Sample records for adverbs multidimensional motion

  1. Sur la classification des adverbes en -ment (On the Classification of -ment Adverbs)

    ERIC Educational Resources Information Center

    Mordrup, Ole

    1976-01-01

    Presents a classification of French "-ment" adverbs based on syntactical criteria. The major divisions, consisting of "sentence adverbs" and "adverbs of manner," are further sub-divided into functional sub-groups. (Text is in French.) Available from: Akademisk Forlag, St. Kannikestraede 6-8, DK-1169 Copenhague K Danemark. (AM)

  2. Sentence Adverbs in the Kingdom of Agree

    ERIC Educational Resources Information Center

    Shu, Chih-hsiang

    2011-01-01

    This dissertation offers a novel account of the syntax of sentence adverbs. The need for a new account is clear from the lack of descriptive coverage and theoretical coherence in current work on adverbial syntax. Descriptively, the majority of work has so far neglected the fact that sentence adverbs behave syntactically like typical focusing…

  3. Automatic Correction of Adverb Placement Errors for CALL

    ERIC Educational Resources Information Center

    Garnier, Marie

    2012-01-01

    According to recent studies, there is a persistence of adverb placement errors in the written productions of francophone learners and users of English at an intermediate to advanced level. In this paper, we present strategies for the automatic detection and correction of errors in the placement of manner adverbs, using linguistic-based natural…

  4. Adverb Code-Switching among Miami's Haitian Creole-English Second Generation

    ERIC Educational Resources Information Center

    Hebblethwaite, Benjamin

    2010-01-01

    The findings for adverbs and adverbial phrases in a naturalistic corpus of Miami Haitian Creole-English code-switching show that one language, Haitian Creole, asymmetrically supplies the grammatical frame while the other language, English, asymmetrically supplies mixed lexical categories like adverbs. Traces of code-switching with an English frame…

  5. Multidimensional motion measurement of a bimorph-type piezoelectric actuator using a diffraction grating target

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ahn; Bae, Eui Won; Kim, Soo Hyun; Kwak, Yoon Keun

    2001-09-01

    Precision actuators, such as pick-up actuators for HDDs or CD-ROMs, mostly show multidimensional motion. So, to evaluate them more completely, multidimensional measurement is required. Through structural variation and optimization of the design index, the performance of a measurement system can be improved to satisfy the requirement of this application, and so the resolution of each axis is higher than 0.1 μm for translation and 0.5 arcsec for rotation. Using this measurement system, the multidimensional motion and frequency transfer functions of a bimorph-type piezoelectric actuator are obtained.

  6. Modeling stock prices in a portfolio using multidimensional geometric brownian motion

    NASA Astrophysics Data System (ADS)

    Maruddani, Di Asih I.; Trimono

    2018-05-01

    Modeling and forecasting stock prices of public corporates are important studies in financial analysis, due to their stock price characteristics. Stocks investments give a wide variety of risks. Taking a portfolio of several stocks is one way to minimize risk. Stochastic process of single stock price movements model can be formulated in Geometric Brownian Motion (GBM) model. But for a portfolio that consist more than one corporate stock, we need an expansion of GBM Model. In this paper, we use multidimensional Geometric Brownian Motion model. This paper aims to model and forecast two stock prices in a portfolio. These are PT. Matahari Department Store Tbk and PT. Telekomunikasi Indonesia Tbk on period January 4, 2016 until April 21, 2017. The goodness of stock price forecast value is based on Mean Absolute Percentage Error (MAPE). As the results, we conclude that forecast two stock prices in a portfolio using multidimensional GBM give less MAPE than using GBM for single stock price respectively. We conclude that multidimensional GBM is more appropriate for modeling stock prices, because the price of each stock affects each other.

  7. Movement of Negative Adverbs in French Infinitival Clauses.

    ERIC Educational Resources Information Center

    Martineau, France

    1994-01-01

    Positioning of negative adverbs (e.g., "mie, pas, point, jamais") in Middle and Classical French infinitival clauses is analyzed. It is proposed that, rather than linking movement of this infinitival verb to the strength of functional categories such as agreement, it be linked to parametric change in strength of the negative. (Author/MSE)

  8. EFL Learners' Uses of Adverbs in Argumentative Essays

    ERIC Educational Resources Information Center

    Yilmaz, Ercan; Dikilitas, Kenan

    2017-01-01

    Adverbs require a great deal of effort to be mastered, and even the most advanced users of that language have difficulty in using them correctly (Narita & Sugiura, 2006; Peacock, 2010; Lei, 2012; Leedham & Cai, 2013). The purpose of this study is to find out to what extent relatively high proficiency level EFL learners use different types…

  9. Gender Related Differences in Using Intensive Adverbs in Turkish

    ERIC Educational Resources Information Center

    Önem, Engin E.

    2017-01-01

    This study aims to find out whether there is a gender based difference between male and female native speakers of Turkish in using intensive adverbs in Turkish. To achieve this, 182 voluntary native speakers of Turkish (89 female/93 male) with age ranging from 18 to 22 were asked to complete a photo description task. The task required choosing one…

  10. Sobre la convertibilidad de ciertos adjectivos en adverbios en el idioma espanol (Concerning the Convertibility of Some Spanish Adjectives into Adverbs).

    ERIC Educational Resources Information Center

    Zierer, Ernesto

    1971-01-01

    This paper considers Spanish adjectives and the possibility of converting some adjectives into adverbs, keeping the same general significance of a sentence. The conversion of an adjective into an adverb under these circumstances can be accomplished through a transformation which can be applied to a particular logical-semantic structure. The author…

  11. Real-time monitoring and visualization of the multi-dimensional motion of an anisotropic nanoparticle

    NASA Astrophysics Data System (ADS)

    Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, Minkwan; Park, Chung-Hyun; Cho, Yong-Hoon

    2017-03-01

    As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles.

  12. Figure and Ground in Temporal Sentences: The Role of the Adverbs "When" and "While"

    ERIC Educational Resources Information Center

    De Vega, Manuel; Rinck, Mike; Diaz, Jose; Leon, Inmaculada

    2007-01-01

    Multiclause sentences with the temporal adverbs "while" or "when" referring to simultaneous events (e.g., "While [when] John was writing a letter, Mary comes into the room") were compared in German and Spanish. Following Talmy (2001), we assumed that the event in the main clause is the figure (F; the event to be located in time), and the event in…

  13. Does ℏ play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations.

    PubMed

    Sakurai, Atsunori; Tanimura, Yoshitaka

    2011-04-28

    To investigate the role of quantum effects in vibrational spectroscopies, we have carried out numerically exact calculations of linear and nonlinear response functions for an anharmonic potential system nonlinearly coupled to a harmonic oscillator bath. Although one cannot carry out the quantum calculations of the response functions with full molecular dynamics (MD) simulations for a realistic system which consists of many molecules, it is possible to grasp the essence of the quantum effects on the vibrational spectra by employing a model Hamiltonian that describes an intra- or intermolecular vibrational motion in a condensed phase. The present model fully includes vibrational relaxation, while the stochastic model often used to simulate infrared spectra does not. We have employed the reduced quantum hierarchy equations of motion approach in the Wigner space representation to deal with nonperturbative, non-Markovian, and nonsecular system-bath interactions. Taking the classical limit of the hierarchy equations of motion, we have obtained the classical equations of motion that describe the classical dynamics under the same physical conditions as in the quantum case. By comparing the classical and quantum mechanically calculated linear and multidimensional spectra, we found that the profiles of spectra for a fast modulation case were similar, but different for a slow modulation case. In both the classical and quantum cases, we identified the resonant oscillation peak in the spectra, but the quantum peak shifted to the red compared with the classical one if the potential is anharmonic. The prominent quantum effect is the 1-2 transition peak, which appears only in the quantum mechanically calculated spectra as a result of anharmonicity in the potential or nonlinearity of the system-bath coupling. While the contribution of the 1-2 transition is negligible in the fast modulation case, it becomes important in the slow modulation case as long as the amplitude of the

  14. Velocity-based motion categorization by pigeons.

    PubMed

    Cook, Robert G; Beale, Kevin; Koban, Angie

    2011-04-01

    To examine if animals could learn action-like categorizations in a manner similar to noun-based categories, eight pigeons were trained to categorize rates of object motion. Testing 40 different objects in a go/no-go discrimination, pigeons were first trained to discriminate between fast and slow rates of object rotation around their central y-axis. They easily learned this velocity discrimination and transferred it to novel objects and rates. This discrimination also transferred to novel types of motions including the other two axes of rotation and two new translations around the display. Comparable tests with rapid and slow changes in the objects' size, color, and shape failed to support comparable transfer. This difference in discrimination transfer between motion-based and property-based changes suggests the pigeons had learned motion concept rather than one based on change per se. The results provide evidence that pigeons can acquire an understanding of motion-based actions, at least with regard to the property of object velocity. This may be similar to our use of verbs and adverbs to categorize different classes of behavior or motion (e.g., walking, jogging, or running slow vs. fast).

  15. Los pronombres de cortesia: su tratamiento en espanol y en otros idiomas, El adverbio (Pronouns of Courtesy: Their Treatment in Spanish and Other Languages, the Adverbs)

    ERIC Educational Resources Information Center

    Criado de Val, Manuel

    1973-01-01

    Compares use of pronouns and adverbs in Spanish, French, Italian, Portuguese, English, German, Rumanian, and Slavic languages. Excerpted from the book Fisonomia del y de las lenguas modernas'' ( Features of Modern Languages''). (DS)

  16. Charged-particle motion in multidimensional magnetic-field turbulence

    NASA Technical Reports Server (NTRS)

    Giacalone, J.; Jokipii, J. R.

    1994-01-01

    We present a new analysis of the fundamental physics of charged-particle motion in a turbulent magnetic field using a numerical simulation. The magnetic field fluctuations are taken to be static and to have a power spectrum which is Kolmogorov. The charged particles are treated as test particles. It is shown that when the field turbulence is independent of one coordinate (i.e., k lies in a plane), the motion of these particles across the magnetic field is essentially zero, as required by theory. Consequently, the only motion across the average magnetic field direction that is allowed is that due to field-line random walk. On the other hand, when a fully three-dimensional realization of the turbulence is considered, the particles readily cross the field. Transport coefficients both along and across the ambient magnetic field are computed. This scheme provides a direct computation of the Fokker-Planck coefficients based on the motions of individual particles, and allows for comparison with analytic theory.

  17. Simulation of range imaging-based estimation of respiratory lung motion. Influence of noise, signal dimensionality and sampling patterns.

    PubMed

    Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H

    2014-01-01

    A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.

  18. Multidimensional spectrometer

    DOEpatents

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  19. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing.

    PubMed

    Feng, Li; Axel, Leon; Chandarana, Hersh; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo

    2016-02-01

    To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting undersampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value. © 2015 Wiley Periodicals, Inc.

  20. XD-GRASP: Golden-Angle Radial MRI with Reconstruction of Extra Motion-State Dimensions Using Compressed Sensing

    PubMed Central

    Feng, Li; Axel, Leon; Chandarana, Hersh; Block, Kai Tobias; Sodickson, Daniel K.; Otazo, Ricardo

    2015-01-01

    Purpose To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. Methods Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting under-sampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. Results XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. Conclusion XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value. PMID:25809847

  1. Analysis on the multi-dimensional spectrum of the thrust force for the linear motor feed drive system in machine tools

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Lu, Dun; Ma, Chengfang; Zhang, Jun; Zhao, Wanhua

    2017-01-01

    The motor thrust force has lots of harmonic components due to the nonlinearity of drive circuit and motor itself in the linear motor feed drive system. What is more, in the motion process, these thrust force harmonics may vary with the position, velocity, acceleration and load, which affects the displacement fluctuation of the feed drive system. Therefore, in this paper, on the basis of the thrust force spectrum obtained by the Maxwell equation and the electromagnetic energy method, the multi-dimensional variation of each thrust harmonic is analyzed under different motion parameters. Then the model of the servo system is established oriented to the dynamic precision. The influence of the variation of the thrust force spectrum on the displacement fluctuation is discussed. At last the experiments are carried out to verify the theoretical analysis above. It can be found that the thrust harmonics show multi-dimensional spectrum characteristics under different motion parameters and loads, which should be considered to choose the motion parameters and optimize the servo control parameters in the high-speed and high-precision machine tools equipped with the linear motor feed drive system.

  2. Analysis of cardiac interventricular septum motion in different respiratory states

    NASA Astrophysics Data System (ADS)

    Tautz, Lennart; Feng, Li; Otazo, Ricardo; Hennemuth, Anja; Axel, Leon

    2016-03-01

    The interaction between the left and right heart ventricles (LV and RV) depends on load and pressure conditions that are affected by cardiac contraction and respiration cycles. A novel MRI sequence, XD-GRASP, allows the acquisition of multi-dimensional, respiration-sorted and cardiac-synchronized free-breathing image data. In these data, effects of the cardiac and respiratory cycles on the LV/RV interaction can be observed independently. To enable the analysis of such data, we developed a semi-automatic exploration workflow. After tracking a cross-sectional line positioned over the heart, over all motion states, the septum and heart wall border locations are detected by analyzing the grey-value profile under the lines. These data are used to quantify septum motion, both in absolute units and as a fraction of the heart size, to compare values for different subjects. In addition to conventional visualization techniques, we used color maps for intuitive exploration of the variable values for this multi-dimensional data set. We acquired short-axis image data of nine healthy volunteers, to analyze the position and the motion of the interventricular septum in different breathing states and different cardiac cycle phases. The results indicate a consistent range of normal septum motion values, and also suggest that respiratory phase-dependent septum motion is greatest near end-diastolic phases. These new methods are a promising tool to assess LV/RV ventricle interaction and the effects of respiration on this interaction.

  3. Multidimensional chromatography in food analysis.

    PubMed

    Herrero, Miguel; Ibáñez, Elena; Cifuentes, Alejandro; Bernal, Jose

    2009-10-23

    In this work, the main developments and applications of multidimensional chromatographic techniques in food analysis are reviewed. Different aspects related to the existing couplings involving chromatographic techniques are examined. These couplings include multidimensional GC, multidimensional LC, multidimensional SFC as well as all their possible combinations. Main advantages and drawbacks of each coupling are critically discussed and their key applications in food analysis described.

  4. Multidimensional Knowledge Structures.

    ERIC Educational Resources Information Center

    Schuh, Kathy L.

    Multidimensional knowledge structures, described from a constructivist perspective and aligned with the "Mind as Rhizome" metaphor, provide support for constructivist learning strategies. This qualitative study was conducted to seek empirical support for a description of multidimensional knowledge structures, focusing on the…

  5. Numeric invariants from multidimensional persistence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skryzalin, Jacek; Carlsson, Gunnar

    2017-05-19

    In this paper, we analyze the space of multidimensional persistence modules from the perspectives of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence over one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Lastly, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be usedmore » to study data.« less

  6. Localized motion in random matrix decomposition of complex financial systems

    NASA Astrophysics Data System (ADS)

    Jiang, Xiong-Fei; Zheng, Bo; Ren, Fei; Qiu, Tian

    2017-04-01

    With the random matrix theory, we decompose the multi-dimensional time series of complex financial systems into a set of orthogonal eigenmode functions, which are classified into the market mode, sector mode, and random mode. In particular, the localized motion generated by the business sectors, plays an important role in financial systems. Both the business sectors and their impact on the stock market are identified from the localized motion. We clarify that the localized motion induces different characteristics of the time correlations for the stock-market index and individual stocks. With a variation of a two-factor model, we reproduce the return-volatility correlations of the eigenmodes.

  7. Temporal masking of multidimensional tactual stimuli

    NASA Astrophysics Data System (ADS)

    Tan, Hong Z.; Reed, Charlotte M.; Delhorne, Lorraine A.; Durlach, Nathaniel I.; Wan, Natasha

    2003-12-01

    Experiments were performed to examine the temporal masking properties of multidimensional tactual stimulation patterns delivered to the left index finger. The stimuli consisted of fixed-frequency sinusoidal motions in the kinesthetic (2 or 4 Hz), midfrequency (30 Hz), and cutaneous (300 Hz) frequency ranges. Seven stimuli composed of one, two, or three spectral components were constructed at each of two signal durations (125 or 250 ms). Subjects identified target signals under three different masking paradigms: forward masking, backward masking, and sandwiched masking (in which the target is presented between two maskers). Target identification was studied as a function of interstimulus interval (ISI) in the range 0 to 640 ms. For both signal durations, percent-correct scores increased with ISI for each of the three masking paradigms. Scores with forward and backward masking were similar and significantly higher than scores obtained with sandwiched masking. Analyses of error trials revealed that subjects showed a tendency to respond, more often than chance, with the masker, the composite of the masker and target, or the combination of the target and a component of the masker. The current results are compared to those obtained in previous studies of tactual recognition masking with brief cutaneous spatial patterns. The results are also discussed in terms of estimates of information transfer (IT) and IT rate, are compared to previous studies with multidimensional tactual signals, and are related to research on the development of tactual aids for the deaf.

  8. Numeric invariants from multidimensional persistence

    DOE PAGES

    Skryzalin, Jacek; Carlsson, Gunnar

    2017-05-19

    Topological data analysis is the study of data using techniques from algebraic topology. Often, one begins with a finite set of points representing data and a “filter” function which assigns a real number to each datum. Using both the data and the filter function, one can construct a filtered complex for further analysis. For example, applying the homology functor to the filtered complex produces an algebraic object known as a “one-dimensional persistence module”, which can often be interpreted as a finite set of intervals representing various geometric features in the data. If one runs the above process incorporating multiple filtermore » functions simultaneously, one instead obtains a multidimensional persistence module. Unfortunately, these are much more difficult to interpret. In this article, we analyze the space of multidimensional persistence modules from the perspective of algebraic geometry. First we build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence instead of one-dimensional persistence. Fruthermore, we argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Finally, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be used to study data. This paper extends the results of Adcock et al. (Homol Homotopy Appl 18(1), 381–402, 2016) by constructing numeric invariants from the computation of a multidimensional persistence module as given by Carlsson et al. (J Comput Geom 1(1), 72–100, 2010).« less

  9. Multidimensional Perfectionism and the Self

    ERIC Educational Resources Information Center

    Ward, Andrew M.; Ashby, Jeffrey S.

    2008-01-01

    This study examined multidimensional perfectionism and self-development. Two hundred seventy-one undergraduates completed a measure of multidimensional perfectionism and two Kohutian measures designed to measure aspects of self-development including social connectedness, social assurance, goal instability (idealization), and grandiosity. The…

  10. The necessity-concerns framework: a multidimensional theory benefits from multidimensional analysis.

    PubMed

    Phillips, L Alison; Diefenbach, Michael A; Kronish, Ian M; Negron, Rennie M; Horowitz, Carol R

    2014-08-01

    Patients' medication-related concerns and necessity-beliefs predict adherence. Evaluation of the potentially complex interplay of these two dimensions has been limited because of methods that reduce them to a single dimension (difference scores). We use polynomial regression to assess the multidimensional effect of stroke-event survivors' medication-related concerns and necessity beliefs on their adherence to stroke-prevention medication. Survivors (n = 600) rated their concerns, necessity beliefs, and adherence to medication. Confirmatory and exploratory polynomial regression determined the best-fitting multidimensional model. As posited by the necessity-concerns framework (NCF), the greatest and lowest adherence was reported by those necessity weak concerns and strong concerns/weak Necessity-Beliefs, respectively. However, as could not be assessed using a difference-score model, patients with ambivalent beliefs were less adherent than those exhibiting indifference. Polynomial regression allows for assessment of the multidimensional nature of the NCF. Clinicians/Researchers should be aware that concerns and necessity dimensions are not polar opposites.

  11. Multidimensional Scaling in the Poincare Disk

    DTIC Science & Technology

    2011-05-01

    REPORT Multidimensional Scaling in the Poincare Dis 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Multidimensional scaling (MDS) is a class of projective...DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Multidimensional Scaling in the Poincare Dis Report Title... plane . Our construction is based on an approximate hyperbolic line search and exempli?es some of the particulars that need to be addressed when

  12. Multidimensional Unfolding by Nonmetric Multidimensional Scaling of Spearman Distances in the Extended Permutation Polytope

    ERIC Educational Resources Information Center

    Van Deun, Katrijn; Heiser, Willem J.; Delbeke, Luc

    2007-01-01

    A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed: distance information about the unfolding data and about the distances both among judges and among objects is included in the complete matrix. The latter information is derived from the…

  13. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    PubMed

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  14. The Necessity-Concerns-Framework: A Multidimensional Theory Benefits from Multidimensional Analysis

    PubMed Central

    Phillips, L. Alison; Diefenbach, Michael; Kronish, Ian M.; Negron, Rennie M.; Horowitz, Carol R.

    2014-01-01

    Background Patients’ medication-related concerns and necessity-beliefs predict adherence. Evaluation of the potentially complex interplay of these two dimensions has been limited because of methods that reduce them to a single dimension (difference scores). Purpose We use polynomial regression to assess the multidimensional effect of stroke-event survivors’ medication-related concerns and necessity-beliefs on their adherence to stroke-prevention medication. Methods Survivors (n=600) rated their concerns, necessity-beliefs, and adherence to medication. Confirmatory and exploratory polynomial regression determined the best-fitting multidimensional model. Results As posited by the Necessity-Concerns Framework (NCF), the greatest and lowest adherence was reported by those with strong necessity-beliefs/weak concerns and strong concerns/weak necessity-beliefs, respectively. However, as could not be assessed using a difference-score model, patients with ambivalent beliefs were less adherent than those exhibiting indifference. Conclusions Polynomial regression allows for assessment of the multidimensional nature of the NCF. Clinicians/Researchers should be aware that concerns and necessity dimensions are not polar opposites. PMID:24500078

  15. Communication: Heterogeneous water dynamics on a clathrate hydrate lattice detected by multidimensional oxygen nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Adjei-Acheamfour, Mischa; Storek, Michael; Böhmer, Roland

    2017-05-01

    Previous deuteron nuclear magnetic resonance studies revealed conflicting evidence regarding the possible motional heterogeneity of the water dynamics on the hydrate lattice of an ice-like crystal. Using oxygen-17 nuclei as a sensitive quadrupolar probe, the reorientational two-time correlation function displays a clear nonexponentiality. To check whether this dispersive behavior is a consequence of dynamic heterogeneity or rather of an intrinsic nonexponentiality, a multidimensional, four-time magnetic resonance experiment was devised that is generally applicable to strongly quadrupolarly perturbed half-integer nuclei such as oxygen-17. Measurements of an appropriate four-time function demonstrate that it is possible to select a subensemble of slow water molecules. Its mean time scale is compared to theoretical predictions and evidence for significant motional heterogeneity is found.

  16. Progress in multi-dimensional upwind differencing

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1992-01-01

    Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.

  17. Multidimensional Risk Analysis: MRISK

    NASA Technical Reports Server (NTRS)

    McCollum, Raymond; Brown, Douglas; O'Shea, Sarah Beth; Reith, William; Rabulan, Jennifer; Melrose, Graeme

    2015-01-01

    Multidimensional Risk (MRISK) calculates the combined multidimensional score using Mahalanobis distance. MRISK accounts for covariance between consequence dimensions, which de-conflicts the interdependencies of consequence dimensions, providing a clearer depiction of risks. Additionally, in the event the dimensions are not correlated, Mahalanobis distance reduces to Euclidean distance normalized by the variance and, therefore, represents the most flexible and optimal method to combine dimensions. MRISK is currently being used in NASA's Environmentally Responsible Aviation (ERA) project o assess risk and prioritize scarce resources.

  18. Global Langevin model of multidimensional biomolecular dynamics.

    PubMed

    Schaudinnus, Norbert; Lickert, Benjamin; Biswas, Mithun; Stock, Gerhard

    2016-11-14

    Molecular dynamics simulations of biomolecular processes are often discussed in terms of diffusive motion on a low-dimensional free energy landscape F(). To provide a theoretical basis for this interpretation, one may invoke the system-bath ansatz á la Zwanzig. That is, by assuming a time scale separation between the slow motion along the system coordinate x and the fast fluctuations of the bath, a memory-free Langevin equation can be derived that describes the system's motion on the free energy landscape F(), which is damped by a friction field and driven by a stochastic force that is related to the friction via the fluctuation-dissipation theorem. While the theoretical formulation of Zwanzig typically assumes a highly idealized form of the bath Hamiltonian and the system-bath coupling, one would like to extend the approach to realistic data-based biomolecular systems. Here a practical method is proposed to construct an analytically defined global model of structural dynamics. Given a molecular dynamics simulation and adequate collective coordinates, the approach employs an "empirical valence bond"-type model which is suitable to represent multidimensional free energy landscapes as well as an approximate description of the friction field. Adopting alanine dipeptide and a three-dimensional model of heptaalanine as simple examples, the resulting Langevin model is shown to reproduce the results of the underlying all-atom simulations. Because the Langevin equation can also be shown to satisfy the underlying assumptions of the theory (such as a delta-correlated Gaussian-distributed noise), the global model provides a correct, albeit empirical, realization of Zwanzig's formulation. As an application, the model can be used to investigate the dependence of the system on parameter changes and to predict the effect of site-selective mutations on the dynamics.

  19. Global Langevin model of multidimensional biomolecular dynamics

    NASA Astrophysics Data System (ADS)

    Schaudinnus, Norbert; Lickert, Benjamin; Biswas, Mithun; Stock, Gerhard

    2016-11-01

    Molecular dynamics simulations of biomolecular processes are often discussed in terms of diffusive motion on a low-dimensional free energy landscape F ( 𝒙 ) . To provide a theoretical basis for this interpretation, one may invoke the system-bath ansatz á la Zwanzig. That is, by assuming a time scale separation between the slow motion along the system coordinate x and the fast fluctuations of the bath, a memory-free Langevin equation can be derived that describes the system's motion on the free energy landscape F ( 𝒙 ) , which is damped by a friction field and driven by a stochastic force that is related to the friction via the fluctuation-dissipation theorem. While the theoretical formulation of Zwanzig typically assumes a highly idealized form of the bath Hamiltonian and the system-bath coupling, one would like to extend the approach to realistic data-based biomolecular systems. Here a practical method is proposed to construct an analytically defined global model of structural dynamics. Given a molecular dynamics simulation and adequate collective coordinates, the approach employs an "empirical valence bond"-type model which is suitable to represent multidimensional free energy landscapes as well as an approximate description of the friction field. Adopting alanine dipeptide and a three-dimensional model of heptaalanine as simple examples, the resulting Langevin model is shown to reproduce the results of the underlying all-atom simulations. Because the Langevin equation can also be shown to satisfy the underlying assumptions of the theory (such as a delta-correlated Gaussian-distributed noise), the global model provides a correct, albeit empirical, realization of Zwanzig's formulation. As an application, the model can be used to investigate the dependence of the system on parameter changes and to predict the effect of site-selective mutations on the dynamics.

  20. Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Nkonga, Boniface

    2017-10-01

    Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.

  1. Adaptation without parameter change: Dynamic gain control in motion detection

    PubMed Central

    Borst, Alexander; Flanagin, Virginia L.; Sompolinsky, Haim

    2005-01-01

    Many sensory systems adapt their input-output relationship to changes in the statistics of the ambient stimulus. Such adaptive behavior has been measured in a motion detection sensitive neuron of the fly visual system, H1. The rapid adaptation of the velocity response gain has been interpreted as evidence of optimal matching of the H1 response to the dynamic range of the stimulus, thereby maximizing its information transmission. Here, we show that correlation-type motion detectors, which are commonly thought to underlie fly motion vision, intrinsically possess adaptive properties. Increasing the amplitude of the velocity fluctuations leads to a decrease of the effective gain and the time constant of the velocity response without any change in the parameters of these detectors. The seemingly complex property of this adaptation turns out to be a straightforward consequence of the multidimensionality of the stimulus and the nonlinear nature of the system. PMID:15833815

  2. Investigation of ZPE and temperature effects on the Eley-Rideal recombination of hydrogen atoms on graphene using a multidimensional graphene-H-H potential

    NASA Astrophysics Data System (ADS)

    Sizun, M.; Bachellerie, D.; Aguillon, F.; Sidis, V.

    2010-09-01

    We study the Eley-Rideal recombination of H atoms on graphene under the physical conditions of the interstellar medium. Effects of the ZPE motions of the chemisorbed H atom and of the graphene thermal motions are investigated. Classical molecular dynamics calculations undertaken with the multidimensional potential of Bachellerie et al. [Phys. Chem. Chem. Phys. 11 (2009) 2715] are reported. The ZPE effects are the strongest. The closer the collision energy is to the classical reaction threshold the more sizeable the effects. The quantum reaction cross section is also estimated below and above the classical threshold using a capture model.

  3. On the Need for Multidimensional Stirling Simulations

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2005-01-01

    Given the cost and complication of simulating Stirling convertors, do we really need multidimensional modeling when one-dimensional capabilities exist? This paper provides a comprehensive description of when and why multidimensional simulation is needed.

  4. Multidimensional poverty, household environment and short-term morbidity in India.

    PubMed

    Dehury, Bidyadhar; Mohanty, Sanjay K

    2017-01-01

    Using the unit data from the second round of the Indian Human Development Survey (IHDS-II), 2011-2012, which covered 42,152 households, this paper examines the association between multidimensional poverty, household environmental deprivation and short-term morbidities (fever, cough and diarrhoea) in India. Poverty is measured in a multidimensional framework that includes the dimensions of education, health and income, while household environmental deprivation is defined as lack of access to improved sanitation, drinking water and cooking fuel. A composite index combining multidimensional poverty and household environmental deprivation has been computed, and households are classified as follows: multidimensional poor and living in a poor household environment, multidimensional non-poor and living in a poor household environment, multidimensional poor and living in a good household environment and multidimensional non-poor and living in a good household environment. Results suggest that about 23% of the population belonging to multidimensional poor households and living in a poor household environment had experienced short-term morbidities in a reference period of 30 days compared to 20% of the population belonging to multidimensional non-poor households and living in a poor household environment, 19% of the population belonging to multidimensional poor households and living in a good household environment and 15% of the population belonging to multidimensional non-poor households and living in a good household environment. Controlling for socioeconomic covariates, the odds of short-term morbidity was 1.47 [CI 1.40-1.53] among the multidimensional poor and living in a poor household environment, 1.28 [CI 1.21-1.37] among the multidimensional non-poor and living in a poor household environment and 1.21 [CI 1.64-1.28] among the multidimensional poor and living in a good household environment compared to the multidimensional non-poor and living in a good household

  5. Multidimensional quantum entanglement with large-scale integrated optics.

    PubMed

    Wang, Jianwei; Paesani, Stefano; Ding, Yunhong; Santagati, Raffaele; Skrzypczyk, Paul; Salavrakos, Alexia; Tura, Jordi; Augusiak, Remigiusz; Mančinska, Laura; Bacco, Davide; Bonneau, Damien; Silverstone, Joshua W; Gong, Qihuang; Acín, Antonio; Rottwitt, Karsten; Oxenløwe, Leif K; O'Brien, Jeremy L; Laing, Anthony; Thompson, Mark G

    2018-04-20

    The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Multidimensional poverty and child survival in India.

    PubMed

    Mohanty, Sanjay K

    2011-01-01

    Though the concept of multidimensional poverty has been acknowledged cutting across the disciplines (among economists, public health professionals, development thinkers, social scientists, policy makers and international organizations) and included in the development agenda, its measurement and application are still limited. OBJECTIVES AND METHODOLOGY: Using unit data from the National Family and Health Survey 3, India, this paper measures poverty in multidimensional space and examine the linkages of multidimensional poverty with child survival. The multidimensional poverty is measured in the dimension of knowledge, health and wealth and the child survival is measured with respect to infant mortality and under-five mortality. Descriptive statistics, principal component analyses and the life table methods are used in the analyses. The estimates of multidimensional poverty are robust and the inter-state differentials are large. While infant mortality rate and under-five mortality rate are disproportionately higher among the abject poor compared to the non-poor, there are no significant differences in child survival among educationally, economically and health poor at the national level. State pattern in child survival among the education, economical and health poor are mixed. Use of multidimensional poverty measures help to identify abject poor who are unlikely to come out of poverty trap. The child survival is significantly lower among abject poor compared to moderate poor and non-poor. We urge to popularize the concept of multiple deprivations in research and program so as to reduce poverty and inequality in the population.

  7. Multidimensional Poverty and Child Survival in India

    PubMed Central

    Mohanty, Sanjay K.

    2011-01-01

    Background Though the concept of multidimensional poverty has been acknowledged cutting across the disciplines (among economists, public health professionals, development thinkers, social scientists, policy makers and international organizations) and included in the development agenda, its measurement and application are still limited. Objectives and Methodology Using unit data from the National Family and Health Survey 3, India, this paper measures poverty in multidimensional space and examine the linkages of multidimensional poverty with child survival. The multidimensional poverty is measured in the dimension of knowledge, health and wealth and the child survival is measured with respect to infant mortality and under-five mortality. Descriptive statistics, principal component analyses and the life table methods are used in the analyses. Results The estimates of multidimensional poverty are robust and the inter-state differentials are large. While infant mortality rate and under-five mortality rate are disproportionately higher among the abject poor compared to the non-poor, there are no significant differences in child survival among educationally, economically and health poor at the national level. State pattern in child survival among the education, economical and health poor are mixed. Conclusion Use of multidimensional poverty measures help to identify abject poor who are unlikely to come out of poverty trap. The child survival is significantly lower among abject poor compared to moderate poor and non-poor. We urge to popularize the concept of multiple deprivations in research and program so as to reduce poverty and inequality in the population. PMID:22046384

  8. The Multidimensional Assessment of Interoceptive Awareness (MAIA)

    PubMed Central

    Mehling, Wolf E.; Price, Cynthia; Daubenmier, Jennifer J.; Acree, Mike; Bartmess, Elizabeth; Stewart, Anita

    2012-01-01

    This paper describes the development of a multidimensional self-report measure of interoceptive body awareness. The systematic mixed-methods process involved reviewing the current literature, specifying a multidimensional conceptual framework, evaluating prior instruments, developing items, and analyzing focus group responses to scale items by instructors and patients of body awareness-enhancing therapies. Following refinement by cognitive testing, items were field-tested in students and instructors of mind-body approaches. Final item selection was achieved by submitting the field test data to an iterative process using multiple validation methods, including exploratory cluster and confirmatory factor analyses, comparison between known groups, and correlations with established measures of related constructs. The resulting 32-item multidimensional instrument assesses eight concepts. The psychometric properties of these final scales suggest that the Multidimensional Assessment of Interoceptive Awareness (MAIA) may serve as a starting point for research and further collaborative refinement. PMID:23133619

  9. An introduction to multidimensional measurement using Rasch models.

    PubMed

    Briggs, Derek C; Wilson, Mark

    2003-01-01

    The act of constructing a measure requires a number of important assumptions. Principle among these assumptions is that the construct is unidimensional. In practice there are many instances when the assumption of unidimensionality does not hold, and where the application of a multidimensional measurement model is both technically appropriate and substantively advantageous. In this paper we illustrate the usefulness of a multidimensional approach to measurement with the Multidimensional Random Coefficient Multinomial Logit (MRCML) model, an extension of the unidimensional Rasch model. An empirical example is taken from a collection of embedded assessments administered to 541 students enrolled in middle school science classes with a hands-on science curriculum. Student achievement on these assessments are multidimensional in nature, but can also be treated as consecutive unidimensional estimates, or as is most common, as a composite unidimensional estimate. Structural parameters are estimated for each model using ConQuest, and model fit is compared. Student achievement in science is also compared across models. The multidimensional approach has the best fit to the data, and provides more reliable estimates of student achievement than under the consecutive unidimensional approach. Finally, at an interpretational level, the multidimensional approach may well provide richer information to the classroom teacher about the nature of student achievement.

  10. Motion deficit of the thumb in CMC joint arthritis.

    PubMed

    Gehrmann, Sebastian V; Tang, Jie; Li, Zong Ming; Goitz, Robert J; Windolf, Joachim; Kaufmann, Robert A

    2010-09-01

    Idiopathic osteoarthritis (OA) of the thumb carpometacarpal (CMC) joint is a common disabling disease that often causes pain and motion loss. The aims of this study were to characterize the multidimensional motion capability of the thumb CMC joint in a group with severe CMC OA and to compare it with a control group. We included 15 subjects with stage III/IV CMC OA according to the Eaton/Littler classification, and 15 control subjects. A motion analysis system using surface markers was employed to quantify the maximum boundary of the thumb circumduction envelope during repetitive thumb movements. We measured the area enclosed by the angular circumduction envelope and the ranges of motion (ROM) in multiple directions for the thumb CMC joint. Thumb osteoarthritis of the CMC joint stage III/IV resulted in a significantly smaller ROM in flexion/extension (45 degrees +/- 11 degrees for the CMC OA group, 59 degrees +/- 10 degrees for the controls), abduction-adduction (37 degrees +/- 6 degrees for the CMC OA group, 63 degrees +/- 13 degrees for the controls), and pronation-supination (49 degrees +/- 10 degrees for the CMC OA group, 62 degrees +/- 11 degrees for the controls) (p < .01). When analyzing the motion directions in flexion-extension and abduction-adduction separately, there was only a loss of extension and adduction (p < .01). Severe stages of thumb CMC OA cause an asymmetrical motion deficit with decreased ROM in extension and adduction, leading to decreased capability of counteropposition. Copyright 2010. Published by Elsevier Inc.

  11. Positivity-preserving numerical schemes for multidimensional advection

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.; Macvean, M. K.; Lock, A. P.

    1993-01-01

    This report describes the construction of an explicit, single time-step, conservative, finite-volume method for multidimensional advective flow, based on a uniformly third-order polynomial interpolation algorithm (UTOPIA). Particular attention is paid to the problem of flow-to-grid angle-dependent, anisotropic distortion typical of one-dimensional schemes used component-wise. The third-order multidimensional scheme automatically includes certain cross-difference terms that guarantee good isotropy (and stability). However, above first-order, polynomial-based advection schemes do not preserve positivity (the multidimensional analogue of monotonicity). For this reason, a multidimensional generalization of the first author's universal flux-limiter is sought. This is a very challenging problem. A simple flux-limiter can be found; but this introduces strong anisotropic distortion. A more sophisticated technique, limiting part of the flux and then restoring the isotropy-maintaining cross-terms afterwards, gives more satisfactory results. Test cases are confined to two dimensions; three-dimensional extensions are briefly discussed.

  12. A multidimensional subdiffusion model: An arbitrage-free market

    NASA Astrophysics Data System (ADS)

    Li, Guo-Hua; Zhang, Hong; Luo, Mao-Kang

    2012-12-01

    To capture the subdiffusive characteristics of financial markets, the subordinated process, directed by the inverse α-stale subordinator Sα(t) for 0 < α < 1, has been employed as the model of asset prices. In this article, we introduce a multidimensional subdiffusion model that has a bond and K correlated stocks. The stock price process is a multidimensional subdiffusion process directed by the inverse α-stable subordinator. This model describes the period of stagnation for each stock and the behavior of the dependency between multiple stocks. Moreover, we derive the multidimensional fractional backward Kolmogorov equation for the subordinated process using the Laplace transform technique. Finally, using a martingale approach, we prove that the multidimensional subdiffusion model is arbitrage-free, and also gives an arbitrage-free pricing rule for contingent claims associated with the martingale measure.

  13. Perceptual Salience and Children's Multidimensional Problem Solving

    ERIC Educational Resources Information Center

    Odom, Richard D.; Corbin, David W.

    1973-01-01

    Uni- and multidimensional processing of 6- to 9-year olds was studied using recall tasks in which an array of stimuli was reconstructed to match a model array. Results indicated that both age groups were able to solve multidimensional problems, but that solution rate was retarded by the unidimensional processing of highly salient dimensions.…

  14. From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms

    NASA Astrophysics Data System (ADS)

    Bodin, Jacques

    2015-03-01

    In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.

  15. A Conceptual Model for Multidimensional Analysis of Documents

    NASA Astrophysics Data System (ADS)

    Ravat, Franck; Teste, Olivier; Tournier, Ronan; Zurlfluh, Gilles

    Data warehousing and OLAP are mainly used for the analysis of transactional data. Nowadays, with the evolution of Internet, and the development of semi-structured data exchange format (such as XML), it is possible to consider entire fragments of data such as documents as analysis sources. As a consequence, an adapted multidimensional analysis framework needs to be provided. In this paper, we introduce an OLAP multidimensional conceptual model without facts. This model is based on the unique concept of dimensions and is adapted for multidimensional document analysis. We also provide a set of manipulation operations.

  16. Multidimensional Measurement of Poverty among Women in Sub-Saharan Africa

    ERIC Educational Resources Information Center

    Batana, Yele Maweki

    2013-01-01

    Since the seminal work of Sen, poverty has been recognized as a multidimensional phenomenon. The recent availability of relevant databases renewed the interest in this approach. This paper estimates multidimensional poverty among women in fourteen Sub-Saharan African countries using the Alkire and Foster multidimensional poverty measures, whose…

  17. The Efficacy of Multidimensional Constraint Keys in Database Query Performance

    ERIC Educational Resources Information Center

    Cardwell, Leslie K.

    2012-01-01

    This work is intended to introduce a database design method to resolve the two-dimensional complexities inherent in the relational data model and its resulting performance challenges through abstract multidimensional constructs. A multidimensional constraint is derived and utilized to implement an indexed Multidimensional Key (MK) to abstract a…

  18. On the chaotic diffusion in multidimensional Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Cincotta, P. M.; Giordano, C. M.; Martí, J. G.; Beaugé, C.

    2018-01-01

    We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.

  19. Impact-based piezoelectric energy harvester for multidimensional, low-level, broadband, and low-frequency vibrations

    NASA Astrophysics Data System (ADS)

    Zhang, Hongjiang; Jiang, Senlin; He, Xuefeng

    2017-05-01

    This letter proposes an impact-based piezoelectric energy harvester that uses a rolling bead contained in a bracket that is supported by a spring. Under either translational or rotational base excitation, the bead moves within the bracket and collides with piezoelectric cantilevers that are located around the bracket; these collisions cause the piezoelectric beams to vibrate and thus produce electrical outputs. The low rolling friction and the motion amplification effect of the spring make the resulting device suitable for collection of low-level vibration energy. Experiments show that the proposed harvester is promising for use in scavenging of energy from the multidimensional, low-level, broadband, and low-frequency vibrations that occur in natural environments.

  20. Accessing Multi-Dimensional Images and Data Cubes in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Tody, Douglas; Plante, R. L.; Berriman, G. B.; Cresitello-Dittmar, M.; Good, J.; Graham, M.; Greene, G.; Hanisch, R. J.; Jenness, T.; Lazio, J.; Norris, P.; Pevunova, O.; Rots, A. H.

    2014-01-01

    Telescopes across the spectrum are routinely producing multi-dimensional images and datasets, such as Doppler velocity cubes, polarization datasets, and time-resolved “movies.” Examples of current telescopes producing such multi-dimensional images include the JVLA, ALMA, and the IFU instruments on large optical and near-infrared wavelength telescopes. In the near future, both the LSST and JWST will also produce such multi-dimensional images routinely. High-energy instruments such as Chandra produce event datasets that are also a form of multi-dimensional data, in effect being a very sparse multi-dimensional image. Ensuring that the data sets produced by these telescopes can be both discovered and accessed by the community is essential and is part of the mission of the Virtual Observatory (VO). The Virtual Astronomical Observatory (VAO, http://www.usvao.org/), in conjunction with its international partners in the International Virtual Observatory Alliance (IVOA), has developed a protocol and an initial demonstration service designed for the publication, discovery, and access of arbitrarily large multi-dimensional images. The protocol describing multi-dimensional images is the Simple Image Access Protocol, version 2, which provides the minimal set of metadata required to characterize a multi-dimensional image for its discovery and access. A companion Image Data Model formally defines the semantics and structure of multi-dimensional images independently of how they are serialized, while providing capabilities such as support for sparse data that are essential to deal effectively with large cubes. A prototype data access service has been deployed and tested, using a suite of multi-dimensional images from a variety of telescopes. The prototype has demonstrated the capability to discover and remotely access multi-dimensional data via standard VO protocols. The prototype informs the specification of a protocol that will be submitted to the IVOA for approval, with an

  1. The multidimensional perturbation value: a single metric to measure similarity and activity of treatments in high-throughput multidimensional screens.

    PubMed

    Hutz, Janna E; Nelson, Thomas; Wu, Hua; McAllister, Gregory; Moutsatsos, Ioannis; Jaeger, Savina A; Bandyopadhyay, Somnath; Nigsch, Florian; Cornett, Ben; Jenkins, Jeremy L; Selinger, Douglas W

    2013-04-01

    Screens using high-throughput, information-rich technologies such as microarrays, high-content screening (HCS), and next-generation sequencing (NGS) have become increasingly widespread. Compared with single-readout assays, these methods produce a more comprehensive picture of the effects of screened treatments. However, interpreting such multidimensional readouts is challenging. Univariate statistics such as t-tests and Z-factors cannot easily be applied to multidimensional profiles, leaving no obvious way to answer common screening questions such as "Is treatment X active in this assay?" and "Is treatment X different from (or equivalent to) treatment Y?" We have developed a simple, straightforward metric, the multidimensional perturbation value (mp-value), which can be used to answer these questions. Here, we demonstrate application of the mp-value to three data sets: a multiplexed gene expression screen of compounds and genomic reagents, a microarray-based gene expression screen of compounds, and an HCS compound screen. In all data sets, active treatments were successfully identified using the mp-value, and simulations and follow-up analyses supported the mp-value's statistical and biological validity. We believe the mp-value represents a promising way to simplify the analysis of multidimensional data while taking full advantage of its richness.

