into the gametophores buds (Ripetskyj et al., 1999). In order to establish, that such reaction on gravitation is general property of gravisensity species, or its typical only for single moss species, experiments with the following moss species - Bryum intermedium (Ludw.) Brig., Bryum caespiticium Hedw., Bryum argenteum Hedw., Dicranodontium denudatum (Brid.) Britt. were carried out. All these species in response to influence of gravitation were capable to form rich bunches of gravitropical protonemata in darkness, that testified to their gravisensity. After the transference of Petri dishes with gravitropical protonemata from darkness on light was revealed, that in 3 of the investigated species the gametophores buds were absent. Only B. argenteum has reacted to action of gravitation by buds formation from apical cells of the gravitropical protonemata. With the purpose of strengthening of buds formation process, the experiments with action of exogenous kinetin (in concentration of 10 (-6) M) were carried out. Kinetin essentially stimulated apical buds formation of B. argenteum. The quantity of apical buds has increased almost in three times in comparison with the control. Besides, on separate stolons a few (3-4) buds from one apical cell were formed. Experimentally was established, that the gametophores buds formation in mosses is controlled by phytohormones (Bopp, 1985; Demkiv et al., 1991). In conditions of gravity influence its essentially accelerated. Probably, gravity essentially strengthened acropetal transport of phytohormones and formation of attractive center in the protonemata apical cell. Our investigations have allowed to make the conclusion, that gravi-dependent formation of the apical buds is

  14. Tumour buds determine prognosis in resected pancreatic ductal adenocarcinoma.

    PubMed

    Lohneis, Philipp; Sinn, Marianne; Klein, Fritz; Bischoff, Sven; Striefler, Jana K; Wislocka, Lilianna; Sinn, Bruno V; Pelzer, Uwe; Oettle, Helmut; Riess, Hanno; Denkert, Carsten; Bläker, Hendrik; Jühling, Anja

    2018-05-14

    The prognostic effect of tumour budding was retrospectively analysed in a cohort of 173 patients with resected pancreatic ductal adenocarcinomas (PDACs) of the prospective clinical multicentre CONKO-001 trial. Haematoxylin and eosin (H&E)-stained whole tissue slides were evaluated. In two independent approaches, the mean number of tumour buds was analysed according to the consensus criteria in colorectal cancer, in one 0.785 mm 2 field of view and additionally in 10 high-power fields (HPF) (HPF = 0.238 mm 2 ). Tumour budding was significantly associated with a higher tumour grade (p < 0.001) but not with distant or lymph node metastasis. Regardless of the quantification approach, an increased number of tumour buds was significantly associated with reduced disease-free survival (DFS) and overall survival (OS) (10 HPF approach DFS: HR = 1.056 (95% CI 1.022-1.092), p = 0.001; OS: HR = 1.052 (95% CI 1.018-1.087), p = 0.002; consensus method DFS: HR = 1.037 (95% CI 1.017-1.058), p < 0.001; OS: HR = 1.040 (95% CI 1.019-1.061), p < 0.001). Recently published cut-offs for tumour budding in colorectal cancer were prognostic in PDAC as well. Tumour budding is prognostic in the CONKO-001 clinical cohort of patients. Further standardisation and validation in additional clinical cohorts are necessary.

  15. Common Pine Shoot Beetle

    Treesearch

    Robert A. Haack; Daniel Kucera; Steven Passoa

    1993-01-01

    The common (or larger) pine shoot beetle, Tomicus (=Blastophagus) piniperda (L.), was discovered near Cleveland, Ohio in July 1992. As of this writing, it is now in six states: Illinois, Indiana, Michigan, New York, Ohio, and Pennsylvania. Adults of the common pine shoot beetle are cylindrical and range from 3 to 5 mm in length (about the size of a match head). Their...

  16. Adventitious shoot regeneration and rooting of Fraxinus americana

    Treesearch

    Kaitlin J. Palla; Paula M. Pijut

    2010-01-01

    White ash (Fraxinus americana) trees provide both ecological and economic benefits. Loss of this North American endemic would disturb the environment. The urban ash tree industry in the United States would also suffer, as would manufacturers of baseball bats, furniture, and cabinets.

  17. Project BudBurst: Citizen Science for All Seasons

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Brewer, C.; Havens, K.; Meymaris, K.

    2007-12-01

    Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. Project BudBurst launched a pilot program in the Spring of 2007. The goals of Project BudBurst were to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From April through mid-June 2007, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of ~60 easily identifiable, broadly distributed wild and cultivated species found across the continent. We will report on the results of the pilot project and discuss plans to expand Project BudBurst as it becomes a year round event beginning in 2008. A broad consortium of collaborators, representing the Chicago Botanic Garden, Plant Conservation Alliance, ESRI, the USA-National Phenology Network, University Corporation for Atmospheric Research, University of Arizona, University of Montana, University of California-Santa Barbara, University of Wisconsin-Milwaukee and the University of Wisconsin-Madison, came together to design and implement Project BudBurst with seed funding from the U.S. Bureau of Land Management, the National Phenology Network (through a RCN grant from the NSF), and the Plant Conservation Alliance.

  18. Forcing Epicormic Sprouts on Branch Segments of Adult Hardwoods for Softwood Cuttings

    Treesearch

    J. W. Van Sambeek; John E. Preece; Mark V. Coggeshall

    2003-01-01

    Branch segments cut from basal limbs of transitional or adult hardwood trees were forced in the greenhouse to initiate shoot growth from latent buds for the production of softwood cuttings. Forcing in February, March, and April produced 10 to 15 visible buds or elongating shoots per meter of branch wood, which was more than twice the number during any other month. On...

  19. Clomipramine ameliorates adventitious movements and compulsions in prepubertal boys with autistic disorder and severe mental retardation.

    PubMed

    Brasic, J R; Barnett, J Y; Kaplan, D; Sheitman, B B; Aisemberg, P; Lafargue, R T; Kowalik, S; Clark, A; Tsaltas, M O; Young, J G

    1994-07-01

    In an open, nonblind clinical trial, clomipramine reduced adventitious movements and compulsions in five previously medicated prepubertal boys with autistic disorder and severe mental retardation. Poorly adapted rating scales, interrater variability, subject heterogeneity, different treatment histories, and environmental stresses confounded the assessment of treatment effects.

  20. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara1[OPEN

    PubMed Central

    Dawood, Thikra; Kensche, Philip R.; Cristescu, Simona M.; Mariani, Celestina

    2016-01-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara. Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. PMID:26850278

  1. Distribution of α-Gustducin and Vimentin in premature and mature taste buds in chickens.

    PubMed

    Venkatesan, Nandakumar; Rajapaksha, Prasangi; Payne, Jason; Goodfellow, Forrest; Wang, Zhonghou; Kawabata, Fuminori; Tabata, Shoji; Stice, Steven; Beckstead, Robert; Liu, Hong-Xiang

    2016-10-14

    The sensory organs for taste in chickens (Gallus sp.) are taste buds in the oral epithelium of the palate, base of the oral cavity, and posterior tongue. Although there is not a pan-taste cell marker that labels all chicken taste bud cells, α-Gustducin and Vimentin each label a subpopulation of taste bud cells. In the present study, we used both α-Gustducin and Vimentin to further characterize chicken taste buds at the embryonic and post-hatching stages (E17-P5). We found that both α-Gustducin and Vimentin label distinct and overlapping populations of, but not all, taste bud cells. A-Gustducin immunosignals were observed as early as E18 and were consistently distributed in early and mature taste buds in embryos and hatchlings. Vimentin immunoreactivity was initially sparse at the embryonic stages then became apparent in taste buds after hatch. In hatchlings, α-Gustducin and Vimentin immunosignals largely co-localized in taste buds. A small subset of taste bud cells were labeled by either α-Gustducin or Vimentin or were not labeled. Importantly, each of the markers was observed in all of the examined taste buds. Our data suggest that the early onset of α-Gustducin in taste buds might be important for enabling chickens to respond to taste stimuli immediately after hatch and that distinctive population of taste bud cells that are labeled by different molecular markers might represent different cell types or different phases of taste bud cells. Additionally, α-Gustducin and Vimentin can potentially be used as molecular markers of all chicken taste buds in whole mount tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation

    PubMed Central

    2013-01-01

    Background A lack of competence to form adventitious roots by cuttings of Chrysanthemum (Chrysanthemum morifolium) is an obstacle for the rapid fixation of elite genotypes. We performed a proteomic analysis of cutting bases of chrysanthemum cultivar ‘Jinba’ during adventitious root formation (ARF) in order to identify rooting ability associated protein and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Results The protein profiles during ARF were analyzed by comparing the 2-DE gels between 0-day-old (just severed from the stock plant) and 5-day-old cutting bases of chrysanthemum. A total of 69 differentially accumulated protein spots (two-fold change; t-test: 95% significance) were excised and analyzed using MALDI-TOF/TOF, among which 42 protein spots (assigned as 24 types of proteins and 7 unknown proteins) were confidently identified using the NCBI database. The results demonstrated that 19% proteins were related to carbohydrate and energy metabolism, 16% to photosynthesis, 10% to protein fate, 7% to plant defense, 6% to cell structure, 7% to hormone related, 3% to nitrate metabolism, 3% to lipid metabolism, 3% to ascorbate biosynthesis and 3% to RNA binding, 23% were unknown proteins. Twenty types of differentially accumulated proteins including ACC oxidase (CmACO) were further analyzed at the transcription level, most of which were in accordance with the results of 2-DE. Moreover, the protein abundance changes of CmACO are supported by western blot experiments. Ethylene evolution was higher during the ARF compared with day 0 after cutting, while silver nitrate, an inhibitor of ethylene synthesis, pretreatment delayed the ARF. It suggested that ACC oxidase plays an important role in ARF of chrysanthemum. Conclusions The proteomic analysis of cutting bases of chrysanthemum allowed us to identify proteins whose expression was related to ARF. We identified auxin-induced protein PCNT115 and ACC oxidase positively or

  3. Date of shoot collection, genotype, and original shoot position affect early rooting of dormant hardwood cuttings of Populus

    Treesearch

    R. S., Jr. Zalesny; A.H. Wiese

    2006-01-01

    Identifying superior combinations among date of dormant- season shoot collection, genotype, and original shoot position can increase the rooting potential of Populus cuttings. Thus, the objectives of our study were to: 1) evaluate variation among clones in early rooting from hardwood cuttings processed every three weeks from shoots collected...

  4. Dielectric modelling of cell division for budding and fission yeast

    NASA Astrophysics Data System (ADS)

    Asami, Koji; Sekine, Katsuhisa

    2007-02-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.

  5. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    PubMed Central

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. PMID:26525674

  6. Optimization of protease-inhibitor interactions by randomizing adventitious contacts

    PubMed Central

    Komiyama, Tomoko; VanderLugt, Bryan; Fugère, Martin; Day, Robert; Kaufman, Randal J.; Fuller, Robert S.

    2003-01-01

    Polypeptide protease inhibitors are often found to inhibit targets with which they did not coevolve, as in the case of high-affinity inhibition of bacterial subtilisin by the leech inhibitor eglin c. Two kinds of contacts exist in such complexes: (i) reactive site loop-active site contacts and (ii) interactions outside of these that form the broader enzyme-inhibitor interface. We hypothesized that the second class of “adventitious” contacts could be optimized to generate significant increases in affinity for a target enzyme or discrimination of an inhibitor for closely related target proteases. We began with a modified eglin c, Arg-42–Arg-45–eglin, in which the reactive site loop had been optimized for subtilisin-related processing proteases of the Kex2/furin family. We randomized 10 potential adventitious contact residues and screened for inhibition of soluble human furin. Substitutions at one of these sites, Y49, were also screened against yeast Kex2 and human PC7. These screens identified not only variants that exhibited increased affinity (up to 20-fold), but also species that exhibited enhanced selectivity, that is, increased discrimination between the target enzymes (up to 41-fold for furin versus PC7 and 20-fold for PC7 versus furin). One variant, Asp-49–Arg-42–Arg-45–eglin, exhibited a Ki of 310 pM for furin and blocked furin-dependent processing of von Willebrand factor in COS-1 cells when added to the culture medium of the cells. The exploitation of adventitious contact sites may provide a versatile technique for developing potent, selective inhibitors for newly discovered proteases and could in principle be applied to optimize numerous protein–protein interactions. PMID:12832612

  7. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets

    PubMed Central

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F.; Payne, Jason; Swetenburg, Raymond L.; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J.; Stice, Steven L.; Beckstead, Robert; Liu, Hong-Xiang

    2016-01-01

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240–360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors. PMID:27853250

  8. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets.

    PubMed

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F; Payne, Jason; Swetenburg, Raymond L; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J; Stice, Steven L; Beckstead, Robert; Liu, Hong-Xiang

    2016-11-17

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240-360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.

  9. Project BudBurst: Citizen Science for All Seasons

    NASA Astrophysics Data System (ADS)

    Meymaris, K.; Henderson, S.; Alaback, P.; Havens, K.

    2008-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its second year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, participants from 49 states have submitted data that is being submitted to the USA National Phenology Network (www.usanpn.org) database. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project Budburst and will report on the results of the 2008 field campaign and discuss plans to expand Project BudBurst in 2009. Project BudBurst is a Windows to the Universe Citizen Science program managed by the University

  10. Electron Tomography Reveals the Steps in Filovirus Budding

    PubMed Central

    Welsch, Sonja; Kolesnikova, Larissa; Krähling, Verena; Riches, James D.; Becker, Stephan; Briggs, John A. G.

    2010-01-01

    The filoviruses, Marburg and Ebola, are non-segmented negative-strand RNA viruses causing severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. The sequence of events that leads to release of filovirus particles from cells is poorly understood. Two contrasting mechanisms have been proposed, one proceeding via a “submarine-like” budding with the helical nucleocapsid emerging parallel to the plasma membrane, and the other via perpendicular “rocket-like” protrusion. Here we have infected cells with Marburg virus under BSL-4 containment conditions, and reconstructed the sequence of steps in the budding process in three dimensions using electron tomography of plastic-embedded cells. We find that highly infectious filamentous particles are released at early stages in infection. Budding proceeds via lateral association of intracellular nucleocapsid along its whole length with the plasma membrane, followed by rapid envelopment initiated at one end of the nucleocapsid, leading to a protruding intermediate. Scission results in local membrane instability at the rear of the virus. After prolonged infection, increased vesiculation of the plasma membrane correlates with changes in shape and infectivity of released viruses. Our observations demonstrate a cellular determinant of virus shape. They reconcile the contrasting models of filovirus budding and allow us to describe the sequence of events taking place during budding and release of Marburg virus. We propose that this represents a general sequence of events also followed by other filamentous and rod-shaped viruses. PMID:20442788

  11. Visible dormant buds as related to tree diameter and log position

    Treesearch

    H. Clay Smith

    1967-01-01

    Red oaks and yellow-poplars in a stand of second-growth cove hardwoods in West Virginia were studied to determine whether visible dormant buds are related to tree size or log position. No correlation was found between dormant buds and tree size, for either species; but yellow-poplars had a significantly greater number of buds on the upper log.

  12. Effects of zinc deficiency on the vallate papillae and taste buds in rats.

    PubMed

    Chou, H C; Chien, C L; Huang, H L; Lu, K S

    2001-05-01

    Zinc deficiency is associated with multiple clinical complications, including taste disturbance, anorexia, growth retardation, skin changes, and hypogonadism. We investigated the zinc-deficiency-induced morphologic changes in the vallate taste buds of weanling and young adult male Wistar rats. A total of 24 weanling and 30 young adult rats were used. Each age group was further divided into a control group fed a zinc-adequate (50 ppm) diet, a zinc-deficient (< 1 ppm) diet group, and a zinc-adequate pair-fed group who were fed the same amount of food as that taken by the zinc-deficient group. Weanling rats were fed for 4 weeks and young adult rats were fed for 6 weeks. The morphometry and morphologic changes of vallate taste buds were analyzed using light and transmission electron microscopy. Light microscopy revealed no significant difference in papilla size and morphology among the various groups. In both weanling and young adult rats in the zinc-deficient diet and pair-fed groups, the number of taste buds per papilla (per animal) and the average profile area of the taste bud were significantly smaller than those of the corresponding controls (p < 0.05). Ultrastructural changes were seen only in the taste buds of weanling rats fed the zinc-deficient diet, with derangement of the architecture of the taste bud and widening of the intercellular space between taste bud cells. The proportion of type I taste bud cells in the taste buds of weanling rats fed the zinc-deficient diet decreased from 59% to 39%, and that of type II taste bud cells decreased from 25% to 12%. No obvious changes in the ultrastructure of type III taste bud cells were observed. The main effects of zinc deficiency in weanling and young adult rats and in adequate diet pair-fed rats were changes in the number and size of taste buds, and fine structure changes in the taste bud cells, especially during the accelerated growth stage after weaning.

