Segalowitz, Norman S; Doucerain, Marina M; Meuter, Renata F I; Zhao, Yue; Hocking, Julia; Ryder, Andrew G
2016-01-01
This research explored the feasibility of using multidimensional scaling (MDS) analysis in novel combination with other techniques to study comprehension of epistemic adverbs expressing doubt and certainty (e.g., evidently, obviously, probably) as they relate to health communication in clinical settings. In Study 1, Australian English speakers performed a dissimilarity-rating task with sentence pairs containing the target stimuli, presented as "doctors' opinions." Ratings were analyzed using a combination of cultural consensus analysis (factor analysis across participants), weighted-data classical-MDS, and cluster analysis. Analyses revealed strong within-community consistency for a 3-dimensional semantic space solution that took into account individual differences, strong statistical acceptability of the MDS results in terms of stress and explained variance, and semantic configurations that were interpretable in terms of linguistic analyses of the target adverbs. The results confirmed the feasibility of using MDS in this context. Study 2 replicated the results with Canadian English speakers on the same task. Semantic analyses and stress decomposition analysis were performed on the Australian and Canadian data sets, revealing similarities and differences between the two groups. Overall, the results support using MDS to study comprehension of words critical for health communication, including in future studies, for example, second language speaking patients and/or practitioners. More broadly, the results indicate that the techniques described should be promising for comprehension studies in many communicative domains, in both clinical settings and beyond, and including those targeting other aspects of language and focusing on comparisons across different speech communities.
Segalowitz, Norman S.; Doucerain, Marina M.; Meuter, Renata F. I.; Zhao, Yue; Hocking, Julia; Ryder, Andrew G.
2016-01-01
This research explored the feasibility of using multidimensional scaling (MDS) analysis in novel combination with other techniques to study comprehension of epistemic adverbs expressing doubt and certainty (e.g., evidently, obviously, probably) as they relate to health communication in clinical settings. In Study 1, Australian English speakers performed a dissimilarity-rating task with sentence pairs containing the target stimuli, presented as “doctors' opinions.” Ratings were analyzed using a combination of cultural consensus analysis (factor analysis across participants), weighted-data classical-MDS, and cluster analysis. Analyses revealed strong within-community consistency for a 3-dimensional semantic space solution that took into account individual differences, strong statistical acceptability of the MDS results in terms of stress and explained variance, and semantic configurations that were interpretable in terms of linguistic analyses of the target adverbs. The results confirmed the feasibility of using MDS in this context. Study 2 replicated the results with Canadian English speakers on the same task. Semantic analyses and stress decomposition analysis were performed on the Australian and Canadian data sets, revealing similarities and differences between the two groups. Overall, the results support using MDS to study comprehension of words critical for health communication, including in future studies, for example, second language speaking patients and/or practitioners. More broadly, the results indicate that the techniques described should be promising for comprehension studies in many communicative domains, in both clinical settings and beyond, and including those targeting other aspects of language and focusing on comparisons across different speech communities. PMID:27199798
ERIC Educational Resources Information Center
Paraschkewoff, Boris
1974-01-01
The contemporary German, predicate adjective and adjectival adverb are expressed by the same form. Although modern grammatical research gathers the various functions of the adjective under "indicator of kind," school practice still separates adjective and adverb. The historical development of qualitative adverbs is outlined. (Text is in German.)…
Sur la classification des adverbes en -ment (On the Classification of -ment Adverbs)
ERIC Educational Resources Information Center
Mordrup, Ole
1976-01-01
Presents a classification of French "-ment" adverbs based on syntactical criteria. The major divisions, consisting of "sentence adverbs" and "adverbs of manner," are further sub-divided into functional sub-groups. (Text is in French.) Available from: Akademisk Forlag, St. Kannikestraede 6-8, DK-1169 Copenhague K Danemark. (AM)
Sentence Adverbs in the Kingdom of Agree
ERIC Educational Resources Information Center
Shu, Chih-hsiang
2011-01-01
This dissertation offers a novel account of the syntax of sentence adverbs. The need for a new account is clear from the lack of descriptive coverage and theoretical coherence in current work on adverbial syntax. Descriptively, the majority of work has so far neglected the fact that sentence adverbs behave syntactically like typical focusing…
Charged-particle motion in multidimensional magnetic-field turbulence
NASA Technical Reports Server (NTRS)
Giacalone, J.; Jokipii, J. R.
1994-01-01
We present a new analysis of the fundamental physics of charged-particle motion in a turbulent magnetic field using a numerical simulation. The magnetic field fluctuations are taken to be static and to have a power spectrum which is Kolmogorov. The charged particles are treated as test particles. It is shown that when the field turbulence is independent of one coordinate (i.e., k lies in a plane), the motion of these particles across the magnetic field is essentially zero, as required by theory. Consequently, the only motion across the average magnetic field direction that is allowed is that due to field-line random walk. On the other hand, when a fully three-dimensional realization of the turbulence is considered, the particles readily cross the field. Transport coefficients both along and across the ambient magnetic field are computed. This scheme provides a direct computation of the Fokker-Planck coefficients based on the motions of individual particles, and allows for comparison with analytic theory.
Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, MinKwan; Park, Chung-Hyun; Cho, Yong-Hoon
2017-03-08
As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles.
Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, MinKwan; Park, Chung-Hyun; Cho, Yong-Hoon
2017-01-01
As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles. PMID:28272445
NASA Astrophysics Data System (ADS)
Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, Minkwan; Park, Chung-Hyun; Cho, Yong-Hoon
2017-03-01
As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles.
Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution
Chacon De La Rosa, Luis; Delzanno, Gian Luca; Finn, John M.
2011-01-01
Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of this class of techniques has been the formulation of robust, reliable mesh-motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1] and [2], the advantages of this approach with regard to these points have been demonstrated for the time-independent case. In this study, we demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time-stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh-motion approaches, without resorting to ad hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3] and [4]). We explore two distinct r-refinement implementations of MK: the direct method, where the current mesh relates to an initial, unchanging mesh, and the sequential method, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior with regard to mesh distortion and robustness. The properties of the approach are illustrated with a hyperbolic PDE, the advection of a passive scalar, in 2D and 3D. Velocity flow fields with and without flow shear are considered. Three-dimensional grid, time-step, and nonlinear tolerance convergence studies are presented which demonstrate the optimality of the approach.
Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution
Delzanno, G L; Finn, J M
2009-01-01
Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.
The Syntactic Positions of Adverbs and the Second Language Acquisition
ERIC Educational Resources Information Center
Zhang, Zi-hong
2010-01-01
Based on the theory of linguistic universal and Second Language Acquisition (SLA), the paper discusses the acquisition of syntactic positions of adverbs in English. According to the data collected, the paper concludes that what adult learners acquire about adverbs is the distinction of different adverbs and the different scopes they take.…
The origin of ultrafast proton transfer: Multidimensional wave packet motion vs. tunneling
NASA Astrophysics Data System (ADS)
Schriever, Christian; Lochbrunner, Stefan; Ofial, Armin R.; Riedle, Eberhard
2011-02-01
We investigate the reaction kinetics of ultrafast excited state intramolecular proton transfer (ESIPT) and discuss the possible origins of the process: tunneling of the reactive proton, vibrationally enhanced tunneling, and multidimensional wave packet dynamics of the entire system. Comparison of the measured kinetics for the protonated and the deuterated form of 2-(2‧-hydroxyphenyl)benzothiazole (HBT) to numerical simulations allows us to ascribe the characteristic 50 fs time found for the ESIPT solely to a ballistic wave packet motion along skeletal coordinates that mainly affect the donor acceptor distance. Tunneling is not found to be decisive.
Riaz, Nadeem; Shanker, Piyush; Wiersma, Rodney; Gudmundsson, Olafur; Mao, Weihua; Widrow, Bernard; Xing, Lei
2009-10-07
Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.
"Mente" Adverbs, Compound Interpretation and the Projection Principle.
ERIC Educational Resources Information Center
Zagona, Karen
An analysis of the structure and interpretation of Spanish adverbs ending in "-mente" focuses on the grammatical status of the constituent elements of those words. It begins by looking at the grammatical properties of "-mente" adverbs (MAs), the word-level properties of MA constituents, and the compound types and their…
The German Adverb: Function, Meaning and Form Considerations for the Language Teacher.
ERIC Educational Resources Information Center
Nickisch, Craig W.
1983-01-01
Discusses common misconceptions about German adverbs. Explains that adverbs can also modify nouns, pronouns, and entire sentences, and that the adverb modifies by showing condition rather than characteristic. Adds "cause" and "negation" to the traditional adverbial categories of "time,""manner," and "place." (EKN)
ERIC Educational Resources Information Center
Goetze, Lutz
1976-01-01
Discusses the semantics and structure of sentence adverbs, with particular reference to negation of the declarative sentence. "Nicht" is found to be not properly reckoned with sentence adverbs. By means of examples, suggestions are given about teaching foreigners the use of German adverbs. (Text is in German.) (IFS/WGA)
ERIC Educational Resources Information Center
Alexiadou, Artemis; Stavrakaki, Stavroula
2006-01-01
In this paper, we investigate the performance of a Greek-English bilingual patient with Broca's aphasia and mild agrammatism on the placement of CP, MoodP, AspectP, and NegP-related adverbs, labeled specifier-type adverbs, and VP-related adverbs, labeled complement-type adverbs, by means of a constituent ordering task and a grammaticality judgment…
Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution
NASA Astrophysics Data System (ADS)
Chacón, L.; Delzanno, G. L.; Finn, J. M.
2011-01-01
Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of this class of techniques has been the formulation of robust, reliable mesh-motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1,2], the advantages of this approach with regard to these points have been demonstrated for the time-independent case. In this study, we demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time-stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh-motion approaches, without resorting to ad hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3,4]). We explore two distinct r-refinement implementations of MK: the direct method, where the current mesh relates to an initial, unchanging mesh, and the sequential method, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior with regard to mesh distortion and robustness. The properties of the approach are illustrated with a hyperbolic PDE, the advection of a passive scalar, in 2D and 3D. Velocity flow fields with and without flow shear are considered. Three-dimensional grid, time-step, and nonlinear tolerance convergence studies are presented which demonstrate the optimality of the approach.
Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution
Chacon De La Rosa, Luis; Delzanno, Gian Luca; Finn, John M.
2011-01-01
Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of this class of techniques has been the formulation of robust, reliable mesh-motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1,2], the advantages of this approach with regard to these points have been demonstrated for the time-independent case. In this study, we demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time-stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh-motion approaches, without resorting to ad hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3,4]). We explore two distinct r-refinement implementations of MK: the direct method, where the current mesh relates to an initial, unchanging mesh, and the sequential method, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior with regard to mesh distortion and robustness. The properties of the approach are illustrated with a hyperbolic PDE, the advection of a passive scalar, in 20 and 3D. Velocity flow fields with and without flow shear are considered. Three-dimensional grid, time-step, and nonlinear tolerance convergence studies are presented which demonstrate the optimality of the approach.
ERIC Educational Resources Information Center
Helbig, Gerhard
1974-01-01
Calls "pro-words" those which refer to a preceding substantive. They are (1) pronouns, (2) pronominal adverbs - "dadurch,""hiermit,""wofur," etc., and (3) pro-adverbs - "dort,""dann," etc. Both (2) and (3) stand for combinations of preposition plus preceding substantive; (3) does this only semantically, while (2) marks the relation overtly. (Text…
Adverb Code-Switching among Miami's Haitian Creole-English Second Generation
ERIC Educational Resources Information Center
Hebblethwaite, Benjamin
2010-01-01
The findings for adverbs and adverbial phrases in a naturalistic corpus of Miami Haitian Creole-English code-switching show that one language, Haitian Creole, asymmetrically supplies the grammatical frame while the other language, English, asymmetrically supplies mixed lexical categories like adverbs. Traces of code-switching with an English frame…
Time, Manner and Place in German: An Investigation of Adverb Order.
ERIC Educational Resources Information Center
Garner, Mark
1979-01-01
Reports on an experiment in native speaker judgement of acceptability, designed to test the acceptability of variations on the time-manner-place order in German adverbs. Implications for teaching German are drawn. (AM)
Zanni, Martin Thomas; Damrauer, Niels H.
2010-07-20
A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.
Acquisition of adjectives and adverbs in sentences written by hearing impaired and aphasic children.
Heward, W L; Eachus, H T
1979-01-01
The effect of an instructional package, which included modeling, reinforcement, and remedial feedback on the rate, accuracy, and topography of sentences composed by four hearing impaired and aphasic children, was examined. In a specially designed classroom, students wrote sentences describing a stimulus picture on acetate sheets placed on the stage of an overhead projector which was built into each student's desk. This arrangement provided the teacher and other students immediate and continuous visual access to each student's sentences. In a multiple baseline design across behaviors, model sentences were projected and token reinforcment and remedial feedback were made contingent upon writing correct sentences containing prenominal adjectives only, then adverbs only, then prenomial adjectives plus adverbs. During baseline all student displayed poor written language skills and seldom wrote sentences containing modifiers. When the instructional package was implemented, all students demonstrated significant increases in response rate, accuracy, and percentage of correct sentences including prenominal adjectives and adverbs.
Figure and Ground in Temporal Sentences: The Role of the Adverbs "When" and "While"
ERIC Educational Resources Information Center
De Vega, Manuel; Rinck, Mike; Diaz, Jose; Leon, Inmaculada
2007-01-01
Multiclause sentences with the temporal adverbs "while" or "when" referring to simultaneous events (e.g., "While [when] John was writing a letter, Mary comes into the room") were compared in German and Spanish. Following Talmy (2001), we assumed that the event in the main clause is the figure (F; the event to be located in time), and the event in…
ERIC Educational Resources Information Center
Brand, Judith, Ed.
2002-01-01
This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…
ERIC Educational Resources Information Center
Gerhart, James B.; Nussbaum, Rudi H.
This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…
ERIC Educational Resources Information Center
Zierer, Ernesto
1971-01-01
This paper considers Spanish adjectives and the possibility of converting some adjectives into adverbs, keeping the same general significance of a sentence. The conversion of an adjective into an adverb under these circumstances can be accomplished through a transformation which can be applied to a particular logical-semantic structure. The author…
Papesh, Megan H.; Goldinger, Stephen D.
2012-01-01
The concept of similarity, or a sense of "sameness" among things, is pivotal to theories in the cognitive sciences and beyond. Similarity, however, is a difficult thing to measure. Multidimensional scaling (MDS) is a tool by which researchers can obtain quantitative estimates of similarity among groups of items. More formally, MDS refers to a set of statistical techniques that are used to reduce the complexity of a data set, permitting visual appreciation of the underlying relational structures contained therein. The current paper provides an overview of MDS. We discuss key aspects of performing this technique, such as methods that can be used to collect similarity estimates, analytic techniques for treating proximity data, and various concerns regarding interpretation of the MDS output. MDS analyses of two novel data sets are also included, highlighting in step-by-step fashion how MDS is performed, and key issues that may arise during analysis. PMID:23359318
ERIC Educational Resources Information Center
Criado de Val, Manuel
1973-01-01
Compares use of pronouns and adverbs in Spanish, French, Italian, Portuguese, English, German, Rumanian, and Slavic languages. Excerpted from the book Fisonomia del y de las lenguas modernas'' ( Features of Modern Languages''). (DS)
Preface: Special Topic on Multidimensional Spectroscopy
NASA Astrophysics Data System (ADS)
Mukamel, Shaul; Bakker, Huib J.
2015-06-01
Multidimensional signals are generated by subjecting molecules to sequences of short optical pulses and recording correlation plots related to the various controlled delay periods. These techniques which span all the way from the THz to the x-ray regimes provide qualitatively new structural and dynamical molecular information not available from conventional one-dimensional techniques. This issue surveys the recent experimental and theoretical progresses in this rapidly developing 20 year old field which illustrates the novel insights provided by multidimensional techniques into electronic and nuclear motions. It should serve as a valuable source for experts in the field and help introduce newcomers to this exciting and challenging branch of nonlinear spectroscopy.
Multidimensional Risk Analysis: MRISK
NASA Technical Reports Server (NTRS)
McCollum, Raymond; Brown, Douglas; O'Shea, Sarah Beth; Reith, William; Rabulan, Jennifer; Melrose, Graeme
2015-01-01
Multidimensional Risk (MRISK) calculates the combined multidimensional score using Mahalanobis distance. MRISK accounts for covariance between consequence dimensions, which de-conflicts the interdependencies of consequence dimensions, providing a clearer depiction of risks. Additionally, in the event the dimensions are not correlated, Mahalanobis distance reduces to Euclidean distance normalized by the variance and, therefore, represents the most flexible and optimal method to combine dimensions. MRISK is currently being used in NASA's Environmentally Responsible Aviation (ERA) project o assess risk and prioritize scarce resources.
Multidimensional spectral load balancing
Hendrickson, B.; Leland, R.
1993-01-01
We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.
Multidimensional capillary electrophoresis.
Grochocki, Wojciech; Markuszewski, Michał J; Quirino, Joselito P
2015-01-01
Multidimensional separation where two or more orthogonal displacement mechanisms are combined is a promising approach to increase peak capacity in CE. The combinations allow dramatic improvement of analytical performance since the total peak capacity is given by a product of the peak capacities of all methods. The initial reports were concentrated on the construction of effective connections between capillaries for 2D analysis. Today, 2D and 3D CE systems are now able to separate real complex biological or environmental mixtures with good repeatability, improved resolution with minimal loss of sample. This review will present the developments in the field of multidimensional CE during the last 15 years. The endeavors in this specific field were on the development of interfaces, interface-free techniques including integrated separations, microdevices, and on-line sample concentration techniques to improve detection sensitivity.
Multidimensional diffusion MRI
NASA Astrophysics Data System (ADS)
Topgaard, Daniel
2017-02-01
Principles from multidimensional NMR spectroscopy, and in particular solid-state NMR, have recently been transferred to the field of diffusion MRI, offering non-invasive characterization of heterogeneous anisotropic materials, such as the human brain, at an unprecedented level of detail. Here we revisit the basic physics of solid-state NMR and diffusion MRI to pinpoint the origin of the somewhat unexpected analogy between the two fields, and provide an overview of current diffusion MRI acquisition protocols and data analysis methods to quantify the composition of heterogeneous materials in terms of diffusion tensor distributions with size, shape, and orientation dimensions. While the most advanced methods allow estimation of the complete multidimensional distributions, simpler methods focus on various projections onto lower-dimensional spaces as well as determination of means and variances rather than actual distributions. Even the less advanced methods provide simple and intuitive scalar parameters that are directly related to microstructural features that can be observed in optical microscopy images, e.g. average cell eccentricity, variance of cell density, and orientational order - properties that are inextricably entangled in conventional diffusion MRI. Key to disentangling all these microstructural features is MRI signal acquisition combining isotropic and directional dimensions, just as in the field of multidimensional solid-state NMR from which most of the ideas for the new methods are derived.
Multidimensional sexual perfectionism.
Stoeber, Joachim; Harvey, Laura N; Almeida, Isabel; Lyons, Emma
2013-11-01
Perfectionism is a multidimensional personality characteristic that can affect all areas of life. This article presents the first systematic investigation of multidimensional perfectionism in the domain of sexuality exploring the unique relationships that different forms of sexual perfectionism show with positive and negative aspects of sexuality. A sample of 272 university students (52 male, 220 female) completed measures of four forms of sexual perfectionism: self-oriented, partner-oriented, partner-prescribed, and socially prescribed. In addition, they completed measures of sexual esteem, sexual self-efficacy, sexual optimism, sex life satisfaction (capturing positive aspects of sexuality) and sexual problem self-blame, sexual anxiety, sexual depression, and negative sexual perfectionism cognitions during sex (capturing negative aspects). Results showed unique patterns of relationships for the four forms of sexual perfectionism, suggesting that partner-prescribed and socially prescribed sexual perfectionism are maladaptive forms of sexual perfectionism associated with negative aspects of sexuality whereas self-oriented and partner-oriented sexual perfectionism emerged as ambivalent forms associated with positive and negative aspects.
Multidimensional Potential Burgers Turbulence
NASA Astrophysics Data System (ADS)
Boritchev, Alexandre
2016-03-01
We consider the multidimensional generalised stochastic Burgers equation in the space-periodic setting: partial {u}/partial t+(nabla f({u}) \\cdot nabla) {u}-ν Δ {u}= nabla η, quad t ≥ 0, {x} in{T}^d=({R}/ {Z})^d, under the assumption that u is a gradient. Here f is strongly convex and satisfies a growth condition, ν is small and positive, while η is a random forcing term, smooth in space and white in time. For solutions u of this equation, we study Sobolev norms of u averaged in time and in ensemble: each of these norms behaves as a given negative power of ν. These results yield sharp upper and lower bounds for natural analogues of quantities characterising the hydrodynamical turbulence, namely the averages of the increments and of the energy spectrum. These quantities behave as a power of the norm of the relevant parameter, which is respectively the separation ℓ in the physical space and the wavenumber k in the Fourier space. Our bounds do not depend on the initial condition and hold uniformly in {ν}. We generalise the results obtained for the one-dimensional case in [10], confirming the physical predictions in [4, 30]. Note that the form of the estimates does not depend on the dimension: the powers of {ν, |{{k}}|, ℓ} are the same in the one- and the multi-dimensional setting.
Multidimensional Perfectionism and the Self
ERIC Educational Resources Information Center
Ward, Andrew M.; Ashby, Jeffrey S.
2008-01-01
This study examined multidimensional perfectionism and self-development. Two hundred seventy-one undergraduates completed a measure of multidimensional perfectionism and two Kohutian measures designed to measure aspects of self-development including social connectedness, social assurance, goal instability (idealization), and grandiosity. The…
Theta vocabulary II. Multidimensional case
NASA Astrophysics Data System (ADS)
Kharchev, S.; Zabrodin, A.
2016-06-01
It is shown that the Jacobi and Riemann identities of degree four for the multidimensional theta functions as well as the Weierstrass identities emerge as algebraic consequences of the fundamental multidimensional binary identities connecting the theta functions with Riemann matrices τ and 2 τ.
Profile Analysis: Multidimensional Scaling Approach.
ERIC Educational Resources Information Center
Ding, Cody S.
2001-01-01
Outlines an exploratory multidimensional scaling-based approach to profile analysis called Profile Analysis via Multidimensional Scaling (PAMS) (M. Davison, 1994). The PAMS model has the advantages of being applied to samples of any size easily, classifying persons on a continuum, and using person profile index for further hypothesis studies, but…
Suicide: a multidimensional malaise.
Leenaars, A A
1996-01-01
No one really knows why human beings commit suicide. The goal of this paper is to provide a psychological point of view on the topic, among the many other perspectives that are needed. It addresses the question by providing a theory of suicide, arguing that it is theory that allows us to sort out the booming buzzing mess of experience (Wm. James). Suicide is a multi-dimensional malaise. Metaphorically speaking, it is an intrapsychic drama on an interpersonal stage. As sound theory must be empirically observable, the theory is next applied to research of suicide notes, studying such factors as age, sex, and method of suicide, cross-culture and cross-time. Next, because all theory must have clinical applicability, a clinical case study of Goethe's Werther is provided. Overall, it is concluded that we need to continue to develop models to understand the suicidal mind.
Temporal masking of multidimensional tactual stimuli
NASA Astrophysics Data System (ADS)
Tan, Hong Z.; Reed, Charlotte M.; Delhorne, Lorraine A.; Durlach, Nathaniel I.; Wan, Natasha
2003-12-01
Experiments were performed to examine the temporal masking properties of multidimensional tactual stimulation patterns delivered to the left index finger. The stimuli consisted of fixed-frequency sinusoidal motions in the kinesthetic (2 or 4 Hz), midfrequency (30 Hz), and cutaneous (300 Hz) frequency ranges. Seven stimuli composed of one, two, or three spectral components were constructed at each of two signal durations (125 or 250 ms). Subjects identified target signals under three different masking paradigms: forward masking, backward masking, and sandwiched masking (in which the target is presented between two maskers). Target identification was studied as a function of interstimulus interval (ISI) in the range 0 to 640 ms. For both signal durations, percent-correct scores increased with ISI for each of the three masking paradigms. Scores with forward and backward masking were similar and significantly higher than scores obtained with sandwiched masking. Analyses of error trials revealed that subjects showed a tendency to respond, more often than chance, with the masker, the composite of the masker and target, or the combination of the target and a component of the masker. The current results are compared to those obtained in previous studies of tactual recognition masking with brief cutaneous spatial patterns. The results are also discussed in terms of estimates of information transfer (IT) and IT rate, are compared to previous studies with multidimensional tactual signals, and are related to research on the development of tactual aids for the deaf.
Spectral multidimensional scaling
Aflalo, Yonathan; Kimmel, Ron
2013-01-01
An important tool in information analysis is dimensionality reduction. There are various approaches for large data simplification by scaling its dimensions down that play a significant role in recognition and classification tasks. The efficiency of dimension reduction tools is measured in terms of memory and computational complexity, which are usually a function of the number of the given data points. Sparse local operators that involve substantially less than quadratic complexity at one end, and faithful multiscale models with quadratic cost at the other end, make the design of dimension reduction procedure a delicate balance between modeling accuracy and efficiency. Here, we combine the benefits of both and propose a low-dimensional multiscale modeling of the data, at a modest computational cost. The idea is to project the classical multidimensional scaling problem into the data spectral domain extracted from its Laplace–Beltrami operator. There, embedding into a small dimensional Euclidean space is accomplished while optimizing for a small number of coefficients. We provide a theoretical support and demonstrate that working in the natural eigenspace of the data, one could reduce the process complexity while maintaining the model fidelity. As examples, we efficiently canonize nonrigid shapes by embedding their intrinsic metric into , a method often used for matching and classifying almost isometric articulated objects. Finally, we demonstrate the method by exposing the style in which handwritten digits appear in a large collection of images. We also visualize clustering of digits by treating images as feature points that we map to a plane. PMID:24108352
Multidimensional persistence in biomolecular data
Xia, Kelin; Wei, Guo-Wei
2015-01-01
Persistent homology has emerged as a popular technique for the topological simplification of big data, including biomolecular data. Multidimensional persistence bears considerable promise to bridge the gap between geometry and topology. However, its practical and robust construction has been a challenge. We introduce two families of multidimensional persistence, namely pseudo-multidimensional persistence and multiscale multidimensional persistence. The former is generated via the repeated applications of persistent homology filtration to high dimensional data, such as results from molecular dynamics or partial differential equations. The latter is constructed via isotropic and anisotropic scales that create new simiplicial complexes and associated topological spaces. The utility, robustness and efficiency of the proposed topological methods are demonstrated via protein folding, protein flexibility analysis, the topological denoising of cryo-electron microscopy data, and the scale dependence of nano particles. Topological transition between partial folded and unfolded proteins has been observed in multidimensional persistence. The separation between noise topological signatures and molecular topological fingerprints is achieved by the Laplace-Beltrami flow. The multiscale multidimensional persistent homology reveals relative local features in Betti-0 invariants and the relatively global characteristics of Betti-1 and Betti-2 invariants. PMID:26032339
Multidimensional peptide separations in proteomics.
Link, Andrew J
2002-12-01
Multidimensional peptide separation will play an increasingly important role in the drive to identify and quantitate the proteome. By increasing the peak and load capacity, multidimensional approaches increase the number and dynamic range of peptides that can be analyzed in a complex biological organism. Separation methods using different physical properties of peptides have been combined with varying degrees of success. The ultimate goal is a rapid separation strategy that can be coupled with analytical methods, such as mass spectrometry, to provide comprehensive monitoring of the changing concentration, interactions, and structures of proteins in the proteome.
On the Need for Multidimensional Stirling Simulations
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2005-01-01
Given the cost and complication of simulating Stirling convertors, do we really need multidimensional modeling when one-dimensional capabilities exist? This paper provides a comprehensive description of when and why multidimensional simulation is needed.
Multidimensional Perfectionism and Ego Defenses
ERIC Educational Resources Information Center
Dickinson, Wendy L.; Ashby, Jeffrey S.
2005-01-01
This study examined the relationship between multidimensional perfectionism and ego defense style among 130 college students. Cluster analysis results facilitated the identification of groups of adaptive perfectionists, maladaptive perfectionists, and non-perfectionists. The researchers found that identified maladaptive perfectionists used…
Multidimensional Scaling of Video Surrogates.
ERIC Educational Resources Information Center
Goodrum, Abby A.
2001-01-01
Four types of video surrogates were compared under two tasks. Multidimensional scaling was used to map dimensional dispersions of users' judgments of similarity between videos and surrogates. Congruence between these maps was used to evaluate representativeness of each surrogate type. Congruence was greater for image-based than for text-based…
A Multidimensional Software Engineering Course
ERIC Educational Resources Information Center
Barzilay, O.; Hazzan, O.; Yehudai, A.
2009-01-01
Software engineering (SE) is a multidimensional field that involves activities in various areas and disciplines, such as computer science, project management, and system engineering. Though modern SE curricula include designated courses that address these various subjects, an advanced summary course that synthesizes them is still missing. Such a…
Recycling Behavior: A Multidimensional Approach
ERIC Educational Resources Information Center
Meneses, Gonzalo Diaz; Palacio, Asuncion Beerli
2005-01-01
This work centers on the study of consumer recycling roles to examine the sociodemographic and psychographic profile of the distribution of recycling tasks and roles within the household. With this aim in mind, an empirical work was carried out, the results of which suggest that recycling behavior is multidimensional and comprises the undertaking…
Mixing Study in a Multi-dimensional Motion Mixer
NASA Astrophysics Data System (ADS)
Shah, R.; Manickam, S. S.; Tomei, J.; Bergman, T. L.; Chaudhuri, B.
2009-06-01
Mixing is an important but poorly understood aspect in petrochemical, food, ceramics, fertilizer and pharmaceutical processing and manufacturing. Deliberate mixing of granular solids is an essential operation in the production of industrial powder products usually constituted from different ingredients. The knowledge of particle flow and mixing in a blender is critical to optimize the design and operation. Since performance of the product depends on blend homogeneity, the consequence of variability can be detrimental. A common approach to powder mixing is to use a tumbling blender, which is essentially a hollow vessel horizontally attached to a rotating shaft. This single axis rotary blender is one of the most common batch mixers among in industry, and also finds use in myriad of application as dryers, kilns, coaters, mills and granulators. In most of the rotary mixers the radial convection is faster than axial dispersion transport. This slow dispersive process hinders mixing performance in many blending, drying and coating applications. A double cone mixer is designed and fabricated which rotates around two axes, causing axial mixing competitive to its radial counterpart. Discrete Element Method (DEM) based numerical model is developed to simulate the granular flow within the mixer. Digitally recorded mixing states from experiments are used to fine tune the numerical model. Discrete pocket samplers are also used in the experiments to quantify the characteristics of mixing. A parametric study of the effect of vessel speeds, relative rotational speed (between two axes of rotation), on the granular mixing is investigated by experiments and numerical simulation. Incorporation of dual axis rotation enhances axial mixing by 60 to 85% in comparison to single axis rotation.
Global Langevin model of multidimensional biomolecular dynamics
NASA Astrophysics Data System (ADS)
Schaudinnus, Norbert; Lickert, Benjamin; Biswas, Mithun; Stock, Gerhard
2016-11-01
Molecular dynamics simulations of biomolecular processes are often discussed in terms of diffusive motion on a low-dimensional free energy landscape F ( 𝒙 ) . To provide a theoretical basis for this interpretation, one may invoke the system-bath ansatz á la Zwanzig. That is, by assuming a time scale separation between the slow motion along the system coordinate x and the fast fluctuations of the bath, a memory-free Langevin equation can be derived that describes the system's motion on the free energy landscape F ( 𝒙 ) , which is damped by a friction field and driven by a stochastic force that is related to the friction via the fluctuation-dissipation theorem. While the theoretical formulation of Zwanzig typically assumes a highly idealized form of the bath Hamiltonian and the system-bath coupling, one would like to extend the approach to realistic data-based biomolecular systems. Here a practical method is proposed to construct an analytically defined global model of structural dynamics. Given a molecular dynamics simulation and adequate collective coordinates, the approach employs an "empirical valence bond"-type model which is suitable to represent multidimensional free energy landscapes as well as an approximate description of the friction field. Adopting alanine dipeptide and a three-dimensional model of heptaalanine as simple examples, the resulting Langevin model is shown to reproduce the results of the underlying all-atom simulations. Because the Langevin equation can also be shown to satisfy the underlying assumptions of the theory (such as a delta-correlated Gaussian-distributed noise), the global model provides a correct, albeit empirical, realization of Zwanzig's formulation. As an application, the model can be used to investigate the dependence of the system on parameter changes and to predict the effect of site-selective mutations on the dynamics.
A multidimensional pendulum in a nonconservative force field under the presence of linear damping
NASA Astrophysics Data System (ADS)
Shamolin, M. V.
2016-09-01
A nonconservative force field in the dynamics of a multidimensional solid is constructed according to the results from the dynamics of real solids occurring in the force field of the action of the medium. In this case, it becomes possible to generalize the equations of motion of a multidimensional solid in a similarly constructed field of forces and to obtain a complete list of, generally speaking, transcendental first integrals expressed through a finite combination of elementary functions. In the study, the integrability in elementary functions is shown for the simultaneous equations of motion of a dynamically symmetric fixed multidimensional solid under the action of a nonconservative pair of forces in the presence of the linear damping moment (the additional dependence of the force field on the tensor of angular velocity of the solid).
Cuba: Multidimensional numerical integration library
NASA Astrophysics Data System (ADS)
Hahn, Thomas
2016-08-01
The Cuba library offers four independent routines for multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. The four algorithms work by very different methods, and can integrate vector integrands and have very similar Fortran, C/C++, and Mathematica interfaces. Their invocation is very similar, making it easy to cross-check by substituting one method by another. For further safeguarding, the output is supplemented by a chi-square probability which quantifies the reliability of the error estimate.
Multidimensional bioseparation with modular microfluidics
Chirica, Gabriela S.; Renzi, Ronald F.
2013-08-27
A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.
Unobtrusive interferometer tracking by path length oscillation for multidimensional spectroscopy.
Lee, Kevin F; Bonvalet, Adeline; Nuernberger, Patrick; Joffre, Manuel
2009-07-20
We track the path difference between interferometer arms with few-nanometer accuracy without adding optics to the beam path. We measure the interference of a helium-neon beam that copropagates through the interferometer with midinfrared pulses used for multidimensional spectroscopy. This can indicate motion, but not direction. By oscillating the path length of one arm with a mirror on a piezoelectric stack and monitoring the oscillations of the recombined helium-neon beam, the direction can be calculated, and the path delay can be continuously tracked.
Lu, Maolin; Lu, H Peter
2014-10-16
Conformational motions of proteins are highly dynamic and intrinsically complex. To capture the temporal and spatial complexity of conformational motions and further to understand their roles in protein functions, an attempt is made to probe multidimensional conformational dynamics of proteins besides the typical one-dimensional FRET coordinate or the projected conformational motions on the one-dimensional FRET coordinate. T4 lysozyme hinge-bending motions between two domains along α-helix have been probed by single-molecule FRET. Nevertheless, the domain motions of T4 lysozyme are rather complex involving multiple coupled nuclear coordinates and most likely contain motions besides hinge-bending. It is highly likely that the multiple dimensional protein conformational motions beyond the typical enzymatic hinged-bending motions have profound impact on overall enzymatic functions. In this report, we have developed a single-molecule multiparameter photon stamping spectroscopy integrating fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic approach enables simultaneous observations of both FRET-related site-to-site conformational dynamics and molecular rotational (or orientational) motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have further observed wide-distributed rotational flexibility along orientation coordinates by recording fluorescence anisotropy and simultaneously identified multiple intermediate conformational states along FRET coordinate by monitoring time-dependent donor lifetime, presenting a whole picture of multidimensional conformational dynamics in the process of T4 lysozyme open-close hinge-bending enzymatic turnover motions under enzymatic reaction conditions. By analyzing the autocorrelation functions of both lifetime and anisotropy trajectories, we have also observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional conformational fluctuation dynamics, providing a fundamental
Measures for a multidimensional multiverse
NASA Astrophysics Data System (ADS)
Chung, Hyeyoun
2015-04-01
We explore the phenomenological implications of generalizing the causal patch and fat geodesic measures to a multidimensional multiverse, where the vacua can have differing numbers of large dimensions. We consider a simple model in which the vacua are nucleated from a D -dimensional parent spacetime through dynamical compactification of the extra dimensions, and compute the geometric contribution to the probability distribution of observations within the multiverse for each measure. We then study how the shape of this probability distribution depends on the time scales for the existence of observers, for vacuum domination, and for curvature domination (tobs,tΛ , and tc, respectively.) In this work we restrict ourselves to bubbles with positive cosmological constant, Λ . We find that in the case of the causal patch cutoff, when the bubble universes have p +1 large spatial dimensions with p ≥2 , the shape of the probability distribution is such that we obtain the coincidence of time scales tobs˜tΛ˜tc . Moreover, the size of the cosmological constant is related to the size of the landscape. However, the exact shape of the probability distribution is different in the case p =2 , compared to p ≥3 . In the case of the fat geodesic measure, the result is even more robust: the shape of the probability distribution is the same for all p ≥2 , and we once again obtain the coincidence tobs˜tΛ˜tc . These results require only very mild conditions on the prior probability of the distribution of vacua in the landscape. Our work shows that the observed double coincidence of time scales is a robust prediction even when the multiverse is generalized to be multidimensional; that this coincidence is not a consequence of our particular Universe being (3 +1 )-dimensional; and that this observable cannot be used to preferentially select one measure over another in a multidimensional multiverse.
Gordon, R.G. )
1991-01-01
The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.
On Compensation in Multidimensional Response Modeling
ERIC Educational Resources Information Center
van der Linden, Wim J.
2012-01-01
The issue of compensation in multidimensional response modeling is addressed. We show that multidimensional response models are compensatory in their ability parameters if and only if they are monotone. In addition, a minimal set of assumptions is presented under which the MLEs of the ability parameters are also compensatory. In a recent series of…
Robustness of Adaptive Testing to Multidimensionality.
ERIC Educational Resources Information Center
Weiss, David J.; Suhadolnik, Debra
The present monte carlo simulation study was designed to examine the effects of multidimensionality during the administration of computerized adaptive testing (CAT). It was assumed that multidimensionality existed in the individuals to whom test items were being administered, i.e., that the correct or incorrect responses given by an individual…
An Introduction to Coherent Multidimensional Spectroscopy.
Chen, Peter C
2016-12-01
Coherent multidimensional spectroscopy is a field that has drawn much attention as an optical analogue to multidimensional nuclear magnetic resonance imaging. Coherent multidimensional spectroscopic techniques produce spectra that show the magnitude of an optical signal as a function of two or more pulsed laser frequencies. Spectra can be collected in either the frequency or the time domain. In addition to improving resolution and overcoming spectral congestion, coherent multidimensional spectroscopy provides the ability to investigate and conduct studies based upon the relationship between different peaks. The purpose of this paper is to provide a general introduction to the area of coherent multidimensional spectroscopy, to provide a brief overview of current experimental approaches, and to discuss some emerging developments in this relatively young field.
Multidimensional Adaptation in MAS Organizations.
Alberola, Juan M; Julian, Vicente; Garcia-Fornes, Ana
2013-04-01
Organization adaptation requires determining the consequences of applying changes not only in terms of the benefits provided but also measuring the adaptation costs as well as the impact that these changes have on all of the components of the organization. In this paper, we provide an approach for adaptation in multiagent systems based on a multidimensional transition deliberation mechanism (MTDM). This approach considers transitions in multiple dimensions and is aimed at obtaining the adaptation with the highest potential for improvement in utility based on the costs of adaptation. The approach provides an accurate measurement of the impact of the adaptation since it determines the organization that is to be transitioned to as well as the changes required to carry out this transition. We show an example of adaptation in a service provider network environment in order to demonstrate that the measurement of the adaptation consequences taken by the MTDM improves the organization performance more than the other approaches.
Minimal Models of Multidimensional Computations
Fitzgerald, Jeffrey D.; Sincich, Lawrence C.; Sharpee, Tatyana O.
2011-01-01
The multidimensional computations performed by many biological systems are often characterized with limited information about the correlations between inputs and outputs. Given this limitation, our approach is to construct the maximum noise entropy response function of the system, leading to a closed-form and minimally biased model consistent with a given set of constraints on the input/output moments; the result is equivalent to conditional random field models from machine learning. For systems with binary outputs, such as neurons encoding sensory stimuli, the maximum noise entropy models are logistic functions whose arguments depend on the constraints. A constraint on the average output turns the binary maximum noise entropy models into minimum mutual information models, allowing for the calculation of the information content of the constraints and an information theoretic characterization of the system's computations. We use this approach to analyze the nonlinear input/output functions in macaque retina and thalamus; although these systems have been previously shown to be responsive to two input dimensions, the functional form of the response function in this reduced space had not been unambiguously identified. A second order model based on the logistic function is found to be both necessary and sufficient to accurately describe the neural responses to naturalistic stimuli, accounting for an average of 93% of the mutual information with a small number of parameters. Thus, despite the fact that the stimulus is highly non-Gaussian, the vast majority of the information in the neural responses is related to first and second order correlations. Our results suggest a principled and unbiased way to model multidimensional computations and determine the statistics of the inputs that are being encoded in the outputs. PMID:21455284
NASA Astrophysics Data System (ADS)
Lavenda, B. H.
1985-02-01
Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.
Multidimensional text classification for drug information.
Lertnattee, Verayuth; Theeramunkong, Thanaruk
2004-09-01
This paper proposes a multidimensional model for classifying drug information text documents. The concept of multidimensional category model is introduced for representing classes. In contrast with traditional flat and hierarchical category models, the multidimensional category model classifies each document using multiple predefined sets of categories, where each set corresponds to a dimension. Since a multidimensional model can be converted to flat and hierarchical models, three classification approaches are possible, i.e., classifying directly based on the multidimensional model and classifying with the equivalent flat or hierarchical models. The efficiency of these three approaches is investigated using drug information collection with two different dimensions: 1) drug topics and 2) primary therapeutic classes. In the experiments, k-nearest neighbor, naive Bayes, and two centroid-based methods are selected as classifiers. The comparisons among three approaches of classification are done using two-way analysis of variance, followed by the Scheffé's test for post hoc comparison. The experimental results show that multidimensional-based classification performs better than the others, especially in the presence of a relatively small training set. As one application, a category-based search engine using the multidimensional category concept was developed to help users retrieve drug information.
NASA Astrophysics Data System (ADS)
Wright, John C.