  2. Heteronuclear Multidimensional Protein NMR in a Teaching Laboratory

    ERIC Educational Resources Information Center

    Wright, Nathan T.

    2016-01-01

    Heteronuclear multidimensional NMR techniques are commonly used to study protein structure, function, and dynamics, yet they are rarely taught at the undergraduate level. Here, we describe a senior undergraduate laboratory where students collect, process, and analyze heteronuclear multidimensional NMR experiments using an unstudied Ig domain (Ig2…

  3. Supervised and Unsupervised Learning of Multidimensional Acoustic Categories

    ERIC Educational Resources Information Center

    Goudbeek, Martijn; Swingley, Daniel; Smits, Roel

    2009-01-01

    Learning to recognize the contrasts of a language-specific phonemic repertoire can be viewed as forming categories in a multidimensional psychophysical space. Research on the learning of distributionally defined visual categories has shown that categories defined over 1 dimension are easy to learn and that learning multidimensional categories is…

  4. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond

    NASA Astrophysics Data System (ADS)

    Neukirch, Levi P.; von Haartman, Eva; Rosenholm, Jessica M.; Nick Vamivakas, A.

    2015-10-01

    Considerable advances made in the development of nanomechanical and nano-optomechanical devices have enabled the observation of quantum effects, improved sensitivity to minute forces, and provided avenues to probe fundamental physics at the nanoscale. Concurrently, solid-state quantum emitters with optically accessible spin degrees of freedom have been pursued in applications ranging from quantum information science to nanoscale sensing. Here, we demonstrate a hybrid nano-optomechanical system composed of a nanodiamond (containing a single nitrogen-vacancy centre) that is levitated in an optical dipole trap. The mechanical state of the diamond is controlled by modulation of the optical trapping potential. We demonstrate the ability to imprint the multi-dimensional mechanical motion of the cavity-free mechanical oscillator into the nitrogen-vacancy centre fluorescence and manipulate the mechanical system's intrinsic spin. This result represents the first step towards a hybrid quantum system based on levitating nanoparticles that simultaneously engages optical, phononic and spin degrees of freedom.

  5. Best Design for Multidimensional Computerized Adaptive Testing with the Bifactor Model

    ERIC Educational Resources Information Center

    Seo, Dong Gi; Weiss, David J.

    2015-01-01

    Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm…

  6. Multidimensional modulation for next-generation transmission systems

    NASA Astrophysics Data System (ADS)

    Millar, David S.; Koike-Akino, Toshiaki; Kojima, Keisuke; Parsons, Kieran

    2017-01-01

    Recent research in multidimensional modulation has shown great promise in long reach applications. In this work, we will investigate the origins of this gain, the different approaches to multidimensional constellation design, and different performance metrics for coded modulation. We will also discuss the reason that such coded modulation schemes seem to have limited application at shorter distances, and the potential for other coded modulation schemes in future transmission systems.

  7. Multidimensional Data Modeling for Business Process Analysis

    NASA Astrophysics Data System (ADS)

    Mansmann, Svetlana; Neumuth, Thomas; Scholl, Marc H.

    The emerging area of business process intelligence attempts to enhance the analytical capabilities of business process management systems by employing data warehousing and mining technologies. This paper presents an approach to re-engineering the business process modeling in conformity with the multidimensional data model. Since the business process and the multidimensional model are driven by rather different objectives and assumptions, there is no straightforward solution to converging these models.

  8. Evaluating Item Fit for Multidimensional Item Response Models

    ERIC Educational Resources Information Center

    Zhang, Bo; Stone, Clement A.

    2008-01-01

    This research examines the utility of the s-x[superscript 2] statistic proposed by Orlando and Thissen (2000) in evaluating item fit for multidimensional item response models. Monte Carlo simulation was conducted to investigate both the Type I error and statistical power of this fit statistic in analyzing two kinds of multidimensional test…

  9. DICON: interactive visual analysis of multidimensional clusters.

    PubMed

    Cao, Nan; Gotz, David; Sun, Jimeng; Qu, Huamin

    2011-12-01

    Clustering as a fundamental data analysis technique has been widely used in many analytic applications. However, it is often difficult for users to understand and evaluate multidimensional clustering results, especially the quality of clusters and their semantics. For large and complex data, high-level statistical information about the clusters is often needed for users to evaluate cluster quality while a detailed display of multidimensional attributes of the data is necessary to understand the meaning of clusters. In this paper, we introduce DICON, an icon-based cluster visualization that embeds statistical information into a multi-attribute display to facilitate cluster interpretation, evaluation, and comparison. We design a treemap-like icon to represent a multidimensional cluster, and the quality of the cluster can be conveniently evaluated with the embedded statistical information. We further develop a novel layout algorithm which can generate similar icons for similar clusters, making comparisons of clusters easier. User interaction and clutter reduction are integrated into the system to help users more effectively analyze and refine clustering results for large datasets. We demonstrate the power of DICON through a user study and a case study in the healthcare domain. Our evaluation shows the benefits of the technique, especially in support of complex multidimensional cluster analysis. © 2011 IEEE

  10. Multi-dimensional multi-species modeling of transient electrodeposition in LIGA microfabrication.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Gregory Herbert; Chen, Ken Shuang

    2004-06-01

    This report documents the efforts and accomplishments of the LIGA electrodeposition modeling project which was headed by the ASCI Materials and Physics Modeling Program. A multi-dimensional framework based on GOMA was developed for modeling time-dependent diffusion and migration of multiple charged species in a dilute electrolyte solution with reduction electro-chemical reactions on moving deposition surfaces. By combining the species mass conservation equations with the electroneutrality constraint, a Poisson equation that explicitly describes the electrolyte potential was derived. The set of coupled, nonlinear equations governing species transport, electric potential, velocity, hydrodynamic pressure, and mesh motion were solved in GOMA, using themore » finite-element method and a fully-coupled implicit solution scheme via Newton's method. By treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and by repeatedly performing re-meshing with CUBIT and re-mapping with MAPVAR, the moving deposition surfaces were tracked explicitly from start of deposition until the trenches were filled with metal, thus enabling the computation of local current densities that potentially influence the microstructure and frictional/mechanical properties of the deposit. The multi-dimensional, multi-species, transient computational framework was demonstrated in case studies of two-dimensional nickel electrodeposition in single and multiple trenches, without and with bath stirring or forced flow. Effects of buoyancy-induced convection on deposition were also investigated. To further illustrate its utility, the framework was employed to simulate deposition in microscreen-based LIGA molds. Lastly, future needs for modeling LIGA electrodeposition are discussed.« less

  11. Multidimensional Homophily in Friendship Networks1

    PubMed Central

    Block, Per; Grund, Thomas

    2014-01-01

    Homophily – the tendency for individuals to associate with similar others – is one of the most persistent findings in social network analysis. Its importance is established along the lines of a multitude of sociologically relevant dimensions, e.g. sex, ethnicity and social class. Existing research, however, mostly focuses on one dimension at a time. But people are inherently multidimensional, have many attributes and are members of multiple groups. In this article, we explore such multidimensionality further in the context of network dynamics. Are friendship ties increasingly likely to emerge and persist when individuals have an increasing number of attributes in common? We analyze eleven friendship networks of adolescents, draw on stochastic actor-oriented network models and focus on the interaction of established homophily effects. Our results indicate that main effects for homophily on various dimensions are positive. At the same time, the interaction of these homophily effects is negative. There seems to be a diminishing effect for having more than one attribute in common. We conclude that studies of homophily and friendship formation need to address such multidimensionality further. PMID:25525503

  12. Assessing Construct Validity Using Multidimensional Item Response Theory.

    ERIC Educational Resources Information Center

    Ackerman, Terry A.

    The concept of a user-specified validity sector is discussed. The idea of the validity sector combines the work of M. D. Reckase (1986) and R. Shealy and W. Stout (1991). Reckase developed a methodology to represent an item in a multidimensional latent space as a vector. Item vectors are computed using multidimensional item response theory item…

  13. Recent advances in multidimensional ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliver, Thomas A. A.

    2018-01-01

    Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes.

  14. Recent advances in multidimensional ultrafast spectroscopy

    PubMed Central

    2018-01-01

    Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes. PMID:29410844

  15. Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential

    NASA Astrophysics Data System (ADS)

    Leonenko, N. N.; Ruiz-Medina, M. D.

    2006-07-01

    The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.

  16. The Tunneling Method for Global Optimization in Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Groenen, Patrick J. F.; Heiser, Willem J.

    1996-01-01

    A tunneling method for global minimization in multidimensional scaling is introduced and adjusted for multidimensional scaling with general Minkowski distances. The method alternates a local search step with a tunneling step in which a different configuration is sought with the same STRESS implementation. (SLD)

  17. Multidimensional Physical Self-Concept of Athletes with Physical Disabilities

    ERIC Educational Resources Information Center

    Shapiro, Deborah R.; Martin, Jeffrey J.

    2010-01-01

    The purposes of this investigation were first to predict reported PA (physical activity) behavior and self-esteem using a multidimensional physical self-concept model and second to describe perceptions of multidimensional physical self-concept (e.g., strength, endurance, sport competence) among athletes with physical disabilities. Athletes (N =…

  18. Trellis coding with multidimensional QAM signal sets

    NASA Technical Reports Server (NTRS)

    Pietrobon, Steven S.; Costello, Daniel J.

    1993-01-01

    Trellis coding using multidimensional QAM signal sets is investigated. Finite-size 2D signal sets are presented that have minimum average energy, are 90-deg rotationally symmetric, and have from 16 to 1024 points. The best trellis codes using the finite 16-QAM signal set with two, four, six, and eight dimensions are found by computer search (the multidimensional signal set is constructed from the 2D signal set). The best moderate complexity trellis codes for infinite lattices with two, four, six, and eight dimensions are also found. The minimum free squared Euclidean distance and number of nearest neighbors for these codes were used as the selection criteria. Many of the multidimensional codes are fully rotationally invariant and give asymptotic coding gains up to 6.0 dB. From the infinite lattice codes, the best codes for transmitting J, J + 1/4, J + 1/3, J + 1/2, J + 2/3, and J + 3/4 bit/sym (J an integer) are presented.

  19. On new physics searches with multidimensional differential shapes

    NASA Astrophysics Data System (ADS)

    Ferreira, Felipe; Fichet, Sylvain; Sanz, Veronica

    2018-03-01

    In the context of upcoming new physics searches at the LHC, we investigate the impact of multidimensional differential rates in typical LHC analyses. We discuss the properties of shape information, and argue that multidimensional rates bring limited information in the scope of a discovery, but can have a large impact on model discrimination. We also point out subtleties about systematic uncertainties cancellations and the Cauchy-Schwarz bound on interference terms.

  20. Multidimensional human dynamics in mobile phone communications.

    PubMed

    Quadri, Christian; Zignani, Matteo; Capra, Lorenzo; Gaito, Sabrina; Rossi, Gian Paolo

    2014-01-01

    In today's technology-assisted society, social interactions may be expressed through a variety of techno-communication channels, including online social networks, email and mobile phones (calls, text messages). Consequently, a clear grasp of human behavior through the diverse communication media is considered a key factor in understanding the formation of the today's information society. So far, all previous research on user communication behavior has focused on a sole communication activity. In this paper we move forward another step on this research path by performing a multidimensional study of human sociality as an expression of the use of mobile phones. The paper focuses on user temporal communication behavior in the interplay between the two complementary communication media, text messages and phone calls, that represent the bi-dimensional scenario of analysis. Our study provides a theoretical framework for analyzing multidimensional bursts as the most general burst category, that includes one-dimensional bursts as the simplest case, and offers empirical evidence of their nature by following the combined phone call/text message communication patterns of approximately one million people over three-month period. This quantitative approach enables the design of a generative model rooted in the three most significant features of the multidimensional burst - the number of dimensions, prevalence and interleaving degree - able to reproduce the main media usage attitude. The other findings of the paper include a novel multidimensional burst detection algorithm and an insight analysis of the human media selection process.

  1. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  2. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  3. Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present new, efficient central schemes for multi-dimensional Hamilton-Jacobi equations. These non-oscillatory, non-staggered schemes are first- and second-order accurate and are designed to scale well with an increasing dimension. Efficiency is obtained by carefully choosing the location of the evolution points and by using a one-dimensional projection step. First-and second-order accuracy is verified for a variety of multi-dimensional, convex and non-convex problems.

  4. Modeling Quantum Dynamics in Multidimensional Systems

    NASA Astrophysics Data System (ADS)

    Liss, Kyle; Weinacht, Thomas; Pearson, Brett

    2017-04-01

    Coupling between different degrees-of-freedom is an inherent aspect of dynamics in multidimensional quantum systems. As experiments and theory begin to tackle larger molecular structures and environments, models that account for vibrational and/or electronic couplings are essential for interpretation. Relevant processes include intramolecular vibrational relaxation, conical intersections, and system-bath coupling. We describe a set of simulations designed to model coupling processes in multidimensional molecular systems, focusing on models that provide insight and allow visualization of the dynamics. Undergraduates carried out much of the work as part of a senior research project. In addition to the pedagogical value, the simulations allow for comparison between both explicit and implicit treatments of a system's many degrees-of-freedom.

  5. Benefits of Multidimensional Measures of Child Well Being in China

    PubMed Central

    Gatenio Gabel, Shirley; Zhang, Yiwei

    2017-01-01

    In recent decades, measures of child well-being have evolved from single dimension to multidimensional measures. Multi-dimensional measures deepen and broaden our understanding of child well-being and inform us of areas of neglect. Child well-being in China today is measured through proxy measures of household need. This paper discusses the evolution of child well-being measures more generally, explores the benefits of positive indicators and multiple dimensions in formulating policy, and then reviews efforts to date by the Chinese government, researchers, and non-governmental and intergovernmental organizations to develop comprehensive multidimensional measures of child well-being in China. The domains and their potential interactions, as well as data sources and availability, are presented. The authors believe that child well-being in China would benefit from the development of a multidimensional index and that there is sufficient data to develop such an index. PMID:29113121

  6. Benefits of Multidimensional Measures of Child Well Being in China.

    PubMed

    Gatenio Gabel, Shirley; Zhang, Yiwei

    2017-11-06

    In recent decades, measures of child well-being have evolved from single dimension to multidimensional measures. Multi-dimensional measures deepen and broaden our understanding of child well-being and inform us of areas of neglect. Child well-being in China today is measured through proxy measures of household need. This paper discusses the evolution of child well-being measures more generally, explores the benefits of positive indicators and multiple dimensions in formulating policy, and then reviews efforts to date by the Chinese government, researchers, and non-governmental and intergovernmental organizations to develop comprehensive multidimensional measures of child well-being in China. The domains and their potential interactions, as well as data sources and availability, are presented. The authors believe that child well-being in China would benefit from the development of a multidimensional index and that there is sufficient data to develop such an index.

  7. On Multi-Dimensional Unstructured Mesh Adaption

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    1999-01-01

    Anisotropic unstructured mesh adaption is developed for a truly multi-dimensional upwind fluctuation splitting scheme, as applied to scalar advection-diffusion. The adaption is performed locally using edge swapping, point insertion/deletion, and nodal displacements. Comparisons are made versus the current state of the art for aggressive anisotropic unstructured adaption, which is based on a posteriori error estimates. Demonstration of both schemes to model problems, with features representative of compressible gas dynamics, show the present method to be superior to the a posteriori adaption for linear advection. The performance of the two methods is more similar when applied to nonlinear advection, with a difference in the treatment of shocks. The a posteriori adaption can excessively cluster points to a shock, while the present multi-dimensional scheme tends to merely align with a shock, using fewer nodes. As a consequence of this alignment tendency, an implementation of eigenvalue limiting for the suppression of expansion shocks is developed for the multi-dimensional distribution scheme. The differences in the treatment of shocks by the adaption schemes, along with the inherently low levels of artificial dissipation in the fluctuation splitting solver, suggest the present method is a strong candidate for applications to compressible gas dynamics.

  8. An Efficient Method for Studying the Stability and Dynamics of the Rotational Motions of Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Pavlov, A. I.; Maciejewski, A. J.

    2003-08-01

    We use the alternative MEGNO (Mean Exponential Growth of Nearby Orbits) technique developed by Cincotta and Simo to study the stability of orbital-rotational motions for plane oscillations and three-dimensional rotations. We present a detailed numerical-analytical study of a rigid body in the case where the proper rotation of the body is synchronized with its orbital motion as 3: 2 (Mercurian-type synchronism). For plane rotations, the loss of stability of the periodic solution that corresponds to a 3: 2 resonance is shown to be soft, which should be taken into account to estimate the upper limit for the ellipticity of Mercury. In studying stable and chaotic translational-rotational motions, we point out that the MEGNO criterion can be effectively used. This criterion gives a clear picture of the resonant structures and allows the calculations to be conveniently presented in the form of the corresponding MEGNO stability maps for multidimensional systems. We developed an appropriate software package.

  9. Fatigue and multidimensional disease severity in chronic obstructive pulmonary disease.

    PubMed

    Inal-Ince, Deniz; Savci, Sema; Saglam, Melda; Calik, Ebru; Arikan, Hulya; Bosnak-Guclu, Meral; Vardar-Yagli, Naciye; Coplu, Lutfi

    2010-06-30

    Fatigue is associated with longitudinal ratings of health in patients with chronic obstructive pulmonary disease (COPD). Although the degree of airflow obstruction is often used to grade disease severity in patients with COPD, multidimensional grading systems have recently been developed. The aim of this study was to investigate the relationship between perceived and actual fatigue level and multidimensional disease severity in patients with COPD. Twenty-two patients with COPD (aged 52-74 years) took part in the study. Multidimensional disease severity was measured using the SAFE and BODE indices. Perceived fatigue was assessed using the Fatigue Severity Scale (FSS) and the Fatigue Impact Scale (FIS). Peripheral muscle endurance was evaluated using the number of sit-ups, squats, and modified push-ups that each patient could do. Thirteen patients (59%) had severe fatigue, and their St George's Respiratory Questionnaire scores were significantly higher (p < 0.05). The SAFE index score was significantly correlated with the number of sit-ups, number of squats, FSS score and FIS score (p < 0.05). The BODE index was significantly associated with the numbers of sit-ups, squats and modified push-ups, and with the FSS and FIS scores (p < 0.05). Peripheral muscle endurance and fatigue perception in patients with COPD was related to multidimensional disease severity measured with both the SAFE and BODE indices. Improvements in perceived and actual fatigue levels may positively affect multidimensional disease severity and health status in COPD patients. Further research is needed to investigate the effects of fatigue perception and exercise training on patients with different stages of multidimensional COPD severity.

  10. A Comparative Study of Online Item Calibration Methods in Multidimensional Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Chen, Ping

    2017-01-01

    Calibration of new items online has been an important topic in item replenishment for multidimensional computerized adaptive testing (MCAT). Several online calibration methods have been proposed for MCAT, such as multidimensional "one expectation-maximization (EM) cycle" (M-OEM) and multidimensional "multiple EM cycles"…

  11. The Cognitive Visualization System with the Dynamic Projection of Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Gorohov, V.; Vitkovskiy, V.

    2008-08-01

    The phenomenon of cognitive machine drawing consists in the generation on the screen the special graphic representations, which create in the brain of human operator entertainment means. These means seem man by aesthetically attractive and, thus, they stimulate its descriptive imagination, closely related to the intuitive mechanisms of thinking. The essence of cognitive effect lies in the fact that man receives the moving projection as pseudo-three-dimensional object characterizing multidimensional means in the multidimensional space. After the thorough qualitative study of the visual aspects of multidimensional means with the aid of the enumerated algorithms appears the possibility, using algorithms of standard machine drawing to paint the interesting user separate objects or the groups of objects. Then it is possible to again return to the dynamic behavior of the rotation of means for the purpose of checking the intuitive ideas of user about the clusters and the connections in multidimensional data. Is possible the development of the methods of cognitive machine drawing in combination with other information technologies, first of all with the packets of digital processing of images and multidimensional statistical analysis.

  12. Visual modeling in an analysis of multidimensional data

    NASA Astrophysics Data System (ADS)

    Zakharova, A. A.; Vekhter, E. V.; Shklyar, A. V.; Pak, A. J.

    2018-01-01

    The article proposes an approach to solve visualization problems and the subsequent analysis of multidimensional data. Requirements to the properties of visual models, which were created to solve analysis problems, are described. As a perspective direction for the development of visual analysis tools for multidimensional and voluminous data, there was suggested an active use of factors of subjective perception and dynamic visualization. Practical results of solving the problem of multidimensional data analysis are shown using the example of a visual model of empirical data on the current state of studying processes of obtaining silicon carbide by an electric arc method. There are several results of solving this problem. At first, an idea of possibilities of determining the strategy for the development of the domain, secondly, the reliability of the published data on this subject, and changes in the areas of attention of researchers over time.

  13. Development of multi-dimensional body image scale for malaysian female adolescents

    PubMed Central

    Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs. PMID:20126371

  14. Development of multi-dimensional body image scale for malaysian female adolescents.

    PubMed

    Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs.

  15. Multidimensional Computerized Adaptive Testing for Indonesia Junior High School Biology

    ERIC Educational Resources Information Center

    Kuo, Bor-Chen; Daud, Muslem; Yang, Chih-Wei

    2015-01-01

    This paper describes a curriculum-based multidimensional computerized adaptive test that was developed for Indonesia junior high school Biology. In adherence to the Indonesian curriculum of different Biology dimensions, 300 items was constructed, and then tested to 2238 students. A multidimensional random coefficients multinomial logit model was…

  16. A multidimensional evaluation of a nursing information-literacy program.

    PubMed Central

    Fox, L M; Richter, J M; White, N E

    1996-01-01

    The goal of an information-literacy program is to develop student skills in locating, evaluating, and applying information for use in critical thinking and problem solving. This paper describes a multidimensional evaluation process for determining nursing students' growth in cognitive and affective domains. Results indicate improvement in student skills as a result of a nursing information-literacy program. Multidimensional evaluation produces a well-rounded picture of student progress based on formal measurement as well as informal feedback. Developing new educational programs can be a time-consuming challenge. It is important, when expending so much effort, to ensure that the goals of the new program are achieved and benefits to students demonstrated. A multidimensional approach to evaluation can help to accomplish those ends. In 1988, The University of Northern Colorado School of Nursing began working with a librarian to integrate an information-literacy component, entitled Pathways to Information Literacy, into the curriculum. This article describes the program and discusses how a multidimensional evaluation process was used to assess program effectiveness. The evaluation process not only helped to measure the effectiveness of the program but also allowed the instructors to use several different approaches to evaluation. PMID:8826621

  17. Multi-dimensional quantum state sharing based on quantum Fourier transform

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Tso, Raylin; Dai, Yuewei

    2018-03-01

    A scheme of multi-dimensional quantum state sharing is proposed. The dealer performs the quantum SUM gate and the quantum Fourier transform to encode a multi-dimensional quantum state into an entanglement state. Then the dealer distributes each participant a particle of the entanglement state, to share the quantum state among n participants. In the recovery, n-1 participants measure their particles and supply their measurement results; the last participant performs the unitary operation on his particle according to these measurement results and can reconstruct the initial quantum state. The proposed scheme has two merits: It can share the multi-dimensional quantum state and it does not need the entanglement measurement.

  18. Multidimensional Poverty and Health Status as a Predictor of Chronic Income Poverty.

    PubMed

    Callander, Emily J; Schofield, Deborah J

    2015-12-01

    Longitudinal analysis of Wave 5 to 10 of the nationally representative Household, Income and Labour Dynamics in Australia dataset was undertaken to assess whether multidimensional poverty status can predict chronic income poverty. Of those who were multidimensionally poor (low income plus poor health or poor health and insufficient education attainment) in 2007, and those who were in income poverty only (no other forms of disadvantage) in 2007, a greater proportion of those in multidimensional poverty continued to be in income poverty for the subsequent 5 years through to 2012. People who were multidimensionally poor in 2007 had 2.17 times the odds of being in income poverty each year through to 2012 than those who were in income poverty only in 2005 (95% CI: 1.23-3.83). Multidimensional poverty measures are a useful tool for policymakers to identify target populations for policies aiming to improve equity and reduce chronic disadvantage. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Item Vector Plots for the Multidimensional Three-Parameter Logistic Model

    ERIC Educational Resources Information Center

    Bryant, Damon; Davis, Larry

    2011-01-01

    This brief technical note describes how to construct item vector plots for dichotomously scored items fitting the multidimensional three-parameter logistic model (M3PLM). As multidimensional item response theory (MIRT) shows promise of being a very useful framework in the test development life cycle, graphical tools that facilitate understanding…

  20. Chemical space visualization: transforming multidimensional chemical spaces into similarity-based molecular networks.

    PubMed

    de la Vega de León, Antonio; Bajorath, Jürgen

    2016-09-01

    The concept of chemical space is of fundamental relevance for medicinal chemistry and chemical informatics. Multidimensional chemical space representations are coordinate-based. Chemical space networks (CSNs) have been introduced as a coordinate-free representation. A computational approach is presented for the transformation of multidimensional chemical space into CSNs. The design of transformation CSNs (TRANS-CSNs) is based upon a similarity function that directly reflects distance relationships in original multidimensional space. TRANS-CSNs provide an immediate visualization of coordinate-based chemical space and do not require the use of dimensionality reduction techniques. At low network density, TRANS-CSNs are readily interpretable and make it possible to evaluate structure-activity relationship information originating from multidimensional chemical space.

  1. Best Design for Multidimensional Computerized Adaptive Testing With the Bifactor Model

    PubMed Central

    Seo, Dong Gi; Weiss, David J.

    2015-01-01

    Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm (MCAT) with a bifactor model using simulated data. Four item selection methods in MCAT were examined for three bifactor pattern designs using two multidimensional item response theory models. To compare MCAT item selection and estimation methods, a fixed test length was used. The Ds-optimality item selection improved θ estimates with respect to a general factor, and either D- or A-optimality improved estimates of the group factors in three bifactor pattern designs under two multidimensional item response theory models. The MCAT model without a guessing parameter functioned better than the MCAT model with a guessing parameter. The MAP (maximum a posteriori) estimation method provided more accurate θ estimates than the EAP (expected a posteriori) method under most conditions, and MAP showed lower observed standard errors than EAP under most conditions, except for a general factor condition using Ds-optimality item selection. PMID:29795848

  2. Multidimensional incremental parsing for universal source coding.

    PubMed

    Bae, Soo Hyun; Juang, Biing-Hwang

    2008-10-01

    A multidimensional incremental parsing algorithm (MDIP) for multidimensional discrete sources, as a generalization of the Lempel-Ziv coding algorithm, is investigated. It consists of three essential component schemes, maximum decimation matching, hierarchical structure of multidimensional source coding, and dictionary augmentation. As a counterpart of the longest match search in the Lempel-Ziv algorithm, two classes of maximum decimation matching are studied. Also, an underlying behavior of the dictionary augmentation scheme for estimating the source statistics is examined. For an m-dimensional source, m augmentative patches are appended into the dictionary at each coding epoch, thus requiring the transmission of a substantial amount of information to the decoder. The property of the hierarchical structure of the source coding algorithm resolves this issue by successively incorporating lower dimensional coding procedures in the scheme. In regard to universal lossy source coders, we propose two distortion functions, the local average distortion and the local minimax distortion with a set of threshold levels for each source symbol. For performance evaluation, we implemented three image compression algorithms based upon the MDIP; one is lossless and the others are lossy. The lossless image compression algorithm does not perform better than the Lempel-Ziv-Welch coding, but experimentally shows efficiency in capturing the source structure. The two lossy image compression algorithms are implemented using the two distortion functions, respectively. The algorithm based on the local average distortion is efficient at minimizing the signal distortion, but the images by the one with the local minimax distortion have a good perceptual fidelity among other compression algorithms. Our insights inspire future research on feature extraction of multidimensional discrete sources.

  3. Bifactor Approach to Modeling Multidimensionality of Physical Self-Perception Profile

    ERIC Educational Resources Information Center

    Chung, ChihMing; Liao, Xiaolan; Song, Hairong; Lee, Taehun

    2016-01-01

    The multi-dimensionality of Physical Self-Perception Profile (PSPP) has been acknowledged by the use of correlated-factor model and second-order model. In this study, the authors critically endorse the bifactor model, as a substitute to address the multi-dimensionality of PSPP. To cross-validate the models, analyses are conducted first in…

  4. Deterministic multidimensional nonuniform gap sampling.

    PubMed

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Simulation of a Multidimensional Input Quantum Perceptron

    NASA Astrophysics Data System (ADS)

    Yamamoto, Alexandre Y.; Sundqvist, Kyle M.; Li, Peng; Harris, H. Rusty

    2018-06-01

    In this work, we demonstrate the improved data separation capabilities of the Multidimensional Input Quantum Perceptron (MDIQP), a fundamental cell for the construction of more complex Quantum Artificial Neural Networks (QANNs). This is done by using input controlled alterations of ancillary qubits in combination with phase estimation and learning algorithms. The MDIQP is capable of processing quantum information and classifying multidimensional data that may not be linearly separable, extending the capabilities of the classical perceptron. With this powerful component, we get much closer to the achievement of a feedforward multilayer QANN, which would be able to represent and classify arbitrary sets of data (both quantum and classical).

  6. Further Validation of the Multidimensional Fatigue Symptom Inventory-Short Form

    PubMed Central

    Stein, Kevin D.; Jacobsen, Paul B.; Blanchard, Chris M.; Thors, Christina

    2008-01-01

    A growing body of evidence is documenting the multidimensional nature of cancer-related fatigue. Although several multidimensional measures of fatigue have been developed, further validation of these scales is needed. To this end, the current study sought to evaluate the factorial and construct validity of the 30-item Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF). A heterogeneous sample of 304 cancer patients (mean age 55 years) completed the MFSI-SF, along with several other measures of psychosocial functioning including the MOS-SF-36 and Fatigue Symptom Inventory, following the fourth cycle of chemotherapy treatment. The results of a confirmatory factor analysis indicated the 5-factor model provided a good fit to the data as evidenced by commonly used goodness of fit indices (CFI 0.90 and IFI 0.90). Additional evidence for the validity of the MFSI-SF was provided via correlations with other relevant instruments (range −0.21 to 0.82). In sum, the current study provides support for the MFSI-SF as a valuable tool for the multidimensional assessment of cancer-related fatigue. PMID:14711465

  7. A Multidimensional Software Engineering Course

    ERIC Educational Resources Information Center

    Barzilay, O.; Hazzan, O.; Yehudai, A.

    2009-01-01

    Software engineering (SE) is a multidimensional field that involves activities in various areas and disciplines, such as computer science, project management, and system engineering. Though modern SE curricula include designated courses that address these various subjects, an advanced summary course that synthesizes them is still missing. Such a…

  8. Some theorems and properties of multi-dimensional fractional Laplace transforms

    NASA Astrophysics Data System (ADS)

    Ahmood, Wasan Ajeel; Kiliçman, Adem

    2016-06-01

    The aim of this work is to study theorems and properties for the one-dimensional fractional Laplace transform, generalize some properties for the one-dimensional fractional Lapalce transform to be valid for the multi-dimensional fractional Lapalce transform and is to give the definition of the multi-dimensional fractional Lapalce transform. This study includes: dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable with some of important theorems and properties and develop of some properties for the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform. Also, we obtain a fractional Laplace inversion theorem after a short survey on fractional analysis based on the modified Riemann-Liouville derivative.

  9. The Extraction of One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, Robert A.; Gaffney, Richard L., Jr.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e.g. thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  10. Enhancing Student Motivation and Engagement: The Effects of a Multidimensional Intervention

    ERIC Educational Resources Information Center

    Martin, Andrew J.

    2008-01-01

    The present study sought to investigate the effects of a multidimensional educational intervention on high school students' motivation and engagement. The intervention incorporated: (a) multidimensional targets of motivation and engagement, (b) empirically derived intervention methodology, (c) research-based risk and protective factors, (d)…

  11. Health, Wealth and Wisdom: Exploring Multidimensional Inequality in a Developing Country

    ERIC Educational Resources Information Center

    Nilsson, Therese

    2010-01-01

    Despite a broad theoretical literature on multidimensional inequality and a widespread belief that welfare is not synonymous to income--not the least in a developing context--empirical inequality examinations rarely includes several welfare attributes. We explore three techniques on how to evaluate multidimensional inequality using Zambian…

  12. A review of snapshot multidimensional optical imaging: measuring photon tags in parallel

    PubMed Central

    Gao, Liang; Wang, Lihong V.

    2015-01-01

    Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than measuring only the two-dimensional spatial distribution of light, as in conventional photography, multidimensional optical imaging captures light in up to nine dimensions, providing unprecedented information about incident photons’ spatial coordinates, emittance angles, wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition—also dubbed snapshot imaging—has a prominent advantage in maximizing optical throughput, particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot multidimensional imagers based on their acquisition and image reconstruction strategies, then highlight the snapshot advantage in the context of optical throughput, and finally we discuss their state-of-the-art implementations and applications. PMID:27134340

  13. Recycling Behavior: A Multidimensional Approach

    ERIC Educational Resources Information Center

    Meneses, Gonzalo Diaz; Palacio, Asuncion Beerli

    2005-01-01

    This work centers on the study of consumer recycling roles to examine the sociodemographic and psychographic profile of the distribution of recycling tasks and roles within the household. With this aim in mind, an empirical work was carried out, the results of which suggest that recycling behavior is multidimensional and comprises the undertaking…

  14. Prose Representation: A Multidimensional Scaling Approach.

    ERIC Educational Resources Information Center

    LaPorte, Ronald E.; Voss, James F.

    1979-01-01

    Multidimensional scaling was used to study the comprehension of prose. Undergraduates rated the similarity of twenty nouns before and after reading passages containing those nouns. Results indicated that the scaling analysis provided an effective valid indicator of prose representation. (Author/JKS)

  15. A Multidimensional Study of Vocal Function Following Radiation Therapy for Laryngeal Cancers.

    PubMed

    Angadi, Vrushali; Dressler, Emily; Stemple, Joseph

    2017-06-01

    Radiation therapy (XRT) has proven to be an effective curative modality in the treatment of laryngeal cancers. However, XRT also has deleterious effects on vocal function. To demonstrate the multidimensional nature of deficits in vocal function as a result of radiation therapy for laryngeal cancer. Cohort study. Vocal function parameters were chosen from the 5 domains of voice assessment to complete a multidimensional assessment battery. Adults irradiated (XRT group) for laryngeal cancers were compared to a control group of individuals with no history of head and neck cancers or radiation therapy. The control group was matched in age, sex, and pack years of smoking. Eighteen participants were recruited for the study. The XRT group demonstrated significantly worse clinical values as compared to the control group across select parameters in the each of the 5 domains of voice assessment. Radiation therapy for laryngeal cancers results in multidimensional deficits in vocal function. Notably, these deficits persist long term. In the present study sample, multidimensional deficits were persistent 2 to 7 years following completion of XRT. The observed multidimensional persistent vocal difficulties highlight the importance of vocal rehabilitation in the irradiated larynx cancer population.

  16. A Multidimensional Scaling Approach to Dimensionality Assessment for Measurement Instruments Modeled by Multidimensional Item Response Theory

    ERIC Educational Resources Information Center

    Toro, Maritsa

    2011-01-01

    The statistical assessment of dimensionality provides evidence of the underlying constructs measured by a survey or test instrument. This study focuses on educational measurement, specifically tests comprised of items described as multidimensional. That is, items that require examinee proficiency in multiple content areas and/or multiple cognitive…

  17. Multidimensional Programming Methods for Energy Facility Siting: Alternative Approaches

    NASA Technical Reports Server (NTRS)

    Solomon, B. D.; Haynes, K. E.

    1982-01-01

    The use of multidimensional optimization methods in solving power plant siting problems, which are characterized by several conflicting, noncommensurable objectives is addressed. After a discussion of data requirements and exclusionary site screening methods for bounding the decision space, classes of multiobjective and goal programming models are discussed in the context of finite site selection. Advantages and limitations of these approaches are highlighted and the linkage of multidimensional methods with the subjective, behavioral components of the power plant siting process is emphasized.

  18. Multi-dimensional simulations of core-collapse supernova explosions with CHIMERA

    NASA Astrophysics Data System (ADS)

    Messer, O. E. B.; Harris, J. A.; Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; Mezzacappa, A.

    2018-04-01

    Unraveling the core-collapse supernova (CCSN) mechanism is a problem that remains essentially unsolved despite more than four decades of effort. Spherically symmetric models with otherwise high physical fidelity generally fail to produce explosions, and it is widely accepted that CCSNe are inherently multi-dimensional. Progress in realistic modeling has occurred recently through the availability of petascale platforms and the increasing sophistication of supernova codes. We will discuss our most recent work on understanding neutrino-driven CCSN explosions employing multi-dimensional neutrino-radiation hydrodynamics simulations with the Chimera code. We discuss the inputs and resulting outputs from these simulations, the role of neutrino radiation transport, and the importance of multi-dimensional fluid flows in shaping the explosions. We also highlight the production of 48Ca in long-running Chimera simulations.

  19. Igloo-Plot: a tool for visualization of multidimensional datasets.

    PubMed

    Kuntal, Bhusan K; Ghosh, Tarini Shankar; Mande, Sharmila S

    2014-01-01

    Advances in science and technology have resulted in an exponential growth of multivariate (or multi-dimensional) datasets which are being generated from various research areas especially in the domain of biological sciences. Visualization and analysis of such data (with the objective of uncovering the hidden patterns therein) is an important and challenging task. We present a tool, called Igloo-Plot, for efficient visualization of multidimensional datasets. The tool addresses some of the key limitations of contemporary multivariate visualization and analysis tools. The visualization layout, not only facilitates an easy identification of clusters of data-points having similar feature compositions, but also the 'marker features' specific to each of these clusters. The applicability of the various functionalities implemented herein is demonstrated using several well studied multi-dimensional datasets. Igloo-Plot is expected to be a valuable resource for researchers working in multivariate data mining studies. Igloo-Plot is available for download from: http://metagenomics.atc.tcs.com/IglooPlot/. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Models of multidimensional discrete distribution of probabilities of random variables in information systems

    NASA Astrophysics Data System (ADS)

    Gromov, Yu Yu; Minin, Yu V.; Ivanova, O. G.; Morozova, O. N.

    2018-03-01

    Multidimensional discrete distributions of probabilities of independent random values were received. Their one-dimensional distribution is widely used in probability theory. Producing functions of those multidimensional distributions were also received.

  1. Pathways into chronic multidimensional poverty amongst older people: a longitudinal study.

    PubMed

    Callander, Emily J; Schofield, Deborah J

    2016-03-07

    The use of multidimensional poverty measures is becoming more common for measuring the living standards of older people. However, the pathways into poverty are relatively unknown, nor is it known how this affects the length of time people are in poverty for. Using Waves 1 to 12 of the nationally representative Household, Income and Labour Dynamics in Australia (HILDA) survey, longitudinal analysis was undertaken to identify the order that key forms of disadvantage develop - poor health, low income and insufficient education attainment - amongst Australians aged 65 years and over in multidimensional poverty, and the relationship this has with chronic poverty. Path analysis and linear regression models were used. For all older people with at least a Year 10 level of education attainment earlier mental health was significantly related to later household income (p = 0.001) and wealth (p = 0.017). For all older people with at less than a Year 10 level of education attainment earlier household income was significantly related to later mental health (p = 0.021). When limited to those in multidimensional poverty who were in income poverty and also had poor health, older people generally fell into income poverty first and then developed poor health. The order in which income poverty and poor health were developed had a significant influence on the length of time older people with less than a Year 10 level of education attainment were in multidimensional poverty for. Those who developed poor health first then fell into income poverty spend significantly less time in multidimensional poverty (-4.90, p < .0001) than those who fell into income poverty then developed poor health. Knowing the order that different forms of disadvantage develop, and the influence this has on poverty entrenchment, is of use to policy makers wishing to provide interventions to prevent older people being in long-term multidimensional poverty.

  2. Multidimensional Perspectives on Principal Leadership Effectiveness

    ERIC Educational Resources Information Center

    Beycioglu, Kadir, Ed.; Pashiardis, Petros, Ed.

    2015-01-01

    Exceptional management skills are crucial to success in educational environments. As school leaders, principals are expected to effectively supervise the school system while facing a multitude of issues and demands. "Multidimensional Perspectives on Principal Leadership Effectiveness" combines best practices and the latest approaches in…

  3. The Art of Extracting One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.; Gaffney, R. L.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e:g: thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  4. A Multidimensional Ideal Point Item Response Theory Model for Binary Data

    ERIC Educational Resources Information Center

    Maydeu-Olivares, Albert; Hernandez, Adolfo; McDonald, Roderick P.

    2006-01-01

    We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model…

  5. Assessment of health surveys: fitting a multidimensional graded response model.

    PubMed

    Depaoli, Sarah; Tiemensma, Jitske; Felt, John M

    The multidimensional graded response model, an item response theory (IRT) model, can be used to improve the assessment of surveys, even when sample sizes are restricted. Typically, health-based survey development utilizes classical statistical techniques (e.g. reliability and factor analysis). In a review of four prominent journals within the field of Health Psychology, we found that IRT-based models were used in less than 10% of the studies examining scale development or assessment. However, implementing IRT-based methods can provide more details about individual survey items, which is useful when determining the final item content of surveys. An example using a quality of life survey for Cushing's syndrome (CushingQoL) highlights the main components for implementing the multidimensional graded response model. Patients with Cushing's syndrome (n = 397) completed the CushingQoL. Results from the multidimensional graded response model supported a 2-subscale scoring process for the survey. All items were deemed as worthy contributors to the survey. The graded response model can accommodate unidimensional or multidimensional scales, be used with relatively lower sample sizes, and is implemented in free software (example code provided in online Appendix). Use of this model can help to improve the quality of health-based scales being developed within the Health Sciences.

  6. Multi-dimensional simulations of core-collapse supernova explosions with CHIMERA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messer, Bronson; Harris, James Austin; Hix, William Raphael

    Unraveling the core-collapse supernova (CCSN) mechanism is a problem that remains essentially unsolved despite more than four decades of effort. Spherically symmetric models with otherwise high physical fidelity generally fail to produce explosions, and it is widely accepted that CCSNe are inherently multi-dimensional. Progress in realistic modeling has occurred recently through the availability of petascale platforms and the increasing sophistication of supernova codes. We will discuss our most recent work on understanding neutrino-driven CCSN explosions employing multi-dimensional neutrino-radiation hydrodynamics simulations with the Chimera code. We discuss the inputs and resulting outputs from these simulations, the role of neutrino radiation transport,more » and the importance of multi-dimensional fluid flows in shaping the explosions. We also highlight the production of 48Ca in long-running Chimera simulations.« less

  7. PedsQL™ Multidimensional Fatigue Scale in sickle cell disease: feasibility, reliability, and validity.

    PubMed

    Panepinto, Julie A; Torres, Sylvia; Bendo, Cristiane B; McCavit, Timothy L; Dinu, Bogdan; Sherman-Bien, Sandra; Bemrich-Stolz, Christy; Varni, James W

    2014-01-01

    Sickle cell disease (SCD) is an inherited blood disorder characterized by a chronic hemolytic anemia that can contribute to fatigue and global cognitive impairment in patients. The study objective was to report on the feasibility, reliability, and validity of the PedsQL™ Multidimensional Fatigue Scale in SCD for pediatric patient self-report ages 5-18 years and parent proxy-report for ages 2-18 years. This was a cross-sectional multi-site study whereby 240 pediatric patients with SCD and 303 parents completed the 18-item PedsQL™ Multidimensional Fatigue Scale. Participants also completed the PedsQL™ 4.0 Generic Core Scales. The PedsQL™ Multidimensional Fatigue Scale evidenced excellent feasibility, excellent reliability for the Total Scale Scores (patient self-report α = 0.90; parent proxy-report α = 0.95), and acceptable reliability for the three individual scales (patient self-report α = 0.77-0.84; parent proxy-report α = 0.90-0.97). Intercorrelations of the PedsQL™ Multidimensional Fatigue Scale with the PedsQL™ Generic Core Scales were predominantly in the large (≥0.50) range, supporting construct validity. PedsQL™ Multidimensional Fatigue Scale Scores were significantly worse with large effects sizes (≥0.80) for patients with SCD than for a comparison sample of healthy children, supporting known-groups discriminant validity. Confirmatory factor analysis demonstrated an acceptable to excellent model fit in SCD. The PedsQL™ Multidimensional Fatigue Scale demonstrated acceptable to excellent measurement properties in SCD. The results demonstrate the relative severity of fatigue symptoms in pediatric patients with SCD, indicating the potential clinical utility of multidimensional assessment of fatigue in patients with SCD in clinical research and practice. © 2013 Wiley Periodicals, Inc.