  13. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development.

    PubMed

    Thirumangalathu, Shoba; Barlow, Linda A

    2015-12-15

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh(+) placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh(+) precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. © 2015. Published by The Company of Biologists Ltd.

  14. Longleaf pine bud development: influence of seedling nutrition

    Treesearch

    J. P. Barnett; D. P. Jackson; R. K. Dumroese

    2010-01-01

    A subset of seedlings from a larger study (Jackson and others 2006, 2007) were selected and evaluated for two growing seasons to relate bud development, and root-collar diameter (RCD), and height growth with three nursery fertilization rates. We chose seedlings in the 0.5 (lowest), 2.0 (mid-range), and 4.0 (highest) mg of nitrogen per seedling treatments. Buds moved...

  15. The effect of meditation on shooting performance.

    PubMed Central

    Solberg, E E; Berglund, K A; Engen, O; Ekeberg, O; Loeb, M

    1996-01-01

    OBJECTIVE: To study effects of meditation on the shooting performance. METHODS: 25 elite shooters were investigated in an independent groups design. The results in standardised test shootings indoors and in ordinary competitions outdoors were assessed before and after regular meditation training for the experimental group. The experience of tension during the test shootings was self recorded on a visual analogue scale (VAS). RESULTS: The competition results in the outdoor season (1993), just after the meditation training period, compared with the results the previous season (1992), were better in the meditation group (P < 0.05). No significant difference between the groups was observed in the test shootings before and after the relaxation intervention. A significant association was shown between low tension and the results in the test shootings (correlation r = 0.42, P < 0.0001; Wilcoxon rank sum test, z = -3.36, P < 0.001); 18% (= r2) of the variance in performance was explained by tension. CONCLUSIONS: Meditation may enhance competitive shooting performance. PMID:9015599

  16. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.

    PubMed

    Duina, Andrea A; Miller, Mary E; Keeney, Jill B

    2014-05-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.

  17. Budding Yeast for Budding Geneticists: A Primer on the Saccharomyces cerevisiae Model System

    PubMed Central

    Duina, Andrea A.; Miller, Mary E.; Keeney, Jill B.

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans. PMID:24807111

  18. Immunohistochemical Analysis of Human Vallate Taste Buds

    PubMed Central

    Tizzano, Marco; Grigereit, Laura; Shultz, Nicole; Clary, Matthew S.

    2015-01-01

    The morphology of the vallate papillae from postmortem human samples was investigated with immunohistochemistry. Microscopically, taste buds were present along the inner wall of the papilla, and in some cases in the outer wall as well. The typical taste cell markers PLCβ2, GNAT3 (gustducin) and the T1R3 receptor stain elongated cells in human taste buds consistent with the Type II cells in rodents. In the human tissue, taste bud cells that stain with Type II cell markers, PLCβ2 and GNAT3, also stain with villin antibody. Two typical immunochemical markers for Type III taste cells in rodents, PGP9.5 and SNAP25, fail to stain any taste bud cells in the human postmortem tissue, although these antibodies do stain numerous nerve fibers throughout the specimen. Car4, another Type III cell marker, reacted with only a few taste cells in our samples. Finally, human vallate papillae have a general network of innervation similar to rodents and antibodies directed against SNAP25, PGP9.5, acetylated tubulin and P2X3 all stain free perigemmal nerve endings as well as intragemmal taste fibers. We conclude that with the exception of certain molecular features of Type III cells, human vallate papillae share the structural, morphological, and molecular features observed in rodents. PMID:26400924

  19. Bud-bank and tiller dynamics of co-occurring C3 caespitose grasses in mixed-grass prairie.

    PubMed

    Ott, Jacqueline P; Hartnett, David C

    2015-09-01

    Tiller recruitment from the belowground bud bank of caespitose grasses influences their ability to monopolize local resources and, hence, their genet fitness. Differences in bud production and outgrowth among tiller types within a genet and among species may explain co-occurrence of caespitose grasses. This study aimed to characterize genet bud-bank and tiller production and dynamics in two co-occurring species and compare their vegetative reproductive strategies. Bud-bank and tiller dynamics of Hesperostipa comata and Nassella viridula, dominant C3 caespitose grasses in the northern mixed-grass prairie of North America, were assessed throughout an annual cycle. The two species showed similar strategies, maintaining polycyclic tillers and thus creating mixed-age genet bud banks comprising multiple bud cohorts produced in different years. Vegetative tillers produced the majority of buds, whereas flowering tillers contributed little to the bud bank. Buds lived for at least 2 yr and were maintained in multiple developmental stages throughout the year. Because bud longevity rarely exceeded tiller longevity, tiller longevity drove turnover within the bud bank. Tiller population dynamics, more than bud production per tiller, determined the differential contribution of tiller types to the bud bank. Nassella viridula had higher bud production per tiller, a consistent annual tiller recruitment density, and greater longevity of buds on senesced and flowering tillers than H. comata. Co-occurring C3 caespitose grasses had similar bud-bank and tiller dynamics contributing to genet persistence but differed in bud characteristics that could affect genet longevity and species coexistence. © 2015 Botanical Society of America.

  20. Petunia as model for elucidating adventitious root formation and mycorrhizal symbiosis: at the nexus of physiology, genetics, microbiology and horticulture.

    PubMed

    Druege, Uwe; Franken, Philipp

    2018-05-17

    Adventitious root formation in cuttings and establishment of arbuscular mycorrhizal symbiosis reflect the enormous plasticity of plants and are key factors in the efficient and sustainable clonal propagation and production of ornamental crops. Based on the high importance of Petunia hybrida for the European and US annual bedding plant markets and its suitability as a model for basic plant sciences, petunia has been established as an experimental system for elucidating the molecular and physiological processes underlying adventitious root formation and mycorrhizal symbiosis. In the present review, we introduce the tools of the Petunia model system. Then, we discuss findings regarding the hormonal and metabolic control of adventitious rooting in the context of diverse environmental factors as well as findings on the function of arbuscular mycorrhiza related to nutrient uptake and resistance to root pathogens. Considering the recent publication of the genomes of the parental species of P. hybrida and other tools available in the petunia scientific community, we will outline the quality of petunia as a model for future system-oriented analysis of root development and function in the context of environmental and genetic control, which are at the heart of modern horticulture. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    PubMed

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number.

  2. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

    PubMed

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A

    2013-03-01

    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. In Vitro Propagation, Phytochemical Analysis, and Evaluation of Free Radical Scavenging Property of Scrophularia kakudensis Franch Tissue Extracts.

    PubMed

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2015-01-01

    The current study deals with in vitro propagation, antioxidant property estimation, and assessment of acacetin content in Scrophularia kakudensis Franch. Adventitious shoot induction was achieved from the nodal explant with the highest number of adventitious shoots per explant (17.4) on Murashige and Skoog's (MS) medium fortified with 2.0 mg·L(-1) 6-benzyladenine (BA) and 0.5 mg L(-1) indole-3-acetic acid (IAA). Maximum number of roots per plant (16.5) was noted in half strength MS medium supplemented with 0.5 mg·L(-1) IAA. The regenerated plants displayed successful survival ratio (95%) in the greenhouse. The highest content of acacetin, a pharmaceutically important flavonoid, was observed in the shoot extracts (in vitro: 32.83 µg·g(-1) FW; in vivo: 30.05 µg·g(-1) FW) followed by root extracts. Total phenol and flavonoid contents along with free radical scavenging assays revealed the occurrence of larger amount of antioxidants in shoot extract in comparison with callus and root extracts of S. kakudensis. Thus, the outcome of the present study can be highly beneficial for the germplasm conservation and commercial cultivation of S. kakudensis for therapeutic purposes.

  4. Carnation (Dianthus caryophylus L.).

    PubMed

    Nontaswatsri, Chalermsri; Fukai, Seiichi

    2006-01-01

    Carnation is a valuable crop for the cut flower industry and demand for new and improved varieties is growing. However, genetic transformation of carnations is currently limited because of a lack of efficient routine technique. In this chapter, we present an easy and effective protocol for gene transfer to carnation node explants and subsequent adventitious shoot regeneration. For high-adventitious shoot regeneration, node explants from first to third node of 5- to 8-cm long shoots were cultured on Murashige and Skoog (MS) medium, containing 1.0 mg/Lthidiazuron (TDZ), 0.1 mg/L alpha-napthalenoacetic acid (NAA), 20 g/L sucrose, and 2 g/L Gellan gum for 10 d. Then the explants were cut into 8 radial segments and subcultured onto MS medium, containing 1.0 mg/L BA, 0.1 mg/L NAA, 20 g/L sucrose and 2 g/L Gellan Gum. For effective genetic transformation, 3- to 5-d precultured node explants were submerged in an Agrobacerium suspension for 10 min, then cocultivated on filter paper soaked with water and 50 microM acetosyringone (AS). After cocultivation, the explants were cut into eight radial segments and subcultured onto selection medium until transformed shoots regenerated from the explants.

  5. Comparative ultrastructure of vallate, foliate and fungiform taste buds of golden Syrian hamster.

    PubMed

    Miller, R L; Chaudhry, A P

    1976-01-01

    A fine-structure study of the hamster fungiform, foliate and vallate taste buds was undertaken for comparative purposes. All three taste bud types shared in common composition of the dark cells, light cells, basal cells, nerve fibers and nerve endings and undifferentiated peripheral cells, but morphological difference existed among them. The foliate and vallate taste buds were quite similar in their ultrastructural morphology. Their dark cells displayed long apical necks, long apical microvilli, apical osmiophilic secretory granules and an abundant rough endoplasmic reticulum. The dark cells of the fungiform taste buds, however, showed no neck formation and lacked apical osmiophilic granules. They had short apical microvilli and relatively scant rough endoplasmic reticulum. There was no difference in the fine structure features of the light cells, basal cells and neural elements of different types of taste buds. Both light and dark cells were much more readily distinguishable in foliate and vallate buds than in fungiform buds at both light-and electron-microscopic levels. Foliate and vallate buds demonstrated homogeneous dense substance within the taste pores while fungiform pores were frequently empty. It is speculated that the differences in taste bud morphology may be due to their different lingual locations and/or may be a reflection of the differences in the inductive influences from different nerves. Furthermore, structural differences may be responsible for varying thresholds to different taste modalities.

  6. Tropical Storms Bud and Dera

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images.

    The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image.

    The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image.

    Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation.

    Each image covers a swath approximately 380 kilometers wide.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  7. The Budding Yeast Nucleus

    PubMed Central

    Taddei, Angela; Schober, Heiko; Gasser, Susan M.

    2010-01-01

    The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure. PMID:20554704

  8. Shooting and Hunting: Instructor's Guide.

    ERIC Educational Resources Information Center

    Smith, Julian W., Comp.

    The shooting and hunting manual, part of a series of books and pamphlets on outdoor education, explains shooting skills, hunting, and proper gun handling on the range and in the field. This manual should be supplemented and enriched by available references, facilities, and resources. It may be included in the community's educational and…

  9. Training Visual Control in Wheelchair Basketball Shooting

    ERIC Educational Resources Information Center

    Oudejans, Raoul R. D.; Heubers, Sjoerd; Ruitenbeek, Jean-Rene J. A. C.; Janssen, Thomas W. J.

    2012-01-01

    We examined the effects of visual control training on expert wheelchair basketball shooting, a skill more difficult than in regular basketball, as players shoot from a seated position to the same rim height. The training consisted of shooting with a visual constraint that forced participants to use target information as late as possible.…

  10. Quantitative anatomical study of taste buds in fungiform papillae of young and old Fischer rats.

    PubMed

    Mistretta, C M; Oakley, I A

    1986-05-01

    To determine if differences in neural taste responses relate to taste bud loss in old age, taste buds were counted in fungiform papillae of Fischer 344 rats aged 4 to 6 months, 20 to 24 months, and 30 to 37 months. Papillae anterior to the intermolar eminence on one half of the tongue were examined in serial sections. Presence or absence of a taste bud was noted and taste bud diameter was measured. Average percentages of papillae that contained a taste bud in the three groups were 99.6, 99.3, and 94.7%. This is a significant age-related difference but actual number of taste buds lost in the oldest rats was small. Taste bud diameter did not differ with age and general anatomical characteristics of buds were similar in all groups. Thus, anatomical observations on taste bud maintenance in rats over a wide age range, coupled with neurophysiological data, demonstrate that the integrity of the peripheral gustatory system is not altered greatly in old age.

  11. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning.

    PubMed

    Nagalakshmi, Vidya K; Yu, Jing

    2015-03-01

    The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney. © 2015 Wiley Periodicals, Inc.

  12. Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings.

    PubMed

    Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan; Zhou, Yuan

    2016-01-12

    Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known. The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1

  13. 50 CFR 20.23 - Shooting hours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.23 Shooting hours. No person shall take migratory game birds except during the hours open to shooting as prescribed in subpart K of this part and subpart...

  14. Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.

    PubMed

    Guagliardo, Nick A; Hill, David L

    2007-09-10

    Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (<1 mm) of the tongue. By 5 days after nerve transection taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used. (c) 2007 Wiley-Liss, Inc.

  15. Model of human immunodeficiency virus budding and self-assembly: Role of the cell membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan T.

    2008-11-01

    Budding from the plasma membrane of the host cell is an indispensable step in the life cycle of the human immunodeficiency virus (HIV), which belongs to a large family of enveloped RNA viruses, retroviruses. Unlike regular enveloped viruses, retrovirus budding happens concurrently with the self-assembly of the main retrovirus protein subunits (called Gag protein after the name of the genetic material that codes for this protein: Group-specific AntiGen) into spherical virus capsids on the cell membrane. Led by this unique budding and assembly mechanism, we study the free energy profile of retrovirus budding, taking into account the Gag-Gag attraction energy and the membrane elastic energy. We find that if the Gag-Gag attraction is strong, budding always proceeds to completion. During early stage of budding, the zenith angle of partial budded capsids, α , increases with time as α∝t1/2 . However, if the Gag-Gag attraction is weak, a metastable state of partial budding appears. The zenith angle of these partially spherical capsids is given by α0≃(τ2/κσ)1/4 in a linear approximation, where κ and σ are the bending modulus and the surface tension of the membrane, and τ is a line tension of the capsid proportional to the strength of Gag-Gag attraction. Numerically, we find α0<0.3π without any approximations. Using experimental parameters, we show that HIV budding and assembly always proceed to completion in normal biological conditions. On the other hand, by changing Gag-Gag interaction strength or membrane rigidity, it is relatively easy to tune it back and forth between complete budding and partial budding. Our model agrees reasonably well with experiments observing partial budding of retroviruses including HIV.

  16. Immunohistochemical Analysis of Human Vallate Taste Buds.

    PubMed

    Tizzano, Marco; Grigereit, Laura; Shultz, Nicole; Clary, Matthew S; Finger, Thomas E

    2015-11-01

    The morphology of the vallate papillae from postmortem human samples was investigated with immunohistochemistry. Microscopically, taste buds were present along the inner wall of the papilla, and in some cases in the outer wall as well. The typical taste cell markers PLCβ2, GNAT3 (gustducin) and the T1R3 receptor stain elongated cells in human taste buds consistent with the Type II cells in rodents. In the human tissue, taste bud cells that stain with Type II cell markers, PLCβ2 and GNAT3, also stain with villin antibody. Two typical immunochemical markers for Type III taste cells in rodents, PGP9.5 and SNAP25, fail to stain any taste bud cells in the human postmortem tissue, although these antibodies do stain numerous nerve fibers throughout the specimen. Car4, another Type III cell marker, reacted with only a few taste cells in our samples. Finally, human vallate papillae have a general network of innervation similar to rodents and antibodies directed against SNAP25, PGP9.5, acetylated tubulin and P2X3 all stain free perigemmal nerve endings as well as intragemmal taste fibers. We conclude that with the exception of certain molecular features of Type III cells, human vallate papillae share the structural, morphological, and molecular features observed in rodents. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Improved Shoot Regeneration, Salinity Tolerance and Reduced Fungal Susceptibility in Transgenic Tobacco Constitutively Expressing PR-10a Gene.

