Sample records for adverse climate change

  1. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions.

    PubMed

    Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D

    2015-01-01

    The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.

  2. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions

    PubMed Central

    Mosedale, Jonathan R.; Wilson, Robert J.; Maclean, Ilya M. D.

    2015-01-01

    The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions. PMID:26496127

  3. Adverse weather conditions for European wheat production will become more frequent with climate change

    NASA Astrophysics Data System (ADS)

    Trnka, Miroslav; Rötter, Reimund P.; Ruiz-Ramos, Margarita; Kersebaum, Kurt Christian; Olesen, Jørgen E.; Žalud, Zdeněk; Semenov, Mikhail A.

    2014-07-01

    Europe is the largest producer of wheat, the second most widely grown cereal crop after rice. The increased occurrence and magnitude of adverse and extreme agroclimatic events are considered a major threat for wheat production. We present an analysis that accounts for a range of adverse weather events that might significantly affect wheat yield in Europe. For this purpose we analysed changes in the frequency of the occurrence of 11 adverse weather events. Using climate scenarios based on the most recent ensemble of climate models and greenhouse gases emission estimates, we assessed the probability of single and multiple adverse events occurring within one season. We showed that the occurrence of adverse conditions for 14 sites representing the main European wheat-growing areas might substantially increase by 2060 compared to the present (1981-2010). This is likely to result in more frequent crop failure across Europe. This study provides essential information for developing adaptation strategies.

  4. Population Trends of Central European Montane Birds Provide Evidence for Adverse Impacts of Climate Change on High-Altitude Species.

    PubMed

    Flousek, Jiří; Telenský, Tomáš; Hanzelka, Jan; Reif, Jiří

    2015-01-01

    Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše), where significant warming occurred over this period. We then related the population trends to several species' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta). It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.

  5. Climate Change and Public Health Policy.

    PubMed

    Smith, Jason A; Vargo, Jason; Hoverter, Sara Pollock

    2017-03-01

    Climate change poses real and immediate impacts to the public health of populations around the globe. Adverse impacts are expected to continue throughout the century. Emphasizing co-benefits of climate action for health, combining adaptation and mitigation efforts, and increasing interagency coordination can effectively address both public health and climate change challenges.

  6. Detecting and Attributing Health Burdens to Climate Change.

    PubMed

    Ebi, Kristie L; Ogden, Nicholas H; Semenza, Jan C; Woodward, Alistair

    2017-08-07

    Detection and attribution of health impacts caused by climate change uses formal methods to determine a ) whether the occurrence of adverse health outcomes has changed, and b ) the extent to which that change could be attributed to climate change. There have been limited efforts to undertake detection and attribution analyses in health. Our goal was to show a range of approaches for conducting detection and attribution analyses. Case studies for heatwaves, Lyme disease in Canada, and Vibrio emergence in northern Europe highlight evidence that climate change is adversely affecting human health. Changes in rates and geographic distribution of adverse health outcomes were detected, and, in each instance, a proportion of the observed changes could, in our judgment, be attributed to changes in weather patterns associated with climate change. The results of detection and attribution studies can inform evidence-based risk management to reduce current, and plan for future, changes in health risks associated with climate change. Gaining a better understanding of the size, timing, and distribution of the climate change burden of disease and injury requires reliable long-term data sets, more knowledge about the factors that confound and modify the effects of climate on health, and refinement of analytic techniques for detection and attribution. At the same time, significant advances are possible in the absence of complete data and statistical certainty: there is a place for well-informed judgments, based on understanding of underlying processes and matching of patterns of health, climate, and other determinants of human well-being. https://doi.org/10.1289/EHP1509.

  7. Climate Change, Human Rights, and Social Justice.

    PubMed

    Levy, Barry S; Patz, Jonathan A

    2015-01-01

    The environmental and health consequences of climate change, which disproportionately affect low-income countries and poor people in high-income countries, profoundly affect human rights and social justice. Environmental consequences include increased temperature, excess precipitation in some areas and droughts in others, extreme weather events, and increased sea level. These consequences adversely affect agricultural production, access to safe water, and worker productivity, and, by inundating land or making land uninhabitable and uncultivatable, will force many people to become environmental refugees. Adverse health effects caused by climate change include heat-related disorders, vector-borne diseases, foodborne and waterborne diseases, respiratory and allergic disorders, malnutrition, collective violence, and mental health problems. These environmental and health consequences threaten civil and political rights and economic, social, and cultural rights, including rights to life, access to safe food and water, health, security, shelter, and culture. On a national or local level, those people who are most vulnerable to the adverse environmental and health consequences of climate change include poor people, members of minority groups, women, children, older people, people with chronic diseases and disabilities, those residing in areas with a high prevalence of climate-related diseases, and workers exposed to extreme heat or increased weather variability. On a global level, there is much inequity, with low-income countries, which produce the least greenhouse gases (GHGs), being more adversely affected by climate change than high-income countries, which produce substantially higher amounts of GHGs yet are less immediately affected. In addition, low-income countries have far less capability to adapt to climate change than high-income countries. Adaptation and mitigation measures to address climate change needed to protect human society must also be planned to protect

  8. Prevention of adverse climate change impacts on water resources

    NASA Astrophysics Data System (ADS)

    Fosumpaur, P.

    2003-04-01

    The water resources design is generally based on the assumption of the stationary hydrological process and the reservoir storage is obviously evaluated in simulated flow series derived by the synthetic hydrology methods. Recently, results of numerous studies and major flood events have clearly proved that the variation of meteorological and hydrological parameters are beyond the bounds of the stationary process. These changes are related to the global climate change, which has been emphasised by the IPCC (International Panel of Climate Change) since the beginning of the 80s. Regional scenarios of the climate change are downscaled from the GCM and they are characterised by considerable variance. This uncertainty enters hydrological models of a catchment runoff which quantify impacts of the global climate change on the river flow regime. A number of studies have dealt with impacts of hydrological regime changes on water resources planning. They have shown that the variability of the reservoir storage-yield curve is seriously high. This study is aimed at the design of preventive actions based on the adaptation principle which is known from cybernetics. These prevention measures should be designed with respect to the proper identification of risks. Thus, the risk analysis should be considered. The main goals of the study are as follows: 1) Proposition of the strategic preventive actions which will be aimed to reassess particular reservoir functions with respect to actual and predicted conditions of the environment. This topic includes a potential reassessment of the capacity of particular reservoir storages. 2) Design of the system of real-time adaptive actions in the real reservoir operation to optimize the measure of the risk related to the extreme hydrological events as floods and hydrological droughts. This research has been supported by the grants No. 103/02/D049, No. 103/01/0201 and No. 103/02/0606 of the Grant Agency of the Czech Republic.

  9. Bahamians and Climate Change: An Analysis of Risk Perception and Climate Change Literacy

    NASA Astrophysics Data System (ADS)

    Neely, R.; Owens, M. A.

    2011-12-01

    The Commonwealth of the Bahamas is forecasted to be adversely impacted by the effects of climate change. This presentation will present the results of an assessment of the risk perception toward climate change and climate change literacy among Bahamians. 499 Bahamians from the health care and hospitality industries participated in surveys and/or focus groups and three (3) areas of climate change literacy (attitude, behavior and knowledge) were analyzed as well as risk perception. In general, 1) Bahamians demonstrated an elementary understanding of the underlying causes of climate change, 2) possessed positive attitudes toward adopting new climate change policies, and 3) are already adjusting their behaviors in light of the current predictions. This research also resulted in the development of a model of the relationships between the climate literacy subscales (attitude, behavior and knowledge) and risk perception. This study also examined information sources and their impacts on climate change literacy. As the source of information is important in assessing the quality of the information, participants also identified the source(s) of most of their climate change information. The TV news was cited as the most common source for climate change information among Bahamians. As there is limited active research generating specific climate change information in the Bahamas, all the information Bahamians receive as it pertains to climate change is generated abroad. As a result, Bahamians must decipher through to make sense of it on an individual level. From the focus groups, many of the participants have been able to view possible changes through a cultural lens and are willing to make adjustments to maintain the uniqueness and viability of the Bahamas and to preserve it for generations. Continued study of Bahamians' climate change literacy will inform adaption and mitigation policy as well as individual action.

  10. Climate Change Research - What Do We Need Really?

    NASA Astrophysics Data System (ADS)

    Rama Chandra Prasad, P.

    2015-01-01

    This research note focuses on the current climate change research scenario and discusses primarily what is required in the present global climate change conditions. Most of the climate change research and models predict adverse future conditions that have to be faced by humanity, with less emphasis on mitigation measures. Moreover, research ends as reports on the shelves of scientists and researchers and as publications in journals. At this juncture the major focus should be on research that helps in reducing the impact rather than on analysing future scenarios of climate change using different models. The article raises several questions and suggestions regards climate change research and lays emphasis on what we really need from climate change researchers.

  11. Impact of Climate Change on Food Security in Kenya

    NASA Astrophysics Data System (ADS)

    Yator, J. J.

    2016-12-01

    This study sought to address the existing gap on the impact of climate change on food security in support of policy measures to avert famine catastrophes. Fixed and random effects regressions for crop food security were estimated. The study simulated the expected impact of future climate change on food insecurity based on the Representative Concentration Pathways scenario (RCPs). The study makes use of county-level yields estimates (beans, maize, millet and sorghum) and daily climate data (1971 to 2010). Climate variability affects food security irrespective of how food security is defined. Rainfall during October-November-December (OND), as well as during March-April-May (MAM) exhibit an inverted U-shaped relationship with most food crops; the effects are most pronounced for maize and sorghum. Beans and Millet are found to be largely unresponsive to climate variability and also to time-invariant factors. OND rains and fall and summer temperature exhibit a U-shaped relationship with yields for most crops, while MAM rains temperature exhibits an inverted U-shaped relationship. However, winter temperatures exhibit a hill-shaped relationship with most crops. Project future climate change scenarios on crop productivity show that climate change will adversely affect food security, with up to 69% decline in yields by the year 2100. Climate variables have a non-linear relationship with food insecurity. Temperature exhibits an inverted U-shaped relationship with food insecurity, suggesting that increased temperatures will increase crop food insecurity. However, maize and millet, benefit from increased summer and winter temperatures. The simulated effects of different climate change scenarios on food insecurity suggest that adverse climate change will increase food insecurity in Kenya. The largest increases in food insecurity are predicted for the RCP 8.5Wm2, compared to RCP 4.5Wm2. Climate change is likely to have the greatest effects on maize insecurity, which is likely

  12. Climate change and children's health.

    PubMed

    Bernstein, Aaron S; Myers, Samuel S

    2011-04-01

    To present the latest data that demonstrate how climate change affects children's health and to identify the principal ways in which climate change puts children's health at risk. Data continue to emerge that further implicate climate change as contributing to health burdens in children. Climate models have become even more sophisticated and consistently forecast that greenhouse gas emissions will lead to higher mean temperatures that promote more intense storms and droughts, both of which have profound implications for child health. Recent climate models shed light upon the spread of vector-borne disease, including Lyme disease in North America and malaria in Africa. Modeling studies have found that conditions conducive to forest fires, which generate harmful air pollutants and damage agriculture, are likely to become more prevalent in this century due to the effects of greenhouse gases added to earth's atmosphere. Through many pathways, and in particular via placing additional stress upon the availability of food, clean air, and clean water and by potentially expanding the burden of disease from certain vector-borne diseases, climate change represents a major threat to child health. Pediatricians have already seen and will increasingly see the adverse health effects of climate change in their practices. Because of this, and many other reasons, pediatricians have a unique capacity to help resolve the climate change problem.

  13. Climate change as a driver for future human migration

    NASA Astrophysics Data System (ADS)

    Chen, M.; Ricke, K.; Caldeira, K.

    2016-12-01

    Human migration is driven by a multitude of factors, both socioeconomic and environmental. However, as impacts of anthropogenic climate change emerge and grow, it is widely conjectured that climate change will induce migration of human populations from areas that are adversely affected by climate change to areas that are less adversely or positively affected by climate change. Both low- and high-frequency climate changes have been empirically linked to migration in areas across the globe, but there has been little global-scale quantitative analysis projecting the scale and geography of climate-motivated migration. Considering temperature and precipitation in isolation from all other factors, here we project climate-driven impacts on the areal-density of human population. From this, we infer potential destinations and origins for the climate-motivated migration. Our results indicate that tropical and sub-tropical countries are the largest likely sources of migrants, with India being the country with the greatest number of potential climate emigrants. Global warming has the potential to motivate hundreds of millions of people to migrate in the coming decades, largely from warm tropical and subtropical countries to cooler temperate countries. Migration decisions will depend on many factors beyond climate; nevertheless our work establishes a foundation for quantifying future climate-motivated migration that can act as a starting point of more comprehensive assessments. The large number of potential climate migrants indicated by our analyses provides additional incentive to reduce greenhouse gas emissions, take adaptive measures, and carefully consider migration policy.

  14. The climate change convention and human health.

    PubMed

    Rowbotham, E J

    1995-01-01

    The United Nations Framework Convention on Climate Change, signed at Rio in June 1992, is intended to minimize climate change and its impact. Much of its text is ambiguous and it is not specifically directed to health considerations. It is, however, recognized that adverse effects of climate change on health are a concern of humankind, and health is an integral part of the Convention. The Convention includes commitments by the developed countries to reduce emissions of greenhouse gases and to increase public awareness of these commitments. The significance of the Convention in these respects is discussed critically and future developments considered.

  15. Susceptibility of the Batoka Gorge hydroelectric scheme to climate change

    NASA Astrophysics Data System (ADS)

    Harrison, Gareth P.; Whittington, H.(Bert) W.

    2002-07-01

    The continuing and increased use of renewable energy sources, including hydropower, is a key strategy to limit the extent of future climate change. Paradoxically, climate change itself may alter the availability of this natural resource, adversely affecting the financial viability of both existing and potential schemes. Here, a model is described that enables the assessment of the relationship between changes in climate and the viability, technical and financial, of hydro development. The planned Batoka Gorge scheme on the Zambezi River is used as a case study to validate the model and to predict the impact of climate change on river flows, electricity production and scheme financial performance. The model was found to perform well, given the inherent difficulties in the task, although there is concern regarding the ability of the hydrological model to reproduce the historic flow conditions of the upper Zambezi Basin. Simulations with climate change scenarios illustrate the sensitivity of the Batoka Gorge scheme to changes in climate. They suggest significant reductions in river flows, declining power production, reductions in electricity sales revenue and consequently an adverse impact on a range of investment measures.

  16. Climate change and human health: impacts, vulnerability, and mitigation.

    PubMed

    Haines, A; Kovats, R S; Campbell-Lendrum, D; Corvalan, C

    2006-06-24

    It is now widely accepted that climate change is occurring as a result of the accumulation of greenhouse gases in the atmosphere arising from the combustion of fossil fuels. Climate change may affect health through a range of pathways--eg, as a result of increased frequency and intensity of heat waves, reduction in cold-related deaths, increased floods and droughts, changes in the distribution of vector-borne diseases, and effects on the risk of disasters and malnutrition. The overall balance of effects on health is likely to be negative and populations in low-income countries are likely to be particularly vulnerable to the adverse effects. The experience of the 2003 heat wave in Europe shows that high-income countries might also be adversely affected. Adaptation to climate change requires public-health strategies and improved surveillance. Mitigation of climate change by reducing the use of fossil fuels and increasing the use of a number of renewable energy technologies should improve health in the near term by reducing exposure to air pollution.

  17. The Psychological Effects of Climate Change on Children.

    PubMed

    Burke, Susie E L; Sanson, Ann V; Van Hoorn, Judith

    2018-04-11

    We review recent evidence on the psychological effects of climate change on children, covering both direct and indirect impacts, and discuss children's psychological adaptation to climate change. Both the direct and flow-on effects of climate change place children at risk of mental health consequences including PTSD, depression, anxiety, phobias, sleep disorders, attachment disorders, and substance abuse. These in turn can lead to problems with emotion regulation, cognition, learning, behavior, language development, and academic performance. Together, these create predispositions to adverse adult mental health outcomes. Children also exhibit high levels of concern over climate change. Meaning-focused coping promotes well-being and environmental engagement. Both direct and indirect climate change impacts affect children's psychological well-being. Children in the developing world will suffer the worst impacts. Mental health professionals have important roles in helping mitigate climate change, and researching and implementing approaches to helping children cope with its impacts.

  18. Mandate for the Nursing Profession to Address Climate Change Through Nursing Education.

    PubMed

    Leffers, Jeanne; Levy, Ruth McDermott; Nicholas, Patrice K; Sweeney, Casey F

    2017-11-01

    The adverse health effects from climate change demand action from the nursing profession. This article examines the calls to action, the status of climate change in nursing education, and challenges and recommendations for nursing education related to climate change and human health. Discussion paper. The integration of climate change into nursing education is essential so that knowledge, skills, and insights critical for clinical practice in our climate-changing world are incorporated in curricula, practice, research, and policy. Our Ecological Planetary Health Model offers a framework for nursing to integrate relevant climate change education into nursing curricula and professional nursing education. Nursing education can offer a leadership role to address the mitigation, adaptation, and resilience strategies for climate change. An ecological framework is valuable for nursing education regarding climate change through its consideration of political, cultural, economic, and environmental interrelationships on human health and the health of the planet. Knowledge of climate change is important for integration into basic and advanced nursing education, as well as professional education for nurses to address adverse health impacts, climate change responses policy, and advocacy roles. For current and future nurses to provide care within a climate-changing environment, nursing education has a mandate to integrate knowledge about climate change issues across all levels of nursing education. Competence in nursing practice follows from knowledge and skill acquisition gained from integration of climate change content into nursing education. © 2017 Sigma Theta Tau International.

  19. Climate Change, Wildland Fires and Public Health

    NASA Astrophysics Data System (ADS)

    Cascio, W. E.

    2016-12-01

    Climate change is contributing to an increase in the severity of wildland fires. The annual acreage burned in the U.S. has risen steadily since 1985, and the fire season has lengthened. Wildland fires impair air quality by producing massive quantities of particulate air pollutants and ozone precursors. Together particles and ozone exposures increase the risk of premature death and acute and chronic cardiovascular and respiratory morbidity among vulnerable individuals. Future wildfires are predicted to be larger, more severe and more frequent in some regions of the U.S and will contribute to an even greater proportion of the ambient air pollution, the disease burden and healthcare costs.While the projected magnitude of the public health impact of climate change-related wildfire events is uncertain, it is clear that the proportion of the U.S. population vulnerable to the adverse health effects of wildland fire and its smoke is increasing. An aging population with chronic respiratory diseases and increasing obesity and diabetes that heralds more cardiovascular disease will increase the vulnerability of the population to the adverse effects of wildfire smoke and associated stressors. Additionally, physiological changes attendant to aging decrease the capacity of aged-adults to tolerate wildfire smoke, heat, humidity, evacuation and recovery. Expansion of our cities into the wildland-urban interface is also placing a greater proportion of the population in closer proximity to wildland fire emissions with its associated health risks. The public health community has an opportunity to contribute to the broader national effort to mitigate climate change and wildland fire risk by working closely with the healthcare community to facilitate adaptive responses to climate change. Adaptation will increase the resilience of individuals and their communities and is anticipated to help mitigate the adverse health effects of wildland fire. This abstract does not reflect USEPA policy.

  20. Rapid change, climate adversity and the next 'big dry': older farmers' mental health.

    PubMed

    Polain, John David; Berry, Helen Louise; Hoskin, John Oliver

    2011-10-01

    To describe the experiences of older farmers in the face of prolonged drought and rapid change. Content analysis of issues and priorities raised in semi-structured community forums. Rural centres in NSW. One hundred and fifty older farmers, their families, Industry and Investment NSW, rural financial and mental health services, the Country Women's Association and other non-government agencies. Five public forums organised under the Rural Adversity Mental Health Program. Prolonged drought caused pressures on farmers that compounded the usual stresses of farming and of ageing. These were experienced in the context of rapid social and industry change, fuel price volatility and the insidious threat of climate change. Three main themes were articulated: loss, government compliance pressures and difficulties accessing and/or inappropriate services. Older farmers felt an overwhelming sense of loss: of profitability and professional success, community status, physical well-being and comfort, the ability to participate in the modern world and, above all, of relationships (partners, children and friends moving away). They interpreted government compliance requirements as evidence of community and government loss of trust in famers. They resisted using the few mental health services that might be available, fearing being labelled as 'crazy' and discouraged by the culturally inappropriate way in which services were offered. Older farmers would benefit from joint services related to health and well-being simultaneously with modern business management offered in trusted, comfortable settings. © 2011 The Authors. Australian Journal of Rural Health © National Rural Health Alliance Inc.

  1. Climate change and human health: impacts, vulnerability and public health.

    PubMed

    Haines, A; Kovats, R S; Campbell-Lendrum, D; Corvalan, C

    2006-07-01

    It is now widely accepted that climate change is occurring as a result of the accumulation of greenhouse gases in the atmosphere arising from the combustion of fossil fuels. Climate change may affect health through a range of pathways, for example as a result of increased frequency and intensity of heat waves, reduction in cold related deaths, increased floods and droughts, changes in the distribution of vector-borne diseases and effects on the risk of disasters and malnutrition. The overall balance of effects on health is likely to be negative and populations in low-income countries are likely to be particularly vulnerable to the adverse effects. The experience of the 2003 heat wave in Europe shows that high-income countries may also be adversely affected. Adaptation to climate change requires public health strategies and improved surveillance. Mitigation of climate change by reducing the use of fossil fuels and increasing a number of uses of the renewable energy technologies should improve health in the near-term by reducing exposure to air pollution.

  2. Insurance in a climate of change.

    PubMed

    Mills, Evan

    2005-08-12

    Catastrophe insurance provides peace of mind and financial security. Climate change can have adverse impacts on insurance affordability and availability, potentially slowing the growth of the industry and shifting more of the burden to governments and individuals. Most forms of insurance are vulnerable, including property, liability, health, and life. It is incumbent on insurers, their regulators, and the policy community to develop a better grasp of the physical and business risks. Insurers are well positioned to participate in public-private initiatives to monitor loss trends, improve catastrophe modeling, address the causes of climate change, and prepare for and adapt to the impacts.

  3. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to

  4. Assessing the Vulnerability of Eco-Environmental Health to Climate Change

    PubMed Central

    Tong, Shilu; Mather, Peter; Fitzgerald, Gerry; McRae, David; Verrall, Ken; Walker, Dylan

    2010-01-01

    There is an urgent need to assess the vulnerability of eco-environmental health to climate change. This paper aims to provide an overview of current research, to identify knowledge gaps, and to propose future research needs in this challenging area. Evidence shows that climate change is affecting and will, in the future, have more (mostly adverse) impacts on ecosystems. Ecosystem degradation, particularly the decline of the life support systems, will undoubtedly affect human health and wellbeing. Therefore, it is important to develop a framework to assess the vulnerability of eco-environmental health to climate change, and to identify appropriate adaptation strategies to minimize the impact of climate change. PMID:20616990

  5. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts.

    PubMed

    Bonebrake, Timothy C; Mastrandrea, Michael D

    2010-07-13

    Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.

  6. Planning for climate change: the need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases

    PubMed Central

    Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-01-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. PMID:26799810

  7. Assessing the Agricultural Vulnerability for India under Changing Climate

    NASA Astrophysics Data System (ADS)

    Sharma, Tarul; Vardhan Murari, Harsha; Karmakar, Subhankar; Ghosh, Subimal; Singh, Jitendra

    2016-04-01

    Global climate change has proven to show majorly negative impacts for the far future. These negative impacts adversely affect almost all the fields including agriculture, water resources, tourism, and marine ecosystem. Among these, the effects on agriculture are considered to be of prime importance since its regional impacts can directly affect the global food security. Under such lines, it becomes essential to understand how climate change directs agricultural production for a region along with its vulnerability. In India, rice and wheat are considered as major staple diet and hence understanding its production loss/gain due to regional vulnerability to climate change becomes necessary. Here, an attempt has been made to understand the agricultural vulnerability for rice and wheat, considering yield as a function of temperature and precipitation during growing period. In order to accomplish this objective, the ratio of actual to potential evapo-transpiration has been considered which serves as a reliable indicator; with more this ratio towards unity, less vulnerable will be the region. The current objective needs an integration of climatic, hydrological and agricultural parameters; that can be achieved by simulating a climate data driven hydrologic (Variable Infiltration Capacity, VIC) model and a crop (Decision Support System for Agrotechnology Transfer, DSSAT) model. The proposed framework is an attempt to derive a crop vulnerability map that can facilitate in strategizing adaption practices which can reduce the adverse impacts of climate change in future.