2016-10-01
Spectroscopy is a dominant measurement methodology because it resolves molecular level details over a wide concentration range. Its limitations, however, become challenged when applied to complex materials. Coherent multidimensional spectroscopy (CMDS) is the optical analogue of multidimensional NMR and like NMR, its multidimensionality promises to increase the spectral selectivity of vibrational and electronic spectroscopy. This article explores whether this promise can make CMDS a dominant spectroscopic method throughout the sciences. In order for CMDS to become a dominant methodology, it must create multidimensional spectral fingerprints that provide the selectivity required for probing complex samples. Pump-CMDS probe methods separate the pump's measurement of dynamics from a multidimensional and selective probe. Fully coherent CMDS methods are ideal multidimensional probes because they avoid relaxation effects, spectrally isolate the output signals, and provide unique and invariant spectral signatures using any combination of vibrational and electronic quantum states.
Using Multidimensional Scaling for Curricular Goal Analysis.
ERIC Educational Resources Information Center
Leitzman, David F.; And Others
1980-01-01
Reports research that utilized multidimensional scaling and related analytic procedures to validate the curricular goals of a graduate therapeutic recreation program. Data analysis includes the use of the two-dimensional KYST and PREFMAP spaces. (Author/JD)
Multi-dimensional edge detection operators
NASA Astrophysics Data System (ADS)
Youn, Sungwook; Lee, Chulhee
2014-05-01
In remote sensing, modern sensors produce multi-dimensional images. For example, hyperspectral images contain hundreds of spectral images. In many image processing applications, segmentation is an important step. Traditionally, most image segmentation and edge detection methods have been developed for one-dimensional images. For multidimensional images, the output images of spectral band images are typically combined under certain rules or using decision fusions. In this paper, we proposed a new edge detection algorithm for multi-dimensional images using secondorder statistics. First, we reduce the dimension of input images using the principal component analysis. Then we applied multi-dimensional edge detection operators that utilize second-order statistics. Experimental results show promising results compared to conventional one-dimensional edge detectors such as Sobel filter.
Multidimensional Data Modeling for Business Process Analysis
NASA Astrophysics Data System (ADS)
Mansmann, Svetlana; Neumuth, Thomas; Scholl, Marc H.
The emerging area of business process intelligence attempts to enhance the analytical capabilities of business process management systems by employing data warehousing and mining technologies. This paper presents an approach to re-engineering the business process modeling in conformity with the multidimensional data model. Since the business process and the multidimensional model are driven by rather different objectives and assumptions, there is no straightforward solution to converging these models.
Multidimensional imaging using compressive Fresnel holography.
Horisaki, Ryoichi; Tanida, Jun; Stern, Adrian; Javidi, Bahram
2012-06-01
We propose a generalized framework for single-shot acquisition of multidimensional objects using compressive Fresnel holography. A multidimensional object with spatial, spectral, and polarimetric information is propagated with the Fresnel diffraction, and the propagated signal of each channel is observed by an image sensor with randomly arranged optical elements for filtering. The object data are reconstructed using a compressive sensing algorithm. This scheme is verified with numerical experiments. The proposed framework can be applied to imageries for spectrum, polarization, and so on.
Multidimensionally encoded magnetic resonance imaging.
Lin, Fa-Hsuan
2013-07-01
Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled.
Multidimensional stochastic approximation Monte Carlo
NASA Astrophysics Data System (ADS)
Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .
Vector fields in multidimensional cosmology
NASA Astrophysics Data System (ADS)
Meierovich, Boris E.
2011-09-01
Vector fields in the expanding Universe are considered within the multidimensional theory of general relativity. Vector fields in general relativity form a three-parametric variety. Our consideration includes the fields with a nonzero covariant divergence. Depending on the relations between the particular parameters and the symmetry of a problem, the vector fields can be longitudinal and/or transverse, ultrarelativistic (i.e. massless) or nonrelativistic (massive), and so on. The longitudinal and transverse vector fields are considered separately in detail in the background of the de Sitter cosmological metric. In most cases the field equations reduce to Bessel equations, and their temporal evolution is analyzed analytically. The energy-momentum tensor of the most simple zero-mass longitudinal vector fields enters the Einstein equations as an additive to the cosmological constant. In this case the de Sitter metric is the exact solution of the Einstein equations. Hence, the most simple zero-mass longitudinal vector field pretends to be an adequate tool for macroscopic description of dark energy as a source of the expansion of the Universe at a constant rate. The zero-mass vector field does not vanish in the process of expansion. On the contrary, massive fields vanish with time. Though their amplitude is falling down, the massive fields make the expansion accelerated.
Discrete wave mechanics: Multidimensional systems
Wall, Frederick T.
1987-01-01
Discrete wave mechanics is pursued further by extending the one-dimensional treatment to two (or more) dimensions in the light of explicit momentum considerations. Cognizance is taken of the effect of particle motion on mass and hence on the interactions between components of motion in different directions. The overall energy parameter turns out to be a product instead of a sum of parameters identified with each of several orthogonal axes. Accordingly, the separation of variables is most directly accomplished by factoring the principal energy parameter in conjunction with factoring the wave vector expression itself. Wave vector energies, on the other hand, remain additive. Finally, group velocity components are discussed for higher-dimensional systems. PMID:16593833
ERIC Educational Resources Information Center
Lee, Paul D.
1995-01-01
Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)
Multidimensional heritability analysis of neuroanatomical shape
Ge, Tian; Reuter, Martin; Winkler, Anderson M.; Holmes, Avram J.; Lee, Phil H.; Tirrell, Lee S.; Roffman, Joshua L.; Buckner, Randy L.; Smoller, Jordan W.; Sabuncu, Mert R.
2016-01-01
In the dawning era of large-scale biomedical data, multidimensional phenotype vectors will play an increasing role in examining the genetic underpinnings of brain features, behaviour and disease. For example, shape measurements derived from brain MRI scans are multidimensional geometric descriptions of brain structure and provide an alternate class of phenotypes that remains largely unexplored in genetic studies. Here we extend the concept of heritability to multidimensional traits, and present the first comprehensive analysis of the heritability of neuroanatomical shape measurements across an ensemble of brain structures based on genome-wide SNP and MRI data from 1,320 unrelated, young and healthy individuals. We replicate our findings in an extended twin sample from the Human Connectome Project (HCP). Our results demonstrate that neuroanatomical shape can be significantly heritable, above and beyond volume, and can serve as a complementary phenotype to study the genetic determinants and clinical relevance of brain structure. PMID:27845344
Resonance beyond frequency-matching: multidimensional resonance
NASA Astrophysics Data System (ADS)
Wang, Zhenyu; Li, Mingzhe; Wang, Ruifang
2017-03-01
Resonance, conventionally defined as the oscillation of a system when the temporal frequency of an external stimulus matches a natural frequency of the system, is important in both fundamental physics and applied disciplines. However, the spatial character of oscillation is not considered in this definition. We reveal the creation of spatial resonance when the stimulus matches the space pattern of a normal mode in an oscillating system. The complete resonance, which we call multidimensional resonance, should be a combination of both the temporal and the spatial resonance. We further elucidate that the spin wave produced by multidimensional resonance drives considerably faster reversal of the vortex core in a magnetic nanodisc. Multidimensional resonance provides insight into the nature of wave dynamics and opens the door to novel applications.
Multidimensional energy operator for image processing
NASA Astrophysics Data System (ADS)
Maragos, Petros; Bovik, Alan C.; Quatieri, Thomas F.
1992-11-01
The 1-D nonlinear differential operator (Psi) (f) equals (f')2 - ff' has been recently introduced to signal processing and has been found very useful for estimating the parameters of sinusoids and the modulating signals of AM-FM signals. It is called an energy operator because it can track the energy of an oscillator source generating a sinusoidal signal. In this paper we introduce the multidimensional extension (Phi) (f) equals (parallel)DELf(parallel)2 - fDEL2f of the 1-D energy operator and briefly outline some of its applications to image processing. We discuss some interesting properties of the multidimensional operator and develop demodulation algorithms to estimate the amplitude envelope and instantaneous frequencies of 2-D spatially-varying AM-FM signals, which can model image texture. The attractive features of the multidimensional operator and the related amplitude/frequency demodulation algorithms are their simplicity, efficiency, and ability to track instantaneously- varying spatial modulation patterns.
ERIC Educational Resources Information Center
Lavenda, Bernard H.
1985-01-01
Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)
... but it is more common in children, pregnant women, and people taking certain medicines. Motion sickness can start suddenly, with a queasy feeling and cold sweats. It can then lead to dizziness and nausea and vomiting. Your brain senses movement by getting signals from your inner ears, eyes, ...
Confirmatory Factor Analysis and Profile Analysis via Multidimensional Scaling
ERIC Educational Resources Information Center
Kim, Se-Kang; Davison, Mark L.; Frisby, Craig L.
2007-01-01
This paper describes the Confirmatory Factor Analysis (CFA) parameterization of the Profile Analysis via Multidimensional Scaling (PAMS) model to demonstrate validation of profile pattern hypotheses derived from multidimensional scaling (MDS). Profile Analysis via Multidimensional Scaling (PAMS) is an exploratory method for identifying major…
The Efficacy of Multidimensional Constraint Keys in Database Query Performance
ERIC Educational Resources Information Center
Cardwell, Leslie K.
2012-01-01
This work is intended to introduce a database design method to resolve the two-dimensional complexities inherent in the relational data model and its resulting performance challenges through abstract multidimensional constructs. A multidimensional constraint is derived and utilized to implement an indexed Multidimensional Key (MK) to abstract a…
NASA Astrophysics Data System (ADS)
Craig, Paul; Roa-Seïler, Néna
2013-01-01
This paper describes a novel information visualization technique that combines multidimensional scaling and hierarchical clustering to support the exploratory analysis of multidimensional data. The technique displays the results of multidimensional scaling using a scatter plot where the proximity of any two items' representations is approximate to their similarity according to a Euclidean distance metric. The results of hierarchical clustering are overlaid onto this view by drawing smoothed outlines around each nested cluster. The difference in similarity between successive cluster combinations is used to colour code clusters and make stronger natural clusters more prominent in the display. When a cluster or group of items is selected, multidimensional scaling and hierarchical clustering are re-applied to a filtered subset of the data, and animation is used to smooth the transition between successive filtered views. As a case study we demonstrate the technique being used to analyse survey data relating to the appropriateness of different phrases to different emotionally charged situations.
Multidimensional Perspectives on Principal Leadership Effectiveness
ERIC Educational Resources Information Center
Beycioglu, Kadir, Ed.; Pashiardis, Petros, Ed.
2015-01-01
Exceptional management skills are crucial to success in educational environments. As school leaders, principals are expected to effectively supervise the school system while facing a multitude of issues and demands. "Multidimensional Perspectives on Principal Leadership Effectiveness" combines best practices and the latest approaches in…
A New Heterogeneous Multidimensional Unfolding Procedure
ERIC Educational Resources Information Center
Park, Joonwook; Rajagopal, Priyali; DeSarbo, Wayne S.
2012-01-01
A variety of joint space multidimensional scaling (MDS) methods have been utilized for the spatial analysis of two- or three-way dominance data involving subjects' preferences, choices, considerations, intentions, etc. so as to provide a parsimonious spatial depiction of the underlying relevant dimensions, attributes, stimuli, and/or subjects'…
Multidimensional neural growing networks and computer intelligence
Yashchenko, V.A.
1995-03-01
This paper examines information-computation processes in time and in space and some aspects of computer intelligence using multidimensional matrix neural growing networks. In particular, issues of object-oriented {open_quotes}thinking{close_quotes} of computers are considered.
Multidimensional Treatment of Fear of Death.
ERIC Educational Resources Information Center
Hoelter, Jon W.
1979-01-01
Presents a multidimensional conception of fear of death and provides subscales for measuring suggested dimensions (fear of the dying process, of the dead, of being destroyed, for significant others, of the unknown, of conscious death, for body after death, and of premature death). Evidence for construct validity is provided. (Author/BEF)
Multidimensional IRT Models for Composite Scores
ERIC Educational Resources Information Center
Yen, Shu Jing; Walker, Leah
2007-01-01
Tests of English Language Proficiency are often designed such that each section of the test measures a single latent ability. For instance an English Proficiency Assessment might consist of sections measuring Speaking, Listening, and Reading ability. However, Overall English Proficiency and composite abilities are naturally multidimensional. This…
Multidimensional Screening as a Pharmacology Laboratory Experience.
ERIC Educational Resources Information Center
Malone, Marvin H.; And Others
1979-01-01
A multidimensional pharmacodynamic screening experiment that addresses drug interaction is included in the pharmacology-toxicology laboratory experience of pharmacy students at the University of the Pacific. The student handout with directions for the procedure is reproduced, drug compounds tested are listed, and laboratory evaluation results are…
DICON: interactive visual analysis of multidimensional clusters.
Cao, Nan; Gotz, David; Sun, Jimeng; Qu, Huamin
2011-12-01
Clustering as a fundamental data analysis technique has been widely used in many analytic applications. However, it is often difficult for users to understand and evaluate multidimensional clustering results, especially the quality of clusters and their semantics. For large and complex data, high-level statistical information about the clusters is often needed for users to evaluate cluster quality while a detailed display of multidimensional attributes of the data is necessary to understand the meaning of clusters. In this paper, we introduce DICON, an icon-based cluster visualization that embeds statistical information into a multi-attribute display to facilitate cluster interpretation, evaluation, and comparison. We design a treemap-like icon to represent a multidimensional cluster, and the quality of the cluster can be conveniently evaluated with the embedded statistical information. We further develop a novel layout algorithm which can generate similar icons for similar clusters, making comparisons of clusters easier. User interaction and clutter reduction are integrated into the system to help users more effectively analyze and refine clustering results for large datasets. We demonstrate the power of DICON through a user study and a case study in the healthcare domain. Our evaluation shows the benefits of the technique, especially in support of complex multidimensional cluster analysis.
Career Success: Constructing a Multidimensional Model
ERIC Educational Resources Information Center
Dries, Nicky; Pepermans, Roland; Carlier, Olivier
2008-01-01
A multidimensional model of career success was developed aiming to be more inclusive than existing models. In a first study, 22 managers were asked to tell the story of their careers. At the end of each interview, idiosyncratic career success "construct ladders" were constructed for each interviewee through an interactive process with the…
White Dialectics as Multidimensional, Contextual, and Transformational
ERIC Educational Resources Information Center
Abrams, Elizabeth M.; Todd, Nathan R.
2011-01-01
This rejoinder provides a response to reactions by Ponterotto, Sue, and Toporek to the White dialectics framework presented in Todd and Abrams's article. The present response focuses on incorporating multidimensionality, the multilevel nature of context, and the potential for transformation in the White dialectics framework. The authors expand…
A Multidimensional Construct of Self-Esteem
ERIC Educational Resources Information Center
Norem-Hebeisen, Ardyth A.
1976-01-01
Evidence for construct validity of this multi-dimensional concept of self esteem includes the relative congruence of the factor structure with the theoretical construct, the stability of the structure when subjected to a series of empirical tests, increasingly positive self-referent responses with increasing age, willingness to become more…
Uncertainty of Comparative Judgments and Multidimensional Structure
ERIC Educational Resources Information Center
Sjoberg, Lennart
1975-01-01
An analysis of preferences with respect to silhouette drawings of nude females is presented. Systematic intransitivities were discovered. The dispersions of differences (comparatal dispersons) were shown to reflect the multidimensional structure of the stimuli, a finding expected on the basis of prior work. (Author)
Multidimensional Tauberian theorems for generalized functions
NASA Astrophysics Data System (ADS)
Drozhzhinov, Yu N.
2016-12-01
This is a brief survey of multidimensional Tauberian theorems for generalized functions. Included are theorems of Hardy-Littlewood type, Tauberian and Abelian comparison theorems of Keldysh type, theorems of Wiener type, and Tauberian theorems for generalized functions with values in Banach spaces. Bibliography: 58 titles.
Multidimensional Human Dynamics in Mobile Phone Communications
Quadri, Christian; Zignani, Matteo; Capra, Lorenzo; Gaito, Sabrina; Rossi, Gian Paolo
2014-01-01
In today's technology-assisted society, social interactions may be expressed through a variety of techno-communication channels, including online social networks, email and mobile phones (calls, text messages). Consequently, a clear grasp of human behavior through the diverse communication media is considered a key factor in understanding the formation of the today's information society. So far, all previous research on user communication behavior has focused on a sole communication activity. In this paper we move forward another step on this research path by performing a multidimensional study of human sociality as an expression of the use of mobile phones. The paper focuses on user temporal communication behavior in the interplay between the two complementary communication media, text messages and phone calls, that represent the bi-dimensional scenario of analysis. Our study provides a theoretical framework for analyzing multidimensional bursts as the most general burst category, that includes one-dimensional bursts as the simplest case, and offers empirical evidence of their nature by following the combined phone call/text message communication patterns of approximately one million people over three-month period. This quantitative approach enables the design of a generative model rooted in the three most significant features of the multidimensional burst - the number of dimensions, prevalence and interleaving degree - able to reproduce the main media usage attitude. The other findings of the paper include a novel multidimensional burst detection algorithm and an insight analysis of the human media selection process. PMID:25068479
Multidimensional stochastic approximation using locally contractive functions
NASA Technical Reports Server (NTRS)
Lawton, W. M.
1975-01-01
A Robbins-Monro type multidimensional stochastic approximation algorithm which converges in mean square and with probability one to the fixed point of a locally contractive regression function is developed. The algorithm is applied to obtain maximum likelihood estimates of the parameters for a mixture of multivariate normal distributions.
Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis
NASA Astrophysics Data System (ADS)
Ahola, Susanna; Zhivonitko, Vladimir V.; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko
2015-09-01
Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.
Localized motion in random matrix decomposition of complex financial systems
NASA Astrophysics Data System (ADS)
Jiang, Xiong-Fei; Zheng, Bo; Ren, Fei; Qiu, Tian
2017-04-01
With the random matrix theory, we decompose the multi-dimensional time series of complex financial systems into a set of orthogonal eigenmode functions, which are classified into the market mode, sector mode, and random mode. In particular, the localized motion generated by the business sectors, plays an important role in financial systems. Both the business sectors and their impact on the stock market are identified from the localized motion. We clarify that the localized motion induces different characteristics of the time correlations for the stock-market index and individual stocks. With a variation of a two-factor model, we reproduce the return-volatility correlations of the eigenmodes.
Taillemite, J P; Devaulx, P; Bousquet, F
1997-01-01
Motion sickness is a general term covering sea-sickness, car-sickness, air-sickness, and space-sickness. Symptoms can occur when a person is exposed to unfamiliar movement whether real or simulated. Despite progress in the technology and comfort of modern transportation (planes, boats, and overland vehicles), a great number of travelers still experience motion sickness. Bouts are characterized by an initial phase of mild discomfort followed by neurologic and gastro-intestinal manifestations. The delay in onset depends on specific circumstances and individual susceptibility. Attacks are precipitated by conflicting sensory, visual, and vestibular signals but the underlying mechanism is unclear. Most medications used for prevention and treatment (e.g. anticholinergics and antihistamines) induce unwanted sedation. Furthermore no one drug is completely effective or preventive under all conditions.
Effective Friedmann model from multidimensional cosmologies
NASA Astrophysics Data System (ADS)
Zhuk, A.
2006-10-01
We investigate the possibility of the construction of the conventional Friedmann cosmology for our observable Universe if the underlying theory is the multidimensional Kaluza-Klein model. We show that the effective Friedmann model obtained by dynamic compactification of the multidimensional model is faced with too strong variations in the fundamental constants. On the other hand, models with stable compactification of the internal space are free from this problem and also result in conventional four-dimensonal cosmological behaviour for our Universe. We prove a no-go theorem, which shows that stable compactification of the internal spaces is possible only if the equations of state in the external and internal spaces are properly adjusted to each other. With a proper choice of parameters (fine tuning), the effective cosmological constant in this model provides the late-time acceleration of the Universe.
Visualization of Multidimensional Data in Nursing Science.
Docherty, Sharron L; Vorderstrasse, Allison; Brandon, Debra; Johnson, Constance
2016-10-18
Nursing scientists have long been interested in complex, context-dependent questions addressing individual- and population-level challenges in health and illness. These critical questions require multilevel data (e.g., genetic, physiologic, biologic, behavioral, affective, and social). Advances in data-gathering methods have resulted in the collection of large sets of complex, multifaceted, and often non-comparable data. Scientific visualization is a powerful methodological tool for facilitating understanding of these multidimensional data sets. Our purpose is to demonstrate the utility of scientific visualization as a method for identifying associations, patterns, and trends in multidimensional data as exemplified in two studies. We describe a brief history of visual analysis, processes involved in scientific visualization, and opportunities and challenges in the use of visualization methods. Scientific visualization can play a crucial role in helping nurse scientists make sense of the structure and underlying patterns in their data to answer vital questions in the field.
Multidimensional X-Space Magnetic Particle Imaging
Conolly, Steven M.
2012-01-01
Magnetic particle imaging (MPI) is a promising new medical imaging tracer modality with potential applications in human angiography, cancer imaging, in vivo cell tracking, and inflammation imaging. Here we demonstrate both theoretically and experimentally that multidimensional MPI is a linear shift-in-variant imaging system with an analytic point spread function. We also introduce a fast image reconstruction method that obtains the intrinsic MPI image with high signal-to-noise ratio via a simple gridding operation in x-space. We also demonstrate a method to reconstruct large field-of-view (FOV) images using partial FOV scanning, despite the loss of first harmonic image information due to direct feedthrough contamination. We conclude with the first experimental test of multidimensional x-space MPI. PMID:21402508
Multidimensional x-space magnetic particle imaging.
Goodwill, Patrick W; Conolly, Steven M
2011-09-01
Magnetic particle imaging (MPI) is a promising new medical imaging tracer modality with potential applications in human angiography, cancer imaging, in vivo cell tracking, and inflammation imaging. Here we demonstrate both theoretically and experimentally that multidimensional MPI is a linear shift-invariant imaging system with an analytic point spread function. We also introduce a fast image reconstruction method that obtains the intrinsic MPI image with high signal-to-noise ratio via a simple gridding operation in x-space. We also demonstrate a method to reconstruct large field-of-view (FOV) images using partial FOV scanning, despite the loss of first harmonic image information due to direct feedthrough contamination. We conclude with the first experimental test of multidimensional x-space MPI.
Progress in Multi-Dimensional Upwind Differencing
1992-09-01
advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results ...as 1983 by Phil Roe [1]. A study of discrete multi-dimensional wave models by Roe followed in 1985 (ICASE Report 85-18, also [21), but it took until...consider the numerical results shown in Figure :3 and 4, taken from [:34] and [35], respectively. In Figure 3a the exact and discrete Mach-number
On the Need for Multidimensional Stirling Analysis
NASA Technical Reports Server (NTRS)
Dyson, Rodger; Wilson, Scott; Tew, Roy; Demko, Rikako
2006-01-01
Contents include the following: Dual opposed convertors. High efficiency. Low mass space power. One-dimensional analysis. Fast computation. Design optimizations are easily done. Need for multidimensional modeling. Axisymmetric simulation. Flow characteristics. Low mach number. Laminar, transitional, and turbulent flow. Conjugate heat transfer. Third order analysis. Recent whole engine modeling. Regenerator geometry. Turbulence modeling. Flat head heater not 1-D. Empirical coefficients needed. Experiment design. Flow distribution. Sensor placement. Calibration. Validation.
Elements Of Theory Of Multidimensional Complex Variables
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1993-01-01
Two reports describe elements of theory of multidimensional complex variables, with emphasis on three dimensions. First report introduces general theory. Second, presents further developments in theory of analytic functions of single three-dimensional variable and applies theory to representation of ideal flows. Results of preliminary studies suggest analytic functions of new three-dimensional complex variables useful in numerous applications, including representing of three-dimensional flows and potentials.
Multidimensional reaction rate theory with anisotropic diffusion.
Berezhkovskii, Alexander M; Szabo, Attila; Greives, Nicholas; Zhou, Huan-Xiang
2014-11-28
An analytical expression is derived for the rate constant that describes diffusive transitions between two deep wells of a multidimensional potential. The expression, in contrast to the Kramers-Langer formula for the rate constant, is valid even when the diffusion is highly anisotropic. Our approach is based on a variational principle for the reactive flux and uses a trial function for the splitting probability or commitor. The theoretical result is validated by Brownian dynamics simulations.
Trellis coding with multidimensional QAM signal sets
NASA Technical Reports Server (NTRS)
Pietrobon, Steven S.; Costello, Daniel J.
1993-01-01
Trellis coding using multidimensional QAM signal sets is investigated. Finite-size 2D signal sets are presented that have minimum average energy, are 90-deg rotationally symmetric, and have from 16 to 1024 points. The best trellis codes using the finite 16-QAM signal set with two, four, six, and eight dimensions are found by computer search (the multidimensional signal set is constructed from the 2D signal set). The best moderate complexity trellis codes for infinite lattices with two, four, six, and eight dimensions are also found. The minimum free squared Euclidean distance and number of nearest neighbors for these codes were used as the selection criteria. Many of the multidimensional codes are fully rotationally invariant and give asymptotic coding gains up to 6.0 dB. From the infinite lattice codes, the best codes for transmitting J, J + 1/4, J + 1/3, J + 1/2, J + 2/3, and J + 3/4 bit/sym (J an integer) are presented.
Multidimensional Homophily in Friendship Networks1
Block, Per; Grund, Thomas
2014-01-01
Homophily – the tendency for individuals to associate with similar others – is one of the most persistent findings in social network analysis. Its importance is established along the lines of a multitude of sociologically relevant dimensions, e.g. sex, ethnicity and social class. Existing research, however, mostly focuses on one dimension at a time. But people are inherently multidimensional, have many attributes and are members of multiple groups. In this article, we explore such multidimensionality further in the context of network dynamics. Are friendship ties increasingly likely to emerge and persist when individuals have an increasing number of attributes in common? We analyze eleven friendship networks of adolescents, draw on stochastic actor-oriented network models and focus on the interaction of established homophily effects. Our results indicate that main effects for homophily on various dimensions are positive. At the same time, the interaction of these homophily effects is negative. There seems to be a diminishing effect for having more than one attribute in common. We conclude that studies of homophily and friendship formation need to address such multidimensionality further. PMID:25525503
NASA Technical Reports Server (NTRS)
1993-01-01
MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.
Auditory Motion Elicits a Visual Motion Aftereffect
Berger, Christopher C.; Ehrsson, H. Henrik
2016-01-01
The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates. PMID:27994538
NASA Astrophysics Data System (ADS)
Vicsek, Tamás; Zafeiris, Anna
2012-08-01
We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.
Nuclear Forensic Inferences Using Iterative Multidimensional Statistics
Robel, M; Kristo, M J; Heller, M A
2009-06-09
Nuclear forensics involves the analysis of interdicted nuclear material for specific material characteristics (referred to as 'signatures') that imply specific geographical locations, production processes, culprit intentions, etc. Predictive signatures rely on expert knowledge of physics, chemistry, and engineering to develop inferences from these material characteristics. Comparative signatures, on the other hand, rely on comparison of the material characteristics of the interdicted sample (the 'questioned sample' in FBI parlance) with those of a set of known samples. In the ideal case, the set of known samples would be a comprehensive nuclear forensics database, a database which does not currently exist. In fact, our ability to analyze interdicted samples and produce an extensive list of precise materials characteristics far exceeds our ability to interpret the results. Therefore, as we seek to develop the extensive databases necessary for nuclear forensics, we must also develop the methods necessary to produce the necessary inferences from comparison of our analytical results with these large, multidimensional sets of data. In the work reported here, we used a large, multidimensional dataset of results from quality control analyses of uranium ore concentrate (UOC, sometimes called 'yellowcake'). We have found that traditional multidimensional techniques, such as principal components analysis (PCA), are especially useful for understanding such datasets and drawing relevant conclusions. In particular, we have developed an iterative partial least squares-discriminant analysis (PLS-DA) procedure that has proven especially adept at identifying the production location of unknown UOC samples. By removing classes which fell far outside the initial decision boundary, and then rebuilding the PLS-DA model, we have consistently produced better and more definitive attributions than with a single pass classification approach. Performance of the iterative PLS-DA method
Multidimensional voice analysis of reflux laryngitis patients.
Pribuisienë, Rûta; Uloza, Virgilijus; Saferis, Viktoras
2005-01-01
The aim of the study was to analyze and quantify the voice characteristics of reflux laryngitis (RL) patients and to determine the most important voice tests and voice-quality parameters in the functional diagnostics of RL. The voices of 83 RL patients and 31 persons in the control group were evaluated. Vocal function was assessed using a multidimensional set of video laryngostroboscopic, perceptual, acoustic, aerodynamic and subjective measurements according to the protocol elaborated by the Committee on Phoniatrics of the European Laryngological Society. The mean values of the hoarseness visual analogue scale assessment and voice handicap index were significantly higher (P<0.05) in the group of RL patients as compared to the controls. Objective voice assessment revealed a significant increase in mean values of jitter, shimmer and normalized noise energy (NNE), along with a significant decrease in pitch range, maximum frequency, phonetogram area (S) and maximum phonation time (MPT) in RL patients, both in the male and female subgroups. According to the results of discriminant analysis, the NNE, MPT, S and intensity range were determined as an optimum set for functional diagnostics of RL. The derived function (equation) makes it possible to assign the person to the group of RL patients with an accuracy of 86.7%. The sensitivity and specificity of eight voice parameters were found to be higher than 50%. The results of the present study demonstrate a reduction of phonation capabilities and voice quality in RL patients. Multidimensional voice evaluation makes it possible to detect significant differences in mean values of perceptual, subjective and objective voice quality parameters between RL patients and controls groups. Therefore, multidimensional voice analysis is an important tool in the functional diagnostics of RL.
Construct continuity in the presence of multidimensionality
NASA Astrophysics Data System (ADS)
Staniewska, Dorota
Unidimensionality -- a condition, under which only one dominant construct is being measured by the test, is a fundamental assumption of most modern day psychometric models. However, some tests are multidimensional by design. A test, for instance, might measure physics, biology and chemistry subscales combined to measure a "general science" composite. The relative magnitudes of those subscales sometimes shift from administration to administration, which results in an altered composite. This study examined the conditions under which two different forms of a multidimensional test measure the same composite construct to a degree that allows them to be equated, i.e. used interchangeably. IRT true-score equating was used in a simulation study to assess the closeness of the scores on the forms. Conditions examined included the correlations between subscales, varying number of items per subscale form to form, and different subpopulation ability estimates on the subscales. Differences in the equating errors due to generating model (1PL or 3PL) were also examined. A way of calculating a unidimensional composite from a two-dimensional ability was devised and compared to the unidimensional composite obtained from Parscale. It was found that in general, the errors increase with decreasing correlation between traits and increased divergence of the two forms to be equated, with the later being the main predictor of the equating errors. However, the magnitude of those errors was small for the population as a whole especially when all examinee abilities are drawn from the same distribution. It was concluded that IRT true score equating is relatively robust to multidimensionality for the conditions examined, especially if the overall population score is desired. However, when accurate estimate of the equated score for individuals at the extremes of the population is needed, or whenever population abilities are drawn from more than one distribution, the unidimensional true score
ERIC Educational Resources Information Center
Toro, Maritsa
2011-01-01
The statistical assessment of dimensionality provides evidence of the underlying constructs measured by a survey or test instrument. This study focuses on educational measurement, specifically tests comprised of items described as multidimensional. That is, items that require examinee proficiency in multiple content areas and/or multiple cognitive…
A multidimensional representation model of geographic features
Usery, E. Lynn; Timson, George; Coletti, Mark
2016-01-28
A multidimensional model of geographic features has been developed and implemented with data from The National Map of the U.S. Geological Survey. The model, programmed in C++ and implemented as a feature library, was tested with data from the National Hydrography Dataset demonstrating the capability to handle changes in feature attributes, such as increases in chlorine concentration in a stream, and feature geometry, such as the changing shoreline of barrier islands over time. Data can be entered directly, from a comma separated file, or features with attributes and relationships can be automatically populated in the model from data in the Spatial Data Transfer Standard format.
Multidimensional world, inflation, and modern acceleration
Bronnikov, K. A.; Rubin, S. G.; Svadkovsky, I. V.
2010-04-15
Starting from pure multidimensional gravity with curvature-nonlinear terms but no matter fields in the initial action, we obtain a cosmological model with two effective scalar fields related to the size of two extra factor spaces. The model includes both an early inflationary stage and that of modern accelerated expansion and satisfies the observational data. There are no small parameters; the effective inflaton mass depends on the initial conditions which explain its small value as compared to the Planck mass. At the modern stage, the size of extra dimensions slowly increases, therefore this model predicts drastic changes in the physical laws of our Universe in the remote future.
Multidimensional world, inflation, and modern acceleration
NASA Astrophysics Data System (ADS)
Bronnikov, K. A.; Rubin, S. G.; Svadkovsky, I. V.
2010-04-01
Starting from pure multidimensional gravity with curvature-nonlinear terms but no matter fields in the initial action, we obtain a cosmological model with two effective scalar fields related to the size of two extra factor spaces. The model includes both an early inflationary stage and that of modern accelerated expansion and satisfies the observational data. There are no small parameters; the effective inflaton mass depends on the initial conditions which explain its small value as compared to the Planck mass. At the modern stage, the size of extra dimensions slowly increases, therefore this model predicts drastic changes in the physical laws of our Universe in the remote future.
Evolution of multidimensional flat anisotropic cosmological models
Beloborodov, A. ); Demianski, M. Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw International Center for Relativistic Astrophysics , Universita di Roma I, La Sapienza, Rome ); Ivanov, P.; Polnarev, A.G. )
1993-07-15
We study the dynamics of a flat multidimensional anisotropic cosmological model filled with an anisotropic fluidlike medium. By an appropriate choice of variables, the dynamical equations reduce to a two-dimensional dynamical system. We present a detailed analysis of the time evolution of this system and the conditions of the existence of spacetime singularities. We investigate the conditions under which violent, exponential, and power-law inflation is possible. We show that dimensional reduction cannot proceed by anti-inflation (rapid contraction of internal space). Our model indicates that it is very difficult to achieve dimensional reduction by classical means.
Self Motion Perception and Motion Sickness
NASA Technical Reports Server (NTRS)
Fox, Robert A. (Principal Investigator)
1991-01-01
The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.
Multi-dimensional MHD simple waves
Webb, G. M.; Ratkiewicz, R.; Brio, M.; Zank, G. P.
1996-07-20
In this paper we consider a formalism for multi-dimensional simple MHD waves using ideas developed by Boillat. For simple wave solutions one assumes that all the physical variables (the density {rho}, gas pressure p, fluid velocity u, gas entropy S, and magnetic induction B in the MHD case) depend on a single phase function {phi}(r,t). The simple wave solution ansatz and the MHD equations then require that the phase function {phi} satisfies an implicit equation of the form f({phi})=r{center_dot}n({phi})-{lambda}({phi})t, where n({phi})={nabla}{phi}/|{nabla}{phi}| is the wave normal, {lambda}({phi})={omega}/k=-{phi}{sub t}/|{nabla}{phi}| is the normal speed of the wave front, and f({phi}) is an arbitrary differentiable function of {phi}. The formalism allows for more general simple waves than that usually dealt with in which n({phi}) is a constant unit vector that does not vary along the wave front. The formalism has implications for shock formation and wave breaking for multi-dimensional waves.
Multi-dimensional MHD simple waves
NASA Technical Reports Server (NTRS)
Webb, G. M.; Ratkiewicz, R.; Brio, M.; Zank, G. P.
1995-01-01
In this paper we consider a formalism for multi-dimensional simple MHD waves using ideas developed by Boillat. For simple wave solutions one assumes that all the physical variables (the density rho, gas pressure p, fluid velocity V, gas entropy S, and magnetic induction B in the MHD case) depend on a single phase function phi(r,t). The simple wave solution ansatz and the MHD equations then require that the phase function has the form phi = r x n(phi) - lambda(phi)t, where = n(phi) = Delta phi / (absolute value of Delta phi) is the wave normal and lambda(phi) = omega/k = -phi t / (absolute value of Delta phi) is the normal speed of the wave front. The formalism allows for more general simple waves than that usually dealt with in which n(phi) is a constant unit vector that does not vary along the wave front. The formalism has implications for shock formation for multi-dimensional waves.
Testlet-Based Multidimensional Adaptive Testing.
Frey, Andreas; Seitz, Nicki-Nils; Brandt, Steffen
2016-01-01
Multidimensional adaptive testing (MAT) is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS, or NAEP. To make MAT accessible for such testing programs, we present a novel combination of MAT with a multidimensional generalization of the random effects testlet model (MAT-MTIRT). MAT-MTIRT compared to non-adaptive testing is examined for several combinations of testlet effect variances (0.0, 0.5, 1.0, and 1.5) and testlet sizes (3, 6, and 9 items) with a simulation study considering three ability dimensions with simple loading structure. MAT-MTIRT outperformed non-adaptive testing regarding the measurement precision of the ability estimates. Further, the measurement precision decreased when testlet effect variances and testlet sizes increased. The suggested combination of the MTIRT model therefore provides a solution to the substantial problems of testlet-based tests while keeping the length of the test within an acceptable range.
Testlet-Based Multidimensional Adaptive Testing
Frey, Andreas; Seitz, Nicki-Nils; Brandt, Steffen
2016-01-01
Multidimensional adaptive testing (MAT) is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS, or NAEP. To make MAT accessible for such testing programs, we present a novel combination of MAT with a multidimensional generalization of the random effects testlet model (MAT-MTIRT). MAT-MTIRT compared to non-adaptive testing is examined for several combinations of testlet effect variances (0.0, 0.5, 1.0, and 1.5) and testlet sizes (3, 6, and 9 items) with a simulation study considering three ability dimensions with simple loading structure. MAT-MTIRT outperformed non-adaptive testing regarding the measurement precision of the ability estimates. Further, the measurement precision decreased when testlet effect variances and testlet sizes increased. The suggested combination of the MTIRT model therefore provides a solution to the substantial problems of testlet-based tests while keeping the length of the test within an acceptable range. PMID:27917132
MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS
Fang, X.; Xia, C.; Keppens, R.
2013-07-10
We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.
Multidimensional Conservation Laws and Low Regularity Solutions
Barbara Lee Keyfitz
2007-06-16
This is the concluding report for the project, a continuation of research by Keyfitz and co-workers on multidimensional conservation laws, and applications of nonhyperbolic conservation laws in the two-fluid model for multiphase flow. The multidimensional research project was started with Suncica Canic, at the University of Houston and with Eun Heui Kim, now at California State University Long Beach. Two postdoctoral researchers, Katarina Jegdic and Allen Tesdall, also worked on this research. Jegdic's research was supported (for a total of one year) by this grant. Work on nonhyperbolic models for two-phase flows is being pursued jointly with Michael Sever, Hebrew University. Background for the project is contained in earlier reports. Note that in 2006, the project received a one-year no-cost extension that will end in September, 2007. A new proposal, for continuation of the research and for new projects, will be submitted in the Fall of 2007, with funding requested to begin in the summer of 2008. The reason for the 'funding gap' is Keyfitz's four-year stint as Director of the Fields Institute in Toronto, Canada. The research has continued, but has been supported by Canadian grant funds, as seems appropriate during this period.
Noncommutative accelerated multidimensional universe dominated by quintessence
NASA Astrophysics Data System (ADS)
El-Nabulsi, Ahmad Rami
2010-04-01
Noncommutative Geometry recently attracted growing interest of cosmologists, mainly after the greatest success of unifying the forces of nature into a single gravitational spectral action in a purely algebraic way, rather than as being an entirely new formalism. In the present work, we discuss a multidimensional Friedmann-Robertson-Walker flat universe in which the perfect fluid has a Gaussian profile in time and depends on a fundamental minimal length sqrt{θ} like ρ= ρ(0)exp (- t 2/4 θ) for some positive constant ρ(0). This special form is motivated by a more recent noncommutative inflationary cosmological model, which was found to be able to drive the universe through a bounce without the need of any scalar field. Furthermore, we conjecture that the generalized equation of state has the special form p= ω a m ρ- ρ,( ω, m)∈ℝ where a( t) is the scale factor. It was found that the expansion of the multidimensional universe accelerates in time and is dominated for very large time by quintessence. Many additional consequences are revealed and discussed in some detail.
Multidimensional Modeling of Coronal Rain Dynamics
NASA Astrophysics Data System (ADS)
Fang, X.; Xia, C.; Keppens, R.
2013-07-01
We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.
Benchmarking the Multidimensional Stellar Implicit Code MUSIC
NASA Astrophysics Data System (ADS)
Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.
2017-03-01
We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.
Heterogeneous multidimensional scaling for complex networks
NASA Astrophysics Data System (ADS)
Xuan, Qi; Ma, Xiaodi; Fu, Chenbo; Dong, Hui; Zhang, Guijun; Yu, Li
2015-07-01
Many real-world networks are essentially heterogeneous, where the nodes have different abilities to gain connections. Such networks are difficult to be embedded into low-dimensional Euclidean space if we ignore the heterogeneity and treat all the nodes equally. In this paper, based on a newly defined heterogeneous distance and a generalized network distance under the constraints of network and triangle inequalities, respectively, we propose a new heterogeneous multidimensional scaling method (HMDS) to embed different networks into proper Euclidean spaces. We find that HMDS behaves much better than the traditional multidimensional scaling method (MDS) in embedding different artificial and real-world networks into Euclidean spaces. Besides, we also propose a method to estimate the appropriate dimensions of Euclidean spaces for different networks, and find that the estimated dimensions are quite close to the real dimensions for those geometrical networks under study. These methods thus can help to better understand the evolution of real-world networks, and have practical importance in network visualization, community detection, link prediction and localization of wireless sensors.
Multidimensional Learner Model In Intelligent Learning System
NASA Astrophysics Data System (ADS)
Deliyska, B.; Rozeva, A.
2009-11-01
The learner model in an intelligent learning system (ILS) has to ensure the personalization (individualization) and the adaptability of e-learning in an online learner-centered environment. ILS is a distributed e-learning system whose modules can be independent and located in different nodes (servers) on the Web. This kind of e-learning is achieved through the resources of the Semantic Web and is designed and developed around a course, group of courses or specialty. An essential part of ILS is learner model database which contains structured data about learner profile and temporal status in the learning process of one or more courses. In the paper a learner model position in ILS is considered and a relational database is designed from learner's domain ontology. Multidimensional modeling agent for the source database is designed and resultant learner data cube is presented. Agent's modules are proposed with corresponding algorithms and procedures. Multidimensional (OLAP) analysis guidelines on the resultant learner module for designing dynamic learning strategy have been highlighted.