    PubMed

    Agarwal, Parinita; Dabi, Mitali; More, Prashant; Patel, Khantika; Jana, Kalyanashis; Agarwal, Pradeep K

    2016-01-01

    Plants in ecosystems are simultaneously exposed to abiotic and biotic stresses, which restrict plant growth and development. The complex responses to these stresses are largely regulated by plant hormones, which in turn, orchestrate the different biochemical and molecular pathways to maneuver stress tolerance. The PR-10 protein family is reported to be involved in defense regulation, stress response and plant growth and development. The JcPR-10a overexpression resulted in increased number of shoot buds in tobacco (Nicotiana tabacum), which could be due to high cytokinin to auxin ratio in the transgenics. The docking analysis shows the binding of three BAP molecules at the active sites of JcPR-10a protein. JcPR-10a transgenics showed enhanced salt tolerance, as was evident by increased germination rate, shoot and root length, relative water content, proline, soluble sugar and amino acid content under salinity. Interestingly, the transgenics also showed enhanced endogenous cytokinin level as compared to WT, which, further increased with salinity. Exposure of gradual salinity resulted in increased stomatal conductance, water use efficiency, photosynthesis rate and reduced transpiration rate. Furthermore, the transgenics also showed enhanced resistance against Macrophomina fungus. Thus, JcPR-10a might be working in co-ordination with cytokinin signaling in mitigating the stress induced damage by regulating different stress signaling pathways, leading to enhanced stress tolerance.

  18. Heterogeneity of fish taste bud ultrastructure as demonstrated in the holosteans Amia calva and Lepisosteus oculatus.

    PubMed Central

    Reutter, K; Boudriot, F; Witt, M

    2000-01-01

    Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct systematic groups and that this description is not representative of those taste buds in other main taxa of fishes, such as selachians, holosteans and dipnoans. Furthermore, it is not known how variable the micromorphologies of non-teleostean taste buds are. For this reason the taste buds of two holosteans, Lepisosteus oculatus and Amia calva, were investigated and compared. While in both species the taste buds are of the same shapes and sizes, the cellular components of their sensory epithelia differ: in Lepisosteus taste buds comprise two types of elongated light cells and one type of dark cells. In contrast, Amia taste buds contain only one type of light, but two types of dark elongated cells. Afferent synapses are common in the buds of both species, efferent synapses occur only in Lepisosteus taste buds. These differences show that even in the small group of holostean fishes the taste buds are differently organized. Consequently, a representative type of fish taste buds does not exist. PMID:11079403

  19. Heterogeneity of fish taste bud ultrastructure as demonstrated in the holosteans Amia calva and Lepisosteus oculatus.

    PubMed

    Reutter, K; Boudriot, F; Witt, M

    2000-09-29

    Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct systematic groups and that this description is not representative of those taste buds in other main taxa of fishes, such as selachians, holosteans and dipnoans. Furthermore, it is not known how variable the micromorphologies of non-teleostean taste buds are. For this reason the taste buds of two holosteans, Lepisosteus oculatus and Amia calva, were investigated and compared. While in both species the taste buds are of the same shapes and sizes, the cellular components of their sensory epithelia differ: in Lepisosteus taste buds comprise two types of elongated light cells and one type of dark cells. In contrast, Amia taste buds contain only one type of light, but two types of dark elongated cells. Afferent synapses are common in the buds of both species, efferent synapses occur only in Lepisosteus taste buds. These differences show that even in the small group of holostean fishes the taste buds are differently organized. Consequently, a representative type of fish taste buds does not exist.

  20. A School Shooting Plot Foiled

    ERIC Educational Resources Information Center

    Swezey, James A.; Thorp, Kimberly A.

    2010-01-01

    Dinkes, Cataldi, and Lin-Kelly (2007) claims that 78% of public schools reported one or more violent incidents during the 2005/2006 school year. School shootings are a rare but real threat on school campuses. Shootings at private schools are even less frequent with only a few recorded examples in the United States. This case study examines how a…

  1. Expression of aquaporin water channels in rat taste buds.

    PubMed

    Watson, Kristina J; Kim, Insook; Baquero, Arian F; Burks, Catherine A; Liu, Lidong; Gilbertson, Timothy A

    2007-06-01

    In order to gain insight into the molecular mechanisms that allow taste cells to respond to changes in their osmotic environment, we have used primarily immunocytochemical and molecular approaches to look for evidence of the presence of aquaporin-like water channels in taste cells. Labeling of isolated taste buds from the fungiform, foliate, and vallate papillae in rat tongue with antibodies against several of the aquaporins (AQPs) revealed the presence of AQP1, AQP2, and AQP5 in taste cells from these areas. AQP3 antibodies failed to label isolated taste buds from any of the papillae. There was an apparent difference in the regional localization of AQP labeling within the taste bud. Antibodies against AQP1 and AQP2 labeled predominantly the basolateral membrane, whereas the AQP5 label was clearly evident on both the apical and basolateral membranes of cells within the taste bud. Double labeling revealed that AQP1 and AQP2 labeled many, but not all, of the same taste cells. Similar double-labeling experiments with anti-AQP2 and anti-AQP5 clearly showed that AQP5 was expressed on or near the apical membranes whereas AQP2 was absent from this area. The presence of these 3 types of AQPs in taste buds but not in non-taste bud-containing epithelia was confirmed using reverse transcription-polymerase chain reaction. Experiments using patch clamp recording showed that the AQP inhibitor, tetraethylammonium, significantly reduced hypoosmotic-induced currents in rat taste cells. We hypothesize that the AQPs may play roles both in the water movement underlying compensatory mechanisms for changes in extracellular osmolarity and, in the case of AQP5 in particular, in the gustatory response to water.

  2. An Efficient Method for Adventitious Root Induction from Stem Segments of Brassica Species

    PubMed Central

    Srikanth, Sandhya; Choong, Tsui Wei; Yan, An; He, Jie; Chen, Zhong

    2016-01-01

    Plant propagation via in vitro culture is a very laborious and time-consuming process. The growth cycle of some of the crop species is slow even in the field and the consistent commercial production is hard to maintain. Enhanced methods of reduced cost, materials and labor significantly impact the research and commercial production of field crops. In our studies, stem-segment explants of Brassica species were found to generate adventitious roots (AR) in aeroponic systems in less than a week. As such, the efficiency of rooting from stem explants of six cultivar varieties of Brassica spp was tested without using any plant hormones. New roots and shoots were developed from Brassica alboglabra (Kai Lan), B. oleracea var. acephala (purple kale), B. rapa L. ssp. chinensis L (Pai Tsai, Nai Bai C, and Nai Bai T) explants after 3 to 5 days of growing under 20 ± 2°C cool root zone temperature (C-RZT) and 4 to 7 days in 30 ± 2°C ambient root zone temperature (A-RZT). At the base of cut end, anticlinal and periclinal divisions of the cambial cells resulted in secondary xylem toward pith and secondary phloem toward cortex. The continuing mitotic activity of phloem parenchyma cells led to a ring of conspicuous white callus. Root initials formed from the callus which in turn developed into ARs. However, B. rapa var. nipposinica (Mizuna) explants were only able to root in C-RZT. All rooted explants were able to develop into whole plants, with higher biomass obtained from plants that grown in C-RZT. Moreover, explants from both RZTs produced higher biomass than plants grown from seeds (control plants). Rooting efficiency was affected by RZTs and explant cuttings of donor plants. Photosynthetic CO2 assimilation rate (Asat) and stomatal conductance (gssat) were significantly differentiated between plants derived from seeds and explants at both RZTs. All plants in A-RZT had highest transpiration rates. PMID:27446170

  3. A Phenological Timetable of Oak Growth under Experimental Drought and Air Warming

    PubMed Central

    Kuster, Thomas M.; Dobbertin, Matthias; Günthardt-Goerg, Madeleine S.; Schaub, Marcus; Arend, Matthias

    2014-01-01

    Climate change is expected to increase temperature and decrease summer precipitation in Central Europe. Little is known about how warming and drought will affect phenological patterns of oaks, which are considered to possess excellent adaptability to these climatic changes. Here, we investigated bud burst and intra-annual shoot growth of Quercus robur, Q. petraea and Q. pubescens grown on two different forest soils and exposed to air warming and drought. Phenological development was assessed over the course of three growing seasons. Warming advanced bud burst by 1–3 days °C−1 and led to an earlier start of intra-annual shoot growth. Despite this phenological shift, total time span of annual growth and shoot biomass were not affected. Drought changed the frequency and intensity of intra-annual shoot growth and advanced bud burst in the subsequent spring of a severe summer drought by 1–2 days. After re-wetting, shoot growth recovered within a few days, demonstrating the superior drought tolerance of this tree genus. Our findings show that phenological patterns of oaks are modified by warming and drought but also suggest that ontogenetic factors and/or limitations of water and nutrients counteract warming effects on the biomass and the entire span of annual shoot growth. PMID:24586988

  4. Automated Sensing of Douglas Fir Bud-Burst

    NASA Astrophysics Data System (ADS)

    Lintz, H. E.; Kruger, A.; Wagner, D. A.; Tenney, I. J.

    2011-12-01

    The timing of plant biological events such as budburst in the spring can have major impacts on plant productivity and ecosystem carbon balance. While research efforts that address the timing of events is gaining considerable momentum, the technology available for sensing and recording the timing of events is limited, especially for trees. Thus, researchers often perform manual measurements, which can be time-consuming and labor-intensive. This has resulted in efforts such as Project BudBurst, a network of professional and volunteer observers across the United States that monitor plants as seasons change. Access to forest trees can be difficult during periods of greatest interest, such as when buds open in the spring. For example, high elevation, snow, and melting snow during the spring hamper access to trees in alpine regions. Researchers at Oregon State University and The University of Iowa are developing instrumentation for automating sensing of budburst in Douglas firs. While the instrumentation targets Douglas firs, it can find application in studying budburst in other species. We present an initial bud-burst sensor that uses optical techniques to sense bud opening. An optical fiber illuminates a target bud with modulated light, a second fiber detects, and guides reflect light to a photodetector and signal processing electronics. Changes in the reflected light indicate the budburst. The instrumentation exploits advances in microelectronics, particularly miniaturization and low power consumption, and uses advanced signal processing techniques such as lock-in detection. The instrumentation records the reflected light every 15 minutes on high-capacity, non-volatile Flash media. Power consumption is very low and sensors have an extrapolated, continuous operating time more than 9 months, suggesting their deployment in the fall, and retrieval in the following spring. We believe the sensor will enable a caliber of research not yet achievable owing to the difficulty of

  5. Compete Globally, Bud Locally

    PubMed Central

    Houk, Andrew R.; Millius, Arthur; Weiner, Orion D.

    2010-01-01

    How cells generate a single axis of polarity for mating, division, and movement is unknown. In this issue, Howell et al. (2009) use a synthetic biology approach to demonstrate that rapid competition for a soluble signaling component (Bem1) is essential to ensure a unique axis of polarity in budding yeast. PMID:19914160

  6. Rhabdovirus-like endogenous viral elements in the genome of Spodoptera frugiperda insect cells are actively transcribed: implications for adventitious virus detection

    PubMed Central

    Geisler, Christoph; Jarvis, Donald L.

    2016-01-01

    Spodoptera frugiperda (Sf) cell lines are used to produce several biologicals for human and veterinary use. Recently, it was discovered that all tested Sf cell lines are persistently infected with Sf-rhabdovirus, a novel rhabdovirus. As part of an effort to search for other adventitious viruses, we searched the Sf cell genome and transcriptome for sequences related to Sf-rhabdovirus. To our surprise, we found intact Sf-rhabdovirus N- and P-like ORFs, and partial Sf-rhabdovirus G- and L-like ORFs. The transcribed and genomic sequences matched, indicating the transcripts were derived from the genomic sequences. These appear to be endogenous viral elements (EVEs), which result from the integration of partial viral genetic material into the host cell genome. It is theoretically impossible for the Sf-rhabdovirus-like EVEs to produce infectious virus particles as 1) they are disseminated across 4 genomic loci, 2) the G and L ORFs are incomplete, and 3) the M ORF is missing. Our finding of transcribed virus-like sequences in Sf cells underscores that MPS-based searches for adventitious viruses in cell substrates used to manufacture biologics should take into account both genomic and transcribed sequences to facilitate the identification of transcribed EVE's, and to avoid false positive detection of replication-competent adventitious viruses. PMID:27236849

  7. On the growth and form of shoots

    PubMed Central

    Chelakkot, Raghunath

    2017-01-01

    Growing plant stems and shoots exhibit a variety of shapes that embody growth in response to various stimuli. Building on experimental observations, we provide a quantitative biophysical theory for these shapes by accounting for the inherent observed passive and active effects: (i) the active controllable growth response of the shoot in response to its orientation relative to gravity, (ii) proprioception, the shoot's growth response to its own observable current shape, and (iii) the passive elastic deflection of the shoot due to its own weight, which determines the current shape of the shoot. Our theory separates the sensed and actuated variables in a growing shoot and results in a morphospace diagram in terms of two dimensionless parameters representing a scaled local active gravitropic sensitivity, and a scaled passive elastic sag. Our computational results allow us to explain the variety of observed transient and steady morphologies with effective positive, negative and even oscillatory gravitropic behaviours, without the need for ad hoc complex spatio-temporal control strategies in terms of these parameters. More broadly, our theory is applicable to the growth of soft, floppy organs where sensing and actuation are dynamically coupled through growth processes via shape. PMID:28330990

  8. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.

    PubMed

    Takeda, Norifumi; Jain, Rajan; Li, Deqiang; Li, Li; Lu, Min Min; Epstein, Jonathan A

    2013-01-01

    Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.

  9. Mass Shootings, Mental Illness, and Gun Control.

    PubMed

    Philpott-Jones, Sean

    2018-03-01

    In the wake of the Stoneman Douglas School shooting, Republican and Democratic leaders-like the American electorate they represent-remain sharply divided in their responses to gun violence. They are united in their condemnation of these mass shootings, but they disagree about whether stricter or looser gun control laws are the answer. Those on the right side of the political aisle suggest that the issue is one of mental illness rather than gun control. Conversely, those who are more liberal or progressive in their political learnings are quick to condemn attempts to reframe the issue of mass shootings as a mental health problem. Both sides are wrong. Mass shootings are indeed partially a mental health problem, albeit one poorly addressed by our current laws and policies. But the solution to mass shootings also needs to consider strategies that may reduce gun violence in general. © 2018 The Hastings Center.

  10. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  11. Effects of streptozotocin-induced diabetes on taste buds in rat vallate papillae.

    PubMed

    Pai, Man-Hui; Ko, Tsui-Ling; Chou, Hsiu-Chu

    2007-01-01

    Some studies have documented taste changes in patients with diabetes mellitus (DM). In order to understand the relationships between taste disorders caused by DM and the innervation and morphologic changes in the taste buds, we studied the vallate papillae and their taste buds in rats with DM. DM was induced in these rats with streptozotocin (STZ), which causes the death of beta cells of the pancreas. The rats were sacrificed and the vallate papillae were dissected for morphometric and quantitative immunohistochemical analyses. The innervations of the vallate papillae and taste buds in diabetic and control rats were detected using immunohistochemistry employing antibodies directed against protein gene product 9.5 (PGP 9.5) and calcitonin gene-related peptide (CGRP). The results showed that PGP 9.5- and CGRP-immunoreactive nerve fibers in the trench wall of diabetic vallate papillae, as well as taste cells in the taste buds, gradually decreased both intragemmally and intergemmally. The morphometry revealed no significant difference in papilla size between the control and diabetic groups, but there were fewer taste buds per papilla (per animal). The quantification of innervation in taste buds of the diabetic rats supported the visual assessment of immunohistochemical labeling, that the innervation of taste cells was significantly reduced in diabetic animals. These findings suggest that taste impairment in diabetic subjects may be caused by neuropathy defects and/or morphological changes in the taste buds.

  12. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings.