  8. Environmental impacts of climate change adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enríquez-de-Salamanca, Álvaro, E-mail: aenriquez@draba.org; Díaz-Sierra, Rubén, E-mail: sierra@dfmf.uned.es; Martín-Aranda, Rosa M., E-mail: rmartin@ccia.uned.es

    Climate change adaptation reduces adverse effects of climate change but may also have undesirable environmental impacts. However, these impacts are yet poorly defined and analysed in the existing literature. To complement this knowledge-gap, we reviewed the literature to unveil the relationship between climate change adaptation and environmental impact assessment, and the degree to which environmental impacts are included in climate change adaptation theory and practice. Our literature review showed that technical, social and economic perspectives on climate change adaptation receive much more attention than the environmental perspective. The scarce interest on the environmental impacts of adaptation may be attributed tomore » (1) an excessive sectoral approach, with dominance of non-environmental perspectives, (2) greater interest in mitigation and direct climate change impacts rather than in adaptation impacts, (3) a tendency to consider adaptation as inherently good, and (4) subjective/preconceived notions on which measures are good or bad, without a comprehensive assessment. Environmental Assessment (EA) has a long established history as an effective tool to include environment into decision-making, although it does not yet guarantee a proper assessment of adaptation, because it is still possible to postpone or even circumvent the processes of assessing the impacts of climate adaptation. Our results suggest that there is a need to address adaptation proactively by including it in EA, to update current policy frameworks, and to demand robust and reliable evaluation of alternatives. Only through the full EA of adaptation measures can we improve our understanding of the primary and secondary impacts of adaptation to global environmental change. - Highlights: • Climate change adaptation may have undesirable environmental impacts. • The impacts of adaptation are yet poorly analysed in the literature. • There is an excessive sectoral approach to adaptation

  9. Population dynamics and climate change: what are the links?

    PubMed

    Stephenson, Judith; Newman, Karen; Mayhew, Susannah

    2010-06-01

    Climate change has been described as the biggest global health threat of the 21(st) century. World population is projected to reach 9.1 billion by 2050, with most of this growth in developing countries. While the principal cause of climate change is high consumption in the developed countries, its impact will be greatest on people in the developing world. Climate change and population can be linked through adaptation (reducing vulnerability to the adverse effects of climate change) and, more controversially, through mitigation (reducing the greenhouse gases that cause climate change). The contribution of low-income, high-fertility countries to global carbon emissions has been negligible to date, but is increasing with the economic development that they need to reduce poverty. Rapid population growth endangers human development, provision of basic services and poverty eradication and weakens the capacity of poor communities to adapt to climate change. Significant mass migration is likely to occur in response to climate change and should be regarded as a legitimate response to the effects of climate change. Linking population dynamics with climate change is a sensitive issue, but family planning programmes that respect and protect human rights can bring a remarkable range of benefits. Population dynamics have not been integrated systematically into climate change science. The contribution of population growth, migration, urbanization, ageing and household composition to mitigation and adaptation programmes needs urgent investigation.

  10. Predicting effects of climate and land use change on human well-being via changes in ecosystem services

    EPA Science Inventory

    Landuse and climate change have affected biological systems in many parts of the world, and are projected to further adversely affect associated ecosystem goods and services, including provisioning of clean air, clean water, food, and biodiversity. Such adverse effects on ecosyst...

  11. Climate change and adverse health events: community perceptions from the Tanahu district of Nepal

    NASA Astrophysics Data System (ADS)

    Mishra, Shiva Raj; Mani Bhandari, Parash; Issa, Rita; Neupane, Dinesh; Gurung, Swadesh; Khanal, Vishnu

    2015-03-01

    Nepal is a country economically dependent on climate-sensitive industries. It is highly vulnerable to the environmental, social, economic and health impacts of climate change. The objective of this study is to explore community perceptions of climate variability and human health risks. In this letter, we present a cross sectional study conducted between August 2013 and July 2014 in the Tanahu district of Nepal. Our analysis is based on 258 face-to-face interviews with household heads utilizing structured questionnaires. Over half of the respondents (54.7%) had perceived a change in climate, 53.9% had perceived an increase in temperature in the summer and 49.2% had perceived an increase in rainfall during the rainy season. Half of the respondents perceived an increase in the number of diseases during the summer, 46.5% perceived an increase during the rainy season and 48.8% during winter. Only 8.9% of the respondents felt that the government was doing enough to prevent climate change and its impact on their community. Belonging to the Janajati (indigenous) ethnic group, living in a pakki, super-pakki house and belonging to poor or mid-level income were related to higher odds of perceiving climate variability. Illiterates were less likely to perceive climate variability. Respondents living in a pakki house, super-pakki, or those who were poor were more likely to perceive health risks. Illiterates were less likely to perceive health risks.

  12. Climate Change Effects on Respiratory Health: Implications for Nursing.

    PubMed

    George, Maureen; Bruzzese, Jean-Marie; Matura, Lea Ann

    2017-11-01

    Greenhouse gases are driving climate change. This article explores the adverse health effects of climate change on a particularly vulnerable population: children and adults with respiratory conditions. This review provides a general overview of the effects of increasing temperatures, extreme weather, desertification, and flooding on asthma, chronic obstructive lung disease, and respiratory infections. We offer suggestions for future research to better understand climate change hazards, policies to support prevention and mitigation efforts targeting climate change, and clinical actions to reduce individual risk. Climate change produces a number of changes to the natural and built environments that may potentially increase respiratory disease prevalence, morbidity, and mortality. Nurses might consider focusing their research efforts on reducing the effects of greenhouse gases and in directing policy to mitigate the harmful effects of climate change. Nurses can also continue to direct educational and clinical actions to reduce risks for all populations, but most importantly, for our most vulnerable groups. While advancements have been made in understanding the impact of climate change on respiratory health, nurses can play an important role in reducing the deleterious effects of climate change. This will require a multipronged approach of research, policy, and clinical action. © 2017 Sigma Theta Tau International.

  13. Come rain or shine? Public expectation on local weather change and differential effects on climate change attitude.

    PubMed

    Lo, Alex Y; Jim, C Y

    2015-11-01

    Tailored messages are instrumental to climate change communication. Information about the global threat can be 'localised' by demonstrating its linkage with local events. This research ascertains the relationship between climate change attitude and perception of local weather, based on a survey involving 800 Hong Kong citizens. Results indicate that concerns about climate change increase with expectations about the likelihood and impacts of local weather change. Climate change believers attend to all three types of adverse weather events, namely, temperature rises, tropical cyclones and prolonged rains. Climate scepticism, however, is not associated with expectation about prolonged rains. Differential spatial orientations are a possible reason. Global climate change is an unprecedented and distant threat, whereas local rain is a more familiar and localised weather event. Global climate change should be articulated in terms that respect local concerns. Localised framing may be particularly effective for engaging individuals holding positive views about climate change science. © The Author(s) 2014.

  14. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases.

    PubMed

    Mellor, Jonathan E; Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-04-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Adapting Buildings for Indoor Air Quality in a Changing Climate

    EPA Pesticide Factsheets

    Climate change presents many challenges, including the production of severe weather events. These events and efforts to minimize their effects through weatherization can adversely affect indoor environments.

  16. Climate change and Australia's healthcare system - risks, research and responses.

    PubMed

    Weaver, Haylee J; Blashki, Grant A; Capon, Anthony G; McMichael, Anthony J

    2010-11-01

    Climate change will affect human health, mostly adversely, resulting in a greater burden on the health care system, in addition to any other coexistent increases in demand (e.g. from Australia's increasingly ageing population). Understanding the extent to which health is likely to be affected by climate change will enable policy makers and practitioners to prepare for changing demands on the health care system. This will require prioritisation of key research questions and building research capacity in the field. There is an urgent need to better understand the implications of climate change for the distribution and prevalence of diseases, disaster preparedness and multidisciplinary service planning. Research is needed to understand the relationship of climate change to health promotion, policy evaluation and strategic financing of health services. Training of health care professionals about climate change and its effects will also be important in meeting long-term workforce demands.

  17. Climate change: challenges and opportunities for global health.

    PubMed

    Patz, Jonathan A; Frumkin, Howard; Holloway, Tracey; Vimont, Daniel J; Haines, Andrew

    2014-10-15

    Health is inextricably linked to climate change. It is important for clinicians to understand this relationship in order to discuss associated health risks with their patients and to inform public policy. To provide new US-based temperature projections from downscaled climate modeling and to review recent studies on health risks related to climate change and the cobenefits of efforts to mitigate greenhouse gas emissions. We searched PubMed and Google Scholar from 2009 to 2014 for articles related to climate change and health, focused on governmental reports, predictive models, and empirical epidemiological studies. Of the more than 250 abstracts reviewed, 56 articles were selected. In addition, we analyzed climate data averaged over 13 climate models and based future projections on downscaled probability distributions of the daily maximum temperature for 2046-2065. We also compared maximum daily 8-hour average ozone with air temperature data taken from the National Oceanic and Atmospheric Administration, National Climate Data Center. By 2050, many US cities may experience more frequent extreme heat days. For example, New York and Milwaukee may have 3 times their current average number of days hotter than 32°C (90°F). High temperatures are also strongly associated with ozone exceedance days, for example, in Chicago, Illinois. The adverse health aspects related to climate change may include heat-related disorders, such as heat stress and economic consequences of reduced work capacity; respiratory disorders, including those exacerbated by air pollution and aeroallergens, such as asthma; infectious diseases, including vectorborne diseases and waterborne diseases, such as childhood gastrointestinal diseases; food insecurity, including reduced crop yields and an increase in plant diseases; and mental health disorders, such as posttraumatic stress disorder and depression, that are associated with natural disasters. Substantial health and economic cobenefits could be

  18. Climate change and mental health: a causal pathways framework.

    PubMed

    Berry, Helen Louise; Bowen, Kathryn; Kjellstrom, Tord

    2010-04-01

    Climate change will bring more frequent, long lasting and severe adverse weather events and these changes will affect mental health. We propose an explanatory framework to enhance consideration of how these effects may operate and to encourage debate about this important aspect of the health impacts of climate change. Literature review. Climate change may affect mental health directly by exposing people to trauma. It may also affect mental health indirectly, by affecting (1) physical health (for example, extreme heat exposure causes heat exhaustion in vulnerable people, and associated mental health consequences) and (2) community wellbeing. Within community, wellbeing is a sub-process in which climate change erodes physical environments which, in turn, damage social environments. Vulnerable people and places, especially in low-income countries, will be particularly badly affected. Different aspects of climate change may affect mental health through direct and indirect pathways, leading to serious mental health problems, possibly including increased suicide mortality. We propose that it is helpful to integrate these pathways in an explanatory framework, which may assist in developing public health policy, practice and research.

  19. Climate change, food, water and population health in China.

    PubMed

    Tong, Shilu; Berry, Helen L; Ebi, Kristie; Bambrick, Hilary; Hu, Wenbiao; Green, Donna; Hanna, Elizabeth; Wang, Zhiqiang; Butler, Colin D

    2016-10-01

    Anthropogenic climate change appears to be increasing the frequency, duration and intensity of extreme weather events. Such events have already had substantial impacts on socioeconomic development and population health. Climate change's most profound impacts are likely to be on food, health systems and water. This paper explores how climate change will affect food, human health and water in China. Projections indicate that the overall effects of climate change, land conversion and reduced water availability could reduce Chinese food production substantially - although uncertainty is inevitable in such projections. Climate change will probably have substantial impacts on water resources - e.g. changes in rainfall patterns and increases in the frequencies of droughts and floods in some areas of China. Such impacts would undoubtedly threaten population health and well-being in many communities. In the short-term, population health in China is likely to be adversely affected by increases in air temperatures and pollution. In the medium to long term, however, the indirect impacts of climate change - e.g. changes in the availability of food, shelter and water, decreased mental health and well-being and changes in the distribution and seasonality of infectious diseases - are likely to grow in importance. The potentially catastrophic consequences of climate change can only be avoided if all countries work together towards a substantial reduction in the emission of so-called greenhouse gases and a substantial increase in the global population's resilience to the risks of climate variability and change.

  20. Heat Exposure and Maternal Health in the Face of Climate Change.

    PubMed

    Kuehn, Leeann; McCormick, Sabrina

    2017-07-29

    Climate change will increasingly affect the health of vulnerable populations, including maternal and fetal health. This systematic review aims to identify recent literature that investigates increasing heat and extreme temperatures on pregnancy outcomes globally. We identify common research findings in order to create a comprehensive understanding of how immediate effects will be sustained in the next generation. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide, we systematically reviewed articles from PubMed and Cochrane Reviews. We included articles that identify climate change-related exposures and adverse health effects for pregnant women. There is evidence that temperature extremes adversely impact birth outcomes, including, but not limited to: changes in length of gestation, birth weight, stillbirth, and neonatal stress in unusually hot temperature exposures. The studies included in this review indicate that not only is there a need for further research on the ways that climate change, and heat in particular, may affect maternal health and neonatal outcomes, but that uniform standards for assessing the effects of heat on maternal fetal health also need to be established.

  1. Heat Exposure and Maternal Health in the Face of Climate Change

    PubMed Central

    Kuehn, Leeann; McCormick, Sabrina

    2017-01-01

    Climate change will increasingly affect the health of vulnerable populations, including maternal and fetal health. This systematic review aims to identify recent literature that investigates increasing heat and extreme temperatures on pregnancy outcomes globally. We identify common research findings in order to create a comprehensive understanding of how immediate effects will be sustained in the next generation. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide, we systematically reviewed articles from PubMed and Cochrane Reviews. We included articles that identify climate change-related exposures and adverse health effects for pregnant women. There is evidence that temperature extremes adversely impact birth outcomes, including, but not limited to: changes in length of gestation, birth weight, stillbirth, and neonatal stress in unusually hot temperature exposures. The studies included in this review indicate that not only is there a need for further research on the ways that climate change, and heat in particular, may affect maternal health and neonatal outcomes, but that uniform standards for assessing the effects of heat on maternal fetal health also need to be established. PMID:28758917

  2. An ill wind? Climate change, migration, and health.

    PubMed

    McMichael, Celia; Barnett, Jon; McMichael, Anthony J

    2012-05-01

    Climate change is projected to cause substantial increases in population movement in coming decades. Previous research has considered the likely causal influences and magnitude of such movements and the risks to national and international security. There has been little research on the consequences of climate-related migration and the health of people who move. In this review, we explore the role that health impacts of climate change may play in population movements and then examine the health implications of three types of movements likely to be induced by climate change: forcible displacement by climate impacts, resettlement schemes, and migration as an adaptive response. This risk assessment draws on research into the health of refugees, migrants, and people in resettlement schemes as analogs of the likely health consequences of climate-related migration. Some account is taken of the possible modulation of those health risks by climate change. Climate-change-related migration is likely to result in adverse health outcomes, both for displaced and for host populations, particularly in situations of forced migration. However, where migration and other mobility are used as adaptive strategies, health risks are likely to be minimized, and in some cases there will be health gains. Purposeful and timely policy interventions can facilitate the mobility of people, enhance well-being, and maximize social and economic development in both places of origin and places of destination. Nevertheless, the anticipated occurrence of substantial relocation of groups and communities will underscore the fundamental seriousness of human-induced climate change.

  3. Environmental Education and the Health Professions: Framing Climate Change as a Health Issue

    ERIC Educational Resources Information Center

    Adlong, William; Dietsch, Elaine

    2015-01-01

    The likelihood of adverse health impacts from climate change is high. Actions to reduce emissions, however, not only mitigate climate change but often have more immediate health co-benefits. One substantial co-benefit is gained through reductions of the high health costs of pollution from fossil fuel power stations, particularly coal. Evidence…

  4. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  5. Development of risk-based air quality management strategies under impacts of climate change.

    PubMed

    Liao, Kuo-Jen; Amar, Praveen; Tagaris, Efthimios; Russell, Armistead G

    2012-05-01

    Climate change is forecast to adversely affect air quality through perturbations in meteorological conditions, photochemical reactions, and precursor emissions. To protect the environment and human health from air pollution, there is an increasing recognition of the necessity of developing effective air quality management strategies under the impacts of climate change. This paper presents a framework for developing risk-based air quality management strategies that can help policy makers improve their decision-making processes in response to current and future climate change about 30-50 years from now. Development of air quality management strategies under the impacts of climate change is fundamentally a risk assessment and risk management process involving four steps: (1) assessment of the impacts of climate change and associated uncertainties; (2) determination of air quality targets; (3) selections of potential air quality management options; and (4) identification of preferred air quality management strategies that minimize control costs, maximize benefits, or limit the adverse effects of climate change on air quality when considering the scarcity of resources. The main challenge relates to the level of uncertainties associated with climate change forecasts and advancements in future control measures, since they will significantly affect the risk assessment results and development of effective air quality management plans. The concept presented in this paper can help decision makers make appropriate responses to climate change, since it provides an integrated approach for climate risk assessment and management when developing air quality management strategies. Development of climate-responsive air quality management strategies is fundamentally a risk assessment and risk management process. The risk assessment process includes quantification of climate change impacts on air quality and associated uncertainties. Risk management for air quality under the impacts of

  6. An Ill Wind? Climate Change, Migration, and Health

    PubMed Central

    Barnett, Jon

    2012-01-01

    Background: Climate change is projected to cause substantial increases in population movement in coming decades. Previous research has considered the likely causal influences and magnitude of such movements and the risks to national and international security. There has been little research on the consequences of climate-related migration and the health of people who move. Objectives: In this review, we explore the role that health impacts of climate change may play in population movements and then examine the health implications of three types of movements likely to be induced by climate change: forcible displacement by climate impacts, resettlement schemes, and migration as an adaptive response. Methods: This risk assessment draws on research into the health of refugees, migrants, and people in resettlement schemes as analogs of the likely health consequences of climate-related migration. Some account is taken of the possible modulation of those health risks by climate change. Discussion: Climate-change–related migration is likely to result in adverse health outcomes, both for displaced and for host populations, particularly in situations of forced migration. However, where migration and other mobility are used as adaptive strategies, health risks are likely to be minimized, and in some cases there will be health gains. Conclusions: Purposeful and timely policy interventions can facilitate the mobility of people, enhance well-being, and maximize social and economic development in both places of origin and places of destination. Nevertheless, the anticipated occurrence of substantial relocation of groups and communities will underscore the fundamental seriousness of human-induced climate change. PMID:22266739

  7. Climate change, food, water and population health in China

    PubMed Central

    Berry, Helen L; Ebi, Kristie; Bambrick, Hilary; Hu, Wenbiao; Green, Donna; Hanna, Elizabeth; Wang, Zhiqiang; Butler, Colin D

    2016-01-01

    Abstract Anthropogenic climate change appears to be increasing the frequency, duration and intensity of extreme weather events. Such events have already had substantial impacts on socioeconomic development and population health. Climate change’s most profound impacts are likely to be on food, health systems and water. This paper explores how climate change will affect food, human health and water in China. Projections indicate that the overall effects of climate change, land conversion and reduced water availability could reduce Chinese food production substantially – although uncertainty is inevitable in such projections. Climate change will probably have substantial impacts on water resources – e.g. changes in rainfall patterns and increases in the frequencies of droughts and floods in some areas of China. Such impacts would undoubtedly threaten population health and well-being in many communities. In the short-term, population health in China is likely to be adversely affected by increases in air temperatures and pollution. In the medium to long term, however, the indirect impacts of climate change – e.g. changes in the availability of food, shelter and water, decreased mental health and well-being and changes in the distribution and seasonality of infectious diseases – are likely to grow in importance. The potentially catastrophic consequences of climate change can only be avoided if all countries work together towards a substantial reduction in the emission of so-called greenhouse gases and a substantial increase in the global population’s resilience to the risks of climate variability and change. PMID:27843166

  8. Community-level phenological response to climate change

    PubMed Central

    Ovaskainen, Otso; Skorokhodova, Svetlana; Yakovleva, Marina; Sukhov, Alexander; Kutenkov, Anatoliy; Kutenkova, Nadezhda; Shcherbakov, Anatoliy; Meyke, Evegeniy; Delgado, Maria del Mar

    2013-01-01

    Climate change may disrupt interspecies phenological synchrony, with adverse consequences to ecosystem functioning. We present here a 40-y-long time series on 10,425 dates that were systematically collected in a single Russian locality for 97 plant, 78 bird, 10 herptile, 19 insect, and 9 fungal phenological events, as well as for 77 climatic events related to temperature, precipitation, snow, ice, and frost. We show that species are shifting their phenologies at dissimilar rates, partly because they respond to different climatic factors, which in turn are shifting at dissimilar rates. Plants have advanced their spring phenology even faster than average temperature has increased, whereas migratory birds have shown more divergent responses and shifted, on average, less than plants. Phenological events of birds and insects were mainly triggered by climate cues (variation in temperature and snow and ice cover) occurring over the course of short periods, whereas many plants, herptiles, and fungi were affected by long-term climatic averages. Year-to-year variation in plants, herptiles, and insects showed a high degree of synchrony, whereas the phenological timing of fungi did not correlate with any other taxonomic group. In many cases, species that are synchronous in their year-to-year dynamics have also shifted in congruence, suggesting that climate change may have disrupted phenological synchrony less than has been previously assumed. Our results illustrate how a multidimensional change in the physical environment has translated into a community-level change in phenology. PMID:23901098

  9. Climate Change

    MedlinePlus

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  10. Leading the Way: Tribal Colleges Prepare Students to Address Climate Change

    ERIC Educational Resources Information Center

    Sorensen, Barbara Ellen

    2011-01-01

    Across the United States, tribal people are noticing adverse changes in the natural world due to climate change--and these changes affect their cultures. Today, tribal colleges and universities (TCUs) are developing and delivering the education and research opportunities needed to produce the next generation of American Indian science,…

  11. Climate change 101 : understanding and responding to global climate change

    DOT National Transportation Integrated Search

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  12. Climate Change and Health: Transcending Silos to Find Solutions.