  8. Multidimensional Scaling Applied to Linguistic Relationships.

    ERIC Educational Resources Information Center

    Black, Paul

    1973-01-01

    As the several specific applications in this paper demonstrate, multidimensional scaling provides a long-needed means for investigating and describing spatial relationships among speech varieties. It is especially applicable to the relationships among varieties of a single language (or more properly, linguistic "cline"), which, as is…

  9. Portable laser synthesizer for high-speed multi-dimensional spectroscopy

    DOEpatents

    Demos, Stavros G [Livermore, CA; Shverdin, Miroslav Y [Sunnyvale, CA; Shirk, Michael D [Brentwood, CA

    2012-05-29

    Portable, field-deployable laser synthesizer devices designed for multi-dimensional spectrometry and time-resolved and/or hyperspectral imaging include a coherent light source which simultaneously produces a very broad, energetic, discrete spectrum spanning through or within the ultraviolet, visible, and near infrared wavelengths. The light output is spectrally resolved and each wavelength is delayed with respect to each other. A probe enables light delivery to a target. For multidimensional spectroscopy applications, the probe can collect the resulting emission and deliver this radiation to a time gated spectrometer for temporal and spectral analysis.

  10. Testlet-Based Multidimensional Adaptive Testing.

    PubMed

    Frey, Andreas; Seitz, Nicki-Nils; Brandt, Steffen

    2016-01-01

    Multidimensional adaptive testing (MAT) is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS, or NAEP. To make MAT accessible for such testing programs, we present a novel combination of MAT with a multidimensional generalization of the random effects testlet model (MAT-MTIRT). MAT-MTIRT compared to non-adaptive testing is examined for several combinations of testlet effect variances (0.0, 0.5, 1.0, and 1.5) and testlet sizes (3, 6, and 9 items) with a simulation study considering three ability dimensions with simple loading structure. MAT-MTIRT outperformed non-adaptive testing regarding the measurement precision of the ability estimates. Further, the measurement precision decreased when testlet effect variances and testlet sizes increased. The suggested combination of the MTIRT model therefore provides a solution to the substantial problems of testlet-based tests while keeping the length of the test within an acceptable range.

  11. Testlet-Based Multidimensional Adaptive Testing

    PubMed Central

    Frey, Andreas; Seitz, Nicki-Nils; Brandt, Steffen

    2016-01-01

    Multidimensional adaptive testing (MAT) is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS, or NAEP. To make MAT accessible for such testing programs, we present a novel combination of MAT with a multidimensional generalization of the random effects testlet model (MAT-MTIRT). MAT-MTIRT compared to non-adaptive testing is examined for several combinations of testlet effect variances (0.0, 0.5, 1.0, and 1.5) and testlet sizes (3, 6, and 9 items) with a simulation study considering three ability dimensions with simple loading structure. MAT-MTIRT outperformed non-adaptive testing regarding the measurement precision of the ability estimates. Further, the measurement precision decreased when testlet effect variances and testlet sizes increased. The suggested combination of the MTIRT model therefore provides a solution to the substantial problems of testlet-based tests while keeping the length of the test within an acceptable range. PMID:27917132

  12. A New Heterogeneous Multidimensional Unfolding Procedure

    ERIC Educational Resources Information Center

    Park, Joonwook; Rajagopal, Priyali; DeSarbo, Wayne S.

    2012-01-01

    A variety of joint space multidimensional scaling (MDS) methods have been utilized for the spatial analysis of two- or three-way dominance data involving subjects' preferences, choices, considerations, intentions, etc. so as to provide a parsimonious spatial depiction of the underlying relevant dimensions, attributes, stimuli, and/or subjects'…

  13. Effect Size Measures for Differential Item Functioning in a Multidimensional IRT Model

    ERIC Educational Resources Information Center

    Suh, Youngsuk

    2016-01-01

    This study adapted an effect size measure used for studying differential item functioning (DIF) in unidimensional tests and extended the measure to multidimensional tests. Two effect size measures were considered in a multidimensional item response theory model: signed weighted P-difference and unsigned weighted P-difference. The performance of…

  14. The Definition of Difficulty and Discrimination for Multidimensional Item Response Theory Models.

    ERIC Educational Resources Information Center

    Reckase, Mark D.; McKinley, Robert L.

    A study was undertaken to develop guidelines for the interpretation of the parameters of three multidimensional item response theory models and to determine the relationship between the parameters and traditional concepts of item difficulty and discrimination. The three models considered were multidimensional extensions of the one-, two-, and…

  15. The Multidimensional Attitudes Scale toward Persons with Disabilities (MAS): Construction and Validation

    ERIC Educational Resources Information Center

    Findler, Liora; Vilchinsky, Noa; Werner, Shirli

    2007-01-01

    This study presents the development of a new instrument, the "Multidimensional Attitudes Scale Toward Persons With Disabilities" (MAS). Based on the multidimensional approach, it posits that attitudes are composed of three dimensions: affect, cognition, and behavior. The scale was distributed to a sample of 132 people along with a…

  16. The PedsQL Multidimensional Fatigue Scale in pediatric rheumatology: reliability and validity.

    PubMed

    Varni, James W; Burwinkle, Tasha M; Szer, Ilona S

    2004-12-01

    . The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health related quality of life (HRQOL) in children and adolescents ages 2-18 years. The recently developed 18-item PedsQL Multidimensional Fatigue Scale was designed to measure fatigue in pediatric patients and comprises the General Fatigue Scale (6 items), Sleep/Rest Fatigue Scale (6 items), and Cognitive Fatigue Scale (6 items). The PedsQL 4.0 Generic Core Scales were developed as the generic core measure to be integrated with the PedsQL Disease-Specific Modules. The PedsQL 3.0 Rheumatology Module was designed to measure pediatric rheumatology-specific HRQOL. Methods. The PedsQL Multidimensional Fatigue Scale, Generic Core Scales, and Rheumatology Module were administered to 163 children and 154 parents (183 families accrued overall) recruited from a pediatric rheumatology clinic. Results. Internal consistency reliability for the PedsQL Multidimensional Fatigue Scale Total Score (a = 0.95 child, 0.95 parent report), General Fatigue Scale (a = 0.93 child, 0.92 parent), Sleep/Rest Fatigue Scale (a = 0.88 child, 0.90 parent), and Cognitive Fatigue Scale (a = 0.93 child, 0.96 parent) were excellent for group and individual comparisons. The validity of the PedsQL Multidimensional Fatigue Scale was confirmed through hypothesized intercorrelations with dimensions of generic and rheumatology-specific HRQOL. The PedsQL Multidimensional Fatigue Scale distinguished between healthy children and children with rheumatic diseases as a group, and was associated with greater disease severity. Children with fibromyalgia manifested greater fatigue than children with other rheumatic diseases. The results confirm the initial reliability and validity of the PedsQL Multidimensional Fatigue Scale in pediatric rheumatology.

  17. PedsQL™ Multidimensional Fatigue Scale in Sickle Cell Disease: Feasibility, Reliability and Validity

    PubMed Central

    Panepinto, Julie A.; Torres, Sylvia; Bendo, Cristiane B.; McCavit, Timothy L.; Dinu, Bogdan; Sherman-Bien, Sandra; Bemrich-Stolz, Christy; Varni, James W.

    2013-01-01

    Background Sickle cell disease (SCD) is an inherited blood disorder characterized by a chronic hemolytic anemia that can contribute to fatigue and global cognitive impairment in patients. The study objective was to report on the feasibility, reliability, and validity of the PedsQL™ Multidimensional Fatigue Scale in SCD for pediatric patient self-report ages 5–18 years and parent proxy-report for ages 2–18 years. Procedure This was a cross-sectional multi-site study whereby 240 pediatric patients with SCD and 303 parents completed the 18-item PedsQL™ Multidimensional Fatigue Scale. Participants also completed the PedsQL™ 4.0 Generic Core Scales. Results The PedsQL™ Multidimensional Fatigue Scale evidenced excellent feasibility, excellent reliability for the Total Scale Scores (patient self-report α = 0.90; parent proxy-report α = 0.95), and acceptable reliability for the three individual scales (patient self-report α = 0.77–0.84; parent proxy-report α = 0.90–0.97). Intercorrelations of the PedsQL™ Multidimensional Fatigue Scale with the PedsQL™ Generic Core Scales were predominantly in the large (≥ 0.50) range, supporting construct validity. PedsQL™ Multidimensional Fatigue Scale Scores were significantly worse with large effects sizes (≥0.80) for patients with SCD than for a comparison sample of healthy children, supporting known-groups discriminant validity. Confirmatory factor analysis demonstrated an acceptable to excellent model fit in SCD. Conclusions The PedsQL™ Multidimensional Fatigue Scale demonstrated acceptable to excellent measurement properties in SCD. The results demonstrate the relative severity of fatigue symptoms in pediatric patients with SCD, indicating the potential clinical utility of multidimensional assessment of fatigue in patients with SCD in clinical research and practice. PMID:24038960

  18. Deriving Multidimensional Poverty Indicators: Methodological Issues and an Empirical Analysis for Italy

    ERIC Educational Resources Information Center

    Coromaldi, Manuela; Zoli, Mariangela

    2012-01-01

    Theoretical and empirical studies have recently adopted a multidimensional concept of poverty. There is considerable debate about the most appropriate degree of multidimensionality to retain in the analysis. In this work we add to the received literature in two ways. First, we derive indicators of multiple deprivation by applying a particular…

  19. Measures for a multidimensional multiverse

    NASA Astrophysics Data System (ADS)

    Chung, Hyeyoun

    2015-04-01

    We explore the phenomenological implications of generalizing the causal patch and fat geodesic measures to a multidimensional multiverse, where the vacua can have differing numbers of large dimensions. We consider a simple model in which the vacua are nucleated from a D -dimensional parent spacetime through dynamical compactification of the extra dimensions, and compute the geometric contribution to the probability distribution of observations within the multiverse for each measure. We then study how the shape of this probability distribution depends on the time scales for the existence of observers, for vacuum domination, and for curvature domination (tobs,tΛ , and tc, respectively.) In this work we restrict ourselves to bubbles with positive cosmological constant, Λ . We find that in the case of the causal patch cutoff, when the bubble universes have p +1 large spatial dimensions with p ≥2 , the shape of the probability distribution is such that we obtain the coincidence of time scales tobs˜tΛ˜tc . Moreover, the size of the cosmological constant is related to the size of the landscape. However, the exact shape of the probability distribution is different in the case p =2 , compared to p ≥3 . In the case of the fat geodesic measure, the result is even more robust: the shape of the probability distribution is the same for all p ≥2 , and we once again obtain the coincidence tobs˜tΛ˜tc . These results require only very mild conditions on the prior probability of the distribution of vacua in the landscape. Our work shows that the observed double coincidence of time scales is a robust prediction even when the multiverse is generalized to be multidimensional; that this coincidence is not a consequence of our particular Universe being (3 +1 )-dimensional; and that this observable cannot be used to preferentially select one measure over another in a multidimensional multiverse.

  20. Multidimensional Treatment of Fear of Death.

    ERIC Educational Resources Information Center

    Hoelter, Jon W.

    1979-01-01

    Presents a multidimensional conception of fear of death and provides subscales for measuring suggested dimensions (fear of the dying process, of the dead, of being destroyed, for significant others, of the unknown, of conscious death, for body after death, and of premature death). Evidence for construct validity is provided. (Author/BEF)

  1. The Multidimensional Curriculum Model (MdCM)

    ERIC Educational Resources Information Center

    Vidergor, Hava E.

    2010-01-01

    The multidimensional Curriculum Model (MdCM) helps teachers to better prepare gifted and able students for our changing world, acquiring much needed skills. It is influenced by general learning theory of constructivism, notions of preparing students for 21st century, Teaching the Future Model, and current comprehensive curriculum models for…

  2. Multidimensional poverty and catastrophic health spending in the mountainous regions of Myanmar, Nepal and India.

    PubMed

    Mohanty, Sanjay K; Agrawal, Nand Kishor; Mahapatra, Bidhubhusan; Choudhury, Dhrupad; Tuladhar, Sabarnee; Holmgren, E Valdemar

    2017-01-18

    Economic burden to households due to out-of-pocket expenditure (OOPE) is large in many Asian countries. Though studies suggest increasing household poverty due to high OOPE in developing countries, studies on association of multidimensional poverty and household health spending is limited. This paper tests the hypothesis that the multidimensionally poor are more likely to incur catastrophic health spending cutting across countries. Data from the Poverty and Vulnerability Assessment (PVA) Survey carried out by the International Center for Integrated Mountain Development (ICIMOD) has been used in the analyses. The PVA survey was a comprehensive household survey that covered the mountainous regions of India, Nepal and Myanmar. A total of 2647 households from India, 2310 households in Nepal and 4290 households in Myanmar covered under the PVA survey. Poverty is measured in a multidimensional framework by including the dimensions of education, income and energy, water and sanitation using the Alkire and Foster method. Health shock is measured using the frequency of illness, family sickness and death of any family member in a reference period of one year. Catastrophic health expenditure is defined as 40% above the household's capacity to pay. Results suggest that about three-fifths of the population in Myanmar, two-fifths of the population in Nepal and one-third of the population in India are multidimensionally poor. About 47% of the multidimensionally poor in India had incurred catastrophic health spending compared to 35% of the multidimensionally non-poor and the pattern was similar in both Nepal and Myanmar. The odds of incurring catastrophic health spending was 56% more among the multidimensionally poor than among the multidimensionally non-poor [95% CI: 1.35-1.76]. While health shocks to households are consistently significant predictors of catastrophic health spending cutting across country of residence, the educational attainment of the head of the household is

  3. Career Success: Constructing a Multidimensional Model

    ERIC Educational Resources Information Center

    Dries, Nicky; Pepermans, Roland; Carlier, Olivier

    2008-01-01

    A multidimensional model of career success was developed aiming to be more inclusive than existing models. In a first study, 22 managers were asked to tell the story of their careers. At the end of each interview, idiosyncratic career success "construct ladders" were constructed for each interviewee through an interactive process with the…

  4. Unidimensional Interpretations for Multidimensional Test Items

    ERIC Educational Resources Information Center

    Kahraman, Nilufer

    2013-01-01

    This article considers potential problems that can arise in estimating a unidimensional item response theory (IRT) model when some test items are multidimensional (i.e., show a complex factorial structure). More specifically, this study examines (1) the consequences of model misfit on IRT item parameter estimates due to unintended minor item-level…

  5. Motion Recognition and Modifying Motion Generation for Imitation Robot Based on Motion Knowledge Formation

    NASA Astrophysics Data System (ADS)

    Okuzawa, Yuki; Kato, Shohei; Kanoh, Masayoshi; Itoh, Hidenori

    A knowledge-based approach to imitation learning of motion generation for humanoid robots and an imitative motion generation system based on motion knowledge learning and modification are described. The system has three parts: recognizing, learning, and modifying parts. The first part recognizes an instructed motion distinguishing it from the motion knowledge database by the continuous hidden markov model. When the motion is recognized as being unfamiliar, the second part learns it using locally weighted regression and acquires a knowledge of the motion. When a robot recognizes the instructed motion as familiar or judges that its acquired knowledge is applicable to the motion generation, the third part imitates the instructed motion by modifying a learned motion. This paper reports some performance results: the motion imitation of several radio gymnastics motions.

  6. Quantum and Multidimensional Explanations in a Neurobiological Context of Mind.

    PubMed

    Korf, Jakob

    2015-08-01

    This article examines the possible relevance of physical-mathematical multidimensional or quantum concepts aiming at understanding the (human) mind in a neurobiological context. Some typical features of the quantum and multidimensional concepts are briefly introduced, including entanglement, superposition, holonomic, and quantum field theories. Next, we consider neurobiological principles, such as the brain and its emerging (physical) mind, evolutionary and ontological origins, entropy, syntropy/neg-entropy, causation, and brain energy metabolism. In many biological processes, including biochemical conversions, protein folding, and sensory perception, the ubiquitous involvement of quantum mechanisms is well recognized. Quantum and multidimensional approaches might be expected to help describe and model both brain and mental processes, but an understanding of their direct involvement in mental activity, that is, without mediation by molecular processes, remains elusive. More work has to be done to bridge the gap between current neurobiological and physical-mathematical concepts with their associated quantum-mind theories. © The Author(s) 2014.

  7. Multidimensional Analysis of Nuclear Detonations

    DTIC Science & Technology

    2015-09-17

    Features on the nuclear weapons testing films because of the expanding and emissive nature of the nuclear fireball. The use of these techniques to produce...Treaty (New Start Treaty) have reduced the acceptable margins of error. Multidimensional analysis provides the modern approach to nuclear weapon ...scientific community access to the information necessary to expand upon the knowledge of nuclear weapon effects. This data set has the potential to provide

  8. Multidimensional bioseparation with modular microfluidics

    DOEpatents

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  9. The PedsQL multidimensional fatigue scale in pediatric obesity: feasibility, reliability and validity.

    PubMed

    Varni, James W; Limbers, Christine A; Bryant, William P; Wilson, Don P

    2010-01-01

    The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health-related quality of life (HRQOL) and disease-specific symptoms in children and adolescents. The PedsQL Multidimensional Fatigue Scale was designed as a child self-report and parent proxy-report generic symptom-specific instrument to measure fatigue in pediatric patients. The objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in pediatric obesity. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains) and the PedsQL 4.0 Generic Core Scales were completed by 41 pediatric patients with a physician-diagnosis of obesity and 43 parents from a hospital-based Pediatric Endocrinology Clinic. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses (1.6%, child report; 0.5%, parent report), achieved excellent reliability for the Total Fatigue Scale Score (alpha = 0.90 child report, 0.90 parent report), distinguished between pediatric patients with obesity and healthy children, and was significantly correlated with the PedsQL 4.0 Generic Core Scales supporting construct validity. Pediatric patients with obesity experienced fatigue comparable with pediatric patients receiving cancer treatment, demonstrating the relative severity of their fatigue symptoms. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in pediatric obesity. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the standardized evaluation of fatigue in pediatric patients with obesity.

  10. Perception of Elasticity in the Kinetic Illusory Object with Phase Differences in Inducer Motion

    PubMed Central

    Masuda, Tomohiro; Sato, Kazuki; Murakoshi, Takuma; Utsumi, Ken; Kimura, Atsushi; Shirai, Nobu; Kanazawa, So; Yamaguchi, Masami K.; Wada, Yuji

    2013-01-01

    Background It is known that subjective contours are perceived even when a figure involves motion. However, whether this includes the perception of rigidity or deformation of an illusory surface remains unknown. In particular, since most visual stimuli used in previous studies were generated in order to induce illusory rigid objects, the potential perception of material properties such as rigidity or elasticity in these illusory surfaces has not been examined. Here, we elucidate whether the magnitude of phase difference in oscillation influences the visual impressions of an object's elasticity (Experiment 1) and identify whether such elasticity perceptions are accompanied by the shape of the subjective contours, which can be assumed to be strongly correlated with the perception of rigidity (Experiment 2). Methodology/Principal Findings In Experiment 1, the phase differences in the oscillating motion of inducers were controlled to investigate whether they influenced the visual impression of an illusory object's elasticity. The results demonstrated that the impression of the elasticity of an illusory surface with subjective contours was systematically flipped with the degree of phase difference. In Experiment 2, we examined whether the subjective contours of a perceived object appeared linear or curved using multi-dimensional scaling analysis. The results indicated that the contours of a moving illusory object were perceived as more curved than linear in all phase-difference conditions. Conclusions/Significance These findings suggest that the phase difference in an object's motion is a significant factor in the material perception of motion-related elasticity. PMID:24205281

  11. Some applications of the multi-dimensional fractional order for the Riemann-Liouville derivative

    NASA Astrophysics Data System (ADS)

    Ahmood, Wasan Ajeel; Kiliçman, Adem

    2017-01-01

    In this paper, the aim of this work is to study theorem for the one-dimensional space-time fractional deriative, generalize some function for the one-dimensional fractional by table represents the fractional Laplace transforms of some elementary functions to be valid for the multi-dimensional fractional Laplace transform and give the definition of the multi-dimensional fractional Laplace transform. This study includes that, dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable and develop of the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform based on the modified Riemann-Liouville derivative.

  12. A Multidimensional Theory of Suicide.

    PubMed

    Leenaars, Antoon A; Dieserud, Gudrun; Wenckstern, Susanne; Dyregrov, Kari; Lester, David; Lyke, Jennifer

    2018-04-05

    Theory is the foundation of science; this is true in suicidology. Over decades of studies of suicide notes, Leenaars developed a multidimensional model of suicide, with international (crosscultural) studies and independent verification. To corroborate Leenaars's theory with a psychological autopsy (PA) study, examining age and sex of the decedent, and survivor's relationship to deceased. A PA study in Norway, with 120 survivors/informants was undertaken. Leenaars' theoretical-conceptual (protocol) analysis was undertaken of the survivors' narratives and in-depth interviews combined. Substantial interjudge reliability was noted (κ = .632). Overall, there was considerable confirmatory evidence of Leenaars's intrapsychic and interpersonal factors in suicide survivors' narratives. Differences were found in the age of the decedent, but not in sex, nor in the survivor's closeness of the relationship. Older deceased people were perceived to exhibit more heightened unbearable intrapsychic pain, associated with the suicide. Leenaars's theory has corroborative verification, through the decedents' suicide notes and the survivors' narratives. However, the multidimensional model needs further testing to develop a better evidence-based way of understanding suicide.

  13. Multidimensional Modeling of Coronal Rain Dynamics

    NASA Astrophysics Data System (ADS)

    Fang, X.; Xia, C.; Keppens, R.

    2013-07-01

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  14. SOCR Motion Charts: An Efficient, Open-Source, Interactive and Dynamic Applet for Visualizing Longitudinal Multivariate Data

    PubMed Central

    Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.

    2011-01-01

    The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality reduction, remains a nearly insurmountable challenge. The Statistics Online Computational Resource (www.SOCR.ucla.edu) provides portable online aids for probability and statistics education, technology-based instruction and statistical computing. We have developed a new Java-based infrastructure, SOCR Motion Charts, for discovery-based exploratory analysis of multivariate data. This interactive data visualization tool enables the visualization of high-dimensional longitudinal data. SOCR Motion Charts allows mapping of ordinal, nominal and quantitative variables onto time, 2D axes, size, colors, glyphs and appearance characteristics, which facilitates the interactive display of multidimensional data. We validated this new visualization paradigm using several publicly available multivariate datasets including Ice-Thickness, Housing Prices, Consumer Price Index, and California Ozone Data. SOCR Motion Charts is designed using object-oriented programming, implemented as a Java Web-applet and is available to the entire community on the web at www.socr.ucla.edu/SOCR_MotionCharts. It can be used as an instructional tool for rendering and interrogating high-dimensional data in the classroom, as well as a research tool for exploratory data analysis. PMID:21479108

  15. Translation and Validation of the Multidimensional Dyspnea-12 Questionnaire.

    PubMed

    Amado Diago, Carlos Antonio; Puente Maestu, Luis; Abascal Bolado, Beatriz; Agüero Calvo, Juan; Hernando Hernando, Mercedes; Puente Bats, Irene; Agüero Balbín, Ramón

    2018-02-01

    Dyspnea is a multidimensional symptom, but this multidimensionality is not considered in most dyspnea questionnaires. The Dyspnea-12 takes a multidimensional approach to the assessment of dyspnea, specifically the sensory and the affective response. The objective of this study was to translate into Spanish and validate the Dyspnea-12 questionnaire. The original English version of the Dyspnea-12 questionnaire was translated into Spanish and backtranslated to analyze its equivalence. Comprehension of the text was verified by analyzing the responses of 10 patients. Reliability and validation of the questionnaire were studied in an independent group of COPD patients attending the pulmonology clinics of Hospital Universitario Marqués de Valdecilla, diagnosed and categorized according to GOLD guidelines. The mean age of the group (n=51) was 65 years and mean FEV1 was 50%. All patients understood all questions of the translated version of Dyspnea-12. Internal consistency of the questionnaire was α=0.937 and intraclass correlation coefficient was=.969; P<.001. Statistically significant correlations were found with HADS (anxiety r=.608 and depression r=.615), mMRC dyspnea (r=.592), 6MWT (r=-0.445), FEV1 (r=-0.312), all dimensions of CRQ-SAS (dyspnea r=-0.626; fatigue r=-0.718; emotional function r=-0.663; mastery r=-0.740), CAT (r=0.669), and baseline dyspnea index (r=-0.615). Dyspnea-12 scores were 10.32 points higher in symptomatic GOLD groups (B and D) (P<.001). The Spanish version of Dyspnea-12 is a valid and reliable instrument to study the multidimensional nature of dyspnea. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Multidimensional upwind hydrodynamics on unstructured meshes using graphics processing units - I. Two-dimensional uniform meshes

    NASA Astrophysics Data System (ADS)

    Paardekooper, S.-J.

    2017-08-01

    We present a new method for numerical hydrodynamics which uses a multidimensional generalization of the Roe solver and operates on an unstructured triangular mesh. The main advantage over traditional methods based on Riemann solvers, which commonly use one-dimensional flux estimates as building blocks for a multidimensional integration, is its inherently multidimensional nature, and as a consequence its ability to recognize multidimensional stationary states that are not hydrostatic. A second novelty is the focus on graphics processing units (GPUs). By tailoring the algorithms specifically to GPUs, we are able to get speedups of 100-250 compared to a desktop machine. We compare the multidimensional upwind scheme to a traditional, dimensionally split implementation of the Roe solver on several test problems, and we find that the new method significantly outperforms the Roe solver in almost all cases. This comes with increased computational costs per time-step, which makes the new method approximately a factor of 2 slower than a dimensionally split scheme acting on a structured grid.

  17. Preliminary Development of a Multidimensional Semantic Patient Experience Measurement Questionnaire.

    PubMed

    Kleiss, James A

    2016-10-01

    The purpose of this research was to assess the utility and reliability of a multidimensional patient experience measurement questionnaire in a clinical setting. Patient experience has emerged as an important metric for quality of healthcare. A number of separate concepts have been used to measure patient experience, but psychological research suggests that subjective experience is actually a composite of several independent concepts including: (a) evaluation/valence, (b) potency/control, (c) activity/arousal, and (d) novelty. The present research evaluates the reliability of a multidimensional patient experience measurement questionnaire in a clinical setting. A multidimensional semantic differential questionnaire was developed to measure the four underlying semantic dimensions of patient experience mentioned above. A group of 60 patients used the questionnaire to assess prescan expectations and postscan experience of a magnetic resonance scan. Data for one patient were deleted because their scan was interrupted. Results revealed more positive evaluation/valence, higher potency/control, and lower activity/arousal for postscan ratings compared to prescan expectations. Ratings of novelty were neutral in both the prescan and the postscan conditions. Subsequent analysis suggested that internal consistency for some concepts could be improved by replacing several specific rating scales. Present results provide evidence of the utility and reliability of a multidimensional semantic questionnaire for measuring patient experience in an actual clinical setting. Recommendations to improve internal consistency for the concepts potency/control, activity/arousal, and novelty were also provided. © The Author(s) 2016.

  18. A hybrid heuristic for the multiple choice multidimensional knapsack problem

    NASA Astrophysics Data System (ADS)

    Mansi, Raïd; Alves, Cláudio; Valério de Carvalho, J. M.; Hanafi, Saïd

    2013-08-01

    In this article, a new solution approach for the multiple choice multidimensional knapsack problem is described. The problem is a variant of the multidimensional knapsack problem where items are divided into classes, and exactly one item per class has to be chosen. Both problems are NP-hard. However, the multiple choice multidimensional knapsack problem appears to be more difficult to solve in part because of its choice constraints. Many real applications lead to very large scale multiple choice multidimensional knapsack problems that can hardly be addressed using exact algorithms. A new hybrid heuristic is proposed that embeds several new procedures for this problem. The approach is based on the resolution of linear programming relaxations of the problem and reduced problems that are obtained by fixing some variables of the problem. The solutions of these problems are used to update the global lower and upper bounds for the optimal solution value. A new strategy for defining the reduced problems is explored, together with a new family of cuts and a reformulation procedure that is used at each iteration to improve the performance of the heuristic. An extensive set of computational experiments is reported for benchmark instances from the literature and for a large set of hard instances generated randomly. The results show that the approach outperforms other state-of-the-art methods described so far, providing the best known solution for a significant number of benchmark instances.

  19. On simplified application of multidimensional Savitzky-Golay filters and differentiators

    NASA Astrophysics Data System (ADS)

    Shekhar, Chandra

    2016-02-01

    I propose a simplified approach for multidimensional Savitzky-Golay filtering, to enable its fast and easy implementation in scientific and engineering applications. The proposed method, which is derived from a generalized framework laid out by Thornley (D. J. Thornley, "Novel anisotropic multidimensional convolution filters for derivative estimation and reconstruction" in Proceedings of International Conference on Signal Processing and Communications, November 2007), first transforms any given multidimensional problem into a unique one, by transforming coordinates of the sampled data nodes to unity-spaced, uniform data nodes, and then performs filtering and calculates partial derivatives on the unity-spaced nodes. It is followed by transporting the calculated derivatives back onto the original data nodes by using the chain rule of differentiation. The burden to performing the most cumbersome task, which is to carry out the filtering and to obtain derivatives on the unity-spaced nodes, is almost eliminated by providing convolution coefficients for a number of convolution kernel sizes and polynomial orders, up to four spatial dimensions. With the availability of the convolution coefficients, the task of filtering at a data node reduces merely to multiplication of two known matrices. Simplified strategies to adequately address near-boundary data nodes and to calculate partial derivatives there are also proposed. Finally, the proposed methodologies are applied to a three-dimensional experimentally obtained data set, which shows that multidimensional Savitzky-Golay filters and differentiators perform well in both the internal and the near-boundary regions of the domain.

  20. Psychometric Properties of the Frost Multidimensional Perfectionism Scale with Australian Adolescent Girls: Clarification of Multidimensionality and Perfectionist Typology

    ERIC Educational Resources Information Center

    Hawkins, Colleen C.; Watt, Helen M. G.; Sinclair, Kenneth E.

    2006-01-01

    The psychometric properties of the Frost, Marten, Lahart, and Rosenblate Multidimensional Perfectionism Scale (1990) are investigated to determine its usefulness as a measurement of perfectionism with Australian secondary school girls and to find empirical support for the existence of both healthy and unhealthy types of perfectionist students.…

  1. Uncertainty of Comparative Judgments and Multidimensional Structure

    ERIC Educational Resources Information Center

    Sjoberg, Lennart

    1975-01-01

    An analysis of preferences with respect to silhouette drawings of nude females is presented. Systematic intransitivities were discovered. The dispersions of differences (comparatal dispersons) were shown to reflect the multidimensional structure of the stimuli, a finding expected on the basis of prior work. (Author)

  2. Multi-dimensional Upwind Fluctuation Splitting Scheme with Mesh Adaption for Hypersonic Viscous Flow. Degree awarded by Virginia Polytechnic Inst. and State Univ., 9 Nov. 2001

    NASA Technical Reports Server (NTRS)

    Wood, William A., III

    2002-01-01

    A multi-dimensional upwind fluctuation splitting scheme is developed and implemented for two-dimensional and axisymmetric formulations of the Navier-Stokes equations on unstructured meshes. Key features of the scheme are the compact stencil, full upwinding, and non-linear discretization which allow for second-order accuracy with enforced positivity. Throughout, the fluctuation splitting scheme is compared to a current state-of-the-art finite volume approach, a second-order, dual mesh upwind flux difference splitting scheme (DMFDSFV), and is shown to produce more accurate results using fewer computer resources for a wide range of test cases. A Blasius flat plate viscous validation case reveals a more accurate upsilon-velocity profile for fluctuation splitting, and the reduced artificial dissipation production is shown relative to DMFDSFV. Remarkably, the fluctuation splitting scheme shows grid converged skin friction coefficients with only five points in the boundary layer for this case. The second half of the report develops a local, compact, anisotropic unstructured mesh adaptation scheme in conjunction with the multi-dimensional upwind solver, exhibiting a characteristic alignment behavior for scalar problems. The adaptation strategy is extended to the two-dimensional and axisymmetric Navier-Stokes equations of motion through the concept of fluctuation minimization.

  3. Optimal multi-dimensional poverty lines: The state of poverty in Iraq

    NASA Astrophysics Data System (ADS)

    Ameen, Jamal R. M.

    2017-09-01

    Poverty estimation based on calories intake is unrealistic. The established concept of multidimensional poverty has methodological weaknesses in the treatment of different dimensions and there is disagreement in methods of combining them into a single poverty line. This paper introduces a methodology to estimate optimal multidimensional poverty lines and uses the Iraqi household socio-economic survey data of 2012 to demonstrate the idea. The optimal poverty line for Iraq is found to be 170.5 Thousand Iraqi Dinars (TID).

  4. Multidimensional Screening as a Pharmacology Laboratory Experience.

    ERIC Educational Resources Information Center

    Malone, Marvin H.; And Others

    1979-01-01

    A multidimensional pharmacodynamic screening experiment that addresses drug interaction is included in the pharmacology-toxicology laboratory experience of pharmacy students at the University of the Pacific. The student handout with directions for the procedure is reproduced, drug compounds tested are listed, and laboratory evaluation results are…

  5. Multi-Dimensional Classroom Engagement in EFL Contexts

    ERIC Educational Resources Information Center

    Dincer, Ali; Yesilyurt, Savas; Demiröz, Hakan

    2017-01-01

    This study seeks to extend our present knowledge of language learners' classroom engagement by exploring the relationship between the multidimensional classroom engagement and the group variables: course achievement, course absence and motivational orientation to learn English. A survey research design was adopted, and 122 EFL learners provided…

  6. Multidimensional Learner Model In Intelligent Learning System

    NASA Astrophysics Data System (ADS)

    Deliyska, B.; Rozeva, A.

    2009-11-01

    The learner model in an intelligent learning system (ILS) has to ensure the personalization (individualization) and the adaptability of e-learning in an online learner-centered environment. ILS is a distributed e-learning system whose modules can be independent and located in different nodes (servers) on the Web. This kind of e-learning is achieved through the resources of the Semantic Web and is designed and developed around a course, group of courses or specialty. An essential part of ILS is learner model database which contains structured data about learner profile and temporal status in the learning process of one or more courses. In the paper a learner model position in ILS is considered and a relational database is designed from learner's domain ontology. Multidimensional modeling agent for the source database is designed and resultant learner data cube is presented. Agent's modules are proposed with corresponding algorithms and procedures. Multidimensional (OLAP) analysis guidelines on the resultant learner module for designing dynamic learning strategy have been highlighted.

  7. Multidimensional Profiling of Task Stress States for Human Factors: A Brief Review.

    PubMed

    Matthews, Gerald

    2016-09-01

    This article advocates multidimensional assessment of task stress in human factors and reviews the use of the Dundee Stress State Questionnaire (DSSQ) for evaluation of systems and operators. Contemporary stress research has progressed from an exclusive focus on environmental stressors to transactional perspectives on the stress process. Performance impacts of stress reflect the operator's dynamic attempts to understand and cope with task demands. Multidimensional stress assessments are necessary to gauge the different forms of system-operator interaction. This review discusses the theoretical and practical use of the DSSQ in evaluating multidimensional patterns of stress response. It presents psychometric evidence for the multidimensional perspective and illustrative profiles of subjective state response to task stressors and environments. Evidence is also presented on stress state correlations with related variables, including personality, stress process measures, psychophysiological response, and objective task performance. Evidence supports the validity of the DSSQ as a task stress measure. Studies of various simulated environments show that different tasks elicit different profiles of stress state response. Operator characteristics such as resilience predict individual differences in state response to stressors. Structural equation modeling may be used to understand performance impacts of stress states. Multidimensional assessment affords insight into the stress process in a variety of human factors contexts. Integrating subjective and psychophysiological assessment is a priority for future research. Stress state measurement contributes to evaluating system design, countermeasures to stress and fatigue, and performance vulnerabilities. It may also support personnel selection and diagnostic monitoring of operators. © 2016, Human Factors and Ergonomics Society.

  8. Cuba: Multidimensional numerical integration library

    NASA Astrophysics Data System (ADS)

    Hahn, Thomas

    2016-08-01

    The Cuba library offers four independent routines for multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. The four algorithms work by very different methods, and can integrate vector integrands and have very similar Fortran, C/C++, and Mathematica interfaces. Their invocation is very similar, making it easy to cross-check by substituting one method by another. For further safeguarding, the output is supplemented by a chi-square probability which quantifies the reliability of the error estimate.

  9. [Multidimensional family therapy: which influences, which specificities?].

    PubMed

    Bonnaire, C; Bastard, N; Couteron, J-P; Har, A; Phan, O

    2014-10-01

    Among illegal psycho-active drugs, cannabis is the most consumed by French adolescents. Multidimensional family therapy (MDFT) is a family-based outpatient therapy which has been developed for adolescents with drug and behavioral problems. MDFT has shown its effectiveness in adolescents with substance abuse disorders (notably cannabis abuse) not only in the United States but also in Europe (International Cannabis Need of Treatment project). MDFT is a multidisciplinary approach and an evidence-based treatment, at the crossroads of developmental psychology, ecological theories and family therapy. Its psychotherapeutic techniques find its roots in a variety of approaches which include systemic family therapy and cognitive therapy. The aims of this paper are: to describe all the backgrounds of MDFT by highlighting its characteristics; to explain how structural and strategy therapies have influenced this approach; to explore the links between MDFT, brief strategic family therapy and multi systemic family therapy; and to underline the specificities of this family therapy method. The multidimensional family therapy was created on the bases of 1) the integration of multiple therapeutic techniques stemming from various family therapy theories; and 2) studies which have shown family therapy efficiency. Several trials have shown a better efficiency of MDFT compared to group treatment, cognitive-behavioral therapy and home-based treatment. Studies have also highlighted that MDFT led to superior treatment outcomes, especially among young people with severe drug use and psychiatric co-morbidities. In the field of systemic family therapies, MDFT was influenced by: 1) the structural family therapy (S. Minuchin), 2) the strategic family theory (J. Haley), and 3) the intergenerational family therapy (Bowen and Boszormenyi-Nagy). MDFT has specific aspects: MDFT therapists think in a multidimensional perspective (because an adolescent's drug abuse is a multidimensional disorder), they

  10. Application of stochastic weighted algorithms to a multidimensional silica particle model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menz, William J.; Patterson, Robert I.A.; Wagner, Wolfgang

    2013-09-01

    Highlights: •Stochastic weighted algorithms (SWAs) are developed for a detailed silica model. •An implementation of SWAs with the transition kernel is presented. •The SWAs’ solutions converge to the direct simulation algorithm’s (DSA) solution. •The efficiency of SWAs is evaluated for this multidimensional particle model. •It is shown that SWAs can be used for coagulation problems in industrial systems. -- Abstract: This paper presents a detailed study of the numerical behaviour of stochastic weighted algorithms (SWAs) using the transition regime coagulation kernel and a multidimensional silica particle model. The implementation in the SWAs of the transition regime coagulation kernel and associatedmore » majorant rates is described. The silica particle model of Shekar et al. [S. Shekar, A.J. Smith, W.J. Menz, M. Sander, M. Kraft, A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, Journal of Aerosol Science 44 (2012) 83–98] was used in conjunction with this coagulation kernel to study the convergence properties of SWAs with a multidimensional particle model. High precision solutions were calculated with two SWAs and also with the established direct simulation algorithm. These solutions, which were generated using large number of computational particles, showed close agreement. It was thus demonstrated that SWAs can be successfully used with complex coagulation kernels and high dimensional particle models to simulate real-world systems.« less

  11. Medical image registration based on normalized multidimensional mutual information

    NASA Astrophysics Data System (ADS)

    Li, Qi; Ji, Hongbing; Tong, Ming

    2009-10-01

    Registration of medical images is an essential research topic in medical image processing and applications, and especially a preliminary and key step for multimodality image fusion. This paper offers a solution to medical image registration based on normalized multi-dimensional mutual information. Firstly, affine transformation with translational and rotational parameters is applied to the floating image. Then ordinal features are extracted by ordinal filters with different orientations to represent spatial information in medical images. Integrating ordinal features with pixel intensities, the normalized multi-dimensional mutual information is defined as similarity criterion to register multimodality images. Finally the immune algorithm is used to search registration parameters. The experimental results demonstrate the effectiveness of the proposed registration scheme.

  12. Improving Multidimensional Wireless Sensor Network Lifetime Using Pearson Correlation and Fractal Clustering.

    PubMed

    Almeida, Fernando R; Brayner, Angelo; Rodrigues, Joel J P C; Maia, Jose E Bessa

    2017-06-07

    An efficient strategy for reducing message transmission in a wireless sensor network (WSN) is to group sensors by means of an abstraction denoted cluster. The key idea behind the cluster formation process is to identify a set of sensors whose sensed values present some data correlation. Nowadays, sensors are able to simultaneously sense multiple different physical phenomena, yielding in this way multidimensional data. This paper presents three methods for clustering sensors in WSNs whose sensors collect multidimensional data. The proposed approaches implement the concept of multidimensional behavioral clustering . To show the benefits introduced by the proposed methods, a prototype has been implemented and experiments have been carried out on real data. The results prove that the proposed methods decrease the amount of data flowing in the network and present low root-mean-square error (RMSE).

  13. Multidimensional stochastic approximation using locally contractive functions

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.

    1975-01-01

    A Robbins-Monro type multidimensional stochastic approximation algorithm which converges in mean square and with probability one to the fixed point of a locally contractive regression function is developed. The algorithm is applied to obtain maximum likelihood estimates of the parameters for a mixture of multivariate normal distributions.

  14. The PedsQL Multidimensional Fatigue Scale in type 1 diabetes: feasibility, reliability, and validity.

    PubMed

    Varni, James W; Limbers, Christine A; Bryant, William P; Wilson, Don P

    2009-08-01

    The Pediatric Quality of Life Inventory (PedsQL, Mapi Research Trust, Lyon, France; www.pedsql.org) is a modular instrument designed to measure health-related quality of life and disease-specific symptoms in children and adolescents. The PedsQL Multidimensional Fatigue Scale was designed as a child self-report and parent proxy-report generic symptom-specific instrument to measure fatigue in pediatric patients. The objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in type 1 diabetes. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains) and the PedsQL 4.0 Generic Core Scales were administered to 83 pediatric patients with type 1 diabetes and 84 parents. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses (0.3% child report and 0.3% parent report), achieved excellent reliability for the Total Fatigue Scale score (alpha= 0.92 child report, 0.94 parent report), distinguished between pediatric patients with diabetes and healthy children, and was significantly correlated with the PedsQL 4.0 Generic Core Scales supporting construct validity. Pediatric patients with diabetes experienced fatigue that was comparable to pediatric patients with cancer on treatment, demonstrating the relative severity of their fatigue symptoms. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in type 1 diabetes. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the standardized evaluation of fatigue in pediatric patients with type 1 diabetes.

  15. A Multidimensional Ideal Point Item Response Theory Model for Binary Data.

    PubMed

    Maydeu-Olivares, Albert; Hernández, Adolfo; McDonald, Roderick P

    2006-12-01

    We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model yields closed form expressions for the cell probabilities. We estimate and test the goodness of fit of the model using only information contained in the univariate and bivariate moments of the data. Also, we pit the new model against the multidimensional normal ogive model estimated using NOHARM in four applications involving (a) attitudes toward censorship, (b) satisfaction with life, (c) attitudes of morality and equality, and (d) political efficacy. The normal PDF model is not invariant to simple operations such as reverse scoring. Thus, when there is no natural category to be modeled, as in many personality applications, it should be fit separately with and without reverse scoring for comparisons.

  16. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  17. ComVisMD - compact visualization of multidimensional data: experimenting with cricket players data

    NASA Astrophysics Data System (ADS)

    Dandin, Shridhar B.; Ducassé, Mireille

    2018-03-01

    Database information is multidimensional and often displayed in tabular format (row/column display). Presented in aggregated form, multidimensional data can be used to analyze the records or objects. Online Analytical database Processing (OLAP) proposes mechanisms to display multidimensional data in aggregated forms. A choropleth map is a thematic map in which areas are colored in proportion to the measurement of a statistical variable being displayed, such as population density. They are used mostly for compact graphical representation of geographical information. We propose a system, ComVisMD inspired by choropleth map and the OLAP cube to visualize multidimensional data in a compact way. ComVisMD displays multidimensional data like OLAP Cube, where we are mapping an attribute a (first dimension, e.g. year started playing cricket) in vertical direction, object coloring based on b (second dimension, e.g. batting average), mapping varying-size circles based on attribute c (third dimension, e.g. highest score), mapping numbers based on attribute d (fourth dimension, e.g. matches played). We illustrate our approach on cricket players data, namely on two tables Country and Player. They have a large number of rows and columns: 246 rows and 17 columns for players of one country. ComVisMD’s visualization reduces the size of the tabular display by a factor of about 4, allowing users to grasp more information at a time than the bare table display.

  18. Testing the multidimensionality of the inventory of school motivation in a Dutch student sample.

    PubMed

    Korpershoek, Hanke; Xu, Kun; Mok, Magdalena Mo Ching; McInerney, Dennis M; van der Werf, Greetje

    2015-01-01

    A factor analytic and a Rasch measurement approach were applied to evaluate the multidimensional nature of the school motivation construct among more than 7,000 Dutch secondary school students. The Inventory of School Motivation (McInerney and Ali, 2006) was used, which intends to measure four motivation dimensions (mastery, performance, social, and extrinsic motivation), each comprising of two first-order factors. One unidimensional model and three multidimensional models (4-factor, 8-factor, higher order) were fit to the data. Results of both approaches showed that the multidimensional models validly represented the school motivation among Dutch secondary school pupils, whereas model fit of the unidimensional model was poor. The differences in model fit between the three multidimensional models were small, although a different model was favoured by the two approaches. The need for improvement of some of the items and the need to increase measurement precision of several first-order factors are discussed.