    PubMed

    Sánchez-García, Ana Belén; Ibáñez, Sergio; Cano, Antonio; Acosta, Manuel; Pérez-Pérez, José Manuel

    2018-01-01

    Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.). To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation.

  13. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings

    PubMed Central

    Cano, Antonio; Acosta, Manuel

    2018-01-01

    Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.). To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation. PMID:29709027

  14. Excessive exposure stimulates epicormic branching in young northern hardwoods

    Treesearch

    Barton M. Blum

    1963-01-01

    Sudden and excessive exposure of northern hardwood trees often causes growth responses that degrade tree quality, injuries that lead to tree deterioration, or both. The most sensitive and visible tree reaction to increased exposure is the formation of epicormic branches. Such branches may arise along the tree bole from either dormant or adventitious buds in response to...

  15. Loss of membranous Ep-CAM in budding colorectal carcinoma cells.

    PubMed

    Gosens, Marleen J E M; van Kempen, Léon C L; van de Velde, Cornelis J H; van Krieken, J Han J M; Nagtegaal, Iris D

    2007-02-01

    Tumor budding is a histological feature that reflects loss of adhesion of tumor cells and is associated with locoregional metastasis of colorectal carcinoma. Although nuclear localization of beta-catenin is associated with tumor budding, the molecular mechanism remains largely elusive. In this study, we hypothesize that the epithelial cell adhesion molecule (Ep-CAM) is involved in tumor budding. In order to address this question, we performed immunohistochemistry on Ep-CAM using three different antibodies (monoclonal antibodies Ber-ep4 and 311-1K1 and a polyclonal antibody) and a double staining on beta-catenin and Ep-CAM. In addition, Ep-CAM mRNA was monitored with mRNA in situ hybridization. Subsequently, we determined the effect of Ep-CAM staining patterns on tumor spread in rectal cancer. In contrast to the tumor mass, budding cells of colorectal carcinoma displayed lack of membranous but highly increased cytoplasmic Ep-CAM staining and nuclear translocation of beta-catenin. mRNA in situ hybridization suggested no differences in Ep-CAM expression between the invasive front and the tumor mass. Importantly, reduced Ep-CAM staining at the invasive margin of rectal tumor specimens (n=133) correlated significantly with tumor budding, tumor grade and an increased risk of local recurrence (P=0.001, P=0.04 and P=0.03, respectively). These data demonstrate abnormal processing of Ep-CAM at the invasive margin of colorectal carcinomas. Our observations indicate that loss of membranous Ep-CAM is associated with nuclear beta-catenin localization and suggest that this contributes to reduced cell-cell adhesions, increased migratory potential and tumor budding.

  16. Bud gall midges - potential invaders on larches in North America

    Treesearch

    Yuri N. Baranchikov

    2007-01-01

    Larch bud gall midges (Diptera: Cecidomyiidae) form a specialized group of gall insects inhabiting buds of larch (Larix) in the northern Palaearctic Region. Currently there are four described species in this group. Dasineura kellneri Henschel is found in Central Europe and infests Larix decidua; D....

  17. Arenavirus budding resulting from viral-protein-associated cell membrane curvature

    PubMed Central

    Schley, David; Whittaker, Robert J.; Neuman, Benjamin W.

    2013-01-01

    Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations. PMID:23864502

  18. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid.

    PubMed

    Aihara, Eitaro; Mahe, Maxime M; Schumacher, Michael A; Matthis, Andrea L; Feng, Rui; Ren, Wenwen; Noah, Taeko K; Matsu-ura, Toru; Moore, Sean R; Hong, Christian I; Zavros, Yana; Herness, Scott; Shroyer, Noah F; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A; Montrose, Marshall H

    2015-11-24

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5(+)) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5(+) cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration.

  19. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid

    PubMed Central

    Aihara, Eitaro; Mahe, Maxime M.; Schumacher, Michael A.; Matthis, Andrea L.; Feng, Rui; Ren, Wenwen; Noah, Taeko K.; Matsu-ura, Toru; Moore, Sean R.; Hong, Christian I.; Zavros, Yana; Herness, Scott; Shroyer, Noah F.; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A.; Montrose, Marshall H.

    2015-01-01

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5+) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5+ cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration. PMID:26597788

  20. Distribution, Innervation, and Cellular Organization of Taste Buds in the Sea Catfish, Plotosus japonicus.

    PubMed

    Nakamura, Tatsufumi; Matsuyama, Naoki; Kirino, Masato; Kasai, Masanori; Kiyohara, Sadao; Ikenaga, Takanori

    2017-01-01

    The gustatory system of the sea catfish Plotosus japonicus, like that of other catfishes, is highly developed. To clarify the details of the morphology of the peripheral gustatory system of Plotosus, we used whole-mount immunohistochemistry to investigate the distribution and innervation of the taste buds within multiple organs including the barbels, oropharyngeal cavity, fins (pectoral, dorsal, and caudal), and trunk. Labeled taste buds could be observed in all the organs examined. The density of the taste buds was higher along the leading edges of the barbels and fins; this likely increases the chance of detecting food. In all the fins, the taste buds were distributed in linear arrays parallel to the fin rays. Labeling of nerve fibers by anti-acetylated tubulin antibody showed that the taste buds within each sensory field are innervated in different ways. In the barbels, large nerve bundles run along the length of the organ, with fascicles branching off to innervate polygonally organized groups of taste buds. In the fins, nerve bundles run along the axis of fin rays to innervate taste buds lying in a line. In each case, small fascicles of fibers branch from large bundles and terminate within the basal portions of the taste buds. Serotonin immunohistochemistry demonstrated that most of the taste buds in all the organs examined contained disk-shaped serotonin-immunopositive cells in their basal region. This indicates a similar organization of the taste buds, in terms of the existence of serotonin-immunopositive basal cells, across the different sensory fields in this species. © 2017 S. Karger AG, Basel.

  1. Efficient budding of the tacaribe virus matrix protein z requires the nucleoprotein.

    PubMed

    Groseth, Allison; Wolff, Svenja; Strecker, Thomas; Hoenen, Thomas; Becker, Stephan

    2010-04-01

    The Z protein has been shown for several arenaviruses to serve as the viral matrix protein. As such, Z provides the principal force for the budding of virus particles and is capable of forming virus-like particles (VLPs) when expressed alone. For most arenaviruses, this activity has been shown to be linked to the presence of proline-rich late-domain motifs in the C terminus; however, for the New World arenavirus Tacaribe virus (TCRV), no such motif exists within Z. It was recently demonstrated that while TCRV Z is still capable of functioning as a matrix protein to induce the formation of VLPs, neither its ASAP motif, which replaces a canonical PT/SAP motif in related viruses, nor its YxxL motif is involved in budding, leading to the suggestion that TCRV uses a novel budding mechanism. Here we show that in comparison to its closest relative, Junin virus (JUNV), TCRV Z buds only weakly when expressed in isolation. While this budding activity is independent of the ASAP or YxxL motif, it is significantly enhanced by coexpression with the nucleoprotein (NP), an effect not seen with JUNV Z. Interestingly, both the ASAP and YxxL motifs of Z appear to be critical for the recruitment of NP into VLPs, as well as for the enhancement of TCRV Z-mediated budding. While it is known that TCRV budding remains dependent on the endosomal sorting complex required for transport, our findings provide further evidence that TCRV uses a budding mechanism distinct from that of other known arenaviruses and suggest an essential role for NP in this process.

  2. Aeroponics for adventitious rhizogenesis in evergreen haloxeric tree Tamarix aphylla (L.) Karst.: influence of exogenous auxins and cutting type.

    PubMed

    Sharma, Udit; Kataria, Vinod; Shekhawat, N S

    2018-02-01

    Tamarix aphylla (L.) Karst., a drought resistant halophyte tree, is an agroforestry species which can be used for reclamation of waterlogged saline and marginal lands. Due to very low seed viability and unsuitable conditions for seed germination, the tree is becoming rare in Indian Thar desert. Present study concerns the evaluation of aeroponics technique for vegetative propagation of T. aphylla . Effect of various exogenous auxins (indole-3-acetic acid, indole-3-butyric acid, naphthalene acetic acid) at different concentrations (0.0, 1.0, 2.0, 3.0, 5.0, 10.0 mg l -1 ) was examined for induction of adventitious rooting and other morphological features. Among all three auxins tested individually, maximum rooting response (79%) was observed with IBA 2.0 mg l -1 . However, stem cuttings treated with a combination of auxins (2.0 mg l -1 IBA and 1.0 mg l -1 IAA) for 15 min resulted in 87% of rooting response. Among three types of stem cuttings (apical shoot, newly sprouted cuttings, mature stem cuttings), maximum rooting (~ 90%) was observed on mature stem cuttings. Number of roots and root length were significantly higher in aeroponically rooted stem cuttings as compared to stem cuttings rooted in soil conditions. Successfully rooted and sprouted plants were transferred to polybags with 95% survival rate. This is the first report on aeroponic culture of Tamarix aphylla which can be utilized in agroforestry practices, marginal land reclamation and physiological studies.

  3. Development of disease-resistant marker-free tomato by R/RS site-specific recombination.

    PubMed

    Khan, Raham Sher; Nakamura, Ikuo; Mii, Masahiro

    2011-06-01

    The selection marker genes, imparting antibiotic or herbicide resistance, in the final transgenics have been criticized by the public and considered a hindrance in their commercialization. Multi-auto-transformation (MAT) vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators (PGRs). In the study reported here, isopentenyltransferase (ipt) gene was used as a selection marker and wasabi defensin (WD) gene, isolated from Wasabia japonica as a target gene. WD was cloned from the binary vector, pEKH-WD to an ipt-type MAT vector, pMAT21 by gateway cloning and transferred to Agrobacterium tumefaciens strain EHA105. Infected cotyledons of tomato cv. Reiyo were cultured on PGR- and antibiotic-free MS medium. Adventitious shoots were developed by the explants infected with the pMAT21/wasabi defensin. The same PGR- and antibiotic-free MS medium was used in subcultures of the adventitious shoot lines (ASLs) to produce ipt and normal shoots. Approximately, 6 months after infection morphologically normal shoots were produced. Molecular analyses of the developed shoots confirmed the integration of gene of interest (WD) and excision of the selection marker (ipt). Expression of WD was confirmed by Northern blot and Western blot analyses. The marker-free transgenic plants exhibited enhanced resistance against Botrytis cinerea (gray mold), Alternaria solani (early blight), Fusarium oxysporum (Fusarium wilt) and Erysiphe lycopersici (powdery mildew).

  4. Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle

    PubMed Central

    Chen, Katherine C.; Csikasz-Nagy, Attila; Gyorffy, Bela; Val, John; Novak, Bela; Tyson, John J.

    2000-01-01

    The molecular machinery of cell cycle control is known in more detail for budding yeast, Saccharomyces cerevisiae, than for any other eukaryotic organism. In recent years, many elegant experiments on budding yeast have dissected the roles of cyclin molecules (Cln1–3 and Clb1–6) in coordinating the events of DNA synthesis, bud emergence, spindle formation, nuclear division, and cell separation. These experimental clues suggest a mechanism for the principal molecular interactions controlling cyclin synthesis and degradation. Using standard techniques of biochemical kinetics, we convert the mechanism into a set of differential equations, which describe the time courses of three major classes of cyclin-dependent kinase activities. Model in hand, we examine the molecular events controlling “Start” (the commitment step to a new round of chromosome replication, bud formation, and mitosis) and “Finish” (the transition from metaphase to anaphase, when sister chromatids are pulled apart and the bud separates from the mother cell) in wild-type cells and 50 mutants. The model accounts for many details of the physiology, biochemistry, and genetics of cell cycle control in budding yeast. PMID:10637314

  5. Variation of maximum tree height and annual shoot growth of Smith fir at various elevations in the Sygera Mountains, southeastern Tibetan Plateau.

    PubMed

    Wang, Yafeng; Čufar, Katarina; Eckstein, Dieter; Liang, Eryuan

    2012-01-01

    Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range.

  6. Development of guayule (Parthenium argentatum) research in cell culture

    NASA Technical Reports Server (NTRS)

    Ball, E. A.

    1981-01-01

    Utilizing the lateral buds of known high rubber producing plants as explants in culture medium specifically designed to engender shoot development and to prevent callus formation, unlimited numbers of replicate plants can be produced. Each has the same genotype as the parent. This procedure has long been used to rid plants of virus, the latter generally does not occur in the embryonic tissues of the bud; it also, by virtue of its axenic nature, eliminates all microorganisms characteristic of the parent plant. Auxins were found essential to callus formation, but since the latter is known to bring about chromosomal aberrations, it was avoided. The cytokinin benzylaminopurine strongly stimulated shoot growth, and the number of regenerated buds on the inoculum was proportional to its concentration. These buds produced shoots several centimeters in length which were caused to root on medium containing indolebutyric acid. Transferred to the septic condition of soil, the plantlets were gradually brought into full sunlight where they showed a brief vegetative growth with production of mature leaves, and flowered.

  7. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  8. Innervation of taste buds revealed with Brainbow-labeling in mouse.

    PubMed

    Zaidi, Faisal N; Cicchini, Vanessa; Kaufman, Daniel; Ko, Elizabeth; Ko, Abraham; Van Tassel, Heather; Whitehead, Mark C

    2016-12-01

    Nerve fibers that surround and innervate the taste bud were visualized with inherent fluorescence using Brainbow transgenic mice that were generated by mating the founder line L with nestin-cre mice. Multicolor fluorescence revealed perigemmal fibers as branched within the non-taste epithelium and ending in clusters of multiple rounded swellings surrounding the taste pore. Brainbow-labeling also revealed the morphology and branching pattern of single intragemmal fibers. These taste bud fibers frequently innervated both the peripheral bud, where immature gemmal cells are located, and the central bud, where mature, differentiated cells are located. The fibers typically bore preterminal and terminal swellings, growth cones with filopodia, swellings, and rounded retraction bulbs. These results establish an anatomical substrate for taste nerve fibers to contact and remodel among receptor cells at all stages of their differentiation, an interpretation that was supported by staining with GAP-43, a marker for growing fibers and growth cones. © 2016 Anatomical Society.

  9. Factors affecting in vitro plant regeneration of the critically endangered Mediterranean knapweed ( Centaurea tchihatcheffii Fisch et. Mey)

    NASA Astrophysics Data System (ADS)

    Ozel, Cigdem Alev; Khawar, Khalid Mahmood; Mirici, Semra; Ozcan, Sebahattin; Arslan, Orhan

    2006-10-01

    Habitat destruction has resulted in the extinction of many plant species from the earth, and many more face extinction. Likely, the annual endemic Mediterranean knapweed ( Centaurea tchihatcheffii) growing in the Golbasi district of Ankara, Turkey is facing extinction and needs urgent conservation. Plant tissue culture, a potentially useful technique for ex situ multiplication, was used for the restoration of this ill-fated plant through seed germination, micropropagation from stem nodes, and adventitious shoot regeneration from immature zygotic embryos. The seeds were highly dormant and very difficult to germinate. No results were obtained from the micropropagation of stem nodes. However, immature zygotic embryos showed the highest adventitious shoot regeneration on Murashige and Skoog (MS) medium, containing 1 mg l-1 kinetin and 0.25 mg l-1 NAA. Regenerated shoots were best rooted on MS medium containing 1 mg l-1 IBA and transferred to the greenhouse for flowering and seed set. As such, the present work is the first record of in vitro propagation of critically endangered C. tchihatcheffii, using immature zygotic embryos, and is a step forward towards conservation of this indigenous species.

  10. Network model of chemical-sensing system inspired by mouse taste buds.

    PubMed

    Tateno, Katsumi; Igarashi, Jun; Ohtubo, Yoshitaka; Nakada, Kazuki; Miki, Tsutomu; Yoshii, Kiyonori

    2011-07-01

    Taste buds endure extreme changes in temperature, pH, osmolarity, so on. Even though taste bud cells are replaced in a short span, they contribute to consistent taste reception. Each taste bud consists of about 50 cells whose networks are assumed to process taste information, at least preliminarily. In this article, we describe a neural network model inspired by the taste bud cells of mice. It consists of two layers. In the first layer, the chemical stimulus is transduced into an irregular spike train. The synchronization of the output impulses is induced by the irregular spike train at the second layer. These results show that the intensity of the chemical stimulus is encoded as the degree of the synchronization of output impulses. The present algorithms for signal processing result in a robust chemical-sensing system.