    PubMed

    Machalaba, Catherine; Romanelli, Cristina; Stoett, Peter; Baum, Sarah E; Bouley, Timothy A; Daszak, Peter; Karesh, William B

    2015-01-01

    Climate change has myriad implications for the health of humans, our ecosystems, and the ecological processes that sustain them. Projections of rising greenhouse gas emissions suggest increasing direct and indirect burden of infectious and noninfectious disease, effects on food and water security, and other societal disruptions. As the effects of climate change cannot be isolated from social and ecological determinants of disease that will mitigate or exacerbate forecasted health outcomes, multidisciplinary collaboration is critically needed. The aim of this article was to review the links between climate change and its upstream drivers (ie, processes leading to greenhouse gas emissions) and health outcomes, and identify existing opportunities to leverage more integrated global health and climate actions to prevent, prepare for, and respond to anthropogenic pressures. We conducted a literature review of current and projected health outcomes associated with climate change, drawing on findings and our collective expertise to review opportunities for adaptation and mitigation across disciplines. Health outcomes related to climate change affect a wide range of stakeholders, providing ready collaborative opportunities for interventions, which can be differentiated by addressing the upstream drivers leading to climate change or the downstream effects of climate change itself. Although health professionals are challenged with risks from climate change and its drivers, the adverse health outcomes cannot be resolved by the public health community alone. A phase change in global health is needed to move from a passive responder in partnership with other societal sectors to drive innovative alternatives. It is essential for global health to step outside of its traditional boundaries to engage with other stakeholders to develop policy and practical solutions to mitigate disease burden of climate change and its drivers; this will also yield compound benefits that help address

  13. Climate change and older Americans: state of the science.

    PubMed

    Gamble, Janet L; Hurley, Bradford J; Schultz, Peter A; Jaglom, Wendy S; Krishnan, Nisha; Harris, Melinda

    2013-01-01

    Older adults make up 13% of the U.S. population, but are projected to account for 20% by 2040. Coinciding with this demographic shift, the rate of climate change is accelerating, bringing rising temperatures; increased risk of floods, droughts, and wildfires; stronger tropical storms and hurricanes; rising sea levels; and other climate-related hazards. Older Americans are expected to be located in places that may be relatively more affected by climate change, including coastal zones and large metropolitan areas. The objective of this review is to assess the vulnerability of older Americans to climate change and to identify opportunities for adaptation. We performed an extensive literature survey and summarized key findings related to demographics; climate stressors relevant to older adults; factors contributing to exposure, sensitivity, and adaptive capacity; and adaptation strategies. A range of physiological and socioeconomic factors make older adults especially sensitive to and/or at risk for exposure to heat waves and other extreme weather events (e.g., hurricanes, floods, droughts), poor air quality, and infectious diseases. Climate change may increase the frequency or severity of these events. Older Americans are likely to be especially vulnerable to stressors associated with climate change. Although a growing body of evidence reports the adverse effects of heat on the health of older adults, research gaps remain for other climate-related risks. We need additional study of the vulnerability of older adults and the interplay of vulnerability, resilience, and adaptive responses to projected climate stressors.

  14. [Progress of research in relation to the impact of climate change on children's health status].

    PubMed

    Gao, J H; Li, L P; Wang, J; Liu, X B; Wu, H X; Li, J; Li, J; Liu, Q Y

    2017-06-10

    Along with global warming, climate change has become one of the biggest public health challenges. The unique metabolism, behavior, physiology and development in children, will make them suffer more from the climate change. In the present review, we summarized the progress and situation of studies on the associations between climate change and children's health also trying to provide adaptation and mitigation strategies. The purpose of this study was to offer scientific evidence for prevention and control on the adverse effects as injuries, diseases and deaths among children that resulted from the changes of climate.

  15. Climate change velocity underestimates climate change exposure in mountainous regions

    Treesearch

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  16. Delays reducing waterborne and water-related infectious diseases in China under climate change

    PubMed Central

    Hodges, Maggie; Belle, Jessica H.; Carlton, Elizabeth J.; Liang, Song; Li, Huazhong; Luo, Wei; Freeman, Matthew C.; Liu, Yang; Gao, Yang; Hess, Jeremy J.; Remais, Justin V.

    2014-01-01

    Despite China’s rapid progress improving water, sanitation and hygiene (WSH) access, in 2011, 471 million people lacked access to improved sanitation and 401 million to household piped water. Because certain infectious diseases are sensitive to changes in both climate and WSH conditions, we projected impacts of climate change on WSH-attributable diseases in China in 2020 and 2030 by coupling estimates of the temperature sensitivity of diarrheal diseases and three vector-borne diseases, temperature projections from global climate models, WSH-infrastructure development scenarios, and projected demographic changes. By 2030, climate change is projected to delay China’s rapid progress toward reducing WSH-attributable infectious disease burden by 8–85 months. This development delay summarizes the adverse impact of climate change on WSH-attributable infectious diseases in China, and can be used in other settings where a significant health burden may accompany future changes in climate even as the total burden of disease falls due to non-climate reasons. PMID:25530812

  17. Delays reducing waterborne and water-related infectious diseases in China under climate change.

    PubMed

    Hodges, Maggie; Belle, Jessica H; Carlton, Elizabeth J; Liang, Song; Li, Huazhong; Luo, Wei; Freeman, Matthew C; Liu, Yang; Gao, Yang; Hess, Jeremy J; Remais, Justin V

    2014-12-01

    Despite China's rapid progress improving water, sanitation and hygiene (WSH) access, in 2011, 471 million people lacked access to improved sanitation and 401 million to household piped water. Because certain infectious diseases are sensitive to changes in both climate and WSH conditions, we projected impacts of climate change on WSH-attributable diseases in China in 2020 and 2030 by coupling estimates of the temperature sensitivity of diarrheal diseases and three vector-borne diseases, temperature projections from global climate models, WSH-infrastructure development scenarios, and projected demographic changes. By 2030, climate change is projected to delay China's rapid progress toward reducing WSH-attributable infectious disease burden by 8-85 months. This development delay summarizes the adverse impact of climate change on WSH-attributable infectious diseases in China, and can be used in other settings where a significant health burden may accompany future changes in climate even as the total burden of disease falls due to non-climate reasons.

  18. Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan

    PubMed Central

    Ali, Sajjad; Liu, Ying; Ishaq, Muhammad; Shah, Tariq; Abdullah; Ilyas, Aasir; Din, Izhar Ud

    2017-01-01

    Pakistan is vulnerable to climate change, and extreme climatic conditions are threatening food security. This study examines the effects of climate change (e.g., maximum temperature, minimum temperature, rainfall, relative humidity, and the sunshine) on the major crops of Pakistan (e.g., wheat, rice, maize, and sugarcane). The methods of feasible generalized least square (FGLS) and heteroscedasticity and autocorrelation (HAC) consistent standard error were employed using time series data for the period 1989 to 2015. The results of the study reveal that maximum temperature adversely affects wheat production, while the effect of minimum temperature is positive and significant for all crops. Rainfall effect towards the yield of a selected crop is negative, except for wheat. To cope with and mitigate the adverse effects of climate change, there is a need for the development of heat- and drought-resistant high-yielding varieties to ensure food security in the country. PMID:28538704

  19. Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan.

    PubMed

    Ali, Sajjad; Liu, Ying; Ishaq, Muhammad; Shah, Tariq; Abdullah; Ilyas, Aasir; Din, Izhar Ud

    2017-05-24

    Pakistan is vulnerable to climate change, and extreme climatic conditions are threatening food security. This study examines the effects of climate change (e.g., maximum temperature, minimum temperature, rainfall, relative humidity, and the sunshine) on the major crops of Pakistan (e.g., wheat, rice, maize, and sugarcane). The methods of feasible generalized least square (FGLS) and heteroscedasticity and autocorrelation (HAC) consistent standard error were employed using time series data for the period 1989 to 2015. The results of the study reveal that maximum temperature adversely affects wheat production, while the effect of minimum temperature is positive and significant for all crops. Rainfall effect towards the yield of a selected crop is negative, except for wheat. To cope with and mitigate the adverse effects of climate change, there is a need for the development of heat- and drought-resistant high-yielding varieties to ensure food security in the country.

  20. Climate change adaptation strategies and mitigation policies

    NASA Astrophysics Data System (ADS)

    García Fernández, Cristina

    2015-04-01

    The pace of climate change and the consequent warming of the Earth's surface is increasing vulnerability and decreasing adaptive capacity. Achieving a successful adaptation depends on the development of technology, institutional organization, financing availability and the exchange of information. Populations living in arid and semi-arid zones, low-lying coastal areas, land with water shortages or at risk of overflow or small islands are particularly vulnerable to climate change. Due to increasing population density in sensitive areas, some regions have become more vulnerable to events such as storms, floods and droughts, like the river basins and coastal plains. Human activities have fragmented and increased the vulnerability of ecosystems, which limit both, their natural adaptation and the effectiveness of the measures adopted. Adaptation means to carry out the necessary modifications for society to adapt to new climatic conditions in order to reduce their vulnerability to climate change. Adaptive capacity is the ability of a system to adjust to climate change (including climate variability and extremes) and to moderate potential damages, to take advantage of opportunities or face the consequences. Adaptation reduces the adverse impacts of climate change and enhance beneficial impacts, but will not prevent substantial cost that are produced by all damages. The performances require adaptation actions. These are defined and implemented at national, regional or local levels since many of the impacts and vulnerabilities depend on the particular economic, geographic and social circumstances of each country or region. We will present some adaptation strategies at national and local level and revise some cases of its implementation in several vulnerable areas. However, adaptation to climate change must be closely related to mitigation policies because the degree of change planned in different climatic variables is a function of the concentration levels that are achieved

  1. Climate change and managing water crisis: Pakistan's perspective.

    PubMed

    Hussain, Mumtaz; Mumtaz, Saniea

    2014-01-01

    Climate change is a global phenomenon manifested mainly through global warming. The International Panel on Climate Change (IPCC) has reported its negative consequences on natural resources, anthropogenic activities, and natural disasters. The El Nino and La Nina have affected hydrologic regimes and ecosystems. It has been observed that the average temperature in 1995 was 0.4°C higher than that in 1895. By the end of the 21st century, 10% of the area of Bangladesh is likely to be submerged by the sea. Most of the islands of Pacific Ocean will disappear. A major part of Maldives will be submerged. The sea level is expected to rise by 30-150 cm. Extreme events such as floods, cyclones, tsunamis, and droughts have become regular phenomena in many parts of the world. Other adverse impacts are proliferation of water-borne diseases, sea water intrusion, salinization of coastal areas, loss of biodiversity, eco-degradation of watersheds and global glacial decline, and haphazard snow melts/thaws. In turn, these factors have serious effect on water resources. Pakistan is confronting similar climate change. Meteorological data reveal that winter temperatures are rising and summers are getting cooler. Temperature is expected to increase by 0.9°C and 1.5°C by years 2020 and 2050, respectively. Water resources in Pakistan are affected by climate change as it impacts the behavior of glaciers, rainfall patterns, greenhouse gas emissions, recurrence of extreme events such as floods and droughts. Severe floods have occurred in the years 1950, 1956, 1957, 1973, 1976, 1978, 1988, 1992, 2010, 2011, and 2012. Pakistan has faced the worst-ever droughts during the period from 1998 to 2004. Pakistan has surface water potential of 140 million acre feet (MAF) and underground water reserve of 56 MAF. It is one of the most water-stressed countries in the world. The per capita annual availability of water has reduced from 5140 m3 in 1950 to 1000 m3 now. It is fast approaching towards water

  2. Climate change velocity underestimates climate change exposure in mountainous regions

    PubMed Central

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  3. Climate change

    USGS Publications Warehouse

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  4. Climate Change and Older Americans: State of the Science

    PubMed Central

    Hurley, Bradford J.; Schultz, Peter A.; Jaglom, Wendy S.; Krishnan, Nisha; Harris, Melinda

    2012-01-01

    Background: Older adults make up 13% of the U.S. population, but are projected to account for 20% by 2040. Coinciding with this demographic shift, the rate of climate change is accelerating, bringing rising temperatures; increased risk of floods, droughts, and wildfires; stronger tropical storms and hurricanes; rising sea levels; and other climate-related hazards. Older Americans are expected to be located in places that may be relatively more affected by climate change, including coastal zones and large metropolitan areas. Objective: The objective of this review is to assess the vulnerability of older Americans to climate change and to identify opportunities for adaptation. Methods: We performed an extensive literature survey and summarized key findings related to demographics; climate stressors relevant to older adults; factors contributing to exposure, sensitivity, and adaptive capacity; and adaptation strategies. Discussion: A range of physiological and socioeconomic factors make older adults especially sensitive to and/or at risk for exposure to heat waves and other extreme weather events (e.g., hurricanes, floods, droughts), poor air quality, and infectious diseases. Climate change may increase the frequency or severity of these events. Conclusions: Older Americans are likely to be especially vulnerable to stressors associated with climate change. Although a growing body of evidence reports the adverse effects of heat on the health of older adults, research gaps remain for other climate-related risks. We need additional study of the vulnerability of older adults and the interplay of vulnerability, resilience, and adaptive responses to projected climate stressors. PMID:23033457

  5. Climate change and environmental concentrations of POPs: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadal, Martí, E-mail: marti.nadal@urv.cat; Marquès, Montse; Mari, Montse

    In recent years, the climate change impact on the concentrations of persistent organic pollutants (POPs) has become a topic of notable concern. Changes in environmental conditions such as the increase of the average temperature, or the UV-B radiation, are likely to influence the fate and behavior of POPs, ultimately affecting human exposure. The state of the art of the impact of climate change on environmental concentrations of POPs, as well as on human health risks, is here reviewed. Research gaps are also identified, while future studies are suggested. Climate change and POPs are a hot issue, for which wide attentionmore » should be paid not only by scientists, but also and mainly by policy makers. Most studies reported in the scientific literature are focused on legacy POPs, mainly polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and pesticides. However, the number of investigations aimed at estimating the impact of climate change on the environmental levels of polycyclic aromatic hydrocarbons (PAHs) is scarce, despite of the fact that exposure to PAHs and photodegradation byproducts may result in adverse health effects. Furthermore, no data on emerging POPs are currently available in the scientific literature. In consequence, an intensification of studies to identify and mitigate the indirect effects of the climate change on POP fate is needed to minimize the human health impact. Furthermore, being this a global problem, interactions between climate change and POPs must be addressed from an international perspective.« less

  6. The threat of climate change to freshwater pearl mussel populations.

    PubMed

    Hastie, Lee C; Cosgrove, Peter J; Ellis, Noranne; Gaywood, Martin J

    2003-02-01

    Changes in climate are occurring around the world and the effects on ecosystems will vary, depending on the extent and nature of these changes. In northern Europe, experts predict that annual rainfall will increase significantly, along with dramatic storm events and flooding in the next 50-100 years. Scotland is a stronghold of the endangered freshwater pearl mussel, Margaritifera margaritifera (L.), and a number of populations may be threatened. For example, large floods have been shown to adversely affect mussels, and although these stochastic events were historically rare, they may now be occurring more often as a result of climate change. Populations may also be affected by a number of other factors, including predicted changes in temperature, sea level, habitat availability, host fish stocks and human activity. In this paper, we explain how climate change may impact M. margaritifera and discuss the general implications for the conservation management of this species.

  7. Empirically Estimating the Potential for Farm-Level Adaptation to Climate Change in Western European Agriculture

    NASA Astrophysics Data System (ADS)

    Moore, F. C.; Lobell, D. B.

    2013-12-01

    Agriculture is one of the economic sectors most exposed to climate change and estimating the sensitivity of food production to these changes is critical for determining the severity of climate change impacts and for informing both adaptation and mitigation policy. While climate change might have adverse effects in many areas, it has long been recognized that farmers have a suite of adaptation options at their disposal including, inter alia, changing planting date, varieties, crops, or the mix and quantity of inputs applied. These adaptations may significantly reduce the adverse impacts of climate change but the potential effectiveness of these options and the speed with which farmers will adopt them remain uncertain. We estimate the sensitivity of crop yields and farm profits in western Europe to climate change with and without the adoption of on-farm adaptations. We use cross-sectional variation across farms to define the long-run response function that includes adaptation and inter-annual variation within farms to define the short-run response function without adaptation. The difference between these can be interpreted as the potential for adaptation. We find that future warming will have a large adverse impact on wheat and barley yields and that adaptation will only be able to mitigate a small fraction of this. Maize, oilseed and sugarbeet yields are more modestly affected and adaptation is more effective for these crops. Farm profits could increase slightly under moderate amounts of warming if adaptations are adopted but will decline in the absence of adaptation. A decomposition of variance gives the relative importance of different sources of uncertainty in projections of climate change impacts. We find that in most cases uncertainty over future adaptation pathways (whether farmers will or will not adopt beneficial adaptations) is the most important source of uncertainty in projecting the effect of temperature changes on crop yields and farm profits. This

  8. The Association Between Learning Climate and Adverse Obstetrical Outcomes in 16 Nontertiary Obstetrics-Gynecology Departments in the Netherlands.

    PubMed

    Smirnova, Alina; Ravelli, Anita C J; Stalmeijer, Renée E; Arah, Onyebuchi A; Heineman, Maas Jan; van der Vleuten, Cees P M; van der Post, Joris A M; Lombarts, Kiki M J M H

    2017-12-01

    To investigate the association between learning climate and adverse perinatal and maternal outcomes in obstetrics-gynecology departments. The authors analyzed 23,629 births and 103 learning climate evaluations from 16 nontertiary obstetrics-gynecology departments in the Netherlands in 2013. Multilevel logistic regressions were used to calculate the odds of adverse perinatal and maternal outcomes, by learning climate score tertile, adjusting for maternal and department characteristics. Adverse perinatal outcomes included fetal or early neonatal mortality, five-minute Apgar score < 7, or neonatal intensive care unit admission for ≥ 24 hours. Adverse maternal outcomes included postpartum hemorrhage and/or transfusion, death, uterine rupture, or third- or fourth-degree perineal laceration. Bias analyses were conducted to quantify the sensitivity of the results to uncontrolled confounding and selection bias. Learning climate scores were significantly associated with increased odds of adverse perinatal outcomes (aOR 2.06, 95% CI 1.14-3.72). Compared with the lowest tertile, departments in the middle tertile had 46% greater odds of adverse perinatal outcomes (aOR 1.46, 95% CI 1.09-1.94); departments in the highest tertile had 69% greater odds (aOR 1.69, 95% CI 1.24-2.30). Learning climate was not associated with adverse maternal outcomes (middle vs. lowest tertile: OR 1.04, 95% CI 0.93-1.16; highest vs. lowest tertile: OR 0.98, 95% CI 0.88-1.10). Learning climate was associated with significantly increased odds of adverse perinatal, but not maternal, outcomes. Research in similar clinical contexts is needed to replicate these findings and explore potential mechanisms behind these associations.

  9. U.S. Global Climate Change Impacts Report, Overview of Sectors

    NASA Astrophysics Data System (ADS)

    Wuebbles, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts by sector, including water resources, energy supply and use, transportation, agriculture, ecosystems, human health and society. The resulting findings for the climate change impacts on these sectors are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Widespread climate-related impacts are occurring now and are expected to increase. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Crop and livestock production will be increasingly challenged. Agriculture is considered one of the sectors most adaptable to changes in climate. However, increased heat, pests, water stress, diseases, and weather extremes will pose adaptation challenges for crop and livestock production. Coastal areas are at increasing risk from sea-level rise and storm surge. Sea-level rise and storm surge place many U.S. coastal areas at increasing risk. Energy and transportation infrastructure and other property in coastal areas are very likely to be adversely affected. Threats to human health will increase. Health impacts of climate change are related to heat stress, waterborne diseases, poor air quality, extreme weather events, and diseases transmitted by insects and rodents. Robust public health infrastructure can reduce the potential for negative impacts. Climate change will interact with many social and environmental stresses. Climate change will combine with pollution, population growth, overuse of resources, urbanization, and other social, economic, and environmental stresses to create larger impacts than from any of these factors alone. Thresholds will be crossed, leading to large changes in climate and ecosystems. There are a variety of thresholds in

  10. Delays in reducing waterborne and water-related infectious diseases in China under climate change

    NASA Astrophysics Data System (ADS)

    Hodges, Maggie; Belle, Jessica H.; Carlton, Elizabeth J.; Liang, Song; Li, Huazhong; Luo, Wei; Freeman, Matthew C.; Liu, Yang; Gao, Yang; Hess, Jeremy J.; Remais, Justin V.

    2014-12-01

    Despite China's rapid progress in improving water, sanitation and hygiene (WSH) access, in 2011, 471 million people lacked access to improved sanitation and 401 million to household piped water. As certain infectious diseases are sensitive to changes in both climate and WSH conditions, we projected impacts of climate change on WSH-attributable diseases in China in 2020 and 2030 by coupling estimates of the temperature sensitivity of diarrhoeal diseases and three vector-borne diseases, temperature projections from global climate models, WSH-infrastructure development scenarios, and projected demographic changes. By 2030, climate change is projected to delay China's rapid progress towards reducing WSH-attributable infectious disease burden by 8-85 months. This development delay summarizes the adverse impact of climate change on WSH-attributable infectious diseases in China, and can be used in other settings where a significant health burden may accompany future changes in climate even as the total burden of disease falls owing to non-climate reasons.

  11. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Roth, Wolff-Michael; Bin Abdullah, Mohd Nor Syahrir

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that…

  12. Climate Change Policy

    NASA Astrophysics Data System (ADS)

    Jepma, Catrinus J.; Munasinghe, Mohan; Bolin, Foreword By Bert; Watson, Robert; Bruce, James P.

    1998-03-01

    There is increasing scientific evidence to suggest that humans are gradually but certainly changing the Earth's climate. In an effort to prevent further damage to the fragile atmosphere, and with the belief that action is required now, the scientific community has been prolific in its dissemination of information on climate change. Inspired by the results of the Intergovernmental Panel on Climate Change's Second Assessment Report, Jepma and Munasinghe set out to create a concise, practical, and compelling approach to climate change issues. They deftly explain the implications of global warming, and the risks involved in attempting to mitigate climate change. They look at how and where to start action, and what organization is needed to be able to implement the changes. This book represents a much needed synopsis of climate change and its real impacts on society. It will be an essential text for climate change researchers, policy analysts, university students studying the environment, and anyone with an interest in climate change issues. A digestible version of the IPCC 1995 Economics Report - written by two of IPCC contributors with a Foreword by two of the editors of Climate Change 1995: Economics of Climate Change: i.e. has unofficial IPCC approval Focusses on policy and economics - important but of marginal interest to scientists, who are more likely to buy this summary than the full IPCC report itself Has case-studies to get the points across Separate study guide workbook will be available, mode of presentation (Web or book) not yet finalized

  13. Climate change and environmental concentrations of POPs: A review.

    PubMed

    Nadal, Martí; Marquès, Montse; Mari, Montse; Domingo, José L

    2015-11-01

    In recent years, the climate change impact on the concentrations of persistent organic pollutants (POPs) has become a topic of notable concern. Changes in environmental conditions such as the increase of the average temperature, or the UV-B radiation, are likely to influence the fate and behavior of POPs, ultimately affecting human exposure. The state of the art of the impact of climate change on environmental concentrations of POPs, as well as on human health risks, is here reviewed. Research gaps are also identified, while future studies are suggested. Climate change and POPs are a hot issue, for which wide attention should be paid not only by scientists, but also and mainly by policy makers. Most studies reported in the scientific literature are focused on legacy POPs, mainly polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and pesticides. However, the number of investigations aimed at estimating the impact of climate change on the environmental levels of polycyclic aromatic hydrocarbons (PAHs) is scarce, despite of the fact that exposure to PAHs and photodegradation byproducts may result in adverse health effects. Furthermore, no data on emerging POPs are currently available in the scientific literature. In consequence, an intensification of studies to identify and mitigate the indirect effects of the climate change on POP fate is needed to minimize the human health impact. Furthermore, being this a global problem, interactions between climate change and POPs must be addressed from an international perspective. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Asian Urban Environment and Climate Change: Preface.

    PubMed

    Hunt, Julian; Wu, Jianping

    2017-09-01

    The Asian Network on Climate Science and Technology (www.ancst.org), in collaboration with Tsinghua University, held a conference on environmental and climate science, air pollution, urban planning and transportation in July 2015, with over 40 Asian experts participating and presentation. This was followed by a meeting with local government and community experts on the practical conclusions of the conference. Of the papers presented at the conference a selection are included in this special issue of Journal of Environmental Science, which also reflects the conclusions of the Paris Climate meeting in Dec 2015, when the major nations of the world agreed about the compelling need to reduce the upward trend of adverse impacts associated with global climate change. Now is the time for urban areas to work out the serious consequences for their populations, but also how they should work together to take action to reduce global warming to benefit their own communities and also the whole planet! Copyright © 2017. Published by Elsevier B.V.