Analysis of cardiac interventricular septum motion in different respiratory states
NASA Astrophysics Data System (ADS)
Tautz, Lennart; Feng, Li; Otazo, Ricardo; Hennemuth, Anja; Axel, Leon
2016-03-01
The interaction between the left and right heart ventricles (LV and RV) depends on load and pressure conditions that are affected by cardiac contraction and respiration cycles. A novel MRI sequence, XD-GRASP, allows the acquisition of multi-dimensional, respiration-sorted and cardiac-synchronized free-breathing image data. In these data, effects of the cardiac and respiratory cycles on the LV/RV interaction can be observed independently. To enable the analysis of such data, we developed a semi-automatic exploration workflow. After tracking a cross-sectional line positioned over the heart, over all motion states, the septum and heart wall border locations are detected by analyzing the grey-value profile under the lines. These data are used to quantify septum motion, both in absolute units and as a fraction of the heart size, to compare values for different subjects. In addition to conventional visualization techniques, we used color maps for intuitive exploration of the variable values for this multi-dimensional data set. We acquired short-axis image data of nine healthy volunteers, to analyze the position and the motion of the interventricular septum in different breathing states and different cardiac cycle phases. The results indicate a consistent range of normal septum motion values, and also suggest that respiratory phase-dependent septum motion is greatest near end-diastolic phases. These new methods are a promising tool to assess LV/RV ventricle interaction and the effects of respiration on this interaction.
Multidimensional Approximation Operators Generated by Lebesgue-Stieltjes Measures
NASA Astrophysics Data System (ADS)
Volkov, Yu I.
1984-06-01
A general class of sequences of multidimensional positive linear operators is defined and studied; it includes, in particular, sequences of multidimensional Berstein polynomials. The main asymptotic term is obtained in the remainder when derivatives of functions in certain classes are approximated by derivatives of the values of the operators on these functions. Bibliography: 10 titles.
Multidimensional Linking for Tests with Mixed Item Types
ERIC Educational Resources Information Center
Yao, Lihua; Boughton, Keith
2009-01-01
Numerous assessments contain a mixture of multiple choice (MC) and constructed response (CR) item types and many have been found to measure more than one trait. Thus, there is a need for multidimensional dichotomous and polytomous item response theory (IRT) modeling solutions, including multidimensional linking software. For example,…
Multidimensional Computerized Adaptive Testing for Indonesia Junior High School Biology
ERIC Educational Resources Information Center
Kuo, Bor-Chen; Daud, Muslem; Yang, Chih-Wei
2015-01-01
This paper describes a curriculum-based multidimensional computerized adaptive test that was developed for Indonesia junior high school Biology. In adherence to the Indonesian curriculum of different Biology dimensions, 300 items was constructed, and then tested to 2238 students. A multidimensional random coefficients multinomial logit model was…
Entropic uncertainty relations in multidimensional position and momentum spaces
Huang Yichen
2011-05-15
Commutator-based entropic uncertainty relations in multidimensional position and momentum spaces are derived, twofold generalizing previous entropic uncertainty relations for one-mode states. They provide optimal lower bounds and imply the multidimensional variance-based uncertainty principle. The article concludes with an open conjecture.
Multidimensional Physical Self-Concept of Athletes with Physical Disabilities
ERIC Educational Resources Information Center
Shapiro, Deborah R.; Martin, Jeffrey J.
2010-01-01
The purposes of this investigation were first to predict reported PA (physical activity) behavior and self-esteem using a multidimensional physical self-concept model and second to describe perceptions of multidimensional physical self-concept (e.g., strength, endurance, sport competence) among athletes with physical disabilities. Athletes (N =…
Heteronuclear Multidimensional Protein NMR in a Teaching Laboratory
ERIC Educational Resources Information Center
Wright, Nathan T.
2016-01-01
Heteronuclear multidimensional NMR techniques are commonly used to study protein structure, function, and dynamics, yet they are rarely taught at the undergraduate level. Here, we describe a senior undergraduate laboratory where students collect, process, and analyze heteronuclear multidimensional NMR experiments using an unstudied Ig domain (Ig2…
The Concept of Aptitude and Multidimensional Validity Revisited.
ERIC Educational Resources Information Center
Roeser, Robert W.; Shavelson, Richard J.; Kupermintz, Haggai; Lau, Shun; Ayala, Carlos; Haydel, Angela; Schultz, Susan; Gallagher, Larry; Quihuis, Gisell
2002-01-01
Provides an overview of the approach of Richard E. Snow to the concept of aptitude and multidimensional validity and summarizes the studies in this special issue. Overall, studies confirmed the multidimensional structure of science achievement scores, the validity of some key motivational constructs for predicting achievement, and other ideas…
Evaluating Item Fit for Multidimensional Item Response Models
ERIC Educational Resources Information Center
Zhang, Bo; Stone, Clement A.
2008-01-01
This research examines the utility of the s-x[superscript 2] statistic proposed by Orlando and Thissen (2000) in evaluating item fit for multidimensional item response models. Monte Carlo simulation was conducted to investigate both the Type I error and statistical power of this fit statistic in analyzing two kinds of multidimensional test…
Self-Motion Perception and Motion Sickness
NASA Technical Reports Server (NTRS)
Fox, Robert A.
1991-01-01
Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.
Physical properties of multidimensional and multiferroic composites
NASA Astrophysics Data System (ADS)
Mori, Kiyotaka
The properties of multidimensional and multiferroic composite systems consisting of smart materials are investigated for the intended use in microelectromechanical systems (MEMS) sensor and actuator applications. A multidimensional composite system combines within it different dimensionalities such as 1-D, 2-D, and 3-D constituents. A multiferroic composite system, meanwhile, consists of different ferroics such as ferroelastic, ferromagnetic and ferroelectric materials. We demonstrate effects of dimensionality on thermoelastic properties of NiTi/Si cantilevers for MEMS actuators. The stress state of the bimorph cantilevers is controlled by the dimensionality of the Si cantilever surface (2-D or 1-D corrugated) or the NiTi thin film (2-D or 1-D patterned). Compared to single dimensional NiTi/Si cantilevers the multidimensional device features an improved actuation performance, that is, it combines a small thermoelastic with a large martensitic transformational deflection. We also demonstrate magnetoelectric effects as examples of multiferroic composite systems for novel sensor applications. An example is the magnetic field induced magnetoelectric effect, MEH, in a ferroelectric/ferromagnetic composite PVDF/Terfenol-D. Here, an applied magnetic field induces a piezomagnetic strain in Terfenol-D, which couples to PVDF and induces a piezoelectric charge or voltage. We obtained a MEH coefficient of 1.43 V/cm Oe in agreement with an analytical calculation. The magnetoelastic coupling coefficient of the PVDF/Terfenol-D composite is estimated as 11%. Further, we demonstrate an electrical field induced magnetoelectric effect, MEE, in the ferromagnetic/ferroelectric composites CoB/PZT and PZT/Metglas/PZT. In this case the application of an electric field induces a piezoelectric strain in the PZT ceramic. The strain couples to piezomagnetic CoB or Metglas. Hence, the magnetization of the ferromagnetic materials changes with the electrical field applied to the ferroelectric
Multidimensional scaling of musical time estimations.
Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel
2011-06-01
The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.
AMADA-Analysis of multidimensional astronomical datasets
NASA Astrophysics Data System (ADS)
de Souza, R. S.; Ciardi, B.
2015-09-01
We present AMADA, an interactive web application to analyze multidimensional datasets. The user uploads a simple ASCII file and AMADA performs a number of exploratory analysis together with contemporary visualizations diagnostics. The package performs a hierarchical clustering in the parameter space, and the user can choose among linear, monotonic or non-linear correlation analysis. AMADA provides a number of clustering visualization diagnostics such as heatmaps, dendrograms, chord diagrams, and graphs. In addition, AMADA has the option to run a standard or robust principal components analysis, displaying the results as polar bar plots. The code is written in R and the web interface was created using the SHINY framework. AMADA source-code is freely available at https://goo.gl/KeSPue, and the shiny-app at http://goo.gl/UTnU7I.
Multidimensional Multiphysics Simulation of TRISO Particle Fuel
J. D. Hales; R. L. Williamson; S. R. Novascone; D. M. Perez; B. W. Spencer; G. Pastore
2013-11-01
Multidimensional multiphysics analysis of TRISO-coated particle fuel using the BISON finite-element based nuclear fuels code is described. The governing equations and material models applicable to particle fuel and implemented in BISON are outlined. Code verification based on a recent IAEA benchmarking exercise is described, and excellant comparisons are reported. Multiple TRISO-coated particles of increasing geometric complexity are considered. It is shown that the code's ability to perform large-scale parallel computations permits application to complex 3D phenomena while very efficient solutions for either 1D spherically symmetric or 2D axisymmetric geometries are straightforward. Additionally, the flexibility to easily include new physical and material models and uncomplicated ability to couple to lower length scale simulations makes BISON a powerful tool for simulation of coated-particle fuel. Future code development activities and potential applications are identified.
Multidimensional multiphysics simulation of TRISO particle fuel
NASA Astrophysics Data System (ADS)
Hales, J. D.; Williamson, R. L.; Novascone, S. R.; Perez, D. M.; Spencer, B. W.; Pastore, G.
2013-11-01
Multidimensional multiphysics analysis of TRISO-coated particle fuel using the BISON finite element nuclear fuels code is described. The governing equations and material models applicable to particle fuel and implemented in BISON are outlined. Code verification based on a recent IAEA benchmarking exercise is described, and excellent comparisons are reported. Multiple TRISO-coated particles of increasing geometric complexity are considered. The code's ability to use the same algorithms and models to solve problems of varying dimensionality from 1D through 3D is demonstrated. The code provides rapid solutions of 1D spherically symmetric and 2D axially symmetric models, and its scalable parallel processing capability allows for solutions of large, complex 3D models. Additionally, the flexibility to easily include new physical and material models and straightforward ability to couple to lower length scale simulations makes BISON a powerful tool for simulation of coated-particle fuel. Future code development activities and potential applications are identified.
Biological evolution in a multidimensional fitness landscape
NASA Astrophysics Data System (ADS)
Saakian, David B.; Kirakosyan, Zara; Hu, Chin-Kun
2012-09-01
We considered a multiblock molecular model of biological evolution, in which fitness is a function of the mean types of alleles located at different parts (blocks) of the genome. We formulated an infinite population model with selection and mutation, and calculated the mean fitness. For the case of recombination, we formulated a model with a multidimensional fitness landscape (the dimension of the space is equal to the number of blocks) and derived a theorem about the dynamics of initially narrow distribution. We also considered the case of lethal mutations. We also formulated the finite population version of the model in the case of lethal mutations. Our models, derived for the virus evolution, are interesting also for the statistical mechanics and the Hamilton-Jacobi equation as well.
Masking failures of multidimensional sensors (extended abstract)
NASA Technical Reports Server (NTRS)
Chew, Paul; Marzullo, Keith
1990-01-01
When a computer monitors a physical process, the computer uses sensors to determine the values of the physical variables that represent the state of the process. A sensor can sometimes fail, however, and in the worst case report a value completely unrelated to the true physical value. The work described is motivated by a methodology for transforming a process control program that can not tolerate sensor failure into one that can. In this methodology, a reliable abstract sensor is created by combining information from several real sensors that measure the same physical value. To be useful, an abstract sensor must deliver reasonably accurate information at reasonable computational cost. Sensors are considered that deliver multidimensional values (e.g., location or velocity in three dimensions, or both temperature and pressure). Geometric techniques are used to derive upper bounds on abstract sensor accuracy and to develop efficient algorithms for implementing abstract sensors.
Biological evolution in a multidimensional fitness landscape.
Saakian, David B; Kirakosyan, Zara; Hu, Chin-Kun
2012-09-01
We considered a multiblock molecular model of biological evolution, in which fitness is a function of the mean types of alleles located at different parts (blocks) of the genome. We formulated an infinite population model with selection and mutation, and calculated the mean fitness. For the case of recombination, we formulated a model with a multidimensional fitness landscape (the dimension of the space is equal to the number of blocks) and derived a theorem about the dynamics of initially narrow distribution. We also considered the case of lethal mutations. We also formulated the finite population version of the model in the case of lethal mutations. Our models, derived for the virus evolution, are interesting also for the statistical mechanics and the Hamilton-Jacobi equation as well.
Multidimensional gas chromatography beyond simple volatiles separation.
Chin, Sung-Tong; Marriott, Philip J
2014-08-18
Multidimensional separation in gas chromatography (MDGC) plays an important role in chemical analysis. This review presents selected literature on MDGC development and examples of the range of functionality reported for MDGC methods over the past 2 decades. With the most obvious advantage of providing much greater capacity for resolving constituents of a sample, MDGC extends analytical efficiency to a more substantial molecular coverage, combined with operational flexibility. But by judicious choice of implementation method, important chemical information relating to the sample, its components, potentially physico-chemical properties, and improved capacity for absolute identification may be realised. Sample-to-sample comparison is improved, and sample characterisation is facilitated especially when MDGC is combined with the informing power of modern mass spectrometry. Innovative MDGC arrangements allow high resolution coupled with spectroscopy and alternative bioassays, and delivers molecular elucidation in ways that are beyond just simple analysis of volatiles.
Multidimensional integrable models of gravitation and cosmology
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.; Melnikov, V. N.
Review of the motivation and main results in multidimentional gravitation and cosmology is presented. Special attention is devoted to results within the model with scalar fields and fields of forms in the billiard approach for obtaining cosmological solutions with branes and integrable configurations with fluxand black branes. In case of the quantum billiard with branes it is shown that the basis solutions for wave functions vanish in the limit of the formation of billiard walls (i.e., at the singularity) for the D = 11 model which mimics the D = 11 supergravitational cosmology. Another fruitful approach - to multidimensional gravity with higher derivatives is mentioned, which leads to a unified description of inflation and the present accelerated expansion of the Universe. Some of these models explain possible spatial and temporal variations of the fine structure and the gravitational constants.
Quantum effects in homogeneous multidimensional cosmologies
Szydlowski, M.; Szczesny, J.
1988-12-15
In the present paper we determine quantum distribution functions for a wide class of multidimensional cosmological models. The exact formulas for quantum distribution functions are given and their universal character at high and low temperatures shown. The obtained formulas provide us with the possibility to investigate the metric back reaction and to discuss the dimensional reduction problem. The assumption of the low-temperature approximation gives us the possibility to discuss the dynamics by using the methods of dynamical systems. Stable solutions, within the class FRW x S/sup 3/ x S/sup 3/ models, where FRW denotes Friedmann, Robertson and Walker, are discussed, and it is shown that only a zero-measure set of trajectories in the phase space leads to a solution with a static microspace. This analysis shows that, insofar as quantum effects lead to solutions with a static microspace, these solutions are unstable.
DRACO---A New Multidimensional Hydrocode
NASA Astrophysics Data System (ADS)
Keller, D.; Collins, T. J. B.; Delettrez, J. A.; McKenty, P. W.; Radha, P. B.; Town, R. P. J.; Whitney, B.; Moses, G. A.
1999-11-01
A program to develop a new multidimensional hydrocode is underway at LLE. DRACO is an arbitrary Lagrange-Eulerian (ALE) code designed to run in 1, 2, and 3 dimensions in planar (cartesian), cylindrical, and spherical geometries. The basic hydroportion of DRACO employs second-order rezoning and interface tracking. A mixed-material equation of state (EOS) using SESAME or Wisconsin table lookups has recently been incorporated. One of the main objectives of the program is to fully exploit the parallel capabilities of the 32-processor SGI Origin-2000. This paper will describe the basic code, present results of our parallel work, and show results of recent burnthrough calculations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.
Multidimensional student skills with collaborative filtering
NASA Astrophysics Data System (ADS)
Bergner, Yoav; Rayyan, Saif; Seaton, Daniel; Pritchard, David E.
2013-01-01
Despite the fact that a physics course typically culminates in one final grade for the student, many instructors and researchers believe that there are multiple skills that students acquire to achieve mastery. Assessment validation and data analysis in general may thus benefit from extension to multidimensional ability. This paper introduces an approach for model determination and dimensionality analysis using collaborative filtering (CF), which is related to factor analysis and item response theory (IRT). Model selection is guided by machine learning perspectives, seeking to maximize the accuracy in predicting which students will answer which items correctly. We apply the CF to response data for the Mechanics Baseline Test and combine the results with prior analysis using unidimensional IRT.
Multidimensional Scaling Visualization Using Parametric Entropy
NASA Astrophysics Data System (ADS)
Lopes, António M.; Tenreiro Machado, J. A.; Galhano, Alexandra M.
2015-12-01
This paper studies complex systems using a generalized multidimensional scaling (MDS) technique. Complex systems are characterized by time-series responses, interpreted as a manifestation of their dynamics. Two types of time-series are analyzed, namely 18 stock markets and the gross domestic product per capita of 18 countries. For constructing the MDS charts, indices based on parametric entropies are adopted. Multiparameter entropies allow the variation of the parameters leading to alternative sets of charts. The final MDS maps are then assembled by means of Procrustes’ method that maximizes the fit between the individual charts. Therefore, the proposed method can be interpreted as a generalization to higher dimensions of the standard technique that represents (and discretizes) items by means of single “points” (i.e. zero-dimensional “objects”). The MDS plots, involving one-, two- and three-dimensional “objects”, reveal a good performance in capturing the correlations between data.
Testing for uniformity in multidimensional data.
Smith, S P; Jain, A K
1984-01-01
Testing for uniformity in multidimensional data is important in exploratory pattern analysis, statistical pattern recognition, and image processing. The goal of this paper is to determine whether the data follow the uniform distribution over some compact convex set in K-dimensional space, called the sampling window. We first provide a simple, computationally efficient method for generating a uniformly distributed sample over a set which approximates the convex hul of the data. We then test for uniformity by comparing this generated sample to the data by using Friedman-Rafsky's minimal spanning tree (MST) based test. Experiments with both simulated and real data indicate that this MST-based test is useful in deciding if data are uniform.
Multidimensional numerical modeling of heat exchangers
NASA Astrophysics Data System (ADS)
Sha, W. T.; Yang, C. I.; Kao, T. T.; Cho, S. M.
A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG).
Transonic Shocks in Multidimensional Divergent Nozzles
NASA Astrophysics Data System (ADS)
Bae, Myoungjean; Feldman, Mikhail
2011-07-01
We establish existence, uniqueness and stability of transonic shocks for a steady compressible non-isentropic potential flow system in a multidimensional divergent nozzle with an arbitrary smooth cross-section, for a prescribed exit pressure. The proof is based on solving a free boundary problem for a system of partial differential equations consisting of an elliptic equation and a transport equation. In the process, we obtain unique solvability for a class of transport equations with velocity fields of weak regularity (non-Lipschitz), an infinite dimensional weak implicit mapping theorem which does not require continuous Fréchet differentiability, and regularity theory for a class of elliptic partial differential equations with discontinuous oblique boundary conditions.
A study of multidimensional modeling approaches for data warehouse
NASA Astrophysics Data System (ADS)
Yusof, Sharmila Mat; Sidi, Fatimah; Ibrahim, Hamidah; Affendey, Lilly Suriani
2016-08-01
Data warehouse system is used to support the process of organizational decision making. Hence, the system must extract and integrate information from heterogeneous data sources in order to uncover relevant knowledge suitable for decision making process. However, the development of data warehouse is a difficult and complex process especially in its conceptual design (multidimensional modeling). Thus, there have been various approaches proposed to overcome the difficulty. This study surveys and compares the approaches of multidimensional modeling and highlights the issues, trend and solution proposed to date. The contribution is on the state of the art of the multidimensional modeling design.
A Conceptual Model for Multidimensional Analysis of Documents
NASA Astrophysics Data System (ADS)
Ravat, Franck; Teste, Olivier; Tournier, Ronan; Zurlfluh, Gilles
Data warehousing and OLAP are mainly used for the analysis of transactional data. Nowadays, with the evolution of Internet, and the development of semi-structured data exchange format (such as XML), it is possible to consider entire fragments of data such as documents as analysis sources. As a consequence, an adapted multidimensional analysis framework needs to be provided. In this paper, we introduce an OLAP multidimensional conceptual model without facts. This model is based on the unique concept of dimensions and is adapted for multidimensional document analysis. We also provide a set of manipulation operations.
Multi-dimensional tunnelling and complex momentum
NASA Technical Reports Server (NTRS)
Bowcock, Peter; Gregory, Ruth
1991-01-01
The problem of modeling tunneling phenomena in more than one dimension is examined. It is found that existing techniques are inadequate in a wide class of situations, due to their inability to deal with concurrent classical motion. The generalization of these methods to allow for complex momenta is shown, and improved techniques are demonstrated with a selection of illustrative examples. Possible applications are presented.
NASA Multidimensional Stirling Convertor Code Developed
NASA Technical Reports Server (NTRS)
Tew, Roy C.; Thieme, Lanny G.
2004-01-01
A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and the NASA Glenn Research Center. These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. Glenn is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and third-generation Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in house at Glenn and under various grants and contracts. These efforts include the development of a multidimensional Stirling computational fluid dynamics code, high-temperature materials, advanced controllers, an end-to-end system dynamics model, low-vibration techniques, advanced regenerators, and a lightweight convertor. Under a NASA grant, Cleveland State University (CSU) and its subcontractors, the University of Minnesota (UMN) and Gedeon Associates, have developed a twodimensional computer simulation of a CSUmod Stirling convertor. The CFD-ACE commercial software developed by CFD Research Corp. of Huntsville, Alabama, is being used. The CSUmod is a scaled version of the Stirling Technology Demonstrator Convertor (TDC), which was designed and fabricated by the Stirling Technology Company and is being tested by NASA. The schematic illustrates the structure of this model. Modeled are the fluid-flow and heat-transfer phenomena that occur in the expansion space, the heater, the regenerator, the cooler, the compression space, the surrounding walls, and the moving piston and displacer. In addition, the overall heat transfer, the indicated power, and the efficiency can be calculated. The CSUmod model is being converted to a two
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
Exploring multidimensional free energy surfaces of peptides
NASA Astrophysics Data System (ADS)
Wang, Yan; Kuczera, Krzysztof
1997-03-01
A new statistical mechanics thermodynamic integration method is presented, enabling exploration of multidimensional conformational free energy surfaces of large flexible molecules. In this approach a single molecular dynamics simulation in which a set of coordinates has been constrained to fixed values yields the free energy gradient with respect to all coordinates in the set. The availability of the multidimensional gradient opens new possibilities for exploration of molecular conformational free energy surfaces, including free energy optimization to locate free energy minima, calculation of higher free energy derivatives, and finding optimal free energy paths between states. Additionally, choosing of all "soft" degrees of freedom as the constrained set leads to accelerated convergence of averages, effectively overcoming the sampling problem of free energy simulations. Two applications of the method are presented: Helical states of model peptides. For model peptides (Ala)n and (Aib)n where n=6,8,10 and Aib is α-methylalanine in vacuum, free energy maps and free energy optimization in φ-ψ space are used to locate free energy minima corresponding to α-, π- and 3_10-helical structures. The stability of the minima is characterized by calculating numerical second derivatives of the free energy. Free energy decomposition is employed to reveal the molecular mechanism for the improved stability of the 3_10h relative to the ah in Aib-containing peptides. DPDPE peptide pre-organization. For the linear form of the opioid peptide DPDPE in aqueous solution, the effective local sampling made possible by fixing all soft degrees of freedom is used to calculate the free energy difference between the open and cyclic-like structures, providing an estimate of the free energy of pre-organizing the peptide for disulfide bond formation. The open structure was found to be more stable by 4.0 ± 0.8 kcal/mol. The cyclic-like conformation was much better solvated than the open
NASA Astrophysics Data System (ADS)
Shamolin, M. V.
2015-10-01
The dynamic part of equations of motion is investigated for a dynamically symmetric multidimensional solid in a nonconservative force field in the presence of the following force in the case when the solid is under the action of a pair of forces. In this case, there is additional linear damping in the system. The new case of complete integrability is found in transcendental (in the sense of complex analysis) functions, which are expressed through a finite combination of elementary functions.
A Scalar Product Model for the Multidimensional Scaling of Choice
ERIC Educational Resources Information Center
Bechtel, Gordon G.; And Others
1971-01-01
Contains a solution for the multidimensional scaling of pairwise choice when individuals are represented as dimensional weights. The analysis supplies an exact least squares solution and estimates of group unscalability parameters. (DG)
The Measurement of Self-Rated Depression: A Multidimensional Approach.
ERIC Educational Resources Information Center
Bolon, Kevin; Barling, Julian
1980-01-01
Investigates the capacity of the Zung Self-Rating Depression Scale for providing specific multidimensional descriptors of depressive behavior. Ideational, physiological and behavioral depression factors were evident in data from 96 normal, white university student volunteers. (Author/RH)
Design of Multidimensional Shinnar-Le Roux RF Pulses
Ma, Chao; Liang, Zhi-Pei
2014-01-01
Purpose To generalize the conventional Shinnar-Le Roux (SLR) method for the design of multidimensional RF pulses. Methods Using echo-planar gradients, the multidimensional RF pulse design problem was converted into a series of 1D polynomial design problems. Each of the 1D polynomial design problems was solved efficiently. B0 inhomogeneity compensation and design of spatial-spectral pulses were also considered. Results The proposed method was used to design 2D excitation and refocusing pulses. The results were validated through Bloch equation simulation and experiments on a 3.0 T scanner. Large-tip-angle, equiripple-error, multidimensional excitation was achieved with ripple levels closely matching the design specifications. Conclusion The conventional SLR method can be extended to design multidimensional RF pulses. The proposed method achieves almost equiripple excitation errors, allows easy control of the tradeoff among design parameters, and is computationally efficient. PMID:24578212
A multidimensional subdiffusion model: An arbitrage-free market
NASA Astrophysics Data System (ADS)
Li, Guo-Hua; Zhang, Hong; Luo, Mao-Kang
2012-12-01
To capture the subdiffusive characteristics of financial markets, the subordinated process, directed by the inverse α-stale subordinator Sα(t) for 0 < α < 1, has been employed as the model of asset prices. In this article, we introduce a multidimensional subdiffusion model that has a bond and K correlated stocks. The stock price process is a multidimensional subdiffusion process directed by the inverse α-stable subordinator. This model describes the period of stagnation for each stock and the behavior of the dependency between multiple stocks. Moreover, we derive the multidimensional fractional backward Kolmogorov equation for the subordinated process using the Laplace transform technique. Finally, using a martingale approach, we prove that the multidimensional subdiffusion model is arbitrage-free, and also gives an arbitrage-free pricing rule for contingent claims associated with the martingale measure.
The space transformation in the simulation of multidimensional random fields
Christakos, G.
1987-01-01
Space transformations are proposed as a mathematically meaningful and practically comprehensive approach to simulate multidimensional random fields. Within this context the turning bands method of simulation is reconsidered and improved in both the space and frequency domains. ?? 1987.
Super-resolution without explicit subpixel motion estimation.
Takeda, Hiroyuki; Milanfar, Peyman; Protter, Matan; Elad, Michael
2009-09-01
The need for precise (subpixel accuracy) motion estimates in conventional super-resolution has limited its applicability to only video sequences with relatively simple motions such as global translational or affine displacements. In this paper, we introduce a novel framework for adaptive enhancement and spatiotemporal upscaling of videos containing complex activities without explicit need for accurate motion estimation. Our approach is based on multidimensional kernel regression, where each pixel in the video sequence is approximated with a 3-D local (Taylor) series, capturing the essential local behavior of its spatiotemporal neighborhood. The coefficients of this series are estimated by solving a local weighted least-squares problem, where the weights are a function of the 3-D space-time orientation in the neighborhood. As this framework is fundamentally based upon the comparison of neighboring pixels in both space and time, it implicitly contains information about the local motion of the pixels across time, therefore rendering unnecessary an explicit computation of motions of modest size. The proposed approach not only significantly widens the applicability of super-resolution methods to a broad variety of video sequences containing complex motions, but also yields improved overall performance. Using several examples, we illustrate that the developed algorithm has super-resolution capabilities that provide improved optical resolution in the output, while being able to work on general input video with essentially arbitrary motion.
Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)
2002-01-01
We present new, efficient central schemes for multi-dimensional Hamilton-Jacobi equations. These non-oscillatory, non-staggered schemes are first- and second-order accurate and are designed to scale well with an increasing dimension. Efficiency is obtained by carefully choosing the location of the evolution points and by using a one-dimensional projection step. First-and second-order accuracy is verified for a variety of multi-dimensional, convex and non-convex problems.
Multidimensional Programming Methods for Energy Facility Siting: Alternative Approaches
NASA Technical Reports Server (NTRS)
Solomon, B. D.; Haynes, K. E.
1982-01-01
The use of multidimensional optimization methods in solving power plant siting problems, which are characterized by several conflicting, noncommensurable objectives is addressed. After a discussion of data requirements and exclusionary site screening methods for bounding the decision space, classes of multiobjective and goal programming models are discussed in the context of finite site selection. Advantages and limitations of these approaches are highlighted and the linkage of multidimensional methods with the subjective, behavioral components of the power plant siting process is emphasized.
Towards a genuinely multi-dimensional upwind scheme
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.; Vanleer, Bram; Roe, Philip L.
1990-01-01
Methods of incorporating multi-dimensional ideas into algorithms for the solution of Euler equations are presented. Three schemes are developed and tested: a scheme based on a downwind distribution, a scheme based on a rotated Riemann solver and a scheme based on a generalized Riemann solver. The schemes show an improvement over first-order, grid-aligned upwind schemes, but the higher-order performance is less impressive. An outlook for the future of multi-dimensional upwind schemes is given.
Multidimensional Hybridization of Dark Surface Plasmons.
Yankovich, Andrew B; Verre, Ruggero; Olsén, Erik; Persson, Anton E O; Trinh, Viet; Dovner, Gudrun; Käll, Mikael; Olsson, Eva
2017-04-07
Synthetic three-dimensional (3D) nanoarchitectures are providing more control over light-matter interactions and rapidly progressing photonic-based technology. These applications often utilize the strong synergy between electromagnetic fields and surface plasmons (SPs) in metallic nanostructures. However, many of the SP interactions hosted by complex 3D nanostructures are poorly understood because they involve dark hybridized states that are typically undetectable with far-field optical spectroscopy. Here, we use experimental and theoretical electron energy loss spectroscopy to elucidate dark SPs and their interactions in layered metal-insulator-metal disc nanostructures. We go beyond the established dipole SP hybridization analysis by measuring breathing and multipolar SP hybridization. In addition, we reveal multidimensional SP hybridization that simultaneously utilizes in-plane and out-of-plane SP coupling. Near-field classic electrodynamics calculations provide excellent agreement with all experiments. These results advance the fundamental understanding of SP hybridization in 3D nanostructures and provide avenues to further tune the interaction between electromagnetic fields and matter.
Multidimensional In Vivo Hazard Assessment Using Zebrafish
Tanguay, Robert L.
2014-01-01
There are tens of thousands of man-made chemicals in the environment; the inherent safety of most of these chemicals is not known. Relevant biological platforms and new computational tools are needed to prioritize testing of chemicals with limited human health hazard information. We describe an experimental design for high-throughput characterization of multidimensional in vivo effects with the power to evaluate trends relating to commonly cited chemical predictors. We evaluated all 1060 unique U.S. EPA ToxCast phase 1 and 2 compounds using the embryonic zebrafish and found that 487 induced significant adverse biological responses. The utilization of 18 simultaneously measured endpoints means that the entire system serves as a robust biological sensor for chemical hazard. The experimental design enabled us to describe global patterns of variation across tested compounds, evaluate the concordance of the available in vitro and in vivo phase 1 data with this study, highlight specific mechanisms/value-added/novel biology related to notochord development, and demonstrate that the developmental zebrafish detects adverse responses that would be missed by less comprehensive testing strategies. PMID:24136191
Multidimensional indexing tools for the virtual observatory
NASA Astrophysics Data System (ADS)
Csabai, I.; Dobos, L.; Trencséni, M.; Herczegh, G.; Józsa, P.; Purger, N.; Budavári, T.; Szalay, A. S.
2007-10-01
The last decade has seen a dramatic change in the way astronomy is carried out. The dawn of the the new microelectronic devices, like CCDs has dramatically extended the amount of observed data. Large, in some cases all sky surveys emerged in almost all the wavelength ranges of the observable spectrum of electromagnetic waves. This large amount of data has to be organized, published electronically and a new style of data retrieval is essential to exploit all the hidden information in the multiwavelength data. Many statistical algorithms required for these tasks run reasonably fast when using small sets of in-memory data, but take noticeable performance hits when operating on large databases that do not fit into memory. We utilize new software technologies to develop and evaluate fast multidimensional indexing schemes that inherently follow the underlying, highly non-uniform distribution of the data: they are layered uniform indices, hierarchical binary space partitioning, and sampled flat Voronoi tessellation of the data. These techniques can dramatically speed up operations such as finding similar objects by example, classifying objects or comparing extensive simulation sets with observations.
Correlative visualization techniques for multidimensional data
NASA Technical Reports Server (NTRS)
Treinish, Lloyd A.; Goettsche, Craig
1989-01-01
Critical to the understanding of data is the ability to provide pictorial or visual representation of those data, particularly in support of correlative data analysis. Despite the advancement of visualization techniques for scientific data over the last several years, there are still significant problems in bringing today's hardware and software technology into the hands of the typical scientist. For example, there are other computer science domains outside of computer graphics that are required to make visualization effective such as data management. Well-defined, flexible mechanisms for data access and management must be combined with rendering algorithms, data transformation, etc. to form a generic visualization pipeline. A generalized approach to data visualization is critical for the correlative analysis of distinct, complex, multidimensional data sets in the space and Earth sciences. Different classes of data representation techniques must be used within such a framework, which can range from simple, static two- and three-dimensional line plots to animation, surface rendering, and volumetric imaging. Static examples of actual data analyses will illustrate the importance of an effective pipeline in data visualization system.
Multi-dimensional cosmology and GUP
Zeynali, K.; Motavalli, H.; Darabi, F. E-mail: f.darabi@azaruniv.edu
2012-12-01
We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions.
Multidimensional imaging of the thorax: practical applications.
Ravenel, J G; McAdams, H P; Remy-Jardin, M; Remy, J
2001-10-01
Over the past decade, faster CT scan times, thinner collimation, and the development of multirow detectors, coupled with the increasing capability of computers to process large amounts of data in short periods of time, have lead to an expansion in the ability to create diagnostically useful two-dimensional (2D) and three-dimensional (3D) images within the thorax. Applications within the thorax include, but are not limited to, evaluation of pulmonary and systemic vasculature, evaluation of the tracheobronchial tree, and delineation of diffuse lung disease. Pulmonary nodule volume and growth can be more accurately predicted, and represents an improvement in the evaluation of the solitary pulmonary nodule. Multiplanar images increase our understanding of thoracic anatomy and can help to guide bronchoscopic procedures. Because there are strengths and weaknesses to all the reconstruction algorithms, the utility of any given technique is dependent on the clinical question to be answered. For instance, although maximum intensity projection imaging (MIP) is helpful in the evaluation of micronodular lung disease, it is of little value in the diagnosis of aortic dissection. As the ability to generate faster and more precise multidimensional images grow, the demand for such imaging is likely to increase. In this review, the authors discuss the various reconstruction techniques available, followed by a discussion of the clinical applications.
Numerical approaches for multidimensional simulations of stellar explosions
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Heger, Alexander; Almgren, Ann S.
2013-11-01
We introduce numerical algorithms for initializing multidimensional simulations of stellar explosions with 1D stellar evolution models. The initial mapping from 1D profiles onto multidimensional grids can generate severe numerical artifacts, one of the most severe of which is the violation of conservation laws for physical quantities. We introduce a numerical scheme for mapping 1D spherically-symmetric data onto multidimensional meshes so that these physical quantities are conserved. We verify our scheme by porting a realistic 1D Lagrangian stellar profile to the new multidimensional Eulerian hydro code CASTRO. Our results show that all important features in the profiles are reproduced on the new grid and that conservation laws are enforced at all resolutions after mapping. We also introduce a numerical scheme for initializing multidimensional supernova simulations with realistic perturbations predicted by 1D stellar evolution models. Instead of seeding 3D stellar profiles with random perturbations, we imprint them with velocity perturbations that reproduce the Kolmogorov energy spectrum expected for highly turbulent convective regions in stars. Our models return Kolmogorov energy spectra and vortex structures like those in turbulent flows before the modes become nonlinear. Finally, we describe approaches to determining the resolution for simulations required to capture fluid instabilities and nuclear burning. Our algorithms are applicable to multidimensional simulations besides stellar explosions that range from astrophysics to cosmology.
Multidimensional analysis and probabilistic model of volcanic and seismic activities
NASA Astrophysics Data System (ADS)
Fedorov, V.
2009-04-01
. Features of spatial distribution of volcanic eruptions and earthquakes of magnitude 7 were analyzed, and those related to the Earth rotation identified. Frequencies of their spatial distribution are calculated. Using those parameters as the base, a scheme (algorithm) of probabilistic monitoring (long-range forecast) has been developed for volcanic and seismic events. Refereces (in Russian): 1. Fedorov V.M. Gravitational factors and astronomy-based chronology of processes in geospheres. Moscow University Publishing House, 2000. 368 p. 2. Fedorov V.M. Comparison between chronology of the Earth volcanic activity and characteristics of its orbital motion // Vulkanologiya i seismologiya, № 5, 2001, p. 65-67. 3. Fedorov V.M. Specific features of latitudinal distribution of volcanic eruptions// Vulkanologiya i seismologiya, № 4, 2002, p.39-43. 4. Fedorov V.M. Specific features of latitudinal distribution of endogenic relief-forming processes and the rotation of the Earth // Geomorphologiya, № 1, 2003, p.3-9. 5. Fedorov V.M. Comparison between chronology of the Earth volcanic and seismic activity and characteristics of its orbital motion // Izvestiya RAS. Ser. Geogr. № 5, 2003, p.16-20. 6. Fedorov V.M. Chronological structure and probability of volcanic events as related to tidal deformation of lithosphere // Vulkanologiya i seismologiya, № 1, 2005, p.44-50. 7. Fedorov V.M. Multidimensional analysis and a probabilistic model of the activity of endogenic relief-forming processes // Geomorphology, № 2, 2007, p. 37 - 48. 8. Fedorov V.M. Multidimensional analysis - is a spatiotemporal structure of the geodynamic activity of Earth// Vestnik Moskovskogo Universiteta; Ser. 4. Geology, № 4, 2007, p. 24-31.
A multidimensional finite element method for CFD
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.
1991-01-01
A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.
ERIC Educational Resources Information Center
Damonte, Kathleen
2004-01-01
One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…
Dual motion valve with single motion input
NASA Technical Reports Server (NTRS)
Belew, Robert (Inventor)
1987-01-01
A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.
Information theoretic approaches to multidimensional neural computations
NASA Astrophysics Data System (ADS)
Fitzgerald, Jeffrey D.
Many systems in nature process information by transforming inputs from their environments into observable output states. These systems are often difficult to study because they are performing computations on multidimensional inputs with many degrees of freedom using highly nonlinear functions. The work presented in this dissertation deals with some of the issues involved with characterizing real-world input/output systems and understanding the properties of idealized systems using information theoretic methods. Using the principle of maximum entropy, a family of models are created that are consistent with certain measurable correlations from an input/output dataset but are maximally unbiased in all other respects, thereby eliminating all unjustified assumptions about the computation. In certain cases, including spiking neurons, we show that these models also minimize the mutual information. This property gives one the advantage of being able to identify the relevant input/output statistics by calculating their information content. We argue that these maximum entropy models provide a much needed quantitative framework for characterizing and understanding sensory processing neurons that are selective for multiple stimulus features. To demonstrate their usefulness, these ideas are applied to neural recordings from macaque retina and thalamus. These neurons, which primarily respond to two stimulus features, are shown to be well described using only first and second order statistics, indicating that their firing rates encode information about stimulus correlations. In addition to modeling multi-feature computations in the relevant feature space, we also show that maximum entropy models are capable of discovering the relevant feature space themselves. This technique overcomes the disadvantages of two commonly used dimensionality reduction methods and is explored using several simulated neurons, as well as retinal and thalamic recordings. Finally, we ask how neurons in a
Multidimensional seismic data reconstruction using tensor analysis
NASA Astrophysics Data System (ADS)
Kreimer, Nadia
Exploration seismology utilizes the seismic wavefield for prospecting oil and gas. The seismic reflection experiment consists on deploying sources and receivers in the surface of an area of interest. When the sources are activated, the receivers measure the wavefield that is reflected from different subsurface interfaces and store the information as time-series called traces or seismograms. The seismic data depend on two source coordinates, two receiver coordinates and time (a 5D volume). Obstacles in the field, logistical and economical factors constrain seismic data acquisition. Therefore, the wavefield sampling is incomplete in the four spatial dimensions. Seismic data undergoes different processes. In particular, the reconstruction process is responsible for correcting sampling irregularities of the seismic wavefield. This thesis focuses on the development of new methodologies for the reconstruction of multidimensional seismic data. This thesis examines techniques based on tensor algebra and proposes three methods that exploit the tensor nature of the seismic data. The fully sampled volume is low-rank in the frequency-space domain. The rank increases when we have missing traces and/or noise. The methods proposed perform rank reduction on frequency slices of the 4D spatial volume. The first method employs the Higher-Order Singular Value Decomposition (HOSVD) immersed in an iterative algorithm that reinserts weighted observations. The second method uses a sequential truncated SVD on the unfoldings of the tensor slices (SEQ-SVD). The third method formulates the rank reduction problem as a convex optimization problem. The measure of the rank is replaced by the nuclear norm of the tensor and the alternating direction method of multipliers (ADMM) minimizes the cost function. All three methods have the interesting property that they are robust to curvature of the reflections, unlike many reconstruction methods. Finally, we present a comparison between the methods
SAGE - MULTIDIMENSIONAL SELF-ADAPTIVE GRID CODE
NASA Technical Reports Server (NTRS)
Davies, C. B.
1994-01-01
SAGE, Self Adaptive Grid codE, is a flexible tool for adapting and restructuring both 2D and 3D grids. Solution-adaptive grid methods are useful tools for efficient and accurate flow predictions. In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, shear layers, etc., require careful distribution of grid points to minimize grid error and produce accurate flow-field predictions. SAGE helps the user obtain more accurate solutions by intelligently redistributing (i.e. adapting) the original grid points based on an initial or interim flow-field solution. The user then computes a new solution using the adapted grid as input to the flow solver. The adaptive-grid methodology poses the problem in an algebraic, unidirectional manner for multi-dimensional adaptations. The procedure is analogous to applying tension and torsion spring forces proportional to the local flow gradient at every grid point and finding the equilibrium position of the resulting system of grid points. The multi-dimensional problem of grid adaption is split into a series of one-dimensional problems along the computational coordinate lines. The reduced one dimensional problem then requires a tridiagonal solver to find the location of grid points along a coordinate line. Multi-directional adaption is achieved by the sequential application of the method in each coordinate direction. The tension forces direct the redistribution of points to the strong gradient region. To maintain smoothness and a measure of orthogonality of grid lines, torsional forces are introduced that relate information between the family of lines adjacent to one another. The smoothness and orthogonality constraints are direction-dependent, since they relate only the coordinate lines that are being adapted to the neighboring lines that have already been adapted. Therefore the solutions are non-unique and depend on the order and direction of adaption. Non-uniqueness of the adapted grid is
Motion through syntactic frames.