  11. Shooting Mechanisms in Nature: A Systematic Review.

    PubMed

    Sakes, Aimée; van der Wiel, Marleen; Henselmans, Paul W J; van Leeuwen, Johan L; Dodou, Dimitra; Breedveld, Paul

    2016-01-01

    In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these mechanisms fulfill. We systematically searched the literature using Scopus and Web of Knowledge to retrieve articles about solid projectiles that either are produced in the body of the organism or belong to the body and undergo a ballistic phase. The shooting mechanisms were categorized based on the energy management prior to and during shooting. Shooting mechanisms were identified with projectile masses ranging from 1·10-9 mg in spores of the fungal phyla Ascomycota and Zygomycota to approximately 10,300 mg for the ballistic tongue of the toad Bufo alvarius. The energy for shooting is generated through osmosis in fungi, plants, and animals or muscle contraction in animals. Osmosis can be induced by water condensation on the system (in fungi), or water absorption in the system (reaching critical pressures up to 15.4 atmospheres; observed in fungi, plants, and animals), or water evaporation from the system (reaching up to -197 atmospheres; observed in plants and fungi). The generated energy is stored as elastic (potential) energy in cell walls in fungi and plants and in elastic structures in animals, with two exceptions: (1) in the momentum catapult of Basidiomycota the energy is stored in a stalk (hilum) by compression of the spore and droplets and (2) in Sphagnum energy is mainly stored in compressed air. Finally, the stored energy is transformed into kinetic energy of the projectile using a catapult mechanism delivering up to 4,137 J/kg in the osmotic shooting mechanism in cnidarians and 1,269 J/kg in the muscle-powered appendage strike of the mantis shrimp Odontodactylus scyllarus. The launch accelerations range from 6.6g in the frog Rana pipiens to 5,413,000g in cnidarians, the

  12. Greater bud outgrowth of Bromus inermis than Pascopyrum smithii under multiple environmental conditions

    Treesearch

    Jacqueline P. Ott; Jack L. Butler; Yuping Rong; Lan. Xu

    2017-01-01

    Tiller recruitment of perennial grasses in mixed-grass prairie primarily occurs from belowground buds. Environmental conditions, such as temperature, soil moisture and grazing can affect bud outgrowth of both invasive and native perennial grasses. Differential bud outgrowth responses of native and invasive species to climate change and grazing could alter...

  13. Aspects of vertebrate gustatory phylogeny: morphology and turnover of chick taste bud cells.

    PubMed

    Ganchrow, J R; Ganchrow, D; Royer, S M; Kinnamon, J C

    1993-10-01

    The taste bud is a receptor form observed across vertebrates. The present report compares chick taste buds to those of other vertebrates using light and electron microscopy. Unlike mammals, but common to many modern avians, the dorsal surface of chick anterior tongue lacks taste papillae and taste buds. Ultrastructurally, chick buds located in the anterior floor of the mouth (as in some reptiles and amphibians) and palate contain dark, intermediate, light, and basal cell types. Dark, intermediate, and light cells extend microvilli into intragemmal lumina and pores communicating with the oral cavity. As specialized features, dark cell apices lack dense granules and exhibit short microvilli relative to light and intermediate cells. Dark cell cytoplasmic fingers envelop intragemmal nerve fibers and cells as in other species, and sometimes contain abundant clear vesicles. Nerve profile expansions often are located adjacent to dark, intermediate, and light cell nuclei. Classical afferent synaptic contacts are rarely observed. Taste cell turnover is suggested by mitotic and degenerating figures in chick buds. In addition, tritiated thymidine injected into hatchlings, whose anterior mandibular oral taste bud population approximates that in adults, reveals a turnover rate of about 4.5 days. This is about half that observed in altricial mammals, reflecting a species difference or developmental factor in precocial avians. It is concluded that chick taste buds exhibit morphologic features common to other vertebrate buds with specializations reflecting the influences of niche, glandular relations, and/or age.

  14. Three-dimensional modeling of tea-shoots using images and models.

    PubMed

    Wang, Jian; Zeng, Xianyin; Liu, Jianbing

    2011-01-01

    In this paper, a method for three-dimensional modeling of tea-shoots with images and calculation models is introduced. The process is as follows: the tea shoots are photographed with a camera, color space conversion is conducted, using an improved algorithm that is based on color and regional growth to divide the tea shoots in the images, and the edges of the tea shoots extracted with the help of edge detection; after that, using the divided tea-shoot images, the three-dimensional coordinates of the tea shoots are worked out and the feature parameters extracted, matching and calculation conducted according to the model database, and finally the three-dimensional modeling of tea-shoots is completed. According to the experimental results, this method can avoid a lot of calculations and has better visual effects and, moreover, performs better in recovering the three-dimensional information of the tea shoots, thereby providing a new method for monitoring the growth of and non-destructive testing of tea shoots.

  15. A Fate Map of the Murine Pancreas Buds Reveals a Multipotent Ventral Foregut Organ Progenitor

    PubMed Central

    Angelo, Jesse R.; Guerrero-Zayas, Mara-Isel; Tremblay, Kimberly D.

    2012-01-01

    The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2–4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification. PMID:22815796

  16. Role of the ectonucleotidase NTPDase2 in taste bud function

    PubMed Central

    Vandenbeuch, Aurelie; Anderson, Catherine B.; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C.; Finger, Thomas E.; Kinnamon, Sue C.

    2013-01-01

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses. PMID:23959882

  17. Role of the ectonucleotidase NTPDase2 in taste bud function.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C; Finger, Thomas E; Kinnamon, Sue C

    2013-09-03

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses.

  18. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium

    PubMed Central

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J.; Klein, Ophir D.; Barlow, Linda A.

    2014-01-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. PMID:24993944

  19. Taste buds and nerve fibers in the rat larynx: an ultrastructural and immunohistochemical study.

    PubMed

    Nishijima, Kazutoshi; Atoji, Yasuro

    2004-09-01

    We investigated the rat laryngeal taste buds and their innervation by electron microscopy and immunohistochemical methods. Taste buds were densely arranged in the surface facing the laryngeal cavity of the epiglottis, the aryepiglottic fold, and the cuneiform process of the arytenoid cartilages. The cells of the buds were classified into types I, II, III, and basal cells, the ultrastucture of which was almost the same as that previously reported in lingual taste buds. The type III cells that had synaptic contacts with nerve fibers were considered to be sensory cells. Immunohistochemical analysis revealed thick calbindin D28k-immunoreactive fibers and thin varicose fibers immunoreactive for calcitonin gene-related peptide or substance P in and around the taste bud. Serotonin-immunoreactive cells were also observed here. The results revealed the innervation pattern of laryngeal taste buds to be the same as that in lingual taste buds. Carbonic anhydrase (CA) is known to catalyze the hydration of CO2 and dehydration of H2CO3, and seems to be essential in CO2 reception. Immunoreactivity for CAI was detected in slender cells and that for CAIII was observed in barrel-like cells in the laryngeal taste buds. The pH-sensitive inward rectifier K+ (Kir) channel in the cell membrane may be involved in CO2 reception as well. CAII-reactive cells were also reactive to Kir4.1, PGP 9.5 and serotonin. Our results indicated that CAII and Kir4.1 are located in type III cells of the laryngeal taste buds, and supported the idea that the buds may be involved in the recognition of CO2.

  20. Climatic control of bud burst in young seedlings of nine provenances of Norway spruce.

    PubMed

    Søgaard, Gunnhild; Johnsen, Oystein; Nilsen, Jarle; Junttila, Olavi

    2008-02-01

    Detailed knowledge of temperature effects on the timing of dormancy development and bud burst will help evaluate the impacts of climate change on forest trees. We tested the effects of temperature applied during short-day treatment, duration of short-day treatment, duration of chilling and light regime applied during forcing on the timing of bud burst in 1- and 2-year-old seedlings of nine provenances of Norway spruce (Picea abies (L.) Karst.). High temperature during dormancy induction, little or no chilling and low temperature during forcing all delayed dormancy release but did not prevent bud burst or growth onset provided the seedlings were forced under long-day conditions. Without chilling, bud burst occurred in about 20% of seedlings kept in short days at 12 degrees C, indicating that young Norway spruce seedlings do not exhibit true bud dormancy. Chilling hastened bud burst and removed the long photoperiod requirement, but the effect of high temperature applied during dormancy induction was observed even after prolonged chilling. Extension of the short-day treatment from 4 to 8 or 12 weeks hastened bud burst. The effect of treatments applied during dormancy development was larger than that of provenance; in some cases no provenance effect was detected, but in 1-year-old seedlings, time to bud burst decreased linearly with increasing latitude of origin. Differences among provenances were complicated by different responses of some origins to light conditions under long-day forcing. In conclusion, timing of bud burst in Norway spruce seedlings is significantly affected by temperature during bud set, and these effects are modified by chilling and environmental conditions during forcing.

  1. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors.

    PubMed

    Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E

    2013-03-06

    Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.

  2. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors

    PubMed Central

    Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E.

    2013-01-01

    Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates. PMID:23466675

  3. miRNA and Degradome Sequencing Reveal miRNA and Their Target Genes That May Mediate Shoot Growth in Spur Type Mutant “Yanfu 6”

    PubMed Central

    Song, Chunhui; Zhang, Dong; Zheng, Liwei; Zhang, Jie; Zhang, Baojuan; Luo, Wenwen; Li, Youmei; Li, Guangfang; Ma, Juanjuan; Han, Mingyu

    2017-01-01

    The spur-type growth habit in apple trees is characterized by short internodes, increased number of fruiting spurs, and compact growth that promotes flowering and facilitates management practices, such as pruning. The molecular mechanisms responsible for regulating spur-type growth have not been elucidated. In the present study, miRNAs and the expression of their potential target genes were evaluated in shoot tips of “Nagafu 2” (CF) and spur-type bud mutation “Yanfu 6” (YF). A total of 700 mature miRNAs were identified, including 202 known apple miRNAs and 498 potential novel miRNA candidates. A comparison of miRNA expression in CF and YF revealed 135 differentially expressed genes, most of which were downregulated in YF. YF also had lower levels of GA, ZR, IAA, and ABA hormones, relative to CF. Exogenous applications of GA promoted YF shoot growth. Based on the obtained results, a regulatory network involving plant hormones, miRNA, and their potential target genes is proposed for the molecular mechanism regulating the growth of YF. miRNA164, miRNA166, miRNA171, and their potential targets, and associated plant hormones, appear to regulate shoot apical meristem (SAM) growth. miRNA159, miRNA167, miRNA396, and their potential targets, and associated plant hormones appear to regulate cell division and internode length. This study provides a foundation for further studies designed to elucidate the mechanism underlying spur-type apple architecture. PMID:28424721

  4. Water Status Related Root-to-Shoot Communication Regulates the Chilling Tolerance of Shoot in Cucumber (Cucumis sativus L.) Plants.

    PubMed

    Zhang, Zi-Shan; Liu, Mei-Jun; Gao, Hui-Yuan; Jin, Li-Qiao; Li, Yu-Ting; Li, Qing-Ming; Ai, Xi-Zhen

    2015-10-16

    Although root-to-shoot communication has been intensively investigated in plants under drought, few studies have examined root-to-shoot communication under chilling. Here we explored whether root-to-shoot communication contributes to the chilling-light tolerance of cucumber shoots and clarified the key signal involves in this communication. After leaf discs chilling-light treatment, the photoinhibitions of Photosystem I (PSI) and Photosystem II (PSII) were similar in leaf discs of two cucumber varieties (JY-3 and JC-4). When the whole plants, including roots, were chilled under light, the photosynthetic performances in JC-4 leaves decreased more seriously than that in JY-3 leaves. However, when the water status of leaves was maintained by warming roots or floating the attached leaves on water, the PSII activity and amount of PSI in the leaves of the two varieties were similar after chilling-light treatment. In addition, the differences of PSII activities and amount of PSI between the two varieties under whole plant chilling-light treatment were independent of ABA pretreatment. Above results indicate that (1) the better water status in leaves under chilling contributes to the higher chilling tolerance of JY-3; (2) the water status, rather than an ABA signal, dominates root-to-shoot communication under chilling and the chilling tolerance of cucumber shoot.

  5. Epicormic buds in trees: a review of bud establishment, development and dormancy release

    Treesearch

    Andrew R. ​Meier; Michael R. Saunders; Charles H. Michler

    2012-01-01

    The formation of epicormic sprouts on the boles of trees is a phenomenon that has, until recently, been poorly understood. Renewed interest in the topic in the last two decades has led to significant advances in our knowledge of the subject, especially in regard to bud anatomy, morphology and ontogeny. There exists, however, no comprehensive synthesis of results from...

  6. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings.

    PubMed

    Li, Shi-Weng; Leng, Yan; Shi, Rui-Fang

    2017-02-17

    Hydrogen peroxide (H 2 O 2 ) has been known to function as a signalling molecule involved in the modulation of various physiological processes in plants. H 2 O 2 has been shown to act as a promoter during adventitious root formation in hypocotyl cuttings. In this study, RNA-Seq was performed to reveal the molecular mechanisms underlying H 2 O 2 -induced adventitious rooting. RNA-Seq data revealed that H 2 O 2 treatment greatly increased the numbers of clean reads and expressed genes and abundance of gene expression relative to the water treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that a profound change in gene function occurred in the 6-h H 2 O 2 treatment and that H 2 O 2 mainly enhanced gene expression levels at the 6-h time point but reduced gene expression levels at the 24-h time point compared with the water treatment. In total, 4579 differentially expressed (2-fold change > 2) unigenes (DEGs), of which 78.3% were up-regulated and 21.7% were down-regulated; 3525 DEGs, of which 64.0% were up-regulated and 36.0% were down-regulated; and 7383 DEGs, of which 40.8% were up-regulated and 59.2% were down-regulated were selected in the 6-h, 24-h, and from 6- to 24-h treatments, respectively. The number of DEGs in the 6-h treatment was 29.9% higher than that in the 24-h treatment. The functions of the most highly regulated genes were associated with stress response, cell redox homeostasis and oxidative stress response, cell wall loosening and modification, metabolic processes, and transcription factors (TFs), as well as plant hormone signalling, including auxin, ethylene, cytokinin, gibberellin, and abscisic acid pathways. Notably, a large number of genes encoding for heat shock proteins (HSPs) and heat shock transcription factors (HSFs) were significantly up-regulated during H 2 O 2 treatments. Furthermore, real-time quantitative PCR (qRT-PCR) results showed that, during H 2 O 2 treatments

  7. 48 CFR 1419.202-70 - Acquisition screening and BUDS recommendations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BUDS recommendations. 1419.202-70 Section 1419.202-70 Federal Acquisition Regulations System DEPARTMENT... screening and BUDS recommendations. (a) For open market acquisitions estimated to exceed the SAT, the DI... document the rationale for not accepting a SBS recommendation on DI Form 1886, under “Notes.” (See FAR 19...

  8. GABA, its receptors, and GABAergic inhibition in mouse taste buds

    PubMed Central

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals — glial-like Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Using a combination of Ca2+ imaging, single cell RT-PCR, and immunostaining, we show that γ-amino butyric acid (GABA) is an inhibitory transmitter in mouse taste buds, acting on GABA-A and GABA-B receptors to suppress transmitter (ATP) secretion from Receptor cells during taste stimulation. Specifically, Receptor cells express GABA-A receptor subunits β2, δ, π, as well as GABA-B receptors. In contrast, Presynaptic cells express the GABA-Aβ3 subunit and only occasionally GABA-B receptors. In keeping with the distinct expression pattern of GABA receptors in Presynaptic cells, we detected no GABAergic suppression of transmitter release from Presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in Type I taste cells as well as by GAD67 in Presynaptic (Type III) taste cells and is stored in both those two cell types. We conclude that GABA is released during taste stimulation and possibly also during growth and differentiation of taste buds. PMID:21490220

  9. GABA, its receptors, and GABAergic inhibition in mouse taste buds.

    PubMed

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2011-04-13

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.

  10. Hormonal control of second flushing in Douglas-fir shoots.

    Treesearch

    Morris Cline; Mark Yoders; Dipti Desai; Constance Harrington; William Carlson

    2006-01-01

    Spring-flushing, over-wintered buds of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) produce new buds that may follow various developmental pathways. These include second flushing in early summer or dormancy before flushing during the following spring. Second flushing usually entails an initial release of apical dominance as some of the...