  15. Using in situ management to conserve biodiversity under climate change.

    PubMed

    Greenwood, Owen; Mossman, Hannah L; Suggitt, Andrew J; Curtis, Robin J; Maclean, Ilya M D

    2016-06-01

    Successful conservation will increasingly depend on our ability to help species cope with climate change. While there has been much attention on accommodating or assisting range shifts, less has been given to the alternative strategy of helping species survive climate change through in situ management.Here we provide a synthesis of published evidence examining whether habitat management can be used to offset the adverse impacts on biodiversity of changes in temperature, water availability and sea-level rise. Our focus is on practical methods whereby the local environmental conditions experienced by organisms can be made more suitable.Many studies suggest that manipulating vegetation structure can alter the temperature and moisture conditions experienced by organisms, and several demonstrate that these altered conditions benefit species as regional climatic conditions become unsuitable. The effects of topography on local climatic conditions are even better understood, but the alteration of topography as a climate adaptation tool is not ingrained in conservation practice. Trials of topographic alteration in the field should therefore be a priority for future research.Coastal systems have the natural capacity to keep pace with climate change, but require sufficient sediment supplies and space for landward migration to do so. There is an extensive literature on managed realignment. While the underlying rationale is simple, successful implementation requires careful consideration of elevation and past land use. Even with careful management, restored habitats may not attain the physical and biological attributes of natural habitats. Synthesis and applications . The recent literature provides a compelling case that some of the adverse effects of climate change can be offset by appropriate management. However, much of the evidence for this is indirect and too few studies provide empirical tests of the long-term effectiveness of these management interventions. It is clear

  16. Beyond Wiki to Judgewiki for Transparent Climate Change Decisions

    NASA Astrophysics Data System (ADS)

    Capron, M. E.

    2008-12-01

    Climate Change is like the prisoner's dilemma, a zero-sum game, or cheating in sports. Everyone and every country is tempted to selfishly maintain or advance their standard of living. The tremendous difference between standards of living amplifies the desire to opt out of Climate Change solutions adverse to economic competitiveness. Climate Change is also exceedingly complex. No one person, one organization, one country, or partial collection of countries has the capacity and the global support needed to make decisions on Climate Change solutions. There are thousands of potential actions, tens of thousands of known and unknown environmental and economic impacts. Some actions are belatedly found to be unsustainable beyond token volumes, corn ethanol or soy-biodiesel for example. Mankind can address human nature and complexity with a globally transparent information and decision process available to all 7 billion of us. We need a process that builds trust and simplifies complexity. Fortunately, we have the Internet for trust building communication and computers to simplify complexity. Mankind can produce new software tailored to the challenge. We would combine group information collection software (a wiki) with a decision-matrix (a judge), market forecasting, and video games to produce the tool mankind needs for trust building transparent decisions on Climate Change actions. The resulting software would be a judgewiki.

  17. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change.

    PubMed

    Chen, Xiaochao; Chen, Fanjun; Chen, Yanling; Gao, Qiang; Yang, Xiaoli; Yuan, Lixing; Zhang, Fusuo; Mi, Guohua

    2013-03-01

    The impact of global changes on food security is of serious concern. Breeding novel crop cultivars adaptable to climate change is one potential solution, but this approach requires an understanding of complex adaptive traits for climate-change conditions. In this study, plant growth, nitrogen (N) uptake, and yield in relation to climatic resource use efficiency of nine representative maize cultivars released between 1973 and 2000 in China were investigated in a 2-year field experiment under three N applications. The Hybrid-Maize model was used to simulate maize yield potential in the period from 1973 to 2011. During the past four decades, the total thermal time (growing degree days) increased whereas the total precipitation and sunshine hours decreased. This climate change led to a reduction of maize potential yield by an average of 12.9% across different hybrids. However, the potential yield of individual hybrids increased by 118.5 kg ha(-1)  yr(-1) with increasing year of release. From 1973 to 2000, the use efficiency of sunshine hours, thermal time, and precipitation resources increased by 37%, 40%, and 41%, respectively. The late developed hybrids showed less reduction in yield potential in current climate conditions than old cultivars, indicating some adaptation to new conditions. Since the mid-1990s, however, the yield impact of climate change exhibited little change, and even a slight worsening for new cultivars. Modern breeding increased ear fertility and grain-filling rate, and delayed leaf senescence without modification in net photosynthetic rate. The trade-off associated with delayed leaf senescence was decreased grain N concentration rather than increased plant N uptake, therefore N agronomic efficiency increased simultaneously. It is concluded that modern maize hybrids tolerate the climatic changes mainly by constitutively optimizing plant productivity. Maize breeding programs in the future should pay more attention to cope with the limiting

  18. Cinematic climate change, a promising perspective on climate change communication.

    PubMed

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  19. Managing climate change refugia for climate adaptation

    USGS Publications Warehouse

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  20. Managing Climate Change Refugia for Climate Adaptation.

    PubMed

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  1. Managing Climate Change Refugia for Climate Adaptation

    PubMed Central

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  2. Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health?

    PubMed

    Swaminathan, Ashwin; Lucas, Robyn M; Harley, David; McMichael, Anthony J

    2014-11-11

    The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations-particularly for children-to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change.

  3. Engaging a moving target: Adapting to rates of climate change

    NASA Astrophysics Data System (ADS)

    Shayegh, S.; Caldeira, K.; Moreno-Cruz, J.

    2015-12-01

    Climate change is affecting the planet and its human and natural systems at an increasing rate. As temperatures continue to rise, the international community has increasingly been considering adaptation measures to prepare for future climate change. However, most discussion around adaptation strategies has focused on preparedness for some expected amount of climate change impacts, e.g. 2 meters sea level rise. In this study, we discuss adaptation to rates of change as an alternative conceptual framework for thinking about adaptation. Adaptation is not only about adapting to amounts of change, but the rate at which these changes occur is also critically important. We ground our discussion with an example of optimal coastal investment in the face of ongoing sea level rise. Sea level rise threatens coastal assets. Finite resources could be devoted to building infrastructure further inland or to building coastal defense systems. A possible policy response could be to create a "no-build" coastal buffer zone that anticipates a future higher sea level. We present a quantitative model that illustrates the interplay among various important factors (rate of sea level rise, discount rate, capital depreciation rate, attractiveness of coastal land, etc). For some cases, strategies that combine periodic defensive investments (e.g. dikes) with planned retreat can maximize welfare when adapting to rates of climate change. In other cases, planned retreat may be optimal. It is important to prepare for ongoing increasing amounts of climate change. Preparing for a fixed amount of climate change can lead to a suboptimal solution. Climate is likely to continue changing throughout this century and beyond. To reduce adverse climate impacts, ecosystems and human systems will need to continuously adapt to a moving target.

  4. FRAMEWORK TO EVALUATE CLIMATE CHANGE RISKS TO THREATENED AND ENDANGERED SPECIES

    EPA Science Inventory

    Wildlife species listed as Threatened or Endangered under the Endangered Species Act of 1973 (T&E species) suffer a significant risk of extinction in North America due to the adverse effects of current natural or anthropogenic stressors. Climate change, either acting alone or by ...

  5. Evaluation of Climate Change Impact on Drinking Water Treatment Plant Operation

    EPA Science Inventory

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and, therefore, will influence the design and operation of current and future drinking water treatment systems. Some of these impacts may lead to violations ...

  6. Mapping human vulnerability to climate change in the Brazilian Amazon: The construction of a municipal vulnerability index

    PubMed Central

    Confalonieri, Ulisses; Madureira, Ana Paula; Duval, Isabela de Brito; dos Santos, Rhavena Barbosa; Margonari, Carina

    2018-01-01

    Vulnerability, understood as the propensity to be adversely affected, has attained importance in the context of climate change by helping to understand what makes populations and territories predisposed to its impacts. Conditions of vulnerability may vary depending on the characteristics of each territory studied—social, environmental, infrastructural, public policies, among others. Thus, the present study aimed to evaluate what makes the municipalities of the state of Amazonas, Brazil, vulnerable to climate change in the context of the largest tropical forest in the world, and which regions of the State are the most susceptible. A Municipal Vulnerability Index was developed, which was used to associate current socio-environmental characteristics of municipalities with climate change scenarios in order to identify those that may be most affected by climate change. The results showed that poor adaptive capacity and poverty had the most influence on current vulnerability of the municipalities of Amazonas with the most vulnerable areas being the southern, northern, and eastern regions of the state. When current vulnerability was related to future climate change projections, the most vulnerable areas were the northern, northeastern, extreme southern, and southwestern regions. From a socio-environmental and climatic point of view, these regions should be a priority for public policy efforts to reduce their vulnerability and prepare them to cope with the adverse aspects of climate change. PMID:29444086

  7. Mapping human vulnerability to climate change in the Brazilian Amazon: The construction of a municipal vulnerability index.

    PubMed

    Menezes, Júlia Alves; Confalonieri, Ulisses; Madureira, Ana Paula; Duval, Isabela de Brito; Santos, Rhavena Barbosa Dos; Margonari, Carina

    2018-01-01

    Vulnerability, understood as the propensity to be adversely affected, has attained importance in the context of climate change by helping to understand what makes populations and territories predisposed to its impacts. Conditions of vulnerability may vary depending on the characteristics of each territory studied-social, environmental, infrastructural, public policies, among others. Thus, the present study aimed to evaluate what makes the municipalities of the state of Amazonas, Brazil, vulnerable to climate change in the context of the largest tropical forest in the world, and which regions of the State are the most susceptible. A Municipal Vulnerability Index was developed, which was used to associate current socio-environmental characteristics of municipalities with climate change scenarios in order to identify those that may be most affected by climate change. The results showed that poor adaptive capacity and poverty had the most influence on current vulnerability of the municipalities of Amazonas with the most vulnerable areas being the southern, northern, and eastern regions of the state. When current vulnerability was related to future climate change projections, the most vulnerable areas were the northern, northeastern, extreme southern, and southwestern regions. From a socio-environmental and climatic point of view, these regions should be a priority for public policy efforts to reduce their vulnerability and prepare them to cope with the adverse aspects of climate change.

  8. Climate Change, Wildland Fires and Public Health | Science ...

    EPA Pesticide Factsheets

    Climate change is contributing to an increase in the severity of wildland fires. The annual acreage burned in the U.S. has risen steadily since 1985, and the fire season has lengthened. Wildland fires impair air quality by producing massive quantities of particulate air pollutants and ozone precursors. Together particles and ozone exposures increase the risk of premature death and acute and chronic cardiovascular and respiratory morbidity among vulnerable individuals. Future wildfires are predicted to be larger, more severe and more frequent in some regions of the U.S and will contribute to an even greater proportion of the ambient air pollution, the disease burden and healthcare costs.While the projected magnitude of the public health impact of climate change-related wildfire events is uncertain, it is clear that the proportion of the U.S. population vulnerable to the adverse health effects of wildland fire and its smoke is increasing. An aging population with chronic respiratory diseases and increasing obesity and diabetes that heralds more cardiovascular disease will increase the vulnerability of the population to the adverse effects of wildfire smoke and associated stressors. Additionally, physiological changes attendant to aging decrease the capacity of aged-adults to tolerate wildfire smoke, heat, humidity, evacuation and recovery. Expansion of our cities into the wildland-urban interface is also placing a greater proportion of the population in clo

  9. The Changing Climate.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses the global change of climate. Presents the trend of climate change with graphs. Describes mathematical climate models including expressions for the interacting components of the ocean-atmosphere system and equations representing the basic physical laws governing their behavior. Provides three possible responses on the change. (YP)

  10. Effects of City Expansion on Heat Stress under Climate Change Conditions

    PubMed Central

    Argüeso, Daniel; Evans, Jason P.; Pitman, Andrew J.; Di Luca, Alejandro

    2015-01-01

    We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990–2009) and future (2040–2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort. PMID:25668390

  11. Developing Health-Related Indicators of Climate Change: Australian Stakeholder Perspectives.

    PubMed

    Navi, Maryam; Hansen, Alana; Nitschke, Monika; Hanson-Easey, Scott; Pisaniello, Dino

    2017-05-22

    Climate-related health indicators are potentially useful for tracking and predicting the adverse public health effects of climate change, identifying vulnerable populations, and monitoring interventions. However, there is a need to understand stakeholders' perspectives on the identification, development, and utility of such indicators. A qualitative approach was used, comprising semi-structured interviews with key informants and service providers from government and non-government stakeholder organizations in South Australia. Stakeholders saw a need for indicators that could enable the monitoring of health impacts and time trends, vulnerability to climate change, and those which could also be used as communication tools. Four key criteria for utility were identified, namely robust and credible indicators, specificity, data availability, and being able to be spatially represented. The variability of risk factors in different regions, lack of resources, and data and methodological issues were identified as the main barriers to indicator development. This study demonstrates a high level of stakeholder awareness of the health impacts of climate change, and the need for indicators that can inform policy makers regarding interventions.

  12. Adaptation to climate change in the Ontario public health sector

    PubMed Central

    2012-01-01

    Background Climate change is among the major challenges for health this century, and adaptation to manage adverse health outcomes will be unavoidable. The risks in Ontario – Canada’s most populous province – include increasing temperatures, more frequent and intense extreme weather events, and alterations to precipitation regimes. Socio-economic-demographic patterns could magnify the implications climate change has for Ontario, including the presence of rapidly growing vulnerable populations, exacerbation of warming trends by heat-islands in large urban areas, and connectedness to global transportation networks. This study examines climate change adaptation in the public health sector in Ontario using information from interviews with government officials. Methods Fifty-three semi-structured interviews were conducted, four with provincial and federal health officials and 49 with actors in public health and health relevant sectors at the municipal level. We identify adaptation efforts, barriers and opportunities for current and future intervention. Results Results indicate recognition that climate change will affect the health of Ontarians. Health officials are concerned about how a changing climate could exacerbate existing health issues or create new health burdens, specifically extreme heat (71%), severe weather (68%) and poor air-quality (57%). Adaptation is currently taking the form of mainstreaming climate change into existing public health programs. While adaptive progress has relied on local leadership, federal support, political will, and inter-agency efforts, a lack of resources constrains the sustainability of long-term adaptation programs and the acquisition of data necessary to support effective policies. Conclusions This study provides a snapshot of climate change adaptation and needs in the public health sector in Ontario. Public health departments will need to capitalize on opportunities to integrate climate change into policies and programs

  13. Physio-climatic controls on vulnerability of watersheds to climate and land use change across the U. S.

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ankit; Singh, Riddhi

    2016-11-01

    Understanding how a watershed's physio-climatic characteristics affect its vulnerability to environmental (climatic and land use) change is crucial for managing these complex systems. In this study, we combine the strengths of recently developed exploratory modeling frameworks and comparative hydrology to quantify the relationship between watershed's vulnerability and its physio-climatic characteristics. We propose a definition of vulnerability that can be used by a diverse range of water system managers and is useful in the presence of large uncertainties in drivers of environmental change. This definition is related to adverse climate change and land use thresholds that are quantified using a recently developed exploratory modeling approach. In this way, we estimate the vulnerability of 69 watersheds in the United States to climate and land use change. We explore definitions of vulnerability that describe average or extreme flow conditions, as well as others that are relevant from the point of view of instream organisms. In order to understand the dominant controls on vulnerability, we correlate these indices with watershed's characteristics describing its topography, geology, drainage, climate, and land use. We find that mean annual flow is more vulnerable to reductions in precipitation in watersheds with lower average soil permeability, lower baseflow index, lower forest cover, higher topographical wetness index, and vice-versa. Our results also indicate a potential mediation of climate change impacts by regional groundwater systems. By developing such relationships across a large range of watersheds, such information can potentially be used to assess the vulnerability of ungauged watersheds to uncertain environmental change.

  14. Climate Change and its Impacts on Tourism and Livelihood in Manaslu Conservation Area, Nepal

    NASA Astrophysics Data System (ADS)

    K C, A.

    2016-12-01

    The Hindukush Himalayan region including Nepal, a country reliant on tourism, is particularly sensitive to climate change. However, there are considerable gaps in research regarding tourism, livelihood and climate change in Nepal. The present research assesses the impact of climate change on tourism and livelihood in the Manaslu Conservation Area (MCA) of Nepal. Seventy-six households were interviewed followed by three focus group discussions and five key informant interviews. The empirical data collected at the site are complemented by secondary scientific data on climate and tourism. Correlation, regression, descriptive and graphical analysis was carried out for the presentation and analysis of data. Local people perceived that temperature and rainfall have been increasing in the study site as a result of climate change. It was also verified by the observed scientific data of temperature and precipitation. Socioeconomic variables such as marital status, size of household, education and landholding status had positive effect on tourism participation while livestock-holding status and occupation of the household had negative effect on tourism participation. Number of visitors is increasing in MCA in recent years, and tourism participation is helping local people to earn more money and improve their living standard. Till the date, there is positive impact of climate change on tourism sector in the study area. But, unfavorable weather change phenomena, intense rainfall and snowfall, melting of snow, occurrence of hydrological and climatic hazards and increase in temperature may have adverse impact on the tourism and livelihood in the mountainous area. Such type of adverse impact of climate change and tourism is already experienced in the case of Annapurna region and Mt. Everest region as tourist were trapped and affected by unfavorable weather change phenomena. In response to gradually warming temperature and decreasing snowfall, there seems an urgent need for

  15. Scoping the proximal and distal dimensions of climate change on health and wellbeing.

    PubMed

    Morris, George Paterson; Reis, Stefan; Beck, Sheila Anne; Fleming, Lora Elderkin; Adger, William Neil; Benton, Timothy Guy; Depledge, Michael Harold

    2017-12-05

    The impacts of climate on health and wellbeing occur in time and space and through a range of indirect, complicated mechanisms. This diversity of pathways has major implications for national public health planning and influence on interventions that might help to mitigate and adapt to rapidly changing environmental conditions, nationally and internationally. This paper draws upon evidence from public health and adverse impact studies across climate science, hydrology, agriculture, public health, and the social sciences. It presents a conceptual model to support decision-making by recognizing both the proximal and distal pathways from climate-induced environmental change to national health and wellbeing. The proximal and distal pathways associated with food security, migration and mobility illustrate the diverse climate change influences in different geographic locations over different timescales. We argue that greater realization and articulation of proximal and distal pathways should radically alter how climate change is addressed as a national and international public health challenge.

  16. Managing Climate Change Refugia for Climate Adaptation ...

    EPA Pesticide Factsheets

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, locations that may be unusually buffered from climate change effects so as to increase persistence of valued resources. Here we distinguish between paleoecological and contemporary viewpoints, characterize physical and ecological processes that create and maintain climate change refugia, summarize the process of identifying and mapping them, and delineate how refugia can fit into the existing framework of natural resource management. We also suggest three primary courses of action at these sites: prioritization, protection, and propagation. Although not a panacea, managing climate change refugia can be an important adaptation option for conserving valuable resources in the face of ongoing and future climate change. “In a nutshell” (100 words) • Climate change refugia are defined as areas relatively buffered from contemporary climate change, enabling persistence of valued physical, ecological, and cultural resources. • Refugia can be incorporated as key components of a climate adaptation strategy because their prioritization by management may enable their associated resources to persist locally and eventually spread to future suitable habitat. • Steps for

  17. The climate change-infectious disease nexus: is it time for climate change syndemics?

    PubMed

    Heffernan, Claire

    2013-12-01

    Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.

  18. Northwest Ohio crop yield benefits of water capture and subirrigation based on future climate change projections

    USDA-ARS?s Scientific Manuscript database

    Climate change projections for the Midwest U.S. indicate increased growing season crop water deficits in the future that will adversely impact the sustainability of agricultural production. Systems that capture water on site for later subirrigation use have potential as a climate adaptation strateg...

  19. [Evolution of maize climate productivity and its response to climate change in Heilongjiang Province, China.

    PubMed

    Li, Xiu Fen; Zhao, Hui Ying; Zhu, Hai Xia; Wang, Ping; Wang, Qiu Jing; Wang, Ming; Li, Yu Guang

    2016-08-01

    Under the background of climate change, revealing the change trend and spatial diffe-rence of maize climate productivity in-depth and understanding the regularity of maize climatic resources utilization can provide scientific basis for the macro-decision of agricultural production in Heilongjiang Province. Based on the 1981-2014 meteorological data of 72 weather stations and the corresponding maize yield data in Heilongjiang Province, by the methods of step by step revisal, spatial interpolation and linear trend analysis, this paper studied the photosynthetic productivity (PP), light-temperature productivity (LTP), and climatic productivity (CP) of spring maize, and their temporal and spatial variation characteristics, main influencing factors and light energy utilization efficiency, and evaluated the maize climate productivities under different climate scenarios in the future. The results showed that during the study period, the mean PP, LTP and CP in Heilongjiang Province were 26558, 19953, 18742 kg·hm -2 , respectively. Maize PP, LTP and CP were high in plains and low in mountains, and gradually decreased from southwest to northeast. PP, LTP and CP presented significantly increasing trends, and the increase rates were 378, 723 and 560 kg·hm -2 ·(10 a) -1 , respectively. The increase of radiation and temperature had positive effect on maize production in Heilongjiang Province. The potential productivity of maize presented significant response to climate change. The decrease of solar radiation led to the decline of PP in western Songnen Plain, but the increased temperature compensated the negative effect of solar radiation, so the downward trend of LTP was slowed. The response to climate warming was particularly evident in North and East, and LTP was significantly increased, which was sensitive to the change of precipitation in southwest of Songnen Plain and part of Sanjiang Plain. The average ratio of maize actual yield to its climate productivity was only 24

  20. Climate Change Schools Project...

    ERIC Educational Resources Information Center

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  1. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    PubMed

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  2. Advancing Research Methods to Detect Impact of Climate Change on Health in Grand'Anse, Haiti

    NASA Astrophysics Data System (ADS)

    Barnhart, S.; Coq, R. N.; Frederic, R.; DeRiel, E.; Camara, H.; Barnhart, K. R.

    2013-12-01

    Haiti is considered particularly vulnerable to the effects of climate change, but directly linking climate change to health effects is limited by the lack of robust data and the multiple determinants of health. Worsening storms and rising temperatures in this rugged country with high poverty is likely to adversely affect economic activity, population growth and other determinants of health. For the past two years, the Univ. of Washington has supported the public hospital in the department of Grand'Anse. Grand'Anse, a relatively contained region in SW Haiti with an area of 11,912 km2, is predominantly rural with a population of 350,000 and is bounded to the south by peaks up to 2,347 m. Grand'Anse would serve as an excellent site to assess the interface between climate change and health. The Demographic and Health Survey (DHS) shows health status is low relative to other countries. Estimates of climate change for Jeremie, the largest city in Grand'Anse, predict the mean monthly temperature will increase from 26.1 to 27.3 oC while mean monthly rainfall will decrease from 80.5 to 73.5 mm over the next 60 years. The potential impact of these changes ranges from threatening food security to greater mortality. Use of available secondary data such as indicators of climate change and DHS health status are not likely to offer sufficient resolution to detect positive or negative impacts of climate change on health. How might a mixed methods approach incorporating secondary data and quantitative and qualitative survey data on climate, economic activity, health and determinants of health address the hypothesis: Climate change does not adversely affect health? For example, in Haiti most women deliver at home. Maternal mortality is high at 350 deaths/100,000 deliveries. This compares to deliveries in facilities where the median rate is less than 100/100,000. Thus, maternal mortality is closely linked to access to health care in this rugged mountainous country. Climate change

  3. Effect of clinical vignettes on senior medical students' opinions of climate change.

    PubMed

    Prasad, Vinay; Thistlethwaite, William; Dale, William

    2011-06-01

    The consequences of climate change directly threaten human health. Some have argued that, as such, doctors have a special duty to solve climate change. Despite such recommendations, to our knowledge, there has been no previous work documenting physician attitudes on climate change, or the stability of those opinions. We invited 523 fourth-year medical students to a survey asking their opinion on climate change and their opinion regarding one of two fictional medical vignettes. In the vignettes, which are analogous to the climate change issue, students decide whether to discontinue a drug that may be adversely affecting laboratory values. In the climate change question, students are asked whether the United States should take efforts to discontinue the use of fossil fuels. Students are randomized to the order in which they receive the questions. Ninety-five percent (95% CI 89.1%-100%) of students initially asked about climate change feel the United States should take steps to curb carbon dioxide emissions, while only 73% (95% CI 57.5%-89.2%) of students respond similarly if first given an analogous patient vignette. Conversely, in all cases where a fictional medical vignette follows the climate change question, students are more likely to cease using a potentially harmful agent (66% CI 53.5%-71.8% vs. 52% CI 43.3%-67.1%). Our results suggest that student physician attitudes to climate change are mutable. Priming students into "medical mode" may alter their opinions on the scientific merit of nonmedical issues, and may be a vestige of a hidden medical curriculum. Further studies should explore the interrelationship between other sociopolitical beliefs and medical decision making.