  19. Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teo, Stephanie M.; Ofori-Okai, Benjamin K.; Werley, Christopher A.

    Multidimensional spectroscopy at visible and infrared frequencies has opened a window into the transfer of energy and quantum coherences at ultrafast time scales. For these measurements to be performed in a manageable amount of time, one spectral axis is typically recorded in a single laser shot. An analogous rapid-scanning capability for THz measurements will unlock the multidimensional toolkit in this frequency range. Here, we first review the merits of existing single-shot THz schemes and discuss their potential in multidimensional THz spectroscopy. We then introduce improved experimental designs and noise suppression techniques for the two most promising methods: frequency-to-time encoding withmore » linear spectral interferometry and angle-to-time encoding with dual echelons. Both methods, each using electro-optic detection in the linear regime, were able to reproduce the THz temporal waveform acquired with a traditional scanning delay line. Although spectral interferometry had mediocre performance in terms of signal-to-noise, the dual echelon method was easily implemented and achieved the same level of signal-to-noise as the scanning delay line in only 4.5% of the laser pulses otherwise required (or 22 times faster). This reduction in acquisition time will compress day-long scans to hours and hence provides a practical technique for multidimensional THz measurements.« less

  20. Multi-dimensional Fokker-Planck equation analysis using the modified finite element method

    NASA Astrophysics Data System (ADS)

    Náprstek, J.; Král, R.

    2016-09-01

    The Fokker-Planck equation (FPE) is a frequently used tool for the solution of cross probability density function (PDF) of a dynamic system response excited by a vector of random processes. FEM represents a very effective solution possibility, particularly when transition processes are investigated or a more detailed solution is needed. Actual papers deal with single degree of freedom (SDOF) systems only. So the respective FPE includes two independent space variables only. Stepping over this limit into MDOF systems a number of specific problems related to a true multi-dimensionality must be overcome. Unlike earlier studies, multi-dimensional simplex elements in any arbitrary dimension should be deployed and rectangular (multi-brick) elements abandoned. Simple closed formulae of integration in multi-dimension domain have been derived. Another specific problem represents the generation of multi-dimensional finite element mesh. Assembling of system global matrices should be subjected to newly composed algorithms due to multi-dimensionality. The system matrices are quite full and no advantages following from their sparse character can be profited from, as is commonly used in conventional FEM applications in 2D/3D problems. After verification of partial algorithms, an illustrative example dealing with a 2DOF non-linear aeroelastic system in combination with random and deterministic excitations is discussed.

  1. Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy.

    PubMed

    Teo, Stephanie M; Ofori-Okai, Benjamin K; Werley, Christopher A; Nelson, Keith A

    2015-05-01

    Multidimensional spectroscopy at visible and infrared frequencies has opened a window into the transfer of energy and quantum coherences at ultrafast time scales. For these measurements to be performed in a manageable amount of time, one spectral axis is typically recorded in a single laser shot. An analogous rapid-scanning capability for THz measurements will unlock the multidimensional toolkit in this frequency range. Here, we first review the merits of existing single-shot THz schemes and discuss their potential in multidimensional THz spectroscopy. We then introduce improved experimental designs and noise suppression techniques for the two most promising methods: frequency-to-time encoding with linear spectral interferometry and angle-to-time encoding with dual echelons. Both methods, each using electro-optic detection in the linear regime, were able to reproduce the THz temporal waveform acquired with a traditional scanning delay line. Although spectral interferometry had mediocre performance in terms of signal-to-noise, the dual echelon method was easily implemented and achieved the same level of signal-to-noise as the scanning delay line in only 4.5% of the laser pulses otherwise required (or 22 times faster). This reduction in acquisition time will compress day-long scans to hours and hence provides a practical technique for multidimensional THz measurements.

  2. Improving Multidimensional Wireless Sensor Network Lifetime Using Pearson Correlation and Fractal Clustering

    PubMed Central

    Almeida, Fernando R.; Brayner, Angelo; Rodrigues, Joel J. P. C.; Maia, Jose E. Bessa

    2017-01-01

    An efficient strategy for reducing message transmission in a wireless sensor network (WSN) is to group sensors by means of an abstraction denoted cluster. The key idea behind the cluster formation process is to identify a set of sensors whose sensed values present some data correlation. Nowadays, sensors are able to simultaneously sense multiple different physical phenomena, yielding in this way multidimensional data. This paper presents three methods for clustering sensors in WSNs whose sensors collect multidimensional data. The proposed approaches implement the concept of multidimensional behavioral clustering. To show the benefits introduced by the proposed methods, a prototype has been implemented and experiments have been carried out on real data. The results prove that the proposed methods decrease the amount of data flowing in the network and present low root-mean-square error (RMSE). PMID:28590450

  3. The Multidimensional Impact of Teachers on Students

    ERIC Educational Resources Information Center

    Pope, Nolan G.

    2017-01-01

    For decades, policymakers and researchers have used value-added models that rely solely on student test scores to measure teacher quality. However, since teaching ability is multidimensional, test-score value-added measures of teacher quality may not fully capture the impact of teachers on students. In this paper, we use test-score and…

  4. Equating Multidimensional Tests under a Random Groups Design: A Comparison of Various Equating Procedures

    ERIC Educational Resources Information Center

    Lee, Eunjung

    2013-01-01

    The purpose of this research was to compare the equating performance of various equating procedures for the multidimensional tests. To examine the various equating procedures, simulated data sets were used that were generated based on a multidimensional item response theory (MIRT) framework. Various equating procedures were examined, including…

  5. Multidimensional nanomaterials for the control of stem cell fate

    NASA Astrophysics Data System (ADS)

    Chueng, Sy-Tsong Dean; Yang, Letao; Zhang, Yixiao; Lee, Ki-Bum

    2016-09-01

    Current stem cell therapy suffers low efficiency in giving rise to differentiated cell lineages, which can replace the original damaged cells. Nanomaterials, on the other hand, provide unique physical size, surface chemistry, conductivity, and topographical microenvironment to regulate stem cell differentiation through multidimensional approaches to facilitate gene delivery, cell-cell, and cell-ECM interactions. In this review, nanomaterials are demonstrated to work both alone and synergistically to guide selective stem cell differentiation. From three different nanotechnology families, three approaches are shown: (1) soluble microenvironmental factors; (2) insoluble physical microenvironment; and (3) nano-topographical features. As regenerative medicine is heavily invested in effective stem cell therapy, this review is inspired to generate discussions in the potential clinical applications of multi-dimensional nanomaterials.

  6. Chemometric Strategies for Peak Detection and Profiling from Multidimensional Chromatography.

    PubMed

    Navarro-Reig, Meritxell; Bedia, Carmen; Tauler, Romà; Jaumot, Joaquim

    2018-04-03

    The increasing complexity of omics research has encouraged the development of new instrumental technologies able to deal with these challenging samples. In this way, the rise of multidimensional separations should be highlighted due to the massive amounts of information that provide with an enhanced analyte determination. Both proteomics and metabolomics benefit from this higher separation capacity achieved when different chromatographic dimensions are combined, either in LC or GC. However, this vast quantity of experimental information requires the application of chemometric data analysis strategies to retrieve this hidden knowledge, especially in the case of nontargeted studies. In this work, the most common chemometric tools and approaches for the analysis of this multidimensional chromatographic data are reviewed. First, different options for data preprocessing and enhancement of the instrumental signal are introduced. Next, the most used chemometric methods for the detection of chromatographic peaks and the resolution of chromatographic and spectral contributions (profiling) are presented. The description of these data analysis approaches is complemented with enlightening examples from omics fields that demonstrate the exceptional potential of the combination of multidimensional separation techniques and chemometric tools of data analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of Multidimensional Concept Maps on Fourth Graders' Learning in Web-Based Computer Course

    ERIC Educational Resources Information Center

    Huang, Hwa-Shan; Chiou, Chei-Chang; Chiang, Heien-Kun; Lai, Sung-Hsi; Huang, Chiun-Yen; Chou, Yin-Yu

    2012-01-01

    This study explores the effect of multidimensional concept mapping instruction on students' learning performance in a web-based computer course. The subjects consisted of 103 fourth graders from an elementary school in central Taiwan. They were divided into three groups: multidimensional concept map (MCM) instruction group, Novak concept map (NCM)…

  8. Multidimensional Identity Model Revisited: Implications for Student Affairs

    ERIC Educational Resources Information Center

    Pope, Raechele L.; Reynolds, Amy L.

    2017-01-01

    This chapter explores the connection between the authors' foundational Multidimensional Identity Model and intersectionality. The authors discuss the challenges and promises of capturing a holistic, intersectional perspective in identity theory, as well as how to engage the concept of identity as practitioners.

  9. The Multidimensional Structure of Verbal Comprehension Test Items.

    ERIC Educational Resources Information Center

    Peled, Zimra

    1984-01-01

    The multidimensional structure of verbal comprehension test items was investigated. Empirical evidence was provided to support the theory that item tasks are multivariate-multiordered composites of faceted components: language, contextual knowledge, and cognitive operation. Linear and circular properties of cylindrical manifestation were…

  10. SAMPLING DISTRIBUTIONS OF ERROR IN MULTIDIMENSIONAL SCALING.

    ERIC Educational Resources Information Center

    STAKE, ROBERT E.; AND OTHERS

    AN EMPIRICAL STUDY WAS MADE OF THE ERROR FACTORS IN MULTIDIMENSIONAL SCALING (MDS) TO REFINE THE USE OF MDS FOR MORE EXPERT MANIPULATION OF SCALES USED IN EDUCATIONAL MEASUREMENT. THE PURPOSE OF THE RESEARCH WAS TO GENERATE TABLES OF THE SAMPLING DISTRIBUTIONS THAT ARE NECESSARY FOR DISCRIMINATING BETWEEN ERROR AND NONERROR MDS DIMENSIONS. THE…

  11. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    PubMed

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the

  12. A Multidimensional Data Warehouse for Community Health Centers

    PubMed Central

    Kunjan, Kislaya; Toscos, Tammy; Turkcan, Ayten; Doebbeling, Brad N.

    2015-01-01

    Community health centers (CHCs) play a pivotal role in healthcare delivery to vulnerable populations, but have not yet benefited from a data warehouse that can support improvements in clinical and financial outcomes across the practice. We have developed a multidimensional clinic data warehouse (CDW) by working with 7 CHCs across the state of Indiana and integrating their operational, financial and electronic patient records to support ongoing delivery of care. We describe in detail the rationale for the project, the data architecture employed, the content of the data warehouse, along with a description of the challenges experienced and strategies used in the development of this repository that may help other researchers, managers and leaders in health informatics. The resulting multidimensional data warehouse is highly practical and is designed to provide a foundation for wide-ranging healthcare data analytics over time and across the community health research enterprise. PMID:26958297

  13. A Multidimensional Data Warehouse for Community Health Centers.

    PubMed

    Kunjan, Kislaya; Toscos, Tammy; Turkcan, Ayten; Doebbeling, Brad N

    2015-01-01

    Community health centers (CHCs) play a pivotal role in healthcare delivery to vulnerable populations, but have not yet benefited from a data warehouse that can support improvements in clinical and financial outcomes across the practice. We have developed a multidimensional clinic data warehouse (CDW) by working with 7 CHCs across the state of Indiana and integrating their operational, financial and electronic patient records to support ongoing delivery of care. We describe in detail the rationale for the project, the data architecture employed, the content of the data warehouse, along with a description of the challenges experienced and strategies used in the development of this repository that may help other researchers, managers and leaders in health informatics. The resulting multidimensional data warehouse is highly practical and is designed to provide a foundation for wide-ranging healthcare data analytics over time and across the community health research enterprise.

  14. Multidimensional biochemical information processing of dynamical patterns

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  15. Multidimensional generalized-ensemble algorithms for complex systems.

    PubMed

    Mitsutake, Ayori; Okamoto, Yuko

    2009-06-07

    We give general formulations of the multidimensional multicanonical algorithm, simulated tempering, and replica-exchange method. We generalize the original potential energy function E(0) by adding any physical quantity V of interest as a new energy term. These multidimensional generalized-ensemble algorithms then perform a random walk not only in E(0) space but also in V space. Among the three algorithms, the replica-exchange method is the easiest to perform because the weight factor is just a product of regular Boltzmann-like factors, while the weight factors for the multicanonical algorithm and simulated tempering are not a priori known. We give a simple procedure for obtaining the weight factors for these two latter algorithms, which uses a short replica-exchange simulation and the multiple-histogram reweighting techniques. As an example of applications of these algorithms, we have performed a two-dimensional replica-exchange simulation and a two-dimensional simulated-tempering simulation using an alpha-helical peptide system. From these simulations, we study the helix-coil transitions of the peptide in gas phase and in aqueous solution.

  16. Multidimensional biochemical information processing of dynamical patterns.

    PubMed

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  17. Enhancing Privacy in Participatory Sensing Applications with Multidimensional Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groat, Michael; Forrest, Stephanie; Horey, James L

    2012-01-01

    Participatory sensing applications rely on individuals to share local and personal data with others to produce aggregated models and knowledge. In this setting, privacy is an important consideration, and lack of privacy could discourage widespread adoption of many exciting applications. We present a privacy-preserving participatory sensing scheme for multidimensional data which uses negative surveys. Multidimensional data, such as vectors of attributes that include location and environment fields, pose a particular challenge for privacy protection and are common in participatory sensing applications. When reporting data in a negative survey, an individual participant randomly selects a value from the set complement ofmore » the sensed data value, once for each dimension, and returns the negative values to a central collection server. Using algorithms described in this paper, the server can reconstruct the probability density functions of the original distributions of sensed values, without knowing the participants actual data. As a consequence, complicated encryption and key management schemes are avoided, conserving energy. We study trade-offs between accuracy and privacy, and their relationships to the number of dimensions, categories, and participants. We introduce dimensional adjustment, a method that reduces the magnification of error associated with earlier work. Two simulation scenarios illustrate how the approach can protect the privacy of a participant's multidimensional data while allowing useful population information to be aggregated.« less

  18. The reality of disability: Multidimensional poverty of people with disability and their families in Latin America.

    PubMed

    Pinilla-Roncancio, Mónica

    2017-12-30

    Disability and poverty are interconnected and although this relationship has been recognised, there is a lack of empirical evidence to support any possible causal relationship in this topic, particularly in the context of Latin America (LA). This study tests the hypothesis "Disability increases the risk of multidimensional poverty of people living with disabilities and their families". Using national census data from Brazil, Chile, Colombia, Costa Rica and Mexico, the Global Multidimensional Poverty Index (Global MPI) was calculated with the aim of measuring and comparing the levels of multidimensional poverty of people living in households with and without disabled members in the five countries. We found that in the five countries people with disabilities and their families had higher incidence, intensity and levels of multidimensional poverty compared with people living in other households. Their levels of deprivation were also higher for all the indicators included in the Global MPI and the contribution of this group to the national MPI was higher than their share of the population, thus people with disabilities and their families are overrepresented in those living in multidimensional poverty. People with disabilities and their families are in worse conditions than poor households without disabled members and social policies should aim to reduce their high levels of multidimensional poverty and deprivation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Multi-dimensional scores to predict mortality in patients with idiopathic pulmonary fibrosis undergoing lung transplantation assessment.

    PubMed

    Fisher, Jolene H; Al-Hejaili, Faris; Kandel, Sonja; Hirji, Alim; Shapera, Shane; Mura, Marco

    2017-04-01

    The heterogeneous progression of idiopathic pulmonary fibrosis (IPF) makes prognostication difficult and contributes to high mortality on the waitlist for lung transplantation (LTx). Multi-dimensional scores (Composite Physiologic index [CPI], [Gender-Age-Physiology [GAP]; RIsk Stratification scorE [RISE]) demonstrated enhanced predictive power towards outcome in IPF. The lung allocation score (LAS) is a multi-dimensional tool commonly used to stratify patients assessed for LTx. We sought to investigate whether IPF-specific multi-dimensional scores predict mortality in patients with IPF assessed for LTx. The study included 302 patients with IPF who underwent a LTx assessment (2003-2014). Multi-dimensional scores were calculated. The primary outcome was 12-month mortality after assessment. LTx was considered as competing event in all analyses. At the end of the observation period, there were 134 transplants, 63 deaths, and 105 patients were alive without LTx. Multi-dimensional scores predicted mortality with accuracy similar to LAS, and superior to that of individual variables: area under the curve (AUC) for LAS was 0.78 (sensitivity 71%, specificity 86%); CPI 0.75 (sensitivity 67%, specificity 82%); GAP 0.67 (sensitivity 59%, specificity 74%); RISE 0.78 (sensitivity 71%, specificity 84%). A separate analysis conducted only in patients actively listed for LTx (n = 247; 50 deaths) yielded similar results. In patients with IPF assessed for LTx as well as in those actually listed, multi-dimensional scores predict mortality better than individual variables, and with accuracy similar to the LAS. If validated, multi-dimensional scores may serve as inexpensive tools to guide decisions on the timing of referral and listing for LTx. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Transforming community services through the use of a multidimensional model of clinical leadership.

    PubMed

    Leigh, Jacqueline Anne; Wild, Jill; Hynes, Celia; Wells, Stuart; Kurien, Anish; Rutherford, June; Rosen, Lyn; Ashcroft, Tim; Hartley, Victoria

    2015-03-01

    To evaluate the application of a Multidimensional Model of Clinical Leadership on the community healthcare leader and on transforming community services. Healthcare policy advocates clinical leadership as the vehicle to transform community and healthcare services. Few studies have identified the key components of an effective clinical leadership development model. The first two stages of Kirkpatrick's (Personnel Administrator 28, 1983, 62) Four/Five Levels of Evaluation were used to evaluate the application of the multidimensional model of clinical leadership. Eighty community healthcare leaders were exposed to this multidimensional clinical leadership development model through attendance of a community clinical leadership development programme. Twenty five leaders participated in focus group interviews. Data from the interviews were analysed utilising thematic content analysis. Three key themes emerged that influenced the development of best practice principles for clinical leadership development: 1. Personal leadership development 2. Organisational leadership 3. The importance of multiprofessional action learning/reflective groups Emergent best practice principles for clinical leadership development include adopting a multidimensional development approach. This approach encompasses: preparing the individual leader in the role and seeking organisational leadership development that promotes the vision and corporate values of the organisation and delivers on service improvement and innovation. Moreover, application of the Multidimensional Model of Clinical Leadership could offer the best platform for embedding the Six C's of Nursing (Compassion in Practice - Our Culture of Compassionate Care, Department of Health, Crown Copyright, 2012) within the culture of the healthcare organisation: care, compassion, courage, commitment, communication, and competency. This is achieved in part through the application of emotional intelligence to understand self and to develop the

  1. An Examination of Alternative Multidimensional Scaling Techniques

    ERIC Educational Resources Information Center

    Papazoglou, Sofia; Mylonas, Kostas

    2017-01-01

    The purpose of this study is to compare alternative multidimensional scaling (MDS) methods for constraining the stimuli on the circumference of a circle and on the surface of a sphere. Specifically, the existing MDS-T method for plotting the stimuli on the circumference of a circle is applied, and its extension is proposed for constraining the…

  2. MONET: multidimensional radiative cloud scene model

    NASA Astrophysics Data System (ADS)

    Chervet, Patrick

    1999-12-01

    All cloud fields exhibit variable structures (bulge) and heterogeneities in water distributions. With the development of multidimensional radiative models by the atmospheric community, it is now possible to describe horizontal heterogeneities of the cloud medium, to study these influences on radiative quantities. We have developed a complete radiative cloud scene generator, called MONET (French acronym for: MOdelisation des Nuages En Tridim.) to compute radiative cloud scene from visible to infrared wavelengths for various viewing and solar conditions, different spatial scales, and various locations on the Earth. MONET is composed of two parts: a cloud medium generator (CSSM -- Cloud Scene Simulation Model) developed by the Air Force Research Laboratory, and a multidimensional radiative code (SHDOM -- Spherical Harmonic Discrete Ordinate Method) developed at the University of Colorado by Evans. MONET computes images for several scenario defined by user inputs: date, location, viewing angles, wavelength, spatial resolution, meteorological conditions (atmospheric profiles, cloud types)... For the same cloud scene, we can output different viewing conditions, or/and various wavelengths. Shadowing effects on clouds or grounds are taken into account. This code is useful to study heterogeneity effects on satellite data for various cloud types and spatial resolutions, and to determine specifications of new imaging sensor.

  3. Airborne multidimensional integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  4. The impact of body fat on three dimensional motion of the paediatric foot during walking.

    PubMed

    Mahaffey, Ryan; Morrison, Stewart C; Bassett, Paul; Drechsler, Wendy I; Cramp, Mary C

    2016-02-01

    Childhood obesity is commonly associated with a pes planus foot type and altered lower limb joint function during walking. However, limited information has been reported on dynamic intersegment foot motion with the level of obesity in children. The aim of this study was to explore the relationships between intersegment foot motion during gait and body fat in boys age 7-11 years. Fat mass was measured in fifty-five boys using air displacement plethysmography. Three-dimensional gait analysis was conducted on the right foot of each participant using the 3DFoot model to capture angular motion of the shank, calcaneus, midfoot and metatarsals. Two multivariate statistical techniques were employed; principle component analysis reduced the multidimensional nature of gait analysis, and multiple linear regression analysis accounted for potential confounding factors. Higher fat mass predicted greater plantarflexion of the calcaneus during the first half and end of stance phase and at the end of swing phase. Greater abduction of the calcaneus throughout stance and swing was predicted by greater fat mass. At the midfoot, higher fat mass predicted greater dorsiflexion and eversion throughout the gait cycle. The findings present novel information on the relationships between intersegment angular motion of the foot and body fat in young boys. The data indicates a more pronated foot type in boys with greater body fat. These findings have clinical implications for pes planus and a predisposition for pain and discomfort during weight bearing activities potentially reducing motivation in obese children to be physically active. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Multidimensional poverty and health: evidence from a nationwide survey in Japan.

    PubMed

    Oshio, Takashi; Kan, Mari

    2014-12-19

    It is well known that lower income is associated with poorer health, but poverty has several dimensions other than income. In the current study, we investigated the associations between multidimensional poverty and health variables. Using micro data obtained from a nationwide population survey in Japan (N = 24,905), we focused on four dimensions of poverty (income, education, social protection, and housing conditions) and three health variables (self-rated health (SRH), psychological distress, and current smoking). We examined how health variables were associated with multidimensional poverty measures, based on descriptive and multivariable logistic regression analyses. Unions as composite measures of multiple poverty dimensions were more useful for identifying individuals in poor SRH or psychological distress than a single dimension such as income. In comparison, intersections of poverty dimensions reduced the coverage of individuals considered to be in poverty and tend to be difficult to justify without any explicit policy objective. Meanwhile, education as a unidimensional poverty indicator could be useful for predicting current smoking. Results obtained from the current study confirmed the practical relevance of multidimensional poverty for health.

  6. Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods

    NASA Astrophysics Data System (ADS)

    He, Jiayi; Shang, Pengjian; Xiong, Hui

    2018-06-01

    Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.

  7. A Method for Generating Reduced-Order Linear Models of Multidimensional Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Hartley, Tom T.

    1998-01-01

    Simulation of high speed propulsion systems may be divided into two categories, nonlinear and linear. The nonlinear simulations are usually based on multidimensional computational fluid dynamics (CFD) methodologies and tend to provide high resolution results that show the fine detail of the flow. Consequently, these simulations are large, numerically intensive, and run much slower than real-time. ne linear simulations are usually based on large lumping techniques that are linearized about a steady-state operating condition. These simplistic models often run at or near real-time but do not always capture the detailed dynamics of the plant. Under a grant sponsored by the NASA Lewis Research Center, Cleveland, Ohio, a new method has been developed that can be used to generate improved linear models for control design from multidimensional steady-state CFD results. This CFD-based linear modeling technique provides a small perturbation model that can be used for control applications and real-time simulations. It is important to note the utility of the modeling procedure; all that is needed to obtain a linear model of the propulsion system is the geometry and steady-state operating conditions from a multidimensional CFD simulation or experiment. This research represents a beginning step in establishing a bridge between the controls discipline and the CFD discipline so that the control engineer is able to effectively use multidimensional CFD results in control system design and analysis.

  8. GENERAL: Scattering Phase Correction for Semiclassical Quantization Rules in Multi-Dimensional Quantum Systems

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Min; Mou, Chung-Yu; Chang, Cheng-Hung

    2010-02-01

    While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semiclassical Landauer-Büttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.

  9. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  10. Development of the Multidimensional Peer Victimization Scale-Revised (MPVS-R) and the Multidimensional Peer Bullying Scale (MPVS-RB).

    PubMed

    Betts, Lucy R; Houston, James E; Steer, Oonagh L

    2015-01-01

    Peer victimization is a frequent occurrence for many adolescents; however, some of the psychometric properties of self-report scales assessing these experiences remain unclear. Furthermore, with an increase in access to technology, electronic aggression should also be considered. The authors examined the psychometric properties of the Multidimensional Peer Victimization Scale (MPVS; Mynard & Joseph, 2000), and developed versions to include the assessment of electronic aggression according to whether the adolescent was the target or perpetrator of peer victimization. A total of 371 (191 girls and 180 boys; Mage = 13 years 4 months, SDage = 1 year 2 months) adolescents in the United Kingdom completed the MPVS including five newly developed items assessing electronic aggression, a version of the MPVS designed to assess victimization perpetration, and a measure of self-esteem. Confirmatory factor analyses yielded a five-factor structure comprising: Physical, social manipulation, verbal, attacks on property, and electronic for both scales. Convergent validity was established through negative associations between the victimization scales and self-esteem. Sex differences also emerged. One revised scale and one new scale are subsequently proposed: The MPVS-Revised and the Multidimensional Peer Bullying Scale.

  11. Detecting Multidimensionality: Which Residual Data-Type Works Best?

    ERIC Educational Resources Information Center

    Linacre, John Michael

    1998-01-01

    Simulation studies indicate that, for responses to complete tests, construction of Rasch measures from observational data, followed by principal components factor analysis of Rasch residuals, provides an effective means of identifying multidimensionality. The most diagnostically useful residual form was found to be the standardized residual. (SLD)

  12. Hidden multidimensional social structure modeling applied to biased social perception

    NASA Astrophysics Data System (ADS)

    Maletić, Slobodan; Zhao, Yi

    2018-02-01

    Intricacies of the structure of social relations are realized by representing a collection of overlapping opinions as a simplicial complex, thus building latent multidimensional structures, through which agents are, virtually, moving as they exchange opinions. The influence of opinion space structure on the distribution of opinions is demonstrated by modeling consensus phenomena when the opinion exchange between individuals may be affected by the false consensus effect. The results indicate that in the cases with and without bias, the road toward consensus is influenced by the structure of multidimensional space of opinions, and in the biased case, complete consensus is achieved. The applications of proposed modeling framework can easily be generalized, as they transcend opinion formation modeling.

  13. Influence of Multidimensionality on Convergence of Sampling in Protein Simulation

    NASA Astrophysics Data System (ADS)

    Metsugi, Shoichi

    2005-06-01

    We study the problem of convergence of sampling in protein simulation originating in the multidimensionality of protein’s conformational space. Since several important physical quantities are given by second moments of dynamical variables, we attempt to obtain the time of simulation necessary for their sufficient convergence. We perform a molecular dynamics simulation of a protein and the subsequent principal component (PC) analysis as a function of simulation time T. As T increases, PC vectors with smaller amplitude of variations are identified and their amplitudes are equilibrated before identifying and equilibrating vectors with larger amplitude of variations. This sequential identification and equilibration mechanism makes protein simulation a useful method although it has an intrinsic multidimensional nature.

  14. Multidimensional profiles of health locus of control in Hispanic Americans

    PubMed Central

    Champagne, Brian R; Fox, Rina S; Mills, Sarah D; Sadler, Georgia Robins; Malcarne, Vanessa L

    2016-01-01

    Latent profile analysis identified health locus of control profiles among 436 Hispanic Americans who completed the Multidimensional Health Locus of Control scales. Results revealed four profiles: Internally Oriented-Weak, -Moderate, -Strong, and Externally Oriented. The profile groups were compared on sociocultural and demographic characteristics, health beliefs and behaviors, and physical and mental health outcomes. The Internally Oriented-Strong group had less cancer fatalism, religiosity, and equity health attributions, and more alcohol consumption than the other three groups; the Externally Oriented group had stronger equity health attributions and less alcohol consumption. Deriving multidimensional health locus of control profiles through latent profile analysis allows examination of the relationships of health locus of control subtypes to health variables. PMID:25855212

  15. Symmetric convolution of asymmetric multidimensional sequences using discrete trigonometric transforms.

    PubMed

    Foltz, T M; Welsh, B M

    1999-01-01

    This paper uses the fact that the discrete Fourier transform diagonalizes a circulant matrix to provide an alternate derivation of the symmetric convolution-multiplication property for discrete trigonometric transforms. Derived in this manner, the symmetric convolution-multiplication property extends easily to multiple dimensions using the notion of block circulant matrices and generalizes to multidimensional asymmetric sequences. The symmetric convolution of multidimensional asymmetric sequences can then be accomplished by taking the product of the trigonometric transforms of the sequences and then applying an inverse trigonometric transform to the result. An example is given of how this theory can be used for applying a two-dimensional (2-D) finite impulse response (FIR) filter with nonlinear phase which models atmospheric turbulence.

  16. Multidimensional simulations of core-collapse supernovae with CHIMERA

    NASA Astrophysics Data System (ADS)

    Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.

    2014-01-01

    Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.

  17. Dynamic analysis of heartbeat rate signals of epileptics using multidimensional phase space reconstruction approach

    NASA Astrophysics Data System (ADS)

    Su, Zhi-Yuan; Wu, Tzuyin; Yang, Po-Hua; Wang, Yeng-Tseng

    2008-04-01

    The heartbeat rate signal provides an invaluable means of assessing the sympathetic-parasympathetic balance of the human autonomic nervous system and thus represents an ideal diagnostic mechanism for detecting a variety of disorders such as epilepsy, cardiac disease and so forth. The current study analyses the dynamics of the heartbeat rate signal of known epilepsy sufferers in order to obtain a detailed understanding of the heart rate pattern during a seizure event. In the proposed approach, the ECG signals are converted into heartbeat rate signals and the embedology theorem is then used to construct the corresponding multidimensional phase space. The dynamics of the heartbeat rate signal are then analyzed before, during and after an epileptic seizure by examining the maximum Lyapunov exponent and the correlation dimension of the attractors in the reconstructed phase space. In general, the results reveal that the heartbeat rate signal transits from an aperiodic, highly-complex behaviour before an epileptic seizure to a low dimensional chaotic motion during the seizure event. Following the seizure, the signal trajectories return to a highly-complex state, and the complex signal patterns associated with normal physiological conditions reappear.

  18. On Multidimensional Item Response Theory: A Coordinate-Free Approach. Research Report. ETS RR-07-30

    ERIC Educational Resources Information Center

    Antal, Tamás

    2007-01-01

    A coordinate-free definition of complex-structure multidimensional item response theory (MIRT) for dichotomously scored items is presented. The point of view taken emphasizes the possibilities and subtleties of understanding MIRT as a multidimensional extension of the classical unidimensional item response theory models. The main theorem of the…

  19. Simultaneous Classification and Multidimensional Scaling with External Information

    ERIC Educational Resources Information Center

    Kiers, Henk A. L.; Vicari, Donatella; Vichi, Maurizio

    2005-01-01

    For the exploratory analysis of a matrix of proximities or (dis)similarities between objects, one often uses cluster analysis (CA) or multidimensional scaling (MDS). Solutions resulting from such analyses are sometimes interpreted using external information on the objects. Usually the procedures of CA, MDS and using external information are…

  20. Column-coupling strategies for multidimensional electrophoretic separation techniques.

    PubMed

    Kler, Pablo A; Sydes, Daniel; Huhn, Carolin

    2015-01-01

    Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the

  1. The Role of Motion Concepts in Understanding Non-Motion Concepts

    PubMed Central

    Khatin-Zadeh, Omid; Banaruee, Hassan; Khoshsima, Hooshang; Marmolejo-Ramos, Fernando

    2017-01-01

    This article discusses a specific type of metaphor in which an abstract non-motion domain is described in terms of a motion event. Abstract non-motion domains are inherently different from concrete motion domains. However, motion domains are used to describe abstract non-motion domains in many metaphors. Three main reasons are suggested for the suitability of motion events in such metaphorical descriptions. Firstly, motion events usually have high degrees of concreteness. Secondly, motion events are highly imageable. Thirdly, components of any motion event can be imagined almost simultaneously within a three-dimensional space. These three characteristics make motion events suitable domains for describing abstract non-motion domains, and facilitate the process of online comprehension throughout language processing. Extending the main point into the field of mathematics, this article discusses the process of transforming abstract mathematical problems into imageable geometric representations within the three-dimensional space. This strategy is widely used by mathematicians to solve highly abstract and complex problems. PMID:29240715

  2. Computational Motion Phantoms and Statistical Models of Respiratory Motion

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Klinder, Tobias; Lorenz, Cristian

    Breathing motion is not a robust and 100 % reproducible process, and inter- and intra-fractional motion variations form an important problem in radiotherapy of the thorax and upper abdomen. A widespread consensus nowadays exists that it would be useful to use prior knowledge about respiratory organ motion and its variability to improve radiotherapy planning and treatment delivery. This chapter discusses two different approaches to model the variability of respiratory motion. In the first part, we review computational motion phantoms, i.e. computerized anatomical and physiological models. Computational phantoms are excellent tools to simulate and investigate the effects of organ motion in radiation therapy and to gain insight into methods for motion management. The second part of this chapter discusses statistical modeling techniques to describe the breathing motion and its variability in a population of 4D images. Population-based models can be generated from repeatedly acquired 4D images of the same patient (intra-patient models) and from 4D images of different patients (inter-patient models). The generation of those models is explained and possible applications of those models for motion prediction in radiotherapy are exemplified. Computational models of respiratory motion and motion variability have numerous applications in radiation therapy, e.g. to understand motion effects in simulation studies, to develop and evaluate treatment strategies or to introduce prior knowledge into the patient-specific treatment planning.

  3. An empirical study of multidimensional fidelity of COMPASS consultation.

    PubMed

    Wong, Venus; Ruble, Lisa A; McGrew, John H; Yu, Yue

    2018-06-01

    Consultation is essential to the daily practice of school psychologists (National Association of School Psychologist, 2010). Successful consultation requires fidelity at both the consultant (implementation) and consultee (intervention) levels. We applied a multidimensional, multilevel conception of fidelity (Dunst, Trivette, & Raab, 2013) to a consultative intervention called the Collaborative Model for Promoting Competence and Success (COMPASS) for students with autism. The study provided 3 main findings. First, multidimensional, multilevel fidelity is a stable construct and increases over time with consultation support. Second, mediation analyses revealed that implementation-level fidelity components had distant, indirect effects on student Individualized Education Program (IEP) outcomes. Third, 3 fidelity components correlated with IEP outcomes: teacher coaching responsiveness at the implementation level, and teacher quality of delivery and student responsiveness at the intervention levels. Implications and future directions are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Tile prediction schemes for wide area motion imagery maps in GIS

    NASA Astrophysics Data System (ADS)

    Michael, Chris J.; Lin, Bruce Y.

    2017-11-01

    Wide-area surveillance, traffic monitoring, and emergency management are just several of many applications benefiting from the incorporation of Wide-Area Motion Imagery (WAMI) maps into geographic information systems. Though the use of motion imagery as a GIS base map via the Web Map Service (WMS) standard is not a new concept, effectively streaming imagery is particularly challenging due to its large scale and the multidimensionally interactive nature of clients that use WMS. Ineffective streaming from a server to one or more clients can unnecessarily overwhelm network bandwidth and cause frustratingly large amounts of latency in visualization to the user. Seamlessly streaming WAMI through GIS requires good prediction to accurately guess the tiles of the video that will be traversed in the near future. In this study, we present an experimental framework for such prediction schemes by presenting a stochastic interaction model that represents a human user's interaction with a GIS video map. We then propose several algorithms by which the tiles of the stream may be predicted. Results collected both within the experimental framework and using human analyst trajectories show that, though each algorithm thrives under certain constraints, the novel Markovian algorithm yields the best results overall. Furthermore, we make the argument that the proposed experimental framework is sufficient for the study of these prediction schemes.

  5. Manycore Performance-Portability: Kokkos Multidimensional Array Library

    DOE PAGES

    Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...

    2012-01-01

    Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less

  6. The Multidimensionality of Child Poverty: Evidence from Afghanistan

    ERIC Educational Resources Information Center

    Trani, Jean-Francois; Biggeri, Mario; Mauro, Vincenzo

    2013-01-01

    This paper examines multidimensional poverty among children in Afghanistan using the Alkire-Foster method. Several previous studies have underlined the need to separate children from their adult nexus when studying poverty and treat them according to their own specificities. From the capability approach, child poverty is understood to be the lack…

  7. Best Practices Inquiry: A Multidimensional, Value-Critical Framework

    ERIC Educational Resources Information Center

    Petr, Christopher G.; Walter, Uta M.

    2005-01-01

    This article offers a multidimensional framework that broadens current approaches to "best practices" inquiry to include (1) the perspectives of both the consumers of services and professional practitioners and (2) a value-based critique. The predominant empirical approach to best practices inquiry is a necessary, but not sufficient, component of…

  8. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    PubMed Central

    Naeem, S.; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F. B.; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. PMID:27928041

  9. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity.

    PubMed

    Naeem, S; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F B; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-12-14

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. © 2016 The Authors.

  10. Reducing seed dependent variability of non-uniformly sampled multidimensional NMR data

    NASA Astrophysics Data System (ADS)

    Mobli, Mehdi

    2015-07-01

    The application of NMR spectroscopy to study the structure, dynamics and function of macromolecules requires the acquisition of several multidimensional spectra. The one-dimensional NMR time-response from the spectrometer is extended to additional dimensions by introducing incremented delays in the experiment that cause oscillation of the signal along "indirect" dimensions. For a given dimension the delay is incremented at twice the rate of the maximum frequency (Nyquist rate). To achieve high-resolution requires acquisition of long data records sampled at the Nyquist rate. This is typically a prohibitive step due to time constraints, resulting in sub-optimal data records to the detriment of subsequent analyses. The multidimensional NMR spectrum itself is typically sparse, and it has been shown that in such cases it is possible to use non-Fourier methods to reconstruct a high-resolution multidimensional spectrum from a random subset of non-uniformly sampled (NUS) data. For a given acquisition time, NUS has the potential to improve the sensitivity and resolution of a multidimensional spectrum, compared to traditional uniform sampling. The improvements in sensitivity and/or resolution achieved by NUS are heavily dependent on the distribution of points in the random subset acquired. Typically, random points are selected from a probability density function (PDF) weighted according to the NMR signal envelope. In extreme cases as little as 1% of the data is subsampled. The heavy under-sampling can result in poor reproducibility, i.e. when two experiments are carried out where the same number of random samples is selected from the same PDF but using different random seeds. Here, a jittered sampling approach is introduced that is shown to improve random seed dependent reproducibility of multidimensional spectra generated from NUS data, compared to commonly applied NUS methods. It is shown that this is achieved due to the low variability of the inherent sensitivity of the

  11. Beyond factor analysis: Multidimensionality and the Parkinson's Disease Sleep Scale-Revised.

    PubMed

    Pushpanathan, Maria E; Loftus, Andrea M; Gasson, Natalie; Thomas, Meghan G; Timms, Caitlin F; Olaithe, Michelle; Bucks, Romola S

    2018-01-01

    Many studies have sought to describe the relationship between sleep disturbance and cognition in Parkinson's disease (PD). The Parkinson's Disease Sleep Scale (PDSS) and its variants (the Parkinson's disease Sleep Scale-Revised; PDSS-R, and the Parkinson's Disease Sleep Scale-2; PDSS-2) quantify a range of symptoms impacting sleep in only 15 items. However, data from these scales may be problematic as included items have considerable conceptual breadth, and there may be overlap in the constructs assessed. Multidimensional measurement models, accounting for the tendency for items to measure multiple constructs, may be useful more accurately to model variance than traditional confirmatory factor analysis. In the present study, we tested the hypothesis that a multidimensional model (a bifactor model) is more appropriate than traditional factor analysis for data generated by these types of scales, using data collected using the PDSS-R as an exemplar. 166 participants diagnosed with idiopathic PD participated in this study. Using PDSS-R data, we compared three models: a unidimensional model; a 3-factor model consisting of sub-factors measuring insomnia, motor symptoms and obstructive sleep apnoea (OSA) and REM sleep behaviour disorder (RBD) symptoms; and, a confirmatory bifactor model with both a general factor and the same three sub-factors. Only the confirmatory bifactor model achieved satisfactory model fit, suggesting that PDSS-R data are multidimensional. There were differential associations between factor scores and patient characteristics, suggesting that some PDSS-R items, but not others, are influenced by mood and personality in addition to sleep symptoms. Multidimensional measurement models may also be a helpful tool in the PDSS and the PDSS-2 scales and may improve the sensitivity of these instruments.

  12. Effectiveness of Multidimensional Cancer Survivor Rehabilitation and Cost-Effectiveness of Cancer Rehabilitation in General: A Systematic Review

    PubMed Central

    Mewes, Janne C.; IJzerman, Maarten J.; van Harten, Wim H.

    2012-01-01

    Introduction. Many cancer survivors suffer from a combination of disease- and treatment-related morbidities and complaints after primary treatment. There is a growing evidence base for the effectiveness of monodimensional rehabilitation interventions; in practice, however, patients often participate in multidimensional programs. This study systematically reviews evidence regarding effectiveness of multidimensional rehabilitation programs for cancer survivors and cost-effectiveness of cancer rehabilitation in general. Methods. The published literature was systematically reviewed. Data were extracted using standardized forms and were summarized narratively. Results. Sixteen effectiveness and six cost-effectiveness studies were included. Multidimensional rehabilitation programs were found to be effective, but not more effective than monodimensional interventions, and not on all outcome measures. Effect sizes for quality of life were in the range of −0.12 (95% confidence interval [CI], −0.45–0.20) to 0.98 (95% CI, 0.69–1.29). Incremental cost-effectiveness ratios ranged from −€16,976, indicating cost savings, to €11,057 per quality-adjusted life year. Conclusions. The evidence for multidimensional interventions and the economic impact of rehabilitation studies is scarce and dominated by breast cancer studies. Studies published so far report statistically significant benefits for multidimensional interventions over usual care, most notably for the outcomes fatigue and physical functioning. An additional benefit of multidimensional over monodimensional rehabilitation was not found, but this was also sparsely reported on. Available economic evaluations assessed very different rehabilitation interventions. Yet, despite low comparability, all showed favorable cost-effectiveness ratios. Future studies should focus their designs on the comparative effectiveness and cost-effectiveness of multidimensional programs. PMID:22982580

  13. Exploration of multidimensional interactive classroom teaching for CCD principle and application course

    NASA Astrophysics Data System (ADS)

    Fu, Xinghu; Tan, Ailing; Zhang, Baojun; Fu, Guangwei; Bi, Weihong

    2017-08-01

    The CCD principle and application course is professional and comprehensive. It involves many subject contents. The course content includes eight aspects. In order to complete the teaching tasks within a limited time, improve the classroom teaching quality and prompt students master the course content faster and better, so the multidimensional interactive classroom teaching is proposed. In the teaching practice, the interactive relationship between the frontier science, scientific research project, living example and classroom content is researched detailedly. Finally, it has been proved practically that the proposed multidimensional interactive classroom teaching can achieved good teaching effect.

  14. Factor structure and gender stability in the multidimensional condom attitudes scale.

    PubMed

    Starosta, Amy J; Berghoff, Christopher R; Earleywine, Mitch

    2015-06-01

    Sexually transmitted infections continue to trouble the United States and can be attenuated through increased condom use. Attitudes about condoms are an important multidimensional factor that can affect sexual health choices and have been successfully measured using the Multidimensional Condom Attitudes Scale (MCAS). Such attitudes have the potential to vary between men and women, yet little work has been undertaken to identify if the MCAS accurately captures attitudes without being influenced by underlying gender biases. We examined the factor structure and gender invariance on the MCAS using confirmatory factor analysis and item response theory, within-subscale differential item functioning analyses. More than 770 participants provided data via the Internet. Results of differential item functioning analyses identified three items as differentially functioning between the genders, and removal of these items is recommended. Findings confirmed the previously hypothesized multidimensional nature of condom attitudes and the five-factor structure of the MCAS even after the removal of the three problematic items. In general, comparisons across genders using the MCAS seem reasonable from a methodological standpoint. Results are discussed in terms of improving sexual health research and interventions. © The Author(s) 2014.