  11. Spectral lights trigger biomass accumulation and production of antioxidant secondary metabolites in adventitious root cultures of Stevia rebaudiana (Bert.).

    PubMed

    Idrees, Muhammad; Sania, Bibi; Hafsa, Bibi; Kumari, Sana; Khan, Haji; Fazal, Hina; Ahmad, Ishfaq; Akbar, Fazal; Ahmad, Naveed; Ali, Sadeeq; Ahmad, Nisar

    2018-05-30

    Stevia rebaudiana (S. rebaudiana) is the most important therapeutic plant species and has been accepted as such worldwide. It has a tendency to accumulate steviol glycosides, which are 300 times sweeter than marketable sugar. Recently, diabetic patients commonly use this plant as a sugar substitute for sweet taste. In the present study, the effects of different spectral lights were investigated on biomass accumulation and production of secondary metabolites in adventitious root cultures of S. rebaudiana. For callus development, leaf explants were excised from seed-derived plantlets and inoculated on a Murashige and Skoog (MS) medium containing the combination of 2,4-dichlorophenoxy acetic acid (2, 4-D, 2.0mg/l) and 6-benzyladenine (BA, 2.0mg/l), while 0.5mg/l naphthalene acetic acid (NAA) was used for adventitious root culture. Adventitious root cultures were exposed to different spectral lights (blue, green, violet, red and yellow) for a 30-day period. White light was used as control. The growth kinetics was studied for 30days with 3-day intervals. In this study, the violet light showed the maximum accumulation of fresh biomass (2.495g/flask) as compared to control (1.63g/flask), while red light showed growth inhibition (1.025g/flask) as compared to control. The blue light enhanced the highest accumulation of phenolic content (TPC; 6.56mg GAE/g DW), total phenolic production (TPP; 101mg/flask) as compared to control (5.44mg GAE/g DW; 82.2mg GAE/g DW), and exhibited a strong correlation with dry biomass. Blue light also improved the accumulation of total flavonoid content (TFC; 4.33mg RE/g DW) and total flavonoid production (TFP; 65mg/flask) as compared to control. The violet light showed the highest DPPH inhibition (79.72%), while the lowest antioxidant activity was observed for control roots (73.81%). Hence, we concluded that the application of spectral lights is an auspicious strategy for the enhancement of the required antioxidant secondary metabolites in

  12. A mass cyanide poisoning from pickling bamboo shoots.

    PubMed

    Sang-A-Gad, Pensiriwan; Guharat, Suriya; Wananukul, Winai

    2011-11-01

    Bamboo shoots contain cyanogenic glycosides named taxiphyllin. Cyanide poisoning from cyanogenic glycosides commonly occurs following ingestion. However, toxicity caused by inhalation of hydrogen cyanide gas (HCN) produced from pickled shoots has never been reported. To describe cyanide poisoning in eight victims who were exposed to HCN produced in a well containing pickling bamboo shoots. Due to a series of botched rescue attempts, a total of eight patients entered into a 27 m(3) well containing pickled bamboo shoots and immediately lost consciousness. After rescue, two patients developed cardiac arrest, metabolic acidosis and died. Four other patients suffered metabolic acidosis, but recovered after supportive care. The remaining two regained consciousness and recovered soon after the event. Ambient air study and cyanide content of bamboo shoots helped confirm the diagnosis. All patients had high anion gap metabolic acidosis with normal oxygenation. Blood cyanide levels ranged from 2.66 to 3.30 mcg/ml (taken after about 18 h of incident). Ambient air study (21 h after incident) revealed oxygen 20.9%, and sulfur dioxide 19.4 ppm. The instrument was unfortunately not equipped to detect HCN. A simulation study revealed HCN and sulfur dioxide in the ambient air at 10 ppm and 7.5 ppm, respectively. Cyanide content in the bamboo shoots ranged from 39 to 434 mg/kg in the wet shoots. This series of patients developed sudden onset of alteration of consciousness and metabolic acidosis upon exposure, and cyanide was confirmed in all victims. The simulation study confirmed the presence of HCN in the ambient air of the well containing bamboo shoots. We have reported mass acute cyanide poisoning with two fatalities. The source of HCN was unusual as it was produced from pickling bamboo shoot.

  13. [Acaricidal activity of clove bud oil against Dermatophagoides farinae (Acari: Pyroglyphidae)].

    PubMed

    Li, Jing; Wu, Hai-Qiang; Liu, Zhi-Gang

    2009-12-01

    Volatile oil from the clove bud was extracted by petroleum ether using Soxhlet Extractor. The acaricidal activity was examined using direct contact and vapour phase toxicity bioassays. In a filter paper contact toxicity bio-assay, at 2.5 h after treatment, clove bud oil at a dose of 12.20 microg/cm2 killed all dust mites. As judged by 24-h LD50 values, potent fumigant action was observed with clove bud oil (12.20 microg/cm2), showing an adequate acaricidal activity against indoor Dermatophagoides farinae.

  14. Toasted vine-shoot chips as enological additive.

    PubMed

    Cebrián-Tarancón, Cristina; Sánchez-Gómez, Rosario; Salinas, M Rosario; Alonso, Gonzalo L; Oliva, José; Zalacain, Amaya

    2018-10-15

    Different ways of vine-shoots revalorization have been proposed, but not in wine yet, as for example in the same way as oak chips are being used. In this work, vine-shoot samples were submitted to a thermogravimetric analysis to establish the temperature range for its lignin structure decomposition, resulting between 160 and 180 °C. Then, vine-shoot chips from Airén and Cencibel cultivars, with a particle size around 2.5-3.5 cm, were submitted to six toasting conditions: 160 °C and 180 °C for 45, 60 and 75 min. Their volatile composition was very similar to oak chips, being vanillin the most important compound. Moreover, such vine-shoots have an interesting content of prodelphinidins that together with the stilbenes may contribute to wine antioxidant activity. The toasting conditions at 180 °C/45 min were the most suitable one for releasing the mentioned valuable compounds in order to propose vine-shoots as new enological additive similar to oak chips. Copyright © 2018. Published by Elsevier Ltd.

  15. Radiation-induced mutations in sweet cherry (Prunus avium L. ) cvs Napoleon and Bing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saamin, S.

    1987-01-01

    Experiments were conducted using gamma radiation to determine radiosensitivities of main and accessory buds, to increase the proportion of mutant tissue, and to determine the type of damage and mode of recovery in irradiated shoot spices of sweet cherry cvs Napoleon and Bin. Survival, growth, and the types of mutations of V/sub 1/ (primary) shoots and V/sub 2/ plants were observed. LD/sub 50/ values, based on survival of forced buds were about 5kR for both acute and fractionated irradiation in air, 5.5kR for acute exposure in water, and 6kR for fractionated dose in water. 0.39-0.69 accessory buds/site on non-irradiated Napoleonmore » had forced after 30 days in the glasshouse. In the Bing field experiment with main buds, the LD/sub 50/ for both acute and fractionated irradiation in air was 3.5kR. In water, the LD/sub 50/ was 5kR for acute treatment and 6.5kR for fractionated dose. The overall mutation frequency in Napoleon V/sub 2/ shoots derived from main buds was 7.6%: 0.04% growth-reduced mutants, 0.4% total leaf mutants, and7.1% partial leaf mutants.« less

  16. Bud-grafting yellow-poplar

    Treesearch

    David T. Funk

    1963-01-01

    Several years ago we began work on the vegetative propagation of yellow-poplar (Liriodendron tulipifera L.) with the aim of eventually establishing a clonal seed orchard. We tried field grafting, field budding, and air layering. We then attempted rooting cuttings in the greenhouse and in an indoor propagation bench. The best we could do with any of these methods was 4...

  17. Characteristics of schools in which fatal shootings occur.

    PubMed

    de Apodaca, Roberto Flores; Brighton, Lauren M; Perkins, Ashley N; Jackson, Kiana N; Steege, Jessica R

    2012-04-01

    School-based violence, and fatal school shootings in particular, have gained increased attention in the media and psychological literature. Most reports have focused on the characteristics of perpetrators, but there is a growing awareness that school-related factors may also influence the occurrence of fatal school shootings. The current study examined several key characteristics of all schools where random (38) and targeted (96) fatal shootings occurred in the United States between 1966 and 2009. These were compared with a group (138) of schools randomly selected to represent the population of all schools in the United States. The size of a school's enrollment, urban or suburban locale, public funding, and predominantly non-white enrollment were positively associated with fatal shootings. Universities and colleges were disproportionately associated with random shootings and high schools with targeted ones. It was proposed that characteristics of schools that allow feelings of anonymity or alienation among students may help create environmental conditions associated with fatal school shootings. Implications for future research and interventions are considered.

  18. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    PubMed

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. © 2014. Published by The Company of Biologists Ltd.

  19. Screening larch in vitro for resistance to Mycosphaerella laricina

    Treesearch

    M.E. Ostry; Paula M. Pijut; D.D. Skilling

    1991-01-01

    Needle blight of larch caused by Mycosphaerella laricina seriously limits the productivity of susceptible trees in the north central and northeastern United States. Adventitious shoots, derived from cotyledon tissue culture, of selected European larch (Larix decidua) and a hybrid larch were inoculated in vitro with three isolates...

  20. Rhabdovirus-like endogenous viral elements in the genome of Spodoptera frugiperda insect cells are actively transcribed: Implications for adventitious virus detection.

    PubMed

    Geisler, Christoph; Jarvis, Donald L

    2016-07-01

    Spodoptera frugiperda (Sf) cell lines are used to produce several biologicals for human and veterinary use. Recently, it was discovered that all tested Sf cell lines are persistently infected with Sf-rhabdovirus, a novel rhabdovirus. As part of an effort to search for other adventitious viruses, we searched the Sf cell genome and transcriptome for sequences related to Sf-rhabdovirus. To our surprise, we found intact Sf-rhabdovirus N- and P-like ORFs, and partial Sf-rhabdovirus G- and L-like ORFs. The transcribed and genomic sequences matched, indicating the transcripts were derived from the genomic sequences. These appear to be endogenous viral elements (EVEs), which result from the integration of partial viral genetic material into the host cell genome. It is theoretically impossible for the Sf-rhabdovirus-like EVEs to produce infectious virus particles as 1) they are disseminated across 4 genomic loci, 2) the G and L ORFs are incomplete, and 3) the M ORF is missing. Our finding of transcribed virus-like sequences in Sf cells underscores that MPS-based searches for adventitious viruses in cell substrates used to manufacture biologics should take into account both genomic and transcribed sequences to facilitate the identification of transcribed EVE's, and to avoid false positive detection of replication-competent adventitious viruses. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  1. Shooting Mechanisms in Nature: A Systematic Review

    PubMed Central

    Sakes, Aimée; van der Wiel, Marleen; Henselmans, Paul W. J.; van Leeuwen, Johan L.; Dodou, Dimitra; Breedveld, Paul

    2016-01-01

    Background In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these mechanisms fulfill. Methods We systematically searched the literature using Scopus and Web of Knowledge to retrieve articles about solid projectiles that either are produced in the body of the organism or belong to the body and undergo a ballistic phase. The shooting mechanisms were categorized based on the energy management prior to and during shooting. Results Shooting mechanisms were identified with projectile masses ranging from 1·10−9 mg in spores of the fungal phyla Ascomycota and Zygomycota to approximately 10,300 mg for the ballistic tongue of the toad Bufo alvarius. The energy for shooting is generated through osmosis in fungi, plants, and animals or muscle contraction in animals. Osmosis can be induced by water condensation on the system (in fungi), or water absorption in the system (reaching critical pressures up to 15.4 atmospheres; observed in fungi, plants, and animals), or water evaporation from the system (reaching up to −197 atmospheres; observed in plants and fungi). The generated energy is stored as elastic (potential) energy in cell walls in fungi and plants and in elastic structures in animals, with two exceptions: (1) in the momentum catapult of Basidiomycota the energy is stored in a stalk (hilum) by compression of the spore and droplets and (2) in Sphagnum energy is mainly stored in compressed air. Finally, the stored energy is transformed into kinetic energy of the projectile using a catapult mechanism delivering up to 4,137 J/kg in the osmotic shooting mechanism in cnidarians and 1,269 J/kg in the muscle-powered appendage strike of the mantis shrimp Odontodactylus scyllarus. The launch accelerations range from 6.6g in the frog Rana pipiens to 5

  2. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures.

    PubMed

    Sanches Lopes, Sheila Mara; Francisco, Mariane Grigio; Higashi, Bruna; de Almeida, Rafaela Takako Ribeiro; Krausová, Gabriela; Pilau, Eduardo Jorge; Gonçalves, José Eduardo; Gonçalves, Regina Aparecida Correia; Oliveira, Arildo José Braz de

    2016-11-05

    Stevia rebaudiana (Bertoni) is widely studied because of its foliar steviol glycosides. Fructan-type polysaccharides were recently isolated from its roots. Fructans are reserve carbohydrates that have important positive health effects and technological applications in the food industry. The objective of the present study was to isolate and characterize fructo-oligosaccharides (FOSs) from S. rebaudiana roots and in vitro adventitious root cultures and evaluate the potential prebiotic effect of these molecules. The in vitro adventitious root cultures were obtained using a roller bottle system. Chemical analyses (gas chromatography-mass spectrometry, (1)H nuclear magnetic resonance, and off-line electrospray ionization-mass spectrometry) revealed similar chemical properties of FOSs that were obtained from the different sources. The potential prebiotic effects of FOSs that were isolated from S. rebaudiana roots enhanced the growth of both bifidobacteria and lactobacilli, with strains specificity in their fermentation ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ethylene induced shikonin biosynthesis in shoot culture of Lithospermum erythrorhizon.

    PubMed

    Touno, Kaori; Tamaoka, Jin; Ohashi, Yuko; Shimomura, Koichiro

    2005-02-01

    Lithospermum erythrorhizon shoots, cultured on phytohormone-free Murashige and Skoog solid medium, produced shikonin derivatives, whereas shoots cultured in well-ventilated petri dishes, produced small amount. Analysis by gas chromatography revealed the presence of ethylene in non-ventilated petri dishes where the shoots, producing shikonin derivatives, were cultured. Therefore, the possible involvement of ethylene in shikonin biosynthesis of shoot cultures was investigated. Treatment of ethylene or the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, resulted in increasing shikonin derivatives contents in cultured shoots. Silver ion, an ethylene-response inhibitor, or aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, decreased production of shikonin derivatives in cultured shoots. Our results indicate that ethylene is one of the regulatory elements of shikonin biosynthesis in L. erythrorhizon shoot culture.

  4. The Level of Vision Necessary for Competitive Performance in Rifle Shooting: Setting the Standards for Paralympic Shooting with Vision Impairment.