  4. Health impacts of climate change and health and social inequalities in the UK.

    PubMed

    Paavola, Jouni

    2017-12-05

    This article examines how social and health inequalities shape the health impacts of climate change in the UK, and what the implications are for climate change adaptation and health care provision. The evidence generated by the other articles of the special issue were interpreted using social justice reasoning in light of additional literature, to draw out the key implications of health and social inequalities for health outcomes of climate change. Exposure to heat and cold, air pollution, pollen, food safety risks, disruptions to access to and functioning of health services and facilities, emerging infections and flooding are examined as the key impacts of climate change influencing health outcomes. Age, pre-existing medical conditions and social deprivation are found to be the key (but not only) factors that make people vulnerable and to experience more adverse health outcomes related to climate change impacts. In the future, climate change, aging population and decreasing public spending on health and social care may aggravate inequality of health outcomes related to climate change. Health education and public preparedness measures that take into account differential exposure, sensitivity and adaptive capacity of different groups help address health and social inequalities to do with climate change. Adaptation strategies based on individual preparedness, action and behaviour change may aggravate health and social inequalities due to their selective uptake, unless they are coupled with broad public information campaigns and financial support for undertaking adaptive measures.

  5. Improving Communication About Potentially Catastrophic Risks of Climate Change

    NASA Astrophysics Data System (ADS)

    Ward, R. E. T.; Stern, N. H.

    2014-12-01

    Scientific assessments of future climate change tend to focus on central estimates and may understate or ignore the significance of low probability outcomes that may have extremely severe consequences. This relative neglect of tail risks is partly a result of traditions in prediction and forecasting, and conservatism about phenomena for which few data and information exist. The misinterpretation of such scientific assessments can have adverse results. Even though the central estimates of high emissions scenarios present obvious dangers, the tails of lower emissions scenarios still contain very serious risks which may be overlooked by policy-makers. Economic analyses may omit the possibility of catastrophic impacts, leading to substantial under-estimates of damage caused by climate change. So how do we avoid these shortcomings and achieve more effective communication about the risks of climate change? The scientific assessments of climate change differ in significant ways from the formal risk assessment methods successfully employed in other fields. We outline a 'good practice' approach to the identification, assessment and communication of potentially catastrophic risks based on examples from sectors such as civil engineering, national security and insurance. We illustrate how this 'good practice' approach could be applied to provide a better presentation of some catastrophic tail risks that are outlined in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The risks we consider include the possibility of 'extreme' rises in temperature and sea level lying outside the central projections described in the report, and the plausibility of significant releases of methane from the thawing of permafrost. Using these illustrations, we examine how scientific researchers can improve their communication about climate change to assist decision-making, and how policy-makers and politicians might respond differently to alternative presentations of

  6. Climate change alters the optimal wind-dependent flight routes of an avian migrant

    PubMed Central

    Yamaguchi, Noriyuki M.; Higuchi, Hiroyoshi

    2017-01-01

    Migratory birds can be adversely affected by climate change as they encounter its geographically uneven impacts in various stages of their life cycle. While a wealth of research is devoted to the impacts of climate change on distribution range and phenology of migratory birds, the indirect effects of climate change on optimal migratory routes and flyways, through changes in air movements, are poorly understood. Here, we predict the influence of climate change on the migratory route of a long-distant migrant using an ensemble of correlative modelling approaches, and present and future atmospheric data obtained from a regional climate model. We show that changes in wind conditions by mid-century will result in a slight shift and reduction in the suitable areas for migration of the study species, the Oriental honey-buzzard, over a critical section of its autumn journey, followed by a complete loss of this section of the traditional route by late century. Our results highlight the need for investigating the consequences of climate change-induced disturbance in wind support for long-distance migratory birds, particularly species that depend on the wind to cross ecological barriers, and those that will be exposed to longer journeys due to future range shifts. PMID:28469028

  7. Climate change alters the optimal wind-dependent flight routes of an avian migrant.

    PubMed

    Nourani, Elham; Yamaguchi, Noriyuki M; Higuchi, Hiroyoshi

    2017-05-17

    Migratory birds can be adversely affected by climate change as they encounter its geographically uneven impacts in various stages of their life cycle. While a wealth of research is devoted to the impacts of climate change on distribution range and phenology of migratory birds, the indirect effects of climate change on optimal migratory routes and flyways, through changes in air movements, are poorly understood. Here, we predict the influence of climate change on the migratory route of a long-distant migrant using an ensemble of correlative modelling approaches, and present and future atmospheric data obtained from a regional climate model. We show that changes in wind conditions by mid-century will result in a slight shift and reduction in the suitable areas for migration of the study species, the Oriental honey-buzzard, over a critical section of its autumn journey, followed by a complete loss of this section of the traditional route by late century. Our results highlight the need for investigating the consequences of climate change-induced disturbance in wind support for long-distance migratory birds, particularly species that depend on the wind to cross ecological barriers, and those that will be exposed to longer journeys due to future range shifts. © 2017 The Author(s).

  8. Development, malaria and adaptation to climate change: a case study from India.

    PubMed

    Garg, Amit; Dhiman, R C; Bhattacharya, Sumana; Shukla, P R

    2009-05-01

    India has reasons to be concerned about climate change. Over 650 million people depend on climate-sensitive sectors, such as rain-fed agriculture and forestry, for livelihood and over 973 million people are exposed to vector borne malarial parasites. Projection of climatic factors indicates a wider exposure to malaria for the Indian population in the future. If precautionary measures are not taken and development processes are not managed properly some developmental activities, such as hydro-electric dams and irrigation canal systems, may also exacerbate breeding grounds for malaria. This article integrates climate change and developmental variables in articulating a framework for integrated impact assessment and adaptation responses, with malaria incidence in India as a case study. The climate change variables include temperature, rainfall, humidity, extreme events, and other secondary variables. Development variables are income levels, institutional mechanisms to implement preventive measures, infrastructure development that could promote malarial breeding grounds, and other policies. The case study indicates that sustainable development variables may sometimes reduce the adverse impacts on the system due to climate change alone, while it may sometimes also exacerbate these impacts if the development variables are not managed well and therefore they produce a negative impact on the system. The study concludes that well crafted and well managed developmental policies could result in enhanced resilience of communities and systems, and lower health impacts due to climate change.

  9. Development, Malaria and Adaptation to Climate Change: A Case Study from India

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Dhiman, R. C.; Bhattacharya, Sumana; Shukla, P. R.

    2009-05-01

    India has reasons to be concerned about climate change. Over 650 million people depend on climate-sensitive sectors, such as rain-fed agriculture and forestry, for livelihood and over 973 million people are exposed to vector borne malarial parasites. Projection of climatic factors indicates a wider exposure to malaria for the Indian population in the future. If precautionary measures are not taken and development processes are not managed properly some developmental activities, such as hydro-electric dams and irrigation canal systems, may also exacerbate breeding grounds for malaria. This article integrates climate change and developmental variables in articulating a framework for integrated impact assessment and adaptation responses, with malaria incidence in India as a case study. The climate change variables include temperature, rainfall, humidity, extreme events, and other secondary variables. Development variables are income levels, institutional mechanisms to implement preventive measures, infrastructure development that could promote malarial breeding grounds, and other policies. The case study indicates that sustainable development variables may sometimes reduce the adverse impacts on the system due to climate change alone, while it may sometimes also exacerbate these impacts if the development variables are not managed well and therefore they produce a negative impact on the system. The study concludes that well crafted and well managed developmental policies could result in enhanced resilience of communities and systems, and lower health impacts due to climate change.

  10. A Framework to Assess the Impacts of Climate Change on ...

    EPA Pesticide Factsheets

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a ba

  11. Climate change. Accelerating extinction risk from climate change.

    PubMed

    Urban, Mark C

    2015-05-01

    Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change-induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions. Copyright © 2015, American Association for the Advancement of Science.

  12. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks

    USGS Publications Warehouse

    Hooper, Michael J.; Ankley, Gerald T.; Cristol, Daniel A.; Maryoung, Lindley A.; Noyes, Pamela D.; Pinkerton, Kent E.

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical–GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical–climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments.

  13. INTERACTIONS BETWEEN CHEMICAL AND CLIMATE STRESSORS: A ROLE FOR MECHANISTIC TOXICOLOGY IN ASSESSING CLIMATE CHANGE RISKS

    PubMed Central

    Hooper, Michael J; Ankley, Gerald T; Cristol, Daniel A; Maryoung, Lindley A; Noyes, Pamela D; Pinkerton, Kent E

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical–GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical–climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments. Environ. Toxicol. Chem. 2013;32:32–48. © 2012 SETAC PMID:23136056

  14. Potential distribution of dengue fever under scenarios of climate change and economic development.

    PubMed

    Aström, Christofer; Rocklöv, Joacim; Hales, Simon; Béguin, Andreas; Louis, Valerie; Sauerborn, Rainer

    2012-12-01

    Dengue fever is the most important viral vector-borne disease with ~50 million cases per year globally. Previous estimates of the potential effect of global climate change on the distribution of vector-borne disease have not incorporated the effect of socioeconomic factors, which may have biased the results. We describe an empirical model of the current geographic distribution of dengue, based on the independent effects of climate and gross domestic product per capita (GDPpc, a proxy for socioeconomic development). We use the model, along with scenario-based projections of future climate, economic development, and population, to estimate populations at risk of dengue in the year 2050. We find that both climate and GDPpc influence the distribution of dengue. If the global climate changes as projected but GDPpc remained constant, the population at risk of dengue is estimated to increase by about 0.28 billion in 2050. However, if both climate and GDPpc change as projected, we estimate a decrease of 0.12 billion in the population at risk of dengue in 2050. Empirically, the geographic distribution of dengue is strongly dependent on both climatic and socioeconomic variables. Under a scenario of constant GDPpc, global climate change results in a modest but important increase in the global population at risk of dengue. Under scenarios of high GDPpc, this adverse effect of climate change is counteracted by the beneficial effect of socioeconomic development.

  15. American Thoracic Society Member Survey on Climate Change and Health

    PubMed Central

    Bloodhart, Brittany; Ewart, Gary; Thurston, George D.; Balmes, John R.; Guidotti, Tee L.; Maibach, Edward W.

    2015-01-01

    The American Thoracic Society (ATS), in collaboration with George Mason University, surveyed a random sample of ATS members to assess their perceptions of, clinical experiences with, and preferred policy responses to climate change. An e-mail containing an invitation from the ATS President and a link to an online survey was sent to 5,500 randomly selected U.S. members; up to four reminder e-mails were sent to nonrespondents. Responses were received from members in 49 states and the District of Columbia (n = 915); the response rate was 17%. Geographic distribution of respondents mirrored that of the sample. Survey estimates’ confidence intervals were ±3.5% or smaller. Results indicate that a large majority of ATS members have concluded that climate change is happening (89%), that it is driven by human activity (68%), and that it is relevant to patient care (“a great deal”/“a moderate amount”) (65%). A majority of respondents indicated they were already observing health impacts of climate change among their patients, most commonly as increases in chronic disease severity from air pollution (77%), allergic symptoms from exposure to plants or mold (58%), and severe weather injuries (57%). A larger majority anticipated seeing these climate-related health impacts in the next 2 decades. Respondents indicated that physicians and physician organizations should play an active role in educating patients, the public, and policy makers on the human health effects of climate change. Overall, ATS members are observing that human health is already adversely affected by climate change and support responses to address this situation. PMID:25535822

  16. American Thoracic Society member survey on climate change and health.

    PubMed

    Sarfaty, Mona; Bloodhart, Brittany; Ewart, Gary; Thurston, George D; Balmes, John R; Guidotti, Tee L; Maibach, Edward W

    2015-02-01

    The American Thoracic Society (ATS), in collaboration with George Mason University, surveyed a random sample of ATS members to assess their perceptions of, clinical experiences with, and preferred policy responses to climate change. An e-mail containing an invitation from the ATS President and a link to an online survey was sent to 5,500 randomly selected U.S. members; up to four reminder e-mails were sent to nonrespondents. Responses were received from members in 49 states and the District of Columbia (n = 915); the response rate was 17%. Geographic distribution of respondents mirrored that of the sample. Survey estimates' confidence intervals were ±3.5% or smaller. Results indicate that a large majority of ATS members have concluded that climate change is happening (89%), that it is driven by human activity (68%), and that it is relevant to patient care ("a great deal"/"a moderate amount") (65%). A majority of respondents indicated they were already observing health impacts of climate change among their patients, most commonly as increases in chronic disease severity from air pollution (77%), allergic symptoms from exposure to plants or mold (58%), and severe weather injuries (57%). A larger majority anticipated seeing these climate-related health impacts in the next 2 decades. Respondents indicated that physicians and physician organizations should play an active role in educating patients, the public, and policy makers on the human health effects of climate change. Overall, ATS members are observing that human health is already adversely affected by climate change and support responses to address this situation.

  17. Implications of global climate change for housing, human settlements and public health.

    PubMed

    Hales, Simon; Baker, Michael; Howden-Chapman, Philippa; Menne, Bettina; Woodruff, Rosalie; Woodward, Alistair

    2007-01-01

    Global climate change has profound implications for human societies. The present---ecologically unsustainable--trajectory of human development fails to provide for the basic needs of a substantial fraction of the global population, while diminishing the prospects for future generations. Human-caused climate change has already begun to affect weather patterns, physical and biological phenomena, and vulnerable human communities. Because the social processes of production and consumption have their own momentum, and because carbon dioxide has a long atmospheric lifetime, further climate change is inevitable over the coming century, even allowing for the adoption of mitigation measures. This situation implies that we should also try to reduce, and where possible to prevent, the adverse effects of climate changes by planned adaptation. Will human settlements be able to provide a healthy living environment and shelter from extreme climate events, such as cyclones and heat waves? In this paper, we review the nexus between human health, climate change, and the planning of housing and human settlements. We conclude that adapting to a rapidly changing global environment will be a major challenge, in the context of increasing population and per capita consumption, without increasing pressures on natural systems. Energy-efficient cities and the creation of opportunities for poor countries will be important elements of people centered, ecologically sustainable, development in the twenty-first century.

  18. Climate change assessments

    Treesearch

    Linda A. Joyce

    2008-01-01

    The science associated with climate and its effects on ecosystems, economies, and social systems is developing rapidly. Climate change assessments can serve as an important synthesis of this science and provide the information and context for management and policy decisions on adaptation and mitigation. This topic paper describes the variety of climate change...

  19. Predicting the Impact of Climate Change on Threatened Species in UK Waters

    PubMed Central

    Jones, Miranda C.; Dye, Stephen R.; Fernandes, Jose A.; Frölicher, Thomas L.; Pinnegar, John K.; Warren, Rachel; Cheung, William W. L.

    2013-01-01

    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina). PMID:23349829

  20. Predicting the impact of climate change on threatened species in UK waters.

    PubMed

    Jones, Miranda C; Dye, Stephen R; Fernandes, Jose A; Frölicher, Thomas L; Pinnegar, John K; Warren, Rachel; Cheung, William W L

    2013-01-01

    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina).

  1. Forest management under climatic and social uncertainty: trade-offs between reducing climate change impacts and fostering adaptive capacity.

    PubMed

    Seidl, Rupert; Lexer, Manfred J

    2013-01-15

    The unabated continuation of anthropogenic greenhouse gas emissions and the lack of an international consensus on a stringent climate change mitigation policy underscore the importance of adaptation for coping with the all but inevitable changes in the climate system. Adaptation measures in forestry have particularly long lead times. A timely implementation is thus crucial for reducing the considerable climate vulnerability of forest ecosystems. However, since future environmental conditions as well as future societal demands on forests are inherently uncertain, a core requirement for adaptation is robustness to a wide variety of possible futures. Here we explicitly address the roles of climatic and social uncertainty in forest management, and tackle the question of robustness of adaptation measures in the context of multi-objective sustainable forest management (SFM). We used the Austrian Federal Forests (AFF) as a case study, and employed a comprehensive vulnerability assessment framework based on ecosystem modeling, multi-criteria decision analysis, and practitioner participation. We explicitly considered climate uncertainty by means of three climate change scenarios, and accounted for uncertainty in future social demands by means of three societal preference scenarios regarding SFM indicators. We found that the effects of climatic and social uncertainty on the projected performance of management were in the same order of magnitude, underlining the notion that climate change adaptation requires an integrated social-ecological perspective. Furthermore, our analysis of adaptation measures revealed considerable trade-offs between reducing adverse impacts of climate change and facilitating adaptive capacity. This finding implies that prioritization between these two general aims of adaptation is necessary in management planning, which we suggest can draw on uncertainty analysis: Where the variation induced by social-ecological uncertainty renders measures aiming to

  2. A Framework to Assess the Impacts of Climate Change on Stream Health Indicators in Michigan Watersheds

    EPA Science Inventory

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse ...

  3. Responses of Terrestrial Ecosystems’ Net Primary Productivity to Future Regional Climate Change in China

    PubMed Central

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems’ response to global climate change. China’s ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund–Potsdam–Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China’s terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change. PMID:23593325

  4. Public health and climate change adaptation at the federal level: one agency's response to Executive Order 13514.

    PubMed

    Hess, Jeremy J; Schramm, Paul J; Luber, George

    2014-03-01

    Climate change will likely have adverse human health effects that require federal agency involvement in adaptation activities. In 2009, President Obama issued Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance. The order required federal agencies to develop and implement climate change adaptation plans. The Centers for Disease Control and Prevention (CDC), as part of a larger Department of Health and Human Services response to climate change, is developing such plans. We provide background on Executive Orders, outline tenets of climate change adaptation, discuss public health adaptation planning at both the Department of Health and Human Services and the CDC, and outline possible future CDC efforts. We also consider how these activities may be better integrated with other adaptation activities that manage emerging health threats posed by climate change.

  5. Climate Change Impacts on Environmental and Human Exposure to Mercury in the Arctic

    PubMed Central

    Sundseth, Kyrre; Pacyna, Jozef M.; Banel, Anna; Pacyna, Elisabeth G.; Rautio, Arja

    2015-01-01

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure. PMID:25837201

  6. Climate change impacts on environmental and human exposure to mercury in the arctic.

    PubMed

    Sundseth, Kyrre; Pacyna, Jozef M; Banel, Anna; Pacyna, Elisabeth G; Rautio, Arja

    2015-03-31

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure.

  7. Confluence of climate change policies and international trade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vickery, R.E. Jr.

    1997-12-31

    The paper summarizes market information on energy conservation and renewable energy industries in the U.S., and highlights activities of the International Trade Administration. International treaties agreements on environmental issues are examined with respect to their influence on U.S. trade promotion and job creation. A sectoral analysis of the economic impact of greenhouse gas emissions reductions on industries is very briefly summarized. Finally, the need for a climate change treaty in spite of possible adverse impacts is discussed. 1 tab.

  8. A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change.

    PubMed

    Bowen, Kathryn J; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J

    2013-09-10

    Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change.

  9. A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change

    PubMed Central

    Bowen, Kathryn J.; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J.

    2013-01-01

    Background Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. Objectives To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. Design A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. Results A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Conclusion Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change. PMID:24028938

  10. Communicating Urban Climate Change

    NASA Astrophysics Data System (ADS)

    Snyder, S.; Crowley, K.; Horton, R.; Bader, D.; Hoffstadt, R.; Labriole, M.; Shugart, E.; Steiner, M.; Climate; Urban Systems Partnership

    2011-12-01

    While cities cover only 2% of the Earth's surface, over 50% of the world's people live in urban environments. Precisely because of their population density, cities can play a large role in reducing or exacerbating the global impact of climate change. The actions of cities could hold the key to slowing down climate change. Urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies. However, messaging around these strategies has not been comprehensive and adaptation to climate change requires local knowledge, capacity and a high level of coordination. Unless urban populations understand climate change and its impacts it is unlikely that cities will be able to successfully implement policies that reduce anthropogenic climate change. Informal and formal educational institutions in urban environments can serve as catalysts when partnering with climate scientists, educational research groups, and public policy makers to disseminate information about climate change and its impacts on urban audiences. The Climate and Urban Systems Partnership (CUSP) is an interdisciplinary network designed to assess and meet the needs and challenges of educating urban audiences about climate change. CUSP brings together organizations in Philadelphia, Pittsburgh, Queens, NY and Washington, DC to forge links with informal and formal education partners, city government, and policy makers. Together this network will create and disseminate learner-focused climate education programs and resources for urban audiences that, while distinct, are thematically and temporally coordinated, resulting in the communication of clear and consistent information and learning experiences about climate science to a wide public audience. Working at a community level CUSP will bring coordinated programming directly into neighborhoods presenting the issues of global climate change in a highly local context. The project is currently exploring a number of

  11. A public health approach to the impact of climate change on health in southern Africa - identifying priority modifiable risks.

    PubMed

    Myers, J; Young, T; Galloway, M; Manyike, P; Tucker, T

    2011-11-01

    Anthropogenic climate change and anticipated adverse impacts on human health as outlined by the Intergovernmental Panel on Climate Change (IPCC) are taken as given. A conceptual model for thinking about the spectrum of climate-related health risks ranging from distal and infrastructural to proximal and behavioural and their relation to the burden of disease pattern typical of sub-Saharan Africa is provided. The model provides a tool for identifying modifiable risk factors with a view to future research, specifically into the performance of interventions to reduce the impact of climate change.

  12. Climate change and skin disease.

    PubMed

    Lundgren, Ashley D

    2018-04-01

    Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.

  13. The climate change consensus extends beyond climate scientists

    NASA Astrophysics Data System (ADS)

    Carlton, J. S.; Perry-Hill, Rebecca; Huber, Matthew; Prokopy, Linda S.

    2015-09-01

    The existence of anthropogenic climate change remains a public controversy despite the consensus among climate scientists. The controversy may be fed by the existence of scientists from other disciplines publicly casting doubt on the validity of climate science. The extent to which non-climate scientists are skeptical of climate science has not been studied via direct survey. Here we report on a survey of biophysical scientists across disciplines at universities in the Big 10 Conference. Most respondents (93.6%) believe that mean temperatures have risen and most (91.9%) believe in an anthropogenic contribution to rising temperatures. Respondents strongly believe that climate science is credible (mean credibility score 6.67/7). Those who disagree about climate change disagree over basic facts (e.g., the effects of CO2 on climate) and have different cultural and political values. These results suggest that scientists who are climate change skeptics are outliers and that the majority of scientists surveyed believe in anthropogenic climate change and that climate science is credible and mature.

  14. Psychological health challenges of the hill-tracts region for climate change in Bangladesh.

    PubMed

    Kabir, Syed Muhammad Sajjad

    2018-04-01

    The aim of this paper is to provide an overview of the deleterious effects of climate change on psychological health of the Hill-Tracts and government to deal with these adverse psychological health impacts. Although knowledge is still limited about the connections between climate change and psychological health, the evidence is indicating that impacts can be felt at both the individual and community levels, with psychological health outcomes ranging from psychological distress, depression, and anxiety, to increased addictions and suicide rates. Drawing from 125 in-depth interviews conducted between January 2015 and October 2016 with community members and local and regional health professionals, participants reported that climate change was negatively impacting psychological health and well-being. The results stated that climate change enhanced the possibility of an increased drug, family stress, alcohol use, amplified previous traumas, psychological health stressors, and were implicated in increased potential for suicide ideation of the Hill-Tracts region in Bangladesh. These exploratory findings indicate that climate change is becoming an additional psychological health stressor for Hill-Tracks' dwellers in Bangladesh. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Climate change and disaster management.