Feist, Michele I
2010-04-01
The introduction of Talmy's (1985, 2000) typology sparked significant interest in linguistic relativity in the arena of motion language. Through careful analysis of the conflation patterns evident in the language of motion events, Talmy noted that one class of languages, V-languages, tends to encode path along with the fact of motion in motion verbs, while a second class, S-languages, tends to encode manner. In the experimental literature, it was reasoned that speakers may be expected to extend novel verbs in accordance with the lexicalization patterns of their native languages. However, the results regarding this prediction are mixed. In this paper, I examine the interplay between the meaning encoded in the motion verb itself and the meaning encoded in the motion description construction, offering a Gricean explanation for co-occurrence patterns and, by extension, for the mixed results. I then explore the implications of this argument for research on possible language effects on thought in this domain.
NASA Technical Reports Server (NTRS)
1994-01-01
Integrated Sensors, Inc. (ISI), under NASA contract, developed a sensor system for controlling robot vehicles. This technology would enable a robot supply vehicle to automatically dock with Earth-orbiting satellites or the International Space Station. During the docking phase the ISI-developed sensor must sense the satellite's relative motion, then spin so the robot vehicle can adjust its motion to align with the satellite and slowly close until docking is completed. ISI used the sensing/tracking technology as the basis of its OPAD system, which simultaneously tracks an object's movement in six degrees of freedom. Applications include human limb motion analysis, assembly line position analysis and auto crash dummy motion analysis. The NASA technology is also the basis for Motion Analysis Workstation software, a package to simplify the video motion analysis process.
Multidimensional Integrative Genomics Approaches to Dissecting Cardiovascular Disease
Arneson, Douglas; Shu, Le; Tsai, Brandon; Barrere-Cain, Rio; Sun, Christine; Yang, Xia
2017-01-01
Elucidating the mechanisms of complex diseases such as cardiovascular disease (CVD) remains a significant challenge due to multidimensional alterations at molecular, cellular, tissue, and organ levels. To better understand CVD and offer insights into the underlying mechanisms and potential therapeutic strategies, data from multiple omics types (genomics, epigenomics, transcriptomics, metabolomics, proteomics, microbiomics) from both humans and model organisms have become available. However, individual omics data types capture only a fraction of the molecular mechanisms. To address this challenge, there have been numerous efforts to develop integrative genomics methods that can leverage multidimensional information from diverse data types to derive comprehensive molecular insights. In this review, we summarize recent methodological advances in multidimensional omics integration, exemplify their applications in cardiovascular research, and pinpoint challenges and future directions in this incipient field. PMID:28289683
NASA Technical Reports Server (NTRS)
Park, Brian Vandellyn
1993-01-01
The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.
Hildreth, E.C.
1984-01-01
This book examines the measurement of visual motion and the use of relative movement to locate the boundaries of physical objects in the environment. It investigates the nature of the computations that are necessary to perform this analysis by any vision system, biological or artificial. Contents: Introduction. Background. Computation of the Velocity Field. An Algorithm to Compute the Velocity Field. The Computation of Motion Discontinuities. Perceptual Studies of Motion Measurement. The Psychophysics of Discontinuity Detection. Neurophysiological Studies of Motion. Summary and Conclusions. References. Author and Subject Indexes.
Fast Packet Classification Using Multi-Dimensional Encoding
NASA Astrophysics Data System (ADS)
Huang, Chi Jia; Chen, Chien
Internet routers need to classify incoming packets quickly into flows in order to support features such as Internet security, virtual private networks and Quality of Service (QoS). Packet classification uses information contained in the packet header, and a predefined rule table in the routers. Packet classification of multiple fields is generally a difficult problem. Hence, researchers have proposed various algorithms. This study proposes a multi-dimensional encoding method in which parameters such as the source IP address, destination IP address, source port, destination port and protocol type are placed in a multi-dimensional space. Similar to the previously best known algorithm, i.e., bitmap intersection, multi-dimensional encoding is based on the multi-dimensional range lookup approach, in which rules are divided into several multi-dimensional collision-free rule sets. These sets are then used to form the new coding vector to replace the bit vector of the bitmap intersection algorithm. The average memory storage of this encoding is Θ (L · N · log N) for each dimension, where L denotes the number of collision-free rule sets, and N represents the number of rules. The multi-dimensional encoding practically requires much less memory than bitmap intersection algorithm. Additionally, the computation needed for this encoding is as simple as bitmap intersection algorithm. The low memory requirement of the proposed scheme means that it not only decreases the cost of packet classification engine, but also increases the classification performance, since memory represents the performance bottleneck in the packet classification engine implementation using a network processor.
Multidimensional WKB approximation for particle tunneling
Zamastil, J.
2005-08-15
A method for obtaining the WKB wave function describing the particle tunneling outside of a two-dimensional potential well is suggested. The Cartesian coordinates (x,y) are chosen in such a way that the x axis has the direction of the probability flux at large distances from the well. The WKB wave function is then obtained by simultaneous expansion of the wave function in the coordinate y and the parameter determining the curvature of the escape path. It is argued, both physically and mathematically, that these two expansions are mutually consistent. It is shown that the method provides systematic approximation to the outgoing probability flux. Both the technical and conceptual advantages of this approach in comparison with the usual approach based on the solution of classical equations of motion are pointed out. The method is applied to the problem of the coupled anharmonic oscillators and verified through the dispersion relations.
NASA Astrophysics Data System (ADS)
Yang, Xiaojun; Lu, Dun; Ma, Chengfang; Zhang, Jun; Zhao, Wanhua
2017-01-01
The motor thrust force has lots of harmonic components due to the nonlinearity of drive circuit and motor itself in the linear motor feed drive system. What is more, in the motion process, these thrust force harmonics may vary with the position, velocity, acceleration and load, which affects the displacement fluctuation of the feed drive system. Therefore, in this paper, on the basis of the thrust force spectrum obtained by the Maxwell equation and the electromagnetic energy method, the multi-dimensional variation of each thrust harmonic is analyzed under different motion parameters. Then the model of the servo system is established oriented to the dynamic precision. The influence of the variation of the thrust force spectrum on the displacement fluctuation is discussed. At last the experiments are carried out to verify the theoretical analysis above. It can be found that the thrust harmonics show multi-dimensional spectrum characteristics under different motion parameters and loads, which should be considered to choose the motion parameters and optimize the servo control parameters in the high-speed and high-precision machine tools equipped with the linear motor feed drive system.
Motion compensator for holographic motion picture camera
NASA Technical Reports Server (NTRS)
Kurtz, R. L.
1973-01-01
When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.
ERIC Educational Resources Information Center
Ashbrook, Peggy
2008-01-01
Objects in motion attract children. The following activity helps children explore the motion of bodies riding in a vehicle and safely demonstrates the answer to their questions, "Why do I need a seatbelt?" Children will enjoy moving the cup around, even if all they "see" is a cup rather than understanding it represents a car. They will understand…
ERIC Educational Resources Information Center
Summers, M. K.
1977-01-01
Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)
ERIC Educational Resources Information Center
King, Kenneth
2005-01-01
When watching a small child with a toy car, it is seen that interest in motion comes early. Children often suggest speed through sounds such as "RRRrrrRRRooooommMMMmmmm" as the toy car is made to speed up, slow down, or accelerate through a turn. Older children start to consider force and motion studies in more detail, and experiences in school…
Aristotle, Motion, and Rhetoric.
ERIC Educational Resources Information Center
Sutton, Jane
Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of…
ERIC Educational Resources Information Center
Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy
1998-01-01
Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…
ERIC Educational Resources Information Center
McCloskey, Michael
Two experiments were conducted to characterize the system of beliefs that make up the naive impetus theory of motion and to determine what effects physics instruction has on students' conceptions of motion. Thirteen college students were asked to solve several quantitative problems and were interviewed about their answers in the first experiment.…
NASA Technical Reports Server (NTRS)
Dimeff, J.; Rositano, S.; Taylor, R. C.
1977-01-01
Mandibular motion along three axes is measured by three motion transducers on floating yoke that rests against mandible. System includes electronics to provide variety of outputs for data display and processing. Head frame is strapped to test subject's skull to provide fixed point of reference for transducers.
NASA Technical Reports Server (NTRS)
1974-01-01
The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.
Stochastic ground motion simulation
Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan
2014-01-01
Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.
Multidimensional Measurement of Poverty among Women in Sub-Saharan Africa
ERIC Educational Resources Information Center
Batana, Yele Maweki
2013-01-01
Since the seminal work of Sen, poverty has been recognized as a multidimensional phenomenon. The recent availability of relevant databases renewed the interest in this approach. This paper estimates multidimensional poverty among women in fourteen Sub-Saharan African countries using the Alkire and Foster multidimensional poverty measures, whose…
Best Design for Multidimensional Computerized Adaptive Testing with the Bifactor Model
ERIC Educational Resources Information Center
Seo, Dong Gi; Weiss, David J.
2015-01-01
Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm…
Motion sickness in migraine sufferers.
Marcus, Dawn A; Furman, Joseph M; Balaban, Carey D
2005-12-01
Motion sickness commonly occurs after exposure to actual motion, such as car or amusement park rides, or virtual motion, such as panoramic movies. Motion sickness symptoms may be disabling, significantly limiting business, travel and leisure activities. Motion sickness occurs in approximately 50% of migraine sufferers. Understanding motion sickness in migraine patients may improve understanding of the physiology of both conditions. Recent literature suggests important relationships between the trigeminal system and vestibular nuclei that may have implications for both motion sickness and migraine. Studies demonstrating an important relationship between serotonin receptors and motion sickness susceptibility in both rodents and humans suggest possible new motion sickness prevention therapies.
Multidimensional profiling of cell surface proteins and nuclear markers
Han, Ju; Chang, Hang; Andarawewa, Kumari; Yaswen, Paul; Helen Barcellos-Hoff, Mary; Parvin, Bahram
2009-01-30
Cell membrane proteins play an important role in tissue architecture and cell-cell communication. We hypothesize that segmentation and multidimensional characterization of the distribution of cell membrane proteins, on a cell-by-cell basis, enable improved classification of treatment groups and identify important characteristics that can otherwise be hidden. We have developed a series of computational steps to (i) delineate cell membrane protein signals and associate them with a specific nucleus; (ii) compute a coupled representation of the multiplexed DNA content with membrane proteins; (iii) rank computed features associated with such a multidimensional representation; (iv) visualize selected features for comparative evaluation through heatmaps; and (v) discriminate between treatment groups in an optimal fashion. The novelty of our method is in the segmentation of the membrane signal and the multidimensional representation of phenotypic signature on a cell-by-cell basis. To test the utility of this method, the proposed computational steps were applied to images of cells that have been irradiated with different radiation qualities in the presence and absence of other small molecules. These samples are labeled for their DNA content and E-cadherin membrane proteins. We demonstrate that multidimensional representations of cell-by-cell phenotypes improve predictive and visualization capabilities among different treatment groups, and identify hidden variables.
Using Multidimensional Scaling to Explore Value Issues in Counseling.
ERIC Educational Resources Information Center
Richards, P. Scott; Davison, Mark L.
It is widely agreed that counselors' and clients' values influence every phase of psychotherapy. A preliminary appraisal of the usefulness of multidimensional scaling (MDS) for investigating the effects of values on counseling process and outcome was done. MDS was used to investigate how theistic or atheistic values of a counselor, when revealed,…
Assessing Multidimensional Energy Literacy of Secondary Students Using Contextualized Assessment
ERIC Educational Resources Information Center
Chen, Kuan-Li; Liu, Shiang-Yao; Chen, Po-Hsi
2015-01-01
Energy literacy is multidimensional, comprising broad content knowledge as well as affect and behavior. Our previous study has defined four core dimensions for the assessment framework, including energy concepts, reasoning on energy issues, low-carbon lifestyle, and civic responsibility for a sustainable society. The present study compiled a…
The Multidimensionality of Calling: Conceptualization, Measurement and a Bicultural Perspective
ERIC Educational Resources Information Center
Hagmaier, Tamara; Abele, Andrea E.
2012-01-01
The experience of a calling may be seen as the ultimate form of subjective career success that has many positive consequences for individuals and organizations. We are here concerned with the conceptualization of a new multidimensional measure of calling, the MCM. In the first two studies we employed a qualitative approach and came up with five…
The Relationship between Anxiety and Stuttering: A Multidimensional Approach
ERIC Educational Resources Information Center
Ezrati-Vinacour, Ruth; Levin, Iris
2004-01-01
The relationship between anxiety and stuttering is equivocal from both clinical and empirical perspectives. This study examined the relationship within the framework of the multidimensional interaction model of anxiety that includes an approach to general anxiety in specific situations [J. Pers. Soc. Psychol. 60 (1991) 919]. Ninety-four males aged…
Individual and Institutional Determinants of Multidimensional Poverty: A European Comparison
ERIC Educational Resources Information Center
Dewilde, Caroline
2008-01-01
In this article we evaluate to what extent between-country differences in the probability of being "multidimensional" poor can be explained by a range of "domain-specific" indicators of welfare regime arrangements. To this end, a so-called micro-macro model is estimated, testing the "independent" effect of…
Multidimensional Collaboration: Reflections on Action Research in a Clinical Context
ERIC Educational Resources Information Center
Gregory, Sheila; Poland, Fiona; Spalding, Nicola J.; Sargen, Kevin; McCulloch, Jane; Vicary, Penny
2011-01-01
This paper reflects on the challenges and benefits of multidimensional collaboration in an action research study to evaluate and improve preoperative education for patients awaiting colorectal surgery. Three cycles of planning, acting, observing and reflecting were designed to evaluate practice and implement change in this interactive setting,…
A Multidimensional Approach to E-Learning Sustainability
ERIC Educational Resources Information Center
Trentin, Guglielmo, Ed.
2007-01-01
The aim of the article is to outline the possible key elements related to the sustainability of e-learning. After analyzing trends in e-learning diffusion, a multidimensional model for sustainability of e-learning innovations is presented. The proposed model is characterized by eight dimensions that are closely and mutually interrelated:…
Multidimensional Scaling of High School Students' Perceptions of Academic Dishonesty
ERIC Educational Resources Information Center
Schmelkin, Liora Pedhazur; Gilbert, Kimberly A.; Silva, Rebecca
2010-01-01
Although cheating on tests and other forms of academic dishonesty are considered rampant, no standard definition of academic dishonesty exists. The current study was conducted to investigate the perceptions of academic dishonesty in high school students, utilizing an innovative methodology, multidimensional scaling (MDS). Two methods were used to…
Development and Validation of the Multidimensional State Boredom Scale
ERIC Educational Resources Information Center
Fahlman, Shelley A.; Mercer-Lynn, Kimberley B.; Flora, David B.; Eastwood, John D.
2013-01-01
This article describes the development and validation of the Multidimensional State Boredom Scale (MSBS)--the first and only full-scale measure of state boredom. It was developed based on a theoretically and empirically grounded definition of boredom. A five-factor structure of the scale (Disengagement, High Arousal, Low Arousal, Inattention, and…
Reporting of Subscores Using Multidimensional Item Response Theory
ERIC Educational Resources Information Center
Haberman, Shelby J.; Sinharay, Sandip
2010-01-01
Recently, there has been increasing interest in reporting subscores. This paper examines reporting of subscores using multidimensional item response theory (MIRT) models (e.g., Reckase in "Appl. Psychol. Meas." 21:25-36, 1997; C.R. Rao and S. Sinharay (Eds), "Handbook of Statistics, vol. 26," pp. 607-642, North-Holland, Amsterdam, 2007; Beguin &…
Deriving Stopping Rules for Multidimensional Computerized Adaptive Testing
ERIC Educational Resources Information Center
Wang, Chun; Chang, Hua-Hua; Boughton, Keith A.
2013-01-01
Multidimensional computerized adaptive testing (MCAT) is able to provide a vector of ability estimates for each examinee, which could be used to provide a more informative profile of an examinee's performance. The current literature on MCAT focuses on the fixed-length tests, which can generate less accurate results for those examinees whose…
Interactive Multidimensional Scaling of Cognitive Structure Underlying Person Perception
ERIC Educational Resources Information Center
Kehoe, Jerard; Reynolds, Thomas J.
1977-01-01
A computer-interactive multidimensional scaling program was used together with free response methods to represent and label dimensions of individual cognitive structure underlying persons' perceptions. The dimensional structures derived were predictive of semantic differential, paired comparison, and Repertory Grid Test triad judgments.…
Multidimensional Adaptive Testing with Optimal Design Criteria for Item Selection
ERIC Educational Resources Information Center
Mulder, Joris; van der Linden, Wim J.
2009-01-01
Several criteria from the optimal design literature are examined for use with item selection in multidimensional adaptive testing. In particular, it is examined what criteria are appropriate for adaptive testing in which all abilities are intentional, some should be considered as a nuisance, or the interest is in the testing of a composite of the…
Best Practices Inquiry: A Multidimensional, Value-Critical Framework
ERIC Educational Resources Information Center
Petr, Christopher G.; Walter, Uta M.
2005-01-01
This article offers a multidimensional framework that broadens current approaches to "best practices" inquiry to include (1) the perspectives of both the consumers of services and professional practitioners and (2) a value-based critique. The predominant empirical approach to best practices inquiry is a necessary, but not sufficient, component of…
The Multi-Dimensional Demands of Reading in the Disciplines
ERIC Educational Resources Information Center
Lee, Carol D.
2014-01-01
This commentary addresses the complexities of reading comprehension with an explicit focus on reading in the disciplines. The author proposes reading as entailing multi-dimensional demands of the reader and posing complex challenges for teachers. These challenges are intensified by restrictive conceptions of relevant prior knowledge and experience…
Bayesian Multidimensional IRT Models with a Hierarchical Structure
ERIC Educational Resources Information Center
Sheng, Yanyan; Wikle, Christopher K.
2008-01-01
As item response models gain increased popularity in large-scale educational and measurement testing situations, many studies have been conducted on the development and applications of unidimensional and multidimensional models. Recently, attention has been paid to IRT-based models with an overall ability dimension underlying several ability…
Examining the Reliability of Student Growth Percentiles Using Multidimensional IRT
ERIC Educational Resources Information Center
Monroe, Scott; Cai, Li
2015-01-01
Student growth percentiles (SGPs, Betebenner, 2009) are used to locate a student's current score in a conditional distribution based on the student's past scores. Currently, following Betebenner (2009), quantile regression (QR) is most often used operationally to estimate the SGPs. Alternatively, multidimensional item response theory (MIRT) may…
Extending Validity Evidence for Multidimensional Measures of Coaching Competency
ERIC Educational Resources Information Center
Myers, Nicholas D.; Wolfe, Edward W.; Maier, Kimberly S.; Feltz, Deborah L.; Reckase, Mark D.
2006-01-01
This study extended validity evidence for multidimensional measures of coaching competency derived from the Coaching Competency Scale (CCS; Myers, Feltz, Maier, Wolfe, & Reckase, 2006) by examining use of the original rating scale structure and testing how measures related to satisfaction with the head coach within teams and between teams.…
A Multidimensional Test of Self-Concept: Further Findings.
ERIC Educational Resources Information Center
Lathrop, Richard G.
The Multidimensional Test of Self-Concept (MTS) is based on the assumption that an individual's perception of his/her well-being is related to the difference between the current state of that individual and the desired state. This difference between the two states may be directly measured, and a single self-concept score generated. The MTS…
Parentification of Adult Children of Divorce: A Multidimensional Analysis.
ERIC Educational Resources Information Center
Jurkovic, Gregory J.; Thirkield, Alison; Morrell, Richard
2001-01-01
Compared the responses of 381 late adolescent and young adult children of divorce and nondivorce on a new multidimensional measure of parentification assessing the extent and fairness of past and present family caregiving. Evidence that problematic forms of parentification in children of divorce continue into late adolescence and young adulthood…
Image matrix processor for fast multi-dimensional computations
Roberson, G.P.; Skeate, M.F.
1996-10-15
An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.
The Structure and Validity of the Multidimensional Social Support Questionnaire
ERIC Educational Resources Information Center
Hardesty, Patrick H.; Richardson, George B.
2012-01-01
The factor structure and concurrent validity of the Multidimensional Social Support Questionnaire, a brief measure of perceived social support for use with adolescents, was examined. Findings suggest that four dimensions of perceived social support may yield more information than assessments of the unitary construct of support. (Contains 8 tables…
Multidimensional Scoring of Abilities: The Ordered Polytomous Response Case
ERIC Educational Resources Information Center
de la Torre, Jimmy
2008-01-01
Recent work has shown that multidimensionally scoring responses from different tests can provide better ability estimates. For educational assessment data, applications of this approach have been limited to binary scores. Of the different variants, the de la Torre and Patz model is considered more general because implementing the scoring procedure…
Multidimensional Poverty in China: Findings Based on the CHNS
ERIC Educational Resources Information Center
Yu, Jiantuo
2013-01-01
This paper estimates multidimensional poverty in China by applying the Alkire-Foster methodology to the China Health and Nutrition Survey 2000-2009 data. Five dimensions are included: income, living standard, education, health and social security. Results suggest that rapid economic growth has resulted not only in a reduction in income poverty but…
Five Evils: Multidimensional Poverty and Race in America
ERIC Educational Resources Information Center
Reeves, Richard; Rodrigue, Edward; Kneebone, Elizabeth
2016-01-01
Poverty is about a lack of money, but it's not only about that. As a lived experience, poverty is also characterized by ill health, insecurity, discomfort, isolation, and more. To put it another way: Poverty is multidimensional, and its dimensions often cluster together to intensify the negative effects of being poor. In this first of a two-part…
Income Tax Preparation Assistance Service Learning Program: A Multidimensional Assessment
ERIC Educational Resources Information Center
Aldridge, Richard; Callahan, Richard A.; Chen, Yining; Wade, Stacy R.
2015-01-01
The authors present a multidimensional assessment of the outcomes and benefits of an income tax preparation assistance (ITPA) service learning program. They measure the perceived proximate benefits at the delivery of the service program, the actual learning outcome benefits prior to graduation, and the perceived long-term benefits from a…
Turkish Validity Examination of the Multidimensional Students' Life Satisfaction Scale
ERIC Educational Resources Information Center
Irmak, Sezgin; Kuruuzum, Ayse
2009-01-01
The validation studies of the Multidimensional Students' Life Satisfaction Scale (MSLSS) have been conducted with samples from different nations but mostly from western individualistic cultures. Life satisfaction and its constructs could differ depending on cultural characteristics and life satisfaction scales should be validated in different…
Posterior Predictive Model Checking for Multidimensionality in Item Response Theory
ERIC Educational Resources Information Center
Levy, Roy; Mislevy, Robert J.; Sinharay, Sandip
2009-01-01
If data exhibit multidimensionality, key conditional independence assumptions of unidimensional models do not hold. The current work pursues posterior predictive model checking, a flexible family of model-checking procedures, as a tool for criticizing models due to unaccounted for dimensions in the context of item response theory. Factors…
Scoring and modeling psychological measures in the presence of multidimensionality.
Reise, Steven P; Bonifay, Wes E; Haviland, Mark G
2013-01-01
Confirmatory factor analytic studies of psychological measures showing item responses to be multidimensional do not provide sufficient guidance for applied work. Demonstrating that item response data are multifactorial in this way does not necessarily (a) mean that a total scale score is an inadequate indicator of the intended construct, (b) demand creating and scoring subscales, or (c) require specifying a multidimensional measurement model in research using structural equation modeling (SEM). To better inform these important decisions, more fine-grained psychometric analyses are necessary. We describe 3 established, but seldom used, psychometric approaches that address 4 distinct questions: (a) To what degree do total scale scores reflect reliable variation on a single construct? (b) Is the scoring and reporting of subscale scores justified? (c) If justified, how much reliable variance do subscale scores provide after controlling for a general factor? and (d) Can multidimensional item response data be represented by a unidimensional measurement model in SEM, or are multidimensional measurement models (e.g., second-order, bifactor) necessary to achieve unbiased structural coefficients? In the discussion, we provide guidance for applied researchers on how best to interpret the results from applying these methods and review their limitations.
Mental Models of Text and Film: A Multidimensional Scaling Analysis.
ERIC Educational Resources Information Center
Rowell, Jack A.; Moss, Peter D.
1986-01-01
Reports results of experiment to determine whether mental models are constructed of interrelationships and cross-relationships of character attributions drawn in themes of novels and films. The study used "Animal Farm" in print and cartoon forms. Results demonstrated validity of multidimensional scaling for representing both media.…
Image matrix processor for fast multi-dimensional computations
Roberson, George P.; Skeate, Michael F.
1996-01-01
An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.
Identity Status and Empathic Response Patterns: A Multidimensional Investigation.
ERIC Educational Resources Information Center
Erlanger, David M.
1998-01-01
The multidimensional empathic response patterns of late adolescent undergraduate students (N=153) was examined according to their identity status. Subjects completed self-report measures of empathic response style and identity development. Findings for empathic concern, cognitive empathy, and empathic distress are related to identity status…
Stabilization of Internal Space in Noncommutative Multidimensional Cosmology
NASA Astrophysics Data System (ADS)
Khosravi, N.; Jalalzadeh, S.; Sepangi, H. R.
We study the cosmological aspects of a noncommutative, multidimensional universe where the matter source is assumed to be a scalar field which does not commute with the internal scale factor. We show that such noncommutativity results in the internal dimensions being stabilized.
Multidimensional linearizable system of n-wave-type equations
NASA Astrophysics Data System (ADS)
Zenchuk, A. I.
2017-01-01
We propose a linearizable version of a multidimensional system of n-wave-type nonlinear partial differential equations ( PDEs). We derive this system using the spectral representation of its solution via a procedure similar to the dressing method for nonlinear PDEs integrable by the inverse scattering transform method. We show that the proposed system is completely integrable and construct a particular solution.
A Multidimensional Analysis of a Written L2 Spanish Corpus
ERIC Educational Resources Information Center
Asencion-Delaney, Yuly; Collentine, Joseph
2011-01-01
The present study adds to our understanding of how learners employ lexical and grammatical phenomena to communicate in writing in different types of interlanguage discourse. A multidimensional (factor) analysis of a corpus of L2 Spanish writing (202,241 words) generated by second- and third-year, university-level learners was performed. The…
Science Concepts in Semantic Space--A Multidimensional Scaling Study
ERIC Educational Resources Information Center
Preece, P. F. W.
1976-01-01
Data on the semantic proximity of classical mechanics concepts, obtained by means of a cross-sectional investigation (100 subjects) using a continued word association test, were analyzed by individual difference multidimensional scaling to permit the mapping of semantic space for individual subjects. (JC)
Linear and Nonlinear Thinking: A Multidimensional Model and Measure
ERIC Educational Resources Information Center
Groves, Kevin S.; Vance, Charles M.
2015-01-01
Building upon previously developed and more general dual-process models, this paper provides empirical support for a multidimensional thinking style construct comprised of linear thinking and multiple dimensions of nonlinear thinking. A self-report assessment instrument (Linear/Nonlinear Thinking Style Profile; LNTSP) is presented and…
A MULTIDIMENSIONAL AND MULTIPHYSICS APPROACH TO NUCLEAR FUEL BEHAVIOR SIMULATION
R. L. Williamson; J. D. Hales; S. R. Novascone; M. R. Tonks; D. R. Gaston; C. J. Permann; D. Andrs; R. C. Martineau
2012-04-01
Important aspects of fuel rod behavior, for example pellet-clad mechanical interaction (PCMI), fuel fracture, oxide formation, non-axisymmetric cooling, and response to fuel manufacturing defects, are inherently multidimensional in addition to being complicated multiphysics problems. Many current modeling tools are strictly 2D axisymmetric or even 1.5D. This paper outlines the capabilities of a new fuel modeling tool able to analyze either 2D axisymmetric or fully 3D models. These capabilities include temperature-dependent thermal conductivity of fuel; swelling and densification; fuel creep; pellet fracture; fission gas release; cladding creep; irradiation growth; and gap mechanics (contact and gap heat transfer). The need for multiphysics, multidimensional modeling is then demonstrated through a discussion of results for a set of example problems. The first, a 10-pellet rodlet, demonstrates the viability of the solution method employed. This example highlights the effect of our smeared cracking model and also shows the multidimensional nature of discrete fuel pellet modeling. The second example relies on our the multidimensional, multiphysics approach to analyze a missing pellet surface problem. As a final example, we show a lower-length-scale simulation coupled to a continuum-scale simulation.
BMDS: A Collection of R Functions for Bayesian Multidimensional Scaling
ERIC Educational Resources Information Center
Okada, Kensuke; Shigemasu, Kazuo
2009-01-01
Bayesian multidimensional scaling (MDS) has attracted a great deal of attention because: (1) it provides a better fit than do classical MDS and ALSCAL; (2) it provides estimation errors of the distances; and (3) the Bayesian dimension selection criterion, MDSIC, provides a direct indication of optimal dimensionality. However, Bayesian MDS is not…
Implementation and Measurement Efficiency of Multidimensional Computerized Adaptive Testing
ERIC Educational Resources Information Center
Wang, Wen-Chung; Chen, Po-Hsi
2004-01-01
Multidimensional adaptive testing (MAT) procedures are proposed for the measurement of several latent traits by a single examination. Bayesian latent trait estimation and adaptive item selection are derived. Simulations were conducted to compare the measurement efficiency of MAT with those of unidimensional adaptive testing and random…
A General Multidimensional Model for the Measurement of Cultural Differences.
ERIC Educational Resources Information Center
Olmedo, Esteban L.; Martinez, Sergio R.
A multidimensional model for measuring cultural differences (MCD) based on factor analytic theory and techniques is proposed. The model assumes that a cultural space may be defined by means of a relatively small number of orthogonal dimensions which are linear combinations of a much larger number of cultural variables. Once a suitable,…
The Multidimensional Structure of Verbal Comprehension Test Items.
ERIC Educational Resources Information Center
Peled, Zimra
1984-01-01
The multidimensional structure of verbal comprehension test items was investigated. Empirical evidence was provided to support the theory that item tasks are multivariate-multiordered composites of faceted components: language, contextual knowledge, and cognitive operation. Linear and circular properties of cylindrical manifestation were…
Evaluation of Linking Methods for Multidimensional IRT Calibrations
ERIC Educational Resources Information Center
Min, Kyung-Seok
2007-01-01
Most researchers agree that psychological/educational tests are sensitive to multiple traits, implying the need for a multidimensional item response theory (MIRT). One limitation of applying a MIRT in practice is the difficulty in establishing equivalent scales of multiple traits. In this study, a new MIRT linking method was proposed and evaluated…
Positivity-preserving numerical schemes for multidimensional advection
NASA Technical Reports Server (NTRS)
Leonard, B. P.; Macvean, M. K.; Lock, A. P.
1993-01-01
This report describes the construction of an explicit, single time-step, conservative, finite-volume method for multidimensional advective flow, based on a uniformly third-order polynomial interpolation algorithm (UTOPIA). Particular attention is paid to the problem of flow-to-grid angle-dependent, anisotropic distortion typical of one-dimensional schemes used component-wise. The third-order multidimensional scheme automatically includes certain cross-difference terms that guarantee good isotropy (and stability). However, above first-order, polynomial-based advection schemes do not preserve positivity (the multidimensional analogue of monotonicity). For this reason, a multidimensional generalization of the first author's universal flux-limiter is sought. This is a very challenging problem. A simple flux-limiter can be found; but this introduces strong anisotropic distortion. A more sophisticated technique, limiting part of the flux and then restoring the isotropy-maintaining cross-terms afterwards, gives more satisfactory results. Test cases are confined to two dimensions; three-dimensional extensions are briefly discussed.
The Multidimensionality of Child Poverty: Evidence from Afghanistan
ERIC Educational Resources Information Center
Trani, Jean-Francois; Biggeri, Mario; Mauro, Vincenzo
2013-01-01
This paper examines multidimensional poverty among children in Afghanistan using the Alkire-Foster method. Several previous studies have underlined the need to separate children from their adult nexus when studying poverty and treat them according to their own specificities. From the capability approach, child poverty is understood to be the lack…
Multidimensional Treatment of Attention Deficit Disorder: A Family Oriented Approach.
ERIC Educational Resources Information Center
Erk, Robert R.
1997-01-01
Counseling that involves the entire family has the potential to motivate children with Attention Deficit Disorder (ADD), improve the children's self-concept, and help them improve social skills or functioning. Probable causes, family patterns, effects of ADD on family interactions, counseling issues, and a multidimensional treatment approach are…
Income and beyond: Multidimensional Poverty in Six Latin American Countries
ERIC Educational Resources Information Center
Battiston, Diego; Cruces, Guillermo; Lopez-Calva, Luis Felipe; Lugo, Maria Ana; Santos, Maria Emma
2013-01-01
This paper studies multidimensional poverty for Argentina, Brazil, Chile, El Salvador, Mexico and Uruguay for the period 1992-2006. The approach overcomes the limitations of the two traditional methods of poverty analysis in Latin America (income-based and unmet basic needs) by combining income with five other dimensions: school attendance for…
A Framework for Dimensionality Assessment for Multidimensional Item Response Models
ERIC Educational Resources Information Center
Svetina, Dubravka; Levy, Roy
2014-01-01
A framework is introduced for considering dimensionality assessment procedures for multidimensional item response models. The framework characterizes procedures in terms of their confirmatory or exploratory approach, parametric or nonparametric assumptions, and applicability to dichotomous, polytomous, and missing data. Popular and emerging…
Conditional Covariance-based Representation of Multidimensional Test Structure.
ERIC Educational Resources Information Center
Bolt, Daniel M.
2001-01-01
Presents a new nonparametric method for constructing a spatial representation of multidimensional test structure, the Conditional Covariance-based SCALing (CCSCAL) method. Describes an index to measure the accuracy of the representation. Uses simulation and real-life data analyses to show that the method provides a suitable approximation to…
Teacher Self-Regulation: Examining a Multidimensional Construct
ERIC Educational Resources Information Center
Capa-Aydin, Yesim; Sungur, Semra; Uzuntiryaki, Esen
2009-01-01
This study aimed to develop and validate an instrument to assess the multidimensional nature of teacher self-regulation. A nine-factor structure was proposed: goal setting, intrinsic interest, performance goal orientation, mastery goal orientation, self-instruction, emotional control, self-evaluation, self-reaction, and help-seeking. Through a…
Gender and Attitudes toward People Using Wheelchairs: A Multidimensional Perspective
ERIC Educational Resources Information Center
Vilchinsky, Noa; Werner, Shirli; Findler, Liora
2010-01-01
This study aims to investigate the effect of observer's gender and target's gender on attitudes toward people who use wheelchairs due to a physical disability. Four hundred four Jewish Israeli students without disabilities completed the "Multidimensional Attitudes Scale Toward Persons With Disabilities" (MAS). Initially, confirmatory…
Educational Mismatch of Graduates: A Multidimensional and Fuzzy Indicator
ERIC Educational Resources Information Center
Betti, Gianni; D'Agostino, Antonella; Neri, Laura
2011-01-01
In this paper we attempt to measure the educational mismatch, seen as a problem of overeducation, using a multidimensional and fuzzy methodology. Educational mismatch can be difficult to measure because many factors can converge to its definition and the traditional unidimensional indicators presented in literature can offer a restricted view of…
On the Solution of NBVP for Multidimensional Hyperbolic Equations
Ashyralyev, Allaberen
2014-01-01
We are interested in studying multidimensional hyperbolic equations with nonlocal integral and Neumann or nonclassical conditions. For the approximate solution of this problem first and second order of accuracy difference schemes are presented. Stability estimates for the solution of these difference schemes are established. Some numerical examples illustrating applicability of these methods to hyperbolic problems are given. PMID:24983006
Multi-dimensional multi-species modeling of transient electrodeposition in LIGA microfabrication.
Evans, Gregory Herbert; Chen, Ken Shuang
2004-06-01
This report documents the efforts and accomplishments of the LIGA electrodeposition modeling project which was headed by the ASCI Materials and Physics Modeling Program. A multi-dimensional framework based on GOMA was developed for modeling time-dependent diffusion and migration of multiple charged species in a dilute electrolyte solution with reduction electro-chemical reactions on moving deposition surfaces. By combining the species mass conservation equations with the electroneutrality constraint, a Poisson equation that explicitly describes the electrolyte potential was derived. The set of coupled, nonlinear equations governing species transport, electric potential, velocity, hydrodynamic pressure, and mesh motion were solved in GOMA, using the finite-element method and a fully-coupled implicit solution scheme via Newton's method. By treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and by repeatedly performing re-meshing with CUBIT and re-mapping with MAPVAR, the moving deposition surfaces were tracked explicitly from start of deposition until the trenches were filled with metal, thus enabling the computation of local current densities that potentially influence the microstructure and frictional/mechanical properties of the deposit. The multi-dimensional, multi-species, transient computational framework was demonstrated in case studies of two-dimensional nickel electrodeposition in single and multiple trenches, without and with bath stirring or forced flow. Effects of buoyancy-induced convection on deposition were also investigated. To further illustrate its utility, the framework was employed to simulate deposition in microscreen-based LIGA molds. Lastly, future needs for modeling LIGA electrodeposition are discussed.
Bauer, Sebastian; Berkels, Benjamin; Ettl, Svenja; Arold, Oliver; Hornegger, Joachim; Rumpf, Martin
2012-01-01
To manage respiratory motion in image-guided interventions a novel sparse-to-dense registration approach is presented. We apply an emerging laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3-D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is reconstructed which describes the 4-D deformation of the complete patient body surface and recovers a multi-dimensional respiratory signal for application in respiratory motion management. The method is validated on real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured light scanner. In a study on 16 subjects, the proposed algorithm achieved a mean reconstruction accuracy of +/- 0.22 mm w.r.t. ground truth data.
NASA Astrophysics Data System (ADS)
Brown, Lisa M.; Crayne, Susan
2000-05-01
In this paper, we present a visualization system and method for measuring, inspecting and analyzing motion in video. Starting from a simple motion video, the system creates a still image representation which we call a digital strobe photograph. Similar to visualization techniques used in conventional film photography to capture high-speed motion using strobe lamps or very fast shutters, and to capture time-lapse motion where the shutter is left open, this methodology creates a single image showing the motion of one or a small number of objects over time. Based on digital background subtraction, we assume that the background is stationary or at most slowing changing and that the camera position is fixed. The method is capable of displaying the motion based on a parameter indicating the time step between successive movements. It can also overcome problems of visualizing movement that is obscured by previous movements. The method is used in an educational software tool for children to measure and analyze various motions. Examples are given using simple physical objects such as balls and pendulums, astronomical events such as the path of the stars around the north pole at night, or the different types of locomotion used by snakes.
Second order multidimensional sign-preserving remapping for ALE methods
Hill, Ryan N; Szmelter, J.
2010-12-15
A second-order conservative sign-preserving remapping scheme for Arbitrary Lagrangian-Eulerian (ALE) methods is developed utilising concepts of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA). The algorithm is inherently multidimensional, and so does not introduce splitting errors. The remapping is implemented in a two-dimensional, finite element ALE solver employing staggered quadrilateral meshes. The MPDATA remapping uses a finite volume discretization developed for volume coordinates. It is applied for the remapping of density and internal energy arranged as cell centered, and velocity as nodal, dependent variables. In the paper, the advection of scalar fields is examined first for test cases with prescribed mesh movement. A direct comparison of MPDATA with the performance of the van Leer MUSCL scheme indicates advantages of a multidimensional approach. Furthermore, distinctly different performance between basic MPDATA and the infinite gauge option is illustrated using benchmarks involving transport of a sign changing velocity field. Further development extends the application of MPDATA remapping to the full ALE solver with a staggered mesh arrangement for density, internal energy and momentum using volume coordinates. At present, two options of the algorithm - basic and infinite gauge - are implemented. To ensure a meaningful assessment, an identical Lagrangian solver and computational mesh update routines are used with either MPDATA or van Leer MUSCL remapping. The evaluation places particular focus on the abilities of both schemes to accurately model multidimensional problems. Theoretical considerations are supported with numerical examples. In addition to the prescribed mesh movement cases for advection of scalars, the demonstrations include two-dimensional Eulerian and ALE flow simulations on quadrilateral meshes with both fixed and variable timestep control. The key comparisons include the standard test cases of Sod and Noh
Marquette, Ian
2010-07-15
We construct integrals of motion for multidimensional classical systems from ladder operators of one-dimensional systems. This method can be used to obtain new systems with higher order integrals. We show how these integrals generate a polynomial Poisson algebra. We consider a one-dimensional system with third order ladder operators and found a family of superintegrable systems with higher order integrals of motion. We obtain also the polynomial algebra generated by these integrals. We calculate numerically the trajectories and show that all bounded trajectories are closed.
NASA Astrophysics Data System (ADS)
Okuzawa, Yuki; Kato, Shohei; Kanoh, Masayoshi; Itoh, Hidenori
A knowledge-based approach to imitation learning of motion generation for humanoid robots and an imitative motion generation system based on motion knowledge learning and modification are described. The system has three parts: recognizing, learning, and modifying parts. The first part recognizes an instructed motion distinguishing it from the motion knowledge database by the continuous hidden markov model. When the motion is recognized as being unfamiliar, the second part learns it using locally weighted regression and acquires a knowledge of the motion. When a robot recognizes the instructed motion as familiar or judges that its acquired knowledge is applicable to the motion generation, the third part imitates the instructed motion by modifying a learned motion. This paper reports some performance results: the motion imitation of several radio gymnastics motions.
Inflation and cyclotron motion
NASA Astrophysics Data System (ADS)
Greensite, Jeff
2017-01-01
We consider, in the context of a braneworld cosmology, the motion of the Universe coupled to a four-form gauge field, with constant field strength, defined in higher dimensions. It is found, under rather general initial conditions, that in this situation there is a period of exponential inflation combined with cyclotron motion in the inflaton field space. The main effect of the cyclotron motion is that slow roll conditions on the inflaton potential, which are typically necessary for exponential inflation, can be evaded. There are Landau levels associated with the four-form gauge field, and these correspond to quantum excitations of the inflaton field satisfying unconventional dispersion relations.
Generalized compliant motion primitive
NASA Astrophysics Data System (ADS)
Backes, Paul G.
1994-08-01
This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.
ERIC Educational Resources Information Center
Hawkins, Colleen C.; Watt, Helen M. G.; Sinclair, Kenneth E.