  15. Multidimensional, mapping-based complex wavelet transforms.

    PubMed

    Fernandes, Felix C A; van Spaendonck, Rutger L C; Burrus, C Sidney

    2005-01-01

    Although the discrete wavelet transform (DWT) is a powerful tool for signal and image processing, it has three serious disadvantages: shift sensitivity, poor directionality, and lack of phase information. To overcome these disadvantages, we introduce multidimensional, mapping-based, complex wavelet transforms that consist of a mapping onto a complex function space followed by a DWT of the complex mapping. Unlike other popular transforms that also mitigate DWT shortcomings, the decoupled implementation of our transforms has two important advantages. First, the controllable redundancy of the mapping stage offers a balance between degree of shift sensitivity and transform redundancy. This allows us to create a directional, nonredundant, complex wavelet transform with potential benefits for image coding systems. To the best of our knowledge, no other complex wavelet transform is simultaneously directional and nonredundant. The second advantage of our approach is the flexibility to use any DWT in the transform implementation. As an example, we exploit this flexibility to create the complex double-density DWT: a shift-insensitive, directional, complex wavelet transform with a low redundancy of (3M - 1)/(2M - 1) in M dimensions. No other transform achieves all these properties at a lower redundancy, to the best of our knowledge. By exploiting the advantages of our multidimensional, mapping-based complex wavelet transforms in seismic signal-processing applications, we have demonstrated state-of-the-art results.

  16. Multidimensional profiles of health locus of control in Hispanic Americans.

    PubMed

    Champagne, Brian R; Fox, Rina S; Mills, Sarah D; Sadler, Georgia Robins; Malcarne, Vanessa L

    2016-10-01

    Latent profile analysis identified health locus of control profiles among 436 Hispanic Americans who completed the Multidimensional Health Locus of Control scales. Results revealed four profiles: Internally Oriented-Weak, -Moderate, -Strong, and Externally Oriented. The profile groups were compared on sociocultural and demographic characteristics, health beliefs and behaviors, and physical and mental health outcomes. The Internally Oriented-Strong group had less cancer fatalism, religiosity, and equity health attributions, and more alcohol consumption than the other three groups; the Externally Oriented group had stronger equity health attributions and less alcohol consumption. Deriving multidimensional health locus of control profiles through latent profile analysis allows examination of the relationships of health locus of control subtypes to health variables. © The Author(s) 2015.

  17. Natural Language Processing Of Online Propaganda As A Means Of Passively Monitoring An Adversarial Ideology

    DTIC Science & Technology

    2017-03-01

    Warfare. 14. SUBJECT TERMS data mining, natural language processing, machine learning, algorithm design , information warfare, propaganda 15. NUMBER OF...Speech Tags. Adapted from [12]. CC Coordinating conjunction PRP$ Possessive pronoun CD Cardinal number RB Adverb DT Determiner RBR Adverb, comparative ... comparative UH Interjection JJS Adjective, superlative VB Verb, base form LS List item marker VBD Verb, past tense MD Modal VBG Verb, gerund or

  18. Nuclear Forensic Inferences Using Iterative Multidimensional Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robel, M; Kristo, M J; Heller, M A

    2009-06-09

    Nuclear forensics involves the analysis of interdicted nuclear material for specific material characteristics (referred to as 'signatures') that imply specific geographical locations, production processes, culprit intentions, etc. Predictive signatures rely on expert knowledge of physics, chemistry, and engineering to develop inferences from these material characteristics. Comparative signatures, on the other hand, rely on comparison of the material characteristics of the interdicted sample (the 'questioned sample' in FBI parlance) with those of a set of known samples. In the ideal case, the set of known samples would be a comprehensive nuclear forensics database, a database which does not currently exist. Inmore » fact, our ability to analyze interdicted samples and produce an extensive list of precise materials characteristics far exceeds our ability to interpret the results. Therefore, as we seek to develop the extensive databases necessary for nuclear forensics, we must also develop the methods necessary to produce the necessary inferences from comparison of our analytical results with these large, multidimensional sets of data. In the work reported here, we used a large, multidimensional dataset of results from quality control analyses of uranium ore concentrate (UOC, sometimes called 'yellowcake'). We have found that traditional multidimensional techniques, such as principal components analysis (PCA), are especially useful for understanding such datasets and drawing relevant conclusions. In particular, we have developed an iterative partial least squares-discriminant analysis (PLS-DA) procedure that has proven especially adept at identifying the production location of unknown UOC samples. By removing classes which fell far outside the initial decision boundary, and then rebuilding the PLS-DA model, we have consistently produced better and more definitive attributions than with a single pass classification approach. Performance of the iterative PLS-DA method

  19. Deriving Stopping Rules for Multidimensional Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Wang, Chun; Chang, Hua-Hua; Boughton, Keith A.

    2013-01-01

    Multidimensional computerized adaptive testing (MCAT) is able to provide a vector of ability estimates for each examinee, which could be used to provide a more informative profile of an examinee's performance. The current literature on MCAT focuses on the fixed-length tests, which can generate less accurate results for those examinees whose…

  20. Heuristic Constraint Management Methods in Multidimensional Adaptive Testing

    ERIC Educational Resources Information Center

    Born, Sebastian; Frey, Andreas

    2017-01-01

    Although multidimensional adaptive testing (MAT) has been proven to be highly advantageous with regard to measurement efficiency when several highly correlated dimensions are measured, there are few operational assessments that use MAT. This may be due to issues of constraint management, which is more complex in MAT than it is in unidimensional…

  1. Self Esteem, Locus of Control and Multidimensional Perfectionism as the Predictors of Subjective Well Being

    ERIC Educational Resources Information Center

    Karatas, Zeynep; Tagay, Ozlem

    2012-01-01

    The purpose of this study is to determine whether there is a relationship between self-esteem, locus of control and multidimensional perfectionism, and the extent to which the variables of self-esteem, locus of control and multidimensional perfectionism contribute to the prediction of subjective well-being. The study was carried out with 318 final…

  2. How Sound Symbolism Is Processed in the Brain: A Study on Japanese Mimetic Words

    PubMed Central

    Okuda, Jiro; Okada, Hiroyuki; Matsuda, Tetsuya

    2014-01-01

    Sound symbolism is the systematic and non-arbitrary link between word and meaning. Although a number of behavioral studies demonstrate that both children and adults are universally sensitive to sound symbolism in mimetic words, the neural mechanisms underlying this phenomenon have not yet been extensively investigated. The present study used functional magnetic resonance imaging to investigate how Japanese mimetic words are processed in the brain. In Experiment 1, we compared processing for motion mimetic words with that for non-sound symbolic motion verbs and adverbs. Mimetic words uniquely activated the right posterior superior temporal sulcus (STS). In Experiment 2, we further examined the generalizability of the findings from Experiment 1 by testing another domain: shape mimetics. Our results show that the right posterior STS was active when subjects processed both motion and shape mimetic words, thus suggesting that this area may be the primary structure for processing sound symbolism. Increased activity in the right posterior STS may also reflect how sound symbolic words function as both linguistic and non-linguistic iconic symbols. PMID:24840874

  3. A Scalar Product Model for the Multidimensional Scaling of Choice

    ERIC Educational Resources Information Center

    Bechtel, Gordon G.; And Others

    1971-01-01

    Contains a solution for the multidimensional scaling of pairwise choice when individuals are represented as dimensional weights. The analysis supplies an exact least squares solution and estimates of group unscalability parameters. (DG)

  4. A Bio-Inspired, Motion-Based Analysis of Crowd Behavior Attributes Relevance to Motion Transparency, Velocity Gradients, and Motion Patterns

    PubMed Central

    Raudies, Florian; Neumann, Heiko

    2012-01-01

    The analysis of motion crowds is concerned with the detection of potential hazards for individuals of the crowd. Existing methods analyze the statistics of pixel motion to classify non-dangerous or dangerous behavior, to detect outlier motions, or to estimate the mean throughput of people for an image region. We suggest a biologically inspired model for the analysis of motion crowds that extracts motion features indicative for potential dangers in crowd behavior. Our model consists of stages for motion detection, integration, and pattern detection that model functions of the primate primary visual cortex area (V1), the middle temporal area (MT), and the medial superior temporal area (MST), respectively. This model allows for the processing of motion transparency, the appearance of multiple motions in the same visual region, in addition to processing opaque motion. We suggest that motion transparency helps to identify “danger zones” in motion crowds. For instance, motion transparency occurs in small exit passages during evacuation. However, motion transparency occurs also for non-dangerous crowd behavior when people move in opposite directions organized into separate lanes. Our analysis suggests: The combination of motion transparency and a slow motion speed can be used for labeling of candidate regions that contain dangerous behavior. In addition, locally detected decelerations or negative speed gradients of motions are a precursor of danger in crowd behavior as are globally detected motion patterns that show a contraction toward a single point. In sum, motion transparency, image speeds, motion patterns, and speed gradients extracted from visual motion in videos are important features to describe the behavioral state of a motion crowd. PMID:23300930

  5. Concurrent Respiratory Motion Correction of Abdominal PET and DCE-MRI using a Compressed Sensing Approach.

    PubMed

    Fuin, Niccolo; Catalano, Onofrio Antonio; Scipioni, Michele; Canjels, Lisanne P W; Izquierdo, David; Pedemonte, Stefano; Catana, Ciprian

    2018-01-25

    Purpose: We present an approach for concurrent reconstruction of respiratory motion compensated abdominal DCE-MRI and PET data in an integrated PET/MR scanner. The MR and PET reconstructions share the same motion vector fields (MVFs) derived from radial MR data; the approach is robust to changes in respiratory pattern and do not increase the total acquisition time. Methods: PET and DCE-MRI data of 12 oncological patients were simultaneously acquired for 6 minutes on an integrated PET/MR system after administration of 18 F-FDG and gadoterate meglumine. Golden-angle radial MR data were continuously acquired simultaneously with PET data and sorted into multiple motion phases based on a respiratory signal derived directly from the radial MR data. The resulting multidimensional dataset was reconstructed using a compressed sensing approach that exploits sparsity among respiratory phases. MVFs obtained using the full 6-minute (MC_6-min) and only the last 1 minute (MC_1-min) of data were incorporated into the PET reconstruction to obtain motion-corrected PET images and in an MR iterative reconstruction algorithm to produce a series of motion-corrected DCE-MRI images (moco_GRASP). The motion-correction methods (MC_6-min and MC_1-min) were evaluated by qualitative analysis of the MR images and quantitative analysis of maximum and mean standardized uptake values (SUV max , SUVmean), contrast, signal-to-noise ratio (SNR) and lesion volume in the PET images. Results: Motion corrected MC_6-min PET images demonstrated 30%, 23%, 34% and 18% increases in average SUV max , SUVmean, contrast and SNR, and an average 40% reduction in lesion volume with respect to the non-motion-corrected PET images. The changes in these figures of merit were smaller but still substantial for the MC_1-min protocol: 19%, 10%, 15% and 9% increases in average SUV max , SUVmean, contrast and SNR; and a 28% reduction in lesion volume. Moco_GRASP images were deemed of acceptable or better diagnostic image

  6. Reporting of Subscores Using Multidimensional Item Response Theory

    ERIC Educational Resources Information Center

    Haberman, Shelby J.; Sinharay, Sandip

    2010-01-01

    Recently, there has been increasing interest in reporting subscores. This paper examines reporting of subscores using multidimensional item response theory (MIRT) models (e.g., Reckase in "Appl. Psychol. Meas." 21:25-36, 1997; C.R. Rao and S. Sinharay (Eds), "Handbook of Statistics, vol. 26," pp. 607-642, North-Holland, Amsterdam, 2007; Beguin &…

  7. [Motion sickness in motion: from carsickness to cybersickness].

    PubMed

    Bos, J E; van Leeuwen, R B; Bruintjes, T D

    2018-01-01

    - Motion sickness is not a disorder, but a normal response to a non-normal situation in which movement plays a central role, such as car travel, sailing, flying, or virtual reality.- Almost anyone can suffer from motion sickness, as long as at least one of the organs of balance functions. If neither of the organs of balance functions the individual will not suffer from carsickness, seasickness, airsickness, nor from cybersickness. - 'Cybersickness' is a form of motion sickness that is stimulated by artificial moving images such as in videogames. Because we are now exposed more often and for longer periods of time to increasingly realistic artificial images, doctors will also encounter cases of motion sickness more often. - The basis for motion sickness is the vestibular system, which can be modulated by visual-vestibular conflicts, i.e. when the movements seen by the eyes are not the same as those experienced by the organs of balance.- Antihistamines can be effective against motion sickness in everyday situations such as car travel if taken before departure, but the effectiveness of medication for motion sickness is limited.

  8. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Administrative Law Judge. If made before or after the hearing itself, the motions shall be in writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may... motion. Unless otherwise ordered by the Administrative Law Judge, written motions shall be accompanied by...

  9. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Administrative Law Judge. If made before or after the hearing itself, the motions shall be in writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may... motion. Unless otherwise ordered by the Administrative Law Judge, written motions shall be accompanied by...

  10. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Administrative Law Judge. If made before or after the hearing itself, the motions shall be in writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may... motion. Unless otherwise ordered by the Administrative Law Judge, written motions shall be accompanied by...

  11. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Administrative Law Judge. If made before or after the hearing itself, the motions shall be in writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may... motion. Unless otherwise ordered by the Administrative Law Judge, written motions shall be accompanied by...

  12. 41 CFR 60-30.8 - Motions; disposition of motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Administrative Law Judge. If made before or after the hearing itself, the motions shall be in writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may... motion. Unless otherwise ordered by the Administrative Law Judge, written motions shall be accompanied by...

  13. Multidimensional effects in nonadiabatic statistical theories of spin- forbidden kinetics. A case study of 3O + CO → CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasper, Ahren

    2015-04-14

    The appropriateness of treating crossing seams of electronic states of different spins as nonadiabatic transition states in statistical calculations of spin-forbidden reaction rates is considered. We show that the spin-forbidden reaction coordinate, the nuclear coordinate perpendicular to the crossing seam, is coupled to the remaining nuclear degrees of freedom. We found that this coupling gives rise to multidimensional effects that are not typically included in statistical treatments of spin-forbidden kinetics. Three qualitative categories of multidimensional effects may be identified: static multidimensional effects due to the geometry-dependence of the local shape of the crossing seam and of the spin–orbit coupling, dynamicalmore » multidimensional effects due to energy exchange with the reaction coordinate during the seam crossing, and nonlocal(history-dependent) multidimensional effects due to interference of the electronic variables at second, third, and later seam crossings. Nonlocal multidimensional effects are intimately related to electronic decoherence, where electronic dephasing acts to erase the history of the system. A semiclassical model based on short-time full-dimensional trajectories that includes all three multidimensional effects as well as a model for electronic decoherence is presented. The results of this multidimensional nonadiabatic statistical theory (MNST) for the 3O + CO → CO 2 reaction are compared with the results of statistical theories employing one-dimensional (Landau–Zener and weak coupling) models for the transition probability and with those calculated previously using multistate trajectories. The MNST method is shown to accurately reproduce the multistate decay-of-mixing trajectory results, so long as consistent thresholds are used. Furthermore, the MNST approach has several advantages over multistate trajectory approaches and is more suitable in chemical kinetics calculations at low temperatures and for complex systems

  14. Motion streaks in fast motion rivalry cause orientation-selective suppression.

    PubMed

    Apthorp, Deborah; Wenderoth, Peter; Alais, David

    2009-05-14

    We studied binocular rivalry between orthogonally translating arrays of random Gaussian blobs and measured the strength of rivalry suppression for static oriented probes. Suppression depth was quantified by expressing monocular probe thresholds during dominance relative to thresholds during suppression. Rivalry between two fast motions or two slow motions was compared in order to test the suggestion that fast-moving objects leave oriented "motion streaks" due to temporal integration (W. S. Geisler, 1999). If fast motions do produce motion streaks, then fast motion rivalry might also entail rivalry between the orthogonal streak orientations. We tested this using a static oriented probe that was aligned either parallel to the motion trajectory (hence collinear with the "streaks") or was orthogonal to the trajectory, predicting that rivalry suppression would be greater for parallel probes, and only for rivalry between fast motions. Results confirmed that suppression depth did depend on probe orientation for fast motion but not for slow motion. Further experiments showed that threshold elevations for the oriented probe during suppression exhibited clear orientation tuning. However, orientation-tuned elevations were also present during dominance, suggesting within-channel masking as the basis of the extra-deep suppression. In sum, the presence of orientation-dependent suppression in fast motion rivalry is consistent with the "motion streaks" hypothesis.

  15. Analysis of precipitation data in Bangladesh through hierarchical clustering and multidimensional scaling

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Habibur; Matin, M. A.; Salma, Umma

    2017-12-01

    The precipitation patterns of seventeen locations in Bangladesh from 1961 to 2014 were studied using a cluster analysis and metric multidimensional scaling. In doing so, the current research applies four major hierarchical clustering methods to precipitation in conjunction with different dissimilarity measures and metric multidimensional scaling. A variety of clustering algorithms were used to provide multiple clustering dendrograms for a mixture of distance measures. The dendrogram of pre-monsoon rainfall for the seventeen locations formed five clusters. The pre-monsoon precipitation data for the areas of Srimangal and Sylhet were located in two clusters across the combination of five dissimilarity measures and four hierarchical clustering algorithms. The single linkage algorithm with Euclidian and Manhattan distances, the average linkage algorithm with the Minkowski distance, and Ward's linkage algorithm provided similar results with regard to monsoon precipitation. The results of the post-monsoon and winter precipitation data are shown in different types of dendrograms with disparate combinations of sub-clusters. The schematic geometrical representations of the precipitation data using metric multidimensional scaling showed that the post-monsoon rainfall of Cox's Bazar was located far from those of the other locations. The results of a box-and-whisker plot, different clustering techniques, and metric multidimensional scaling indicated that the precipitation behaviour of Srimangal and Sylhet during the pre-monsoon season, Cox's Bazar and Sylhet during the monsoon season, Maijdi Court and Cox's Bazar during the post-monsoon season, and Cox's Bazar and Khulna during the winter differed from those at other locations in Bangladesh.

  16. Dynamic coupling between the LID and NMP domain motions in the catalytic conversion of ATP and AMP to ADP by adenylate kinase

    NASA Astrophysics Data System (ADS)

    Jana, Biman; Adkar, Bharat V.; Biswas, Rajib; Bagchi, Biman

    2011-01-01

    The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations.

  17. Linear and Nonlinear Thinking: A Multidimensional Model and Measure

    ERIC Educational Resources Information Center

    Groves, Kevin S.; Vance, Charles M.

    2015-01-01

    Building upon previously developed and more general dual-process models, this paper provides empirical support for a multidimensional thinking style construct comprised of linear thinking and multiple dimensions of nonlinear thinking. A self-report assessment instrument (Linear/Nonlinear Thinking Style Profile; LNTSP) is presented and…

  18. Motion onset does not capture attention when subsequent motion is "smooth".

    PubMed

    Sunny, Meera Mary; von Mühlenen, Adrian

    2011-12-01

    Previous research on the attentional effects of moving objects has shown that motion per se does not capture attention. However, in later studies it was argued that the onset of motion does capture attention. Here, we show that this motion-onset effect critically depends on motion jerkiness--that is, the rate at which the moving stimulus is refreshed. Experiment 1 used search displays with a static, a motion-onset, and an abrupt-onset stimulus, while systematically varying the refresh rate of the moving stimulus. The results showed that motion onset only captures attention when subsequent motion is jerky (8 and 17 Hz), not when it is smooth (33 and 100 Hz). Experiment 2 replaced motion onset with continuous motion, showing that motion jerkiness does not affect how continuous motion is processed. These findings do not support accounts that assume a special role for motion onset, but they are in line with the more general unique-event account.

  19. Five Evils: Multidimensional Poverty and Race in America

    ERIC Educational Resources Information Center

    Reeves, Richard; Rodrigue, Edward; Kneebone, Elizabeth

    2016-01-01

    Poverty is about a lack of money, but it's not only about that. As a lived experience, poverty is also characterized by ill health, insecurity, discomfort, isolation, and more. To put it another way: Poverty is multidimensional, and its dimensions often cluster together to intensify the negative effects of being poor. In this first of a two-part…

  20. Fatigue in children: reliability and validity of the Dutch PedsQL™ Multidimensional Fatigue Scale.

    PubMed

    Gordijn, M Suzanne; Suzanne Gordijn, M; Cremers, Eline M P; Kaspers, Gertjan J L; Gemke, Reinoud J B J

    2011-09-01

    The aim of the study is to report on the feasibility, reliability, validity, and the norm-references of the Dutch version of the PedsQL™ Multidimensional Fatigue Scale. The study participants are four hundred and ninety-seven parents of children aged 2-18 years and 366 children aged 5-18 years from various day care facilities, elementary schools, and a high school who completed the Dutch version of the PedsQL™ Multidimensional Fatigue Scale. The number of missing items was minimal. All scales showed satisfactory internal consistency reliability, with Cronbach's coefficient alpha exceeding 0.70. Test-retest reliability was good to excellent (ICCs 0.68-0.84) and inter-observer reliability varied from moderate to excellent (ICCs 0.56-0.93) for total scores. Parent/child concordance for total scores was poor to good (ICCs 0.25-0.68). The PedsQL™ Multidimensional Fatigue Scale was able to distinguish between healthy children and children with an impaired health condition. The Dutch version of the PedsQL™ Multidimensional Fatigue Scale demonstrates an adequate feasibility, reliability, and validity in another sociocultural context. With the obtained norm-references, it can be utilized as a tool in the evaluation of fatigue in healthy and chronically ill children aged 2-18 years.

  1. 6D Visualization of Multidimensional Data by Means of Cognitive Technology

    NASA Astrophysics Data System (ADS)

    Vitkovskiy, V.; Gorohov, V.; Komarinskiy, S.

    2010-12-01

    On the basis of the cognitive graphics concept, we worked out the SW-system for visualization and analysis. It allows to train and to aggravate intuition of researcher, to raise his interest and motivation to the creative, scientific cognition, to realize process of dialogue with the very problems simultaneously. The Space Hedgehog system is the next step in the cognitive means of the multidimensional data analyze. The technique and technology cognitive 6D visualization of the multidimensional data is developed on the basis of the cognitive visualization research and technology development. The Space Hedgehog system allows direct dynamic visualization of 6D objects. It is developed with use of experience of the program Space Walker creation and its applications.

  2. Multidimensional proteomics for cell biology.

    PubMed

    Larance, Mark; Lamond, Angus I

    2015-05-01

    The proteome is a dynamic system in which each protein has interconnected properties - dimensions - that together contribute to the phenotype of a cell. Measuring these properties has proved challenging owing to their diversity and dynamic nature. Advances in mass spectrometry-based proteomics now enable the measurement of multiple properties for thousands of proteins, including their abundance, isoform expression, turnover rate, subcellular localization, post-translational modifications and interactions. Complementing these experimental developments are new data analysis, integration and visualization tools as well as data-sharing resources. Together, these advances in the multidimensional analysis of the proteome are transforming our understanding of various cellular and physiological processes.

  3. Markerless motion estimation for motion-compensated clinical brain imaging

    NASA Astrophysics Data System (ADS)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds

  4. Motion direction discrimination training reduces perceived motion repulsion.

    PubMed

    Jia, Ke; Li, Sheng

    2017-04-01

    Participants often exaggerate the perceived angular separation between two simultaneously presented motion stimuli, which is referred to as motion repulsion. The overestimation helps participants differentiate between the two superimposed motion directions, yet it causes the impairment of direction perception. Since direction perception can be refined through perceptual training, we here attempted to investigate whether the training of a direction discrimination task changes the amount of motion repulsion. Our results showed a direction-specific learning effect, which was accompanied by a reduced amount of motion repulsion both for the trained and the untrained directions. The reduction of the motion repulsion disappeared when the participants were trained on a luminance discrimination task (control experiment 1) or a speed discrimination task (control experiment 2), ruling out any possible interpretation in terms of adaptation or training-induced attentional bias. Furthermore, training with a direction discrimination task along a direction 150° away from both directions in the transparent stimulus (control experiment 3) also had little effect on the amount of motion repulsion, ruling out the contribution of task learning. The changed motion repulsion observed in the main experiment was consistent with the prediction of the recurrent model of perceptual learning. Therefore, our findings demonstrate that training in direction discrimination can benefit the precise direction perception of the transparent stimulus and provide new evidence for the recurrent model of perceptual learning.

  5. Classifying Motion.

    ERIC Educational Resources Information Center

    Duzen, Carl; And Others

    1992-01-01

    Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)

  6. Motion Pattern Encapsulation for Data-Driven Constraint-Based Motion Editing

    NASA Astrophysics Data System (ADS)

    Carvalho, Schubert R.; Boulic, Ronan; Thalmann, Daniel

    The growth of motion capture systems have contributed to the proliferation of human motion database, mainly because human motion is important in many applications, ranging from games entertainment and films to sports and medicine. However, the captured motions normally attend specific needs. As an effort for adapting and reusing captured human motions in new tasks and environments and improving the animator's work, we present and discuss a new data-driven constraint-based animation system for interactive human motion editing. This method offers the compelling advantage that it provides faster deformations and more natural-looking motion results compared to goal-directed constraint-based methods found in the literature.

  7. Multidimensional Conservation Laws and Low Regularity Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbara Lee Keyfitz

    This is the concluding report for the project, a continuation of research by Keyfitz and co-workers on multidimensional conservation laws, and applications of nonhyperbolic conservation laws in the two-fluid model for multiphase flow. The multidimensional research project was started with Suncica Canic, at the University of Houston and with Eun Heui Kim, now at California State University Long Beach. Two postdoctoral researchers, Katarina Jegdic and Allen Tesdall, also worked on this research. Jegdic's research was supported (for a total of one year) by this grant. Work on nonhyperbolic models for two-phase flows is being pursued jointly with Michael Sever, Hebrewmore » University. Background for the project is contained in earlier reports. Note that in 2006, the project received a one-year no-cost extension that will end in September, 2007. A new proposal, for continuation of the research and for new projects, will be submitted in the Fall of 2007, with funding requested to begin in the summer of 2008. The reason for the 'funding gap' is Keyfitz's four-year stint as Director of the Fields Institute in Toronto, Canada. The research has continued, but has been supported by Canadian grant funds, as seems appropriate during this period.« less

  8. Multidimensional Model of Trauma and Correlated Antisocial Personality Disorder

    ERIC Educational Resources Information Center

    Martens, Willem H. J.

    2005-01-01

    Many studies have revealed an important relationship between psychosocial trauma and antisocial personality disorder. A multidimensional model is presented which describes the psychopathological route from trauma to antisocial development. A case report is also included that can illustrate the etiological process from trauma to severe antisocial…

  9. Multidimensional Recurrence Quantification Analysis (MdRQA) for the Analysis of Multidimensional Time-Series: A Software Implementation in MATLAB and Its Application to Group-Level Data in Joint Action

    PubMed Central

    Wallot, Sebastian; Roepstorff, Andreas; Mønster, Dan

    2016-01-01

    We introduce Multidimensional Recurrence Quantification Analysis (MdRQA) as a tool to analyze multidimensional time-series data. We show how MdRQA can be used to capture the dynamics of high-dimensional signals, and how MdRQA can be used to assess coupling between two or more variables. In particular, we describe applications of the method in research on joint and collective action, as it provides a coherent analysis framework to systematically investigate dynamics at different group levels—from individual dynamics, to dyadic dynamics, up to global group-level of arbitrary size. The Appendix in Supplementary Material contains a software implementation in MATLAB to calculate MdRQA measures. PMID:27920748

  10. Multidimensional Recurrence Quantification Analysis (MdRQA) for the Analysis of Multidimensional Time-Series: A Software Implementation in MATLAB and Its Application to Group-Level Data in Joint Action.

    PubMed

    Wallot, Sebastian; Roepstorff, Andreas; Mønster, Dan

    2016-01-01

    We introduce Multidimensional Recurrence Quantification Analysis (MdRQA) as a tool to analyze multidimensional time-series data. We show how MdRQA can be used to capture the dynamics of high-dimensional signals, and how MdRQA can be used to assess coupling between two or more variables. In particular, we describe applications of the method in research on joint and collective action, as it provides a coherent analysis framework to systematically investigate dynamics at different group levels-from individual dynamics, to dyadic dynamics, up to global group-level of arbitrary size. The Appendix in Supplementary Material contains a software implementation in MATLAB to calculate MdRQA measures.

  11. High-frequency stock linkage and multi-dimensional stationary processes

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Bao, Si; Chen, Jingchao

    2017-02-01

    In recent years, China's stock market has experienced dramatic fluctuations; in particular, in the second half of 2014 and 2015, the market rose sharply and fell quickly. Many classical financial phenomena, such as stock plate linkage, appeared repeatedly during this period. In general, these phenomena have usually been studied using daily-level data or minute-level data. Our paper focuses on the linkage phenomenon in Chinese stock 5-second-level data during this extremely volatile period. The method used to select the linkage points and the arbitrage strategy are both based on multi-dimensional stationary processes. A new program method for testing the multi-dimensional stationary process is proposed in our paper, and the detailed program is presented in the paper's appendix. Because of the existence of the stationary process, the strategy's logarithmic cumulative average return will converge under the condition of the strong ergodic theorem, and this ensures the effectiveness of the stocks' linkage points and the more stable statistical arbitrage strategy.

  12. Hierarchical and Multidimensional Academic Self-Concept of Commercial Students.

    PubMed

    Yeung; Chui; Lau

    1999-10-01

    Adapting the Marsh (1990) Academic Self-Description Questionnaire (ASDQ), this study examined the academic self-concept of students in a school of commerce in Hong Kong (N = 212). Confirmatory factor analysis found that students clearly distinguished among self-concept constructs in English, Chinese, Math and Statistics, Economics, and Principles of Accounting, and each of these constructs was highly associated with a global Academic self-concept construct, reflecting the validity of each construct in measuring an academic component of self-concept. Domain-specific self-concepts were more highly related with students' intention of course selection in corresponding areas than in nonmatching areas, further supporting the multidimensionality of the students' academic self-concept. Students' self-concepts in the five curriculum domains can be represented by the global Academic self-concept, supporting the hierarchical structure of students' academic self-concept in an educational institution with a specific focus, such as commercial studies. The academic self-concepts of the commercial students are both multidimensional and hierarchical. Copyright 1999 Academic Press.

  13. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.

    PubMed

    Yagasaki, Takuma; Saito, Shinji

    2009-09-15

    Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is

  14. Efficient implementation of multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    DOEpatents

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2012-01-10

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  15. Evidence for a Multidimensional Self-Efficacy for Exercise Scale

    ERIC Educational Resources Information Center

    Rodgers, W. M.; Wilson, P. M.; Hall, C. R.; Fraser, S. N.; Murray, T. C.

    2008-01-01

    This series of three studies considers the multidimensionality of exercise self-efficacy by examining the psychometric characteristics of an instrument designed to assess three behavioral subdomains: task, scheduling, and coping. In Study 1, exploratory factor analysis revealed the expected factor structure in a sample of 395 students.…

  16. Confirmatory Factor Analysis of the Hewitt-Multidimensional Perfectionism Scale

    ERIC Educational Resources Information Center

    Barut, Yasar

    2015-01-01

    Various studies on the conceptual framework of perfectionism construct use Hewitt Multi-dimensional Perfectionism Scale (HMPS), as a basic approach. The measure has a prominent role with respect to the theoretical considerations of perfectionism dimensions. This study aimed to evaluate the psychometric properties of the Turkish version of the…

  17. The Multidimensional Aggression Scale for the Structured Doll Play Interview

    ERIC Educational Resources Information Center

    Abramson, Paul R.; And Others

    1974-01-01

    A multidimensional aggression scoring system for preschool children's responses to the structured doll play interview is described. The system, which incorporates previous investigator's findings, scales doll play responses along three dimensions of aggression: intensity, agent, and directionality. (Author)

  18. The space transformation in the simulation of multidimensional random fields

    USGS Publications Warehouse

    Christakos, G.

    1987-01-01

    Space transformations are proposed as a mathematically meaningful and practically comprehensive approach to simulate multidimensional random fields. Within this context the turning bands method of simulation is reconsidered and improved in both the space and frequency domains. ?? 1987.

  19. Motion Analysis System for Instruction of Nihon Buyo using Motion Capture

    NASA Astrophysics Data System (ADS)

    Shinoda, Yukitaka; Murakami, Shingo; Watanabe, Yuta; Mito, Yuki; Watanuma, Reishi; Marumo, Mieko

    The passing on and preserving of advanced technical skills has become an important issue in a variety of fields, and motion analysis using motion capture has recently become popular in the research of advanced physical skills. This research aims to construct a system having a high on-site instructional effect on dancers learning Nihon Buyo, a traditional dance in Japan, and to classify Nihon Buyo dancing according to style, school, and dancer's proficiency by motion analysis. We have been able to study motion analysis systems for teaching Nihon Buyo now that body-motion data can be digitized and stored by motion capture systems using high-performance computers. Thus, with the aim of developing a user-friendly instruction-support system, we have constructed a motion analysis system that displays a dancer's time series of body motions and center of gravity for instructional purposes. In this paper, we outline this instructional motion analysis system based on three-dimensional position data obtained by motion capture. We also describe motion analysis that we performed based on center-of-gravity data obtained by this system and motion analysis focusing on school and age group using this system.

  20. A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes

    NASA Astrophysics Data System (ADS)

    Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.

    2000-10-01

    Numerical simulation of laser driven Inertial Confinement Fusion (ICF) related experiments require the use of large multidimensional hydro codes. Though these codes include detailed physics for numerous phenomena, they deal poorly with electron conduction, which is the leading energy transport mechanism of these systems. Electron heat flow is known, since the work of Luciani, Mora, and Virmont (LMV) [Phys. Rev. Lett. 51, 1664 (1983)], to be a nonlocal process, which the local Spitzer-Harm theory, even flux limited, is unable to account for. The present work aims at extending the original formula of LMV to two or three dimensions of space. This multidimensional extension leads to an equivalent transport equation suitable for easy implementation in a two-dimensional radiation-hydrodynamic code. Simulations are presented and compared to Fokker-Planck simulations in one and two dimensions of space.

  1. The Role of a Multidimensional Concept of Trust in the Performance of Global Virtual Teams

    NASA Technical Reports Server (NTRS)

    Bodensteiner, Nan Muir; Stecklein, Jonette M.

    2002-01-01

    This paper focuses on the concept of trust as an important ingredient of effective global virtual team performance. Definitions of trust and virtual teams are presented. The concept of trust is developed from its unilateral application (trust, absence of trust) to a multidimensional concept including cognitive and affective components. The special challenges of a virtual team are then discussed with particular emphasis on how a multidimensional concept of trust impacts these challenges. Propositions suggesting the multidimensional concept of trust moderates the negative impacts of distance, cross cultural and organizational differences, the effects of electronically mediated communication, reluctance to share information and a lack of hi story/future on the performance of virtual teams are stated. The paper concludes with recommendations and a set of techniques to build both cognitive and affective trust in virtual teams.

  2. Modeling depth from motion parallax with the motion/pursuit ratio

    PubMed Central

    Nawrot, Mark; Ratzlaff, Michael; Leonard, Zachary; Stroyan, Keith

    2014-01-01

    The perception of unambiguous scaled depth from motion parallax relies on both retinal image motion and an extra-retinal pursuit eye movement signal. The motion/pursuit ratio represents a dynamic geometric model linking these two proximal cues to the ratio of depth to viewing distance. An important step in understanding the visual mechanisms serving the perception of depth from motion parallax is to determine the relationship between these stimulus parameters and empirically determined perceived depth magnitude. Observers compared perceived depth magnitude of dynamic motion parallax stimuli to static binocular disparity comparison stimuli at three different viewing distances, in both head-moving and head-stationary conditions. A stereo-viewing system provided ocular separation for stereo stimuli and monocular viewing of parallax stimuli. For each motion parallax stimulus, a point of subjective equality (PSE) was estimated for the amount of binocular disparity that generates the equivalent magnitude of perceived depth from motion parallax. Similar to previous results, perceived depth from motion parallax had significant foreshortening. Head-moving conditions produced even greater foreshortening due to the differences in the compensatory eye movement signal. An empirical version of the motion/pursuit law, termed the empirical motion/pursuit ratio, which models perceived depth magnitude from these stimulus parameters, is proposed. PMID:25339926

  3. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    NASA Astrophysics Data System (ADS)

    Baddour, Natalie

    2018-02-01

    Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  4. The moderating effects of gender on the associations between multidimensional hostility and psychosomatic symptoms: a Chinese case.

    PubMed

    Weng, Chia-Ying; Lin, I-Mei; Jiang, Ding-Yu

    2010-08-01

    The purpose of this study was to examine the effects of gender on the relationship between multidimensional hostility and psychosomatic symptoms in Chinese culture. The participants in this study were 398 Chinese college students (40% female) recruited from Taiwan. Four dimensions of multidimensional hostility-hostility cognition, hostility affect, expressive hostility behavior, and suppressive hostility behavior-were measured by the Chinese Hostility Inventory. After controlling for the effects of depression and anxiety, the results of path analysis revealed that the multidimensional hostility predicted psychosomatic symptoms directly, and predicted psychosomatic symptoms indirectly through negative health behavior. Furthermore, gender moderated the relationships between multidimensional hostility and health outcomes. Expressive hostility exacerbated psychosomatic symptom in females but buffered it in males, while affective hostility exacerbated psychosomatic symptoms in males. Additionally, suppressive hostility behavior was correlated to psychosomatic symptoms indirectly through negative health behavior in females. Moreover, expressive hostility was correlated to psychosomatic symptoms indirectly through negative health behavior more in males than in females.

  5. Extending Validity Evidence for Multidimensional Measures of Coaching Competency

    ERIC Educational Resources Information Center

    Myers, Nicholas D.; Wolfe, Edward W.; Maier, Kimberly S.; Feltz, Deborah L.; Reckase, Mark D.

    2006-01-01

    This study extended validity evidence for multidimensional measures of coaching competency derived from the Coaching Competency Scale (CCS; Myers, Feltz, Maier, Wolfe, & Reckase, 2006) by examining use of the original rating scale structure and testing how measures related to satisfaction with the head coach within teams and between teams.…

  6. Educational Mismatch of Graduates: A Multidimensional and Fuzzy Indicator

    ERIC Educational Resources Information Center

    Betti, Gianni; D'Agostino, Antonella; Neri, Laura

    2011-01-01

    In this paper we attempt to measure the educational mismatch, seen as a problem of overeducation, using a multidimensional and fuzzy methodology. Educational mismatch can be difficult to measure because many factors can converge to its definition and the traditional unidimensional indicators presented in literature can offer a restricted view of…

  7. Dimensionality Assessment for Dichotomously Scored Items Using Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Jones, Patricia B.; And Others

    In order to determine the effectiveness of multidimensional scaling (MDS) in recovering the dimensionality of a set of dichotomously-scored items, data were simulated in one, two, and three dimensions for a variety of correlations with the underlying latent trait. Similarity matrices were constructed from these data using three margin-sensitive…

  8. Parentification of Adult Children of Divorce: A Multidimensional Analysis.

    ERIC Educational Resources Information Center

    Jurkovic, Gregory J.; Thirkield, Alison; Morrell, Richard

    2001-01-01

    Compared the responses of 381 late adolescent and young adult children of divorce and nondivorce on a new multidimensional measure of parentification assessing the extent and fairness of past and present family caregiving. Evidence that problematic forms of parentification in children of divorce continue into late adolescence and young adulthood…

  9. Development and Validation of the Multidimensional State Boredom Scale

    ERIC Educational Resources Information Center

    Fahlman, Shelley A.; Mercer-Lynn, Kimberley B.; Flora, David B.; Eastwood, John D.

    2013-01-01

    This article describes the development and validation of the Multidimensional State Boredom Scale (MSBS)--the first and only full-scale measure of state boredom. It was developed based on a theoretically and empirically grounded definition of boredom. A five-factor structure of the scale (Disengagement, High Arousal, Low Arousal, Inattention, and…

  10. Multidimensional Scoring of Abilities: The Ordered Polytomous Response Case

    ERIC Educational Resources Information Center

    de la Torre, Jimmy

    2008-01-01

    Recent work has shown that multidimensionally scoring responses from different tests can provide better ability estimates. For educational assessment data, applications of this approach have been limited to binary scores. Of the different variants, the de la Torre and Patz model is considered more general because implementing the scoring procedure…

  11. Application of Andrew's Plots to Visualization of Multidimensional Data

    ERIC Educational Resources Information Center

    Grinshpun, Vadim

    2016-01-01

    Importance: The article raises a point of visual representation of big data, recently considered to be demanded for many scientific and real-life applications, and analyzes particulars for visualization of multi-dimensional data, giving examples of the visual analytics-related problems. Objectives: The purpose of this paper is to study application…

  12. The Relationship between Anxiety and Stuttering: A Multidimensional Approach

    ERIC Educational Resources Information Center

    Ezrati-Vinacour, Ruth; Levin, Iris

    2004-01-01

    The relationship between anxiety and stuttering is equivocal from both clinical and empirical perspectives. This study examined the relationship within the framework of the multidimensional interaction model of anxiety that includes an approach to general anxiety in specific situations [J. Pers. Soc. Psychol. 60 (1991) 919]. Ninety-four males aged…

  13. Multidimensional Assessment of Phonological Similarity within and between Children

    ERIC Educational Resources Information Center

    Ingram, David; Dubasik, Virginia L.

    2011-01-01

    Multidimensional analysis involves moving away from one-dimensional analyses such as most articulation tests to comprehensive analyses involving levels of phonological information from the word level down to segments. This article outlines one such approach that looks at four levels from words to segments, using nine phonological measures. It also…

  14. The application of a multi-dimensional assessment approach to talent identification in Australian football.

    PubMed

    Woods, Carl T; Raynor, Annette J; Bruce, Lyndell; McDonald, Zane; Robertson, Sam

    2016-07-01

    This study investigated whether a multi-dimensional assessment could assist with talent identification in junior Australian football (AF). Participants were recruited from an elite under 18 (U18) AF competition and classified into two groups; talent identified (State U18 Academy representatives; n = 42; 17.6 ± 0.4 y) and non-talent identified (non-State U18 Academy representatives; n = 42; 17.4 ± 0.5 y). Both groups completed a multi-dimensional assessment, which consisted of physical (standing height, dynamic vertical jump height and 20 m multistage fitness test), technical (kicking and handballing tests) and perceptual-cognitive (video decision-making task) performance outcome tests. A multivariate analysis of variance tested the main effect of status on the test criterions, whilst a receiver operating characteristic curve assessed the discrimination provided from the full assessment. The talent identified players outperformed their non-talent identified peers in each test (P < 0.05). The receiver operating characteristic curve reflected near perfect discrimination (AUC = 95.4%), correctly classifying 95% and 86% of the talent identified and non-talent identified participants, respectively. When compared to single assessment approaches, this multi-dimensional assessment reflects a more comprehensive means of talent identification in AF. This study further highlights the importance of assessing multi-dimensional performance qualities when identifying talented team sports.

  15. Dual motion valve with single motion input

    NASA Technical Reports Server (NTRS)

    Belew, Robert (Inventor)

    1987-01-01

    A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.

  16. A Framework for Dimensionality Assessment for Multidimensional Item Response Models

    ERIC Educational Resources Information Center

    Svetina, Dubravka; Levy, Roy

    2014-01-01

    A framework is introduced for considering dimensionality assessment procedures for multidimensional item response models. The framework characterizes procedures in terms of their confirmatory or exploratory approach, parametric or nonparametric assumptions, and applicability to dichotomous, polytomous, and missing data. Popular and emerging…

  17. Multidimensional NMR inversion without Kronecker products: Multilinear inversion

    NASA Astrophysics Data System (ADS)

    Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos

    2016-08-01

    Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.

  18. Multidimensional data analysis in immunophenotyping.

    PubMed

    Loken, M R

    2001-05-01

    The complexity of cell populations requires careful selection of reagents to detect cells of interest and distinguish them from other types. Additional reagents are frequently used to provide independent criteria for cell identification. Two or three monoclonal antibodies in combination with forward and right-angle light scatter generate a data set that is difficult to visualize because the data must be represented in four- or five-dimensional space. The separation between cell populations provided by the multiple characteristics is best visualized by multidimensional analysis using all parameters simultaneously to identify populations within the resulting hyperspace. Groups of cells are distinguished based on a combination of characteristics not apparent in any usual two-dimensional representation of the data.

  19. Multidimensional Poverty in China: Findings Based on the CHNS

    ERIC Educational Resources Information Center

    Yu, Jiantuo

    2013-01-01

    This paper estimates multidimensional poverty in China by applying the Alkire-Foster methodology to the China Health and Nutrition Survey 2000-2009 data. Five dimensions are included: income, living standard, education, health and social security. Results suggest that rapid economic growth has resulted not only in a reduction in income poverty but…

  20. The Measurement of Multidimensional Gender Inequality: Continuing the Debate

    ERIC Educational Resources Information Center

    Permanyer, Inaki

    2010-01-01

    The measurement of multidimensional gender inequality is an increasingly important topic that has very relevant policy applications and implications but which has not received much attention from the academic literature. In this paper I make a comprehensive and critical review of the indices proposed in recent years in order to systematise the…

  1. A Multidimensional Partial Credit Model with Associated Item and Test Statistics: An Application to Mixed-Format Tests

    ERIC Educational Resources Information Center

    Yao, Lihua; Schwarz, Richard D.