    PubMed

    O'Brien, Geoff; O'Keefe, Phil; Rose, Joanne; Wisner, Ben

    2006-03-01

    Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A focus that neglects to enhance capacity-building and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. Reducing vulnerability is a key aspect of reducing climate change risk. To do so requires a new approach to climate change risk and a change in institutional structures and relationships. A focus on development that neglects to enhance governance and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks.

  16. Approaches to predicting potential impacts of climate change on forest disease: an example with Armillaria root disease

    Treesearch

    Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Bryce A. Richardson; John E. Lundquist

    2009-01-01

    Predicting climate change influences on forest diseases will foster forest management practices that minimize adverse impacts of diseases. Precise locations of accurately identified pathogens and hosts must be documented and spatially referenced to determine which climatic factors influence species distribution. With this information, bioclimatic models can predict the...

  17. Climate Change Impacts on Crop Production in Nigeria

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  18. Climate change and forest diseases

    Treesearch

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  19. Climate Change and Air Pollution-Related Health Impacts in the United States: Assessment of Current Findings

    NASA Astrophysics Data System (ADS)

    Kinney, P.; Fann, N.

    2016-12-01

    Ambient air pollution can be affected by climate in a variety of ways, which in turn have important implications for human health. Observed and projected changes in climate lead to modified weather pat­terns and biogenic emissions, which influence the levels and geographic patterns of outdoor air pollutants of health concern, including ground-level ozone (O3) and fine particulate matter (PM2.5). The USGCRP scientific assessment of the human health impacts of climate change concluded with high confidence that climate change will make it harder for any given regulatory approach to reduce ground-level ozone pollution in the future as meteorological conditions become increasingly conducive to forming ozone over most of the United States. Unless offset by additional emissions reductions of ozone precursors, these climate-driven increases in ozone will cause premature deaths, hospital visits, lost school days, and acute respiratory symptoms. The evidence for climate impacts on PM2.5 is less robust than that for ozone. However, one mechanism through which climate change is likely to affect PM2.5 as well as O3 in the United States is via impacts on wildfires. Wildfires emit precursors of both fine particles and O3, which increase the risk of premature death and adverse chronic and acute cardiovascular and respiratory health outcomes. Climate change is projected to increase the number and severity of naturally occurring wildfires in parts of the United States, increasing emissions of particulate matter and ozone precursors and resulting in additional adverse health outcomes. We present the key results and conclusions from a nationwide assessment of O3 health impacts in 2030, as well as new evidence for respiratory health effects of wildfires in the western United States.

  20. Managing climate change refugia for climate adaptation

    Treesearch

    Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...

  1. Climate variability and vulnerability to climate change: a review

    PubMed Central

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  2. Climate Change Readiness Assessment and Planning for the Nation's Drinking Water and Wastewater Utilities

    EPA Science Inventory

    The performance and sustainability of the Nation’s urban water resources infrastructure may be adversely impacted by changes in global climate, population patterns, economic stability and other emerging issues. How does the Nation’s water industry view these impending challenges...

  3. Climate change and health effects in Northwest Alaska.

    PubMed

    Brubaker, Michael; Berner, James; Chavan, Raj; Warren, John

    2011-01-01

    This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities. In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects. IMPLEMENTATION PROCESS: The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses. The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska. Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate. The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures.

  4. Climate change and health effects in Northwest Alaska

    PubMed Central

    Brubaker, Michael; Berner, James; Chavan, Raj; Warren, John

    2011-01-01

    This article provides examples of adverse health effects, including weather-related injury, food insecurity, mental health issues, and water infrastructure damage, and the responses to these effects that are currently being applied in two Northwest Alaska communities. Background In Northwest Alaska, warming is resulting in a broad range of unusual weather and environmental conditions, including delayed freeze-up, earlier breakup, storm surge, coastal erosion, and thawing permafrost. These are just some of the climate impacts that are driving concerns about weather-related injury, the spread of disease, mental health issues, infrastructure damage, and food and water security. Local leaders are challenged to identify appropriate adaptation strategies to address climate impacts and related health effects. Implementation process The tribal health system is combining local observations, traditional knowledge, and western science to perform community-specific climate change health impact assessments. Local leaders are applying this information to develop adaptation responses. Objective The Alaska Native Tribal Health Consortium will describe relationships between climate impacts and health effects and provide examples of community-scaled adaptation actions currently being applied in Northwest Alaska. Findings Climate change is increasing vulnerability to injury, disease, mental stress, food insecurity, and water insecurity. Northwest communities are applying adaptation approaches that are both specific and appropriate. Conclusion The health impact assessment process is effective in raising awareness, encouraging discussion, engaging partners, and implementing adaptation planning. With community-specific information, local leaders are applying health protective adaptation measures. PMID:22022304

  5. Cost analysis of impacts of climate change on regional air quality.

    PubMed

    Liao, Kuo-Jen; Tagaris, Efthimios; Russell, Armistead G; Amar, Praveen; He, Shan; Manomaiphiboon, Kasemsan; Woo, Jung-Hun

    2010-02-01

    Climate change has been predicted to adversely impact regional air quality with resulting health effects. Here a regional air quality model and a technology analysis tool are used to assess the additional emission reductions required and associated costs to offset impacts of climate change on air quality. Analysis is done for six regions and five major cities in the continental United States. Future climate is taken from a global climate model simulation for 2049-2051 using the Intergovernmental Panel on Climate Change (IPCC) A1B emission scenario, and emission inventories are the same as current ones to assess impacts of climate change alone on air quality and control expenses. On the basis of the IPCC A1B emission scenario and current control technologies, least-cost sets of emission reductions for simultaneously offsetting impacts of climate change on regionally averaged 4th highest daily maximum 8-hr average ozone and yearly averaged PM2.5 (particulate matter [PM] with an aerodynamic diameter less than 2.5 microm) for the six regions examined are predicted to range from $36 million (1999$) yr(-1) in the Southeast to $5.5 billion yr(-1) in the Northeast. However, control costs to offset climate-related pollutant increases in urban areas can be greater than the regional costs because of the locally exacerbated ozone levels. An annual cost of $4.1 billion is required for offsetting climate-induced air quality impairment in 2049-2051 in the five cities alone. Overall, an annual cost of $9.3 billion is estimated for offsetting climate change impacts on air quality for the six regions and five cities examined. Much of the additional expense is to reduce increased levels of ozone. Additional control costs for offsetting the impacts everywhere in the United States could be larger than the estimates in this study. This study shows that additional emission controls and associated costs for offsetting climate impacts could significantly increase currently estimated

  6. Endocrine active agents: implications of adverse and non-adverse changes.

    PubMed

    Foster, Paul M D; McIntyre, Barry S

    2002-01-01

    The US Environmental Protection Agency (EPA) is currently in the process of developing screening and testing methodologies for the assessment of agents that may possess endocrine-like activity--the so-called endocrine disruptors. Moreover, the EPA has signaled its intention of placing information arising from such studies on the worldwide web. This has created significant interest in how such information may be used in risk assessment and by policymakers and the public in the potential regulation or deselection of specific chemical agents. The construction of lists of endocrine disruptors, although fulfilling the requirements of some parties, is really of little use when the nature of the response, the dose level employed, and the lifestage of the test species used are not given. Thus, we have already seen positive in vitro information available on the interaction with a receptor being used as a key indicator when the results of large, high quality in vivo studies showing no adverse changes have been ignored. Clearly a number of in vitro systems are available to ascertain chemical interaction with specific (mainly steroid) hormone receptors including a number of reporter gene assays. These assays only provide indicators of potential problems and should not be, in isolation, indicators of toxicity. Likewise, short-term in vivo screens such as the uterotrophic and Hershberger studies are frequently conducted in castrated animals and thus indicate the potential for a pharmacological response in vivo rather than an adverse effect. A number of new end points have been added to standard rodent testing protocols in the belief of providing more sensitivity to detect endocrine related changes. These include the measurement of anogenital distance (AGD), developmental landmarks [vaginal opening (VO), preputial separation (PPS)], and in some studies the counting of nipples and areolae on males. AGD, VO, and PPS are all affected by the size of the pup in which they are measured

  7. Scaling Climate Change Communication for Behavior Change

    NASA Astrophysics Data System (ADS)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  8. Public Health and Climate Change Adaptation at the Federal Level: One Agency’s Response to Executive Order 13514

    PubMed Central

    Schramm, Paul J.; Luber, George

    2014-01-01

    Climate change will likely have adverse human health effects that require federal agency involvement in adaptation activities. In 2009, President Obama issued Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance. The order required federal agencies to develop and implement climate change adaptation plans. The Centers for Disease Control and Prevention (CDC), as part of a larger Department of Health and Human Services response to climate change, is developing such plans. We provide background on Executive Orders, outline tenets of climate change adaptation, discuss public health adaptation planning at both the Department of Health and Human Services and the CDC, and outline possible future CDC efforts. We also consider how these activities may be better integrated with other adaptation activities that manage emerging health threats posed by climate change. PMID:24432931

  9. Climate change and children.

    PubMed

    Ebi, Kristie L; Paulson, Jerome A

    2007-04-01

    Climate change is increasing the burden of climate-sensitive health determinants and outcomes worldwide. Acting through increasing temperature, changes in the hydrologic cycle, and sea level rise, climate change is projected to increase the frequency and intensity of heat events and extreme events (floods and droughts), change the geographic range and incidence of climate-sensitive vector-, food-, and waterborne diseases, and increase diseases associated with air pollution and aeroallergens. Children are particularly vulnerable to these health outcomes because of their potentially greater exposures, greater sensitivity to certain exposures, and their dependence on caregivers.

  10. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks.

    PubMed

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2011-02-01

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO(2) increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

  11. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  12. Climate change and skin.

    PubMed

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  13. Climate-change scenarios

    USGS Publications Warehouse

    Wagner, Frederic H.; Stohlgren, T.J.; Baldwin, C.K.; Mearns, L.O.; Wagner, Frederic H.

    2003-01-01

    Three procedures were used to develop a set of plausible scenarios of anthropogenic climate change by the year 2100 that could be posed to the sectors selected for assessment (Fig. 2.2). First, a workshop of climatologists with expertise in western North American climates was convened from September 10-12, 1998 at the National Center for Ecological Analysis and Synthesis in Santa Barbara, CA to discuss and propose a set of scenarios for the Rocky Mountain/Great Basin (RMGB) region.Secondly, the 20th-century climate record was analyzed to determine what trends might have occurred during the period. Since CO2 and other greenhouse gases increased during the century, it was reasonable to examine whether the changes projected for the 21st century had begun to appear during the 20th, at least qualitatively though not quantitatively.Third, on the assumption of a two-fold increase in atmospheric CO2 by 2100, climate-change scenarios for the 21st century were projected with two, state-of-the-art computer models that simulate the complex interactions between earth, atmosphere, and ocean to produce the earth’s climate system. Each of the last two procedures has its strengths and weaknesses, and each can function to some degree as a check on the other. The historical analysis has the advantage of using empirical measurements of actual climate change taken over an extensive network of measuring stations. These make it possible to subdivide a large region like the RMGB into subreqions to assess the uniformity of climate and climate change over the region. And the historical measurements can to some degree serve as a check on the GCM simulations when the two are compared over the same time period.

  14. NPOESS, Essential Climates Variables and Climate Change

    NASA Astrophysics Data System (ADS)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  15. Building the capacity of Extension educators to address climate change and agricultural sustainability

    NASA Astrophysics Data System (ADS)

    Pathak, T. B.; Doll, J. E.

    2016-12-01

    It is evident that changes in climate will adversely impact various sectors including agriculture and natural resources worldwide. Increased temperatures, longer than normal growing seasons, more frequent extreme weather events, decreased winter snowpack, earlier snowmelt, and vulnerability to pest are some of the examples of changes and impacts documented in the literature. According to the IPCC 2007, mainstreaming` climate change issues into decision-making is an important aspect for sustainability. Due to the lack of locally and regionally focused educational programs, it becomes difficult for people to translate the science into meaningful actions. One of the strengths of the Cooperative Extension system is that it is one of the most trusted sources of science-based information that is locally relevant. In order to utilize strong network of Cooperative Extension system, we implemented a project to provide regionally tailored climate change and sustainable agriculture professional development for Cooperative Extension and Natural Resources Conservation Services (NRCS) educators in 12 states in north central US. We conducted these activities: 1) creation and dissemination of a Climate Change and Sustainable Agriculture Resource Handbook and a curriculum and 2) two climate change and sustainable agriculture workshops. In general, this project resulted in improved ability of Cooperative Extension academics to respond to climate change questions with science-based information. Several workshop attendees also integrated information provided to them through resource handbook and curriculum into their existing programming. In the long-term, we hope these programs will result in educators and farmers making informed choices and recommendations that lead to sustainable agriculture in the face of climate change.

  16. Sea-level rise caused by climate change and its implications for society

    PubMed Central

    MIMURA, Nobuo

    2013-01-01

    Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society. PMID:23883609

  17. The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change

    NASA Astrophysics Data System (ADS)

    Khachatryan, S.

    2009-05-01

    Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.

  18. The neurobiology of climate change

    NASA Astrophysics Data System (ADS)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  19. The neurobiology of climate change.

    PubMed

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  20. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    NASA Astrophysics Data System (ADS)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  1. Current Climate Variability & Change

    NASA Astrophysics Data System (ADS)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and

  2. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover. This implies that policy choices based on observable public opinion have lagged actual private concern over climate change's potential threat.

  3. Climate change refugia as a tool for climate adaptation

    EPA Science Inventory

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  4. Climate change. Climate in Medieval time.

    PubMed

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  5. Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening-Level Assessment

    EPA Science Inventory

    Cyanobacterial harmful algal blooms have serious adverse effects on human and environmental health. Herein, we develop a modeling framework that predicts the effect of climate change on cyanobacteria concentrations in reservoirs in the contiguous U.S. The framework, which uses cl...

  6. Climate change impacts on coffee rust disease

    NASA Astrophysics Data System (ADS)

    Alfonsi, W. M. V.; Koga-Vicente, A.; Pinto, H. S.; Alfonsi, E. L., Sr.; Coltri, P. P.; Zullo, J., Jr.; Patricio, F. R.; Avila, A. M. H. D.; Gonçalves, R. R. D. V.

    2016-12-01

    Changes in climate conditions and in extreme weather events may affect the food security due to impacts in agricultural production. Despite several researches have been assessed the impacts of extremes in yield crops in climate change scenarios, there is the need to consider the effects in pests and diseases which increase losses in the sector. Coffee Arabica is an important commodity in world and plays a key role in Brazilian agricultural exports. Although the coffee crop has a world highlight, its yield is affected by several factors abiotic or biotic. The weather as well pests and diseases directly influence the development and coffee crop yield. These problems may cause serious damage with significant economic impacts. The coffee rust, caused by the fungus Hemileia vastarix,is among the diseases of greatest impact for the crop. The disease emerged in Brazil in the 70s and is widely spread in all producing regions of coffee in Brazil, and in the world. Regions with favorable weather conditions for the pathogen may exhibit losses ranging from 30% to 50% of the total grain production. The evaluation of extreme weather events of coffee rust disease in futures scenarios was carried out using the climatic data from CMIP5 models, data field of coffee rust disease incidence and, incubation period simulation data for Brazilian municipalities. Two Regional Climate Models were selected, Eta-HadGEM2-ES and Eta-MIROC5, and the Representative Concentration Pathways 8.5 w/m2 was adopted. The outcomes pointed out that in these scenarios the period of incubation tends to decrease affecting the coffee rust disease incidence, which tends to increase. Nevertheless, the changing in average trends tends to benefit the reproduction of the pathogen. Once the temperature threshold for the disease reaches the adverse conditions it may be unfavorable for the incidence.

  7. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture.

    PubMed

    Boxall, Alistair B A; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D; Haygarth, Philip M; Hutchinson, Thomas; Kovats, R Sari; Leonardi, Giovanni; Levy, Leonard S; Nichols, Gordon; Parsons, Simon A; Potts, Laura; Stone, David; Topp, Edward; Turley, David B; Walsh, Kerry; Wellington, Elizabeth M H; Williams, Richard J

    2009-04-01

    Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes.

  8. Climate change and nutrition: creating a climate for nutrition security.

    PubMed

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  9. Climate Change and Health under the Shared Socioeconomic Pathway Framework

    PubMed Central

    Ebi, Kristie L.

    2017-01-01

    A growing body of literature addresses how climate change is likely to have substantial and generally adverse effects on population health and health systems around the world. These effects are likely to vary within and between countries and, importantly, will vary depending on different socioeconomic development patterns. Transitioning to a more resilient and sustainable world to prepare for and manage the effects of climate change is likely to result in better health outcomes. Sustained fossil fuel development will likely result in continued high burdens of preventable conditions, such as undernutrition, malaria, and diarrheal diseases. Using a new set of socioeconomic development trajectories, the Shared Socioeconomic Pathways (SSPs), along with the World Health Organization’s Operational Framework for Building Climate Resilient Health Systems, we extend existing storylines to illustrate how various aspects of health systems are likely to be affected under each SSP. We also discuss the implications of our findings on how the burden of mortality and the achievement of health-related Sustainable Development Goal targets are likely to vary under different SSPs. PMID:29267204

  10. Using Web GIS "Climate" for Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  11. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    PubMed

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of climate change on aerosol concentrations in Europe

    NASA Astrophysics Data System (ADS)

    Megaritis, Athanasios G.; Fountoukis, Christos; Pandis, Spyros N.

    2013-04-01

    High concentrations of particulate matter less than 2.5 μm in size (PM2.5), ozone and other major constituents of air pollution, have adverse effects on human health, visibility and ecosystems (Seinfeld and Pandis, 2006), and are strongly influenced by meteorology. Emissions control policy is currently made assuming that climate will remain constant in the future. However, climate change over the next decades is expected to be significant (IPCC, 2007) and may impact local and regional air quality. Determining the sensitivity of the concentrations of air pollutants to climate change is an important step toward estimating future air quality. In this study we applied PMCAMx (Fountoukis et al., 2011), a three dimensional chemical transport model, over Europe, in order to quantify the individual effects of various meteorological parameters on fine particulate matter (PM2.5) concentrations. A suite of perturbations in various meteorological factors, such as temperature, wind speed, absolute humidity and precipitation were imposed separately on base case conditions to determine the sensitivities of PM2.5 concentrations and composition to these parameters. Different simulation periods (summer, autumn 2008 and winter 2009) are used to examine also the seasonal dependence of the air quality - climate interactions. The results of these sensitivity simulations suggest that there is an important link between changes in meteorology and PM2.5 levels. We quantify through separate sensitivity simulations the processes which are mainly responsible for the final predicted changes in PM2.5 concentration and composition. The predicted PM2.5 response to those meteorology perturbations was found to be quite variable in space and time. These results suggest that, the changes in concentrations caused by changes in climate should be taken into account in long-term air quality planning. References Fountoukis C., Racherla P. N., Denier van der Gon H. A. C., Polymeneas P., Charalampidis P. E

  13. Modeling of Regional Climate Change Effects on Ground-Level Ozone and Childhood Asthma

    PubMed Central

    Sheffield, Perry E.; Knowlton, Kim; Carr, Jessie L.; Kinney, Patrick L.

    2011-01-01

    Background The adverse respiratory effects of ground-level ozone are well-established. Ozone is the air pollutant most consistently projected to increase under future climate change. Purpose To project future pediatric asthma emergency department visits associated with ground-level ozone changes, comparing 1990s to 2020s. Methods This study assessed future numbers of asthma emergency department visits for children aged 0–17 years using (1) baseline New York City metropolitan area emergency department rates, (2) a dose–response relationship between ozone levels and pediatric asthma emergency department visits, and (3) projected daily 8-hour maximum ozone concentrations for the 2020s as simulated by a global-to-regional climate change and atmospheric chemistry model. Sensitivity analyses included population projections and ozone precursor changes. This analysis occurred in 2010. Results In this model, climate change could cause an increase in regional summer ozone-related asthma emergency department visits for children aged 0–17 years of 7.3% across the New York City metropolitan region by the 2020s. This effect diminished with inclusion of ozone precursor changes. When population growth is included, the projections of morbidity related to ozone are even larger. Conclusions The results of this analysis demonstrate that the use of regional climate and atmospheric chemistry models make possible the projection of local climate change health effects for specific age groups and specific disease outcomes – such as emergency department visits for asthma. Efforts should be made to improve on this type of modeling to inform local and wider-scale climate change mitigation and adaptation policy. PMID:21855738

  14. Climate change, conflict and health.

    PubMed

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  15. Vulnerability of waterborne diseases to climate change in Canada: a review.

    PubMed

    Charron, Dominique; Thomas, M; Waltner-Toews, David; Aramini, Jeffery; Edge, Tom; Kent, Robert; Maarouf, Abdel; Wilson, Jeff

    This project addresses two important issues relevant to the health of Canadians: the risk of waterborne illness and the health impacts of global climate change. The Canadian health burden from waterborne illness is unknown, although it presumably accounts for a significant proportion of enteric illness. Recently, large outbreaks with severe consequences produced by E. coli O157:H7 and Cryptosporidium have alarmed Canadians and brought demands for political action. A concurrent need to understand the health impacts of global climate changes and to develop strategies to prevent or prepare for these has also been recognized. There is mounting evidence that weather is often a factor in triggering waterborne disease outbreaks. A recent study of precipitation and waterborne illness in the United States found that more than half the waterborne disease outbreaks in the United States during the last half century followed a period of extreme rainfall. Projections of international global climate change scenarios suggest that, under conditions of global warming most of Canada may expect longer summers, milder winters, increased summer drought, and more extreme precipitation. Excess precipitation, floods, high temperatures, and drought could affect the risk of waterborne illness in Canada. The existing scientific information regarding most weather-related adverse health impacts and on the impacts of global climate change on health in Canada is insufficient for informed decision making. The results of this project address this need through the investigation of the complex systemic interrelationships between disease incidence, weather parameters, and water quality and quantity, and by projecting the potential impact of global climate change on those relationships.

  16. Abrupt climate change: can society cope?

    PubMed

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being

  17. CLIMATE CHANGE. Climate change impacts on bumblebees converge across continents.

    PubMed

    Kerr, Jeremy T; Pindar, Alana; Galpern, Paul; Packer, Laurence; Potts, Simon G; Roberts, Stuart M; Rasmont, Pierre; Schweiger, Oliver; Colla, Sheila R; Richardson, Leif L; Wagner, David L; Gall, Lawrence F; Sikes, Derek S; Pantoja, Alberto

    2015-07-10

    For many species, geographical ranges are expanding toward the poles in response to climate change, while remaining stable along range edges nearest the equator. Using long-term observations across Europe and North America over 110 years, we tested for climate change-related range shifts in bumblebee species across the full extents of their latitudinal and thermal limits and movements along elevation gradients. We found cross-continentally consistent trends in failures to track warming through time at species' northern range limits, range losses from southern range limits, and shifts to higher elevations among southern species. These effects are independent of changing land uses or pesticide applications and underscore the need to test for climate impacts at both leading and trailing latitudinal and thermal limits for species. Copyright © 2015, American Association for the Advancement of Science.

  18. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover.

  19. AO/NAO Response to Climate Change. 1; Respective Influences of Stratospheric and Tropospheric Climate Changes

    NASA Technical Reports Server (NTRS)

    Rind, D.; Perlwitz, J.; Lonergan, P.