2006-01-01
The psychometric properties of the Frost, Marten, Lahart, and Rosenblate Multidimensional Perfectionism Scale (1990) are investigated to determine its usefulness as a measurement of perfectionism with Australian secondary school girls and to find empirical support for the existence of both healthy and unhealthy types of perfectionist students.…
Projectile Motion with Mathematica.
ERIC Educational Resources Information Center
de Alwis, Tilak
2000-01-01
Describes how to use the computer algebra system (CAS) Mathematica to analyze projectile motion with and without air resistance. These experiments result in several conjectures leading to theorems. (Contains 17 references.) (Author/ASK)
ERIC Educational Resources Information Center
Schnick, Jeffrey W.
1994-01-01
Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)
ERIC Educational Resources Information Center
Galus, Pamela J.
2002-01-01
Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)
ERIC Educational Resources Information Center
Grambo, Gregory
1998-01-01
Presents activities on persistence of vision that involve students in a hands-on approach to the study of early methods of creating motion pictures. Students construct flip books, a Zoetrope, and an early movie machine. (DDR)
... soon as the motion stops. The more you travel, the more easily you'll adjust to being ... at least 30 to 60 minutes before you travel. Expect drowsiness as a side effect. Consider scopolamine ( ...
ERIC Educational Resources Information Center
Lamb, William G.
1985-01-01
Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)
Motion Alters Color Appearance
Hong, Sang-Wook; Kang, Min-Suk
2016-01-01
Chromatic induction compellingly demonstrates that chromatic context as well as spectral lights reflected from an object determines its color appearance. Here, we show that when one colored object moves around an identical stationary object, the perceived saturation of the stationary object decreases dramatically whereas the saturation of the moving object increases. These color appearance shifts in the opposite directions suggest that normalization induced by the object’s motion may mediate the shift in color appearance. We ruled out other plausible alternatives such as local adaptation, attention, and transient neural responses that could explain the color shift without assuming interaction between color and motion processing. These results demonstrate that the motion of an object affects both its own color appearance and the color appearance of a nearby object, suggesting a tight coupling between color and motion processing. PMID:27824098
Explanations of Superluminal Motion
NASA Astrophysics Data System (ADS)
Scheuer, P. A. G.
Recent developments in models of core-jet sources with apparent superluminal motions are reviewed. Emphasis is given to new versions of the so-called "Christmas tree" model and the relativistic beaming model.
NASA Astrophysics Data System (ADS)
Kavvas, M. Levent; Ercan, Ali; Polsinelli, James
2017-03-01
In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and soil water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. Due to the anisotropy in the hydraulic conductivities of natural soils, the soil medium within which the soil water flow occurs is essentially anisotropic. Accordingly, in this study the fractional dimensions in two horizontal and one vertical directions are considered to be different, resulting in multi-fractional multi-dimensional soil space within which the flow takes place. Toward the development of the fractional governing equations, first a dimensionally consistent continuity equation for soil water flow in multi-dimensional fractional soil space and fractional time is developed. It is shown that the fractional soil water flow continuity equation approaches the conventional integer form of the continuity equation as the fractional derivative powers approach integer values. For the motion equation of soil water flow, or the equation of water flux within the soil matrix in multi-dimensional fractional soil space and fractional time, a dimensionally consistent equation is also developed. Again, it is shown that this fractional water flux equation approaches the conventional Darcy equation as the fractional derivative powers approach integer values. From the combination of the fractional continuity and motion equations, the governing equation of transient soil water flow in multi-dimensional fractional soil space and fractional time is obtained. It is shown that this equation approaches the conventional Richards equation as the fractional derivative powers approach integer values. Then by the introduction of the Brooks-Corey constitutive relationships for soil water into the fractional transient soil water flow equation, an explicit form of the equation is obtained in multi-dimensional fractional soil space and fractional time. The
PROMOTIONS: PROper MOTION Software
NASA Astrophysics Data System (ADS)
Caleb Wherry, John; Sahai, R.
2009-05-01
We report on the development of a software tool (PROMOTIONS) to streamline the process of measuring proper motions of material in expanding nebulae. Our tool makes use of IDL's widget programming capabilities to design a unique GUI that is used to compare images of the objects from two epochs. The software allows us to first orient and register the images to a common frame of reference and pixel scale, using field stars in each of the images. We then cross-correlate specific morphological features in order to determine their proper motions, which consist of the proper motion of the nebula as a whole (PM-neb), and expansion motions of the features relative to the center. If the central star is not visible (quite common in bipolar nebulae with dense dusty waists), point-symmetric expansion is assumed and we use the average motion of high-quality symmetric pairs of features on opposite sides of the nebular center to compute PM-neb. This is then subtracted out to determine the individual movements of these and additional features relative to the nebular center. PROMOTIONS should find wide applicability in measuring proper motions in astrophysical objects such as the expanding outflows/jets commonly seen around young and dying stars. We present first results from using PROMOTIONS to successfully measure proper motions in several pre-planetary nebulae (transition objects between the red giant and planetary nebula phases), using images taken 7-10 years apart with the WFPC2 and ACS instruments on board HST. The authors are grateful to NASA's Undergradute Scholars Research Program (USRP) for supporting this research.
An object-oriented multidimensional model for data warehouse
NASA Astrophysics Data System (ADS)
Gosain, Anjana; Mann, Suman
2011-12-01
Organizations, to have a competitive edge upon each other, resort to business intelligence which refers to information available for enterprise to make strategic decisions. Data warehouse being the repository of data provides the backend for achieving business intelligence. The design of data warehouse, thereby, forms the key, to extract and obtain the relevant information facilitating to make strategic decisions. The initial focus for the design had been upon the conceptual models but now object oriented multidimensional modelling has emerged as the foundation for the designing of data warehouse. Several proposals have been put forth for object oriented multidimensional modelling, each incorporating some or other features, but not all. This paper consolidates all the features previously introduced and the new introduced, thus, proposing a new model having features to be incorporated while designing the data warehouse.
Advanced numerics for multi-dimensional fluid flow calculations
NASA Technical Reports Server (NTRS)
Vanka, S. P.
1984-01-01
In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.
A Multidimensional Data Warehouse for Community Health Centers
Kunjan, Kislaya; Toscos, Tammy; Turkcan, Ayten; Doebbeling, Brad N.
2015-01-01
Community health centers (CHCs) play a pivotal role in healthcare delivery to vulnerable populations, but have not yet benefited from a data warehouse that can support improvements in clinical and financial outcomes across the practice. We have developed a multidimensional clinic data warehouse (CDW) by working with 7 CHCs across the state of Indiana and integrating their operational, financial and electronic patient records to support ongoing delivery of care. We describe in detail the rationale for the project, the data architecture employed, the content of the data warehouse, along with a description of the challenges experienced and strategies used in the development of this repository that may help other researchers, managers and leaders in health informatics. The resulting multidimensional data warehouse is highly practical and is designed to provide a foundation for wide-ranging healthcare data analytics over time and across the community health research enterprise. PMID:26958297
Multidimensional profiles of health locus of control in Hispanic Americans.
Champagne, Brian R; Fox, Rina S; Mills, Sarah D; Sadler, Georgia Robins; Malcarne, Vanessa L
2016-10-01
Latent profile analysis identified health locus of control profiles among 436 Hispanic Americans who completed the Multidimensional Health Locus of Control scales. Results revealed four profiles: Internally Oriented-Weak, -Moderate, -Strong, and Externally Oriented. The profile groups were compared on sociocultural and demographic characteristics, health beliefs and behaviors, and physical and mental health outcomes. The Internally Oriented-Strong group had less cancer fatalism, religiosity, and equity health attributions, and more alcohol consumption than the other three groups; the Externally Oriented group had stronger equity health attributions and less alcohol consumption. Deriving multidimensional health locus of control profiles through latent profile analysis allows examination of the relationships of health locus of control subtypes to health variables.
Multidimensional nanomaterials for the control of stem cell fate
NASA Astrophysics Data System (ADS)
Chueng, Sy-Tsong Dean; Yang, Letao; Zhang, Yixiao; Lee, Ki-Bum
2016-09-01
Current stem cell therapy suffers low efficiency in giving rise to differentiated cell lineages, which can replace the original damaged cells. Nanomaterials, on the other hand, provide unique physical size, surface chemistry, conductivity, and topographical microenvironment to regulate stem cell differentiation through multidimensional approaches to facilitate gene delivery, cell-cell, and cell-ECM interactions. In this review, nanomaterials are demonstrated to work both alone and synergistically to guide selective stem cell differentiation. From three different nanotechnology families, three approaches are shown: (1) soluble microenvironmental factors; (2) insoluble physical microenvironment; and (3) nano-topographical features. As regenerative medicine is heavily invested in effective stem cell therapy, this review is inspired to generate discussions in the potential clinical applications of multi-dimensional nanomaterials.
A Multidimensional Data Warehouse for Community Health Centers.
Kunjan, Kislaya; Toscos, Tammy; Turkcan, Ayten; Doebbeling, Brad N
2015-01-01
Community health centers (CHCs) play a pivotal role in healthcare delivery to vulnerable populations, but have not yet benefited from a data warehouse that can support improvements in clinical and financial outcomes across the practice. We have developed a multidimensional clinic data warehouse (CDW) by working with 7 CHCs across the state of Indiana and integrating their operational, financial and electronic patient records to support ongoing delivery of care. We describe in detail the rationale for the project, the data architecture employed, the content of the data warehouse, along with a description of the challenges experienced and strategies used in the development of this repository that may help other researchers, managers and leaders in health informatics. The resulting multidimensional data warehouse is highly practical and is designed to provide a foundation for wide-ranging healthcare data analytics over time and across the community health research enterprise.
Multidimensional Simulations of Thermonuclear Supernovae from The First Stars
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Heger, Alexander; Almgren, Ann
2011-04-01
Current models of the formation of the first stars in the universe suggest that these stars were very massive, having a typical mass scale of hundreds of solar masses. Such stars would explode as pair instability supernovae (PSNe). These supernovae hold the key to understanding the formation of the first heavy elements and the first galaxy formation in the universe. The current theoretical models for PSNe are all based on one-dimensional calculations; until now, multidimensional simulations have been scarce. We present the results from multidimensional numerical studies of PSNe with a new radiation-hydrodynamics code, CASTRO and with realistic nuclear reaction networks. We simulate the fluid instabilities that occur in multiple spatial dimensions and discuss how the resulting mixing affects the explosion, mixing, and nucleosynthesis of these supernovae.
Advanced numerics for multi-dimensional fluid flow calculations
Vanka, S.P.
1984-04-01
In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.
Estimating Cognitive Profiles Using Profile Analysis via Multidimensional Scaling (PAMS).
Kim, Se-Kang; Frisby, Craig L; Davison, Mark L
2004-10-01
Two of the most popular methods of profile analysis, cluster analysis and modal profile analysis, have limitations. First, neither technique is adequate when the sample size is large. Second, neither method will necessarily provide profile information in terms of both level and pattern. A new method of profile analysis, called Profile Analysis via Multidimensional Scaling (PAMS; Davison, 1996), is introduced to meet the challenge. PAMS extends the use of simple multidimensional scaling methods to identify latent profiles in a multi-test battery. Application of PAMS to profile analysis is described. The PAMS model is then used to identify latent profiles from a subgroup (N = 357) within the sample of the Woodcock-Johnson Psychoeducational Battery-Revised (WJ-R; McGrew, Werder, & Woodcock, 1991; Woodcock & Johnson, 1989), followed by a discussion of procedures for interpreting participants' observed score profiles from the latent PAMS profiles. Finally, advantages and limitations of the PAMS technique are discussed.
Analysis of protein composition using multidimensional chromatography and mass spectrometry.
Link, Andrew J; Washburn, Michael P
2014-11-03
Multidimensional liquid chromatography of peptides produced by protease digestion of complex protein mixtures followed by tandem mass spectrometry can be coupled with automated database searching to identify large numbers of proteins in complex samples. These methods avoid the limitations of gel electrophoresis and in-gel digestions by directly identifying protein mixtures in solution. One method used extensively is named Multidimensional Protein Identification Technology (MudPIT), where reversed-phase chromatography and strong cation-exchange chromatography are coupled directly in a microcapillary column. This column is then placed in line between an HPLC and a mass spectrometer for complex mixture analysis. MudPIT remains a powerful approach for analyzing complex mixtures like whole proteomes and protein complexes. MudPIT is used for quantitative proteomic analysis of complex mixtures to generate novel biological insights.
Multidimensional, multiphysics simulations of core-collapse supernovae
Messer, Bronson; Mezzacappa, Anthony; Blondin, J. M.; Bruenn, S. W.; Hix, William Raphael
2008-01-01
CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We review the code s architecture and some recently improved implementations used in the code. We also briefly discuss preliminary results obtained with the code in three spatial dimensions.
Multidimensional, multiphysics simulations of core-collapse supernovae
Messer, Bronson; Mezzacappa, Anthony; Blondin, J. M.; Bruenn, S. W.; Hix, William Raphael
2008-01-01
CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We review the code's architecture and some recently improved implementations used in the code. We also briefly discuss preliminary results obtained with the code in three spatial dimensions.
Multidimensional scaling analysis of simulated air combat maneuvering performance data.
Polzella, D J; Reid, G B
1989-02-01
This paper describes the decomposition of air combat maneuvering by means of multidimensional scaling (MDS). MDS analyses were applied to performance data obtained from expert and novice pilots during simulated air-to-air combat. The results of these analyses revealed that the performance of expert pilots is characterized by advantageous maneuverability and intelligent energy management. It is argued that MDS, unlike simpler metrics, permits the investigator to achieve greater insights into the underlying structure associated with performance of a complex task.
Application of Multidimensional Spectrum Analysis for Analytical Chemistry
Hatsukawa, Yuichi; Hayakawa, Takehito; Toh, Yosuke; Shinohara, Nobuo; Oshima, Masumi
1999-12-31
Feasibility of application of the multidimensional {gamma} ray spectroscopy for analytical chemistry was examined. Two reference igneous rock (JP-1, JB-1a) samples issued by the Geological Survey of Japan (GSJ) were irradiated at a research reactor with thermal neutrons, and {gamma} rays from the radioisotopes produced by neutron capture reactions were measured using a {gamma}-ray detector array. Simultaneously 27 elements were observed with no chemical separation.
Accelerated expansion of the Universe and multidimensional theory of gravitation
NASA Astrophysics Data System (ADS)
Pakhomov, A. G.
2007-09-01
A condition for accelerated expansion of the Universe is derived from multidimensional formulas of gravitation, which is a generalization of the general theory of relativity for n dimensions. The model of a one-component ideal isotropic substance with a power-law diagonal metric is used as initial one. Restrictions on the state equations of our 3D space and accompanying additional dimensions are obtained.
In-in formalism on tunneling background: Multidimensional quantum mechanics
NASA Astrophysics Data System (ADS)
Sugimura, Kazuyuki
2013-07-01
We reformulate quantum tunneling in a multidimensional system where the tunneling sector is nonlinearly coupled to oscillators. The WKB wave function is explicitly constructed under the assumption that the system was in the ground state before tunneling. We find that the quantum state after tunneling can be expressed in the language of the conventional in-in formalism. Some implications of the result to cosmology are discussed.
Analysis of self-similar solutions of multidimensional conservation laws
Keyfitz, Barbara
2014-02-15
This project focused on analysis of multidimensional conservation laws, specifically on extensions to the study of self-siminar solutions, a project initiated by the PI. In addition, progress was made on an approach to studying conservation laws of very low regularity; in this research, the context was a novel problem in chromatography. Two graduate students in mathematics were supported during the grant period, and have almost completed their thesis research.
Probes for multidimensional nanospectroscopic imaging and methods of fabrication thereof
Weber-Bargioni, Alexander; Cabrini, Stefano; Bao, Wei; Melli, Mauro; Yablonovitch, Eli; Schuck, Peter J
2015-03-17
This disclosure provides systems, methods, and apparatus related to probes for multidimensional nanospectroscopic imaging. In one aspect, a method includes providing a transparent tip comprising a dielectric material. A four-sided pyramidal-shaped structure is formed at an apex of the transparent tip using a focused ion beam. Metal layers are deposited over two opposing sides of the four-sided pyramidal-shaped structure.
Unveiling Bacterial Interactions through Multidimensional Scaling and Dynamics Modeling
Dorado-Morales, Pedro; Vilanova, Cristina; P. Garay, Carlos; Martí, Jose Manuel; Porcar, Manuel
2015-01-01
We propose a new strategy to identify and visualize bacterial consortia by conducting replicated culturing of environmental samples coupled with high-throughput sequencing and multidimensional scaling analysis, followed by identification of bacteria-bacteria correlations and interactions. We conducted a proof of concept assay with pine-tree resin-based media in ten replicates, which allowed detecting and visualizing dynamical bacterial associations in the form of statistically significant and yet biologically relevant bacterial consortia. PMID:26671778
Application of multidimensional spectrum analysis for analytical chemistry
Hatsukawa, Yuichi; Hayakawa, Takehito; Toh, Yosuke; Shinohara, Nobuo; Oshima, Masumi
1999-11-16
Feasibility of application of the multidimensional {gamma} ray spectroscopy for analytical chemistry was examined. Two reference igneous rock (JP-1, JB-1a) samples issued by the Geological Survey of Japan (GSJ) were irradiated at a research reactor with thermal neutrons, and {gamma} rays from the radioisotopes produced by neutron capture reactions were measured using a {gamma}-ray detector array. Simultaneously 27 elements were observed with no chemical separation.
Multidimensional physical activity: An opportunity not a problem
Thompson, Dylan; Peacock, Oliver; Western, Max; Batterham, Alan M.
2015-01-01
Our research shows that no single metric will adequately reflect an individual’s physical activity because multiple biologically-important dimensions are independent and unrelated. We propose that there is an opportunity to exploit this multidimensional characteristic of physical activity in order to improve personalised feedback and offer physical activity options and choices that are tailored to an individual’s needs and preferences. PMID:25607280
Yugoslav strong motion network
NASA Astrophysics Data System (ADS)
Mihailov, Vladimir
1985-04-01
Data concerning ground motion and the response of structures during strong earthquakes are necessary for seismic hazard evaluation and the definition of design criteria for structures to be constructed in seismically active zones. The only way to obtain such data is the installation of a strong-motion instrument network. The Yugoslav strong-motion programme was created in 1972 to recover strong-motion response data used by the structural engineering community in developing earthquake resistant design. Instruments, accelerographs SMA-1 and seismoscopes WM-1, were installed in free-field stations and on structures (high-rise buildings, dams, bridges, etc.). A total number of 176 accelerographs and 137 seismoscopes have been installed and are operating in Yugoslavia. The strong-motion programme in Yugoslavia consists of five subactivities: network design, network operation, data processing, network management and research as well as application. All these activities are under the responsibility of IZIIS in cooperation with the Yugoslav Association of Seismology. By 1975 in the realisation of this project participated the CALTECH as cooperative institution in the joint American-Yugoslav cooperative project. The results obtained which are presented in this paper, and their application in the aseismic design justify the necessity for the existence of such a network in Yugoslavia.
NASA Technical Reports Server (NTRS)
Homick, J. L.
1979-01-01
Research on the etiology, prediction, treatment and prevention of space motion sickness, designed to minimize the impact of this syndrome which was experienced frequently and with severity by individuals on the Skylab missions, on Space Shuttle crews is reviewed. Theories of the cause of space motion sickness currently under investigation by NASA include sensory conflict, which argues that motion sickness symptoms result from a mismatch between the total pattern of information from the spatial senses and that stored from previous experiences, and fluid shift, based upon the redistribution of bodily fluids that occurs upon continued exposure to weightlessness. Attempts are underway to correlate space motion sickness susceptibility to different provocative environments, vestibular and nonvestibular responses, and the rate of acquisition and length of retention of sensory adaptation. Space motion sickness countermeasures under investigation include various drug combinations, of which the equal combination of promethazine and ephedrine has been found to be as effective as the scopolomine and dexedrine combination, and vestibular adaptation and biofeedback training and autogenic therapy.
Efficient Subtorus Processor Allocation in a Multi-Dimensional Torus
Weizhen Mao; Jie Chen; William Watson
2005-11-30
Processor allocation in a mesh or torus connected multicomputer system with up to three dimensions is a hard problem that has received some research attention in the past decade. With the recent deployment of multicomputer systems with a torus topology of dimensions higher than three, which are used to solve complex problems arising in scientific computing, it becomes imminent to study the problem of allocating processors of the configuration of a torus in a multi-dimensional torus connected system. In this paper, we first define the concept of a semitorus. We present two partition schemes, the Equal Partition (EP) and the Non-Equal Partition (NEP), that partition a multi-dimensional semitorus into a set of sub-semitori. We then propose two processor allocation algorithms based on these partition schemes. We evaluate our algorithms by incorporating them in commonly used FCFS and backfilling scheduling policies and conducting simulation using workload traces from the Parallel Workloads Archive. Specifically, our simulation experiments compare four algorithm combinations, FCFS/EP, FCFS/NEP, backfilling/EP, and backfilling/NEP, for two existing multi-dimensional torus connected systems. The simulation results show that our algorithms (especially the backfilling/NEP combination) are capable of producing schedules with system utilization and mean job bounded slowdowns comparable to those in a fully connected multicomputer.
Multidimensional Dyspnea Profile: an instrument for clinical and laboratory research
O'Donnell, Carl R.; Guilfoyle, Tegan E.; Parshall, Mark B.; Schwartzstein, Richard M.; Meek, Paula M.; Gracely, Richard H.; Lansing, Robert W.
2015-01-01
There is growing awareness that dyspnoea, like pain, is a multidimensional experience, but measurement instruments have not kept pace. The Multidimensional Dyspnea Profile (MDP) assesses overall breathing discomfort, sensory qualities, and emotional responses in laboratory and clinical settings. Here we provide the MDP, review published evidence regarding its measurement properties and discuss its use and interpretation. The MDP assesses dyspnoea during a specific time or a particular activity (focus period) and is designed to examine individual items that are theoretically aligned with separate mechanisms. In contrast, other multidimensional dyspnoea scales assess recalled recent dyspnoea over a period of days using aggregate scores. Previous psychophysical and psychometric studies using the MDP show that: 1) subjects exposed to different laboratory stimuli could discriminate between air hunger and work/effort sensation, and found air hunger more unpleasant; 2) the MDP immediate unpleasantness scale (A1) was convergent with common dyspnoea scales; 3) in emergency department patients, two domains were distinguished (immediate perception, emotional response); 4) test–retest reliability over hours was high; 5) the instrument responded to opioid treatment of experimental dyspnoea and to clinical improvement; 6) convergent validity with common instruments was good; and 7) items responded differently from one another as predicted for multiple dimensions. PMID:25792641
The Compactification Problems of Additional Dimensions in Multidimensional Cosmological Theories
NASA Astrophysics Data System (ADS)
Saidov, Tamerlan
2011-11-01
Multidimensionality of our Universe is one of the most intriguing assumption in modern physics. It follows naturally from theories unifying different fundamental interactions with gravity, e.g. M/string theory. The idea has received a great deal of renewed attention over the last few years. However, it also brings a row of additional questions. According to observations the internal space should be static or nearly static at least from the time of primordial nucleosynthesis, otherwise the fundamental physical constants would vary. This means that at the present evolutionary stage of the Universe there are two possibilities: slow variation or compactification of internal space scale parameters. In many recent studies the problem of extra dimensions stabilization was studied for so-called ADD. Under these approaches a massive scalar fields (gravitons or radions) of external space-time can be presented as conformal excitations. In above mentioned works it was assumed that multidimensional action to be linear with respect to curvature. Although as follows from string theory, the gravity action needs to be extended to nonlinear one. In order to investigate effects of nonlinearity, in this Thesis a multidimensional Lagrangian will be studied, having the form L = f(R), where f(R) is an arbitrary smooth function of the scalar curvature.
Design of integrated and networked multidimensional grating digital readout
NASA Astrophysics Data System (ADS)
Chang, Li; Xu, Hui; Xiu, Guoyi
2008-10-01
The grating digital readout is the key measurement feedback device of the numerical control system and base of the equipment manufacturing industry. With the development of the complex machining, the multi-axis linkage is a new direction of the numerical control system, which needs the multidimensional measurement. Based on all digital grating moiré fringe subdivision theory, the paper introduces the design of integrated and networked multidimensional grating digital readout with an embedded system-on-chip ZA7V that is a complete field configurable system-on-chip with a 32- bit ARM7TDMI processor core, a programmable logic matrix, a robust memory subsystem and a high-performance dedicated internal bus. Networked functions include Ethernet interface, CAN bus interface, USB bus interface and GPRS interface so that the grating digital readout can access the device network, workshop network, intranet network and Internet. The simulation results and experimental data prove that the realization of the integrated and networked multidimensional grating digital readout. It will be widely used in the numerical control system and machining center.
Igloo-Plot: a tool for visualization of multidimensional datasets.
Kuntal, Bhusan K; Ghosh, Tarini Shankar; Mande, Sharmila S
2014-01-01
Advances in science and technology have resulted in an exponential growth of multivariate (or multi-dimensional) datasets which are being generated from various research areas especially in the domain of biological sciences. Visualization and analysis of such data (with the objective of uncovering the hidden patterns therein) is an important and challenging task. We present a tool, called Igloo-Plot, for efficient visualization of multidimensional datasets. The tool addresses some of the key limitations of contemporary multivariate visualization and analysis tools. The visualization layout, not only facilitates an easy identification of clusters of data-points having similar feature compositions, but also the 'marker features' specific to each of these clusters. The applicability of the various functionalities implemented herein is demonstrated using several well studied multi-dimensional datasets. Igloo-Plot is expected to be a valuable resource for researchers working in multivariate data mining studies. Igloo-Plot is available for download from: http://metagenomics.atc.tcs.com/IglooPlot/.
Theme section: Multi-dimensional modelling, analysis and visualization
NASA Astrophysics Data System (ADS)
Guilbert, Éric; Çöltekin, Arzu; Castro, Francesc Antón; Pettit, Chris
2016-07-01
Spatial data are now collected and processed in larger amounts, and used by larger populations than ever before. While most geospatial data have traditionally been recorded as two-dimensional data, the evolution of data collection methods and user demands have led to data beyond the two dimensions describing complex multidimensional phenomena. An example of the relevance of multidimensional modelling is seen with the development of urban modelling where several dimensions have been added to the traditional 2D map representation (Sester et al., 2011). These include obviously the third spatial dimension (Biljecki et al., 2015) as well as the temporal, but also the scale dimension (Van Oosterom and Stoter, 2010) or, as mentioned by (Lu et al., 2016), multi-spectral and multi-sensor data. Such a view provides an organisation of multidimensional data around these different axes and it is time to explore each axis as the availability of unprecedented amounts of new data demands new solutions. The availability of such large amounts of data induces an acute need for developing new approaches to assist with their dissemination, visualisation, and analysis by end users. Several issues need to be considered in order to provide a meaningful representation and assist in data visualisation and mining, modelling and analysis; such as data structures allowing representation at different scales or in different contexts of thematic information.
Confirmatory Factor Analysis and Profile Analysis via Multidimensional Scaling.
Kim, Se-Kang; Davison, Mark L; Frisby, Craig L
2007-01-01
This paper describes the Confirmatory Factor Analysis (CFA) parameterization of the Profile Analysis via Multidimensional Scaling (PAMS) model to demonstrate validation of profile pattern hypotheses derived from multidimensional scaling (MDS). Profile Analysis via Multidimensional Scaling (PAMS) is an exploratory method for identifying major profiles in a multi-subtest test battery. Major profile patterns are represented as dimensions extracted from a MDS analysis. PAMS represents an individual observed score as a linear combination of dimensions where the dimensions are the most typical profile patterns present in a population. While the PAMS approach was initially developed for exploratory purposes, its results can later be confirmed in a different sample by CFA. Since CFA is often used to verify results from an exploratory factor analysis, the present paper makes the connection between a factor model and the PAMS model, and then illustrates CFA with a simulated example (that was generated by the PAMS model) and at the same time with a real example. The real example demonstrates confirmation of PAMS exploratory results by using a different sample. Fit indexes can be used to indicate whether the CFA reparameterization as a confirmatory approach works for the PAMS exploratory results.
Multidimensional physical self-concept of athletes with physical disabilities.
Shapiro, Deborah R; Martin, Jeffrey J
2010-10-01
The purposes of this investigation were first to predict reported PA (physical activity) behavior and self-esteem using a multidimensional physical self-concept model and second to describe perceptions of multidimensional physical self-concept (e.g., strength, endurance, sport competence) among athletes with physical disabilities. Athletes (N = 36, M age = 16.11, SD age = 2.8) completed the Physical Self-Description Questionnaire. Participants reported mostly positive perceptions of self-esteem, global physical self-concept, endurance, body fat, sport competence, strength, flexibility, and physical activity (Ms ranging from 3.9 to 5.6 out of 6). Correlations indicated a number of significant relationships among self-esteem and reported PA and various dimensions of physical self-concept. Using physical self-concept, strength, endurance, and flexibility in the first regression equation and sport competence and endurance simultaneously in the second equation, 47 and 31% of the variance was accounted for in self-esteem and reported PA, respectively. The findings support the value of examining multidimensional physical self-concept as different aspects of the physical self appear to have different influences on reported PA engagement versus self-esteem.
An improved multidimensional MPA procedure for bidirectional earthquake excitations.
Wang, Feng; Sun, Jian-Gang; Zhang, Ning
2014-01-01
Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA) method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two components earthquake excitations, and independent analysis in each direction is not required and the application of simplified superposition formulas is avoided. The strength reduction factor spectra based on superposition of earthquake excitations are discussed and compared with the traditional strength reduction factor spectra. The step-by-step procedure is proposed to estimate seismic demands of structures. Two examples are implemented to verify the accuracy of the method, and the results of the examples show that (1) the IMMPA method can be used to estimate the responses of structure subjected to bidirectional earthquake excitations. (2) Along with increase of peak of earthquake acceleration, structural response deviation estimated with the IMMPA method may also increase. (3) Along with increase of the number of total floors of structures, structural response deviation estimated with the IMMPA method may also increase.
An Improved Multidimensional MPA Procedure for Bidirectional Earthquake Excitations
Wang, Feng; Sun, Jian-Gang; Zhang, Ning
2014-01-01
Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA) method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two components earthquake excitations, and independent analysis in each direction is not required and the application of simplified superposition formulas is avoided. The strength reduction factor spectra based on superposition of earthquake excitations are discussed and compared with the traditional strength reduction factor spectra. The step-by-step procedure is proposed to estimate seismic demands of structures. Two examples are implemented to verify the accuracy of the method, and the results of the examples show that (1) the IMMPA method can be used to estimate the responses of structure subjected to bidirectional earthquake excitations. (2) Along with increase of peak of earthquake acceleration, structural response deviation estimated with the IMMPA method may also increase. (3) Along with increase of the number of total floors of structures, structural response deviation estimated with the IMMPA method may also increase. PMID:25140333
Enhancing Privacy in Participatory Sensing Applications with Multidimensional Data
Groat, Michael; Forrest, Stephanie; Horey, James L; Edwards, Benjamin; He, Wenbo
2012-01-01
Participatory sensing applications rely on individuals to share local and personal data with others to produce aggregated models and knowledge. In this setting, privacy is an important consideration, and lack of privacy could discourage widespread adoption of many exciting applications. We present a privacy-preserving participatory sensing scheme for multidimensional data which uses negative surveys. Multidimensional data, such as vectors of attributes that include location and environment fields, pose a particular challenge for privacy protection and are common in participatory sensing applications. When reporting data in a negative survey, an individual participant randomly selects a value from the set complement of the sensed data value, once for each dimension, and returns the negative values to a central collection server. Using algorithms described in this paper, the server can reconstruct the probability density functions of the original distributions of sensed values, without knowing the participants actual data. As a consequence, complicated encryption and key management schemes are avoided, conserving energy. We study trade-offs between accuracy and privacy, and their relationships to the number of dimensions, categories, and participants. We introduce dimensional adjustment, a method that reduces the magnification of error associated with earlier work. Two simulation scenarios illustrate how the approach can protect the privacy of a participant's multidimensional data while allowing useful population information to be aggregated.
Interdisciplinary hospice team processes and multidimensional pain: a qualitative study.
Dugan Day, Michele
2012-01-01
Hospice teams may address multidimensional pain through the synergistic interaction of team members from various professional disciplines during regularly scheduled team meetings. However, the occurrence of that critical exchange has not been adequately described or documented. The purpose of this qualitative study was to explore two processes in team pain palliation: communication and collaboration. Data were gathered through individual interviews and a 1-year observation of team members from two hospices (physicians, nurses, aides, chaplains, social workers). Utilizing constant comparison, 14 final thematic categories were discovered. Use of biopsychosocial/spiritual terms by all team members meant that the team had the common language needed to communicate about multidimensional pain. Interviews and observation revealed a gap in translating multidisciplinary communication in team meetings into collaborative acts for pain treatment. In addition, structural influences inhibited creativity in pain palliation. There was no mutual understanding of the purpose for team meetings, no recognition of the need to reflect on team process, or common definition of leadership. Social work roles in hospice should include leadership that moves teams toward interdisciplinary care for multidimensional pain.
ERIC Educational Resources Information Center
Demana, Franklin; Waits, Bert K.
1993-01-01
Discusses solutions to real-world linear particle-motion problems using graphing calculators to simulate the motion and traditional analytic methods of calculus. Applications include (1) changing circular or curvilinear motion into linear motion and (2) linear particle accelerators in physics. (MDH)
Maragó, Onofrio M; Bonaccorso, Francesco; Saija, Rosalba; Privitera, Giulia; Gucciardi, Pietro G; Iatì, Maria Antonia; Calogero, Giuseppe; Jones, Philip H; Borghese, Ferdinando; Denti, Paolo; Nicolosi, Valeria; Ferrari, Andrea C
2010-12-28
Brownian motion is a manifestation of the fluctuation-dissipation theorem of statistical mechanics. It regulates systems in physics, biology, chemistry, and finance. We use graphene as prototype material to unravel the consequences of the fluctuation-dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes. These orient orthogonal to the light polarization, due to the optical constants anisotropy. We explain the flake dynamics in the optical trap and measure force and torque constants from the correlation functions of the tracking signals, as well as comparing experiments with a full electromagnetic theory of optical trapping. The understanding of optical trapping of two-dimensional nanostructures gained through our Brownian motion analysis paves the way to light-controlled manipulation and all-optical sorting of biological membranes and anisotropic macromolecules.
Intrinsic Feature Motion Tracking
Goddard, Jr., James S.
2013-03-19
Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over time can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.
Unruh, W.P.
1987-03-23
Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.
Muscle Motion Solenoid Actuator
NASA Astrophysics Data System (ADS)
Obata, Shuji
It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.
Exploring and linking biomedical resources through multidimensional semantic spaces
2012-01-01
Background The semantic integration of biomedical resources is still a challenging issue which is required for effective information processing and data analysis. The availability of comprehensive knowledge resources such as biomedical ontologies and integrated thesauri greatly facilitates this integration effort by means of semantic annotation, which allows disparate data formats and contents to be expressed under a common semantic space. In this paper, we propose a multidimensional representation for such a semantic space, where dimensions regard the different perspectives in biomedical research (e.g., population, disease, anatomy and protein/genes). Results This paper presents a novel method for building multidimensional semantic spaces from semantically annotated biomedical data collections. This method consists of two main processes: knowledge and data normalization. The former one arranges the concepts provided by a reference knowledge resource (e.g., biomedical ontologies and thesauri) into a set of hierarchical dimensions for analysis purposes. The latter one reduces the annotation set associated to each collection item into a set of points of the multidimensional space. Additionally, we have developed a visual tool, called 3D-Browser, which implements OLAP-like operators over the generated multidimensional space. The method and the tool have been tested and evaluated in the context of the Health-e-Child (HeC) project. Automatic semantic annotation was applied to tag three collections of abstracts taken from PubMed, one for each target disease of the project, the Uniprot database, and the HeC patient record database. We adopted the UMLS Meta-thesaurus 2010AA as the reference knowledge resource. Conclusions Current knowledge resources and semantic-aware technology make possible the integration of biomedical resources. Such an integration is performed through semantic annotation of the intended biomedical data resources. This paper shows how these annotations
Dislocation motion and instability
NASA Astrophysics Data System (ADS)
Zhu, Yichao; Chapman, Stephen Jonathan; Acharya, Amit
2013-08-01
The Peach-Koehler expression for the stress generated by a single (non-planar) curvilinear dislocation is evaluated to calculate the dislocation self stress. This is combined with a law of motion to give the self-induced motion of a general dislocation curve. A stability analysis of a rectilinear, uniformly translating dislocation is then performed. The dislocation is found to be susceptible to a helical instability, with the maximum growth rate occurring when the dislocation is almost, but not exactly, pure screw. The non-linear evolution of the instability is determined numerically, and implications for slip band formation and non-Schmid behavior in yielding are discussed.
Motion in microfluidic ratchets.
Caballero, D; Katuri, J; Samitier, J; Sánchez, S
2016-11-15
The ubiquitous random motion of mesoscopic active particles, such as cells, can be "rectified" or directed by embedding the particles in systems containing local and periodic asymmetric cues. Incorporated on lab-on-a-chip devices, these microratchet-like structures can be used to self-propel fluids, transport particles, and direct cell motion in the absence of external power sources. In this Focus article we discuss recent advances in the use of ratchet-like geometries in microfluidics which could open new avenues in biomedicine for applications in diagnosis, cancer biology, and bioengineering.
NASA Technical Reports Server (NTRS)
Gallenstein, J.; Huston, R. L.
1973-01-01
This paper presents an analysis of swimming motion with specific attention given to the flutter kick, the breast-stroke kick, and the breast stroke. The analysis is completely theoretical. It employs a mathematical model of the human body consisting of frustrums of elliptical cones. Dynamical equations are written for this model including both viscous and inertia forces. These equations are then applied with approximated swimming strokes and solved numerically using a digital computer. The procedure is to specify the input of the swimming motion. The computer solution then provides the output displacement, velocity, and rotation or body roll of the swimmer.
Induced motion at texture-defined motion boundaries.
Johnston, A; Benton, C P; McOwan, P W
1999-01-01
When a static textured background is covered and uncovered by a moving bar of the same mean luminance we can clearly see the motion of the bar. Texture-defined motion provides an example of a naturally occurring second-order motion. Second-order motion sequences defeat standard spatio-temporal energy models of motion perception. It has been proposed that second-order stimuli are analysed by separate systems, operating in parallel with luminance-defined motion processing, which incorporate identifiable pre-processing stages that make second-order patterns visible to standard techniques. However, the proposal of multiple paths to motion analysis remains controversial. Here we describe the behaviour of a model that recovers both luminance-defined and an important class of texture-defined motion. The model also accounts for the induced motion that is seen in some texture-defined motion sequences. We measured the perceived direction and speed of both the contrast envelope and induced motion in the case of a contrast modulation of static noise textures. Significantly, the model predicts the perceived speed of the induced motion seen at second-order texture boundaries. The induced motion investigated here appears distinct from classical induced effects resulting from motion contrast or the movement of a reference frame. PMID:10643088
Samady, Waheeda; Sadler, Georgia Robins; Nakaji, Melanie; Malcarne, Vanessa L.; Trybus, Raymond; Athale, Ninad
2008-01-01
This paper describes the translation of the Multidimensional Health Locus of Control (MHLC) scales into American Sign Language (ASL). Translation is an essential first step toward validating the instrument for use in the Deaf community, a commonly overlooked minority community. This translated MHLC/ASL can be utilized by public health nurses researching the Deaf community to create and evaluate targeted health interventions. It can be used in clinical settings to guide the context of the provider-patient dialogue. The MHLC was translated using focus groups, following recommended procedures. Five bilingual participants translated the MHLC into ASL; five others back-translated the ASL version into English. Both focus groups identified and addressed language and cultural problems before the final ASL version of the MHLC was permanently captured on by motion picture photography for consistent administration. Nine of the 24 items were directly translatable into ASL. The remaining items required further discussion to achieve cultural equivalence with ASL expressions. The MHLC/ASL is now ready for validation within the Deaf community. PMID:18816365
Salloum, Maher; Knio, Omar M.
2010-06-15
A transient multidimensional reduced model is constructed for the simulation of reaction fronts in Ni/Al multilayers. The formulation is based on the generalization of earlier methodologies developed for quasi-1D axial and normal propagation, specifically by adapting the reduced formalism for atomic mixing and heat release. This approach enables us to focus on resolving the thermal front structure, whose evolution is governed by thermal diffusion and heat release. A mixed integration scheme is used for this purpose, combining an extended-stability, Runge-Kutta-Chebychev (RKC) integration of the diffusion term with exact treatment of the chemical source term. Thus, a detailed description of atomic mixing within individual layers is avoided, which enables transient modeling of the reduced equations of motion in multiple dimensions. Two-dimensional simulations are first conducted of front propagation in composites combining two bilayer periods. Results are compared with the experimental measurements of Knepper et al., which reveal that the reaction velocity can depend significantly on layering frequency. The comparison indicates that, using a concentration-dependent conductivity model, the transient 2D computations can reasonably reproduce the experimental behavior. Additional tests are performed based on 3D computations of surface initiated reactions. Comparison of computed predictions with laser ignition measurements indicates that the computations provide reasonable estimates of ignition thresholds. A detailed discussion is finally provided of potential generalizations and associated hurdles. (author)
Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.
1988-01-01
The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.
Pashupati Dhakal, Harukazu Yoshino, Jeong-Il Oh, Koichi Kikuchi, Michael J. Naughton
2012-09-01
Angle-dependent magnetoresistance experiments on organic conductors exhibit a wide range of angular oscillations associated with the dimensionality and symmetry of the crystal structure and electron energy dispersion. In particular, characteristics associated with 1, 2, and 3-dimensional electronic motion are separately revealed when a sample is rotated through different crystal planes in a magnetic field. Originally discovered in the TMTSF-based conductors, these effects are particularly pronounced in the related system (DMET){sub 2}I{sub 3}. Here, experimental and computational results for magnetoresistance oscillations in this material, over a wide range of magnetic field orientations, are presented in such a manner as to uniquely highlight this multidimensional behavior. The calculations employ the Boltzmann transport equation that incorporates the system's triclinic crystal structure, which allows for accurate estimates of the transfer integrals along the crystallographic axes, verifying the 1D, 2D and 3D nature of (DMET){sub 2}I{sub 3}, as well as crossovers between dimensions in the electronic behavior.