    2006-01-01

    Multidimensional item response theory (IRT) models have been proposed for better understanding the dimensional structure of data or to define diagnostic profiles of student learning. A compensatory multidimensional two-parameter partial credit model (M-2PPC) for constructed-response items is presented that is a generalization of those proposed to…

  2. Impact of multidimensional poverty on the self-efficacy of older people: Results from an Australian longitudinal study.

    PubMed

    Callander, Emily J; Schofield, Deborah J

    2017-02-01

    Self-efficacy has numerous benefits for active and healthy aging, including giving the people the ability to make positive changes to their living standards and lifestyles. The present study aims to determine whether falling into multidimensional poverty lowers self-efficacy. Longitudinal analysis of waves 7-11 (2007-2011) of the nationally representative Household, Income and Labor Dynamics in Australia survey using linear regression models. The analysis focused on the Australian population aged 65 years and older. The Freedom Poverty Measure was used to identify those in multidimensional poverty. Those who fell into multidimensional poverty for 3 or 4 years between 2007 and 2011 had their self-efficacy scores decline by an average of 27 points (SD 21.2). Those who fell into poverty had significantly lower self-efficacy scores in 2011 - up to 57% lower (-66.6%, -45.7% P < 0.0001) after being in multidimensional poverty for 3 or 4 years between 2007 and 2011 than those who were never in poverty. Falling into multidimensional poverty lowers the self-efficacy scores of older people. In order to improve the chances of older people making long-term changes to improve their living standards, feelings of self-efficacy should first be assessed and improved. Geriatr Gerontol Int 2017; 17: 308-314. © 2015 Japan Geriatrics Society.

  3. Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.

    1988-01-01

    The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.

  4. Motion transparency: making models of motion perception transparent.

    PubMed

    Snowden; Verstraten

    1999-10-01

    In daily life our visual system is bombarded with motion information. We see cars driving by, flocks of birds flying in the sky, clouds passing behind trees that are dancing in the wind. Vision science has a good understanding of the first stage of visual motion processing, that is, the mechanism underlying the detection of local motions. Currently, research is focused on the processes that occur beyond the first stage. At this level, local motions have to be integrated to form objects, define the boundaries between them, construct surfaces and so on. An interesting, if complicated case is known as motion transparency: the situation in which two overlapping surfaces move transparently over each other. In that case two motions have to be assigned to the same retinal location. Several researchers have tried to solve this problem from a computational point of view, using physiological and psychophysical results as a guideline. We will discuss two models: one uses the traditional idea known as 'filter selection' and the other a relatively new approach based on Bayesian inference. Predictions from these models are compared with our own visual behaviour and that of the neural substrates that are presumed to underlie these perceptions.

  5. Parsimony and goodness-of-fit in multi-dimensional NMR inversion

    NASA Astrophysics Data System (ADS)

    Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos

    2017-01-01

    Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.

  6. The PedsQL Multidimensional Fatigue Scale in young adults: feasibility, reliability and validity in a University student population.

    PubMed

    Varni, James W; Limbers, Christine A

    2008-02-01

    The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health-related quality of life (HRQOL) and disease-specific symptoms in children and adolescents ages 2-18. The PedsQL Multidimensional Fatigue Scale was designed as a generic symptom-specific instrument to measure fatigue in pediatric patients ages 2-18. Since a sizeable number of pediatric patients prefer to remain with their pediatric providers after age 18, the objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in young adults. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains), the PedsQL 4.0 Generic Core Scales Young Adult Version, and the SF-8 Health Survey were completed by 423 university students ages 18-25. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses, achieved excellent reliability for the Total Scale Score (alpha = 0.90), distinguished between healthy young adults and young adults with chronic health conditions, was significantly correlated with the relevant PedsQL 4.0 Generic Core Scales and the SF-8 standardized scores, and demonstrated a factor-derived structure largely consistent with the a priori conceptual model. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in a convenience sample of young adult university students. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the evaluation of fatigue for a broad age range.

  7. Multidimensional relationships between paternalistic leadership and perceptions of organizational ethical climates.

    PubMed

    Wu, Yu-Chi; Tsai, Ping Ju

    2012-10-01

    This study investigated how paternalistic leadership is linked to ethical climates based on a multidimensional construct perspective. This experimental study utilized the partial least squares (PLS) techniques to analyze the data. Participants were 258 civil servants working in various public sectors in Taiwan, who were asked to rate their leaders' paternalistic leadership behaviors and their perception of the ethical climates in their organizations using the Paternalistic Leadership Scale and the Ethical Climate Questionnaire. Using the unidimensional constructs of paternalistic leadership and ethical climates, prior research showed vidence of a positive relationship; however, in the current study, multidimensional relations among these constructs may be positive or negative. The findings of this study suggested that leaders may implement specific types of paternalistic leadership to enhance the intended ethical climate in their organizations.

  8. Using complex networks towards information retrieval and diagnostics in multidimensional imaging

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen

    2015-12-01

    We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.

  9. Using complex networks towards information retrieval and diagnostics in multidimensional imaging.

    PubMed

    Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen

    2015-12-02

    We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.

  10. Analysis of complex neural circuits with nonlinear multidimensional hidden state models

    PubMed Central

    Friedman, Alexander; Slocum, Joshua F.; Tyulmankov, Danil; Gibb, Leif G.; Altshuler, Alex; Ruangwises, Suthee; Shi, Qinru; Toro Arana, Sebastian E.; Beck, Dirk W.; Sholes, Jacquelyn E. C.; Graybiel, Ann M.

    2016-01-01

    A universal need in understanding complex networks is the identification of individual information channels and their mutual interactions under different conditions. In neuroscience, our premier example, networks made up of billions of nodes dynamically interact to bring about thought and action. Granger causality is a powerful tool for identifying linear interactions, but handling nonlinear interactions remains an unmet challenge. We present a nonlinear multidimensional hidden state (NMHS) approach that achieves interaction strength analysis and decoding of networks with nonlinear interactions by including latent state variables for each node in the network. We compare NMHS to Granger causality in analyzing neural circuit recordings and simulations, improvised music, and sociodemographic data. We conclude that NMHS significantly extends the scope of analyses of multidimensional, nonlinear networks, notably in coping with the complexity of the brain. PMID:27222584

  11. Multidimensional stability of traveling fronts in combustion and non-KPP monostable equations

    NASA Astrophysics Data System (ADS)

    Bu, Zhen-Hui; Wang, Zhi-Cheng

    2018-02-01

    This paper is concerned with the multidimensional stability of traveling fronts for the combustion and non-KPP monostable equations. Our study contains two parts: in the first part, we first show that the two-dimensional V-shaped traveling fronts are asymptotically stable in R^{n+2} with n≥1 under any (possibly large) initial perturbations that decay at space infinity, and then, we prove that there exists a solution that oscillates permanently between two V-shaped traveling fronts, which implies that even very small perturbations to the V-shaped traveling front can lead to permanent oscillation. In the second part, we establish the multidimensional stability of planar traveling front in R^{n+1} with n≥1.

  12. Efficient implementation of a multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    DOEpatents

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2008-01-01

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  13. Neural Prediction of Multidimensional Decisions in Monkey Superior Colliculus

    NASA Astrophysics Data System (ADS)

    Hasegawa, Ryohei P.; Hasegawa, Yukako T.; Segraves, Mark A.

    To examine the function of the superior colliculus (SC) in decision-making processes and the application of its single trial activity for “neural mind reading,” we recorded from SC deep layers while two monkeys performed oculomotor go/no-go tasks. We have recently focused on monitoring single trial activities in single SC neurons, and designed a virtual decision function (VDF) to provide a good estimation of single-dimensional decisions (go/no-go decisions for a cue presented at a specific visual field, a response field of each neuron). In this study, we used two VDFs for multidimensional decisions (go/no-go decisions at two cue locations) with the ensemble activity which was simultaneously recorded from a small group (4 to 6) of neurons at both sides of the SC. VDFs predicted cue locations as well as go/no-go decisions. These results suggest that monitoring of ensemble SC activity had sufficient capacity to predict multidimensional decisions on a trial-by-trial basis, which is an ideal candidate to serve for cognitive brain-machine interfaces (BMI) such as two-dimensional word spellers.

  14. Robustness of multidimensional Brownian ratchets as directed transport mechanisms.

    PubMed

    González-Candela, Ernesto; Romero-Rochín, Víctor; Del Río, Fernando

    2011-08-07

    Brownian ratchets have recently been considered as models to describe the ability of certain systems to locate very specific states in multidimensional configuration spaces. This directional process has particularly been proposed as an alternative explanation for the protein folding problem, in which the polypeptide is driven toward the native state by a multidimensional Brownian ratchet. Recognizing the relevance of robustness in biological systems, in this work we analyze such a property of Brownian ratchets by pushing to the limits all the properties considered essential to produce directed transport. Based on the results presented here, we can state that Brownian ratchets are able to deliver current and locate funnel structures under a wide range of conditions. As a result, they represent a simple model that solves the Levinthal's paradox with great robustness and flexibility and without requiring any ad hoc biased transition probability. The behavior of Brownian ratchets shown in this article considerably enhances the plausibility of the model for at least part of the structural mechanism behind protein folding process.

  15. Turkish Validity Examination of the Multidimensional Students' Life Satisfaction Scale

    ERIC Educational Resources Information Center

    Irmak, Sezgin; Kuruuzum, Ayse

    2009-01-01

    The validation studies of the Multidimensional Students' Life Satisfaction Scale (MSLSS) have been conducted with samples from different nations but mostly from western individualistic cultures. Life satisfaction and its constructs could differ depending on cultural characteristics and life satisfaction scales should be validated in different…

  16. Gender and Attitudes toward People Using Wheelchairs: A Multidimensional Perspective

    ERIC Educational Resources Information Center

    Vilchinsky, Noa; Werner, Shirli; Findler, Liora

    2010-01-01

    This study aims to investigate the effect of observer's gender and target's gender on attitudes toward people who use wheelchairs due to a physical disability. Four hundred four Jewish Israeli students without disabilities completed the "Multidimensional Attitudes Scale Toward Persons With Disabilities" (MAS). Initially, confirmatory…

  17. Stylistic Patterns in Language Teaching Research Articles: A Multidimensional Analysis

    ERIC Educational Resources Information Center

    Kitjaroenpaiboon, Woravit; Getkham, Kanyarat

    2016-01-01

    This paper presents the results of a multidimensional analysis to investigate stylistic patterns and their communicative functions in language teaching research articles. The findings were that language teaching research articles contained six stylistic patterns and communicative functions. Pattern I consisted of seven salient positive features…

  18. Multidimensional Relationships in the WAIS-R Subscales and Demographic Variables.

    ERIC Educational Resources Information Center

    Chastain, Robert L.; Joe, George W.

    This study attempts to integrate and extend previous research by multivariate investigation to determine multidimensional relationships among both the Wechsler Adult Intelligence Scale-Revised (WAIS-R) subscales and the demographic variables for the 1981 WAIS-R standardization sample. Canonical correlation with orthogonal rotation of composite…

  19. Multidimensional scaling for evolutionary algorithms--visualization of the path through search space and solution space using Sammon mapping.

    PubMed

    Pohlheim, Hartmut

    2006-01-01

    Multidimensional scaling as a technique for the presentation of high-dimensional data with standard visualization techniques is presented. The technique used is often known as Sammon mapping. We explain the mathematical foundations of multidimensional scaling and its robust calculation. We also demonstrate the use of this technique in the area of evolutionary algorithms. First, we present the visualization of the path through the search space of the best individuals during an optimization run. We then apply multidimensional scaling to the comparison of multiple runs regarding the variables of individuals and multi-criteria objective values (path through the solution space).

  20. Femtosecond Multidimensional Imaging - Watching Chemistry from the Molecule's Point of View

    NASA Astrophysics Data System (ADS)

    Geßner, O.; Lee, A. M. D.; Chrysostom, E. t.-H.; Hayden, C. C.; Stolow, Albert

    Using Femtosecond Multidimensional Imaging we disentangle the complex neutral dissociation mechanism of the NO dimer. We characterize all electronic configurations from start to finish and directly observe the evolution of intramolecular vibrational energy redistribution (IVR).

  1. Reliability and validity of the PedsQL™ Multidimensional Fatigue Scale in Japan.

    PubMed

    Kobayashi, Kyoko; Okano, Yoshiyuki; Hohashi, Naohiro

    2011-09-01

    To examine the reliability and validity of the Japanese-language version of the PedsQL™ Multidimensional Fatigue Scale and to investigate the agreement between child self-reported fatigue and parent proxy-reported fatigue. The Japanese-language version of the PedsQL™ Multidimensional Fatigue Scale was administered to 652 preschoolers and schoolchildren aged 5-12 and their parents, and to 91 parents of preschool children aged 1-4. Internal consistency reliability was 0.62-0.87 for children and 0.81-0.93 for parents. Known-group validity was examined between a group of healthy samples (n = 530) and chronic condition sample (n = 102); the chronically ill group reported a significantly higher perceived fatigue problem. Correlations between child self- and parent proxy reports ranged from poor to fair. In subgroups identified by cluster analysis based on child self-reported scores, the greatest agreement between child and parent reports was seen in the good HRQOL group, while the least occurred in the poor HRQOL group. The parents overestimated their child's fatigue more when the child's HRQOL was low. The Japanese-language version of the PedsQL™ Multidimensional Fatigue Scale demonstrated good reliability and validity and could be useful in evaluating Japanese children in school and health care settings.

  2. Pedagogical Factors Stimulating the Self-Development of Students' Multi-Dimensional Thinking in Terms of Subject-Oriented Teaching

    ERIC Educational Resources Information Center

    Andreev, Valentin I.

    2014-01-01

    The main aim of this research is to disclose the essence of students' multi-dimensional thinking, also to reveal the rating of factors which stimulate the raising of effectiveness of self-development of students' multi-dimensional thinking in terms of subject-oriented teaching. Subject-oriented learning is characterized as a type of learning where…

  3. A multistage motion vector processing method for motion-compensated frame interpolation.

    PubMed

    Huang, Ai- Mei; Nguyen, Truong Q

    2008-05-01

    In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.

  4. Age and sex differences in ranges of motion and motion patterns.

    PubMed

    Hwang, Jaejin; Jung, Myung-Chul

    2015-01-01

    This study investigated the effects of age and sex on joint ranges of motion (ROMs) and motion patterns. Forty participants performed 18 motions using eight body segments at self-selected speeds. Older subjects showed smaller ROMs than younger subjects for 11 motions; the greatest difference in ROM was 44.9% for eversion/inversion of the foot. Older subjects also required more time than younger subjects to approach the peak angular velocity for six motions. In contrast, sex significantly affected ROMs but not motion patterns. Male subjects exhibited smaller ROMs than female subjects for four motions; the greatest sex-dependent difference in ROM was 29.7% for ulnar/radial deviation of the hand. The age and sex effects depended on the specific segments used and motions performed, possibly because of differences in anatomical structures and frequencies of use of the joints in habitual physical activities between the groups.

  5. Application of constrained k-means clustering in ground motion simulation validation

    NASA Astrophysics Data System (ADS)

    Khoshnevis, N.; Taborda, R.

    2017-12-01

    The validation of ground motion synthetics has received increased attention over the last few years due to the advances in physics-based deterministic and hybrid simulation methods. Unlike for low frequency simulations (f ≤ 0.5 Hz), for which it has become reasonable to expect a good match between synthetics and data, in the case of high-frequency simulations (f ≥ 1 Hz) it is not possible to match results on a wiggle-by-wiggle basis. This is mostly due to the various complexities and uncertainties involved in earthquake ground motion modeling. Therefore, in order to compare synthetics with data we turn to different time series metrics, which are used as a means to characterize how the synthetics match the data on qualitative and statistical sense. In general, these metrics provide GOF scores that measure the level of similarity in the time and frequency domains. It is common for these scores to be scaled from 0 to 10, with 10 representing a perfect match. Although using individual metrics for particular applications is considered more adequate, there is no consensus or a unified method to classify the comparison between a set of synthetic and recorded seismograms when the various metrics offer different scores. We study the relationship among these metrics through a constrained k-means clustering approach. We define 4 hypothetical stations with scores 3, 5, 7, and 9 for all metrics. We put these stations in the category of cannot-link constraints. We generate the dataset through the validation of the results from a deterministic (physics-based) ground motion simulation for a moderate magnitude earthquake in the greater Los Angeles basin using three velocity models. The maximum frequency of the simulation is 4 Hz. The dataset involves over 300 stations and 11 metrics, or features, as they are understood in the clustering process, where the metrics form a multi-dimensional space. We address the high-dimensional feature effects with a subspace-clustering analysis

  6. A Comprehensive Approach to the Patient at End of Life: Assessment of Multidimensional Suffering

    PubMed Central

    Wachholtz, Amy B.; Fitch, Christina E.; Makowski, Suzana; Tjia, Jennifer

    2016-01-01

    Pain is a multidimensional, complex experience. There are many challenges in identifying and meeting the needs of patients experiencing pain. Evaluation of pain from a bio-psycho-social-spiritual framework is particularly germane for patients approaching the end of life. This review explores the relation between the psychospiritual dimensions of suffering and the experience of physical pain, and how to assess and treat pain in a multidimensional framework. A review of empirical data on the relation between pain and suffering as well as interdisciplinary evidence-based approaches to alleviate suffering are provided. PMID:27043799

  7. The Use of the City-Block Metric in Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Busk, Patricia

    A specific Normative Location Theory procedure, called hyperbolic approximation (HAP), is suggested as a possible "new" initial-configuration strategy for multidimensional scaling in the city-block metric. First, the performance of this strategy was investigated using fourteen simulated data sets. Second, the scaling in Euclidean space…

  8. Development of a Multi-Dimensional Scale for PDD and ADHD

    ERIC Educational Resources Information Center

    Funabiki, Yasuko; Kawagishi, Hisaya; Uwatoko, Teruhisa; Yoshimura, Sayaka; Murai, Toshiya

    2011-01-01

    A novel assessment scale, the multi-dimensional scale for pervasive developmental disorder (PDD) and attention-deficit/hyperactivity disorder (ADHD) (MSPA), is reported. Existing assessment scales are intended to establish each diagnosis. However, the diagnosis by itself does not always capture individual characteristics or indicate the level of…

  9. Examining the Reliability of Student Growth Percentiles Using Multidimensional IRT

    ERIC Educational Resources Information Center

    Monroe, Scott; Cai, Li

    2015-01-01

    Student growth percentiles (SGPs, Betebenner, 2009) are used to locate a student's current score in a conditional distribution based on the student's past scores. Currently, following Betebenner (2009), quantile regression (QR) is most often used operationally to estimate the SGPs. Alternatively, multidimensional item response theory (MIRT) may…

  10. Multidimensional daily diary of fatigue-fibromyalgia-17 items (MDF-fibro-17). part 1: development and content validity.

    PubMed

    Morris, S; Li, Y; Smith, J A M; Dube', S; Burbridge, C; Symonds, T

    2017-05-16

    Fibromyalgia (FM), a disorder characterized by chronic widespread pain and tenderness, affects greater than five million individuals in the United States alone. Patients experience multiple symptoms in addition to pain, and among them, fatigue is one of the most bothersome and disabling. There is a growing body of literature suggesting that fatigue is a multidimensional concept. Currently, to our knowledge, no multidimensional Patient Reported Outcome (PRO) measure of FM-related fatigue meets Food and Drug Administration (FDA) requirements to support a product label claim. Therefore, the objective of this research was to evaluate qualitative and quantitative data previously gathered to inform the development of a comprehensive, multidimensional, PRO measure to assess FM-related fatigue in FM clinical trials. Existing qualitative and quantitative data from three previously conducted studies in patients with FM were reviewed to inform the initial development of a multidimensional PRO measure of FM-related fatigue: 1) a concept elicitation study involving in-depth, open-ended interviews with patients with FM in the United States (US) (N = 20), Germany (N = 10), and France (N = 10); 2) a cognitive debriefing and pilot study of a preliminary pool of 23 items (N = 20 US patients with FM); and 3) a methodology study that explored initial psychometrics of the item pool (N = 145 US patients with FM). Five domains were identified that intend to capture the broad experience of FM-related fatigue reported in the qualitative research: the Global Fatigue Experience, Cognitive Fatigue, Physical Fatigue, Motivation, and Impact on Function. Seventeen of the original pool of 23 items were selected to best capture these five dimensions. These 17 items formed the basis of a newly developed multidimensional PRO measure to assess FM-related fatigue in clinical trials: the Multidimensional Daily Diary of Fatigue-Fibromyalgia-17 (MDF-Fibro-17). Qualitative analysis

  11. A head motion estimation algorithm for motion artifact correction in dental CT imaging

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Elsayed Eldib, Mohamed; Hegazy, Mohamed A. A.; Hye Cho, Myung; Cho, Min Hyoung; Lee, Soo Yeol

    2018-03-01

    A small head motion of the patient can compromise the image quality in a dental CT, in which a slow cone-beam scan is adopted. We introduce a retrospective head motion estimation method by which we can estimate the motion waveform from the projection images without employing any external motion monitoring devices. We compute the cross-correlation between every two successive projection images, which results in a sinusoid-like displacement curve over the projection view when there is no patient motion. However, the displacement curve deviates from the sinusoid-like form when patient motion occurs. We develop a method to estimate the motion waveform with a single parameter derived from the displacement curve with aid of image entropy minimization. To verify the motion estimation method, we use a lab-built micro-CT that can emulate major head motions during dental CT scans, such as tilting and nodding, in a controlled way. We find that the estimated motion waveform conforms well to the actual motion waveform. To further verify the motion estimation method, we correct the motion artifacts with the estimated motion waveform. After motion artifact correction, the corrected images look almost identical to the reference images, with structural similarity index values greater than 0.81 in the phantom and rat imaging studies.

  12. Motivation and Engagement in the Workplace: Examining a Multidimensional Framework and Instrument from a Measurement and Evaluation Perspective

    ERIC Educational Resources Information Center

    Martin, Andrew J.

    2009-01-01

    This investigation conducts measurement and evaluation of a multidimensional model of workplace motivation and engagement from a construct validation perspective. Two studies were conducted, one using the multi-item multidimensional Motivation and Engagement Scale-Work (N = 637 school personnel) and one using a parallel short form (N = 574 school…

  13. Evaluating the Invariance of Cognitive Profile Patterns Derived from Profile Analysis via Multidimensional Scaling (PAMS): A Bootstrapping Approach

    ERIC Educational Resources Information Center

    Kim, Se-Kang

    2010-01-01

    The aim of the current study is to validate the invariance of major profile patterns derived from multidimensional scaling (MDS) by bootstrapping. Profile Analysis via Multidimensional Scaling (PAMS) was employed to obtain profiles and bootstrapping was used to construct the sampling distributions of the profile coordinates and the empirical…

  14. Measuring Healthcare Providers' Performances Within Managed Competition Using Multidimensional Quality and Cost Indicators.

    PubMed

    Portrait, France R M; van der Galiën, Onno; Van den Berg, Bernard

    2016-04-01

    The Dutch healthcare system is in transition towards managed competition. In theory, a system of managed competition involves incentives for quality and efficiency of provided care. This is mainly because health insurers contract on behalf of their clients with healthcare providers on, potentially, quality and costs. The paper develops a strategy to comprehensively analyse available multidimensional data on quality and costs to assess and report on the relative performance of healthcare providers within managed competition. We had access to individual information on 2409 clients of 19 Dutch diabetes care groups on a broad range of (outcome and process related) quality and cost indicators. We carried out a cost-consequences analysis and corrected for differences in case mix to reduce incentives for risk selection by healthcare providers. There is substantial heterogeneity between diabetes care groups' performances as measured using multidimensional indicators on quality and costs. Better quality diabetes care can be achieved with lower or higher costs. Routine monitoring using multidimensional data on quality and costs merged at the individual level would allow a systematic and comprehensive analysis of healthcare providers' performances within managed competition. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Development of a new multidimensional individual and interpersonal resilience measure for older adults.

    PubMed

    Martin, A'verria Sirkin; Distelberg, Brian; Palmer, Barton W; Jeste, Dilip V

    2015-01-01

    Develop an empirically grounded measure that can be used to assess family and individual resilience in a population of older adults (aged 50-99). Cross-sectional, self-report data from 1006 older adults were analyzed in two steps. The total sample was split into two subsamples and the first step identified the underlying latent structure through principal component exploratory factor analysis (EFA). The second step utilized the second half of the sample to validate the derived latent structure through confirmatory factor analysis (CFA). EFA produced an eight-factor structure that appeared clinically relevant for measuring the multidimensional nature of resilience. Factors included self-efficacy, access to social support network, optimism, perceived economic and social resources, spirituality and religiosity, relational accord, emotional expression and communication, and emotional regulation. CFA confirmed the eight-factor structure previously achieved with covariance between each of the factors. Based on these analyses we developed the multidimensional individual and interpersonal resilience measure, a broad assessment of resilience for older adults. This study highlights the multidimensional nature of resilience and introduces an individual and interpersonal resilience measure developed for older adults which is grounded in the individual and family resilience literature.

  16. Neurobehavioral and self-awareness changes after traumatic brain injury: Towards new multidimensional approaches.

    PubMed

    Arnould, A; Dromer, E; Rochat, L; Van der Linden, M; Azouvi, P

    2016-02-01

    Neurobehavioral and self-awareness changes are frequently observed following traumatic brain injury (TBI). These disturbances have been related to negative consequences on functional outcomes, caregiver distress and social reintegration, representing therefore a challenge for clinical research. Some studies have recently been conducted to specifically explore apathetic and impulsive manifestations, as well as self-awareness impairments in patients with TBI. These findings underlined the heterogeneity of clinical manifestations for each behavioral disturbance and the diversity of psychological processes involved. In this context, new multidimensional approaches taking into account the various processes at play have been proposed to better understand and apprehend the complexity and dynamic nature of these problematic behaviors. In addition, the involvement of social and environmental factors as well as premorbid personality traits have increasingly been addressed. These new multidimensional frameworks have the potential to ensure targeted and effective rehabilitation by allowing a better identification and therefore consideration of the various mechanisms involved in the onset of problematic behaviors. In this context, the main objective of this position paper was to demonstrate the interest of multidimensional approaches in the understanding and rehabilitation of problematic behaviors in patients with TBI. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Directional Limits on Motion Transparency Assessed Through Colour-Motion Binding.

    PubMed

    Maloney, Ryan T; Clifford, Colin W G; Mareschal, Isabelle

    2018-03-01

    Motion-defined transparency is the perception of two or more distinct moving surfaces at the same retinal location. We explored the limits of motion transparency using superimposed surfaces of randomly positioned dots defined by differences in motion direction and colour. In one experiment, dots were red or green and we varied the proportion of dots of a single colour that moved in a single direction ('colour-motion coherence') and measured the threshold direction difference for discriminating between two directions. When colour-motion coherences were high (e.g., 90% of red dots moving in one direction), a smaller direction difference was required to correctly bind colour with direction than at low coherences. In another experiment, we varied the direction difference between the surfaces and measured the threshold colour-motion coherence required to discriminate between them. Generally, colour-motion coherence thresholds decreased with increasing direction differences, stabilising at direction differences around 45°. Different stimulus durations were compared, and thresholds were higher at the shortest (150 ms) compared with the longest (1,000 ms) duration. These results highlight different yet interrelated aspects of the task and the fundamental limits of the mechanisms involved: the resolution of narrowly separated directions in motion processing and the local sampling of dot colours from each surface.

  18. Multidimensional flamelet-generated manifolds for partially premixed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Phuc-Danh; Vervisch, Luc; Subramanian, Vallinayagam

    2010-01-15

    Flamelet-generated manifolds have been restricted so far to premixed or diffusion flame archetypes, even though the resulting tables have been applied to nonpremixed and partially premixed flame simulations. By using a projection of the full set of mass conservation species balance equations into a restricted subset of the composition space, unsteady multidimensional flamelet governing equations are derived from first principles, under given hypotheses. During the projection, as in usual one-dimensional flamelets, the tangential strain rate of scalar isosurfaces is expressed in the form of the scalar dissipation rates of the control parameters of the multidimensional flamelet-generated manifold (MFM), which ismore » tested in its five-dimensional form for partially premixed combustion, with two composition space directions and three scalar dissipation rates. It is shown that strain-rate-induced effects can hardly be fully neglected in chemistry tabulation of partially premixed combustion, because of fluxes across iso-equivalence-ratio and iso-progress-of-reaction surfaces. This is illustrated by comparing the 5D flamelet-generated manifold with one-dimensional premixed flame and unsteady strained diffusion flame composition space trajectories. The formal links between the asymptotic behavior of MFM and stratified flame, weakly varying partially premixed front, triple-flame, premixed and nonpremixed edge flames are also evidenced. (author)« less

  19. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    PubMed

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  20. Advanced Multidimensional Separations in Mass Spectrometry: Navigating the Big Data Deluge

    PubMed Central

    May, Jody C.; McLean, John A.

    2017-01-01

    Hybrid analytical instrumentation constructed around mass spectrometry (MS) are becoming preferred techniques for addressing many grand challenges in science and medicine. From the omics sciences to drug discovery and synthetic biology, multidimensional separations based on MS provide the high peak capacity and high measurement throughput necessary to obtain large-scale measurements which are used to infer systems-level information. In this review, we describe multidimensional MS configurations as technologies which are big data drivers and discuss some new and emerging strategies for mining information from large-scale datasets. A discussion is included on the information content which can be obtained from individual dimensions, as well as the unique information which can be derived by comparing different levels of data. Finally, we discuss some emerging data visualization strategies which seek to make highly dimensional datasets both accessible and comprehensible. PMID:27306312

  1. Using complex networks towards information retrieval and diagnostics in multidimensional imaging

    PubMed Central

    Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen

    2015-01-01

    We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers. PMID:26626047

  2. Individual and Institutional Determinants of Multidimensional Poverty: A European Comparison

    ERIC Educational Resources Information Center

    Dewilde, Caroline

    2008-01-01

    In this article we evaluate to what extent between-country differences in the probability of being "multidimensional" poor can be explained by a range of "domain-specific" indicators of welfare regime arrangements. To this end, a so-called micro-macro model is estimated, testing the "independent" effect of…

  3. Multidimensional Collaboration: Reflections on Action Research in a Clinical Context

    ERIC Educational Resources Information Center

    Gregory, Sheila; Poland, Fiona; Spalding, Nicola J.; Sargen, Kevin; McCulloch, Jane; Vicary, Penny

    2011-01-01

    This paper reflects on the challenges and benefits of multidimensional collaboration in an action research study to evaluate and improve preoperative education for patients awaiting colorectal surgery. Three cycles of planning, acting, observing and reflecting were designed to evaluate practice and implement change in this interactive setting,…

  4. A Graphics Design Framework to Visualize Multi-Dimensional Economic Datasets

    ERIC Educational Resources Information Center

    Chandramouli, Magesh; Narayanan, Badri; Bertoline, Gary R.

    2013-01-01

    This study implements a prototype graphics visualization framework to visualize multidimensional data. This graphics design framework serves as a "visual analytical database" for visualization and simulation of economic models. One of the primary goals of any kind of visualization is to extract useful information from colossal volumes of…

  5. The Structure and Validity of the Multidimensional Social Support Questionnaire

    ERIC Educational Resources Information Center

    Hardesty, Patrick H.; Richardson, George B.

    2012-01-01

    The factor structure and concurrent validity of the Multidimensional Social Support Questionnaire, a brief measure of perceived social support for use with adolescents, was examined. Findings suggest that four dimensions of perceived social support may yield more information than assessments of the unitary construct of support. (Contains 8 tables…

  6. Assessing Multidimensional Energy Literacy of Secondary Students Using Contextualized Assessment

    ERIC Educational Resources Information Center

    Chen, Kuan-Li; Liu, Shiang-Yao; Chen, Po-Hsi

    2015-01-01

    Energy literacy is multidimensional, comprising broad content knowledge as well as affect and behavior. Our previous study has defined four core dimensions for the assessment framework, including energy concepts, reasoning on energy issues, low-carbon lifestyle, and civic responsibility for a sustainable society. The present study compiled a…

  7. Multidimensional and Hierarchical Assessment of School Motivation: Cross-Cultural Validation

    ERIC Educational Resources Information Center

    McInerney, Dennis M.; Ali, Jinnat

    2006-01-01

    This study examines the multidimensional and hierarchical structure of achievement goal orientation measured by the Inventory of School Motivation. The instrument consists of eight different scales with 43 survey items (ranging from three to seven items each). Each scale reflects one of eight specific dimensions: task, effort, competition, social…

  8. Multidimensional Scaling of High School Students' Perceptions of Academic Dishonesty

    ERIC Educational Resources Information Center

    Schmelkin, Liora Pedhazur; Gilbert, Kimberly A.; Silva, Rebecca

    2010-01-01

    Although cheating on tests and other forms of academic dishonesty are considered rampant, no standard definition of academic dishonesty exists. The current study was conducted to investigate the perceptions of academic dishonesty in high school students, utilizing an innovative methodology, multidimensional scaling (MDS). Two methods were used to…

  9. Writing Skills Course for Newly Commissioned Marine Corps Officers

    DTIC Science & Technology

    1993-10-01

    on the parked government vehicle were the 0 main causes of the accident. (8 and 9) 4. That LCpl Frank Johnson’s injuries were incurred in the line of...on the parked government vehicle were the main causes of the accident. (Findings of Fact14 8 and 9) 4. That LCpI Frank Johnson’s injuries were...sports, such as soccer, touch football, baseball, and karate . 3. Use a comma after an introductory word, Phrase. or adverb clause. Adverb clauses are

  10. Measuring change for a multidimensional test using a generalized explanatory longitudinal item response model.

    PubMed

    Cho, Sun-Joo; Athay, Michele; Preacher, Kristopher J

    2013-05-01

    Even though many educational and psychological tests are known to be multidimensional, little research has been done to address how to measure individual differences in change within an item response theory framework. In this paper, we suggest a generalized explanatory longitudinal item response model to measure individual differences in change. New longitudinal models for multidimensional tests and existing models for unidimensional tests are presented within this framework and implemented with software developed for generalized linear models. In addition to the measurement of change, the longitudinal models we present can also be used to explain individual differences in change scores for person groups (e.g., learning disabled students versus non-learning disabled students) and to model differences in item difficulties across item groups (e.g., number operation, measurement, and representation item groups in a mathematics test). An empirical example illustrates the use of the various models for measuring individual differences in change when there are person groups and multiple skill domains which lead to multidimensionality at a time point. © 2012 The British Psychological Society.

  11. Multidimensional Sexual Perfectionism and Female Sexual Function: A Longitudinal Investigation.

    PubMed

    Stoeber, Joachim; Harvey, Laura N

    2016-11-01

    Research on multidimensional sexual perfectionism differentiates four forms: self-oriented, partner-oriented, partner-prescribed, and socially prescribed. Self-oriented sexual perfectionism reflects perfectionistic standards people apply to themselves as sexual partners; partner-oriented sexual perfectionism reflects perfectionistic standards people apply to their sexual partner; partner-prescribed sexual perfectionism reflects people's beliefs that their sexual partner imposes perfectionistic standards on them; and socially prescribed sexual perfectionism reflects people's beliefs that society imposes such standards on them. Previous studies found partner-prescribed and socially prescribed sexual perfectionism to be maladaptive forms of sexual perfectionism associated with a negative sexual self-concept and problematic sexual behaviors, but only examined cross-sectional relationships. The present article presents the first longitudinal study examining whether multidimensional sexual perfectionism predicts changes in sexual self-concept and sexual function over time. A total of 366 women aged 17-69 years completed measures of multidimensional sexual perfectionism, sexual esteem, sexual anxiety, sexual problem self-blame, and sexual function (cross-sectional data). Three to six months later, 164 of the women completed the same measures again (longitudinal data). Across analyses, partner-prescribed sexual perfectionism emerged as the most maladaptive form of sexual perfectionism. In the cross-sectional data, partner-prescribed sexual perfectionism showed positive relationships with sexual anxiety, sexual problem self-blame, and intercourse pain, and negative relationships with sexual esteem, desire, arousal, lubrication, and orgasmic function. In the longitudinal data, partner-prescribed sexual perfectionism predicted increases in sexual anxiety and decreases in sexual esteem, arousal, and lubrication over time. The findings suggest that partner-prescribed sexual

  12. Joint mapping of genes and conditions via multidimensional unfolding analysis

    PubMed Central

    Van Deun, Katrijn; Marchal, Kathleen; Heiser, Willem J; Engelen, Kristof; Van Mechelen, Iven

    2007-01-01

    Background Microarray compendia profile the expression of genes in a number of experimental conditions. Such data compendia are useful not only to group genes and conditions based on their similarity in overall expression over profiles but also to gain information on more subtle relations between genes and conditions. Getting a clear visual overview of all these patterns in a single easy-to-grasp representation is a useful preliminary analysis step: We propose to use for this purpose an advanced exploratory method, called multidimensional unfolding. Results We present a novel algorithm for multidimensional unfolding that overcomes both general problems and problems that are specific for the analysis of gene expression data sets. Applying the algorithm to two publicly available microarray compendia illustrates its power as a tool for exploratory data analysis: The unfolding analysis of a first data set resulted in a two-dimensional representation which clearly reveals temporal regulation patterns for the genes and a meaningful structure for the time points, while the analysis of a second data set showed the algorithm's ability to go beyond a mere identification of those genes that discriminate between different patient or tissue types. Conclusion Multidimensional unfolding offers a useful tool for preliminary explorations of microarray data: By relying on an easy-to-grasp low-dimensional geometric framework, relations among genes, among conditions and between genes and conditions are simultaneously represented in an accessible way which may reveal interesting patterns in the data. An additional advantage of the method is that it can be applied to the raw data without necessitating the choice of suitable genewise transformations of the data. PMID:17550582

  13. Smoothing Motion Estimates for Radar Motion Compensation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin W.

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc.more » (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.« less

  14. Benchmarking the Multidimensional Stellar Implicit Code MUSIC

    NASA Astrophysics Data System (ADS)

    Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.

    2017-04-01

    We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.

  15. Seeing blur: 'motion sharpening' without motion.

    PubMed Central

    Georgeson, Mark A; Hammett, Stephen T

    2002-01-01

    It is widely supposed that things tend to look blurred when they are moving fast. Previous work has shown that this is true for sharp edges but, paradoxically, blurred edges look sharper when they are moving than when stationary. This is 'motion sharpening'. We show that blurred edges also look up to 50% sharper when they are presented briefly (8-24 ms) than at longer durations (100-500 ms) without motion. This argues strongly against high-level models of sharpening based specifically on compensation for motion blur. It also argues against a recent, low-level, linear filter model that requires motion to produce sharpening. No linear filter model can explain our finding that sharpening was similar for sinusoidal and non-sinusoidal gratings, since linear filters can never distort sine waves. We also conclude that the idea of a 'default' assumption of sharpness is not supported by experimental evidence. A possible source of sharpening is a nonlinearity in the contrast response of early visual mechanisms to fast or transient temporal changes, perhaps based on the magnocellular (M-cell) pathway. Our finding that sharpening is not diminished at low contrast sets strong constraints on the nature of the nonlinearity. PMID:12137571

  16. Palmprint Based Multidimensional Fuzzy Vault Scheme

    PubMed Central

    Liu, Hailun; Sun, Dongmei; Xiong, Ke; Qiu, Zhengding

    2014-01-01

    Fuzzy vault scheme (FVS) is one of the most popular biometric cryptosystems for biometric template protection. However, error correcting code (ECC) proposed in FVS is not appropriate to deal with real-valued biometric intraclass variances. In this paper, we propose a multidimensional fuzzy vault scheme (MDFVS) in which a general subspace error-tolerant mechanism is designed and embedded into FVS to handle intraclass variances. Palmprint is one of the most important biometrics; to protect palmprint templates; a palmprint based MDFVS implementation is also presented. Experimental results show that the proposed scheme not only can deal with intraclass variances effectively but also could maintain the accuracy and meanwhile enhance security. PMID:24892094

  17. Some Small Sample Results for Maximum Likelihood Estimation in Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Ramsay, J. O.

    1980-01-01

    Some aspects of the small sample behavior of maximum likelihood estimates in multidimensional scaling are investigated with Monte Carlo techniques. In particular, the chi square test for dimensionality is examined and a correction for bias is proposed and evaluated. (Author/JKS)

  18. High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1999-01-01

    Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.

  19. Multidimensional CAT Item Selection Methods for Domain Scores and Composite Scores with Item Exposure Control and Content Constraints

    ERIC Educational Resources Information Center

    Yao, Lihua

    2014-01-01

    The intent of this research was to find an item selection procedure in the multidimensional computer adaptive testing (CAT) framework that yielded higher precision for both the domain and composite abilities, had a higher usage of the item pool, and controlled the exposure rate. Five multidimensional CAT item selection procedures (minimum angle;…

  20. Extracting Undimensional Chains from Multidimensional Datasets: A Graph Theory Approach.

    ERIC Educational Resources Information Center

    Yamomoto, Yoneo; Wise, Steven L.

    An order-analysis procedure, which uses graph theory to extract efficiently nonredundant, unidimensional chains of items from multidimensional data sets and chain consistency as a criterion for chain membership is outlined in this paper. The procedure is intended as an alternative to the Reynolds (1976) procedure which is described as being…

  1. The Efficacy of Multidimensional Line-Printer Graphics for Cluster Recovery.

    ERIC Educational Resources Information Center

    Brown, R. L.

    The plotting of multivariate data using computer line-printers has become a popular means of quickly representing multidimensional data. While many plotting programs are available, there is a paucity of research regarding the validity and reliability of interpretations made by viewing such graphics. This study explores the validity of four…

  2. Income and beyond: Multidimensional Poverty in Six Latin American Countries

    ERIC Educational Resources Information Center

    Battiston, Diego; Cruces, Guillermo; Lopez-Calva, Luis Felipe; Lugo, Maria Ana; Santos, Maria Emma

    2013-01-01

    This paper studies multidimensional poverty for Argentina, Brazil, Chile, El Salvador, Mexico and Uruguay for the period 1992-2006. The approach overcomes the limitations of the two traditional methods of poverty analysis in Latin America (income-based and unmet basic needs) by combining income with five other dimensions: school attendance for…

  3. Income Tax Preparation Assistance Service Learning Program: A Multidimensional Assessment

    ERIC Educational Resources Information Center

    Aldridge, Richard; Callahan, Richard A.; Chen, Yining; Wade, Stacy R.

    2015-01-01

    The authors present a multidimensional assessment of the outcomes and benefits of an income tax preparation assistance (ITPA) service learning program. They measure the perceived proximate benefits at the delivery of the service program, the actual learning outcome benefits prior to graduation, and the perceived long-term benefits from a…

  4. A Multidimensional Scaling Analysis of Schizophrenics' and Normals' Perceptions of Verbal Similarity

    ERIC Educational Resources Information Center

    Neufeld, Richard W. J.

    1975-01-01

    Twenty-eight schizophrenics (14 paranoid and 14 nonparanoid) were compared with 14 normals on their judgments of similarity among words. The judgments were analyzed using an individual-differences multidimensional scaling procedure. (Editor)

  5. The Use of Motion-Based Technology for People Living With Dementia or Mild Cognitive Impairment: A Literature Review

    PubMed Central

    Astell, Arlene J

    2017-01-01

    Background The number of people living with dementia and mild cognitive impairment (MCI) is increasing substantially. Although there are many research efforts directed toward the prevention and treatment of dementia and MCI, it is also important to learn more about supporting people to live well with dementia or MCI through cognitive, physical, and leisure means. While past research suggests that technology can be used to support positive aging for people with dementia or MCI, the use of motion-based technology has not been thoroughly explored with this population. Objective The aim of this study was to identify and synthesize the current literature involving the use of motion-based technology for people living with dementia or MCI by identifying themes while noting areas requiring further research. Methods A systematic review of studies involving the use of motion-based technology for human participants living with dementia or MCI was conducted. Results A total of 31 articles met the inclusion criteria. Five questions are addressed concerning (1) context of use; (2) population included (ie, dementia, MCI, or both); (3) hardware and software selection; (4) use of motion-based technology in a group or individual setting; and (5) details about the introduction, teaching, and support methods applied when using the motion-based technology with people living with dementia or MCI. Conclusions The findings of this review confirm the potential of motion-based technology to improve the lives of people living with dementia or MCI. The use of this technology also spans across several contexts including cognitive, physical, and leisure; all of which support multidimensional well-being. The literature provides evidence that people living with dementia or MCI can learn how to use this technology and that they enjoy doing so. However, there is a lack of information provided in the literature regarding the introduction, training, and support methods applied when using this form of

  6. The Psychometric Properties of an Arabic version of the PedsQL Multidimensional Fatigue Scale Tested for Children with Cancer.

    PubMed

    Al-Gamal, Ekhlas; Long, Tony

    2017-09-01

    Fatigue is considered to be one of the most reported symptoms experienced by children with cancer. A major aim of this study was to develop an Arabic version of the Pediatric Quality of Life (PedsQL) Multidimensional Fatigue Scale (child report) and to test its psychometric proprieties for the assessment of fatigue in Arabic children with cancer. The PedsQL Multidimensional Fatigue Scale (Arabic version) and the PedsQL TM 4.0 Generic Core scale (existing Arabic version) were completed by 70 Jordanian children with cancer. Cronbach's alpha coefficients were found to be 0.90 for the total PedsQL Multidimensional Fatigue Scale (Arabic version), 0.94 for the general fatigue subscale, 0.67 for the sleep/rest fatigue subscale, and 0.87 for the cognitive fatigue subscale. The PedsQL Multidimensional Fatigue Scale scores correlated significantly with the PedsQL TM 4.0 Generic Core scale and demonstrated good construct validity. The results demonstrate excellent reliability and good validity of the PedsQL Multidimensional Fatigue Scale (Arabic version) for children with cancer. This is the first validated scale that assesses fatigue in Arabic children with cancer. The English scale has been used with several pediatric clinical populations, so this Arabic version may be equally useful beyond the field of cancer.