    2005-01-01

    We utilize the GISS Global Climate Middle Atmosphere Model and 8 different climate change experiments, many of them focused on stratospheric climate forcings, to assess the relative influence of tropospheric and stratospheric climate change on the extratropical circulation indices (Arctic Oscillation, AO; North Atlantic Oscillation, NAO). The experiments are run in two different ways: with variable sea surface temperatures (SSTs) to allow for a full tropospheric climate response, and with specified SSTs to minimize the tropospheric change. The results show that tropospheric warming (cooling) experiments and stratospheric cooling (warming) experiments produce more positive (negative) AO/NAO indices. For the typical magnitudes of tropospheric and stratospheric climate changes, the tropospheric response dominates; results are strongest when the tropospheric and stratospheric influences are producing similar phase changes. Both regions produce their effect primarily by altering wave propagation and angular momentum transports, but planetary wave energy changes accompanying tropospheric climate change are also important. Stratospheric forcing has a larger impact on the NAO than on the AO, and the angular momentum transport changes associated with it peak in the upper troposphere, affecting all wavenumbers. Tropospheric climate changes influence both the A0 and NAO with effects that extend throughout the troposphere. For both forcings there is often vertical consistency in the sign of the momentum transport changes, obscuring the difference between direct and indirect mechanisms for influencing the surface circulation.

  20. Climate change: The challenges for public health preparedness and response- An Indian case study.

    PubMed

    Patil, Rajan R; Deepa, T M

    2007-09-01

    Extremes weather changes surpassing their usual statistical ranges and tumbling records in India could be an early warning bell of global warming. Extreme weather events like the recent record setting in western Indian city of Mumbai or all time high fatalities due to the heat wave in southern Indian states or increasing vulnerability of easten Indian states to flood could all be a manifestation of climate change in the Asian subcontinent. While the skeptics may be inclined to dismiss these events as simple local aberrations, when viewed in an epidemiological paradigm in terms of person, time and space couple with frequency, intensity and fatalities, it could well be an early manifestation of climate change. Global warming poses serious challenge to the health sector and hence warrants emergency health preparedness and response. Climate-sensitive diseases are among the largest global killers, hence major brunt of global climate change in terms of adverse health impact will be mostly borne by poor and developing countries in Asia, given the levels of poverty, nutional levels and poor public health infrastructure.

  1. Mapping vulnerability to climate change and its repercussions on human health in Pakistan

    PubMed Central

    2012-01-01

    to climate change in ecological and geographic terms- such as Balochistan, Low-Intensity Punjab, and Cotton-Wheat Sindh -also happen to be the most deprived regions in Pakistan in terms of socio-economic indicators, suggesting that the government needs to direct its efforts to the socio-economic uplift of these lagging regions to reduce their vulnerability to the adverse effects of climate change. PMID:22938568

  2. Mapping vulnerability to climate change and its repercussions on human health in Pakistan.

    PubMed

    Malik, Sadia Mariam; Awan, Haroon; Khan, Niazullah

    2012-09-03

    geographic terms- such as Balochistan, Low-Intensity Punjab, and Cotton-Wheat Sindh -also happen to be the most deprived regions in Pakistan in terms of socio-economic indicators, suggesting that the government needs to direct its efforts to the socio-economic uplift of these lagging regions to reduce their vulnerability to the adverse effects of climate change.

  3. Rice Production Vulnerability to Climate Change in Indonesia: An Overview on Community-based Adaptation

    NASA Astrophysics Data System (ADS)

    Komaladara, A. A. S. P.; Budiasa, I. W.; Ambarawati, I. G. A. A.

    2015-12-01

    Rice remains to be a major crop and staple food in Indonesia. The task to ensure that rice production meets the demand of a growing population continues to engage the attention of national planners and policy makers. However, the adverse effects of climate change on agriculture production have presented Indonesia with yet another significant challenge. The exposure of rice crops to climate-related hazards such as temperature stress, floods, and drought, may lead to lower yield and self-sufficiency rate. This study explores the vulnerability of rice production to the effects of climate change in Indonesia. Considering the vast geographical span of the country and varying exposure, sensitivity, and adaptive capacity to climate change at regional level, this study emphasize the importance of community-based adaptation. Results from a simulation based on production and climate data from 1984 to 2014 indicates that rice production is sensitive to variation in growing season temperature and precipitation. A projection of these climate factors in 2050 has a significant impact on the major rice crop. To manage the impact of climate change, this study turns to the potential roles of farmer organizations, such as Subak, in adaptation strategies. The Subak in Bali is recognized for its cultural and organizational framework that highlights the sharing of knowledge and local wisdom in rice production. This is demonstrated by its efficient community-based irrigation management system, leading to sustainable rice production. Keywords: rice production, climate change, community-based adaptation, Indonesia

  4. Climate Change Indicators

    EPA Pesticide Factsheets

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  5. When climate science became climate politics: British media representations of climate change in 1988.

    PubMed

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  6. An uncertainty-based framework to quantifying climate change impacts on coastal flood vulnerability: case study of New York City.

    PubMed

    Zahmatkesh, Zahra; Karamouz, Mohammad

    2017-10-17

    The continued development efforts around the world, growing population, and the increased probability of occurrence of extreme hydrologic events have adversely affected natural and built environments. Flood damages and loss of lives from the devastating storms, such as Irene and Sandy on the East Coast of the USA, are examples of the vulnerability to flooding that even developed countries have to face. The odds of coastal flooding disasters have been increased due to accelerated sea level rise, climate change impacts, and communities' interest to live near the coastlines. Climate change, for instance, is becoming a major threat to sustainable development because of its adverse impacts on the hydrologic cycle. Effective management strategies are thus required for flood vulnerability reduction and disaster preparedness. This paper is an extension to the flood resilience studies in the New York City coastal watershed. Here, a framework is proposed to quantify coastal flood vulnerability while accounting for climate change impacts. To do so, a multi-criteria decision making (MCDM) approach that combines watershed characteristics (factors) and their weights is proposed to quantify flood vulnerability. Among the watershed characteristics, potential variation in the hydrologic factors under climate change impacts is modeled utilizing the general circulation models' (GCMs) outputs. The considered factors include rainfall, extreme water level, and sea level rise that exacerbate flood vulnerability through increasing exposure and susceptibility to flooding. Uncertainty in the weights as well as values of factors is incorporated in the analysis using the Monte Carlo (MC) sampling method by selecting the best-fitted distributions to the parameters with random nature. A number of low impact development (LID) measures are then proposed to improve watershed adaptive capacity to deal with coastal flooding. Potential range of current and future vulnerability to flooding is

  7. Climate change: Cropping system changes and adaptations

    USDA-ARS?s Scientific Manuscript database

    Climate change impacts the life of every person; however, there is little comprehensive understanding of the direct and indirect effects of climate change on agriculture. Since our food, feed, fiber, and fruit is derived from agricultural systems, understanding the effects of changing temperature, p...

  8. Our Changing Climate: A Brand New Way to Study Climate Science

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  9. Climate change and One Health.

    PubMed

    Zinsstag, Jakob; Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-06-01

    The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change.

  10. Climate change and One Health

    PubMed Central

    Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-01-01

    Abstract The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change. PMID:29790983

  11. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    NASA Astrophysics Data System (ADS)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  12. Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change.

    PubMed

    Trnka, Miroslav; Hlavinka, Petr; Semenov, Mikhail A

    2015-11-06

    Ways of increasing the production of wheat, the most widely grown cereal crop, will need to be found to meet the increasing demand caused by human population growth in the coming decades. This increase must occur despite the decrease in yield gains now being reported in some regions, increased price volatility and the expected increase in the frequency of adverse weather events that can reduce yields. However, if and how the frequency of adverse weather events will change over Europe, the most important wheat-growing area, has not yet been analysed. Here, we show that the accumulated probability of 11 adverse weather events with the potential to significantly reduce yield will increase markedly across all of Europe. We found that by the end of the century, the exposure of the key European wheat-growing areas, where most wheat production is currently concentrated, may increase more than twofold. However, if we consider the entire arable land area of Europe, a greater than threefold increase in risk was predicted. Therefore, shifting wheat production to new producing regions to reduce the risk might not be possible as the risk of adverse events beyond the key wheat-growing areas increases even more. Furthermore, we found a marked increase in wheat exposure to high temperatures, severe droughts and field inaccessibility compared with other types of adverse events. Our results also showed the limitations of some of the presently debated adaptation options and demonstrated the need for development of region-specific strategies. Other regions of the world could be affected by adverse weather events in the future in a way different from that considered here for Europe. This observation emphasizes the importance of conducting similar analyses for other major wheat regions. © 2015 The Authors.

  13. Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change

    PubMed Central

    Trnka, Miroslav; Hlavinka, Petr; Semenov, Mikhail A.

    2015-01-01

    Ways of increasing the production of wheat, the most widely grown cereal crop, will need to be found to meet the increasing demand caused by human population growth in the coming decades. This increase must occur despite the decrease in yield gains now being reported in some regions, increased price volatility and the expected increase in the frequency of adverse weather events that can reduce yields. However, if and how the frequency of adverse weather events will change over Europe, the most important wheat-growing area, has not yet been analysed. Here, we show that the accumulated probability of 11 adverse weather events with the potential to significantly reduce yield will increase markedly across all of Europe. We found that by the end of the century, the exposure of the key European wheat-growing areas, where most wheat production is currently concentrated, may increase more than twofold. However, if we consider the entire arable land area of Europe, a greater than threefold increase in risk was predicted. Therefore, shifting wheat production to new producing regions to reduce the risk might not be possible as the risk of adverse events beyond the key wheat-growing areas increases even more. Furthermore, we found a marked increase in wheat exposure to high temperatures, severe droughts and field inaccessibility compared with other types of adverse events. Our results also showed the limitations of some of the presently debated adaptation options and demonstrated the need for development of region-specific strategies. Other regions of the world could be affected by adverse weather events in the future in a way different from that considered here for Europe. This observation emphasizes the importance of conducting similar analyses for other major wheat regions. PMID:26577595

  14. Potential impact of climate change on air pollution-related human health effects.

    PubMed

    Tagaris, Efthimios; Liao, Kuo-Jen; Delucia, Anthony J; Deck, Leland; Amar, Praveen; Russell, Armistead G

    2009-07-01

    The potential health impact of ambient ozone and PM2.5 concentrations modulated by climate change over the United States is investigated using combined atmospheric and health modeling. Regional air quality modeling for 2001 and 2050 was conducted using CMAQ Modeling System with meteorology from the GISS Global Climate Model, downscaled regionally using MM5,keeping boundary conditions of air pollutants, emission sources, population, activity levels, and pollution controls constant. BenMap was employed to estimate the air pollution health outcomes at the county, state, and national level for 2050 caused by the effect of meteorology on future ozone and PM2.5 concentrations. The changes in calculated annual mean PM2.5 concentrations show a relatively modest change with positive and negative responses (increasing PM2.5 levels across the northeastern U.S.) although average ozone levels slightly decrease across the northern sections of the U.S., and increase across the southern tier. Results suggest that climate change driven air quality-related health effects will be adversely affected in more then 2/3 of the continental U.S. Changes in health effects induced by PM2.5 dominate compared to those caused by ozone. PM2.5-induced premature mortality is about 15 times higher then that due to ozone. Nationally the analysis suggests approximately 4000 additional annual premature deaths due to climate change impacts on PM2.5 vs 300 due to climate change-induced ozone changes. However, the impacts vary spatially. Increased premature mortality due to elevated ozone concentrations will be offset by lower mortality from reductions in PM2.5 in 11 states. Uncertainties related to different emissions projections used to simulate future climate, and the uncertainties forecasting the meteorology, are large although there are potentially important unaddressed uncertainties (e.g., downscaling, speciation, interaction, exposure, and concentration-response function of the human health studies).

  15. Potential Impacts of Future Climate Change on Regional Air Quality and Public Health over China

    NASA Astrophysics Data System (ADS)

    Hong, C.; Zhang, Q.; Zhang, Y.; He, K.

    2017-12-01

    Future climate change would affect public health through changing air quality. Climate extremes and poor weather conditions are likely to occur at a higher frequency in China under a changing climate, but the air pollution-related health impacts due to future climate change remain unclear. Here the potential impacts of future climate change on regional air quality and public health over China is projected using a coupling of climate, air quality and epidemiological models. We present the first assessment of China's future air quality in a changing climate under the Representative Concentration Pathway 4.5 (RCP4.5) scenario using the dynamical downscaling technique. In RCP4.5 scenario, we estimate that climate change from 2006-2010 to 2046-2050 is likely to adversely affect air quality covering more than 86% of population and 55% of land area in China, causing an average increase of 3% in O3 and PM2.5 concentrations, which are found to be associated with the warmer climate and the more stable atmosphere. Our estimate of air pollution-related mortality due to climate change in 2050 is 26,000 people per year in China. Of which, the PM2.5-related mortality is 18,700 people per year, and the O3-related mortality is 7,300 people per year. The climate-induced air pollution and health impacts vary spatially. The climate impacts are even more pronounced on the urban areas where is densely populated and polluted. 90% of the health loss is concentrated in 20% of land areas in China. We use a simple statistical analysis method to quantify the contributions of climate extremes and find more intense climate extremes play an important role in climate-induced air pollution-related health impacts. Our results indicate that global climate change will likely alter the level of pollutant management required to meet future air quality targets as well as the efforts to protect public health in China.

  16. Climate change matters.

    PubMed

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  17. Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture

    PubMed Central

    Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.

    2009-01-01

    Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487

  18. Assessing the Vulnerability of Agriculture to Climate Change in Jordan

    NASA Astrophysics Data System (ADS)

    Khresat, Sa'eb; Shraidaeh, Fadi; Maddat, Amer

    2015-04-01

    Climate change represents one of the greatest environmental, social and economic threats facing Jordan. In particular, the combined effects of climate change and water scarcity threaten to affect food and water resources that are critical for livelihoods in Jordan. This is especially true for those communities who live in the dryland area in the country and who rely wholly on rain-fed agriculture. The exact nature and extent of the impact of climate change on temperature and precipitation distribution pattern remain uncertain and it is the poor and vulnerable who will be the most susceptible to climate change adverse effects. A vulnerability assessment of rain fed agriculture to climate change and variability in semi-arid parts of Jordan was conducted in 2014. The purpose of this study is to assess the vulnerability and resilience of the most vulnerable groups where rainfed and irrigated agriculture is practiced. Also, the study focused on quantifying the impacts on agricultural productivity in response to climate change. This will help policymakers and researchers better understand and anticipate the likely impacts of climate change on agriculture and on vulnerable communities in Jordan. Also, it will provide them with tools to identify and implement appropriate adaptation strategies. The data used includes; Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5 adopted by the IPCC for its fifth Assessment Report (AR5). Those pathways were used for climate modeling. A decision support system (DSSAT) for agricultural production was used to assess the impact of climate changes on agricultural production. This approach was used for the Identification of climate change risk and their impacts on Agriculture. Outputs from models are used to assess the vulnerability of farmers and crops to climate and socio-economic change by estimating their sensitivity and capacity to adapt to external factors as a means of identifying what causes the differences in their

  19. Gender, Age, Social differences and Climate Change

    NASA Astrophysics Data System (ADS)

    Petrucci, Alessandra; Salvini, Silvana

    2017-04-01

    Climate and society evolve together in a manner that could place already vulnerable areas and their population at a greater risk to extreme weather events. While efforts have been devoted to better planning preparedness and responses to weather extremes, the interactions among various stakeholders who deal with hazard mitigation and response, and the community members, also related with gender and age differences, are not completely understood. In contrast to physical vulnerability, which arises from the potential for environmental extremes to create adverse physiological changes, social vulnerability arises from the potential for these extreme events to cause changes in people's behavior. People can vary in their potential for injury to themselves and their families. They also vary in the potential for destruction of their homes and workplaces, as well as the destruction of the transportation systems and locations for shopping and recreation they use in their daily activities. It is important to recognize that social vulnerability is not randomly distributed either demographically or geographically. In particular, the social vulnerability arising from a lack of psychological resilience, social network integration, economic assets, and political power vary across demographic groups. Some of these components of social vulnerability can be predicted by demographic characteristics such as gender, age, education, income, and ethnicity. This review explores the gender and social difference dimensions of vulnerability and adaptive capacity in relation to climate change.

  20. Determinants of climate change adaptation strategies used by fish farmers in Epe Local Government Area of Lagos State, Nigeria.

    PubMed

    Arimi, Kayode S

    2014-05-01

    Undesirable impacts of climate change have been a common occurrence that has made fish farmers in developing countries adopt some climate-change adaptation strategies. However, little is known about determinants of climate-change adaptation strategies used by these fish farmers. This study, therefore, articulates novelties on adaptation to climate change, as well ascertains determinants of adaptation strategies used by fish farmers in Epe, Lagos State, Nigeria. Climate change adaptation strategies mostly used by fish farmers include frequent seeking for early warning information about climate change (76.7%) and avoidance of areas susceptible to flooding (60.0%). Climate-change adaptation strategies used by fish farmers were significantly influenced by access to early warning information (β = 7.21), knowledge of farmers about climate change adaptation strategies (β = 8.86), access to capital (β = 28.25), and participation in workshop and conferences (β = 37.19) but were reduced by number of fish stocking (β = -2.06). The adaptation strategies used by fish farmers were autonomous and mostly determined by the access to credit facilities and information. Development policy should focus on carbon capture and storage technology in order to reduce adverse impacts of climate change, as well as making early warning information on climate change available to fish farmers. These will enhance adaptation to climate change. © 2013 Society of Chemical Industry.

  1. East Africa's pastoralist emergency: is climate change the straw that breaks the camel's back?

    PubMed

    Blackwell, P J

    2010-01-01

    The global warming trend of climate change is having severe adverse effects on the livelihoods of the Turkana pastoralists of northwestern Kenya. Care has to be taken in making assertions about the impact of climate change. The biggest effects may come not from lower average rainfall but from a widening of the standard deviation as weather extremes become more frequent. In a region already prone to drought, disease and conflict, climate change, access to modern weapons and new viral livestock diseases are now overwhelming pastoralists' coping capacity and deepening the region's roughly 30-year dependency on famine relief. This article examines the livelihood strategies of the Turkana and several poverty reduction programmes currently established, while addressing the reality that traditional pastoralism may no longer be a viable livelihood option, given the effects of climate change, disease and the ensuing conflict over diminishing resources. The findings conclude that the future for traditional Turkana pastoralists is dismal because they continue to depend on an environment that may no longer support them. Humanitarians are recommended to shift their focus to advocate and invest in alternative livelihood strategies that generate economic independence and help the Turkana adapt to their changing environment.

  2. Climate change: Potential impacts and interactions in wetlands of the United States

    USGS Publications Warehouse

    Burkett, Virginia; Kusler, Jon

    2000-01-01

    Wetlands exist in a transition zone between aquatic and terrestrial environments which can be altered by subtle changes in hydrology. Twentieth century climate records show that the United States is generally experiencing a trend towards a wetter, warmer climate; some climate models suggest that his trend will continue and possibly intensify over the next 100 years. Wetlands that are most likely to be affected by these and other potential changes (e.g., sea-level rise) associated with atmospheric carbon enrichment include permafrost wetlands, coastal and estuarine wetlands, peatlands, alpine wetlands, and prairie pothote wetlands. Potential impacts range from changes in community structure to changes in ecological function, and from extirpation to enhancement. Wetlands (particularly boreal peatlands) play an important role in the global carbon cycle, generally sequestering carbon in the form of biomass, methane, dissolved organic material and organic sediment. Wetlands that are drained or partially dried can become a net source of methane and carbon dioxide to the atmosphere, serving as a positive biotic feedback to global warming. Policy options for minimizing the adverse impacts of climate change on wetland ecosystems include the reduction of current anthropogenic stresses, allowing for inland migration of coastal wetlands as sea-level rises, active management to preserve wetland hydrology, and a wide range of other management and restoration options.

  3. Climate change and dead zones.

    PubMed

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. © 2014 John Wiley & Sons Ltd.

  4. Potential economic benefits of adapting agricultural production systems to future climate change

    USGS Publications Warehouse

    Fagre, Daniel B.; Pederson, Gregory; Bengtson, Lindsey E.; Prato, Tony; Qui, Zeyuan; Williams, Jimmie R.

    2010-01-01

    APSs to future climate change is advantageous (i.e., NFI with adaptation is superior to NFI without adaptation based on SERF), in six of the nine cases in which adaptation is advantageous, NFI with adaptation in the future climate period is inferior to NFI in the historical climate period. Therefore, adaptation of APSs to future climate change in Flathead Valley is insufficient to offset the adverse impacts on NFI of such change.

  5. Potential economic benefits of adapting agricultural production systems to future climate change.

    PubMed

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E; Williams, Jimmy R

    2010-03-01

    to future climate change is advantageous (i.e., NFI with adaptation is superior to NFI without adaptation based on SERF), in six of the nine cases in which adaptation is advantageous, NFI with adaptation in the future climate period is inferior to NFI in the historical climate period. Therefore, adaptation of APSs to future climate change in Flathead Valley is insufficient to offset the adverse impacts on NFI of such change.

  6. Climate change; Confronting the global experiment

    Treesearch

    Constance I. Millar

    2006-01-01

    Earth’s natural climate system is characterized by continually changing climates, with climate regimes that oscillate quasi-cyclically at multiple and nested scales from annual to multi-millennial, and commonly change abruptly. Under naturally changing climates, plant species track changes at all scales in individualistic manner, with plant communities...

  7. Sea-level rise caused by climate change and its implications for society.

    PubMed

    Mimura, Nobuo

    2013-01-01

    Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society.(Communicated by Kiyoshi HORIKAWA, M.J.A.).

  8. The toxicology of climate change: environmental contaminants in a warming world.

    PubMed

    Noyes, Pamela D; McElwee, Matthew K; Miller, Hilary D; Clark, Bryan W; Van Tiem, Lindsey A; Walcott, Kia C; Erwin, Kyle N; Levin, Edward D

    2009-08-01

    Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation

  9. Our Changing Climate

    ERIC Educational Resources Information Center

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  10. Climate change and health in Bangladesh: a baseline cross-sectional survey.

    PubMed

    Kabir, Md Iqbal; Rahman, Md Bayzidur; Smith, Wayne; Lusha, Mirza Afreen Fatima; Milton, Abul Hasnat

    2016-01-01

    Bangladesh is facing the unavoidable challenge of adaptation to climate change. However, very little is known in relation to climate change and health. This article provides information on potential climate change impact on health, magnitude of climate-sensitive diseases, and baseline scenarios of health systems to climate variability and change. A cross-sectional study using multistage cluster sampling framework was conducted in 2012 among 6,720 households of 224 rural villages in seven vulnerable districts of Bangladesh. Information was obtained from head of the households using a pretested, interviewer-administered, structured questionnaire. A total of 6,720 individuals participated in the study with written, informed consent. The majority of the respondents were from the low-income vulnerable group (60% farmers or day labourers) with an average of 30 years' stay in their locality. Most of them (96%) had faced extreme weather events, 45% of people had become homeless and displaced for a mean duration of 38 days in the past 10 years. Almost all of the respondents (97.8%) believe that health care expenditure increased after the extreme weather events. Mean annual total health care expenditure was 6,555 Bangladeshi Taka (BDT) (1 USD=77 BDT in 2015) and exclusively out of pocket of the respondents. Incidence of dengue was 1.29 (95% CI 0.65-2.56) and malaria 13.86 (95% CI 6.00-32.01) per 1,000 adult population for 12 months preceding the data collection. Incidence of diarrhoea and pneumonia among under-five children of the households for the preceding month was 10.3% (95% CI 9.16-11.66) and 7.3% (95% CI 6.35-8.46), respectively. The findings of this survey indicate that climate change has a potential adverse impact on human health in Bangladesh. The magnitude of malaria, dengue, childhood diarrhoea, and pneumonia was high among the vulnerable communities. Community-based adaptation strategy for health could be beneficial to minimise climate change attributed health

  11. Climate change and health in Bangladesh: a baseline cross-sectional survey

    PubMed Central

    Kabir, Md Iqbal; Rahman, Md Bayzidur; Smith, Wayne; Lusha, Mirza Afreen Fatima; Milton, Abul Hasnat

    2016-01-01

    Background Bangladesh is facing the unavoidable challenge of adaptation to climate change. However, very little is known in relation to climate change and health. This article provides information on potential climate change impact on health, magnitude of climate-sensitive diseases, and baseline scenarios of health systems to climate variability and change. Design A cross-sectional study using multistage cluster sampling framework was conducted in 2012 among 6,720 households of 224 rural villages in seven vulnerable districts of Bangladesh. Information was obtained from head of the households using a pretested, interviewer-administered, structured questionnaire. A total of 6,720 individuals participated in the study with written, informed consent. Results The majority of the respondents were from the low-income vulnerable group (60% farmers or day labourers) with an average of 30 years’ stay in their locality. Most of them (96%) had faced extreme weather events, 45% of people had become homeless and displaced for a mean duration of 38 days in the past 10 years. Almost all of the respondents (97.8%) believe that health care expenditure increased after the extreme weather events. Mean annual total health care expenditure was 6,555 Bangladeshi Taka (BDT) (1 USD=77 BDT in 2015) and exclusively out of pocket of the respondents. Incidence of dengue was 1.29 (95% CI 0.65–2.56) and malaria 13.86 (95% CI 6.00–32.01) per 1,000 adult population for 12 months preceding the data collection. Incidence of diarrhoea and pneumonia among under-five children of the households for the preceding month was 10.3% (95% CI 9.16–11.66) and 7.3% (95% CI 6.35–8.46), respectively. Conclusions The findings of this survey indicate that climate change has a potential adverse impact on human health in Bangladesh. The magnitude of malaria, dengue, childhood diarrhoea, and pneumonia was high among the vulnerable communities. Community-based adaptation strategy for health could be

  12. Climate Change and Health

    MedlinePlus

    ... Home / News / Fact sheets / Detail WHO /A. Craggs Climate change and health 1 February 2018 ","datePublished":"2018-02- ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  13. USDA Southwest climate hub for climate change

    USDA-ARS?s Scientific Manuscript database

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up...