Samady, Waheeda; Samady, Waheedy; Sadler, Georgia Robins; Nakaji, Melanie; Malcarne, Vanessa L; Trybus, Raymond; Athale, Ninad
2008-01-01
This paper describes the translation of the Multidimensional Health Locus of Control (MHLC) scales into American Sign Language (ASL). Translation is an essential first step toward validating the instrument for use in the Deaf community, a commonly overlooked minority community. This translated MHLC/ASL can be utilized by public health nurses researching the Deaf community to create and evaluate targeted health interventions. It can be used in clinical settings to guide the context of the provider-patient dialogue. The MHLC was translated using focus groups, following recommended procedures. 5 bilingual participants translated the MHLC into ASL; 5 others back-translated the ASL version into English. Both focus groups identified and addressed language and cultural problems before the final ASL version of the MHLC was permanently captured by motion picture photography for consistent administration. Nine of the 24 items were directly translatable into ASL. The remaining items required further discussion to achieve cultural equivalence with ASL expressions. The MHLC/ASL is now ready for validation within the Deaf community.
Boynton, J.A.
1994-12-31
A World in Motion is a physical science curriculum supplement for grades four, five, and six which responds to the need to promote and teach sound science and mathematics concepts. Using the A World in Motion kits, teachers work in partnership with practicing engineer or scientists volunteers to provide students with fun, exciting, and relevant hands-on science and math experiences. During the A World in Motion experience, students work together in {open_quotes}Engineering Design Teams{close_quotes} exploring physics concepts through a series of activities. Each student is assigned a role as either a facilities engineer, development engineer, test engineer, or project engineer and is given responsibilities paralleling those of engineers in industry. The program culminates in a {open_quotes}Design Review{close_quotes} where students can communicate their results, demonstrate their designs, and receive recognition for their efforts. They are given a chance to take on responsibility and build self-esteem. Since January 1991, over 12,000 volunteers engineers have been involved with the program, with a distribution of 20,000 A World in Motion kit throughout the U.S. and Canada.
NASA Astrophysics Data System (ADS)
Malykin, G. B.; Romanets, E. A.
2012-06-01
Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.
NASA Technical Reports Server (NTRS)
Chandler, J. A. (Inventor)
1985-01-01
The linear motion valve is described. The valve spool employs magnetically permeable rings, spaced apart axially, which engage a sealing assembly having magnetically permeable pole pieces in magnetic relationship with a magnet. The gap between the ring and the pole pieces is sealed with a ferrofluid. Depletion of the ferrofluid is minimized.
ERIC Educational Resources Information Center
Riddle, Bob
2005-01-01
All the planets in the solar system revolve around the Sun in the same direction, clockwise when viewed from above the North Pole. This is referred to as direct motion. From the perspective on the Earth's surface, the planets travel east across the sky in relation to the background of stars. The Sun also moves eastward daily, but this is an…
Travelers' Health: Motion Sickness
... review the actual safety data or call the patient’s obstetric provider for suggestions. Web-based information may be found at the websites www.Motherisk.org and www.Reprotox.org . PREVENTION Nonpharmacologic interventions to prevent or treat motion sickness include the ...
Introducing Simple Harmonic Motion.
ERIC Educational Resources Information Center
Roche, John
2002-01-01
Explains the origin and significance of harmonic motion which is an important topic that has wide application in the world. Describes the phenomenon by using an auxiliary circle to help illustrate the key relationships between acceleration, displacement, time, velocity, and phase. (Contains 16 references.) (Author/YDS)
NASA Technical Reports Server (NTRS)
Pepe, S.; Pepe, W. D.; Strauss, A. M.
1976-01-01
A general theory of orthodontic motion is developed that can be applied to determine the forces necessary to induce a given tooth to move to the predetermined desirable position. It is assumed that the natural (nonorthodontic) forces may be represented by a periodic function and the orthodontic forces may be superimposed upon the natural forces. A simple expression is derived for the applied stress.
ERIC Educational Resources Information Center
Treschman, Keith
2009-01-01
At noon throughout the year the Sun has a north-south and east-west motion around the meridian. Earliest/latest sunrises and sunsets do not occur at the solstices and the effect is more pronounced with decreasing latitude. This phenomenon is calculated for 25 Australian cities and the following observations are recorded: (1) The latest sunrise…
Wiimote Experiments: Circular Motion
ERIC Educational Resources Information Center
Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary
2013-01-01
The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…
ERIC Educational Resources Information Center
Lucie, Pierre
1979-01-01
Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)
ERIC Educational Resources Information Center
Brown, Helen; Meyers, Bernice; Schmidt, William
1999-01-01
Marbles were successfully used to help primary students develop concepts of motion. Marble-unit activities began with shaking and rattling inference bags and predicting by listening just how many marbles were in each bag. Students made qualitative and quantitative observations of the marbles, manipulated marbles with a partner, and observed…
Wiimote Experiments: Circular Motion
NASA Astrophysics Data System (ADS)
Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary
2013-03-01
The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a bicycle wheel.
ERIC Educational Resources Information Center
Ballard, David M.
1990-01-01
Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)
ERIC Educational Resources Information Center
Gluck, P.; Krakower, Zeev
2010-01-01
We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)
Minster, B.; Prescott, W.; Royden, L.
1991-02-01
Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.
Multi-Dimensional Structure of Crystalline Chiral Condensates in Quark Matter
NASA Astrophysics Data System (ADS)
Lee, Tong-Gyu; Nishiyama, Kazuya; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka
We explore the multi-dimensional structure of inhomogeneous chiral condensates in quark matter. For a one-dimensional structure, the system becomes unstable at finite temperature due to the Nambu-Goldstone excitations. However, inhomogeneous chiral condensates with multi-dimensional modulations may be realized as a true long-range order at any temperature, as inferred from the Landau-Peierls theorem. We here present some possible strategies for searching the multi-dimensional structure of chiral crystals.
Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential
NASA Astrophysics Data System (ADS)
Leonenko, N. N.; Ruiz-Medina, M. D.
2006-07-01
The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.
Column-coupling strategies for multidimensional electrophoretic separation techniques.
Kler, Pablo A; Sydes, Daniel; Huhn, Carolin
2015-01-01
Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the
Multidimensional Sexual Perfectionism and Female Sexual Function: A Longitudinal Investigation.
Stoeber, Joachim; Harvey, Laura N
2016-11-01
Research on multidimensional sexual perfectionism differentiates four forms: self-oriented, partner-oriented, partner-prescribed, and socially prescribed. Self-oriented sexual perfectionism reflects perfectionistic standards people apply to themselves as sexual partners; partner-oriented sexual perfectionism reflects perfectionistic standards people apply to their sexual partner; partner-prescribed sexual perfectionism reflects people's beliefs that their sexual partner imposes perfectionistic standards on them; and socially prescribed sexual perfectionism reflects people's beliefs that society imposes such standards on them. Previous studies found partner-prescribed and socially prescribed sexual perfectionism to be maladaptive forms of sexual perfectionism associated with a negative sexual self-concept and problematic sexual behaviors, but only examined cross-sectional relationships. The present article presents the first longitudinal study examining whether multidimensional sexual perfectionism predicts changes in sexual self-concept and sexual function over time. A total of 366 women aged 17-69 years completed measures of multidimensional sexual perfectionism, sexual esteem, sexual anxiety, sexual problem self-blame, and sexual function (cross-sectional data). Three to six months later, 164 of the women completed the same measures again (longitudinal data). Across analyses, partner-prescribed sexual perfectionism emerged as the most maladaptive form of sexual perfectionism. In the cross-sectional data, partner-prescribed sexual perfectionism showed positive relationships with sexual anxiety, sexual problem self-blame, and intercourse pain, and negative relationships with sexual esteem, desire, arousal, lubrication, and orgasmic function. In the longitudinal data, partner-prescribed sexual perfectionism predicted increases in sexual anxiety and decreases in sexual esteem, arousal, and lubrication over time. The findings suggest that partner-prescribed sexual
Analysis of world economic variables using multidimensional scaling.
Machado, J A Tenreiro; Mata, Maria Eugénia
2015-01-01
Waves of globalization reflect the historical technical progress and modern economic growth. The dynamics of this process are here approached using the multidimensional scaling (MDS) methodology to analyze the evolution of GDP per capita, international trade openness, life expectancy, and education tertiary enrollment in 14 countries. MDS provides the appropriate theoretical concepts and the exact mathematical tools to describe the joint evolution of these indicators of economic growth, globalization, welfare and human development of the world economy from 1977 up to 2012. The polarization dance of countries enlightens the convergence paths, potential warfare and present-day rivalries in the global geopolitical scene.
Enhancing Privacy in Participatory Sensing Applications with Multidimensional Data
Forrest, Stephanie; He, Wenbo; Groat, Michael; Edwards, Benjamin; Horey, James L
2013-01-01
Participatory sensing applications rely on individuals to share personal data to produce aggregated models and knowledge. In this setting, privacy concerns can discourage widespread adoption of new applications. We present a privacy-preserving participatory sensing scheme based on negative surveys for both continuous and multivariate categorical data. Without relying on encryption, our algorithms enhance the privacy of sensed data in an energy and computation efficient manner. Simulations and implementation on Android smart phones illustrate how multidimensional data can be aggregated in a useful and privacy-enhancing manner.
Multidimensional electronic spectroscopy of phycobiliproteins from cryptophyte algae
NASA Astrophysics Data System (ADS)
Turner, Daniel
2011-03-01
We describe new spectroscopic measurements which reveal additional information regarding the observed quantum coherences in proteins extracted from photosynthetic algae. The proteins we investigate are the phycobiliproteins phycoerythrin 545 and phycocyanin 645. Two new avenues have been explored. We describe how changes to the chemical and biological environment impact the quantum coherence present in the 2D electronic correlation spectrum. We also use new multidimensional spectroscopic techniques to reveal insights into the nature of the quantum coherence and the nature of the participating states.
Intrinsic irreversibility limits the efficiency of multidimensional molecular motors
NASA Astrophysics Data System (ADS)
Jack, M. W.; Tumlin, C.
2016-05-01
We consider the efficiency limits of Brownian motors able to extract work from the temperature difference between reservoirs or from external thermodynamic forces. These systems can operate in a variety of modes, including as isothermal engines, heat engines, refrigerators, and heat pumps. We derive analytical results showing that certain classes of multidimensional Brownian motor, including the Smoluchowski-Feynman ratchet, are unable to attain perfect efficiency (Carnot efficiency for heat engines). This demonstrates the presence of intrinsic irreversibilities in their operating mechanism. We present numerical simulations showing that in some cases the loss process that limits efficiency is associated with vortices in the probability current.
Indexing of multidimensional lookup tables in embedded systems.
Vrhel, Michael J
2004-10-01
The proliferation of color devices and the desire to have them accurately communicate color information has led to a need for embedded systems that perform color conversions. A common method for performing color space conversions is to characterize the device with a multidimensional lookup table (MLUT). To reduce cost, many of the embedded systems have limited computational abilities. This leads to a need for the design of efficient methods for performing MLUT indexing and interpolation. This paper examines and compares two methods of MLUT indexing within embedded systems. The comparison is made in terms of colorimetric accuracy and computational cost.
Multidimensional master equation and its Monte-Carlo simulation.
Pang, Juan; Bai, Zhan-Wu; Bao, Jing-Dong
2013-02-28
We derive an integral form of multidimensional master equation for a markovian process, in which the transition function is obtained in terms of a set of discrete Langevin equations. The solution of master equation, namely, the probability density function is calculated by using the Monte-Carlo composite sampling method. In comparison with the usual Langevin-trajectory simulation, the present approach decreases effectively coarse-grained error. We apply the master equation to investigate time-dependent barrier escape rate of a particle from a two-dimensional metastable potential and show the advantage of this approach in the calculations of quantities that depend on the probability density function.
Overview of the BISON Multidimensional Fuel Performance Code
R. L. Williamson; J. D. Hales; S. R. Novascone; B. W. Spencer; D. M. Perez; G. Pastore; R. C. Martineau
2013-10-01
BISON is a modern multidimensional multiphysics finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. A brief background is provided on the code’s computational framework (MOOSE), governing equations, and material and behavioral models. Ongoing code verification and validation work is outlined, and comparative results are provided for select validation cases. Recent applications are discussed, including specific description of two applications where 3D treatment is important. A summary of future code development and validation activities is given. Numerous references to published work are provided where interested readers can find more complete information.
Adaptive multidimensional modulation and multiplexing for next generation optical networks
NASA Astrophysics Data System (ADS)
Cvijetic, Milorad
2015-01-01
The overall spectral efficiency in optical transmission systems needs to be enhanced by employment of advanced modulation, multiplexing, and coding schemes, as well as the advanced detection techniques. In parallel, novel networking concepts with the griddles and elastic bandwidth allocation are needed to increase the network dynamics and flexibility. In this paper we discuss multidimensional modulation, multiplexing, and coding schemes, which are enablers not only of the information capacity increase, but also for the next generation elastic high-speed optical networking and outline possible future directions and application scenario in different networking segments.
A multi-dimensional sampling method for locating small scatterers
NASA Astrophysics Data System (ADS)
Song, Rencheng; Zhong, Yu; Chen, Xudong
2012-11-01
A multiple signal classification (MUSIC)-like multi-dimensional sampling method (MDSM) is introduced to locate small three-dimensional scatterers using electromagnetic waves. The indicator is built with the most stable part of signal subspace of the multi-static response matrix on a set of combinatorial sampling nodes inside the domain of interest. It has two main advantages compared to the conventional MUSIC methods. First, the MDSM is more robust against noise. Second, it can work with a single incidence even for multi-scatterers. Numerical simulations are presented to show the good performance of the proposed method.
Analysis of World Economic Variables Using Multidimensional Scaling
Machado, J.A. Tenreiro; Mata, Maria Eugénia
2015-01-01
Waves of globalization reflect the historical technical progress and modern economic growth. The dynamics of this process are here approached using the multidimensional scaling (MDS) methodology to analyze the evolution of GDP per capita, international trade openness, life expectancy, and education tertiary enrollment in 14 countries. MDS provides the appropriate theoretical concepts and the exact mathematical tools to describe the joint evolution of these indicators of economic growth, globalization, welfare and human development of the world economy from 1977 up to 2012. The polarization dance of countries enlightens the convergence paths, potential warfare and present-day rivalries in the global geopolitical scene. PMID:25811177
Examining Similarity Structure: Multidimensional Scaling and Related Approaches in Neuroimaging
Shinkareva, Svetlana V.; Wedell, Douglas H.
2013-01-01
This paper covers similarity analyses, a subset of multivariate pattern analysis techniques that are based on similarity spaces defined by multivariate patterns. These techniques offer several advantages and complement other methods for brain data analyses, as they allow for comparison of representational structure across individuals, brain regions, and data acquisition methods. Particular attention is paid to multidimensional scaling and related approaches that yield spatial representations or provide methods for characterizing individual differences. We highlight unique contributions of these methods by reviewing recent applications to functional magnetic resonance imaging data and emphasize areas of caution in applying and interpreting similarity analysis methods. PMID:23662162
Strong relaxation limit of multi-dimensional isentropic Euler equations
NASA Astrophysics Data System (ADS)
Xu, Jiang
2010-06-01
This paper is devoted to study the strong relaxation limit of multi-dimensional isentropic Euler equations with relaxation. Motivated by the Maxwell iteration, we generalize the analysis of Yong (SIAM J Appl Math 64:1737-1748, 2004) and show that, as the relaxation time tends to zero, the density of a certain scaled isentropic Euler equations with relaxation strongly converges towards the smooth solution to the porous medium equation in the framework of Besov spaces with relatively lower regularity. The main analysis tool used is the Littlewood-Paley decomposition.
NASA Astrophysics Data System (ADS)
Lau, Chun Sing
This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor); Ahumada, Albert J. (Inventor)
2014-01-01
A method of measuring motion blur is disclosed comprising obtaining a moving edge temporal profile r(sub 1)(k) of an image of a high-contrast moving edge, calculating the masked local contrast m(sub1)(k) for r(sub 1)(k) and the masked local contrast m(sub 2)(k) for an ideal step edge waveform r(sub 2)(k) with the same amplitude as r(sub 1)(k), and calculating the measure or motion blur Psi as a difference function, The masked local contrasts are calculated using a set of convolution kernels scaled to simulate the performance of the human visual system, and Psi is measured in units of just-noticeable differences.
1988-12-31
Sciences, Harvard University This project researched the dynamics of oceanic motions: aspects of the theory and mod- eling of fundamental dynamical and...84-C-0461 Published 1. Pinardi, N. (1985) Quasigeostrophic Energetics and Oceanic Mesoscale Dynamics, Harvard University , Cambridge, MA (Ph.D. Thesis...Layer Model to the Harvard Quasigeostrophic Model, Harvard University , Cam- bridge, MA (Ph.D. thesis). 15. Robinson, A.R., M.A. Spell and N. Pinardi
Pit disassembly motion control
Christensen, L.; Pittman, P. C.
2001-01-01
A Department of Energy (DOE) Pit Disassembly and Conversion Facility (PDCF) is being designed for the Savannah River Site in South Carolina. The facility will recover plutonium from excess nuclear weapon pits defined in START II and START III treaties. The plutonium will be stored and used to produce mixed oxide reactor fuel at another new DOE facility. Because of radiation dose issues, much of the pit disassembly work and material transfer will be automated. Automated material handling systems will interface with disassembly lathes, conversion reactors that produce oxide for storage, robotic container welding stations, vault retrieval systems, and nondestructive assay (NDA) instrumentation. The goal is to use common motion control hardware for material transfer and possibly common motion controllers for the unique PDCF systems. The latter is complicated by the different directions manufactures are considering for distributed control, such as Firewire, SERCOS, etc., and by the unique control requirements of machines such as lathes compared to controls for an integrated NDA system. The current design approach is to standardize where possible, use network cables to replace wire bundles where possible, but to first select hardware and motion controllers that meet specific machine or process requirements.
Manycore Performance-Portability: Kokkos Multidimensional Array Library
Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...
2012-01-01
Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less
A multidimensional proteomic approach to identify hypertrophy-associated proteins.
Lindsey, Merry L; Goshorn, Danielle K; Comte-Walters, Susana; Hendrick, Jennifer W; Hapke, Elizabeth; Zile, Michael R; Schey, Kevin
2006-04-01
Left ventricular hypertrophy (LVH) is a leading cause of congestive heart failure. The exact mechanisms that control cardiac growth and regulate the transition to failure are not fully understood, in part due to the lack of a complete inventory of proteins associated with LVH. We investigated the proteomic basis of LVH using the transverse aortic constriction model of pressure overload in mice coupled with a multidimensional approach to identify known and novel proteins that may be relevant to the development and maintenance of LVH. We identified 123 proteins that were differentially expressed during LVH, including LIM proteins, thioredoxin, myoglobin, fatty acid binding protein 3, the abnormal spindle-like microcephaly protein (ASPM), and cytoskeletal proteins such as actin and myosin. In addition, proteins with unknown functions were identified, providing new directions for future research in this area. We also discuss common pitfalls and strategies to overcome the limitations of current proteomic technologies. Together, the multidimensional approach provides insight into the proteomic changes that occur in the LV during hypertrophy.
Extended Darknet: Multi-Dimensional Internet Threat Monitoring System
NASA Astrophysics Data System (ADS)
Shimoda, Akihiro; Mori, Tatsuya; Goto, Shigeki
Internet threats caused by botnets/worms are one of the most important security issues to be addressed. Darknet, also called a dark IP address space, is one of the best solutions for monitoring anomalous packets sent by malicious software. However, since darknet is deployed only on an inactive IP address space, it is an inefficient way for monitoring a working network that has a considerable number of active IP addresses. The present paper addresses this problem. We propose a scalable, light-weight malicious packet monitoring system based on a multi-dimensional IP/port analysis. Our system significantly extends the monitoring scope of darknet. In order to extend the capacity of darknet, our approach leverages the active IP address space without affecting legitimate traffic. Multi-dimensional monitoring enables the monitoring of TCP ports with firewalls enabled on each of the IP addresses. We focus on delays of TCP syn/ack responses in the traffic. We locate syn/ack delayed packets and forward them to sensors or honeypots for further analysis. We also propose a policy-based flow classification and forwarding mechanism and develop a prototype of a monitoring system that implements our proposed architecture. We deploy our system on a campus network and perform several experiments for the evaluation of our system. We verify that our system can cover 89% of the IP addresses while darknet-based monitoring only covers 46%. On our campus network, our system monitors twice as many IP addresses as darknet.
Multidimensional multichannel FIR deconvolution using Gröbner bases.
Zhou, Jianping; Do, Minh N
2006-10-01
We present a new method for general multidimensional multichannel deconvolution with finite impulse response (FIR) convolution and deconvolution filters using Gröbner bases. Previous work formulates the problem of multichannel FIR deconvolution as the construction of a left inverse of the convolution matrix, which is solved by numerical linear algebra. However, this approach requires the prior information of the support of deconvolution filters. Using algebraic geometry and Gröbner bases, we find necessary and sufficient conditions for the existence of exact deconvolution FIR filters and propose simple algorithms to find these deconvolution filters. The main contribution of our work is to extend the previous Gröbner basis results on multidimensional multichannel deconvolution for polynomial or causal filters to general FIR filters. The proposed algorithms obtain a set of FIR deconvolution filters with a small number of nonzero coefficients (a desirable feature in the impulsive noise environment) and do not require the prior information of the support. Moreover, we provide a complete characterization of all exact deconvolution FIR filters, from which good FIR deconvolution filters under the additive white noise environment are found. Simulation results show that our approaches achieve good results under different noise settings.
Calculating multidimensional discrete variable representations from cubature formulas.
Degani, Ilan; Tannor, David J
2006-04-27
Finding multidimensional nondirect product discrete variable representations (DVRs) of Hamiltonian operators is one of the long standing challenges in computational quantum mechanics. The concept of a "DVR set" was introduced as a general framework for treating this problem by R. G. Littlejohn, M. Cargo, T. Carrington, Jr., K. A. Mitchell, and B. Poirier (J. Chem. Phys. 2002, 116, 8691). We present a general solution of the problem of calculating multidimensional DVR sets whose points are those of a known cubature formula. As an illustration, we calculate several new nondirect product cubature DVRs on the plane and on the sphere with up to 110 points. We also discuss simple and potentially very useful finite basis representations (FBRs), based on general (nonproduct) cubatures. Connections are drawn to a novel view on cubature presented by I. Degani, J. Schiff, and D. J. Tannor (Num. Math. 2005, 101, 479), in which commuting extensions of coordinate matrices play a central role. Our construction of DVR sets answers a problem left unresolved in the latter paper, namely, the problem of interpreting as function spaces the vector spaces on which commuting extensions act.
Multidimensional gain control in image representation and processing in vision.
Furman, S; Zeevi, Y Y
2015-04-01
A generic model of automatic gain control (AGC) is proposed as a general framework for multidimensional automatic contrast sensitivity adjustment in vision, as well as in other sensory modalities. We show that a generic feedback AGC mechanism, incorporating a nonlinear synaptic interaction into the feedback loop of a neural network, can enhance and emphasize important image attributes, such as curvature, size, depth, convexity/concavity and more, similar to its role in the adjustment of photoreceptors and retinal network sensitivity over the extremely high dynamic range of environmental light intensities, while enhancing the contrast. We further propose that visual illusions, well established by psychophysical experiments, are a by-product of the multidimensional AGC. This hypothesis is supported by simulations implementing AGC, which reproduce psychophysical data regarding size contrast effects known as the Ebbinghaus illusion, and depth contrast effects. Processing of curvature by an AGC network illustrates that it is an important mechanism of image structure pre-emphasis, which thereby enhances saliency. It is argued that the generic neural network of AGC constitutes a universal, parsimonious, unified mechanism of neurobiological automatic contrast sensitivity control. This mechanism/model can account for a wide range of physiological and psychophysical phenomena, such as visual illusions and contour completion, in cases of occlusion, by a basic neural network. Likewise, and as important, biologically motivated AGC provides attractive new means for the development of intelligent computer vision systems.
Situation exploration in a persistent surveillance system with multidimensional data
NASA Astrophysics Data System (ADS)
Habibi, Mohammad S.
2013-03-01
There is an emerging need for fusing hard and soft sensor data in an efficient surveillance system to provide accurate estimation of situation awareness. These mostly abstract, multi-dimensional and multi-sensor data pose a great challenge to the user in performing analysis of multi-threaded events efficiently and cohesively. To address this concern an interactive Visual Analytics (VA) application is developed for rapid assessment and evaluation of different hypotheses based on context-sensitive ontology spawn from taxonomies describing human/human and human/vehicle/object interactions. A methodology is described here for generating relevant ontology in a Persistent Surveillance System (PSS) and demonstrates how they can be utilized in the context of PSS to track and identify group activities pertaining to potential threats. The proposed VA system allows for visual analysis of raw data as well as metadata that have spatiotemporal representation and content-based implications. Additionally in this paper, a technique for rapid search of tagged information contingent to ranking and confidence is explained for analysis of multi-dimensional data. Lastly the issue of uncertainty associated with processing and interpretation of heterogeneous data is also addressed.
Hierarchical and Multidimensional Academic Self-Concept of Commercial Students.
Yeung; Chui; Lau
1999-10-01
Adapting the Marsh (1990) Academic Self-Description Questionnaire (ASDQ), this study examined the academic self-concept of students in a school of commerce in Hong Kong (N = 212). Confirmatory factor analysis found that students clearly distinguished among self-concept constructs in English, Chinese, Math and Statistics, Economics, and Principles of Accounting, and each of these constructs was highly associated with a global Academic self-concept construct, reflecting the validity of each construct in measuring an academic component of self-concept. Domain-specific self-concepts were more highly related with students' intention of course selection in corresponding areas than in nonmatching areas, further supporting the multidimensionality of the students' academic self-concept. Students' self-concepts in the five curriculum domains can be represented by the global Academic self-concept, supporting the hierarchical structure of students' academic self-concept in an educational institution with a specific focus, such as commercial studies. The academic self-concepts of the commercial students are both multidimensional and hierarchical. Copyright 1999 Academic Press.
The multidimensional self-adaptive grid code, SAGE
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1992-01-01
This report describes the multidimensional self-adaptive grid code SAGE. A two-dimensional version of this code was described in an earlier report by the authors. The formulation of the multidimensional version is described in the first section of this document. The second section is presented in the form of a user guide that explains the input and execution of the code and provides many examples. Successful application of the SAGE code in both two and three dimensions for the solution of various flow problems has proven the code to be robust, portable, and simple to use. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for complex grid structures. Modifications to the method and the simplified input options make this a flexible and user-friendly code. The new SAGE code can accommodate both two-dimensional and three-dimensional flow problems.
Discovering Multidimensional Motifs in Physiological Signals for Personalized Healthcare.
Balasubramanian, Arvind; Wang, Jun; Prabhakaran, Balakrishnan
2016-08-01
Personalized diagnosis and therapy requires monitoring patient activity using various body sensors. Sensor data generated during personalized exercises or tasks may be too specific or inadequate to be evaluated using supervised methods such as classification. We propose multidimensional motif (MDM) discovery as a means for patient activity monitoring, since such motifs can capture repeating patterns across multiple dimensions of the data, and can serve as conformance indicators. Previous studies pertaining to mining MDMs have proposed approaches that lack the capability of concurrently processing multiple dimensions, thus limiting their utility in online scenarios. In this paper, we propose an efficient real-time approach to MDM discovery in body sensor generated time series data for monitoring performance of patients during therapy. We present two alternative models for MDMs based on motif co-occurrences and temporal ordering among motifs across multiple dimensions, with detailed formulation of the concepts proposed. The proposed method uses an efficient hashing based record to enable speedy update and retrieval of motif sets, and identification of MDMs. Performance evaluation using synthetic and real body sensor data in unsupervised motif discovery tasks shows that the approach is effective for (a) concurrent processing of multidimensional time series information suitable for real-time applications, (b) finding unknown naturally occurring patterns with minimal delay, and
Multidimensional NMR inversion without Kronecker products: Multilinear inversion
NASA Astrophysics Data System (ADS)
Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos
2016-08-01
Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.
Spatial Indexing and Visualization of Large Multi-Dimensional Databases
NASA Astrophysics Data System (ADS)
Dobos, L.; Csabai, I.; Trencséni, M.; Herczegh, G.; Józsa, P.; Purger, N.
2007-10-01
Scientific endeavors such as large astronomical surveys generate databases on the terabyte scale. These usually multi-dimensional databases must be visualized and mined in order to find interesting objects or to extract meaningful and qualitatively new relationships. Many statistical algorithms required for these tasks run reasonably fast when operating on small sets of in-memory data, but take noticeable performance hits when operating on large databases that do not fit into memory. We utilize new software technologies to develop and evaluate fast multi-dimensional, spatial indexing schemes that inherently follow the underlying highly non-uniform distribution of the data: one of them is hierarchical binary space partitioning; the other is sampled flat Voronoi partitioning of the data. Our working database is the 5-dimensional magnitude space of the Sloan Digital Sky Survey with more than 250 million data points. We show that these techniques can dramatically speed up data mining operations such as finding similar objects by example, classifying objects or comparing extensive simulation sets with observations. We are also developing tools to interact with the spatial database and visualize the data real-time at multiple resolutions at different zoom levels in an adaptive manner.
Monte Carlo methods for multidimensional integration for European option pricing
NASA Astrophysics Data System (ADS)
Todorov, V.; Dimov, I. T.
2016-10-01
In this paper, we illustrate examples of highly accurate Monte Carlo and quasi-Monte Carlo methods for multiple integrals related to the evaluation of European style options. The idea is that the value of the option is formulated in terms of the expectation of some random variable; then the average of independent samples of this random variable is used to estimate the value of the option. First we obtain an integral representation for the value of the option using the risk neutral valuation formula. Then with an appropriations change of the constants we obtain a multidimensional integral over the unit hypercube of the corresponding dimensionality. Then we compare a specific type of lattice rules over one of the best low discrepancy sequence of Sobol for numerical integration. Quasi-Monte Carlo methods are compared with Adaptive and Crude Monte Carlo techniques for solving the problem. The four approaches are completely different thus it is a question of interest to know which one of them outperforms the other for evaluation multidimensional integrals in finance. Some of the advantages and disadvantages of the developed algorithms are discussed.
Measuring Experiential Avoidance: Evidence toward Multidimensional Predictors of Trauma Sequelae
Lewis, Meaghan; Naugle, Amy
2017-01-01
The current study sought to investigate measurement discrepancies in self-report assessment of experiential avoidance (EA). Recent research indicates that EA may be more appropriately conceptualized as a multidimensional construct, operationally defined in terms of specific avoidance strategies. To test this notion, EA was measured using two self-report assessment instruments, the Acceptance and Action Questionnaire-II (AAQ-II) and the Multidimensional Experiential Avoidance Questionnaire (MEAQ) in a convenience sample of university students. Measurement differences across measures and unique contributions to prediction of posttraumatic stress symptoms (PTSS) and engagement in problematic behaviors were evaluated. Both the AAQ-II and MEAQ were found to significantly mediate the effect of childhood trauma exposure on PTSS. However, when levels of PTSS were dummy coded into dichotomies of those with a likely PTSD diagnosis and those without, the MEAQ was a stronger predictor of symptoms for those with a likely PTSD diagnosis than the AAQ-II. These results provide initial support for the discriminant validity of the MEAQ, which appears to be a more specific predictor of trauma-related symptoms. PMID:28230736
Flexible multi-dimensional modulation method for elastic optical networks
NASA Astrophysics Data System (ADS)
He, Zilong; Liu, Wentao; Shi, Sheping; Shen, Bailin; Chen, Xue; Gao, Xiqing; Zhang, Qi; Shang, Dongdong; Ji, Yongning; Liu, Yingfeng
2016-01-01
We demonstrate a flexible multi-dimensional modulation method for elastic optical networks. We compare the flexible multi-dimensional modulation formats PM-kSC-mQAM with traditional modulation formats PM-mQAM using numerical simulations in back-to-back and wavelength division multiplexed (WDM) transmission (50 GHz-spaced) scenarios at the same symbol rate of 32 Gbaud. The simulation results show that PM-kSC-QPSK and PM-kSC-16QAM can achieve obvious back-to-back sensitivity gain with respect to PM-QPSK and PM-16QAM at the expense of spectral efficiency reduction. And the WDM transmission simulation results show that PM-2SC-QPSK can achieve 57.5% increase in transmission reach compared to PM-QPSK, and 48.5% increase for PM-2SC-16QAM over PM-16QAM. Furthermore, we also experimentally investigate the back to back performance of PM-2SC-QPSK, PM-4SC-QPSK, PM-2SC-16QAM and PM-3SC-16QAM, and the experimental results agree well with the numerical simulations.
Stalking: A Multidimensional Framework for Assessment and Safety Planning.
Logan, T K; Walker, Robert
2015-09-03
Despite the high prevalence of stalking and the risk of harm it poses to victims, arrest rates, prosecutions, and convictions for stalking continue to be low in the United States. The overall goal of this article is to introduce a multidimensional framework of stalking that adds to the current literature by (1) providing a conceptual framework consistent with legal elements of many stalking statutes to facilitate assessment, communication, documentation, and safety planning for stalking several victims; (2) introducing a more systematic way of assessing course of conduct and the context of fear in stalking situations in order to increase the understanding of cumulative fear for stalking victims; (3) emphasizing the aspects of stalking harm that go beyond violence and that show how harm from stalking accumulates over time including life sabotage; and (4) discussing 12 risk factors derived from the overall multidimensional framework that can be used to describe the big picture of stalking and to facilitate safety planning for victims. Implications for future research are discussed.
Multidimensionality in host manipulation mimicked by serotonin injection
Perrot-Minnot, Marie-Jeanne; Sanchez-Thirion, Kevin; Cézilly, Frank
2014-01-01
Manipulative parasites often alter the phenotype of their hosts along multiple dimensions. ‘Multidimensionality’ in host manipulation could consist in the simultaneous alteration of several physiological pathways independently of one another, or proceed from the disruption of some key physiological parameter, followed by a cascade of effects. We compared multidimensionality in ‘host manipulation’ between two closely related amphipods, Gammarus fossarum and Gammarus pulex, naturally and experimentally infected with Pomphorhynchus laevis (Acanthocephala), respectively. To that end, we calculated in each host–parasite association the effect size of the difference between infected and uninfected individuals for six different traits (activity, phototaxis, geotaxis, attraction to conspecifics, refuge use and metabolic rate). The effects sizes were highly correlated between host–parasite associations, providing evidence for a relatively constant ‘infection syndrome’. Using the same methodology, we compared the extent of phenotypic alterations induced by an experimental injection of serotonin (5-HT) in uninfected G. pulex to that induced by experimental or natural infection with P. laevis. We observed a significant correlation between effect sizes across the six traits, indicating that injection with 5-HT can faithfully mimic the ‘infection syndrome’. This is, to our knowledge, the first experimental evidence that multidimensionality in host manipulation can proceed, at least partly, from the disruption of some major physiological mechanism. PMID:25339729
How interactive visualization can benefit from multidimensional input devices
NASA Astrophysics Data System (ADS)
Felger, Wolfgang
1992-06-01
The visualization domain handles complex data sets, which are visualized on a 2-D screen. This is achieved by data transformations which cause a loss of information. Data can be analyzed easier when interaction is supported. In the context of this paper, multidimensional input devices refer to interaction devices with more than 2 degrees of freedom. I will consider a 6-D-ball (the Spaceball from Spatial Systems) and a glove (the DataGlove from VPL, which incorporates a Polhemus 3Space Isotrack systems). These are devices that support full 3-D interaction. The paper is organized into two parts. The first part investigates the suitability of input devices for interaction in 3-D scenes in general. A system is realized that supports the comparison of the old mouse and dial devices with the above mentioned modern devices. In particular, the graphic's interactions identifying and transforming an object (translation and rotation) are investigated and the results are presented. This system can also be used to train users in getting familiar with the input devices. The second part of the paper describes the use of multidimensional input devices in scientific visualization applications, which are currently under research at FhG-IGD.
Robustness of multidimensional Brownian ratchets as directed transport mechanisms
NASA Astrophysics Data System (ADS)
González-Candela, Ernesto; Romero-Rochín, Víctor; Del Río, Fernando
2011-08-01
Brownian ratchets have recently been considered as models to describe the ability of certain systems to locate very specific states in multidimensional configuration spaces. This directional process has particularly been proposed as an alternative explanation for the protein folding problem, in which the polypeptide is driven toward the native state by a multidimensional Brownian ratchet. Recognizing the relevance of robustness in biological systems, in this work we analyze such a property of Brownian ratchets by pushing to the limits all the properties considered essential to produce directed transport. Based on the results presented here, we can state that Brownian ratchets are able to deliver current and locate funnel structures under a wide range of conditions. As a result, they represent a simple model that solves the Levinthal's paradox with great robustness and flexibility and without requiring any ad hoc biased transition probability. The behavior of Brownian ratchets shown in this article considerably enhances the plausibility of the model for at least part of the structural mechanism behind protein folding process.
A multidimensional approach to apathy after traumatic brain injury.
Arnould, Annabelle; Rochat, Lucien; Azouvi, Philippe; Van der Linden, Martial
2013-09-01
Apathy is commonly described following traumatic brain injury (TBI) and is associated with serious consequences, notably for patients' participation in rehabilitation, family life and later social reintegration. There is strong evidence in the literature of the multidimensional nature of apathy (behavioural, cognitive and emotional), but the processes underlying each dimension are still unclear. The purpose of this article is first, to provide a critical review of the current definitions and instruments used to measure apathy in neurological and psychiatric disorders, and second, to review the prevalence, characteristics, neuroanatomical correlates, relationships with other neurobehavioural disorders and mechanisms of apathy in the TBI population. In this context, we propose a new multidimensional framework that takes into account the various mechanisms at play in the facets of apathy, including not only cognitive factors, especially executive, but also affective factors (e.g., negative mood), motivational variables (e.g., anticipatory pleasure) and aspects related to personal identity (e.g., self-esteem). Future investigations that consider these various factors will help improve the understanding of apathy. This theoretical framework opens up relevant prospects for better clinical assessment and rehabilitation of these frequently described motivational disorders in patients with brain injury.
Subsonic Flow for the Multidimensional Euler-Poisson System
NASA Astrophysics Data System (ADS)
Bae, Myoungjean; Duan, Ben; Xie, Chunjing
2016-04-01
We establish the existence and stability of subsonic potential flow for the steady Euler-Poisson system in a multidimensional nozzle of a finite length when prescribing the electric potential difference on a non-insulated boundary from a fixed point at the exit, and prescribing the pressure at the exit of the nozzle. The Euler-Poisson system for subsonic potential flow can be reduced to a nonlinear elliptic system of second order. In this paper, we develop a technique to achieve a priori {C^{1,α}} estimates of solutions to a quasi-linear second order elliptic system with mixed boundary conditions in a multidimensional domain enclosed by a Lipschitz continuous boundary. In particular, we discovered a special structure of the Euler-Poisson system which enables us to obtain {C^{1,α}} estimates of the velocity potential and the electric potential functions, and this leads us to establish structural stability of subsonic flows for the Euler-Poisson system under perturbations of various data.
An automatic system for multidimensional integrated protein chromatography.
Kong, Yingjun; Li, Xiunan; Bai, Gaoying; Ma, Guanghui; Su, Zhiguo
2010-10-29
An automatic system for multidimensional integrated protein chromatography was designed for simultaneous separation of multiple proteins from complex mixtures, such as human plasma and tissue lysates. This computer-controlled system integrates several chromatographic columns that work independently or cooperatively with one another to achieve efficient high throughputs. The pipelines can be automatically switched either to another column or to a collection container for each UV-detected elution fraction. Environmental contamination is avoided due to the closed fluid paths and elimination of manual column change. This novel system was successfully used for simultaneous preparation of five proteins from the precipitate of human plasma fraction IV (fraction IV). The system involved gel filtration, ion exchange, hydrophobic interaction, and heparin affinity chromatography. Human serum albumin (HSA), transferrin (Tf), antithrombin-III (AT-III), alpha 1-antitrypsin (α1-AT), and haptoglobin (Hp) were purified within 3 h. The following recovery and purity were achieved: 95% (RSD, 2.8%) and 95% for HSA, 80% (RSD, 2.0%) and 99% for Tf, 70% (RSD, 2.1%) and 99% for AT-III, 65% (RSD, 2.0%) and 94% for α1-AT, and 50% (RSD, 1.0%) and 90% for Hp. The results demonstrate that this novel multidimensional integrated chromatography system is capable of simultaneously separating multiple protein products from the same raw material with high yield and purity and it has the potential for a wide range of multi-step chromatography separation processes.
Flett, Gordon L; Hewitt, Paul L
2014-12-01
In the current article, we comment on a recent article by Stoeber, Kobori, and Brown that provided evidence suggesting that a multidimensional approach to perfectionistic cognitions is superior to a unidimensional approach in predicting maladjustment. They also showed with their data from a university student sample that our Perfectionism Cognitions Inventory has multiple factors in contrast to our unidimensional approach. Our commentary focuses primarily on the issue of whether the Perfectionism Cognitions Inventory should be considered unidimensional versus multidimensional and outlines concerns about how perfectionism cognition factors should be used and interpreted. Although there are serious interpretive problems inherent in existing multidimensional measures of perfectionism cognitions, it is apparent that a cognitive approach is an important and viable supplement to the extensive focus on the trait multidimensional perfectionism that is currently in vogue. We conclude by discussing the potential clinical uses of cognitive assessments of perfectionism.
EDITORIAL: Nanotechnology in motion Nanotechnology in motion
NASA Astrophysics Data System (ADS)
Demming, Anna
2012-02-01
, Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 Nobelprize.org [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468
Health, Wealth and Wisdom: Exploring Multidimensional Inequality in a Developing Country
ERIC Educational Resources Information Center
Nilsson, Therese
2010-01-01
Despite a broad theoretical literature on multidimensional inequality and a widespread belief that welfare is not synonymous to income--not the least in a developing context--empirical inequality examinations rarely includes several welfare attributes. We explore three techniques on how to evaluate multidimensional inequality using Zambian…
Estimating Multidimensional Item Response Models with Mixed Structure. Research Report. ETS RR-05-04
ERIC Educational Resources Information Center
Zhang, Jinming
2005-01-01
This study derived an expectation-maximization (EM) algorithm for estimating the parameters of multidimensional item response models. A genetic algorithm (GA) was developed to be used in the maximization step in each EM cycle. The focus of the EM-GA algorithm developed in this paper was on multidimensional items with "mixed structure."…
Effect Size Measures for Differential Item Functioning in a Multidimensional IRT Model
ERIC Educational Resources Information Center
Suh, Youngsuk
2016-01-01
This study adapted an effect size measure used for studying differential item functioning (DIF) in unidimensional tests and extended the measure to multidimensional tests. Two effect size measures were considered in a multidimensional item response theory model: signed weighted P-difference and unsigned weighted P-difference. The performance of…
ERIC Educational Resources Information Center
Endler, Norman S.; Parker, James D. A.