  7. DEVELOPMENT AND PSYCHOMETRIC TESTING OF A MULTIDIMENSIONAL INSTRUMENT OF PERCEIVED DISCRIMINATION AMONG AFRICAN AMERICANS IN THE JACKSON HEART STUDY

    PubMed Central

    Sims, Mario; Wyatt, Sharon B.; Gutierrez, Mary Lou; Taylor, Herman A.; Williams, David R.

    2009-01-01

    Objective Assessing the discrimination-health disparities hypothesis requires psychometrically sound, multidimensional measures of discrimination. Among the available discrimination measures, few are multidimensional and none have adequate psychometric testing in a large, African American sample. We report the development and psychometric testing of the multidimensional Jackson Heart Study Discrimination (JHSDIS) Instrument. Methods A multidimensional measure assessing the occurrence, frequency, attribution, and coping responses to perceived everyday and lifetime discrimination; lifetime burden of discrimination; and effect of skin color was developed and tested in the 5302-member cohort of the Jackson Heart Study. Internal consistency was calculated by using Cronbach α. coefficient. Confirmatory factor analysis established the dimensions, and intercorrelation coefficients assessed the discriminant validity of the instrument. Setting Tri-county area of the Jackson, MS metropolitan statistical area. Results The JHSDIS was psychometrically sound (overall α=.78, .84 and .77, respectively, for the everyday and lifetime subscales). Confirmatory factor analysis yielded 11 factors, which confirmed the a priori dimensions represented. Conclusions The JHSDIS combined three scales into a single multidimensional instrument with good psychometric properties in a large sample of African Americans. This analysis lays the foundation for using this instrument in research that will examine the association between perceived discrimination and CVD among African Americans. PMID:19341164

  8. ICM: a web server for integrated clustering of multi-dimensional biomedical data.

    PubMed

    He, Song; He, Haochen; Xu, Wenjian; Huang, Xin; Jiang, Shuai; Li, Fei; He, Fuchu; Bo, Xiaochen

    2016-07-08

    Large-scale efforts for parallel acquisition of multi-omics profiling continue to generate extensive amounts of multi-dimensional biomedical data. Thus, integrated clustering of multiple types of omics data is essential for developing individual-based treatments and precision medicine. However, while rapid progress has been made, methods for integrated clustering are lacking an intuitive web interface that facilitates the biomedical researchers without sufficient programming skills. Here, we present a web tool, named Integrated Clustering of Multi-dimensional biomedical data (ICM), that provides an interface from which to fuse, cluster and visualize multi-dimensional biomedical data and knowledge. With ICM, users can explore the heterogeneity of a disease or a biological process by identifying subgroups of patients. The results obtained can then be interactively modified by using an intuitive user interface. Researchers can also exchange the results from ICM with collaborators via a web link containing a Project ID number that will directly pull up the analysis results being shared. ICM also support incremental clustering that allows users to add new sample data into the data of a previous study to obtain a clustering result. Currently, the ICM web server is available with no login requirement and at no cost at http://biotech.bmi.ac.cn/icm/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds.

    PubMed

    Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.

  10. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds

    PubMed Central

    Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds. PMID:27974884

  11. Increasing verbal knowledge mediates development of multidimensional emotion representations

    PubMed Central

    Nook, Erik C.; Sasse, Stephanie F.; Lambert, Hilary K.; McLaughlin, Katie A.; Somerville, Leah H.

    2017-01-01

    How do people represent their own and others’ emotional experiences? Contemporary emotion theories and growing evidence suggest that the conceptual representation of emotion plays a central role in how people understand the emotions both they and other people feel.1–6 Although decades of research indicate that adults typically represent emotion concepts as multidimensional, with valence (positive—negative) and arousal (activating—deactivating) as two primary dimensions,7–10 little is known about how this bidimensional (or circumplex) representation arises.11 Here we show that emotion representations develop from a monodimensional focus on valence to a bidimensional focus on both valence and arousal from age 6 to age 25. We investigated potential mechanisms underlying this effect and found that increasing verbal knowledge mediated emotion representation development over and above three other potential mediators: (i) fluid reasoning, (ii) the general ability to represent non-emotional stimuli bidimensionally, and (iii) task-related behaviors (e.g., using extreme ends of rating scales). These results suggest that verbal development facilitates the expansion of emotion concept representations (and potentially emotional experiences) from a “positive or negative” dichotomy in childhood to a multidimensional organization in adulthood. PMID:29399639

  12. Method of data mining including determining multidimensional coordinates of each item using a predetermined scalar similarity value for each item pair

    DOEpatents

    Meyers, Charles E.; Davidson, George S.; Johnson, David K.; Hendrickson, Bruce A.; Wylie, Brian N.

    1999-01-01

    A method of data mining represents related items in a multidimensional space. Distance between items in the multidimensional space corresponds to the extent of relationship between the items. The user can select portions of the space to perceive. The user also can interact with and control the communication of the space, focusing attention on aspects of the space of most interest. The multidimensional spatial representation allows more ready comprehension of the structure of the relationships among the items.

  13. Priming with real motion biases visual cortical response to bistable apparent motion

    PubMed Central

    Zhang, Qing-fang; Wen, Yunqing; Zhang, Deng; She, Liang; Wu, Jian-young; Dan, Yang; Poo, Mu-ming

    2012-01-01

    Apparent motion quartet is an ambiguous stimulus that elicits bistable perception, with the perceived motion alternating between two orthogonal paths. In human psychophysical experiments, the probability of perceiving motion in each path is greatly enhanced by a brief exposure to real motion along that path. To examine the neural mechanism underlying this priming effect, we used voltage-sensitive dye (VSD) imaging to measure the spatiotemporal activity in the primary visual cortex (V1) of awake mice. We found that a brief real motion stimulus transiently biased the cortical response to subsequent apparent motion toward the spatiotemporal pattern representing the real motion. Furthermore, intracellular recording from V1 neurons in anesthetized mice showed a similar increase in subthreshold depolarization in the neurons representing the path of real motion. Such short-term plasticity in early visual circuits may contribute to the priming effect in bistable visual perception. PMID:23188797

  14. Development of the Competitive Work Environment Scale: A Multidimensional Climate Construct

    ERIC Educational Resources Information Center

    Fletcher, Thomas D.; Nusbaum, David N.

    2010-01-01

    Recent research suggests that competitive work environments may influence individual's attitudes, behaviors, stress, and performance. Unfortunately, adequate measures of competitive environments are lacking. This article traces the development of a new multidimensional competitive work environment scale. An initial 59-item pool covering five…

  15. Cognitive Age: A New Multidimensional Approach to Measuring Age Identity.

    ERIC Educational Resources Information Center

    Barak, Benny

    1987-01-01

    Conducted exploratory field study to examine how age-concepts are experienced and to assess relationship of age identities to each other. Proposes Cognitive Age as a new multidimensional age scale that merges the standard scale, Identity Age, and Personal Age. Study results attest to Cognitive Age scale's reliability and validity. (Author/NB)

  16. A General Multidimensional Model for the Measurement of Cultural Differences.

    ERIC Educational Resources Information Center

    Olmedo, Esteban L.; Martinez, Sergio R.

    A multidimensional model for measuring cultural differences (MCD) based on factor analytic theory and techniques is proposed. The model assumes that a cultural space may be defined by means of a relatively small number of orthogonal dimensions which are linear combinations of a much larger number of cultural variables. Once a suitable,…

  17. BMDS: A Collection of R Functions for Bayesian Multidimensional Scaling

    ERIC Educational Resources Information Center

    Okada, Kensuke; Shigemasu, Kazuo

    2009-01-01

    Bayesian multidimensional scaling (MDS) has attracted a great deal of attention because: (1) it provides a better fit than do classical MDS and ALSCAL; (2) it provides estimation errors of the distances; and (3) the Bayesian dimension selection criterion, MDSIC, provides a direct indication of optimal dimensionality. However, Bayesian MDS is not…

  18. Development and Validation of the Frost Multidimensional Perfectionism Scale--Brief

    ERIC Educational Resources Information Center

    Burgess, Alexandra M.; Frost, Randy O.; DiBartolo, Patricia Marten

    2016-01-01

    Twenty-five years ago, one of the first empirically validated measures of perfectionism, the Frost et al. Multidimensional Perfectionism Scale (F-MPS) was published. Since that time, psychometric studies of the original F-MPS have provided a plethora of evidence to support the potential development of a shorter yet still psychometrically robust…

  19. Joint PET-MR respiratory motion models for clinical PET motion correction

    NASA Astrophysics Data System (ADS)

    Manber, Richard; Thielemans, Kris; Hutton, Brian F.; Wan, Simon; McClelland, Jamie; Barnes, Anna; Arridge, Simon; Ourselin, Sébastien; Atkinson, David

    2016-09-01

    Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography (PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) imaging in PET-MR scanners provides complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this paper we build on previous work to form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality whilst having minimal impact on clinical PET-MR protocols. We introduce a joint PET-MR motion model, using only 1 min per PET bed position of simultaneously acquired PET and MR data to provide a respiratory motion correspondence model that captures inter-cycle and intra-cycle breathing variations. In the model setup, 2D multi-slice MR provides the dynamic imaging component, and PET data, via low spatial resolution framing and principal component analysis, provides the model surrogate. We evaluate different motion models (1D and 2D linear, and 1D and 2D polynomial) by computing model-fit and model-prediction errors on dynamic MR images on a data set of 45 patients. Finally we apply the motion model methodology to 5 clinical PET-MR oncology patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using standardised uptake value (SUVpeak and SUVmax) changes in avid lesions. We demonstrate the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data acquired before the motion model data. The method can be used to incorporate motion into the reconstruction of any length of PET acquisition, with only 1 min of extra scan time, and with no external hardware required.

  20. Motion-based prediction explains the role of tracking in motion extrapolation.

    PubMed

    Khoei, Mina A; Masson, Guillaume S; Perrinet, Laurent U

    2013-11-01

    During normal viewing, the continuous stream of visual input is regularly interrupted, for instance by blinks of the eye. Despite these frequents blanks (that is the transient absence of a raw sensory source), the visual system is most often able to maintain a continuous representation of motion. For instance, it maintains the movement of the eye such as to stabilize the image of an object. This ability suggests the existence of a generic neural mechanism of motion extrapolation to deal with fragmented inputs. In this paper, we have modeled how the visual system may extrapolate the trajectory of an object during a blank using motion-based prediction. This implies that using a prior on the coherency of motion, the system may integrate previous motion information even in the absence of a stimulus. In order to compare with experimental results, we simulated tracking velocity responses. We found that the response of the motion integration process to a blanked trajectory pauses at the onset of the blank, but that it quickly recovers the information on the trajectory after reappearance. This is compatible with behavioral and neural observations on motion extrapolation. To understand these mechanisms, we have recorded the response of the model to a noisy stimulus. Crucially, we found that motion-based prediction acted at the global level as a gain control mechanism and that we could switch from a smooth regime to a binary tracking behavior where the dot is tracked or lost. Our results imply that a local prior implementing motion-based prediction is sufficient to explain a large range of neural and behavioral results at a more global level. We show that the tracking behavior deteriorates for sensory noise levels higher than a certain value, where motion coherency and predictability fail to hold longer. In particular, we found that motion-based prediction leads to the emergence of a tracking behavior only when enough information from the trajectory has been accumulated

  1. Messier 35 (NGC 2168) DANCe. I. Membership, proper motions, and multiwavelength photometry

    NASA Astrophysics Data System (ADS)

    Bouy, H.; Bertin, E.; Barrado, D.; Sarro, L. M.; Olivares, J.; Moraux, E.; Bouvier, J.; Cuillandre, J.-C.; Ribas, Á.; Beletsky, Y.

    2015-03-01

    Context. Messier 35 (NGC 2168) is an important young nearby cluster. Its age, richness and relative proximity make it an ideal target for stellar evolution studies. The Kepler K2 mission recently observed it and provided a high accuracy photometric time series of a large number of sources in this area of the sky. Identifying the cluster's members is therefore of high importance to optimize the interpretation and analysis of the Kepler K2 data. Aims: We aim to identify the cluster's members by deriving membership probabilities for the sources within 1° of the cluster's center, which is farther away than equivalent previous studies. Methods: We measure accurate proper motions and multiwavelength (optical and near-infrared) photometry using ground-based archival images of the cluster. We use these measurements to compute membership probabilities. The list of candidate members from the literature is used as a training set to identify the cluster's locus in a multidimensional space made of proper motions, luminosities, and colors. Results: The final catalog includes 338 892 sources with multiwavelength photometry. Approximately half (194 452) were detected at more than two epochs and we measured their proper motion and used it to derive membership probability. A total of 4349 candidate members with membership probabilities greater than 50% are found in this sample in the luminosity range between 10 mag and 22 mag. The slow proper motion of the cluster and the overlap of its sequence with the field and background sequences in almost all color-magnitude and color-color diagrams complicate the analysis and the contamination level is expected to be significant. Our study, nevertheless, provides a coherent and quantitative membership analysis of Messier 35 based on a large fraction of the best ground-based data sets obtained over the past 18 years. As such, it represents a valuable input for follow-up studies using, in particular, the Kepler K2 photometric time series

  2. Chapter 3. A multidimensional model for narrative analysis of substance use-related dependency.

    PubMed

    Larsson, Sam; von Braun, Therese; Lilja, John

    2013-11-01

    This chapter examines the possibilities and limitations of using a narrative method as a framework within a multidimensional model for exploring and analyzing the use and misuse of alcohol and drugs. It is posited that a multidimensional model, based on narrative reasoning, can give a more detailed and specific understanding of substance users, who represent a heterogeneous population of people, and of substance use-related dependency problems. Such a model describes and analyses the drug-use related problems in a manner that provides holistic and important information and knowledge about the person by contextual and situation interaction processes which are involved in the use/misuse of alcohol and drugs. Tentative conclusions and unresolved critical issues are considered.

  3. Visual and Non-Visual Contributions to the Perception of Object Motion during Self-Motion

    PubMed Central

    Fajen, Brett R.; Matthis, Jonathan S.

    2013-01-01

    Many locomotor tasks involve interactions with moving objects. When observer (i.e., self-)motion is accompanied by object motion, the optic flow field includes a component due to self-motion and a component due to object motion. For moving observers to perceive the movement of other objects relative to the stationary environment, the visual system could recover the object-motion component – that is, it could factor out the influence of self-motion. In principle, this could be achieved using visual self-motion information, non-visual self-motion information, or a combination of both. In this study, we report evidence that visual information about the speed (Experiment 1) and direction (Experiment 2) of self-motion plays a role in recovering the object-motion component even when non-visual self-motion information is also available. However, the magnitude of the effect was less than one would expect if subjects relied entirely on visual self-motion information. Taken together with previous studies, we conclude that when self-motion is real and actively generated, both visual and non-visual self-motion information contribute to the perception of object motion. We also consider the possible role of this process in visually guided interception and avoidance of moving objects. PMID:23408983

  4. A Systematic Review of Studies Using the Multidimensional Assessment of Fatigue Scale.

    PubMed

    Belza, Basia; Miyawaki, Christina E; Liu, Minhui; Aree-Ue, Suparb; Fessel, Melissa; Minott, Kenya R; Zhang, Xi

    2018-04-01

    To review how the Multidimensional Assessment of Fatigue (MAF) has been used and evaluate its psychometric properties. We conducted a database search using "multidimensional assessment of fatigue" or "MAF" as key terms from 1993 to 2015, and located 102 studies. Eighty-three were empirical studies and 19 were reviews/evaluations. Research was conducted in 17 countries; 32 diseases were represented. Nine language versions of the MAF were used. The mean of the Global Fatigue Index ranged from 10.9 to 49.4. The MAF was reported to be easy-to-use, had strong reliability and validity, and was used in populations who spoke languages other than English. The MAF is an acceptable assessment tool to measure fatigue and intervention effectiveness in various languages, diseases, and settings across the world.

  5. Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers.

    PubMed

    Borchani, Hanen; Bielza, Concha; Toro, Carlos; Larrañaga, Pedro

    2013-03-01

    Our aim is to use multi-dimensional Bayesian network classifiers in order to predict the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors given an input set of respective resistance mutations that an HIV patient carries. Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models especially designed to solve multi-dimensional classification problems, where each input instance in the data set has to be assigned simultaneously to multiple output class variables that are not necessarily binary. In this paper, we introduce a new method, named MB-MBC, for learning MBCs from data by determining the Markov blanket around each class variable using the HITON algorithm. Our method is applied to both reverse transcriptase and protease data sets obtained from the Stanford HIV-1 database. Regarding the prediction of antiretroviral combination therapies, the experimental study shows promising results in terms of classification accuracy compared with state-of-the-art MBC learning algorithms. For reverse transcriptase inhibitors, we get 71% and 11% in mean and global accuracy, respectively; while for protease inhibitors, we get more than 84% and 31% in mean and global accuracy, respectively. In addition, the analysis of MBC graphical structures lets us gain insight into both known and novel interactions between reverse transcriptase and protease inhibitors and their respective resistance mutations. MB-MBC algorithm is a valuable tool to analyze the HIV-1 reverse transcriptase and protease inhibitors prediction problem and to discover interactions within and between these two classes of inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Applying Multidimensional Item Response Theory Models in Validating Test Dimensionality: An Example of K-12 Large-Scale Science Assessment

    ERIC Educational Resources Information Center

    Li, Ying; Jiao, Hong; Lissitz, Robert W.

    2012-01-01

    This study investigated the application of multidimensional item response theory (IRT) models to validate test structure and dimensionality. Multiple content areas or domains within a single subject often exist in large-scale achievement tests. Such areas or domains may cause multidimensionality or local item dependence, which both violate the…

  7. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Juan; School of Information Science and Engineering, Shandong University, Jinan, Shandong; Cai, Jing

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff).more » The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.« less

  8. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    PubMed

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  9. Development of a New Multidimensional Individual and Interpersonal Resilience Measure for Older Adults

    PubMed Central

    Martin, A’verria Sirkin; Distelberg, Brian; Palmer, Barton W.; Jeste, Dilip V.

    2015-01-01

    Objectives Develop an empirically grounded measure that can be used to assess family and individual resilience in a population of older adults (aged 50-99). Methods Cross-sectional, self-report data from 1,006 older adults were analyzed in two steps. The total sample was split into two sub-samples and the first step identified the underlying latent structure through principal component Exploratory Factor Analysis (EFA). The second step utilized the second half of the sample to validate the derived latent structure through Confirmatory Factor Analysis (CFA). Results EFA produced an eight-factor structure that appeared clinically relevant for measuring the multidimensional nature of resilience. Factors included self-efficacy, access to social support network, optimism, perceived economic and social resources, spirituality and religiosity, relational accord, emotional expression and communication, and emotional regulation. CFA confirmed the eight-factor structure previously achieved with covariance between each of the factors. Based on these analyses we developed the Multidimensional Individual and Interpersonal Resilience Measure (MIIRM), a broad assessment of resilience for older adults. Conclusion This study highlights the multidimensional nature of resilience and introduces an individual and interpersonal resilience measure developed for older adults which is grounded in the individual and family resilience literature. PMID:24787701

  10. Video event classification and image segmentation based on noncausal multidimensional hidden Markov models.

    PubMed

    Ma, Xiang; Schonfeld, Dan; Khokhar, Ashfaq A

    2009-06-01

    In this paper, we propose a novel solution to an arbitrary noncausal, multidimensional hidden Markov model (HMM) for image and video classification. First, we show that the noncausal model can be solved by splitting it into multiple causal HMMs and simultaneously solving each causal HMM using a fully synchronous distributed computing framework, therefore referred to as distributed HMMs. Next we present an approximate solution to the multiple causal HMMs that is based on an alternating updating scheme and assumes a realistic sequential computing framework. The parameters of the distributed causal HMMs are estimated by extending the classical 1-D training and classification algorithms to multiple dimensions. The proposed extension to arbitrary causal, multidimensional HMMs allows state transitions that are dependent on all causal neighbors. We, thus, extend three fundamental algorithms to multidimensional causal systems, i.e., 1) expectation-maximization (EM), 2) general forward-backward (GFB), and 3) Viterbi algorithms. In the simulations, we choose to limit ourselves to a noncausal 2-D model whose noncausality is along a single dimension, in order to significantly reduce the computational complexity. Simulation results demonstrate the superior performance, higher accuracy rate, and applicability of the proposed noncausal HMM framework to image and video classification.

  11. Motion-plane dependency of the range of dart throw motion and the effects of tendon action due to finger extrinsic muscles during the motion.

    PubMed

    Mitsukane, Masahiro; Sekiya, Noboru; Kamono, Arinori; Nakabo, Tohru

    2018-03-01

    [Purpose] To clarify the motion-plane dependency of the range of dart throw motion and the effects of tendon action due to long finger flexors and extensors during the motion. [Subjects and Methods] Forty healthy subjects attended the experiment, and the active range of wrist motion in seven motion planes was measured with an originally designed apparatus. [Results] The reliability of the measurement was acceptable. The range of dart throw motion depended on the motion planes, with a maximum at around the motion plane of 45° from the sagittal plane (45° of pronation). The tendon action of long finger muscles was shown in dart throw motion except in 45° of pronation. [Conclusion] Motion-plane dependency of the range of dart throw motion exists in healthy subjects. The absence of tendon action due to finger extrinsic muscles in dart throw motion at 45° might be one of the causes of the advantage of dart throw motion.

  12. Curves from Motion, Motion from Curves

    DTIC Science & Technology

    2000-01-01

    De linearum curvarum cum lineis rectis comparatione dissertatio geometrica - an appendix to a treatise by de Lalouv~re (this was the only publication... correct solution to the problem of motion in the gravity of a permeable rotating Earth, considered by Torricelli (see §3). If the Earth is a homogeneous...in 1686, which contains the correct solution as part of a remarkably comprehensive theory of orbital motions under centripetal forces. It is a

  13. People can understand descriptions of motion without activating visual motion brain regions

    PubMed Central

    Dravida, Swethasri; Saxe, Rebecca; Bedny, Marina

    2013-01-01

    What is the relationship between our perceptual and linguistic neural representations of the same event? We approached this question by asking whether visual perception of motion and understanding linguistic depictions of motion rely on the same neural architecture. The same group of participants took part in two language tasks and one visual task. In task 1, participants made semantic similarity judgments with high motion (e.g., “to bounce”) and low motion (e.g., “to look”) words. In task 2, participants made plausibility judgments for passages describing movement (“A centaur hurled a spear … ”) or cognitive events (“A gentleman loved cheese …”). Task 3 was a visual motion localizer in which participants viewed animations of point-light walkers, randomly moving dots, and stationary dots changing in luminance. Based on the visual motion localizer we identified classic visual motion areas of the temporal (MT/MST and STS) and parietal cortex (inferior and superior parietal lobules). We find that these visual cortical areas are largely distinct from neural responses to linguistic depictions of motion. Motion words did not activate any part of the visual motion system. Motion passages produced a small response in the right superior parietal lobule, but none of the temporal motion regions. These results suggest that (1) as compared to words, rich language stimuli such as passages are more likely to evoke mental imagery and more likely to affect perceptual circuits and (2) effects of language on the visual system are more likely in secondary perceptual areas as compared to early sensory areas. We conclude that language and visual perception constitute distinct but interacting systems. PMID:24009592

  14. Assessing Dimensionality of Noncompensatory Multidimensional Item Response Theory with Complex Structures

    ERIC Educational Resources Information Center

    Svetina, Dubravka

    2013-01-01

    The purpose of this study was to investigate the effect of complex structure on dimensionality assessment in noncompensatory multidimensional item response models using dimensionality assessment procedures based on DETECT (dimensionality evaluation to enumerate contributing traits) and NOHARM (normal ogive harmonic analysis robust method). Five…

  15. Adolescent and Parent Alliance and Treatment Outcome in Multidimensional Family Therapy

    ERIC Educational Resources Information Center

    Shelef, Karni; Diamond, Gary M.; Diamond, Guy S.; Liddle, Howard A.

    2005-01-01

    In this study, the authors examined the relation between adolescent and parent therapeutic alliances and treatment outcome among 65 substance-abusing adolescents receiving multidimensional family therapy. Observer ratings of parent alliance predicted premature termination from treatment. Observer ratings, but not self-report, of adolescent…

  16. Measuring Multidimensional Latent Growth. Research Report. ETS RR-10-24

    ERIC Educational Resources Information Center

    Rijmen, Frank

    2010-01-01

    As is the case for any statistical model, a multidimensional latent growth model comes with certain requirements with respect to the data collection design. In order to measure growth, repeated measurements of the same set of individuals are required. Furthermore, the data collection design should be specified such that no individual is given the…

  17. Human comfort response to random motions with a dominant pitching motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1980-01-01

    The effects of random pitching velocities on passenger ride comfort response were examined on the NASA Langley Visual Motion Simulator. The effects of power spectral density shape and frequency ranges from 0 to 2 Hz were studied. The subjective rating data and the physical motion data obtained are presented. No attempt at interpretation or detailed analysis of the data is made. Motions in all degrees of freedom existed as well as the intended pitching motion, because of the characteristics of the simulator. These unwanted motions may have introduced some interactive effects on passenger responses which should be considered in any analysis of the data.

  18. Recording High Resolution 3D Lagrangian Motions In Marine Dinoflagellates using Digital Holographic Microscopic Cinematography

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Malkiel, E.; Katz, J.; Place, A. R.; Belas, R.

    2006-11-01

    Detailed data on swimming behavior and locomotion for dense population of dinoflagellates constitutes a key component to understanding cell migration, cell-cell interactions and predator-prey dynamics, all of which affect algae bloom dynamics. Due to the multi-dimensional nature of flagellated cell motions, spatial-temporal Lagrangian measurements of multiple cells in high concentration are very limited. Here we present detailed data on 3D Lagrangian motions for three marine dinoflagellates: Oxyrrhis marina, Karlodinium veneficum, and Pfiesteria piscicida, using digital holographic microscopic cinematography. The measurements are performed in a 5x5x25mm cuvette with cell densities varying from 50,000 ˜ 90,000 cells/ml. Approximately 200-500 cells are tracked simultaneously for 12s at 60fps in a sample volume of 1x1x5 mm at a spatial resolution of 0.4x0.4x2 μm. We fully resolve the longitudinal flagella (˜200nm) along with the Lagrangian trajectory of each organism. Species dependent swimming behavior are identified and categorized quantitatively by velocities, radii of curvature, and rotations of pitch. Statistics on locomotion, temporal & spatial scales, and diffusion rate show substantial differences between species. The scaling between turning radius and cell dimension can be explained by a distributed stokeslet model for a self-propelled body.

  19. Reliability and Validity of the Chinese Version of the Multidimensional Anxiety Scale for Children among Chinese Secondary School Students

    ERIC Educational Resources Information Center

    Yao, Shuqiao; Zou, Tao; Zhu, Xiongzhao; Abela, John R. Z.; Auerbach, Randy P.; Tong, Xi

    2007-01-01

    The objective of the current study was to develop a Chinese translation of the Multidimensional Anxiety Scale for Children (MASC) [March (1997) Multidimensional anxiety scale for children: Technical manual, Multi health systems, Toronto, ON], and to evaluate its reliability and validity. The original version of the MASC was translated into Chinese…

  20. Multidimensional student skills with collaborative filtering

    NASA Astrophysics Data System (ADS)

    Bergner, Yoav; Rayyan, Saif; Seaton, Daniel; Pritchard, David E.

    2013-01-01

    Despite the fact that a physics course typically culminates in one final grade for the student, many instructors and researchers believe that there are multiple skills that students acquire to achieve mastery. Assessment validation and data analysis in general may thus benefit from extension to multidimensional ability. This paper introduces an approach for model determination and dimensionality analysis using collaborative filtering (CF), which is related to factor analysis and item response theory (IRT). Model selection is guided by machine learning perspectives, seeking to maximize the accuracy in predicting which students will answer which items correctly. We apply the CF to response data for the Mechanics Baseline Test and combine the results with prior analysis using unidimensional IRT.

  1. Attention and apparent motion.

    PubMed

    Horowitz, T; Treisman, A

    1994-01-01

    Two dissociations between short- and long-range motion in visual search are reported. Previous research has shown parallel processing for short-range motion and apparently serial processing for long-range motion. This finding has been replicated and it has also been found that search for short-range targets can be impaired both by using bicontrast stimuli, and by prior adaptation to the target direction of motion. Neither factor impaired search in long-range motion displays. Adaptation actually facilitated search with long-range displays, which is attributed to response-level effects. A feature-integration account of apparent motion is proposed. In this theory, short-range motion depends on specialized motion feature detectors operating in parallel across the display, but subject to selective adaptation, whereas attention is needed to link successive elements when they appear at greater separations, or across opposite contrasts.

  2. Knowledge-based nonuniform sampling in multidimensional NMR.

    PubMed

    Schuyler, Adam D; Maciejewski, Mark W; Arthanari, Haribabu; Hoch, Jeffrey C

    2011-07-01

    The full resolution afforded by high-field magnets is rarely realized in the indirect dimensions of multidimensional NMR experiments because of the time cost of uniformly sampling to long evolution times. Emerging methods utilizing nonuniform sampling (NUS) enable high resolution along indirect dimensions by sampling long evolution times without sampling at every multiple of the Nyquist sampling interval. While the earliest NUS approaches matched the decay of sampling density to the decay of the signal envelope, recent approaches based on coupled evolution times attempt to optimize sampling by choosing projection angles that increase the likelihood of resolving closely-spaced resonances. These approaches employ knowledge about chemical shifts to predict optimal projection angles, whereas prior applications of tailored sampling employed only knowledge of the decay rate. In this work we adapt the matched filter approach as a general strategy for knowledge-based nonuniform sampling that can exploit prior knowledge about chemical shifts and is not restricted to sampling projections. Based on several measures of performance, we find that exponentially weighted random sampling (envelope matched sampling) performs better than shift-based sampling (beat matched sampling). While shift-based sampling can yield small advantages in sensitivity, the gains are generally outweighed by diminished robustness. Our observation that more robust sampling schemes are only slightly less sensitive than schemes highly optimized using prior knowledge about chemical shifts has broad implications for any multidimensional NMR study employing NUS. The results derived from simulated data are demonstrated with a sample application to PfPMT, the phosphoethanolamine methyltransferase of the human malaria parasite Plasmodium falciparum.

  3. Example-based human motion denoising.

    PubMed

    Lou, Hui; Chai, Jinxiang

    2010-01-01

    With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.

  4. Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.

    PubMed

    Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan

    2016-12-01

    The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.

  5. Exactly Solvable Multidimensional Nonlinear Equations and Inverse Scattering,

    DTIC Science & Technology

    1986-12-01

    time dimension. Here the prototype euQation is 1 the Kadomtsev - Petviashvili (K-P) equation : .0 6u , x , x - )3,:’u ,’ which is the cop,patliil ity...AD-R193 274 EXACTLY SOLVABLE MULTIDIMENSIONAL NONLINEAR EQUATIONS L/1 AND INVERSE SCATTERING(U) CLARKSON UNIV POTSDAM MY A J MBLOUITZ DEC 86 NSOSI4...ecuations by associating thnm with appropriate compatible linear equations , -ne of which is identified as a Scattering prooD,, ne others(s) serves to

  6. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    PubMed

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  7. Evidencing Learning Outcomes: A Multi-Level, Multi-Dimensional Course Alignment Model

    ERIC Educational Resources Information Center

    Sridharan, Bhavani; Leitch, Shona; Watty, Kim

    2015-01-01

    This conceptual framework proposes a multi-level, multi-dimensional course alignment model to implement a contextualised constructive alignment of rubric design that authentically evidences and assesses learning outcomes. By embedding quality control mechanisms at each level for each dimension, this model facilitates the development of an aligned…

  8. Development of a Multidimensional Index for Assessing Social Support in Rehabilitation.

    ERIC Educational Resources Information Center

    McColl, Mary Ann; Friedland, Judith

    1989-01-01

    Discusses the development and psychometric evaluation of the Social Support Inventory for Stroke Survivors, a multidimensional instrument for measuring social support and its influence on the rehabilitation of stroke patients. Examines the test-retest reliability and internal consistency of the instrument and suggests modifications and clinical…

  9. An Overview of Software for Conducting Dimensionality Assessment in Multidimensional Models

    ERIC Educational Resources Information Center

    Svetina, Dubravka; Levy, Roy

    2012-01-01

    An overview of popular software packages for conducting dimensionality assessment in multidimensional models is presented. Specifically, five popular software packages are described in terms of their capabilities to conduct dimensionality assessment with respect to the nature of analysis (exploratory or confirmatory), types of data (dichotomous,…

  10. Cross-Cultural Validity of the Frost Multidimensional Perfectionism Scale in Korea

    ERIC Educational Resources Information Center

    Lee, Dong-gwi; Park, Hyun-joo

    2011-01-01

    This study with 213 South Korean college students (113 men) examined the cross-cultural generalizability of (a) the factor structure of the Frost Multidimensional Perfectionism Scale (F-MPS) and (b) the existence of adaptive perfectionists, maladaptive perfectionists, and nonperfectionists. A confirmatory factor analysis did not support the…

  11. The Multidimensionality of Calling: Conceptualization, Measurement and a Bicultural Perspective

    ERIC Educational Resources Information Center

    Hagmaier, Tamara; Abele, Andrea E.

    2012-01-01

    The experience of a calling may be seen as the ultimate form of subjective career success that has many positive consequences for individuals and organizations. We are here concerned with the conceptualization of a new multidimensional measure of calling, the MCM. In the first two studies we employed a qualitative approach and came up with five…

  12. Vacuum polarization in the field of a multidimensional global monopole

    NASA Astrophysics Data System (ADS)

    Grats, Yu. V.; Spirin, P. A.

    2016-11-01

    An approximate expression for the Euclidean Green function of a massless scalar field in the spacetime of a multidimensional global monopole has been derived. Expressions for the vacuum expectation values <ϕ2>ren and < T 00>ren have been derived by the dimensional regularization method. Comparison with the results obtained by alternative regularization methods is made.

  13. A multidimensional framework of conceptual change for developing chemical equilibrium learning

    NASA Astrophysics Data System (ADS)

    Chanyoo, Wassana; Suwannoi, Paisan; Treagust, David F.

    2018-01-01

    The purposes of this research is to investigate the existing chemical equilibrium lessons in Thailand based on the multidimensional framework of conceptual change, to determine how the existing lessons could enhance students' conceptual change. This research was conducted based on qualitative perspective. Document, observations and interviews were used to collect data. To comprehend all students conceptions, diagnostic tests were applied comprised of The Chemical Equilibrium Diagnostic Test (the CEDT) and The Chemical Equilibrium Test for Reveal Conceptual Change (the CETforRCC). In addition, to study students' motivations, the Motivated Strategies for Learning Questionnaire (the MSLQ) and students' task engagement were applied. Following each perspective of conceptual change - ontological, epistemological, and social/affective - the result showed that the existing chemical equilibrium unit did not enhance students' conceptual change, and some issues were found. The problems obstructed students conceptual change should be remedy under the multidimensional framework of conceptual change. Finally, some suggestions were provided to enhance students' conceptual change in chemical equilibrium effectively

  14. Poverty and Inequality in the Rural Brazilian Amazon: A Multidimensional Approach

    PubMed Central

    Guedes, Gilvan R.; Brondízio, Eduardo S.; Barbieri, Alisson F.; Anne, Resende; Penna-Firme, Rodrigo; D’Antona, Álvaro O.

    2012-01-01

    This paper analyses poverty and inequality dynamics among smallholders along the Transamazon High-way. We measure changes in poverty and inequality for original settlers and new owners, contrasting income-based with multidimensional indices of well-being. Our results show an overall reduction in both poverty and inequality among smallholders, although poverty decline was more pronounced among new owners, while inequality reduction was larger among original settlers. This trend suggests that families have an initial improvement in livelihood and well-being which tends to reach a limit later—a sign of structural limitations common to rural areas and maybe a replication of boom and bust trends in local economies among Amazonian municipalities. In addition, our multidimensional estimates of well-being reveal that some economically viable land use strategies of smallholders (e.g., pasture) may have important ecological implications for the regional landscape. These findings highlight the public policy challenges for fostering sustainable development among rural populations. PMID:22927705

  15. A Heterogeneous Network Based Method for Identifying GBM-Related Genes by Integrating Multi-Dimensional Data.

    PubMed

    Chen Peng; Ao Li

    2017-01-01

    The emergence of multi-dimensional data offers opportunities for more comprehensive analysis of the molecular characteristics of human diseases and therefore improving diagnosis, treatment, and prevention. In this study, we proposed a heterogeneous network based method by integrating multi-dimensional data (HNMD) to identify GBM-related genes. The novelty of the method lies in that the multi-dimensional data of GBM from TCGA dataset that provide comprehensive information of genes, are combined with protein-protein interactions to construct a weighted heterogeneous network, which reflects both the general and disease-specific relationships between genes. In addition, a propagation algorithm with resistance is introduced to precisely score and rank GBM-related genes. The results of comprehensive performance evaluation show that the proposed method significantly outperforms the network based methods with single-dimensional data and other existing approaches. Subsequent analysis of the top ranked genes suggests they may be functionally implicated in GBM, which further corroborates the superiority of the proposed method. The source code and the results of HNMD can be downloaded from the following URL: http://bioinformatics.ustc.edu.cn/hnmd/ .

  16. Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters

    NASA Astrophysics Data System (ADS)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-09-01

    This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.

  17. Analysis of self-similar solutions of multidimensional conservation laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyfitz, Barbara Lee

    2014-02-15

    This project focused on analysis of multidimensional conservation laws, specifically on extensions to the study of self-siminar solutions, a project initiated by the PI. In addition, progress was made on an approach to studying conservation laws of very low regularity; in this research, the context was a novel problem in chromatography. Two graduate students in mathematics were supported during the grant period, and have almost completed their thesis research.

  18. Multidimensional poverty measure and analysis: a case study from Hechi City, China.

    PubMed

    Wang, Yanhui; Wang, Baixue

    2016-01-01

    Aiming at the anti-poverty outline of China and the human-environment sustainable development, we propose a multidimensional poverty measure and analysis methodology for measuring the poverty-stricken counties and their contributing factors. We build a set of multidimensional poverty indicators with Chinese characteristics, integrating A-F double cutoffs, dimensional aggregation and decomposition approach, and GIS spatial analysis to evaluate the poor's multidimensional poverty characteristics under different geographic and socioeconomic conditions. The case study from 11 counties of Hechi City shows that, firstly, each county existed at least four respects of poverty, and overall the poverty level showed the spatial pattern of surrounding higher versus middle lower. Secondly, three main poverty contributing factors were unsafe housing, family health and adults' illiteracy, while the secondary factors include fuel type and children enrollment rate, etc., generally demonstrating strong autocorrelation; in terms of poverty degree, the western of the research area shows a significant aggregation effect, whereas the central and the eastern represent significant spatial heterogeneous distribution. Thirdly, under three kinds of socioeconomic classifications, the intra-classification diversities of H, A, and MPI are greater than their inter-classification ones, while each of the three indexes has a positive correlation with both the rocky desertification degree and topographic fragmentation degree, respectively. This study could help policymakers better understand the local poverty by identifying the poor, locating them and describing their characteristics, so as to take differentiated poverty alleviation measures according to specific conditions of each county.

  19. Dissociation of Self-Motion and Object Motion by Linear Population Decoding That Approximates Marginalization.

    PubMed

    Sasaki, Ryo; Angelaki, Dora E; DeAngelis, Gregory C

    2017-11-15

    We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally. Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading preferences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate marginalization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help to dissociate self-motion and object motion. SIGNIFICANCE STATEMENT The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because multiple properties of the environment may be confounded in sensory signals

  20. Dissociation of Self-Motion and Object Motion by Linear Population Decoding That Approximates Marginalization

    PubMed Central

    Sasaki, Ryo; Angelaki, Dora E.

    2017-01-01

    We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally. Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading preferences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate marginalization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help to dissociate self-motion and object motion. SIGNIFICANCE STATEMENT The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because multiple properties of the environment may be confounded in sensory signals

  1. Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion

    PubMed Central

    Niehorster, Diederick C.

    2017-01-01

    How do we perceive object motion during self-motion using visual information alone? Previous studies have reported that the visual system can use optic flow to identify and globally subtract the retinal motion component resulting from self-motion to recover scene-relative object motion, a process called flow parsing. In this article, we developed a retinal motion nulling method to directly measure and quantify the magnitude of flow parsing (i.e., flow parsing gain) in various scenarios to examine the accuracy and tuning of flow parsing for the visual perception of object motion during self-motion. We found that flow parsing gains were below unity for all displays in all experiments; and that increasing self-motion and object motion speed did not alter flow parsing gain. We conclude that visual information alone is not sufficient for the accurate perception of scene-relative motion during self-motion. Although flow parsing performs global subtraction, its accuracy also depends on local motion information in the retinal vicinity of the moving object. Furthermore, the flow parsing gain was constant across common self-motion or object motion speeds. These results can be used to inform and validate computational models of flow parsing. PMID:28567272

  2. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    PubMed

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  3. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    PubMed Central

    Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok

    2015-01-01

    We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715

  4. Optimizing Preprocessing and Analysis Pipelines for Single-Subject FMRI. I. Standard Temporal Motion and Physiological Noise Correction Methods

    PubMed Central

    Churchill, Nathan W.; Oder, Anita; Abdi, Hervé; Tam, Fred; Lee, Wayne; Thomas, Christopher; Ween, Jon E.; Graham, Simon J.; Strother, Stephen C.

    2016-01-01

    Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747–771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89–95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or “pipeline”) in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation

  5. DocCube: Multi-Dimensional Visualization and Exploration of Large Document Sets.

    ERIC Educational Resources Information Center

    Mothe, Josiane; Chrisment, Claude; Dousset, Bernard; Alaux, Joel

    2003-01-01

    Describes a user interface that provides global visualizations of large document sets to help users formulate the query that corresponds to their information needs. Highlights include concept hierarchies that users can browse to specify and refine information needs; knowledge discovery in databases and texts; and multidimensional modeling.…

  6. Using Multidimensional Scaling To Assess the Dimensionality of Dichotomous Item Data.

    ERIC Educational Resources Information Center

    Meara, Kevin; Robin, Frederic; Sireci, Stephen G.

    2000-01-01

    Investigated the usefulness of multidimensional scaling (MDS) for assessing the dimensionality of dichotomous test data. Focused on two MDS proximity measures, one based on the PC statistic (T. Chen and M. Davidson, 1996) and other, on interitem Euclidean distances. Simulation results show that both MDS procedures correctly identify…

  7. Modelling Mathematics Problem Solving Item Responses Using a Multidimensional IRT Model

    ERIC Educational Resources Information Center

    Wu, Margaret; Adams, Raymond

    2006-01-01

    This research examined students' responses to mathematics problem-solving tasks and applied a general multidimensional IRT model at the response category level. In doing so, cognitive processes were identified and modelled through item response modelling to extract more information than would be provided using conventional practices in scoring…

  8. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    PubMed

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  9. An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction

    NASA Astrophysics Data System (ADS)

    Del Pino, S.; Labourasse, E.; Morel, G.

    2018-06-01

    We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme.

  10. Human comfort response to dominant random motions in longitudinal modes of aircraft motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1980-01-01

    The effects of random vertical and longitudinal accelerations and pitching velocity passenger ride comfort responses were examined on the NASA Langley Visual Motion Simulator. Effects of power spectral density shape were studied for motions where the peak was between 0 and 2 Hz. The subjective rating data and the physical motion data obtained are presented without interpretation or detailed analysis. There existed motions in all other degrees of freedom as well as the particular pair of longitudinal airplane motions studied. These unwanted motions, caused by the characteristics of the simulator may have introduced some interactive effects on passenger responses.

  11. Generalizing DTW to the multi-dimensional case requires an adaptive approach

    PubMed Central

    Hu, Bing; Jin, Hongxia; Wang, Jun; Keogh, Eamonn

    2017-01-01

    In recent years Dynamic Time Warping (DTW) has emerged as the distance measure of choice for virtually all time series data mining applications. For example, virtually all applications that process data from wearable devices use DTW as a core sub-routine. This is the result of significant progress in improving DTW’s efficiency, together with multiple empirical studies showing that DTW-based classifiers at least equal (and generally surpass) the accuracy of all their rivals across dozens of datasets. Thus far, most of the research has considered only the one-dimensional case, with practitioners generalizing to the multi-dimensional case in one of two ways, dependent or independent warping. In general, it appears the community believes either that the two ways are equivalent, or that the choice is irrelevant. In this work, we show that this is not the case. The two most commonly used multi-dimensional DTW methods can produce different classifications, and neither one dominates over the other. This seems to suggest that one should learn the best method for a particular application. However, we will show that this is not necessary; a simple, principled rule can be used on a case-by-case basis to predict which of the two methods we should trust at the time of classification. Our method allows us to ensure that classification results are at least as accurate as the better of the two rival methods, and, in many cases, our method is significantly more accurate. We demonstrate our ideas with the most extensive set of multi-dimensional time series classification experiments ever attempted. PMID:29104448

  12. 12 CFR 19.23 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... argument may be held on written motions except as otherwise directed by the administrative law judge... administrative law judge directs that such motion be reduced to writing. (c) Filing of motions. Motions must be... motion. The administrative law judge shall not rule on any oral or written motion before each party has...