    PubMed

    Allen, Peter M; Latham, Keziah; Mann, David L; Ravensbergen, Rianne H J C; Myint, Joy

    2016-01-01

    The aim of this study was to investigate the level of vision impairment (VI) that would reduce performance in shooting; to guide development of entry criteria to visually impaired (VI) shooting. Nineteen international-level shooters without VI took part in the study. Participants shot an air rifle, while standing, toward a regulation target placed at the end of a 10 m shooting range. Cambridge simulation glasses were used to simulate six different levels of VI. Visual acuity (VA) and contrast sensitivity (CS) were assessed along with shooting performance in each of seven conditions of simulated impairment and compared to that with habitual vision. Shooting performance was evaluated by calculating each individual's average score in every level of simulated VI and normalizing this score by expressing it as a percentage of the baseline performance achieved with habitual vision. Receiver Operating Characteristic curves were constructed to evaluate the ability of different VA and CS cut-off criteria to appropriately classify these athletes as achieving 'expected' or 'below expected' shooting results based on their performance with different levels of VA and CS. Shooting performance remained relatively unaffected by mild decreases in VA and CS, but quickly deteriorated with more moderate losses. The ability of visual function measurements to classify shooting performance was good, with 78% of performances appropriately classified using a cut-off of 0.53 logMAR and 74% appropriately classified using a cut-off of 0.83 logCS. The current inclusion criteria for VI shooting (1.0 logMAR) is conservative, maximizing the chance of including only those with an impairment that does impact performance, but potentially excluding some who do have a genuine impairment in the sport. A lower level of impairment would include more athletes who do have a genuine impairment but would potentially include those who do not actually have an impairment that impacts performance in the sport. An

  5. The Level of Vision Necessary for Competitive Performance in Rifle Shooting: Setting the Standards for Paralympic Shooting with Vision Impairment

    PubMed Central

    Allen, Peter M.; Latham, Keziah; Mann, David L.; Ravensbergen, Rianne H. J. C.; Myint, Joy

    2016-01-01

    The aim of this study was to investigate the level of vision impairment (VI) that would reduce performance in shooting; to guide development of entry criteria to visually impaired (VI) shooting. Nineteen international-level shooters without VI took part in the study. Participants shot an air rifle, while standing, toward a regulation target placed at the end of a 10 m shooting range. Cambridge simulation glasses were used to simulate six different levels of VI. Visual acuity (VA) and contrast sensitivity (CS) were assessed along with shooting performance in each of seven conditions of simulated impairment and compared to that with habitual vision. Shooting performance was evaluated by calculating each individual’s average score in every level of simulated VI and normalizing this score by expressing it as a percentage of the baseline performance achieved with habitual vision. Receiver Operating Characteristic curves were constructed to evaluate the ability of different VA and CS cut-off criteria to appropriately classify these athletes as achieving ‘expected’ or ‘below expected’ shooting results based on their performance with different levels of VA and CS. Shooting performance remained relatively unaffected by mild decreases in VA and CS, but quickly deteriorated with more moderate losses. The ability of visual function measurements to classify shooting performance was good, with 78% of performances appropriately classified using a cut-off of 0.53 logMAR and 74% appropriately classified using a cut-off of 0.83 logCS. The current inclusion criteria for VI shooting (1.0 logMAR) is conservative, maximizing the chance of including only those with an impairment that does impact performance, but potentially excluding some who do have a genuine impairment in the sport. A lower level of impairment would include more athletes who do have a genuine impairment but would potentially include those who do not actually have an impairment that impacts performance in the

  6. Real Life Science with Dandelions and Project BudBurst.

    PubMed

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  7. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediatedmore » Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.« less

  8. Chemical Fate of a Metamorphic Inducer in Larvae-like Buds of the Cnidarian Cassiopea andromeda.

    PubMed

    Fleck, J

    1998-02-01

    Larvae-like vegetative buds of the scyphozoan Cassiopea andromeda metamorphose into polyps in the presence of oligopeptides that have a well-defined primary structure. Buds were incubated with the hexapeptide 14C-dansyl-GPGGPA, a representative inducer. Autoradiography of longitudinal sections of these buds revealed rapid internalization of peptide by the buds. Silver grain density was highest in the pre-pedal disc region (or aboral knob) of metamorphosing buds. Larvae and buds sporadically explore their habitat with this aboral knob, searching for a suitable solid substrate to which irreversible attachment will be made. Buds were incubated for 3, 8, or 16 h with 14C-dansyl-GPGGPA, then homogenized and the supernatants analyzed to determine the chemical fate of the inducer. The signal molecule was shown to be partly degraded to 14C-dansyl-GP, partly to 14C-dansyl-G, and in part still present in its original structure. These cleavage products were also found in the surrounding medium after an incubation time of 8 h with 14C-dansyl-GPGGPA, but did not induce metamorphosis. This study suggests that exposure of metamorphosis-inducing peptides to buds of Cassiopea andromeda results in signal termination.

  9. New technique for more rapid cryopreservation of dormant vegetative tree buds

    USDA-ARS?s Scientific Manuscript database

    Cryopreservation of dormant buds of temperate trees in liquid nitrogen can provide a safe backup of field germplasm collections. However the process requires several months of preparation before buds can be cryopreserved. Cryopreservation at the natural moisture content (MC) would greatly accelerate...

  10. WIND1 Promotes Shoot Regeneration through Transcriptional Activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis[OPEN

    PubMed Central

    Ohnuma, Mariko; Kurata, Tetsuya; Nakata, Masaru; Ohme-Takagi, Masaru

    2017-01-01

    Many plant species display remarkable developmental plasticity and regenerate new organs after injury. Local signals produced by wounding are thought to trigger organ regeneration but molecular mechanisms underlying this control remain largely unknown. We previously identified an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) as a central regulator of wound-induced cellular reprogramming in plants. In this study, we demonstrate that WIND1 promotes callus formation and shoot regeneration by upregulating the expression of the ENHANCER OF SHOOT REGENERATION1 (ESR1) gene, which encodes another AP2/ERF transcription factor in Arabidopsis thaliana. The esr1 mutants are defective in callus formation and shoot regeneration; conversely, its overexpression promotes both of these processes, indicating that ESR1 functions as a critical driver of cellular reprogramming. Our data show that WIND1 directly binds the vascular system-specific and wound-responsive cis-element-like motifs within the ESR1 promoter and activates its expression. The expression of ESR1 is strongly reduced in WIND1-SRDX dominant repressors, and ectopic overexpression of ESR1 bypasses defects in callus formation and shoot regeneration in WIND1-SRDX plants, supporting the notion that ESR1 acts downstream of WIND1. Together, our findings uncover a key molecular pathway that links wound signaling to shoot regeneration in plants. PMID:28011694

  11. Mitochondrial anchorage and fusion contribute to mitochondrial inheritance and quality control in the budding yeast Saccharomyces cerevisiae

    PubMed Central

    Higuchi-Sanabria, Ryo; Charalel, Joseph K.; Viana, Matheus P.; Garcia, Enrique J.; Sing, Cierra N.; Koenigsberg, Andrea; Swayne, Theresa C.; Vevea, Jason D.; Boldogh, Istvan R.; Rafelski, Susanne M.; Pon, Liza A.

    2016-01-01

    Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss of fusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud. PMID:26764088

  12. Polarized Growth in Budding Yeast in the Absence of a Localized Formin

    PubMed Central

    Gao, Lina

    2009-01-01

    Polarity is achieved partly through the localized assembly of the cytoskeleton. During growth in budding yeast, the bud cortex and neck localized formins Bni1p and Bnr1p nucleate and assemble actin cables that extend along the bud-mother axis, providing tracks for secretory vesicle delivery. Localized formins are believed to determine the location and polarity of cables, hence growth. However, yeast expressing the nonlocalized actin nucleating/assembly formin homology (FH) 1-FH2 domains of Bnr1p or Bni1p as the sole formin grow well. Although cables are significantly disorganized, analysis of directed transport of secretory vesicles is still biased toward the bud, reflecting a bias in correctly oriented cables, thereby permitting polarized growth. Myosin II, localized at the bud neck, contributes to polarized growth as a mutant unable to interact with F-actin further compromises growth in cells with an unlocalized formin but not with a localized formin. Our results show that multiple mechanisms contribute to cable orientation and polarized growth, with localized formins and myosin II being two major contributors. PMID:19297522

  13. Effects of light regime and IBA concentration on adventitious rooting of an eastern cottonwood (Populus deltoides) clone

    Treesearch

    Alexander P. Hoffman; Joshua P. Adams; Andrew Nelson

    2016-01-01

    Eastern cottonwood (Populus deltoides) has received a substantial amount of interest from invitro studies within the past decade. The ability to efficiently multiply the stock of established clones such as clone 110412 is a valuable asset for forest endeavors. However, a common problem encountered is initiating adventitious rooting in new micropropagation protocols....

  14. Role of housing modalities on management and surveillance strategies for adventitious agents of rodents.

    PubMed

    Shek, William R

    2008-01-01

    Specific pathogen-free (SPF) rodents for modern biomedical research need to be free of pathogens and other infectious agents that may not produce disease but nevertheless cause research interference. To meet this need, rodents have been rederived to eliminate adventitious agents and then housed in room- to cage-level barrier systems to exclude microbial contaminants. Because barriers can and do fail, routine health monitoring (HM) is necessary to verify the SPF status of colonies. Testing without strict adherence to biosecurity practices, however, can lead to the inadvertent transfer of unrecognized, inapparent agents among institutions and colonies. Microisolation caging systems have become popular for housing SPF rodents because they are versatile and provide a highly effective cage-level barrier to the entry and spread of adventitious agents. But when a microisolation-caged colony is contaminated, the cage-level barrier impedes the spread of infection and so the prevalence of infection is often low, which increases the chance of missing a contamination and complicates the corroboration of unexpected positive findings. The expanding production of genetically engineered mutant (GEM) rodent strains at research institutions, where biosecurity practices vary and the risk of microbial contamination can be high, underscores the importance of accurate HM results in mitigating the risk of the introduction and spread of microbial contaminants with the exchange of mutant rodent strains among investigators and institutions.

  15. Real Life Science with Dandelions and Project BudBurst

    PubMed Central

    Johnson, Katherine A.

    2016-01-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education PMID:27047605

  16. Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae.

    PubMed

    Melloy, Patricia G; Rose, Mark D

    2017-09-15

    Studies have shown that nuclear envelope fission (karyokinesis) in budding yeast depends on cytokinesis, but not distinguished whether this was a direct requirement, indirect, because of cell cycle arrest, or due to bud neck-localized proteins impacting both processes. To determine the requirements for karyokinesis, we examined mutants conditionally defective for bud emergence and/or nuclear migration. The common mutant phenotype was completion of the nuclear division cycle within the mother cell, but karyokinesis did not occur. In the cdc24 swe1 mutant, at the non-permissive temperature, multiple nuclei accumulated within the unbudded cell, with connected nuclear envelopes. Upon return to the permissive temperature, the cdc24 swe1 mutant initiated bud emergence, but only the nucleus spanning the neck underwent fission suggesting that the bud neck region is important for fission initiation. The neck may be critical for either mechanical reasons, as the contractile ring might facilitate fission, or for regulatory reasons, as the site of a protein network regulating nuclear envelope fission, mitotic exit, and cytokinesis. We also found that 77-85% of pairs of septin mutant nuclei completed nuclear envelope fission. In addition, 27% of myo1Δ mutant nuclei completed karyokinesis. These data suggested that fission is not dependent on mechanical contraction at the bud neck, but was instead controlled by regulatory proteins there. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Micropropagation of Asparagus by in vitro shoot culture.

    PubMed

    Stajner, Nataša

    2013-01-01

    Asparagus officinalis is most extensively studied species within the genus Asparagus, which is well known as garden asparagus. This species is dioecious with unisexual flowers, which means that generative propagation gives roughly equal number of male and female plants. Male plants are high yielders and preferred commercially over female plants. Tissue culture techniques could efficiently promote vegetative propagation of male plants and pave the way for efficient plant breeding.This chapter describes an efficient micropropagation protocol for developing rapid growing in vitro Asparagus shoot cultures. The source of explants, inoculation, and shoot proliferation, followed by shoot propagation, rooting, and acclimatization is described. The optimal medium for Asparagus micropropagation described in this chapter is composed of MS macro- and microelements and a combination of auxins and cytokinins. Plant growth regulators NAA, kinetin, and BA were used in various concentrations. Three different media representing the whole micropropagation protocol of Asparagus are described; medium for shoot initiation, medium for shoot multiplication, and medium for root formation. By in vitro propagation of Asparagus, root initiation is difficult, but can be promoted by adding growth retardant ancymidol which also greatly promotes shoot development and suppresses callus formation.

  18. Espin cytoskeletal proteins in the sensory cells of rodent taste buds

    PubMed Central

    Sekerková, Gabriella; Freeman, David; Mugnaini, Enrico; Bartles, James R.

    2010-01-01

    Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste bud cells contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of rat circumvallate taste buds. In confocal images, we counted 21.5±0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7±1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP3R3),α-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP3R3, PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP3R3, α-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of ~3 μm-long microvilli

  19. Light requirement for shoot regeneration in horseradish hairy roots.

    PubMed

    Saitou, T; Kamada, H; Harada, H

    1992-08-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions.

  20. Mass propagation of shoots of Stevia rebaudiana using a large scale bioreactor.

    PubMed

    Akita, M; Shigeoka, T; Koizumi, Y; Kawamura, M

    1994-01-01

    A procedure for the mass propagation of multiple shoots of Stevia rebaudiana is described. Isolated shoot primordia were used as the inoculum to obtain clusters of shoot primordia. Such clusters were grown in a 500 liter bioreactor to obtain shoots. A total of 64.6 Kg of shoots were propagated from 460 g of the inoculated shoot primordia. These shoots were easily acclimatized in soil.

  1. Project BudBurst - Meeting the Needs of Climate Change Educators and Scientists

    NASA Astrophysics Data System (ADS)

    Henderson, S.

    2015-12-01

    It is challenging for many to get a sense of what climate change means as long periods of time are involved - like decades - which can be difficult to grasp. However, there are a number of citizen science based projects, including NEON's Project BudBurst, that provide the opportunity for both learning about climate change and advancing scientific knowledge. In this presentation, we will share lessons learned from Project BudBurst. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events and to increase climate literacy. Project BudBurst is important from an educational perspective, but also because it enables scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. It was important to better understand if and how Project BudBurst is meeting its goals. Specifically, does participation by non-experts advance scientific knowledge? Does participation advance educational goals and outcomes? Is participation an effective approach to advance/enhance science education in both formal and informal settings? Critical examination of Project BudBurst supports advancement of scientific knowledge and realization of educational objectives. Citizen science collected observations and measurements are being used by scientists as evidenced by the increase of such data in scientific publication. In addition, we found that there is a significant increase in educators utilizing citizen science as part of their instruction. Part of this increase is due to the resources and professional development materials available to educators. Working with partners also demonstrated that the needs of both science and

  2. Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud

    PubMed Central

    Packard, Adam; Georgas, Kylie; Michos, Odyssé; Riccio, Paul; Cebrian, Cristina; Combes, Alexander N.; Ju, Adler; Ferrer-Vaquer, Anna; Hadjantonakis, Anna-Katerina; Zong, Hui; Little, Melissa H.; Costantini, Frank

    2013-01-01

    Summary The ureteric bud is an epithelial tube that undergoes branching morphogenesis to form the renal collecting system. Though development of a normal kidney depends on proper ureteric bud morphogenesis, the cellular events underlying this process remain obscure. Here, we used time-lapse microscopy together with several genetic labeling methods to observe ureteric bud cell behaviors in developing mouse kidneys. We observed an unexpected cell behavior in the branching tips of the ureteric bud, which we term “mitosis-associated cell dispersal”. Pre-mitotic ureteric tip cells delaminate from the epithelium and divide within the lumen; while one daughter cell retains a basal process, allowing it to reinsert into the epithelium at the site of origin, the other daughter cell reinserts at a position one to three cell diameters away. Given the high rate of cell division in ureteric tips, this cellular behavior causes extensive epithelial cell rearrangements that may contribute to renal branching morphogenesis. PMID:24183650

  3. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    PubMed

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  4. Adventitial adipogenic degeneration is an unidentified contributor to aortic wall weakening in the abdominal aortic aneurysm.

    PubMed

    Doderer, Stefan A; Gäbel, Gabor; Kokje, Vivianne B C; Northoff, Bernd H; Holdt, Lesca M; Hamming, Jaap F; Lindeman, Jan H N

    2018-06-01

    The processes driving human abdominal aortic aneurysm (AAA) progression are not fully understood. Although antiinflammatory and proteolytic strategies effectively quench aneurysm progression in preclinical models, so far all clinical interventions failed. These observations hint at an incomplete understanding of the processes involved in AAA progression and rupture. Interestingly, strong clinical and molecular associations exist between popliteal artery aneurysms (PAAs) and AAAs; however, PAAs have an extremely low propensity to rupture. We thus reasoned that differences between these aneurysms may provide clues toward (auxiliary) processes involved in AAA-related wall debilitation. A better understanding of the pathophysiologic processes driving AAA growth can contribute to pharmaceutical treatments in the future. Aneurysmal wall samples were collected during open elective and emergency repair. Control perirenal aorta was obtained during kidney transplantation, and reference popliteal tissue obtained from the anatomy department. This study incorporates various techniques including (immuno)histochemistry, Western Blot, quantitative polymerase chain reaction, microarray, and cell culture. Histologic evaluation of AAAs, PAAs, and control aorta shows extensive medial (PAA) and transmural fibrosis (AAA), and reveals abundant adventitial adipocytes aggregates as an exclusive phenomenon of AAAs (P < .001). Quantitative polymerase chain reaction, immunohistochemistry, Western blotting, and microarray analysis showed enrichment of adipogenic mediators (C/EBP family P = .027; KLF5 P < .000; and peroxisome proliferator activated receptor-γ, P = .032) in AAA tissue. In vitro differentiation tests indicated a sharply increased adipogenic potential of AAA adventitial mesenchymal cells (P < .0001). Observed enrichment of adipocyte-related genes and pathways in ruptured AAA (P < .0003) supports an association between the extent of fatty degeneration and rupture. This

  5. Significance of phytohormones in Siberian larch-bud gall midge interaction

    Treesearch

    Rida M. Matrenina

    1991-01-01

    Interrelations of the bud gall midge and the Siberian larch are of scientific and practical interest because of the bud gall midge's role as a plant endoparasite. We know that attack by the gall midge sets off a reaction in the entire plant. Invasion by the insect results in a certain interaction between physiological mechanisms of the insect and the plant which...