1990-01-01
C. Davis and M. Cowles (1989) analyzed a total trait anxiety score on the Endler Multidimensional Anxiety Scales (EMAS)--a unidimensional construct that this multidimensional measure does not assess. Data are reanalyzed using the appropriate scoring procedure for the EMAS. Subjects included 145 undergraduates in 1 of 4 testing conditions. (SLD)
Effects of Multidimensional Concept Maps on Fourth Graders' Learning in Web-Based Computer Course
ERIC Educational Resources Information Center
Huang, Hwa-Shan; Chiou, Chei-Chang; Chiang, Heien-Kun; Lai, Sung-Hsi; Huang, Chiun-Yen; Chou, Yin-Yu
2012-01-01
This study explores the effect of multidimensional concept mapping instruction on students' learning performance in a web-based computer course. The subjects consisted of 103 fourth graders from an elementary school in central Taiwan. They were divided into three groups: multidimensional concept map (MCM) instruction group, Novak concept map (NCM)…
The Use of Unidimensional Item Parameter Estimates of Multidimensional Items in Adaptive Testing.
ERIC Educational Resources Information Center
Ackerman, Terry A.
The purpose of this study was to investigate the effect of using multidimensional items in a computer adaptive test (CAT) setting which assumes a unidimensional item response theory (IRT) framework. Previous research has suggested that the composite of multidimensional abilities being estimated by a unidimensional IRT model is not constant…
ERIC Educational Resources Information Center
Baghaei, Purya
2013-01-01
This study aims to develop and validate a multidimensional scale of willingness to communicate in a foreign language. Multidimensional random coefficient multinomial logit model was employed to analyze the scale. Likelihood deviance test and information criteria showed that a three-dimensional model fits significantly better than a two-dimensional…
ERIC Educational Resources Information Center
Coromaldi, Manuela; Zoli, Mariangela
2012-01-01
Theoretical and empirical studies have recently adopted a multidimensional concept of poverty. There is considerable debate about the most appropriate degree of multidimensionality to retain in the analysis. In this work we add to the received literature in two ways. First, we derive indicators of multiple deprivation by applying a particular…
Posterior Predictive Model Checking for Conjunctive Multidimensionality in Item Response Theory
ERIC Educational Resources Information Center
Levy, Roy
2011-01-01
If data exhibit multidimensionality, key conditional independence assumptions of unidimensional models do not hold. The current work pursues posterior predictive model checking (PPMC) as a tool for criticizing models due to unaccounted for dimensions in data structures that follow conjunctive multidimensional models. These pursuits are couched in…
ERIC Educational Resources Information Center
Min, Shangchao; He, Lianzhen
2014-01-01
This study examined the relative effectiveness of the multidimensional bi-factor model and multidimensional testlet response theory (TRT) model in accommodating local dependence in testlet-based reading assessment with both dichotomously and polytomously scored items. The data used were 14,089 test-takers' item-level responses to the testlet-based…
On Multi-Dimensional Vocabulary Teaching Mode for College English Teaching
ERIC Educational Resources Information Center
Zhou, Li-na
2010-01-01
This paper analyses the major approaches in EFL (English as a Foreign Language) vocabulary teaching from historical perspective and puts forward multi-dimensional vocabulary teaching mode for college English. The author stresses that multi-dimensional approaches of communicative vocabulary teaching, lexical phrase teaching method, the grammar…
Item Vector Plots for the Multidimensional Three-Parameter Logistic Model
ERIC Educational Resources Information Center
Bryant, Damon; Davis, Larry
2011-01-01
This brief technical note describes how to construct item vector plots for dichotomously scored items fitting the multidimensional three-parameter logistic model (M3PLM). As multidimensional item response theory (MIRT) shows promise of being a very useful framework in the test development life cycle, graphical tools that facilitate understanding…
ERIC Educational Resources Information Center
Clark, W. Crawford; Ferrer-Brechner, Theresa
Multidimensional scaling (MDS) offers a rigorous approach to many problems in perception, emotion, personality, and cognition, where the stimuli are too complex to be quantified by other means. In these procedures similarity ratings of the stimulus objects are modeled as points in multidimensional space, such that perceived similarity is…
ERIC Educational Resources Information Center
Karatas, Zeynep; Tagay, Ozlem
2012-01-01
The purpose of this study is to determine whether there is a relationship between self-esteem, locus of control and multidimensional perfectionism, and the extent to which the variables of self-esteem, locus of control and multidimensional perfectionism contribute to the prediction of subjective well-being. The study was carried out with 318 final…
Bifactor Approach to Modeling Multidimensionality of Physical Self-Perception Profile
ERIC Educational Resources Information Center
Chung, ChihMing; Liao, Xiaolan; Song, Hairong; Lee, Taehun
2016-01-01
The multi-dimensionality of Physical Self-Perception Profile (PSPP) has been acknowledged by the use of correlated-factor model and second-order model. In this study, the authors critically endorse the bifactor model, as a substitute to address the multi-dimensionality of PSPP. To cross-validate the models, analyses are conducted first in…
ERIC Educational Resources Information Center
Findler, Liora; Vilchinsky, Noa; Werner, Shirli
2007-01-01
This study presents the development of a new instrument, the "Multidimensional Attitudes Scale Toward Persons With Disabilities" (MAS). Based on the multidimensional approach, it posits that attitudes are composed of three dimensions: affect, cognition, and behavior. The scale was distributed to a sample of 132 people along with a…
Autoadaptive motion modelling for MR-based respiratory motion estimation.
Baumgartner, Christian F; Kolbitsch, Christoph; McClelland, Jamie R; Rueckert, Daniel; King, Andrew P
2017-01-01
Respiratory motion poses significant challenges in image-guided interventions. In emerging treatments such as MR-guided HIFU or MR-guided radiotherapy, it may cause significant misalignments between interventional road maps obtained pre-procedure and the anatomy during the treatment, and may affect intra-procedural imaging such as MR-thermometry. Patient specific respiratory motion models provide a solution to this problem. They establish a correspondence between the patient motion and simpler surrogate data which can be acquired easily during the treatment. Patient motion can then be estimated during the treatment by acquiring only the simpler surrogate data. In the majority of classical motion modelling approaches once the correspondence between the surrogate data and the patient motion is established it cannot be changed unless the model is recalibrated. However, breathing patterns are known to significantly change in the time frame of MR-guided interventions. Thus, the classical motion modelling approach may yield inaccurate motion estimations when the relation between the motion and the surrogate data changes over the duration of the treatment and frequent recalibration may not be feasible. We propose a novel methodology for motion modelling which has the ability to automatically adapt to new breathing patterns. This is achieved by choosing the surrogate data in such a way that it can be used to estimate the current motion in 3D as well as to update the motion model. In particular, in this work, we use 2D MR slices from different slice positions to build as well as to apply the motion model. We implemented such an autoadaptive motion model by extending our previous work on manifold alignment. We demonstrate a proof-of-principle of the proposed technique on cardiac gated data of the thorax and evaluate its adaptive behaviour on realistic synthetic data containing two breathing types generated from 6 volunteers, and real data from 4 volunteers. On synthetic data
Human motion analysis and modeling
NASA Astrophysics Data System (ADS)
Prussing, Keith; Cathcart, J. Michael; Kocher, Brian
2011-06-01
Georgia Tech has investigated methods for the detection and tracking of personnel in a variety of acquisition environments. This research effort focused on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. As a fundamental part of this research effort, Georgia Tech collected motion capture data on an individual for a variety of walking speeds, carrying loads, and load distributions. These data formed the basis for deriving fundamental properties of the individual's motion and supported the development of a physiologically-based human motion model. Subsequently this model aided the derivation and analysis of motion-based observables, particularly changes in the motion of various body components resulting from load variations. This paper will describe the data acquisition process, development of the human motion model, and use of the model in the observable analysis. Video sequences illustrating the motion data and modeling results will also be presented.
NASA Astrophysics Data System (ADS)
Akinci, A.; D'Amico, S.; Malagnini, L.
2010-12-01
In this study, we characterize the scaling of the ground motions for frequencies ranging between 0.25 and 5 Hz, obtaining results for seismic attenuation, geometrical spreading, and source parameters in Taiwan. We regressed this large number of weak-motion data in order to characterize the regional propagation and the absolute source scaling. Stochastic simulations are generated for finite-fault ruptures using the obtained parameters to predict the absolute peaks of the ground acceleration and velocity for several magnitude and distance range, as well as beyond the magnitude range of the weak-motion data set on which they are calculated. The predictions are then compared with recorded strong motion data and empirical ground motion prediction equation obtained for the study region. We showed that our regional parameters, obtained from independent weak-motion database, may be applied for evaluation of ground motion parameters for earthquakes of magnitude up to 7.6.
NASA Astrophysics Data System (ADS)
Rambaux, N.; Asmar, S. W.; Konopliv, A. S.
2012-09-01
Vesta is the second most massive body of the asteroid belt and contains a giant impact and a differentiated interior. Constraints on internal structure can be inferred from various observations such as gravity field measurements [1]. Especially, detailed knowledge of the rotational motion can help constrain the mass distribution inside the body, which in turn can lead to information on its history. Here, we compute the polar motion, precession-nutation, and length-of-day variations of Vesta. The Vesta's Pole position in space has been obtained by Dawn mission [1] and the orbital pole of Vesta at J2000 can be obtained from the Horizons ephemerides [2]. The obliquity, defined as the angle between the normal to the orbital plane and the figure axis, brings information on the moment of inertia if it has reached its equilibrium position [3], the present value from observations is around 27 degrees. That is far from the ˜ 0.03 deg expected for the equilibrium position. In addition, the required timescale to fully damped the obliquity appears to be very long following the same approach developed in [4]. Thus, it appears that the obliquity of Vesta has not yet relaxed in its Cassini state. The figure of Vesta appears to be triaxial and the Sun exerts a non-zero torque. By following the approach developed for the Earth [e.g. 5] and Ceres [4], we compute the nutation of Vesta. The nutational motion of Vesta is dominated by the semi-annual nutation (996 milli-arcseconds or 1.26 m surface displacement) related to the large obliquity of Vesta, and then terms related to harmonics and also to the planet's mean longitude. The detection of such small displacement requires tracking of Vesta's surface with high precision. The precession time of the axis of Vesta is very long, about 179,000 years.
Multidimensional Poverty and Health Status as a Predictor of Chronic Income Poverty.
Callander, Emily J; Schofield, Deborah J
2015-12-01
Longitudinal analysis of Wave 5 to 10 of the nationally representative Household, Income and Labour Dynamics in Australia dataset was undertaken to assess whether multidimensional poverty status can predict chronic income poverty. Of those who were multidimensionally poor (low income plus poor health or poor health and insufficient education attainment) in 2007, and those who were in income poverty only (no other forms of disadvantage) in 2007, a greater proportion of those in multidimensional poverty continued to be in income poverty for the subsequent 5 years through to 2012. People who were multidimensionally poor in 2007 had 2.17 times the odds of being in income poverty each year through to 2012 than those who were in income poverty only in 2005 (95% CI: 1.23-3.83). Multidimensional poverty measures are a useful tool for policymakers to identify target populations for policies aiming to improve equity and reduce chronic disadvantage.
NASA Technical Reports Server (NTRS)
Badler, N. I.
1985-01-01
Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.
NASA Technical Reports Server (NTRS)
Vanderploeg, J. M.; Stewart, D. F.; Davis, J. R.
1986-01-01
Space motion sickness clinical characteristics, time course, prediction of susceptibility, and effectiveness of countermeasures were evaluated. Although there is wide individual variability, there appear to be typical patterns of symptom development. The duration of symptoms ranges from several hours to four days with the majority of individuals being symptom free by the end of third day. The etiology of this malady remains uncertain but evidence points to reinterpretation of otolith inputs as being a key factor in the response of the neurovestibular system. Prediction of susceptibility and severity remains unsatisfactory. Countermeasures tried include medications, preflight adaptation, and autogenic feedback training. No countermeasure is entirely successful in eliminating or alleviating symptoms.
Motion dynamics of submersibles
NASA Astrophysics Data System (ADS)
Kalske, Seppo
1991-04-01
A literature survey of motion dynamics of subsea vehicles of a general shape was performed. Hydrodynamic tests were carried out with an existing tethered remotely operated vehicle and with its full scale model. The experiments give data of maneuvering capabilities, and of hydrodynamic characteristics of small subsea vehicles. A simulation method was developed on this basis to compute the vehicle trajectory in the time domain as a function of different control commands. The method can be applied to any subsea vehicle controlled by thruster units.
Multi-dimensional structure of accreting young stars
NASA Astrophysics Data System (ADS)
Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.
2016-04-01
This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi-dimensional
Multi-dimensional hydrodynamics of core-collapse supernovae
NASA Astrophysics Data System (ADS)
Murphy, Jeremiah W.
Core-collapse supernovae are some of the most energetic events in the Universe, they herald the birth of neutron stars and black holes, are a major site for nucleosynthesis, influence galactic hydrodynamics, and trigger further star formation. As such, it is important to understand the mechanism of explosion. Moreover, observations imply that asymmetries are, in the least, a feature of the mechanism, and theory suggests that multi-dimensional hydrodynamics may be crucial for successful explosions. In this dissertation, we present theoretical investigations into the multi-dimensional nature of the supernova mechanism. It had been suggested that nuclear reactions might excite non-radial g-modes (the [straight epsilon]-mechanism) in the cores of progenitors, leading to asymmetric explosions. We calculate the eigenmodes for a large suite of progenitors including excitation by nuclear reactions and damping by neutrino and acoustic losses. Without exception, we find unstable g-modes for each progenitor. However, the timescales for growth are at least an order of magnitude longer than the time until collapse. Thus, the [straight epsilon]- mechanism does not provide appreciable amplification of non-radial modes before the core undergoes collapse. Regardless, neutrino-driven convection, the standing accretion shock instability, and other instabilities during the explosion provide ample asymmetry. To adequately simulate these, we have developed a new hydrodynamics code, BETHE-hydro that uses the Arbitrary Lagrangian-Eulerian (ALE) approach, includes rotational terms, solves Poisson's equation for gravity on arbitrary grids, and conserves energy and momentum in its basic implementation. By using time-dependent arbitrary grids that can adapt to the numerical challenges of the problem, this code offers unique flexibility in simulating astrophysical phenomena. Finally, we use BETHE-hydro to investigate the conditions and criteria for supernova explosions by the neutrino
Algebraic Nonlinear Collective Motion
NASA Astrophysics Data System (ADS)
Troupe, J.; Rosensteel, G.
1998-11-01
Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real numberΛ. TheΛ=0 solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear group action on Euclidean space transforms a certain family of deformed droplets among themselves. For positiveΛ, the droplets have a neck that becomes more pronounced asΛincreases; for negativeΛ, the droplets contain a spherical bubble of radius |Λ|1/3. The nonlinear vector field algebra is extended to the nonlinear general collective motion algebra gcm(3) which includes the inertia tensor. The quantum algebraic models of nonlinear nuclear collective motion are given by irreducible unitary representations of the nonlinear gcm(3) Lie algebra. These representations model fissioning isotopes (Λ>0) and bubble and two-fluid nuclei (Λ<0).
NASA Astrophysics Data System (ADS)
McGourty, L.; Rideout, K.
2005-12-01
"Waves in Motion" This teaching unit was created by Leslie McGourty and Ken Rideout under the Research Experience for Teachers (RET) program at MIT Haystack Observatory during the summer of 2005. The RET program is funded by a grant from the National Science Foundation. The goals of this teaching unit are to deepen students' understanding about waves, wave motion, and the electromagnetic spectrum as a whole. Specifically students will comprehend the role radio waves play in our daily lives and in the investigation of the universe. The lessons can be used in a high school physics, earth science or astronomy curriculum. The unit consists of a series of interlocking lectures, activities, and investigations that can be used as stand alone units to supplement a teacher's existing curriculum, as an independent investigation for a student, or as a long exploration into radio astronomy with a theme of waves in space: how and where they carry their information. Special emphasis is given to the Relativity theories in honor of the "World Year of Physics" to celebrate Einstein's 1905 contributions. The lessons are currently being implemented at the high school level, the preliminary results of which will be presented. At the end of the academic year, the units will be evaluated and updated, reflecting student input and peer review after which they will be posted on the internet for teachers to use in their classrooms.
Categorizing identity from facial motion.
Girges, Christine; Spencer, Janine; O'Brien, Justin
2015-01-01
Advances in marker-less motion capture technology now allow the accurate replication of facial motion and deformation in computer-generated imagery (CGI). A forced-choice discrimination paradigm using such CGI facial animations showed that human observers can categorize identity solely from facial motion cues. Animations were generated from motion captures acquired during natural speech, thus eliciting both rigid (head rotations and translations) and nonrigid (expressional changes) motion. To limit interferences from individual differences in facial form, all animations shared the same appearance. Observers were required to discriminate between different videos of facial motion and between the facial motions of different people. Performance was compared to the control condition of orientation-inverted facial motion. The results show that observers are able to make accurate discriminations of identity in the absence of all cues except facial motion. A clear inversion effect in both tasks provided consistency with previous studies, supporting the configural view of human face perception. The accuracy of this motion capture technology thus allowed stimuli to be generated that closely resembled real moving faces. Future studies may wish to implement such methodology when studying human face perception.
Multidimensional resonance raman spectroscopy by six-wave mixing in the deep UV
Molesky, Brian P.; Giokas, Paul G.; Guo, Zhenkun; Moran, Andrew M.
2014-09-21
Two-dimensional (2D) resonance Raman spectroscopies hold great potential for uncovering photoinduced relaxation processes in molecules but are not yet widely applied because of technical challenges. Here, we describe a newly developed 2D resonance Raman experiment operational at the third-harmonic of a Titanium-Sapphire laser. High-sensitivity and rapid data acquisition are achieved by combining spectral interferometry with a background-free (six-pulse) laser beam geometry. The third-harmonic laser pulses are generated in a filament produced by the fundamental and second-harmonic pulses in neon gas at pressures up to 35 atm. The capabilities of the setup are demonstrated by probing ground-state wavepacket motions in triiodide. The information provided by the experiment is explored with two different representations of the signal. In one representation, Fourier transforms are carried out with respect to the two experimentally controlled delay times to obtain a 2D Raman spectrum. Further insights are derived in a second representation by dispersing the signal pulse in a spectrometer. It is shown that, as in traditional pump-probe experiments, the six-wave mixing signal spectrum encodes the wavepacket's position by way of the (time-evolving) emission frequency. Anharmonicity additionally induces dynamics in the vibrational resonance frequency. In all cases, the experimental signals are compared to model calculations based on a cumulant expansion approach. This study suggests that multi-dimensional resonance Raman spectroscopies conducted on systems with Franck-Condon active modes are fairly immune to many of the technical issues that challenge off-resonant 2D Raman spectroscopies (e.g., third-order cascades) and photon-echo experiments in the deep UV (e.g., coherence spikes). The development of higher-order nonlinear spectroscopies operational in the deep UV is motivated by studies of biological systems and elementary organic photochemistries.
NASA Astrophysics Data System (ADS)
West, Ruth; Gossmann, Joachim; Margolis, Todd; Schulze, Jurgen P.; Lewis, J. P.; Hackbarth, Ben; Mostafavi, Iman
2009-02-01
ATLAS in silico is an interactive installation/virtual environment that provides an aesthetic encounter with metagenomics data (and contextual metadata) from the Global Ocean Survey (GOS). The installation creates a visceral experience of the abstraction of nature in to vast data collections - a practice that connects expeditionary science of the 19th Century with 21st Century expeditions like the GOS. Participants encounter a dream-like, highly abstract, and datadriven virtual world that combines the aesthetics of fine-lined copper engraving and grid-like layouts of 19th Century scientific representation with 21st Century digital aesthetics including wireframes and particle systems. It is resident at the Calit2 Immersive visualization Laboratory on the campus of UC San Diego, where it continues in active development. The installation utilizes a combination of infrared motion tracking, custom computer vision, multi-channel (10.1) spatialized interactive audio, 3D graphics, data sonification, audio design, networking, and the VarrierTM 60 tile, 100-million pixel barrier strip auto-stereoscopic display. Here we describe the physical and audio display systems for the installation and a hybrid strategy for multi-channel spatialized interactive audio rendering in immersive virtual reality that combines amplitude, delay and physical modeling-based, real-time spatialization approaches for enhanced expressivity in the virtual sound environment that was developed in the context of this artwork. The desire to represent a combination of qualitative and quantitative multidimensional, multi-scale data informs the artistic process and overall system design. We discuss the resulting aesthetic experience in relation to the overall system.
A Multi-Dimensional Classification Model for Scientific Workflow Characteristics
Ramakrishnan, Lavanya; Plale, Beth
2010-04-05
Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.
Extending validity evidence for multidimensional measures of coaching competency.
Myers, Nicholas D; Wolfe, Edward W; Maier, Kimberly S; Feltz, Deborah L; Reckase, Mark D
2006-12-01
This study extended validity evidence for multidimensional measures of coaching competency derived from the Coaching Competency Scale (CCS; Myers, Feltz, Maier, Wolfe, & Reckase, 2006) by examining use of the original rating scale structure and testing how measures related to satisfaction with the head coach within teams and between teams. Motivation, game strategy, technique, and character building comprised the dimensions of coaching competency. Data were collected from athletes (N = 585) nested within intercollegiate men's (g = 8) and women's (g = 13) soccer and women's ice hockey (g = 11) teams (G = 32). Validity concerns were observed for the original rating scale structure and the predicted positive relationship between motivation competency and satisfaction with the coach between teams. Validity evidence was offered for a condensed post hoc rating scale and the predicted relationship between motivation competency and satisfaction with the coach within teams.
A multidimensional Rasch analysis of gender differences in PISA mathematics.
Liu, Ou Lydia; Wilson, Mark; Paek, Insu
2008-01-01
Since the 1970s, much attention has been devoted to the male advantage in standardized mathematics tests in the United States. Although girls are found to perform equally well as boys in math classes, they are consistently outperformed on standardized math tests. This study compared the males and females in the United States, all 15-year-olds, by their performance on the PISA 2003 mathematics assessment. A multidimensional Rasch model was used for item calibration and ability estimation on the basis of four math domains: Space and Shape, Change and Relationships, Quantity, and Uncertainty. Results showed that the effect sizes of performance differences are small, all below .20, but consistent, in favor of boys. Space and Shape displayed the largest gender gap, which supports the findings from many previous studies. Quantity showed the least amount of gender difference, which may be explained by the hypothesis that girls perform better on tasks that they are familiar with through classroom practice.
Active control of multi-dimensional random sound in ducts
NASA Technical Reports Server (NTRS)
Silcox, R. J.; Elliott, S. J.
1990-01-01
Previous work has demonstrated how active control may be applied to the control of random noise in ducts. These implementations, however, have been restricted to frequencies where only plane waves are propagating in the duct. In spite of this, the need for this technology at low frequencies has progressed to the point where commercial products that apply these concepts are currently available. Extending the frequency range of this technology requires the extension of current single channel controllers to multi-variate control systems as well as addressing the problems inherent in controlling higher order modes. The application of active control in the multi-dimensional propagation of random noise in waveguides is examined. An adaptive system is implemented using measured system frequency response functions. Experimental results are presented illustrating attained suppressions of 15 to 30 dB for random noise propagating in multiple modes.
Perceptual evaluation of multi-dimensional spatial audio reproduction
NASA Astrophysics Data System (ADS)
Guastavino, Catherine; Katz, Brian F. G.
2004-08-01
Perceptual differences between sound reproduction systems with multiple spatial dimensions have been investigated. Two blind studies were performed using system configurations involving 1-D, 2-D, and 3-D loudspeaker arrays. Various types of source material were used, ranging from urban soundscapes to musical passages. Experiment I consisted in collecting subjects' perceptions in a free-response format to identify relevant criteria for multi-dimensional spatial sound reproduction of complex auditory scenes by means of linguistic analysis. Experiment II utilized both free response and scale judgments for seven parameters derived form Experiment I. Results indicated a strong correlation between the source material (sound scene) and the subjective evaluation of the parameters, making the notion of an ``optimal'' reproduction method difficult for arbitrary source material.
Reinforcement learning in multidimensional environments relies on attention mechanisms.
Niv, Yael; Daniel, Reka; Geana, Andra; Gershman, Samuel J; Leong, Yuan Chang; Radulescu, Angela; Wilson, Robert C
2015-05-27
In recent years, ideas from the computational field of reinforcement learning have revolutionized the study of learning in the brain, famously providing new, precise theories of how dopamine affects learning in the basal ganglia. However, reinforcement learning algorithms are notorious for not scaling well to multidimensional environments, as is required for real-world learning. We hypothesized that the brain naturally reduces the dimensionality of real-world problems to only those dimensions that are relevant to predicting reward, and conducted an experiment to assess by what algorithms and with what neural mechanisms this "representation learning" process is realized in humans. Our results suggest that a bilateral attentional control network comprising the intraparietal sulcus, precuneus, and dorsolateral prefrontal cortex is involved in selecting what dimensions are relevant to the task at hand, effectively updating the task representation through trial and error. In this way, cortical attention mechanisms interact with learning in the basal ganglia to solve the "curse of dimensionality" in reinforcement learning.
Reconciling semiclassical and Bohmian mechanics. VI. Multidimensional dynamics
Poirier, Bill
2008-08-28
In previous articles [J. Chem. Phys. 121, 4501 (2004); J. Chem. Phys. 124, 034115 (2006); J. Chem. Phys. 124, 034116 (2006); J. Phys. Chem. A 111, 10400 (2007); J. Chem. Phys. 128, 164115 (2008)] an exact quantum, bipolar wave decomposition, {psi}={psi}{sub +}+{psi}{sub -}, was presented for one-dimensional stationary state and time-dependent wavepacket dynamics calculations, such that the components {psi}{sub {+-}} approach their semiclassical WKB analogs in the large action limit. The corresponding bipolar quantum trajectories are classical-like and well behaved, even when {psi} has many nodes or is wildly oscillatory. In this paper, both the stationary state and wavepacket dynamics theories are generalized for multidimensional systems and applied to several benchmark problems, including collinear H+H{sub 2}.
A Multidimensional Scaling Analysis of Students' Attitudes about Science Careers
NASA Astrophysics Data System (ADS)
Masnick, Amy M.; Stavros Valenti, S.; Cox, Brian D.; Osman, Christopher J.
2010-03-01
To encourage students to seek careers in Science, Technology, Engineering and Mathematics (STEM) fields, it is important to gauge students' implicit and explicit attitudes towards scientific professions. We asked high school and college students to rate the similarity of pairs of occupations, and then used multidimensional scaling (MDS) to create a spatial representation of occupational similarity. Other students confirmed the emergent MDS map by rating each of the occupations along several dimensions. We found that participants across age and sex considered scientific professions to be less creative and less people-oriented than other popular career choices. We conclude that students may be led away from STEM careers by common misperceptions that science is a difficult, uncreative, and socially isolating pursuit.
I/O routing in a multidimensional torus network
Chen, Dong; Eisley, Noel A.; Heidelberger, Philip
2017-02-07
A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destination address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.
Evaluation and Management of Fatigue in Oncology: A Multidimensional Approach
Tazi, El Mehdi; Errihani, Hassan
2011-01-01
Fatigue, one of the most common symptoms experienced by cancer patients, is multidimensional and is associated with significant impairment in functioning and overall quality of life. Although the precise pathophysiology of cancer-related fatigue (CRF) is not well understood, a number of metabolic, cytokine, neurophysiologic, and endocrine changes have been described in these patients. A better understanding of these abnormalities is likely to lead to novel therapeutic interventions. Clinically, all patients presenting with significant fatigue should be evaluated for treatable conditions that might contribute to this symptom. Exercise and treatment of anemia are the two most established interventions for CRF. Psychostimulants seem promising based on early studies. Several complementary medicine treatments that showed efficacy in preliminary studies merit further testing. PMID:21976847
Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing.
Kwon, Oh Seok; Park, Seon Joo; Lee, Jun Seop; Park, Eunyu; Kim, Taejoon; Park, Hyun-Woo; You, Sun Ah; Yoon, Hyeonseok; Jang, Jyongsik
2012-06-13
Tailoring the morphology of materials in the nanometer regime is vital to realizing enhanced device performance. Here, we demonstrate flexible nerve agent sensors, based on hydroxylated poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes (HPNTs) with surface substructures such as nanonodules (NNs) and nanorods (NRs). The surface substructures can be grown on a nanofiber surface by controlling critical synthetic conditions during vapor deposition polymerization (VDP) on the polymer nanotemplate, leading to the formation of multidimensional conducting polymer nanostructures. Hydroxyl groups are found to interact with the nerve agents. Representatively, the sensing response of dimethyl methylphosphonate (DMMP) as a simulant for sarin is highly sensitive and reversible from the aligned nanotubes. The minimum detection limit is as low as 10 ppt. Additionally, the sensor had excellent mechanical bendability and durability.
Multidimensional Extension of the Generalized Chowla-Selberg Formula
NASA Astrophysics Data System (ADS)
Elizalde, E.
After recalling the precise existence conditions of the zeta function of a pseudodifferential operator, and the concept of reflection formula, an exponentially convergent expression for the analytic continuation of a multidimensional inhomogeneous Epstein-type zeta function of the general form
The stability of multi-dimensional shock fronts
NASA Astrophysics Data System (ADS)
Majda, A.
1983-01-01
The linearized stability of the multidimensional shock-front solutions of the M x M system of hyperbolic conservation laws is investigated analytically. The main theorems for variable coefficients in the linearization of a curved shock front are presented, and the uniform-stability conditions for the equations of compressible flow (the 2D isentropic equations and the 3D Euler equations) are considered. An estimate of the basic variable coefficient is obtained, and the existence and differentiability of the solutions is demonstrated. For cases with several space variables, the stability of the shock-front solutions of a scalar conservation law is shown to be weaker than that of the ideal-gas Euler solutions.
An Introduction to High Resolution Coherent Multidimensional Spectroscopy
NASA Astrophysics Data System (ADS)
Chen, Peter C.; Wells, Thresa A.; House, Zuri R.; Strangfeld, Benjamin R.
2013-06-01
High resolution coherent multidimensional spectroscopy is a technique that can be used to analyze and assign peaks for molecules that have resisted spectral analysis. Molecules that yield heavily congested and seemingly patternless spectra using conventional methods can yield 2D spectra that have recognizable patterns. The off-diagonal region of the coherent 2D plot shows only cross-peaks that are related by rotational selection rules. The resulting patterns facilitate peak assignment if they are sufficiently resolved. For systems that are not well-resolved, coherent 3D spectra may be generated to further improve resolution and provide selectivity. This presentation will provide an introduction to high resolution coherent 2D and 3D spectroscopies.
Trajectory-guided configuration interaction simulations of multidimensional quantum dynamics.
Habershon, Scott
2012-02-07
We propose an approach to modelling multidimensional quantum systems which uses direct-dynamics trajectories to guide wavefunction propagation. First, trajectory simulations are used to generate a sample of dynamically relevant configurations on the potential energy surface (PES). Second, the sampled configurations are used to construct an n-mode representation of the PES using a greedy algorithm. Finally, the time-dependent Schrödinger equation is solved using a configuration interaction expansion of the wavefunction, with individual basis functions derived directly from the 1-mode contributions to the n-mode PES. This approach is successfully demonstrated by application to a 20-dimensional benchmark problem describing tunnelling in the presence of coupled degrees of freedom.
Trajectory-guided configuration interaction simulations of multidimensional quantum dynamics
Habershon, Scott
2012-02-07
We propose an approach to modelling multidimensional quantum systems which uses direct-dynamics trajectories to guide wavefunction propagation. First, trajectory simulations are used to generate a sample of dynamically relevant configurations on the potential energy surface (PES). Second, the sampled configurations are used to construct an n-mode representation of the PES using a greedy algorithm. Finally, the time-dependent Schroedinger equation is solved using a configuration interaction expansion of the wavefunction, with individual basis functions derived directly from the 1-mode contributions to the n-mode PES. This approach is successfully demonstrated by application to a 20-dimensional benchmark problem describing tunnelling in the presence of coupled degrees of freedom.
Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes
NASA Astrophysics Data System (ADS)
Buckup, Tiago; Motzkus, Marcus
2014-04-01
Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm-1 to over 2,000 cm-1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as Î²-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.
Anonymous voting for multi-dimensional CV quantum system
NASA Astrophysics Data System (ADS)
Rong-Hua, Shi; Yi, Xiao; Jin-Jing, Shi; Ying, Guo; Moon-Ho, Lee
2016-06-01
We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012), and the MEST-NRF of Korea (Grant No. 2012-002521).
Multidimensional scaling analysis of the dynamics of a country economy.
Tenreiro Machado, J A; Mata, Maria Eugénia
2013-01-01
This paper analyzes the Portuguese short-run business cycles over the last 150 years and presents the multidimensional scaling (MDS) for visualizing the results. The analytical and numerical assessment of this long-run perspective reveals periods with close connections between the macroeconomic variables related to government accounts equilibrium, balance of payments equilibrium, and economic growth. The MDS method is adopted for a quantitative statistical analysis. In this way, similarity clusters of several historical periods emerge in the MDS maps, namely, in identifying similarities and dissimilarities that identify periods of prosperity and crises, growth, and stagnation. Such features are major aspects of collective national achievement, to which can be associated the impact of international problems such as the World Wars, the Great Depression, or the current global financial crisis, as well as national events in the context of broad political blueprints for the Portuguese society in the rising globalization process.
Giant leaps and minimal branes in multidimensional flux landscapes
NASA Astrophysics Data System (ADS)
Brown, Adam R.; Dahlen, Alex
2011-07-01
There is a standard story about decay in multidimensional flux landscapes: that from any state, the fastest decay is to take a small step, discharging one flux unit at a time; that fluxes with the same coupling constant are interchangeable; and that states with N units of a given flux have the same decay rate as those with -N. We show that this standard story is false. The fastest decay is a giant leap that discharges many different fluxes in unison; this decay is mediated by a “minimal” brane that wraps the internal manifold and exhibits behavior not visible in the effective theory. We discuss the implications for the cosmological constant problem.
Multidimensional Simulations of Thermonuclear Supernovae from the First Stars
NASA Astrophysics Data System (ADS)
Chen, K. J.; Heger, A.; Almgren, A.
2012-07-01
Theoretical models suggest that the first stars in the universe could have been very massive, with typical masses ≥ 100 M⊙ . Many of them might have died as energetic thermonuclear explosions known as pair-instability supernovae (PSNe). We present multidimensional numerical simulations of PSNe with the new radiation-hydrodynamics code CASTRO. Our models capture all explosive burning and follow the explosion until the shock breaks out from the stellar surface. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ˜ 20 - 100 sec after the explosion begins. Later, when the shock reaches the hydrogen envelope a strong reverse shock forms that rapidly develops additional Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova's ejecta and alter its observational signature. Our results provide useful predictions for the detection of PSNe by forthcoming telescopes.
Multidimensional Scaling Analysis of the Dynamics of a Country Economy
Mata, Maria Eugénia
2013-01-01
This paper analyzes the Portuguese short-run business cycles over the last 150 years and presents the multidimensional scaling (MDS) for visualizing the results. The analytical and numerical assessment of this long-run perspective reveals periods with close connections between the macroeconomic variables related to government accounts equilibrium, balance of payments equilibrium, and economic growth. The MDS method is adopted for a quantitative statistical analysis. In this way, similarity clusters of several historical periods emerge in the MDS maps, namely, in identifying similarities and dissimilarities that identify periods of prosperity and crises, growth, and stagnation. Such features are major aspects of collective national achievement, to which can be associated the impact of international problems such as the World Wars, the Great Depression, or the current global financial crisis, as well as national events in the context of broad political blueprints for the Portuguese society in the rising globalization process. PMID:24294132
Multidimensional stock network analysis: An Escoufier's RV coefficient approach
NASA Astrophysics Data System (ADS)
Lee, Gan Siew; Djauhari, Maman A.
2013-09-01
The current practice of stocks network analysis is based on the assumption that the time series of closed stock price could represent the behaviour of the each stock. This assumption leads to consider minimal spanning tree (MST) and sub-dominant ultrametric (SDU) as an indispensible tool to filter the economic information contained in the network. Recently, there is an attempt where researchers represent stock not only as a univariate time series of closed price but as a bivariate time series of closed price and volume. In this case, they developed the so-called multidimensional MST to filter the important economic information. However, in this paper, we show that their approach is only applicable for that bivariate time series only. This leads us to introduce a new methodology to construct MST where each stock is represented by a multivariate time series. An example of Malaysian stock exchange will be presented and discussed to illustrate the advantages of the method.
The Multi-Dimensional Character of Core-Collapse Supernovae
Hix, William Raphael; Lentz, E. J.; Bruenn, S. W.; Mezzacappa, Anthony; Messer, Bronson; Endeve, Eirik; Blondin, J. M.; Harris, James Austin; Marronetti, Pedro; Yakunin, Konstantin N
2016-01-01
Core-collapse supernovae, the culmination of massive stellar evolution, are spectacular astronomical events and the principle actors in the story of our elemental origins. Our understanding of these events, while still incomplete, centers around a neutrino-driven central engine that is highly hydrodynamically unstable. Increasingly sophisticated simulations reveal a shock that stalls for hundreds of milliseconds before reviving. Though brought back to life by neutrino heating, the development of the supernova explosion is inextricably linked to multi-dimensional fluid flows. In this paper, the outcomes of three-dimensional simulations that include sophisticated nuclear physics and spectral neutrino transport are juxtaposed to learn about the nature of the three dimensional fluid flow that shapes the explosion. Comparison is also made between the results of simulations in spherical symmetry from several groups, to give ourselves confidence in the understanding derived from this juxtaposition.
Advanced Concepts in Multi-Dimensional Radiation Detection and Imaging
NASA Astrophysics Data System (ADS)
Vetter, Kai; Haefner, Andy; Barnowski, Ross; Pavlovsky, Ryan; Torii, Tatsuo; Sanada, Yukihisa; Shikaze, Yoshiaki
Recent developments in the detector fabrication, signal readout, and data processing enable new concepts in radiation detection that are relevant for applications ranging from fundamental physics to medicine as well as nuclear security and safety. We present recent progress in multi-dimensional radiation detection and imaging in the Berkeley Applied Nuclear Physics program. It is based on the ability to reconstruct scenes in three dimensions and fuse it with gamma-ray image information. We are using the High-Efficiency Multimode Imager HEMI in its Compton imaging mode and combining it with contextual sensors such as the Microsoft Kinect or visual cameras. This new concept of volumetric imaging or scene data fusion provides unprecedented capabilities in radiation detection and imaging relevant for the detection and mapping of radiological and nuclear materials. This concept brings us one step closer to the seeing the world with gamma-ray eyes.
New approach of color image quantization based on multidimensional directory
NASA Astrophysics Data System (ADS)
Chang, Chin-Chen; Su, Yuan-Yuan
2003-04-01
Color image quantization is a strategy in which a smaller number of colors are used to represent the image. The objective is to make the quality approximate as closely to the original true-color image. The technology is widely used in non-true-color displays and in color printers that cannot reproduce a large number of different colors. However, the main problem the quantization of color image has to face is how to use less colors to show the color image. Therefore, it is very important to choose one suitable palette for an index color image. In this paper, we shall propose a new approach which employs the concept of Multi-Dimensional Directory (MDD) together with the one cycle LBG algorithm to create a high-quality index color image. Compared with the approaches such as VQ, ISQ, and Photoshop v.5, our approach can not only acquire high quality image but also shorten the operation time.
[Multidimensional counseling and intervention in anxiety problems in school].
Jeck, Stephan
2003-01-01
Multidimensional counselling and intervention in case of anxiety problems in school can be understood as a challenge for educational psychologists who has to solve individual anxiety disorders on the one hand and participate in processes of school development in order to prevent anxiety on the other hand. There are a lot of techniques and strategies to construct classroom settings which reduce anxiety. Improving self-efficacy and training stress management for teachers and students are possible programs presented in order to change the culture of educational organizations like schools. To realize such programs all members of the school community have to cooperate and teachers have to modify their instructional actions. Therefore they have to develop better diagnostic skills in order to detect anxious and inconspicuous students who need special fostering for better learning in school. For extreme anxiety disorders with school refusal there are many therapeutic treatments out of school, one of the best for children and adolescents are cognitive-behavioral settings.
Multidimensional Study of High-Adiabat OMEGA Cryogenic Experiments
NASA Astrophysics Data System (ADS)
Collins, T. J. B.; Betti, R.; Bose, A.; Christopherson, A. R.; Knauer, J. P.; Marozas, J. A.; Maximov, A. V.; Mora, A.; Radha, P. B.; Shang, W.; Shvydky, A.; Stoeckl, C.; Woo, K. M.; Varchas, G.
2016-10-01
Despite recent advances in modeling laser direct-drive inertial confinement fusion (ICF) experiments, there remains a predictability gap. This is particularly shown by the shortfall in hot-spot pressures inferred from OMEGA cryogenic implosions. To address this, a series of high-adiabat, cryogenic implosions were performed on OMEGA. These shots were performed with and without single-beam smoothing by spectral dispersion, at low and high drive intensities. These shots represent a regime where good agreement with simulation is expected because of the high adiabat. Multidimensional simulations of these shots will be presented with an emphasis on comparison with experimental indicators of departure from spherical symmetry (``1-D-ness''). The roles of short- and long-wavelength perturbations are considered. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Regularized Multitask Learning for Multidimensional Log-Density Gradient Estimation.
Yamane, Ikko; Sasaki, Hiroaki; Sugiyama, Masashi
2016-07-01
Log-density gradient estimation is a fundamental statistical problem and possesses various practical applications such as clustering and measuring nongaussianity. A naive two-step approach of first estimating the density and then taking its log gradient is unreliable because an accurate density estimate does not necessarily lead to an accurate log-density gradient estimate. To cope with this problem, a method to directly estimate the log-density gradient without density estimation has been explored and demonstrated to work much better than the two-step method. The objective of this letter is to improve the performance of this direct method in multidimensional cases. Our idea is to regard the problem of log-density gradient estimation in each dimension as a task and apply regularized multitask learning to the direct log-density gradient estimator. We experimentally demonstrate the usefulness of the proposed multitask method in log-density gradient estimation and mode-seeking clustering.
New motion illusion caused by pictorial motion lines.
Kawabe, Takahiro; Miura, Kayo
2008-01-01
Motion lines (MLs) are a pictorial technique used to represent object movement in a still picture. This study explored how MLs contribute to motion perception. In Experiment 1, we reported the creation of a motion illusion caused by MLs: random displacements of objects with MLs on each frame were perceived as unidirectional global motion along the pictorial motion direction implied by MLs. In Experiment 2, we showed that the illusory global motion in the peripheral visual field captured the perceived motion direction of random displacement of objects without MLs in the central visual field, and confirmed that the results in Experiment 1 did not stem simply from response bias, but resulted from perceptual processing. In Experiment 3, we showed that the spatial arrangement of orientation information rather than ML length is important for the illusory global motion. Our results indicate that the ML effect is based on perceptual processing rather than response bias, and that comparison of neighboring orientation components may underlie the determination of pictorial motion direction with MLs.