  13. 12 CFR 19.23 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... argument may be held on written motions except as otherwise directed by the administrative law judge... administrative law judge directs that such motion be reduced to writing. (c) Filing of motions. Motions must be... motion. The administrative law judge shall not rule on any oral or written motion before each party has...

  14. 12 CFR 19.23 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... argument may be held on written motions except as otherwise directed by the administrative law judge... administrative law judge directs that such motion be reduced to writing. (c) Filing of motions. Motions must be... motion. The administrative law judge shall not rule on any oral or written motion before each party has...

  15. 12 CFR 19.23 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... argument may be held on written motions except as otherwise directed by the administrative law judge... administrative law judge directs that such motion be reduced to writing. (c) Filing of motions. Motions must be... motion. The administrative law judge shall not rule on any oral or written motion before each party has...

  16. 12 CFR 19.23 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... argument may be held on written motions except as otherwise directed by the administrative law judge... administrative law judge directs that such motion be reduced to writing. (c) Filing of motions. Motions must be... motion. The administrative law judge shall not rule on any oral or written motion before each party has...

  17. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM.

    PubMed

    Singh, Brajesh K; Srivastava, Vineet K

    2015-04-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.

  18. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM

    PubMed Central

    Singh, Brajesh K.; Srivastava, Vineet K.

    2015-01-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639

  19. Interactive multi-objective path planning through a palette-based user interface

    NASA Astrophysics Data System (ADS)

    Shaikh, Meher T.; Goodrich, Michael A.; Yi, Daqing; Hoehne, Joseph

    2016-05-01

    n a problem where a human uses supervisory control to manage robot path-planning, there are times when human does the path planning, and if satisfied commits those paths to be executed by the robot, and the robot executes that plan. In planning a path, the robot often uses an optimization algorithm that maximizes or minimizes an objective. When a human is assigned the task of path planning for robot, the human may care about multiple objectives. This work proposes a graphical user interface (GUI) designed for interactive robot path-planning when an operator may prefer one objective over others or care about how multiple objectives are traded off. The GUI represents multiple objectives using the metaphor of an artist's palette. A distinct color is used to represent each objective, and tradeoffs among objectives are balanced in a manner that an artist mixes colors to get the desired shade of color. Thus, human intent is analogous to the artist's shade of color. We call the GUI an "Adverb Palette" where the word "Adverb" represents a specific type of objective for the path, such as the adverbs "quickly" and "safely" in the commands: "travel the path quickly", "make the journey safely". The novel interactive interface provides the user an opportunity to evaluate various alternatives (that tradeoff between different objectives) by allowing her to visualize the instantaneous outcomes that result from her actions on the interface. In addition to assisting analysis of various solutions given by an optimization algorithm, the palette has additional feature of allowing the user to define and visualize her own paths, by means of waypoints (guiding locations) thereby spanning variety for planning. The goal of the Adverb Palette is thus to provide a way for the user and robot to find an acceptable solution even though they use very different representations of the problem. Subjective evaluations suggest that even non-experts in robotics can carry out the planning tasks with a

  20. Probes for multidimensional nanospectroscopic imaging and methods of fabrication thereof

    DOEpatents

    Weber-Bargioni, Alexander; Cabrini, Stefano; Bao, Wei; Melli, Mauro; Yablonovitch, Eli; Schuck, Peter J

    2015-03-17

    This disclosure provides systems, methods, and apparatus related to probes for multidimensional nanospectroscopic imaging. In one aspect, a method includes providing a transparent tip comprising a dielectric material. A four-sided pyramidal-shaped structure is formed at an apex of the transparent tip using a focused ion beam. Metal layers are deposited over two opposing sides of the four-sided pyramidal-shaped structure.

  1. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  2. Evaluating Change in Behavioral Preferences: Multidimensional Scaling Single-Ideal Point Model

    ERIC Educational Resources Information Center

    Ding, Cody

    2016-01-01

    The purpose of the article is to propose a multidimensional scaling single-ideal point model as a method to evaluate changes in individuals' preferences under the explicit methodological framework of behavioral preference assessment. One example is used to illustrate the approach for a clear idea of what this approach can accomplish.

  3. Uncovering Productive Morphosyntax in French-Learning Toddlers: A Multidimensional Methodology Perspective

    ERIC Educational Resources Information Center

    Barriére, Isabelle; Goyet, Louise; Kresh, Sarah; Legendre, Géraldine; Nazzi, Thierry

    2016-01-01

    The present study applies a multidimensional methodological approach to the study of the acquisition of morphosyntax. It focuses on evaluating the degree of productivity of an infrequent subject-verb agreement pattern in the early acquisition of French and considers the explanatory role played by factors such as input frequency, semantic…

  4. Multidimensional Social Control Variables as Predictors of Drunkenness among French Adolescents

    ERIC Educational Resources Information Center

    Begue, Laurent; Roche, Sebastian

    2009-01-01

    Background: Previous studies of the determinants of drunkenness among youth investigated the contribution of a limited range of variables measuring social control. For the first time in France, this study including 1295 participants aged 14-19 years aimed at assessing the relative contribution of a broad range of multidimensional variables…

  5. [Development and application of a multidimensional suicide prevention program for Korean elders by utilizing a community network].

    PubMed

    Jo, Kae Hwa; Kim, Yeong Kyeong

    2008-06-01

    The purpose of this study was to develop a multidimensional suicide prevention program for Korean elders by utilizing a community network and to evaluate its effect. A non-equivalent control group pretest-posttest design was used. The subjects were recruited from two different elderly institutions located in D city and K province, Korea. Nineteen subjects in the control group received no intervention and 20 subjects in the experimental group received a multidimensional suicide prevention program. There were more significant decreases in depression, suicide ideation, and increases in life satisfaction in the experimental group compared to the control group. According to the above results, the multidimensional suicide prevention program for Korean elders decreased stressful events like depression, and suicide ideation and increased life satisfaction through the community network. These findings suggest that this program can be used as an efficient intervention for elders in a critical situation.

  6. Multidimensional poverty in rural Mozambique: a new metric for evaluating public health interventions.

    PubMed

    Victor, Bart; Blevins, Meridith; Green, Ann F; Ndatimana, Elisée; González-Calvo, Lázaro; Fischer, Edward F; Vergara, Alfredo E; Vermund, Sten H; Olupona, Omo; Moon, Troy D

    2014-01-01

    Poverty is a multidimensional phenomenon and unidimensional measurements have proven inadequate to the challenge of assessing its dynamics. Dynamics between poverty and public health intervention is among the most difficult yet important problems faced in development. We sought to demonstrate how multidimensional poverty measures can be utilized in the evaluation of public health interventions; and to create geospatial maps of poverty deprivation to aid implementers in prioritizing program planning. Survey teams interviewed a representative sample of 3,749 female heads of household in 259 enumeration areas across Zambézia in August-September 2010. We estimated a multidimensional poverty index, which can be disaggregated into context-specific indicators. We produced an MPI comprised of 3 dimensions and 11 weighted indicators selected from the survey. Households were identified as "poor" if were deprived in >33% of indicators. Our MPI is an adjusted headcount, calculated by multiplying the proportion identified as poor (headcount) and the poverty gap (average deprivation). Geospatial visualizations of poverty deprivation were created as a contextual baseline for future evaluation. In our rural (96%) and urban (4%) interviewees, the 33% deprivation cut-off suggested 58.2% of households were poor (29.3% of urban vs. 59.5% of rural). Among the poor, households experienced an average deprivation of 46%; thus the MPI/adjusted headcount is 0.27 ( = 0.58×0.46). Of households where a local language was the primary language, 58.6% were considered poor versus Portuguese-speaking households where 73.5% were considered non-poor. Living standard is the dominant deprivation, followed by health, and then education. Multidimensional poverty measurement can be integrated into program design for public health interventions, and geospatial visualization helps examine the impact of intervention deployment within the context of distinct poverty conditions. Both permit program

  7. Multidimensional Poverty in Rural Mozambique: A New Metric for Evaluating Public Health Interventions

    PubMed Central

    Victor, Bart; Blevins, Meridith; Green, Ann F.; Ndatimana, Elisée; González-Calvo, Lázaro; Fischer, Edward F.; Vergara, Alfredo E.; Vermund, Sten H.; Olupona, Omo; Moon, Troy D.

    2014-01-01

    Background Poverty is a multidimensional phenomenon and unidimensional measurements have proven inadequate to the challenge of assessing its dynamics. Dynamics between poverty and public health intervention is among the most difficult yet important problems faced in development. We sought to demonstrate how multidimensional poverty measures can be utilized in the evaluation of public health interventions; and to create geospatial maps of poverty deprivation to aid implementers in prioritizing program planning. Methods Survey teams interviewed a representative sample of 3,749 female heads of household in 259 enumeration areas across Zambézia in August-September 2010. We estimated a multidimensional poverty index, which can be disaggregated into context-specific indicators. We produced an MPI comprised of 3 dimensions and 11 weighted indicators selected from the survey. Households were identified as “poor” if were deprived in >33% of indicators. Our MPI is an adjusted headcount, calculated by multiplying the proportion identified as poor (headcount) and the poverty gap (average deprivation). Geospatial visualizations of poverty deprivation were created as a contextual baseline for future evaluation. Results In our rural (96%) and urban (4%) interviewees, the 33% deprivation cut-off suggested 58.2% of households were poor (29.3% of urban vs. 59.5% of rural). Among the poor, households experienced an average deprivation of 46%; thus the MPI/adjusted headcount is 0.27 ( = 0.58×0.46). Of households where a local language was the primary language, 58.6% were considered poor versus Portuguese-speaking households where 73.5% were considered non-poor. Living standard is the dominant deprivation, followed by health, and then education. Conclusions Multidimensional poverty measurement can be integrated into program design for public health interventions, and geospatial visualization helps examine the impact of intervention deployment within the context of distinct

  8. Physical Activity Motivation in Late Adolescence: Refinement of a Recent Multidimensional Model

    ERIC Educational Resources Information Center

    Martin, Andrew J.

    2010-01-01

    Recent research (Martin et al., 2006) presented a new, multidimensional approach to physical activity motivation (using the Physical Activity Motivation Scale [PAMS]) operationalized through four factors: adaptive cognition, adaptive behavior, impeding/maladaptive cognition, and maladaptive behavior. The present study extends this early research…

  9. A Multidimensional Analysis of the Mental Health of Graduate Counselors in Training.

    ERIC Educational Resources Information Center

    White, Paul E.; Franzoni, Janet B.

    1990-01-01

    Examined level of mental health of 180 graduate counselor trainees. Gathered multidimensional mental health information using seven clinical scales of Minnesota Multiphasic Personality Inventory (MMPI), Adult Nowicki-Strickland Internal-External Control Scale, Life Style Personality Inventory, and Coping Resources Inventory for Stress. Trainees…

  10. The Multidimensional Loss Scale: validating a cross-cultural instrument for measuring loss.

    PubMed

    Vromans, Lyn; Schweitzer, Robert D; Brough, Mark

    2012-04-01

    The Multidimensional Loss Scale (MLS) represents the first instrument designed specifically to index Experience of Loss Events and Loss Distress across multiple domains (cultural, social, material, and intrapersonal) relevant to refugee settlement. Recently settled Burmese adult refugees (N = 70) completed a questionnaire battery, including MLS items. Analyses explored MLS internal consistency, convergent and divergent validity, and factor structure. Cronbach alphas indicated satisfactory internal consistency for Experience of Loss Events (0.85) and Loss Distress (0.92), reflecting a unitary construct of multidimensional loss. Loss Distress did not correlate with depression or anxiety symptoms and correlated moderately with interpersonal grief and trauma symptoms, supporting divergent and convergent validity. Factor analysis provided preliminary support for a five-factor model: Loss of Symbolic Self, Loss of Interdependence, Loss of Home, Interpersonal Loss, and Loss of Intrapersonal Integrity. Received well by participants, the new scale shows promise for application in future research and practice.

  11. Objects in Motion

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  12. A Replication Study on the Multi-Dimensionality of Online Social Presence

    ERIC Educational Resources Information Center

    Mykota, David B.

    2015-01-01

    The purpose of the present study is to conduct an external replication into the multi-dimensionality of social presence as measured by the Computer-Mediated Communication Questionnaire (Tu, 2005). Online social presence is one of the more important constructs for determining the level of interaction and effectiveness of learning in an online…

  13. Multidimensional Framework for the Analysis of Innovations at Universities in Catalonia

    ERIC Educational Resources Information Center

    Tomas, Marina; Castro, Diego

    2011-01-01

    The purpose of this paper is to contribute to a better understanding of the nature of change processes and dynamics at Catalan universities. A multidimensional approach was adopted to examine the change processes and to analyse organizational innovation in higher education. The paper draws involved in each particular innovation. Analysis of these…

  14. Effects of Aerobic Exercise on Female Body Esteem: A Multidimensional Approach.

    ERIC Educational Resources Information Center

    Franzoi, Stephen L.

    Although research has shown that regularly engaging in vigorous activity has both physical and mental benefits, including a more positive evaluation of one's own body, the multidimensional nature of people's body attitudes has not been considered. The Body Esteem Scale (BES) was developed to identify and assess different body esteem dimensions.…

  15. Differentially Private Synthesization of Multi-Dimensional Data using Copula Functions

    PubMed Central

    Li, Haoran; Xiong, Li; Jiang, Xiaoqian

    2014-01-01

    Differential privacy has recently emerged in private statistical data release as one of the strongest privacy guarantees. Most of the existing techniques that generate differentially private histograms or synthetic data only work well for single dimensional or low-dimensional histograms. They become problematic for high dimensional and large domain data due to increased perturbation error and computation complexity. In this paper, we propose DPCopula, a differentially private data synthesization technique using Copula functions for multi-dimensional data. The core of our method is to compute a differentially private copula function from which we can sample synthetic data. Copula functions are used to describe the dependence between multivariate random vectors and allow us to build the multivariate joint distribution using one-dimensional marginal distributions. We present two methods for estimating the parameters of the copula functions with differential privacy: maximum likelihood estimation and Kendall’s τ estimation. We present formal proofs for the privacy guarantee as well as the convergence property of our methods. Extensive experiments using both real datasets and synthetic datasets demonstrate that DPCopula generates highly accurate synthetic multi-dimensional data with significantly better utility than state-of-the-art techniques. PMID:25405241

  16. Influence of fusion dynamics on fission observables: A multidimensional analysis

    NASA Astrophysics Data System (ADS)

    Schmitt, C.; Mazurek, K.; Nadtochy, P. N.

    2018-01-01

    An attempt to unfold the respective influence of the fusion and fission stages on typical fission observables, and namely the neutron prescission multiplicity, is proposed. A four-dimensional dynamical stochastic Langevin model is used to calculate the decay by fission of excited compound nuclei produced in a wide set of heavy-ion collisions. The comparison of the results from such a calculation and experimental data is discussed, guided by predictions of the dynamical deterministic HICOL code for the compound-nucleus formation time. While the dependence of the latter on the entrance-channel properties can straigthforwardly explain some observations, a complex interplay between the various parameters of the reaction is found to occur in other cases. A multidimensional analysis of the respective role of these parameters, including entrance-channel asymmetry, bombarding energy, compound-nucleus fissility, angular momentum, and excitation energy, is proposed. It is shown that, depending on the size of the system, apparent inconsistencies may be deduced when projecting onto specific ordering parameters. The work suggests the possibility of delicate compensation effects in governing the measured fission observables, thereby highlighting the necessity of a multidimensional discussion.

  17. Situation exploration in a persistent surveillance system with multidimensional data

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad S.

    2013-03-01

    There is an emerging need for fusing hard and soft sensor data in an efficient surveillance system to provide accurate estimation of situation awareness. These mostly abstract, multi-dimensional and multi-sensor data pose a great challenge to the user in performing analysis of multi-threaded events efficiently and cohesively. To address this concern an interactive Visual Analytics (VA) application is developed for rapid assessment and evaluation of different hypotheses based on context-sensitive ontology spawn from taxonomies describing human/human and human/vehicle/object interactions. A methodology is described here for generating relevant ontology in a Persistent Surveillance System (PSS) and demonstrates how they can be utilized in the context of PSS to track and identify group activities pertaining to potential threats. The proposed VA system allows for visual analysis of raw data as well as metadata that have spatiotemporal representation and content-based implications. Additionally in this paper, a technique for rapid search of tagged information contingent to ranking and confidence is explained for analysis of multi-dimensional data. Lastly the issue of uncertainty associated with processing and interpretation of heterogeneous data is also addressed.

  18. NMRPipe: a multidimensional spectral processing system based on UNIX pipes.

    PubMed

    Delaglio, F; Grzesiek, S; Vuister, G W; Zhu, G; Pfeifer, J; Bax, A

    1995-11-01

    The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.

  19. Monte Carlo methods for multidimensional integration for European option pricing

    NASA Astrophysics Data System (ADS)

    Todorov, V.; Dimov, I. T.

    2016-10-01

    In this paper, we illustrate examples of highly accurate Monte Carlo and quasi-Monte Carlo methods for multiple integrals related to the evaluation of European style options. The idea is that the value of the option is formulated in terms of the expectation of some random variable; then the average of independent samples of this random variable is used to estimate the value of the option. First we obtain an integral representation for the value of the option using the risk neutral valuation formula. Then with an appropriations change of the constants we obtain a multidimensional integral over the unit hypercube of the corresponding dimensionality. Then we compare a specific type of lattice rules over one of the best low discrepancy sequence of Sobol for numerical integration. Quasi-Monte Carlo methods are compared with Adaptive and Crude Monte Carlo techniques for solving the problem. The four approaches are completely different thus it is a question of interest to know which one of them outperforms the other for evaluation multidimensional integrals in finance. Some of the advantages and disadvantages of the developed algorithms are discussed.

  20. PCA feature extraction for change detection in multidimensional unlabeled data.

    PubMed

    Kuncheva, Ludmila I; Faithfull, William J

    2014-01-01

    When classifiers are deployed in real-world applications, it is assumed that the distribution of the incoming data matches the distribution of the data used to train the classifier. This assumption is often incorrect, which necessitates some form of change detection or adaptive classification. While there has been a lot of work on change detection based on the classification error monitored over the course of the operation of the classifier, finding changes in multidimensional unlabeled data is still a challenge. Here, we propose to apply principal component analysis (PCA) for feature extraction prior to the change detection. Supported by a theoretical example, we argue that the components with the lowest variance should be retained as the extracted features because they are more likely to be affected by a change. We chose a recently proposed semiparametric log-likelihood change detection criterion that is sensitive to changes in both mean and variance of the multidimensional distribution. An experiment with 35 datasets and an illustration with a simple video segmentation demonstrate the advantage of using extracted features compared to raw data. Further analysis shows that feature extraction through PCA is beneficial, specifically for data with multiple balanced classes.

  1. A multidimensional representation model of geographic features

    USGS Publications Warehouse

    Usery, E. Lynn; Timson, George; Coletti, Mark

    2016-01-28

    A multidimensional model of geographic features has been developed and implemented with data from The National Map of the U.S. Geological Survey. The model, programmed in C++ and implemented as a feature library, was tested with data from the National Hydrography Dataset demonstrating the capability to handle changes in feature attributes, such as increases in chlorine concentration in a stream, and feature geometry, such as the changing shoreline of barrier islands over time. Data can be entered directly, from a comma separated file, or features with attributes and relationships can be automatically populated in the model from data in the Spatial Data Transfer Standard format.

  2. The Use of Motion-Based Technology for People Living With Dementia or Mild Cognitive Impairment: A Literature Review.

    PubMed

    Dove, Erica; Astell, Arlene J

    2017-01-11

    The number of people living with dementia and mild cognitive impairment (MCI) is increasing substantially. Although there are many research efforts directed toward the prevention and treatment of dementia and MCI, it is also important to learn more about supporting people to live well with dementia or MCI through cognitive, physical, and leisure means. While past research suggests that technology can be used to support positive aging for people with dementia or MCI, the use of motion-based technology has not been thoroughly explored with this population. The aim of this study was to identify and synthesize the current literature involving the use of motion-based technology for people living with dementia or MCI by identifying themes while noting areas requiring further research. A systematic review of studies involving the use of motion-based technology for human participants living with dementia or MCI was conducted. A total of 31 articles met the inclusion criteria. Five questions are addressed concerning (1) context of use; (2) population included (ie, dementia, MCI, or both); (3) hardware and software selection; (4) use of motion-based technology in a group or individual setting; and (5) details about the introduction, teaching, and support methods applied when using the motion-based technology with people living with dementia or MCI. The findings of this review confirm the potential of motion-based technology to improve the lives of people living with dementia or MCI. The use of this technology also spans across several contexts including cognitive, physical, and leisure; all of which support multidimensional well-being. The literature provides evidence that people living with dementia or MCI can learn how to use this technology and that they enjoy doing so. However, there is a lack of information provided in the literature regarding the introduction, training, and support methods applied when using this form of technology with this population. Future research

  3. Item Selection in Multidimensional Computerized Adaptive Testing--Gaining Information from Different Angles

    ERIC Educational Resources Information Center

    Wang, Chun; Chang, Hua-Hua

    2011-01-01

    Over the past thirty years, obtaining diagnostic information from examinees' item responses has become an increasingly important feature of educational and psychological testing. The objective can be achieved by sequentially selecting multidimensional items to fit the class of latent traits being assessed, and therefore Multidimensional…

  4. The Effects of Verbal Pretraining on the Multidimensional Generalization Behavior of Children

    ERIC Educational Resources Information Center

    Spiker, Charles C.; And Others

    1972-01-01

    Predictions for multidimensional generalization were derived from Hull-Spence learning theory, and an experiment is reported that was designed to test this aspect of the theory. Alternative to this analysis is presented in PS 502 062; authors respond in PS 502 063. (Authors/MB)

  5. Assessment of the Hypochondriasis Domain: The Multidimensional Inventory of Hypochondriacal Traits (MIHT)

    ERIC Educational Resources Information Center

    Longley, Susan L.; Watson, David; Noyes, Russell, Jr.

    2005-01-01

    Although hypochondriasis is associated with the costly use of unnecessary medical resources, this mental health problem remains largely neglected. A lack of clear conceptual models and valid measures has impeded accurate assessment and hindered progress. The Multidimensional Inventory of Hypochondriacal Traits (MIHT) addresses these deficiencies…

  6. Multidimensional Assessment of Resilience in Mothers Who Are Child Sexual Abuse Survivors

    ERIC Educational Resources Information Center

    Wright, Margaret O'Dougherty; Fopma-Loy, Joan; Fischer, Stephanie

    2005-01-01

    Objective: There has been relatively little attention given to positive adaptation following childhood sexual abuse (CSA), and typically such resilience has been explored primarily in the intrapersonal domain. This study explored questions about later resilience following CSA within a multidimensional framework by assessing resilience across…

  7. Self-Concepts in Reading, Writing, Listening, and Speaking: A Multidimensional and Hierarchical Structure and Its Generalizability across Native and Foreign Languages

    ERIC Educational Resources Information Center

    Arens, A. Katrin; Jansen, Malte

    2016-01-01

    Academic self-concept has been conceptualized as a multidimensional and hierarchical construct. Previous research has mostly focused on its multidimensionality, distinguishing between verbal and mathematical self-concept domains, and only a few studies have examined the factorial structure within specific self-concept domains. The present study…

  8. Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex.

    PubMed

    Thompson, James C; Baccus, Wendy

    2012-01-02

    Psychophysical and computational studies have provided evidence that both form and motion cues are used in the perception of biological motion. However, neuroimaging and neurophysiological studies have suggested that the neural processing of actions in temporal cortex might rely on form cues alone. Here we examined the contribution of form and motion to the spatial pattern of response to biological motion in ventral and lateral occipitotemporal cortex, using functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA). We found that selectivity to intact versus scrambled biological motion in lateral occipitotemporal cortex was correlated with selectivity for bodies and not for motion. However, this appeared to be due to the fact that subtracting scrambled from intact biological motion removes any contribution of local motion cues. Instead, we found that form and motion made independent contributions to the spatial pattern of responses to biological motion in lateral occipitotemporal regions MT, MST, and the extrastriate body area. The motion contribution was position-dependent, and consistent with the representation of contra- and ipsilateral visual fields in MT and MST. In contrast, only form contributed to the response to biological motion in the fusiform body area, with a bias towards central versus peripheral presentation. These results indicate that the pattern of response to biological motion in ventral and lateral occipitotemporal cortex reflects the linear combination of responses to form and motion. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Vacuum polarization in the field of a multidimensional global monopole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grats, Yu. V., E-mail: grats@phys.msu.ru; Spirin, P. A.

    2016-11-15

    An approximate expression for the Euclidean Green function of a massless scalar field in the spacetime of a multidimensional global monopole has been derived. Expressions for the vacuum expectation values 〈ϕ{sup 2}〉{sub ren} and 〈T{sub 00}〉{sub ren} have been derived by the dimensional regularization method. Comparison with the results obtained by alternative regularization methods is made.

  10. Multidimensional signal modulation and/or demodulation for data communications

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2008-03-04

    Systems and methods are described for multidimensional signal modulation and/or demodulation for data communications. A method includes modulating a carrier signal in a first domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; modulating the carrier signal in a second domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; and modulating the carrier signal in a third domain selected from the group consisting of phase, frequency, amplitude, polarization and spread.

  11. Current Issues and Trends in Multidimensional Sensing Technologies for Digital Media

    NASA Astrophysics Data System (ADS)

    Nagata, Noriko; Ohki, Hidehiro; Kato, Kunihito; Koshimizu, Hiroyasu; Sagawa, Ryusuke; Fujiwara, Takayuki; Yamashita, Atsushi; Hashimoto, Manabu

    Multidimensional sensing (MDS) technologies have numerous applications in the field of digital media, including the development of audio and visual equipment for human-computer interaction (HCI) and manufacture of data storage devices; furthermore, MDS finds applications in the fields of medicine and marketing, i.e., in e-marketing and the development of diagnosis equipment.

  12. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administrative Law Judge shall rule upon all motions filed or made prior to the filing of his initial or... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made...

  13. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administrative Law Judge shall rule upon all motions filed or made prior to the filing of his initial or... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made...

  14. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administrative Law Judge shall rule upon all motions filed or made prior to the filing of his initial or... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made...

  15. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administrative Law Judge shall rule upon all motions filed or made prior to the filing of his initial or... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made...

  16. 40 CFR 164.60 - Motions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administrative Law Judge shall rule upon all motions filed or made prior to the filing of his initial or... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Motions. 164.60 Section 164.60... (Other Than Expedited Hearings) Motions § 164.60 Motions. (a) General. All motions, except those made...

  17. Motion Simulator

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Visitors to StenniSphere can feel the motion of a ride to Mars with a ride on StenniSphere's full motion simulator. The simulator is the only attraction at StenniSphere for which there is a charge. Adult rides are $4 and children ride for $3. Group discounts are also available.

  18. Cumulative area of peaks in a multidimensional high performance liquid chromatogram.

    PubMed

    Stevenson, Paul G; Guiochon, Georges

    2013-09-20

    An algorithm was developed to recognize peaks in a multidimensional separation and calculate their cumulative peak area. To find the retention times of peaks in a one dimensional chromatogram, the Savitzky-Golay smoothing filter was used to smooth and find the first through third derivatives of the experimental profiles. Close examination of the shape of these curves informs on the number of peaks that are present and provides starting values for fitting theoretical profiles. Due to the nature of comprehensive multidimensional HPLC, adjacent cut fractions may contain compounds common to more than one cut fraction. The algorithm determines which components were common in adjacent cuts and subsequently calculates the area of a two-dimensional peak profile by interpolating the surface of the 2D peaks between adjacent peaks. This algorithm was tested by calculating the cumulative peak area of a series of 2D-HPLC separations of alkylbenzenes, phenol and caffeine with varied concentrations. A good relationship was found between the concentration and the cumulative peak area. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. What motion is: William Neile and the laws of motion.

    PubMed

    Kemeny, Max

    2017-07-01

    In 1668-1669 William Neile and John Wallis engaged in a protracted correspondence regarding the nature of motion. Neile was unhappy with the laws of motion that had been established by the Royal Society in three papers published in 1668, deeming them not explanations of motion at all, but mere descriptions. Neile insisted that science could not be informative without a discussion of causes, meaning that Wallis's purely kinematic account of collision could not be complete. Wallis, however, did not consider Neile's objections to his work to be serious. Rather than engage in a discussion of the proper place of natural philosophy in science, Wallis decided to show how Neile's preferred treatment of motion lead to absurd conclusions. This dispute is offered as a case study of dispute resolution within the early Royal Society.

  20. Early Improper Motion Detection in Golf Swings Using Wearable Motion Sensors: The First Approach

    PubMed Central

    Stančin, Sara; Tomažič, Sašo

    2013-01-01

    This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement. PMID:23752563

  1. Early improper motion detection in golf swings using wearable motion sensors: the first approach.

    PubMed

    Stančin, Sara; Tomažič, Sašo

    2013-06-10

    This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement.

  2. The Psychologist Said Quickly, “Dialogue Descriptions Modulate Reading Speed!”

    PubMed Central

    Stites, Mallory C.; Luke, Steven G.; Christianson, Kiel

    2012-01-01

    The current study investigates whether the semantic content of a dialogue description can affect reading times on an embedded quote to determine if the speed at which a character is described as saying a quote influences how quickly it is read. Yao and Scheepers (2011) previously found that readers were faster to read direct quotes when the preceding context implied that the talker generally spoke quickly, an effect attributed to perceptual simulation of talker speed. The current study manipulated the speed of a physical action performed by the speaker independently from character talking rate to determine if these sources have separable effects on perceptual simulation of a direct quote. Results showed that readers spent less time reading direct quotes described as being said quickly compared to slowly (e.g., John walked/bolted into the room and said energetically/nonchalantly, “I finally found my car keys”), an effect that was not present when a nearly identical phrase was presented as an indirect quote (e.g., John…said energetically that he finally found his car keys). The speed of the character’s movement did not affect direct quote reading times. Furthermore, fast adverbs were themselves read significantly faster than slow adverbs, an effect we attribute to implicit effects on the eye movement program stemming from automatically activated semantic features of the adverbs. Our findings add to the literature on perceptual simulation by showing that these effects can be instantiated with only a single adverb, and are strong enough to override effects of global sentence speed. PMID:22927027

  3. 40 CFR 305.23 - Motions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false Motions. 305.23 Section 305.23... Motions. (a) General. All motions, except those made orally on the record during a hearing, shall: be in... motions shall be served as provided by § 305.5(b)(2)(i). (b) Response to motions. A party's response to...

  4. Avoiding Degeneracy in Multidimensional Unfolding by Penalizing on the Coefficient of Variation

    ERIC Educational Resources Information Center

    Busing, Frank M. T. A.; Groenen, Patrick J. K.; Heiser, Willem J.

    2005-01-01

    Multidimensional unfolding methods suffer from the degeneracy problem in almost all circumstances. Most degeneracies are easily recognized: the solutions are perfect but trivial, characterized by approximately equal distances between points from different sets. A definition of an absolutely degenerate solution is proposed, which makes clear that…

  5. Modeling respiratory motion for reducing motion artifacts in 4D CT images.

    PubMed

    Zhang, Yongbin; Yang, Jinzhong; Zhang, Lifei; Court, Laurence E; Balter, Peter A; Dong, Lei

    2013-04-01

    Four-dimensional computed tomography (4D CT) images have been recently adopted in radiation treatment planning for thoracic and abdominal cancers to explicitly define respiratory motion and anatomy deformation. However, significant image distortions (artifacts) exist in 4D CT images that may affect accurate tumor delineation and the shape representation of normal anatomy. In this study, the authors present a patient-specific respiratory motion model, based on principal component analysis (PCA) of motion vectors obtained from deformable image registration, with the main goal of reducing image artifacts caused by irregular motion during 4D CT acquisition. For a 4D CT image set of a specific patient, the authors calculated displacement vector fields relative to a reference phase, using an in-house deformable image registration method. The authors then used PCA to decompose each of the displacement vector fields into linear combinations of principal motion bases. The authors have demonstrated that the regular respiratory motion of a patient can be accurately represented by a subspace spanned by three principal motion bases and their projections. These projections were parameterized using a spline model to allow the reconstruction of the displacement vector fields at any given phase in a respiratory cycle. Finally, the displacement vector fields were used to deform the reference CT image to synthesize CT images at the selected phase with much reduced image artifacts. The authors evaluated the performance of the in-house deformable image registration method using benchmark datasets consisting of ten 4D CT sets annotated with 300 landmark pairs that were approved by physicians. The initial large discrepancies across the landmark pairs were significantly reduced after deformable registration, and the accuracy was similar to or better than that reported by state-of-the-art methods. The proposed motion model was quantitatively validated on 4D CT images of a phantom and a

  6. Multidimensional assessment of spirituality/religion in patients with HIV: conceptual framework and empirical refinement.

    PubMed

    Szaflarski, Magdalena; Kudel, Ian; Cotton, Sian; Leonard, Anthony C; Tsevat, Joel; Ritchey, P Neal

    2012-12-01

    A decade ago, an expert panel developed a framework for measuring spirituality/religion in health research (Brief Multidimensional Measure of Religiousness/Spirituality), but empirical testing of this framework has been limited. The purpose of this study was to determine whether responses to items across multiple measures assessing spirituality/religion by 450 patients with HIV replicate this model. We hypothesized a six-factor model underlying a collective of 56 items, but results of confirmatory factor analyses suggested eight dimensions: Meaning/Peace, Tangible Connection to the Divine, Positive Religious Coping, Love/Appreciation, Negative Religious Coping, Positive Congregational Support, Negative Congregational Support, and Cultural Practices. This study corroborates parts of the factor structure underlying the Brief Multidimensional Measure of Religiousness/Spirituality and some recent refinements of the original framework.

  7. The Use of Interactive Raster Graphics in the Display and Manipulation of Multidimensional Data

    NASA Technical Reports Server (NTRS)

    Anderson, D. C.

    1981-01-01

    Techniques for the review, display, and manipulation of multidimensional data are developed and described. Multidimensional data is meant in this context to describe scalar data associated with a three dimensional geometry or otherwise too complex to be well represented by traditional graphs. Raster graphics techniques are used to display a shaded image of a three dimensional geometry. The use of color to represent scalar data associated with the geometries in shaded images is explored. Distinct hues are associated with discrete data ranges, thus emulating the traditional representation of data with isarithms, or lines of constant numerical value. Data ranges are alternatively associated with a continuous spectrum of hues to show subtler data trends. The application of raster graphics techniques to the display of bivariate functions is explored.

  8. Factors associated with multidimensional aspect of post-stroke fatigue in acute stroke period.

    PubMed

    Mutai, Hitoshi; Furukawa, Tomomi; Houri, Ayumi; Suzuki, Akihito; Hanihara, Tokiji

    2017-04-01

    Post-stroke fatigue (PSF) is a frequent and distressing consequence of stroke, and can be both acute and long lasting. We aimed to investigate multidimensional aspects of acute PSF and to determine the clinical factors relevant to acute PSF. We collected data of 101 patients admitted to the hospital for acute stroke. PSF was assessed using the Multidimensional Fatigue Inventory within 2 weeks of stroke. Measures included Mini-Mental State Examination, Hospital Anxiety and Depression Scale, and Functional Independence Measure. Stroke character, lesion location, and clinical variables that potentially influence PSF were also collected. The prevalence of pathological fatigue is 56.4% within 2 weeks of stroke. Binary logistic regression analysis revealed that anxiety was the only predictor for presence of PSF (OR=1.32, 95% CI: 1.13-1.53, P<0.001). Multivariate stepwise regression analysis showed anxiety, right lesion side, thalamus, and/or brainstem were independently associated with general fatigue, right lesion side, depression, diabetes mellitus, and anxiety with physical fatigue, depression with reduced activity, depression, and BMI with reduced motivation, depression, and diabetes mellitus with mental fatigue. PSF was highly prevalent in the acute phase, and specific factors including lesion location (right side lesion, thalamic and brainstem lesion), anxiety, and depression were independently associated with multidimensional aspects of PSF. Further study is needed to elucidate how specific structural lesions and anxiety symptoms relate to the development of early fatigue following stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    PubMed

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

  10. Multidimensional Adaptation in MAS Organizations.

    PubMed

    Alberola, Juan M; Julian, Vicente; Garcia-Fornes, Ana

    2013-04-01

    Organization adaptation requires determining the consequences of applying changes not only in terms of the benefits provided but also measuring the adaptation costs as well as the impact that these changes have on all of the components of the organization. In this paper, we provide an approach for adaptation in multiagent systems based on a multidimensional transition deliberation mechanism (MTDM). This approach considers transitions in multiple dimensions and is aimed at obtaining the adaptation with the highest potential for improvement in utility based on the costs of adaptation. The approach provides an accurate measurement of the impact of the adaptation since it determines the organization that is to be transitioned to as well as the changes required to carry out this transition. We show an example of adaptation in a service provider network environment in order to demonstrate that the measurement of the adaptation consequences taken by the MTDM improves the organization performance more than the other approaches.

  11. Motion Cueing Algorithm Development: New Motion Cueing Program Implementation and Tuning

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.

    2005-01-01

    A computer program has been developed for the purpose of driving the NASA Langley Research Center Visual Motion Simulator (VMS). This program includes two new motion cueing algorithms, the optimal algorithm and the nonlinear algorithm. A general description of the program is given along with a description and flowcharts for each cueing algorithm, and also descriptions and flowcharts for subroutines used with the algorithms. Common block variable listings and a program listing are also provided. The new cueing algorithms have a nonlinear gain algorithm implemented that scales each aircraft degree-of-freedom input with a third-order polynomial. A description of the nonlinear gain algorithm is given along with past tuning experience and procedures for tuning the gain coefficient sets for each degree-of-freedom to produce the desired piloted performance. This algorithm tuning will be needed when the nonlinear motion cueing algorithm is implemented on a new motion system in the Cockpit Motion Facility (CMF) at the NASA Langley Research Center.

  12. Dynamic visual attention: motion direction versus motion magnitude

    NASA Astrophysics Data System (ADS)

    Bur, A.; Wurtz, P.; Müri, R. M.; Hügli, H.

    2008-02-01

    Defined as an attentive process in the context of visual sequences, dynamic visual attention refers to the selection of the most informative parts of video sequence. This paper investigates the contribution of motion in dynamic visual attention, and specifically compares computer models designed with the motion component expressed either as the speed magnitude or as the speed vector. Several computer models, including static features (color, intensity and orientation) and motion features (magnitude and vector) are considered. Qualitative and quantitative evaluations are performed by comparing the computer model output with human saliency maps obtained experimentally from eye movement recordings. The model suitability is evaluated in various situations (synthetic and real sequences, acquired with fixed and moving camera perspective), showing advantages and inconveniences of each method as well as preferred domain of application.

  13. Recovery of Near-Fault Ground Motion by Introducing Rotational Motions

    NASA Astrophysics Data System (ADS)

    Chiu, H. C.

    2014-12-01

    Near-fault ground motion is the key data to seismologists for revealing the seismic faulting and earthquake physics and strong-motion data is the only near-fault seismogram that can keep on-scale recording in a major earthquake. Unfortunately, this type of data might be contaminated by the rotation induced effects such as the centrifugal acceleration and the gravity effects. We analyze these effects based on a set of collocated rotation-translation data of small to moderate earthquakes. Results show these rotation effects could be negligible in small ground motion, but they might have a radical growing in the near-fault/extremely large ground motions. In order to extract more information from near-fault seismogram for improving our understating of seismic faulting and earthquake physics, it requires six-component collocated rotation-translation records to reduce or remove these effects.

  14. Prediction of Multidimensional Fatigue After Childhood Brain Injury.

    PubMed

    Crichton, Alison J; Babl, Franz; Oakley, Ed; Greenham, Mardee; Hearps, Stephen; Delzoppo, Carmel; Hutchison, Jamie; Beauchamp, Miriam; Anderson, Vicki A

    To determine (1) the presence of fatigue symptoms and predictors of fatigue after childhood brain injury and examine (2) the feasibility, reliability, and validity of a multidimensional fatigue measure (PedsQL Multidimensional Fatigue Scale [MFS]) obtained from parent and child perspectives. Emergency and intensive care units of a hospital in Melbourne, Australia. Thirty-five families (34 parent-proxies and 32 children) aged 8 to 18 years (mean child age = 13.29 years) with traumatic brain injury (TBI) of all severities (27 mild, 5 moderate, and 3 severe) admitted to the Royal Children's Hospital. Longitudinal prospective study. Fatigue data collected at 6-week follow-up (mean = 6.9 weeks). Postinjury child- and parent-rated fatigue (PedsQL MFS), mood, sleep, and pain based on questionnaire report: TBI severity (mild vs moderate/severe TBI). A score greater than 2 standard deviations below healthy control data indicated the presence of abnormal fatigue, rates of which were higher compared with normative data for both parent and child reports (47% and 29%). Fatigue was predicted by postinjury depression and sleep disturbance for parent, but not child ratings. Fatigue, as rated by children, was not significantly predicted by TBI severity or other symptoms. The PedsQL MFS demonstrated acceptable measurement properties in child TBI participants, evidenced by good feasibility and reliability (Cronbach α values >0.90). Interrater reliability between parent and child reports was poor to moderate. Results underscore the need to assess fatigue and associated sleep-wake disturbance and depression after child TBI from both parent and child perspectives.

  15. A Pursuit Theory Account for the Perception of Common Motion in Motion Parallax.

    PubMed

    Ratzlaff, Michael; Nawrot, Mark

    2016-09-01

    The visual system uses an extraretinal pursuit eye movement signal to disambiguate the perception of depth from motion parallax. Visual motion in the same direction as the pursuit is perceived nearer in depth while visual motion in the opposite direction as pursuit is perceived farther in depth. This explanation of depth sign applies to either an allocentric frame of reference centered on the fixation point or an egocentric frame of reference centered on the observer. A related problem is that of depth order when two stimuli have a common direction of motion. The first psychophysical study determined whether perception of egocentric depth order is adequately explained by a model employing an allocentric framework, especially when the motion parallax stimuli have common rather than divergent motion. A second study determined whether a reversal in perceived depth order, produced by a reduction in pursuit velocity, is also explained by this model employing this allocentric framework. The results show than an allocentric model can explain both the egocentric perception of depth order with common motion and the perceptual depth order reversal created by a reduction in pursuit velocity. We conclude that an egocentric model is not the only explanation for perceived depth order in these common motion conditions. © The Author(s) 2016.

  16. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters

    PubMed Central

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  17. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.

    PubMed

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-09-07

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers.

  18. Examining Cyberbullying Tendency and Multidimensional Perceived Social Support Status of Teacher Candidates

    ERIC Educational Resources Information Center

    Levent, Faruk; Taçgin, Zeynep

    2017-01-01

    The teachers have a substantial role for students through consciously the Internet usage and struggle with cyberbullying. The purpose of this study is to investigate cyberbullying tendency and multidimensional perceived social support status of the teacher candidates. The participants of this research have become 412 teacher candidates as…

  19. Introducing Multidimensional Item Response Modeling in Health Behavior and Health Education Research

    ERIC Educational Resources Information Center

    Allen, Diane D.; Wilson, Mark

    2006-01-01

    When measuring participant-reported attitudes and outcomes in the behavioral sciences, there are many instances when the common measurement assumption of unidimensionality does not hold. In these cases, the application of a multidimensional measurement model is both technically appropriate and potentially advantageous in substance. In this paper,…

  20. Motion-based nearest vector metric for reference frame selection in the perception of motion.

    PubMed

    Agaoglu, Mehmet N; Clarke, Aaron M; Herzog, Michael H; Ögmen, Haluk

    2016-05-01

    We investigated how the visual system selects a reference frame for the perception of motion. Two concentric arcs underwent circular motion around the center of the display, where observers fixated. The outer (target) arc's angular velocity profile was modulated by a sine wave midflight whereas the inner (reference) arc moved at a constant angular speed. The task was to report whether the target reversed its direction of motion at any point during its motion. We investigated the effects of spatial and figural factors by systematically varying the radial and angular distances between the arcs, and their relative sizes. We found that the effectiveness of the reference frame decreases with increasing radial- and angular-distance measures. Drastic changes in the relative sizes of the arcs did not influence motion reversal thresholds, suggesting no influence of stimulus form on perceived motion. We also investigated the effect of common velocity by introducing velocity fluctuations to the reference arc as well. We found no effect of whether or not a reference frame has a constant motion. We examined several form- and motion-based metrics, which could potentially unify our findings. We found that a motion-based nearest vector metric can fully account for all the data reported here. These findings suggest that the selection of reference frames for motion processing does not result from a winner-take-all process, but instead, can be explained by a field whose strength decreases with the distance between the nearest motion vectors regardless of the form of the moving objects.