  6. Arenavirus Budding: A Common Pathway with Mechanistic Differences

    PubMed Central

    Wolff, Svenja; Ebihara, Hideki; Groseth, Allison

    2013-01-01

    The Arenaviridae is a diverse and growing family of viruses that includes several agents responsible for important human diseases. Despite the importance of this family for public health, particularly in Africa and South America, much of its biology remains poorly understood. However, in recent years significant progress has been made in this regard, particularly relating to the formation and release of new enveloped virions, which is an essential step in the viral lifecycle. While this process is mediated chiefly by the viral matrix protein Z, recent evidence suggests that for some viruses the nucleoprotein (NP) is also required to enhance the budding process. Here we highlight and compare the distinct budding mechanisms of different arenaviruses, concentrating on the role of the matrix protein Z, its known late domain sequences, and the involvement of cellular endosomal sorting complex required for transport (ESCRT) pathway components. Finally we address the recently described roles for the nucleoprotein NP in budding and ribonucleoprotein complex (RNP) incorporation, as well as discussing possible mechanisms related to its involvement. PMID:23435234

  7. Eukaryotic-Like Virus Budding in Archaea

    PubMed Central

    Quemin, Emmanuelle R. J.; Chlanda, Petr; Sachse, Martin; Forterre, Patrick

    2016-01-01

    ABSTRACT Similar to many eukaryotic viruses (and unlike bacteriophages), viruses infecting archaea are often encased in lipid-containing envelopes. However, the mechanisms of their morphogenesis and egress remain unexplored. Here, we used dual-axis electron tomography (ET) to characterize the morphogenesis of Sulfolobus spindle-shaped virus 1 (SSV1), the prototype of the family Fuselloviridae and representative of the most abundant archaea-specific group of viruses. Our results show that SSV1 assembly and egress are concomitant and occur at the cellular cytoplasmic membrane via a process highly reminiscent of the budding of enveloped viruses that infect eukaryotes. The viral nucleoprotein complexes are extruded in the form of previously unknown rod-shaped intermediate structures which have an envelope continuous with the host membrane. Further maturation into characteristic spindle-shaped virions takes place while virions remain attached to the cell surface. Our data also revealed the formation of constricted ring-like structures which resemble the budding necks observed prior to the ESCRT machinery-mediated membrane scission during egress of various enveloped viruses of eukaryotes. Collectively, we provide evidence that archaeal spindle-shaped viruses contain a lipid envelope acquired upon budding of the viral nucleoprotein complex through the host cytoplasmic membrane. The proposed model bears a clear resemblance to the egress strategy employed by enveloped eukaryotic viruses and raises important questions as to how the archaeal single-layered membrane composed of tetraether lipids can undergo scission. PMID:27624130

  8. Shooting Star Experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Shooting Star Experiment (SSE) is designed to develop and demonstrate the technology required to focus the sun's energy and use the energy for inexpensive space Propulsion Research. Pictured is an engineering model (Pathfinder III) of the Shooting Star Experiment (SSE). This model was used to test and characterize the motion and deformation of the structure caused by thermal effects. In this photograph, alignment targets are being placed on the engineering model so that a theodolite (alignment telescope) could be used to accurately measure the deformation and deflections of the engineering model under extreme conditions, such as the coldness of deep space and the hotness of the sun as well as vacuum. This thermal vacuum test was performed at the X-Ray Calibration Facility because of the size of the test article and the capabilities of the facility to simulate in-orbit conditions

  9. Opposite metabolic responses of shoots and roots to drought

    NASA Astrophysics Data System (ADS)

    Gargallo-Garriga, Albert; Sardans, Jordi; Pérez-Trujillo, Míriam; Rivas-Ubach, Albert; Oravec, Michal; Vecerova, Kristyna; Urban, Otmar; Jentsch, Anke; Kreyling, Juergen; Beierkuhnlein, Carl; Parella, Teodor; Peñuelas, Josep

    2014-10-01

    Shoots and roots are autotrophic and heterotrophic organs of plants with different physiological functions. Do they have different metabolomes? Do their metabolisms respond differently to environmental changes such as drought? We used metabolomics and elemental analyses to answer these questions. First, we show that shoots and roots have different metabolomes and nutrient and elemental stoichiometries. Second, we show that the shoot metabolome is much more variable among species and seasons than is the root metabolome. Third, we show that the metabolic response of shoots to drought contrasts with that of roots; shoots decrease their growth metabolism (lower concentrations of sugars, amino acids, nucleosides, N, P, and K), and roots increase it in a mirrored response. Shoots are metabolically deactivated during drought to reduce the consumption of water and nutrients, whereas roots are metabolically activated to enhance the uptake of water and nutrients, together buffering the effects of drought, at least at the short term.

  10. The influence of different hormone concentration and combination on callus induction and regeneration of Rauwolfia serpentina L. Benth.

    PubMed

    Salma, U; Rahman, M S M; Islam, S; Haque, N; Jubair, T A; Haque, A K M F; Mukti, I J

    2008-06-15

    The influence of media composition on callus induction and subsequent regeneration of Rauwolfia serpentina L. Benth has been studied. High frequency (96.43%) callus induction was obtained when nodal segments from in vitro raised shoots were cultured on MS medium supplemented with 0.5 mg L(-1) BA and 2.0 mg L(-1) NAA. The callus differentiated into adventitious shoots when it was subcultured on MS medium supplemented with 2.0 mg L(-1) BA with 0.2 mg L(-1) NAA. Regenerated shoots were best rooted on half-strength MS medium with 1.0 mg L(-1) each of IBA and IAA.

  11. The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae.

    PubMed

    Juanes, Maria Angeles; Piatti, Simonetta

    2016-08-01

    Cell division is a fundamental but complex process that gives rise to two daughter cells. It includes an ordered set of events, altogether called "the cell cycle", that culminate with cytokinesis, the final stage of mitosis leading to the physical separation of the two daughter cells. Symmetric cell division equally partitions cellular components between the two daughter cells, which are therefore identical to one another and often share the same fate. In many cases, however, cell division is asymmetrical and generates two daughter cells that differ in specific protein inheritance, cell size, or developmental potential. The budding yeast Saccharomyces cerevisiae has proven to be an excellent system to investigate the molecular mechanisms governing asymmetric cell division and cytokinesis. Budding yeast is highly polarized during the cell cycle and divides asymmetrically, producing two cells with distinct sizes and fates. Many components of the machinery establishing cell polarization during budding are relocalized to the division site (i.e., the bud neck) for cytokinesis. In this review we recapitulate how budding yeast cells undergo polarized processes at the bud neck for cell division.

  12. The growth and form of plant shoots

    NASA Astrophysics Data System (ADS)

    Chelakkot, Raghunath; Mahadevan, L.

    2015-03-01

    Growing plant stems and shoots exhibit a variety of shapes that embody growth in response to various stimuli. We provide a quantitative biophysical theory for these shapes by accounting for the inherent observed passive and active effects: (i) the passive elastic deflection of the shoot due to its own weight, and (ii) the active controllable growth response of the shoot in response to its orientation relative to gravity, and (iii) proprioception, the shoot's growth response to its own observable shape, which is itself determined by its elasticity and weight. A morphospace diagram in terms of two dimensionless parameters representing a scaled local active gravitropic sensitivity, and a scaled passive elastic sag shows how a variety of observed transient and steady morphologies with effective positive, negative and even oscillatory gravitropic behaviors arise in a sentient growing filament naturally, without the need for ad-hoc complex spatio-temporal control strategies.

  13. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Ono, Fumihisa; Shibata, Michiko; Torigoe, Motoki; Matsumoto, Yuta; Yamamoto, Shinsuke; Takizawa, Noboru; Hada, Yoshio; Mori, Yoshihisa; Takarabe, Kenichi

    2013-06-01

    In our previous studies on the tolerance of small plants and animals to the high hydrostatic pressure of 7.5 GPa, it was shown that all the living samples could be borne at this high pressure, which is more than one order of magnitude higher than the proteinic denaturation pressure. To make this inconsistency clear, we have extended these studies to a smaller sized fungus, budding yeast Saccharomyces cerevisiae. A several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate (PC72, Sumitomo 3M), and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar (PDA). It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for 12 and 24 h were found dead. The high pressure tolerance of budding yeast is weaker than that of tardigrades.

  14. Spine micromorphology of normal and hyperhydric Mammillaria gracilis Pfeiff. (Cactaceae) shoots.

    PubMed

    Peharec, P; Posilović, H; Balen, B; Krsnik-Rasol, M

    2010-07-01

    Artificial conditions of tissue culture affect growth and physiology of crassulacean acid metabolism plants which often results in formation of hyperhydric shoots. In in vitro conditions Mammillaria gracilis Pfeiff. (Cactaceae) growth switches from organized to unorganized way, producing a habituated organogenic callus which simultaneously regenerates morphologically normal as well as altered hyperhydric shoots. In this study, influence of tissue culture conditions on morphology of cactus spines of normal and hyperhydric shoots was investigated. Spines of pot-grown Mammillaria plants and of in vitro regenerated shoots were examined with stereo microscope and scanning electron microscope. The pot-grown plants had 16-17 spines per areole. In vitro grown normal shoots, even though they kept typical shoot morphology, had lower number of spines (11-12) and altered spine morphology. This difference was even more pronounced in spine number (six to seven) and morphology of the hyperhydric shoots. Scanning electron microscopy analysis revealed remarkable differences in micromorphology of spine surface between pot-grown and in vitro grown shoots. Spines of in vitro grown normal shoots showed numerous long trichomes, which were more elongated on spines of the hyperhydric shoots; the corresponding structures on spine surface of pot-grown plants were noticed only as small protrusions. Scanning electron microscopy morphometric studies showed that the spines of pot-grown plants were significantly longer compared to the spines of shoots grown in tissue culture. Moreover, transverse section shape varies from elliptical in pot-grown plants to circular in normal and hyperhydric shoots grown in vitro. Cluster and correspondence analyses performed on the scanning electron microscope obtained results suggest great variability among spines of pot-grown plants. Spines of in vitro grown normal and hyperhydric shoots showed low level of morphological variation among themselves despite the

  15. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice

    PubMed Central

    Uraguchi, Shimpei; Mori, Shinsuke; Kuramata, Masato; Kawasaki, Akira; Arao, Tomohito; Ishikawa, Satoru

    2009-01-01

    Physiological properties involved in divergent cadmium (Cd) accumulation among rice genotypes were characterized using the indica cultivar ‘Habataki’ (high Cd in grains) and the japonica cultivar ‘Sasanishiki’ (low Cd in grains). Time-dependence and concentration-dependence of symplastic Cd absorption in roots were revealed not to be responsible for the different Cd accumulation between the two cultivars because root Cd uptake was not greater in the Cd-accumulating cultivar ‘Habataki’ compared with ‘Sasanishiki’. On the other hand, rapid and greater root-to-shoot Cd translocation was observed in ‘Habataki’, which could be mediated by higher abilities in xylem loading of Cd and transpiration rate as a driving force. To verify whether different abilities in xylem-mediated shoot-to-root translocation generally account for the genotypic variation in shoot Cd accumulation in rice, the world rice core collection, consisting of 69 accessions which covers the genetic diversity of almost 32 000 accessions of cultivated rice, was used. The results showed strong correlation between Cd levels in xylem sap and shoots and grains among the 69 rice accessions. Overall, the results presented in this study revealed that the root-to-shoot Cd translocation via the xylem is the major and common physiological process determining the Cd accumulation level in shoots and grains of rice plants. PMID:19401409

  16. Phenology of perennial native grass below-ground axillary buds in the northern mixed-grass prairie

    USDA-ARS?s Scientific Manuscript database

    Vegetative reproduction from belowground bud banks is the primary driver of grassland systems. Despite the importance of vegetative reproduction, the timing of belowground bud recruitment is unknown for most dominant, perennial native grasses as is the relationship between bud development and envir...

  17. Millet's Shooting Stars

    NASA Astrophysics Data System (ADS)

    Beech, M.

    1988-12-01

    In this essay two paintings by the French artist Jean-Francois Millet are described. These paintings, Les Etoiles Filantes and Nuit Etoilée are particularly interesting since they demonstrate the rare artistic employment of the shooting-star image and metaphor.

  18. Neurochemical markers of human fungiform papillae and taste buds.

    PubMed

    Astbäck, J; Arvidson, K; Johansson, O

    1995-11-10

    The presence of distribution of several neurochemical markers in human fungiform papillae and taste buds were investigated by the immunohistochemical technique. The gustatory cells of the taste buds are in synaptic contact with sensory nerve endings, and considering the taste buds strictly as specialized sensory organs, the amounts and distribution of some of the neurochemical markers were different to what we expected. For example, few structures showed immunoreactivity to the tachykinins substance P (SP), calcitonin gene-related peptide (CGRP), and neurokinin A (NKA) also for the peptides vasoactive intestinal polypeptide (VIP), neuropeptide tyrosine (NPY) and galanin, low amounts of immunoreactivity occurred. On the other hand, using antibodies to protein gene product 9.5 (PGP 9.5), protein S-100, and glutamate, numerous nerve fibres and/or immunoreactive cells were found in the fungiform papillae, in the epithelium, in the connective tissue and around blood vessels, as well as in or near taste buds. Incubation with the antibodies against somatostatin, enkephalin, bombesin, peptide histidine isoleucine amide (PHI), cholecystokinin (CCK)/gastrin and dopamine-beta-hydroxylase (DBH) was negative for the fungiform papillae. In conclusion, the present study has shown several immunoreactive structures using antibodies against certain neurochemical markers. Further investigations will hopefully correlate these morphological findings with functional taste perception data. Future studies of patients with taste disorders or other pathological changes correlated with taste and tongue will also be of utmost importance.

  19. Developmental control of hypoxia during bud burst in grapevine.

    PubMed

    Meitha, Karlia; Agudelo-Romero, Patricia; Signorelli, Santiago; Gibbs, Daniel J; Considine, John A; Foyer, Christine H; Considine, Michael J

    2018-05-01

    Dormant or quiescent buds of woody perennials are often dense and in the case of grapevine (Vitis vinifera L.) have a low tissue oxygen status. The precise timing of the decision to resume growth is difficult to predict, but once committed, the increase in tissue oxygen status is rapid and developmentally regulated. Here, we show that more than a third of the grapevine homologues of widely conserved hypoxia-responsive genes and nearly a fifth of all grapevine genes possessing a plant hypoxia-responsive promoter element were differentially regulated during bud burst, in apparent harmony with resumption of meristem identity and cell-cycle gene regulation. We then investigated the molecular and biochemical properties of the grapevine ERF-VII homologues, which in other species are oxygen labile and function in transcriptional regulation of hypoxia-responsive genes. Each of the 3 VvERF-VIIs were substrates for oxygen-dependent proteolysis in vitro, as a function of the N-terminal cysteine. Collectively, these data support an important developmental function of oxygen-dependent signalling in determining the timing and effective coordination bud burst in grapevine. In addition, novel regulators, including GASA-, TCP-, MYB3R-, PLT-, and WUS-like transcription factors, were identified as hallmarks of the orderly and functional resumption of growth following quiescence in buds. © 2018 John Wiley & Sons Ltd.

  20. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    PubMed

    Huang, Yijen A; Grant, Jeff; Roper, Stephen

    2012-01-01

    Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.