Multidimensional optimal droop control for wind resources in DC microgrids
NASA Astrophysics Data System (ADS)
Bunker, Kaitlyn J.
Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.
Mood induction in depressive patients: a comparative multidimensional approach.
Falkenberg, Irina; Kohn, Nils; Schoepker, Regina; Habel, Ute
2012-01-01
Anhedonia, reduced positive affect and enhanced negative affect are integral characteristics of major depressive disorder (MDD). Emotion dysregulation, e.g. in terms of different emotion processing deficits, has consistently been reported. The aim of the present study was to investigate mood changes in depressive patients using a multidimensional approach for the measurement of emotional reactivity to mood induction procedures. Experimentally, mood states can be altered using various mood induction procedures. The present study aimed at validating two different positive mood induction procedures in patients with MDD and investigating which procedure is more effective and applicable in detecting dysfunctions in MDD. The first procedure relied on the presentation of happy vs. neutral faces, while the second used funny vs. neutral cartoons. Emotional reactivity was assessed in 16 depressed and 16 healthy subjects using self-report measures, measurements of electrodermal activity and standardized analyses of facial responses. Positive mood induction was successful in both procedures according to subjective ratings in patients and controls. In the cartoon condition, however, a discrepancy between reduced facial activity and concurrently enhanced autonomous reactivity was found in patients. Relying on a multidimensional assessment technique, a more comprehensive estimate of dysfunctions in emotional reactivity in MDD was available than by self-report measures alone and this was unsheathed especially by the mood induction procedure relying on cartoons. The divergent facial and autonomic responses in the presence of unaffected subjective reactivity suggest an underlying deficit in the patients' ability to express the felt arousal to funny cartoons. Our results encourage the application of both procedures in functional imaging studies for investigating the neural substrates of emotion dysregulation in MDD patients. Mood induction via cartoons appears to be superior to mood
Response inhibition and its relation to multidimensional impulsivity.
Wilbertz, Tilmann; Deserno, Lorenz; Horstmann, Annette; Neumann, Jane; Villringer, Arno; Heinze, Hans-Jochen; Boehler, Carsten N; Schlagenhauf, Florian
2014-12-01
Impulsivity is a multidimensional construct that has been suggested as a vulnerability factor for several psychiatric disorders, especially addiction disorders. Poor response inhibition may constitute one facet of impulsivity. Trait impulsivity can be assessed by self-report questionnaires such as the widely used Barratt Impulsiveness Scale (BIS-11). However, regarding the multidimensionality of impulsivity different concepts have been proposed, in particular the UPPS self-report questionnaire ('Urgency', 'Lack of Premeditation', 'Lack of Perseverance', 'Sensation Seeking') that is based on a factor analytic approach. The question as to which aspects of trait impulsivity map on individual differences of the behavioral and neural correlates of response inhibition so far remains unclear. In the present study, we investigated 52 healthy individuals that scored either very high or low on the BIS-11 and underwent a reward-modulated Stop-signal task during fMRI. Neither behavioral nor neural differences were observed with respect to high- and low-BIS groups. In contrast, UPPS subdomain Urgency best explained inter-individual variability in SSRT scores and was further negatively correlated to right IFG/aI activation in 'Stop>Go' trials - a key region for response inhibition. Successful response inhibition in rewarded compared to nonrewarded stop trials yielded ventral striatal (VS) activation which might represent a feedback signal. Interestingly, only participants with low Urgency scores were able to use this VS feedback signal for better response inhibition. Our findings indicate that the relationship of impulsivity and response inhibition has to be treated carefully. We propose Urgency as an important subdomain that might be linked to response inhibition as well as to the use of reward-based neural signals. Based on the present results, further studies examining the influence of impulsivity on psychiatric disorders should take into account Urgency as an important
Human Dignity and Human Enhancement: A Multidimensional Approach.
Kirchhoffer, David G
2017-02-09
In the debates concerning the ethics of human enhancement through biological or technological modifications, there have been several appeals to the concept of human dignity, both by those favouring such enhancement and by those opposing it. The result is the phenomenon of 'dignity talk', where opposing sides both appeal to the concept of human dignity to ground their arguments resulting in a moral impasse. This article examines the use of the concept of human dignity in the enhancement debates and reveals that the problem of dignity talk arises because proponents of various positions tend to ground human dignity in different features of the human individual. These features include species-membership, possession of a particular capacity, a sense of self-worth, and moral behaviour. The article proposes a solution to this problem by appealing to another feature of human beings, namely their being-in-relationship-over-time. Doing so enables us to understand dignity as a concept that affirms the worth of human individuals as complex, multidimensional wholes, rather than as isolated features. Consequently, the concept of human dignity can serve both a descriptive and a normative function in the enhancement debates. At a descriptive level, asking what advocates of a position mean when they refer to human dignity will reveal what aspects of being human they deem to be most valuable. The debate can then focus on these values. The normative function, although it cannot proscribe or prescribe all enhancement, approves only those enhancements that contribute to the flourishing of human individuals as multidimensional wholes.
Precambrian plate tectonic setting of Africa from multidimensional discrimination diagrams
NASA Astrophysics Data System (ADS)
Verma, Sanjeet K.
2017-01-01
New multi-dimensional discrimination diagrams have been used to identify plate tectonic setting of Precambrian terrains. For this work, nine sets of new discriminant-function based multi-dimensional discrimination diagrams were applied for thirteen case studies of Precambrian basic, intermediate and acid magmas from Africa to highlight the application of these diagrams and probability calculations. The applications of these diagrams indicated the following results: For northern Africa: to Wadi Ghadir ophiolite, Egypt indicated an arc setting for Neoproterozoic (746 ± 19 Ma). For South Africa: Zandspruit greenstone and Bulai pluton showed a collision and a transitional continental arc to collision setting at about Mesoarchaean and Neoarchaean (3114 ± 2.3 Ma and 2610-2577 Ma); Mesoproterozoic (1109 ± 0.6 Ma and 1100 Ma) ages for Espungabera and Umkondo sills were consistent with an island arc setting. For eastern Africa, Iramba-Sekenke greenstone belt and Suguti area, Tanzania showed an arc setting for Neoarchaean (2742 ± 27 Ma and 2755 ± 1 Ma). Chila, Bulbul-Kenticha domain, and Werri area indicated a continental arc setting at about Neoproterozoic (800-789 Ma); For western Africa, Sangmelima region and Ebolowa area, southern Cameroon indicated a collision and continental arc setting, respectively for Neoarchaean (∼2800-2900 Ma and 2687-2666 Ma); Finally, Paleoproterozoic (2232-2169 Ma) for Birimian supergroup, southern Ghana a continental arc setting; and Paleoproterozoic (2123-2108 Ma) for Katiola-Marabadiassa, Côte d'Ivoire a transitional continental arc to collision setting. Although there were some inconsistencies in the inferences, most cases showed consistent results of tectonic settings. These inconsistencies may be related to mixed ages, magma mixing, crustal contamination, degree of mantle melting, and mantle versus crustal origin.
Relevance in the science classroom: A multidimensional analysis
NASA Astrophysics Data System (ADS)
Hartwell, Matthew F.
While perceived relevance is considered a fundamental component of adaptive learning, the experience of relevance and its conceptual definition have not been well described. The mixed-methods research presented in this dissertation aimed to clarify the conceptual meaning of relevance by focusing on its phenomenological experience from the students' perspective. Following a critical literature review, I propose an identity-based model of perceived relevance that includes three components: a contextual target, an identity target, and a connection type, or lens. An empirical investigation of this model that consisted of two general phases was implemented in four 9th grade-biology classrooms. Participants in Phase 1 (N = 118) completed a series of four open-ended writing activities focused on eliciting perceived personal connections to academic content. Exploratory qualitative content analysis of a 25% random sample of the student responses was used to identify the main meaning-units of the proposed model as well as different dimensions of student relevance perceptions. These meaning-units and dimensions provided the basis for the construction of a conceptual mapping sentence capturing students' perceived relevance, which was then applied in a confirmatory analysis to all other student responses. Participants in Phase 2 (N = 139) completed a closed survey designed based on the mapping sentence to assess their perceived relevance of a biology unit. The survey also included scales assessing other domain-level motivational processes. Exploratory factor analysis and non-metric multidimensional scaling indicated a coherent conceptual structure, which included a primary interpretive relevance dimension. Comparison of the conceptual structure across various groups (randomly-split sample, gender, academic level, domain-general motivational profiles) provided support for its ubiquity and insight into variation in the experience of perceived relevance among students of different
Statistical Downscaling in Multi-dimensional Wave Climate Forecast
NASA Astrophysics Data System (ADS)
Camus, P.; Méndez, F. J.; Medina, R.; Losada, I. J.; Cofiño, A. S.; Gutiérrez, J. M.
2009-04-01
Wave climate at a particular site is defined by the statistical distribution of sea state parameters, such as significant wave height, mean wave period, mean wave direction, wind velocity, wind direction and storm surge. Nowadays, long-term time series of these parameters are available from reanalysis databases obtained by numerical models. The Self-Organizing Map (SOM) technique is applied to characterize multi-dimensional wave climate, obtaining the relevant "wave types" spanning the historical variability. This technique summarizes multi-dimension of wave climate in terms of a set of clusters projected in low-dimensional lattice with a spatial organization, providing Probability Density Functions (PDFs) on the lattice. On the other hand, wind and storm surge depend on instantaneous local large-scale sea level pressure (SLP) fields while waves depend on the recent history of these fields (say, 1 to 5 days). Thus, these variables are associated with large-scale atmospheric circulation patterns. In this work, a nearest-neighbors analog method is used to predict monthly multi-dimensional wave climate. This method establishes relationships between the large-scale atmospheric circulation patterns from numerical models (SLP fields as predictors) with local wave databases of observations (monthly wave climate SOM PDFs as predictand) to set up statistical models. A wave reanalysis database, developed by Puertos del Estado (Ministerio de Fomento), is considered as historical time series of local variables. The simultaneous SLP fields calculated by NCEP atmospheric reanalysis are used as predictors. Several applications with different size of sea level pressure grid and with different temporal domain resolution are compared to obtain the optimal statistical model that better represents the monthly wave climate at a particular site. In this work we examine the potential skill of this downscaling approach considering perfect-model conditions, but we will also analyze the
NASA Technical Reports Server (NTRS)
2007-01-01
This five-frame sequence of New Horizons images captures the giant plume from Io's Tvashtar volcano. Snapped by the probe's Long Range Reconnaissance Imager (LORRI) as the spacecraft flew past Jupiter earlier this year, this first-ever 'movie' of an Io plume clearly shows motion in the cloud of volcanic debris, which extends 330 kilometers (200 miles) above the moon's surface. Only the upper part of the plume is visible from this vantage point -- the plume's source is 130 kilometers (80 miles) below the edge of Io's disk, on the far side of the moon.
The appearance and motion of the plume is remarkably similar to an ornamental fountain on Earth, replicated on a gigantic scale. The knots and filaments that allow us to track the plume's motion are still mysterious, but this movie is likely to help scientists understand their origin, as well as provide unique information on the plume dynamics.
Io's hyperactive nature is emphasized by the fact that two other volcanic plumes are also visible off the edge of Io's disk: Masubi at the 7 o'clock position, and a very faint plume, possibly from the volcano Zal, at the 10 o'clock position. Jupiter illuminates the night side of Io, and the most prominent feature visible on the disk is the dark horseshoe shape of the volcano Loki, likely an enormous lava lake. Boosaule Mons, which at 18 kilometers (11 miles) is the highest mountain on Io and one of the highest mountains in the solar system, pokes above the edge of the disk on the right side.
The five images were obtained over an 8-minute span, with two minutes between frames, from 23:50 to 23:58 Universal Time on March 1, 2007. Io was 3.8 million kilometers (2.4 million miles) from New Horizons; the image is centered at Io coordinates 0 degrees north, 342 degrees west.
The pictures were part of a sequence designed to look at Jupiter's rings, but planners included Io in the sequence because the moon was passing behind Jupiter's rings at the time.
Wang, Liang; Basarab, Adrian; Girard, Patrick R; Croisille, Pierre; Clarysse, Patrick; Delachartre, Philippe
2015-08-01
Different mathematical tools, such as multidimensional analytic signals, allow for the calculation of 2D spatial phases of real-value images. The motion estimation method proposed in this paper is based on two spatial phases of the 2D analytic signal applied to cardiac sequences. By combining the information of these phases issued from analytic signals of two successive frames, we propose an analytical estimator for 2D local displacements. To improve the accuracy of the motion estimation, a local bilinear deformation model is used within an iterative estimation scheme. The main advantages of our method are: (1) The phase-based method allows the displacement to be estimated with subpixel accuracy and is robust to image intensity variation in time; (2) Preliminary filtering is not required due to the bilinear model. The proposed algorithm, integrating phase-based optical flow motion estimation and the combination of global motion compensation with local bilinear transform, allows spatio-temporal cardiac motion analysis, e.g. strain and dense trajectory estimation over the cardiac cycle. Results from 7 realistic simulated tagged magnetic resonance imaging (MRI) sequences show that our method is more accurate compared with state-of-the-art method for cardiac motion analysis and with another differential approach from the literature. The motion estimation errors (end point error) of the proposed method are reduced by about 33% compared with that of the two methods. In our work, the frame-to-frame displacements are further accumulated in time, to allow for the calculation of myocardial Lagrangian cardiac strains and point trajectories. Indeed, from the estimated trajectories in time on 11 in vivo data sets (9 patients and 2 healthy volunteers), the shape of myocardial point trajectories belonging to pathological regions are clearly reduced in magnitude compared with the ones from normal regions. Myocardial point trajectories, estimated from our phase-based analytic
Cervical Spinal Motion During Intubation.
2000-01-01
Ten fresh human cadavers were intubated while recording cervical motion using a cinefluoroscopic technique. Segmental cervical motion from the...performed using no external stabilization, Gardner-Wells traction and manual in-line cervical immobilization. The data are currently being analyzed. A...paper entitled Segmental cervical spine motion during orotracheal intubation of the intact and injured spine with and without external stabilization was published in the Journal of Neurosurgery.
Penington, Catherine J; Korvasová, Karolína; Hughes, Barry D; Landman, Kerry A
2012-11-01
We consider a discrete agent-based model on a one-dimensional lattice and a two-dimensional square lattice, where each agent is a dimer occupying two sites. Agents move by vacating one occupied site in favor of a nearest-neighbor site and obey either a strict simple exclusion rule or a weaker constraint that permits partial overlaps between dimers. Using indicator variables and careful probability arguments, a discrete-time master equation for these processes is derived systematically within a mean-field approximation. In the continuum limit, nonlinear diffusion equations that describe the average agent occupancy of the dimer population are obtained. In addition, we show that multiple species of interacting subpopulations give rise to advection-diffusion equations. Averaged discrete simulation data compares very well with the solution to the continuum partial differential equation models. Since many cell types are elongated rather than circular, this work offers insight into population-level behavior of collective cellular motion.
NASA Technical Reports Server (NTRS)
Wingrove, R. C.
1994-01-01
This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.
NASA Astrophysics Data System (ADS)
Dunkel, Jörn; Hänggi, Peter
2009-02-01
Over the past one hundred years, Brownian motion theory has contributed substantially to our understanding of various microscopic phenomena. Originally proposed as a phenomenological paradigm for atomistic matter interactions, the theory has since evolved into a broad and vivid research area, with an ever increasing number of applications in biology, chemistry, finance, and physics. The mathematical description of stochastic processes has led to new approaches in other fields, culminating in the path integral formulation of modern quantum theory. Stimulated by experimental progress in high energy physics and astrophysics, the unification of relativistic and stochastic concepts has re-attracted considerable interest during the past decade. Focusing on the framework of special relativity, we review, here, recent progress in the phenomenological description of relativistic diffusion processes. After a brief historical overview, we will summarize basic concepts from the Langevin theory of nonrelativistic Brownian motions and discuss relevant aspects of relativistic equilibrium thermostatistics. The introductory parts are followed by a detailed discussion of relativistic Langevin equations in phase space. We address the choice of time parameters, discretization rules, relativistic fluctuation-dissipation theorems, and Lorentz transformations of stochastic differential equations. The general theory is illustrated through analytical and numerical results for the diffusion of free relativistic Brownian particles. Subsequently, we discuss how Langevin-type equations can be obtained as approximations to microscopic models. The final part of the article is dedicated to relativistic diffusion processes in Minkowski spacetime. Since the velocities of relativistic particles are bounded by the speed of light, nontrivial relativistic Markov processes in spacetime do not exist; i.e., relativistic generalizations of the nonrelativistic diffusion equation and its Gaussian solutions
Earthquake ground motion: Chapter 3
Luco, Nicolas; Valley, Michael; Crouse, C.B.
2012-01-01
Most of the effort in seismic design of buildings and other structures is focused on structural design. This chapter addresses another key aspect of the design process—characterization of earthquake ground motion. Section 3.1 describes the basis of the earthquake ground motion maps in the Provisions and in ASCE 7. Section 3.2 has examples for the determination of ground motion parameters and spectra for use in design. Section 3.3 discusses and provides an example for the selection and scaling of ground motion records for use in response history analysis.
On the excited-state multi-dimensionality in cyanines
NASA Astrophysics Data System (ADS)
Dietzek, Benjamin; Brüggemann, Ben; Persson, Petter; Yartsev, Arkady
2008-03-01
Vibrational coherences in a photoexcited cyanine dye are preserved for the time-scale of diffusive torsional motion to the bottom of the excited-state potential. The coherently excited modes are virtually unaffected by solvent friction and thus distinct from the bond-twisting motion, which is strongly coupled to the surrounding solvent. We correlate the modes apparent in the resonance Raman and the four-wave mixing signal of 1,1'-diethyl-2,2'-cyanine with the understanding of optimal control of isomerization. In turn, the experimental results illustrate that optimal control might be used to obtain vibrational information complementary to conventional spectroscopic data.
Multi-scanning mechanism enabled rapid non-mechanical multi-dimensional KTN beam deflector
NASA Astrophysics Data System (ADS)
Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Yin, Shizhuo; Hoffman, Robert C.
2016-09-01
In this paper, a multi-dimensional KTN beam deflector is presented. The multi-scanning mechanisms, including space-charge- controlled beam deflection, composition gradient-induced beam deflection, and temperature gradient-induced beam deflection are harnessed. Since multi-dimensional scanning can be realized in a single KTN crystal, it represents a compact and cost-effective approach to realize multi-dimensional scanning, which can be very useful for many applications, including high speed, high resolution imaging, and rapid 3D printing.
A log-linear multidimensional Rasch model for capture-recapture.
Pelle, E; Hessen, D J; van der Heijden, P G M
2016-02-20
In this paper, a log-linear multidimensional Rasch model is proposed for capture-recapture analysis of registration data. In the model, heterogeneity of capture probabilities is taken into account, and registrations are viewed as dichotomously scored indicators of one or more latent variables that can account for correlations among registrations. It is shown how the probability of a generic capture profile is expressed under the log-linear multidimensional Rasch model and how the parameters of the traditional log-linear model are derived from those of the log-linear multidimensional Rasch model. Finally, an application of the model to neural tube defects data is presented.
Motion-Matching: A Challenge Game to Generate Motion Concepts
NASA Astrophysics Data System (ADS)
Schuster, David; Adams, Betty; Brookes, David; Milner-Bolotin, Marina; Undreiu, Adriana
2009-10-01
Motion is a topic that is taught from elementary grades through to university at various levels of sophistication. It is an area that can be challenging for learning in a conceptually meaningful way, and formal kinematics instruction can sometimes seem dry and boring. Thus, the nature of students' initial introduction to motion is important in sparking their interest, shaping their perspective, and developing conceptual understanding of motion. The kinematic concepts we want students to acquire for basic motions are: position, time, speed, direction, velocity, velocity change, change rate, and acceleration, all with respect to a frame of reference. In this article we describe a challenge game used as an "opener" to motion, in which students themselves essentially generate these concepts, in everyday language, from a perceived need for them.
Motion Predicts Clinical Callus Formation
Elkins, Jacob; Marsh, J. Lawrence; Lujan, Trevor; Peindl, Richard; Kellam, James; Anderson, Donald D.; Lack, William
2016-01-01
Background: Mechanotransduction is theorized to influence fracture-healing, but optimal fracture-site motion is poorly defined. We hypothesized that three-dimensional (3-D) fracture-site motion as estimated by finite element (FE) analysis would influence callus formation for a clinical series of supracondylar femoral fractures treated with locking-plate fixation. Methods: Construct-specific FE modeling simulated 3-D fracture-site motion for sixty-six supracondylar femoral fractures (OTA/AO classification of 33A or 33C) treated at a single institution. Construct stiffness and directional motion through the fracture were investigated to assess the validity of construct stiffness as a surrogate measure of 3-D motion at the fracture site. Callus formation was assessed radiographically for all patients at six, twelve, and twenty-four weeks postoperatively. Univariate and multivariate linear regression analyses examined the effects of longitudinal motion, shear (transverse motion), open fracture, smoking, and diabetes on callus formation. Construct types were compared to determine whether their 3-D motion profile was associated with callus formation. Results: Shear disproportionately increased relative to longitudinal motion with increasing bridge span, which was not predicted by our assessment of construct stiffness alone. Callus formation was not associated with open fracture, smoking, or diabetes at six, twelve, or twenty-four weeks. However, callus formation was associated with 3-D fracture-site motion at twelve and twenty-four weeks. Longitudinal motion promoted callus formation at twelve and twenty-four weeks (p = 0.017 for both). Shear inhibited callus formation at twelve and twenty-four weeks (p = 0.017 and p = 0.022, respectively). Titanium constructs with a short bridge span demonstrated greater longitudinal motion with less shear than did the other constructs, and this was associated with greater callus formation (p < 0.001). Conclusions: In this study of
Topographic Structure from Motion
NASA Astrophysics Data System (ADS)
Fonstad, M. A.; Dietrich, J. T.; Courville, B. C.; Jensen, J.; Carbonneau, P.
2011-12-01
The production of high-resolution topographic datasets is of increasing concern and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) generally requires a significant investment in personnel time, hardware and/or software. However, image-based methods such as digital photogrammetry have steadily been decreasing in costs. Initially developed for the purpose of rapid, inexpensive and easy three dimensional surveys of buildings or small objects, the "structure from motion" photogrammetric approach (SfM) is a purely image based method which could deliver a step-change if transferred to river remote sensing, and requires very little training and is extremely inexpensive. Using the online SfM program Microsoft Photosynth, we have created high-resolution digital elevation models (DEM) of rivers from ordinary photographs produced from a multi-step workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three-dimensional space. One of the products of the SfM process is a three-dimensional point cloud of features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected via GPS in the field. The georeferenced point cloud can then be used to create a variety of digital elevation model products. Among several study sites, we examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand-held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low-altitude platforms can produce point clouds with point densities considerably better than airborne LiDAR, with
ERIC Educational Resources Information Center
Radetsky, Peter
1986-01-01
Explains the principles of the science of motion and examines Thomas Kane's deductive approach to the study of dynamics. Also recounts Kane's advances in explaining classic mechanics and discusses the advantages of his methods in the formulation of equations of motion and in applications to space technology. (ML)
Statistical description of tectonic motions
NASA Technical Reports Server (NTRS)
Agnew, Duncan Carr
1993-01-01
This report summarizes investigations regarding tectonic motions. The topics discussed include statistics of crustal deformation, Earth rotation studies, using multitaper spectrum analysis techniques applied to both space-geodetic data and conventional astrometric estimates of the Earth's polar motion, and the development, design, and installation of high-stability geodetic monuments for use with the global positioning system.
An open architecture motion controller
NASA Technical Reports Server (NTRS)
Rossol, Lothar
1994-01-01
Nomad, an open architecture motion controller, is described. It is formed by a combination of TMOS, C-WORKS, and other utilities. Nomad software runs in a UNIX environment and provides for sensor-controlled robotic motions, with user replaceable kinematics. It can also be tailored for highly specialized applications. Open controllers such as Nomad should have a major impact on the robotics industry.
The Equations of Oceanic Motions
NASA Astrophysics Data System (ADS)
Müller, Peter
2006-10-01
Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.
Crowding of biological motion stimuli.
Ikeda, Hanako; Watanabe, Katsumi; Cavanagh, Patrick
2013-03-26
It is difficult to identify a target in the peripheral visual field when it is flanked by distractors. In the present study, we investigated this "crowding" effect for biological motion stimuli. Three walking biological motion stimuli were presented horizontally in the periphery with various distances between them, and observers reported the walking direction of the central figure. When the inter-walker distance was small, discriminating the direction became difficult. Moreover, the reported direction for the central target was not simply noisier, but reflected a degree of pooling of the three directions from the target and two flankers. However, when the two flanking distractors were scrambled walking biological motion stimuli, crowding was not seen. This result suggests that the crowding of biological motion stimuli occurs at a high-level of motion perception.
The Perception of Auditory Motion
Leung, Johahn
2016-01-01
The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029
A multidimensional approach to measure poverty in rural Bangladesh.
Bhuiya, Abbas; Mahmood, Shehrin Shaila; Rana, A K M Masud; Wahed, Tania; Ahmed, Syed Masud; Chowdhury, A Mushtaque R
2007-06-01
Poverty is increasingly being understood as a multidimensional phenomenon. Other than income-consumption, which has been extensively studied in the past, health, education, shelter, and social involvement are among the most important dimensions of poverty. The present study attempts to develop a simple tool to measure poverty in its multidimensionality where it views poverty as an inadequate fulfillment of basic needs, such as food, clothing, shelter, health, education, and social involvement. The scale score ranges between 72 and 24 and is constructed in such a way that the score increases with increasing level of poverty. Using various techniques, the study evaluates the poverty-measurement tool and provides evidence for its reliability and validity by administering it in various areas of rural Bangladesh. The reliability coefficients, such as test-retest coefficient (0.85) and Cronbach's alpha (0.80) of the tool, were satisfactorily high. Based on the socioeconomic status defined by the participatory rural appraisal (PRA) exercise, the level of poverty identified by the scale was 33% in Chakaria, 26% in Matlab, and 32% in other rural areas of the country. The validity of these results was tested against some traditional methods of identifying the poor, and the association of the scores with that of the traditional indicators, such as ownership of land and occupation, asset index (r=0.72), and the wealth ranking obtained from the PRA exercise, was consistent. A statistically significant inverse relationship of the poverty scores with the socioeconomic status was observed in all cases. The scale also allowed the absolute level of poverty to be measured, and in the present study, the highest percentage of absolute poor was found in terms of health (44.2% in Chakaria, 36.4% in Matlab, and 39.1% in other rural areas), followed by social exclusion (35.7% in Chakaria, 28.5% in Matlab, and 22.3% in other rural areas), clothing (6.2% in Chakaria, 8.3% in Matlab, and 20
Motion words selectively modulate direction discrimination sensitivity for threshold motion
Pavan, Andrea; Skujevskis, Māris; Baggio, Giosuè
2013-01-01
Can speech selectively modulate the sensitivity of a sensory system so that, in the presence of a suitable linguistic context, the discrimination of certain perceptual features becomes more or less likely? In this study, participants heard upward or downward motion words followed by a single visual field of random dots moving upwards or downwards. The time interval between the onsets of the auditory and the visual stimuli was varied parametrically. Motion direction could be either discriminable (suprathreshold motion) or non-discriminable (threshold motion). Participants had to judge whether the dots were moving upward or downward. Results show a double dissociation between discrimination sensitivity (d′) and reaction times depending on whether vertical motion was above or at threshold. With suprathreshold motion, responses were faster for congruent directions of words and dots, but sensitivity was equal across conditions. With threshold motion, sensitivity was higher for congruent directions of words and dots, but responses were equally fast across conditions. The observed differences in sensitivity and response times were largest when the dots appeared 450 ms after word onset, that is, consistently with electrophysiology, at the time the up/down semantics of the word had become available. These data suggest that word meanings can alter the balance between signal and noise within the visual system and affect the perception of low-level sensory features. PMID:23596407
A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel
NASA Astrophysics Data System (ADS)
Gao, Liang; Wang, Lihong V.
2016-02-01
Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than measuring only the two-dimensional spatial distribution of light, as in conventional photography, multidimensional optical imaging captures light in up to nine dimensions, providing unprecedented information about incident photons' spatial coordinates, emittance angles, wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition-also dubbed snapshot imaging-has a prominent advantage in maximizing optical throughput, particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot multidimensional imagers based on their acquisition and image reconstruction strategies, then highlight the snapshot advantage in the context of optical throughput, and finally we discuss their state-of-the-art implementations and applications.
Testing the multidimensionality of the inventory of school motivation in a Dutch student sample.
Korpershoek, Hanke; Xu, Kun; Mok, Magdalena Mo Ching; McInerney, Dennis M; van der Werf, Greetje
2015-01-01
A factor analytic and a Rasch measurement approach were applied to evaluate the multidimensional nature of the school motivation construct among more than 7,000 Dutch secondary school students. The Inventory of School Motivation (McInerney and Ali, 2006) was used, which intends to measure four motivation dimensions (mastery, performance, social, and extrinsic motivation), each comprising of two first-order factors. One unidimensional model and three multidimensional models (4-factor, 8-factor, higher order) were fit to the data. Results of both approaches showed that the multidimensional models validly represented the school motivation among Dutch secondary school pupils, whereas model fit of the unidimensional model was poor. The differences in model fit between the three multidimensional models were small, although a different model was favoured by the two approaches. The need for improvement of some of the items and the need to increase measurement precision of several first-order factors are discussed.
Dixon, Steven P; Pitfield, Ian D; Perrett, David
2006-01-01
'Multi-dimensional' liquid separations have a history almost as long as chromatography. In multi-dimensional chromatography the sample is subjected to more than one separation mechanism; each mechanism is considered an independent separation dimension. The separations can be carried out either offline via fraction collection, or directly coupled online. Early multi-dimensional separations using combinations of paper chromatography, electrophoresis and gels, in both planar and columnar modes are reviewed. Developments in HPLC have increased the number of measurable analytes in ever more complex matrices, and this has led to the concept of 'global metabolite profiling'. This review focuses on the theory and practice of modern 'comprehensive' multi-dimensional liquid chromatography when applied to biomedical and pharmaceutical analysis.
A review of snapshot multidimensional optical imaging: measuring photon tags in parallel
Gao, Liang; Wang, Lihong V.
2015-01-01
Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than measuring only the two-dimensional spatial distribution of light, as in conventional photography, multidimensional optical imaging captures light in up to nine dimensions, providing unprecedented information about incident photons’ spatial coordinates, emittance angles, wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition—also dubbed snapshot imaging—has a prominent advantage in maximizing optical throughput, particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot multidimensional imagers based on their acquisition and image reconstruction strategies, then highlight the snapshot advantage in the context of optical throughput, and finally we discuss their state-of-the-art implementations and applications. PMID:27134340
Koh, Teck Ming; Thirumal, Krishnamoorthy; Soo, Han Sen; Mathews, Nripan
2016-09-22
Although halide perovskites are able to deliver high power conversion efficiencies, their ambient stability still remains an obstacle for commercialization. Thus, promoting the ambient stability of perovskites has become a key research focus. In this review, we highlight the sources of instability in conventional 3 D perovskites, including water intercalation, ion migration, and thermal decomposition. Recently, the multidimensional perovskites approach has become one of the most promising strategies to enhance the stability of perovskites. As compared to pure 2 D perovskites, multidimensional perovskites typically possess more ideal band gaps, better charge transport, and lower exciton binding energy, which are essential for photovoltaic applications. The larger organic cations in multidimensional perovskites could also be more chemically stable at higher temperatures than the commonly used methylammonium cation. By combining 3 D and 2 D perovskites to form multidimensional perovskites, halide perovskite photovoltaics can attain both high efficiency and increased stability.
Femtosecond laser induced surface deformation in multi-dimensional data storage
NASA Astrophysics Data System (ADS)
Hu, Yanlei; Chen, Yuhang; Li, Jiawen; Hu, Daqiao; Chu, Jiaru; Zhang, Qijin; Huang, Wenhao
2012-12-01
We investigate the surface deformation in two-photon induced multi-dimensional data storage. Both experimental evidence and theoretical analysis are presented to demonstrate the surface characteristics and formation mechanism in azo-containing material. The deformation reveals strong polarization dependence and has a topographic effect on multi-dimensional encoding. Different stages of data storage process are finally discussed taking into consideration the surface deformation formation.
Modification and Improvement of Software for Modeling Multidimensional Reacting Fuel Flows
1989-07-01
aQ IC FILE COPY WRDC-TR-89-2056 MODIFICATION AND IMPROVEMENT OF SOFTWARE FOR MODELING MULTIDIMENSIONAL REACTING FUEL FLOWS Dr. David E. Keyes Mr...Modeling Multidimensional Reacting Fuel Flows 12. PERSONAL AUITHOR(S Dr. David Keyes , Mr. Dennis Philbin, Dr. Mitchell Smoke I I& TYPt Of IMPORT 113b. TIME...al. [15], and Keyes and Smooke [16)). We assume that the fuel and the oxidizer obey a single overall irreversible reaction of the type Fuel (F
Code of Federal Regulations, 2010 CFR
2010-01-01
... for extension of time, a motion for postponement of a hearing, or any other procedural motion must first contact the other party to determine whether there is any objection to the motion, and must state... motion. Judges, in their discretion, may grant or deny motions for extensions of time to file...
Scaling relationship between rotation and translation motions
NASA Astrophysics Data System (ADS)
Chiu, Hung-Chie
2016-04-01
Rotation motion and its effects are not well known and our knowledge about translation motions is much better than that of the rotation motions. Since rotation motions show to have a close relationship with translation motions, deriving such relationship might improve our understanding on rotation motions. Rotation motion can be obtained by taking a spatial derivative of translation motion. Therefore, rotation motion is always accompanied by translation motions. Although rotation motion cannot be detected by strong motion record, the rotation-induced centrifugal acceleration and gravity effects are recorded in a strong-motion record. In this study we derive empirical relationships for rotation motion and its effects. Results show that rotation motion and its effects are small and can be ignored in weak motion, but they grow up very fast as the increasing of translation motion and become important in near-fault ground motions. We also found that those abnormal strong-motion records observed in near-fault are closely related to rotation motions.
NASA Technical Reports Server (NTRS)
Wood, William A., III
2002-01-01
A multi-dimensional upwind fluctuation splitting scheme is developed and implemented for two-dimensional and axisymmetric formulations of the Navier-Stokes equations on unstructured meshes. Key features of the scheme are the compact stencil, full upwinding, and non-linear discretization which allow for second-order accuracy with enforced positivity. Throughout, the fluctuation splitting scheme is compared to a current state-of-the-art finite volume approach, a second-order, dual mesh upwind flux difference splitting scheme (DMFDSFV), and is shown to produce more accurate results using fewer computer resources for a wide range of test cases. A Blasius flat plate viscous validation case reveals a more accurate upsilon-velocity profile for fluctuation splitting, and the reduced artificial dissipation production is shown relative to DMFDSFV. Remarkably, the fluctuation splitting scheme shows grid converged skin friction coefficients with only five points in the boundary layer for this case. The second half of the report develops a local, compact, anisotropic unstructured mesh adaptation scheme in conjunction with the multi-dimensional upwind solver, exhibiting a characteristic alignment behavior for scalar problems. The adaptation strategy is extended to the two-dimensional and axisymmetric Navier-Stokes equations of motion through the concept of fluctuation minimization.
Multidimensional indexing structure for use with linear optimization queries
NASA Technical Reports Server (NTRS)
Bergman, Lawrence David (Inventor); Castelli, Vittorio (Inventor); Chang, Yuan-Chi (Inventor); Li, Chung-Sheng (Inventor); Smith, John Richard (Inventor)
2002-01-01
Linear optimization queries, which usually arise in various decision support and resource planning applications, are queries that retrieve top N data records (where N is an integer greater than zero) which satisfy a specific optimization criterion. The optimization criterion is to either maximize or minimize a linear equation. The coefficients of the linear equation are given at query time. Methods and apparatus are disclosed for constructing, maintaining and utilizing a multidimensional indexing structure of database records to improve the execution speed of linear optimization queries. Database records with numerical attributes are organized into a number of layers and each layer represents a geometric structure called convex hull. Such linear optimization queries are processed by searching from the outer-most layer of this multi-layer indexing structure inwards. At least one record per layer will satisfy the query criterion and the number of layers needed to be searched depends on the spatial distribution of records, the query-issued linear coefficients, and N, the number of records to be returned. When N is small compared to the total size of the database, answering the query typically requires searching only a small fraction of all relevant records, resulting in a tremendous speedup as compared to linearly scanning the entire dataset.
Entropy of Leukemia on Multidimensional Morphological and Molecular Landscapes
NASA Astrophysics Data System (ADS)
Vilar, Jose M. G.
2014-04-01
Leukemia epitomizes the class of highly complex diseases that new technologies aim to tackle by using large sets of single-cell-level information. Achieving such a goal depends critically not only on experimental techniques but also on approaches to interpret the data. A most pressing issue is to identify the salient quantitative features of the disease from the resulting massive amounts of information. Here, I show that the entropies of cell-population distributions on specific multidimensional molecular and morphological landscapes provide a set of measures for the precise characterization of normal and pathological states, such as those corresponding to healthy individuals and acute myeloid leukemia (AML) patients. I provide a systematic procedure to identify the specific landscapes and illustrate how, applied to cell samples from peripheral blood and bone marrow aspirates, this characterization accurately diagnoses AML from just flow cytometry data. The methodology can generally be applied to other types of cell populations and establishes a straightforward link between the traditional statistical thermodynamics methodology and biomedical applications.
Developing new online calibration methods for multidimensional computerized adaptive testing.
Chen, Ping; Wang, Chun; Xin, Tao; Chang, Hua-Hua
2017-02-01
Multidimensional computerized adaptive testing (MCAT) has received increasing attention over the past few years in educational measurement. Like all other formats of CAT, item replenishment is an essential part of MCAT for its item bank maintenance and management, which governs retiring overexposed or obsolete items over time and replacing them with new ones. Moreover, calibration precision of the new items will directly affect the estimation accuracy of examinees' ability vectors. In unidimensional CAT (UCAT) and cognitive diagnostic CAT, online calibration techniques have been developed to effectively calibrate new items. However, there has been very little discussion of online calibration in MCAT in the literature. Thus, this paper proposes new online calibration methods for MCAT based upon some popular methods used in UCAT. Three representative methods, Method A, the 'one EM cycle' method and the 'multiple EM cycles' method, are generalized to MCAT. Three simulation studies were conducted to compare the three new methods by manipulating three factors (test length, item bank design, and level of correlation between coordinate dimensions). The results showed that all the new methods were able to recover the item parameters accurately, and the adaptive online calibration designs showed some improvements compared to the random design under most conditions.
Modeling multidimensional and multispecies biofilms in porous media.
Tang, Youneng; Liu, Haihu
2017-03-21
Modeling multidimensional and multispecies biofilm in porous media at the pore scale is challenging due to the need to simultaneously track the microbial community in the biofilms and the interfaces between the biofilms and the fluid. Therefore, researchers usually assume that the model has only one dimension in space or has only one microbial species. This work uses bioremediation of U(VI)-contaminated groundwater as the context to develop a two-dimensional and multispecies biofilm model. The model simulates the transverse mixing zone in which U(VI) is mixed with propionate, a nutrient externally supplied to stimulate the growth of microorganisms. The model considers multiple interactions among fluid flow, transport and reaction of chemical species, and growth of biofilm. The biofilm consists of two types of active biomass (syntrophs and dissimilatory metal reducing bacteria) and inert biomass. The two types of active biomass collaboratively remove U(VI). The model outputs biomass distribution, chemical species concentrations, and fluid flow at the pore scale to fundamentally study the multiple interactions. The model also outputs the contaminant removal rate that can be potentially used for up-scaling studies. The simulated results are generally consistent with experimental observations from other studies in trend. The trend can be explained by the multiple interactions based on thermodynamics and microbial kinetics. This article is protected by copyright. All rights reserved.
Multidimensional biases, gaps and uncertainties in global plant occurrence information.
Meyer, Carsten; Weigelt, Patrick; Kreft, Holger
2016-08-01
Plants are a hyperdiverse clade that plays a key role in maintaining ecological and evolutionary processes as well as human livelihoods. Biases, gaps and uncertainties in plant occurrence information remain a central problem in ecology and conservation, but these limitations remain largely unassessed globally. In this synthesis, we propose a conceptual framework for analysing gaps in information coverage, information uncertainties and biases in these metrics along taxonomic, geographical and temporal dimensions, and apply it to all c. 370 000 species of land plants. To this end, we integrated 120 million point-occurrence records with independent databases on plant taxonomy, distributions and conservation status. We find that different data limitations are prevalent in each dimension. Different metrics of information coverage and uncertainty are largely uncorrelated, and reducing taxonomic, spatial or temporal uncertainty by filtering out records would usually come at great costs to coverage. In light of these multidimensional data limitations, we discuss prospects for global plant ecological and biogeographical research, monitoring and conservation and outline critical next steps towards more effective information usage and mobilisation. Our study provides an empirical baseline for evaluating and improving global floristic knowledge, along with a conceptual framework that can be applied to study other hyperdiverse clades.
Exploring perceptually similar cases with multi-dimensional scaling
NASA Astrophysics Data System (ADS)
Wang, Juan; Yang, Yongyi; Wernick, Miles N.; Nishikawa, Robert M.
2014-03-01
Retrieving a set of known lesions similar to the one being evaluated might be of value for assisting radiologists to distinguish between benign and malignant clustered microcalcifications (MCs) in mammograms. In this work, we investigate how perceptually similar cases with clustered MCs may relate to one another in terms of their underlying characteristics (from disease condition to image features). We first conduct an observer study to collect similarity scores from a group of readers (five radiologists and five non-radiologists) on a set of 2,000 image pairs, which were selected from 222 cases based on their images features. We then explore the potential relationship among the different cases as revealed by their similarity ratings. We apply the multi-dimensional scaling (MDS) technique to embed all the cases in a 2-D plot, in which perceptually similar cases are placed in close vicinity of one another based on their level of similarity. Our results show that cases having different characteristics in their clustered MCs are accordingly placed in different regions in the plot. Moreover, cases of same pathology tend to be clustered together locally, and neighboring cases (which are more similar) tend to be also similar in their clustered MCs (e.g., cluster size and shape). These results indicate that subjective similarity ratings from the readers are well correlated with the image features of the underlying MCs of the cases, and that perceptually similar cases could be of diagnostic value for discriminating between malignant and benign cases.