  14. Climate change and the biosphere

    Treesearch

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  15. Conflict in a changing climate

    NASA Astrophysics Data System (ADS)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  16. Changes in future fire regimes under climate change

    NASA Astrophysics Data System (ADS)

    Thonicke, Kirsten; von Bloh, Werner; Lutz, Julia; Knorr, Wolfgang; Wu, Minchao; Arneth, Almut

    2013-04-01

    Fires are expected to change under future climate change, climatic fire is is increasing due to increase in droughts and heat waves affecting vegetation productivity and ecosystem function. Vegetation productivity influences fuel production, but can also limit fire spread. Vegetation-fire models allow investigating the interaction between wildfires and vegetation dynamics, thus non-linear effects between changes in fuel composition and production on fire as well as changes in fire regimes on fire-related plant mortality and fuel combustion. Here we present results from simulation experiments, where the vegetation-fire models LPJmL-SPITFIRE and LPJ-GUESS are applied to future climate change scenarios from regional climate models in Europe and Northern Africa. Climate change impacts on fire regimes, vegetation dynamics and carbon fluxes are quantified and presented. New fire-prone regions are mapped and changes in fire regimes of ecosystems with a long-fire history are analyzed. Fuel limitation is likely to increase in Mediterranean-type ecosystems, indicating non-linear connection between increasing fire risk and fuel production. Increased warming in temperate ecosystems in Eastern Europe and continued fuel production leads to increases not only in climatic fire risk, but also area burnt and biomass burnt. This has implications for fire management, where adaptive capacity to this new vulnerability might be limited.

  17. Climate Change Through a Poverty Lens

    NASA Astrophysics Data System (ADS)

    Rozenberg, J.; Hallegatte, S.

    2017-12-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  18. Climate change through a poverty lens

    NASA Astrophysics Data System (ADS)

    Hallegatte, Stephane; Rozenberg, Julie

    2017-04-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  19. Genetics of climate change adaptation.

    PubMed

    Franks, Steven J; Hoffmann, Ary A

    2012-01-01

    The rapid rate of current global climate change is having strong effects on many species and, at least in some cases, is driving evolution, particularly when changes in conditions alter patterns of selection. Climate change thus provides an opportunity for the study of the genetic basis of adaptation. Such studies include a variety of observational and experimental approaches, such as sampling across clines, artificial evolution experiments, and resurrection studies. These approaches can be combined with a number of techniques in genetics and genomics, including association and mapping analyses, genome scans, and transcription profiling. Recent research has revealed a number of candidate genes potentially involved in climate change adaptation and has also illustrated that genetic regulatory networks and epigenetic effects may be particularly relevant for evolution driven by climate change. Although genetic and genomic data are rapidly accumulating, we still have much to learn about the genetic architecture of climate change adaptation.

  20. Accounting for multiple climate components when estimating climate change exposure and velocity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures

  1. The Medieval Climate Anomaly and Byzantium: A review of the evidence on climatic fluctuations, economic performance and societal change

    NASA Astrophysics Data System (ADS)

    Xoplaki, Elena; Fleitmann, Dominik; Luterbacher, Juerg; Wagner, Sebastian; Haldon, John F.; Zorita, Eduardo; Telelis, Ioannis; Toreti, Andrea; Izdebski, Adam

    2016-03-01

    At the beginning of the Medieval Climate Anomaly, in the ninth and tenth century, the medieval eastern Roman empire, more usually known as Byzantium, was recovering from its early medieval crisis and experiencing favourable climatic conditions for the agricultural and demographic growth. Although in the Balkans and Anatolia such favourable climate conditions were prevalent during the eleventh century, parts of the imperial territories were facing significant challenges as a result of external political/military pressure. The apogee of medieval Byzantine socio-economic development, around AD 1150, coincides with a period of adverse climatic conditions for its economy, so it becomes obvious that the winter dryness and high climate variability at this time did not hinder Byzantine society and economy from achieving that level of expansion. Soon after this peak, towards the end of the twelfth century, the populations of the Byzantine world were experiencing unusual climatic conditions with marked dryness and cooler phases. The weakened Byzantine socio-political system must have contributed to the events leading to the fall of Constantinople in AD 1204 and the sack of the city. The final collapse of the Byzantine political control over western Anatolia took place half century later, thus contemporaneous with the strong cooling effect after a tropical volcanic eruption in AD 1257. We suggest that, regardless of a range of other influential factors, climate change was also an important contributing factor to the socio-economic changes that took place in Byzantium during the Medieval Climate Anomaly. Crucially, therefore, while the relatively sophisticated and complex Byzantine society was certainly influenced by climatic conditions, and while it nevertheless displayed a significant degree of resilience, external pressures as well as tensions within the Byzantine society more broadly contributed to an increasing vulnerability in respect of climate impacts. Our

  2. The Medieval Climate Anomaly and Byzantium: A review of the evidence on climatic fluctuations, economic performance and societal change

    NASA Astrophysics Data System (ADS)

    Xoplaki, Elena; Fleitmann, Dominik; Luterbacher, Juerg; Wagner, Sebastian; Haldon, John F.; Zorita, Eduardo; Telelis, Ioannis; Toreti, Andrea; Izdebski, Adam

    2016-04-01

    At the beginning of the Medieval Climate Anomaly, in the ninth and tenth century, the medieval eastern Roman empire, more usually known as Byzantium, was recovering from its early medieval crisis and experiencing favourable climatic conditions for the agricultural and demographic growth. Although in the Balkans and Anatolia such favourable climate conditions were prevalent during the eleventh century, parts of the imperial territories were facing significant challenges as a result of external political/military pressure. The apogee of medieval Byzantine socio-economic development, around AD 1150, coincides with a period of adverse climatic conditions for its economy, so it becomes obvious that the winter dryness and high climate variability at this time did not hinder Byzantine society and economy from achieving that level of expansion. Soon after this peak, towards the end of the twelfth century, the populations of the Byzantine world were experiencing unusual climatic conditions with marked dryness and cooler phases. The weakened Byzantine socio-political system must have contributed to the events leading to the fall of Constantinople in AD 1204 and the sack of the city. The final collapse of the Byzantine political control over western Anatolia took place half century later, thus contemporaneous with the strong cooling effect after a tropical volcanic eruption in AD 1257. We suggest that, regardless of a range of other influential factors, climate change was also an important contributing factor to the socio-economic changes that took place in Byzantium during the Medieval Climate Anomaly. Crucially, therefore, while the relatively sophisticated and complex Byzantine society was certainly influenced by climatic conditions, and while it nevertheless displayed a significant degree of resilience, external pressures as well as tensions within the Byzantine society more broadly contributed to an increasing vulnerability in respect of climate impacts. Our

  3. Capturing Tweets on Climate Change: What is the role of Twitter in Climate Change Communication?

    NASA Astrophysics Data System (ADS)

    Ngo, A. M.; McNeal, K.; Luginbuhl, S.; Enteen, J.

    2015-12-01

    Climate change is a major environmental issue that is often discussed throughout the world using social media outlets such as Twitter. This research followed and collected tweets about climate change as they related to two events: (i) the June 18, 2015 release of the Encyclical by Pope Francis which included content about climate change and (ii) the upcoming COP21 conference, a United Nations climate change conference, to be held on Dec. 7-8, 2015 in Paris. Using a Twitter account and Ncapture we were able to collect tens of thousands of climate change related tweets that were then loaded into a program called Nvivo which stored the tweets and associated publically available user information. We followed a few major hashtags such as COP21, UNFCCC, @climate, and the Pope. We examined twitter users, the information sources, locations, number of re-tweets, and frequency of tweets as well as the category of the tweet in regard to positive, negative, and neutral positions about climate. Frequency analysis of tweets over a 10 day period of the Encyclical event showed that ~200 tweets per day were made prior to the event, with ~1000 made on the day of the event, and ~100 per day following the event. For the COP21 event, activity ranged from 2000-3000 tweets per day. For the Encyclical event, an analysis of 1100 tweets on the day of release indicated that 47% of the tweets had a positive perspective about climate change, 50% were neutral, 1% negative, and 2% were unclear. For the COP21 event, an analysis of 342 tweets randomly sampled from 31,721 tweets, showed that 53% of the tweets had a positive perspective about climate change, 12% were neutral, 13% negative, and 22% were unclear. Differences in the frequency and perspectives of tweets were likely due to the nature of the events, one a long-term and recurring international event and the other a single international religious-oriented event. We tabulated the top 10 tweets about climate change as they relate to these two

  4. Global Climate Change Pilot Course Project

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region

  5. Examining the potential impacts of climate change on international security: EU-Africa partnership on climate change.

    PubMed

    Dodo, Mahamat K

    2014-01-01

    Climate Change like many global problems nowadays is recognized as a threat to the international security and cooperation. In theoretical terms, it is being securitized and included in the traditional security studies. Climate change and its accompanying environmental degradation are perceived to be a threat that can have incalculable consequences on the international community. The consequences are said to have more effects in small island developing nations and Africa where many States are fragile and overwhelmed with mounting challenges. In recent years, the security implications of the climate change are being addressed from national, regional and multilateral level. Against this backdrop, this paper intends to contribute to the debate on climate change and international security and present a broader perspective on the discussion. The paper will draw from the EU-Africa partnership on climate change and is structured as follows: the first part introduces the background of the international climate change policy and its securitization, the second part covers the EU-Africa relations and EU-Africa partnership on climate change, and the third part discusses the Congo Basin Forest Partnership as a concrete example of EU-Africa Partnership on Climate Change. Lastly, the paper concludes by drawing some conclusions and offers some policy perspectives and recommendations. Q54; 055; 052; 01;

  6. Climate Change: Good for Us?

    ERIC Educational Resources Information Center

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  7. Politics of climate change belief

    NASA Astrophysics Data System (ADS)

    2017-01-01

    Donald Trump's actions during the election and his first weeks as US president-elect send a strong message about his belief in climate change, or lack thereof. However, these actions may reflect polarization of climate change beliefs, not climate mitigation behaviour.

  8. Psychological research and global climate change

    NASA Astrophysics Data System (ADS)

    Clayton, Susan; Devine-Wright, Patrick; Stern, Paul C.; Whitmarsh, Lorraine; Carrico, Amanda; Steg, Linda; Swim, Janet; Bonnes, Mirilia

    2015-07-01

    Human behaviour is integral not only to causing global climate change but also to responding and adapting to it. Here, we argue that psychological research should inform efforts to address climate change, to avoid misunderstandings about human behaviour and motivations that can lead to ineffective or misguided policies. We review three key research areas: describing human perceptions of climate change; understanding and changing individual and household behaviour that drives climate change; and examining the human impacts of climate change and adaptation responses. Although much has been learned in these areas, we suggest important directions for further research.

  9. Eye tracking and climate change: How is climate literacy information processed?

    NASA Astrophysics Data System (ADS)

    Williams, C. C.; McNeal, K. S.

    2011-12-01

    The population of the Southeastern United States is perceived to be resistant to information regarding global climate change. The Climate Literacy Partnership in the Southeast (CLiPSE) project was formed to provide a resource for climate science information. As part of this project, we are evaluating the way that education materials influence the interpretation of climate change related information. At Mississippi State University, a study is being conducted examining how individuals from the Southeastern United States process climate change information and whether or not the interaction with such information impacts the interpretation of subsequent climate change related information. By observing the patterns both before and after an educational intervention, we are able to evaluate the effectiveness of the climate change information on an individual's interpretation of related information. Participants in this study view figures describing various types of climate change related information (CO2 emissions, sea levels, etc.) while their eye movements are tracked to determine a baseline for the way that they process this type of graphical data. Specifically, we are examining time spent viewing and number of fixations on critical portions of the figures prior to exposure to an educational document on climate change. Following the baseline period, we provide participants with portions of a computerized version of Climate Literacy: The Essential Principles of Climate Sciences that the participants read at their own pace while their eye movements are monitored. Participants are told that they will be given a test on the material after reading the resource. After reading the excerpt, participants are presented with a new set of climate change related figures to interpret (with eye tracking) along with a series of questions regarding information contained in the resource. We plan to evaluate changes that occur in the way that climate change related information is

  10. Climate Trends and Farmers' Perceptions of Climate Change in Zambia.

    PubMed

    Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  11. Ecological Footprint in relation to Climate Change Strategy in Cities

    NASA Astrophysics Data System (ADS)

    Belčáková, Ingrid; Diviaková, Andrea; Belaňová, Eliška

    2017-10-01

    Ecological footprint determines how much natural resources are consumed by an individual, city, region, state or all inhabitants of our planet in order to ensure their requirements and needs. It includes all activities, from food consumption, housing, transport to waste produced and allows us to compare particular activities and their impacts on the environment and natural resources. Ecological footprint is important issue for making sustainable development concept more popular using simplifications, which provide the public with basic information on situation on our planet. Today we know calculations of global (worldwide), national and local ecological footprints. During our research in cities, we were concentrated on calculation of city’s ecological footprint. The article tries to outline theoretical and assumptions and practical results of climate change consequences in cities of Bratislava and Nitra (Slovakia), to describe potential of mitigating adverse impacts of climate change and to provide information for general and professional public on theoretical assumptions in calculating ecological footprint. The intention is to present innovation of ecological footprint calculation, taking into consideration ecological stability of a city (with a specific focus on micro-climate functions of green areas). Present possibilities to reduce ecological footprint are presented.

  12. CERES-Maize model-based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang Province, China.

    PubMed

    Lin, Yumei; Wu, Wenxiang; Ge, Quansheng

    2015-11-01

    Climate change would cause negative impacts on future agricultural production and food security. Adaptive measures should be taken to mitigate the adverse effects. The objectives of this study were to simulate the potential effects of climate change on maize yields in Heilongjiang Province and to evaluate two selected typical household-level autonomous adaptive measures (cultivar changes and planting time adjustments) for mitigating the risks of climate change based on the CERES-Maize model. The results showed that flowering duration and maturity duration of maize would be shortened in the future climate and thus maize yield would reduce by 11-46% during 2011-2099 relative to 1981-2010. Increased CO2 concentration would not benefit maize production significantly. However, substituting local cultivars with later-maturing ones and delaying the planting date could increase yields as the climate changes. The results provide insight regarding the likely impacts of climate change on maize yields and the efficacy of selected adaptive measures by presenting evidence-based implications and mitigation strategies for the potential negative impacts of future climate change. © 2014 Society of Chemical Industry.

  13. Maritime Archaeology and Climate Change: An Invitation

    NASA Astrophysics Data System (ADS)

    Wright, Jeneva

    2016-12-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  14. Malaria ecology and climate change

    NASA Astrophysics Data System (ADS)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  15. Health impact assessment of global climate change: expanding on comparative risk assessment approaches for policy making.

    PubMed

    Patz, Jonathan; Campbell-Lendrum, Diarmid; Gibbs, Holly; Woodruff, Rosalie

    2008-01-01

    Climate change is projected to have adverse impacts on public health. Cobenefits may be possible from more upstream mitigation of greenhouse gases causing climate change. To help measure such cobenefits alongside averted disease-specific risks, a health impact assessment (HIA) framework can more comprehensively serve as a decision support tool. HIA also considers health equity, clearly part of the climate change problem. New choices for energy must be made carefully considering such effects as additional pressure on the world's forests through large-scale expansion of soybean and oil palm plantations, leading to forest clearing, biodiversity loss and disease emergence, expulsion of subsistence farmers, and potential increases in food prices and emissions of carbon dioxide to the atmosphere. Investigators must consider the full range of policy options, supported by more comprehensive, flexible, and transparent assessment methods.

  16. Creationism & Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  17. Climate Change and Collective Violence.

    PubMed

    Levy, Barry S; Sidel, Victor W; Patz, Jonathan A

    2017-03-20

    Climate change is causing increases in temperature, changes in precipitation and extreme weather events, sea-level rise, and other environmental impacts. It is also causing or contributing to heat-related disorders, respiratory and allergic disorders, infectious diseases, malnutrition due to food insecurity, and mental health disorders. In addition, increasing evidence indicates that climate change is causally associated with collective violence, generally in combination with other causal factors. Increased temperatures and extremes of precipitation with their associated consequences, including resultant scarcity of cropland and other key environmental resources, are major pathways by which climate change leads to collective violence. Public health professionals can help prevent collective violence due to climate change (a) by supporting mitigation measures to reduce greenhouse gas emissions, (b) by promoting adaptation measures to address the consequences of climate change and to improve community resilience, and (c) by addressing underlying risk factors for collective violence, such as poverty and socioeconomic disparities.

  18. Vegetation zones in changing climate

    NASA Astrophysics Data System (ADS)

    Belda, Michal; Holtanova, Eva; Halenka, Tomas; Kalvova, Jaroslava

    2017-04-01

    Climate patterns analysis can be performed for individual climate variables separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. Thus, the Köppen-Trewartha classification provides integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also can be used as a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is applied on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Moreover, the analysis of the CMIP5 ensemble for future under RCP 4.5 and RCP 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. Quite significant uncertainty can be seen for some types. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area

  19. Adapting agriculture to climate change.

    PubMed

    Howden, S Mark; Soussana, Jean-François; Tubiello, Francesco N; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-12-11

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.

  20. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    PubMed

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  1. The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the U.S. National Assessment.

    PubMed Central

    Patz, J A; McGeehin, M A; Bernard, S M; Ebi, K L; Epstein, P R; Grambsch, A; Gubler, D J; Reither, P; Romieu, I; Rose, J B; Samet, J M; Trtanj, J

    2000-01-01

    We examined the potential impacts of climate variability and change on human health as part of a congressionally mandated study of climate change in the United States. Our author team, comprising experts from academia, government, and the private sector, was selected by the federal interagency U.S. Global Change Research Program, and this report stems from our first 18 months of work. For this assessment we used a set of assumptions and/or projections of future climates developed for all participants in the National Assessment of the Potential Consequences of Climate Variability and Change. We identified five categories of health outcomes that are most likely to be affected by climate change because they are associated with weather and/or climate variables: temperature-related morbidity and mortality; health effects of extreme weather events (storms, tornadoes, hurricanes, and precipitation extremes); air-pollution-related health effects; water- and foodborne diseases; and vector- and rodent-borne diseases. We concluded that the levels of uncertainty preclude any definitive statement on the direction of potential future change for each of these health outcomes, although we developed some hypotheses. Although we mainly addressed adverse health outcomes, we identified some positive health outcomes, notably reduced cold-weather mortality, which has not been extensively examined. We found that at present most of the U.S. population is protected against adverse health outcomes associated with weather and/or climate, although certain demographic and geographic populations are at increased risk. We concluded that vigilance in the maintenance and improvement of public health systems and their responsiveness to changing climate conditions and to identified vulnerable subpopulations should help to protect the U.S. population from any adverse health outcomes of projected climate change. PMID:10753097

  2. The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the U.S. National Assessment.

    PubMed

    Patz, J A; McGeehin, M A; Bernard, S M; Ebi, K L; Epstein, P R; Grambsch, A; Gubler, D J; Reither, P; Romieu, I; Rose, J B; Samet, J M; Trtanj, J

    2000-04-01

    We examined the potential impacts of climate variability and change on human health as part of a congressionally mandated study of climate change in the United States. Our author team, comprising experts from academia, government, and the private sector, was selected by the federal interagency U.S. Global Change Research Program, and this report stems from our first 18 months of work. For this assessment we used a set of assumptions and/or projections of future climates developed for all participants in the National Assessment of the Potential Consequences of Climate Variability and Change. We identified five categories of health outcomes that are most likely to be affected by climate change because they are associated with weather and/or climate variables: temperature-related morbidity and mortality; health effects of extreme weather events (storms, tornadoes, hurricanes, and precipitation extremes); air-pollution-related health effects; water- and foodborne diseases; and vector- and rodent-borne diseases. We concluded that the levels of uncertainty preclude any definitive statement on the direction of potential future change for each of these health outcomes, although we developed some hypotheses. Although we mainly addressed adverse health outcomes, we identified some positive health outcomes, notably reduced cold-weather mortality, which has not been extensively examined. We found that at present most of the U.S. population is protected against adverse health outcomes associated with weather and/or climate, although certain demographic and geographic populations are at increased risk. We concluded that vigilance in the maintenance and improvement of public health systems and their responsiveness to changing climate conditions and to identified vulnerable subpopulations should help to protect the U.S. population from any adverse health outcomes of projected climate change.

  3. An exploratory study on occurrence and impact of climate change on agriculture in Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Varadan, R. Jayakumara; Kumar, Pramod; Jha, Girish Kumar; Pal, Suresh; Singh, Rashmi

    2017-02-01

    This study has been undertaken to examine the occurrence of climate change in Tamil Nadu, the southernmost state of India and its impact on rainfall pattern which is a primary constraint for agricultural production. Among the five sample stations examined across the state, the minimum temperature has increased significantly in Coimbatore while the same has decreased significantly in Vellore whereas both minimum and maximum temperatures have increased significantly in Madurai since 1969 with climate change occurring between late 1980s and early 1990s. As a result, the south-west monsoon has been disturbed with August rainfall increasing with more dispersion while September rainfall decreasing with less dispersion. Thus, September, the peak rainfall month of south-west monsoon before climate change, has become the monsoon receding month after climate change. Though there has been no change in the trend of the north-east monsoon, the quantity of October and November rainfall has considerably increased with increased dispersion after climate change. On the whole, south-west monsoon has decreased with decreased dispersion while north-east monsoon has increased with increased dispersion. Consequently, the season window for south-west monsoon crops has shortened while the north-east monsoon crops are left to fend against flood risk during their initial stages. Further, the incoherence in warming, climate change and rainfall impact seen across the state necessitates devising different indigenous and institutional adaptation strategies for different regions to overcome the adverse impacts of climate change on agriculture.

  4. Effect of climate change on agriculture sustainability in Jordan

    NASA Astrophysics Data System (ADS)

    Khresat, S.

    2009-04-01

    Jordan is a vulnerable country in terms of climate change impact. In the latest assessment report published by the Intergovernmental Panel on Climate Change. Jordan will suffer from reduced agricultural productivity due to more erratic rainfall patterns, reduced freshwater resources and increased temperatures. The Initial National Communication (INC) to the United Nations Framework Convention to Climate Change (UNFCCC) foresees that over the next three decades, Jordan will witness a rise in temperature, drop in rainfall, reduced ground cover, reduced water availability, heat-waves, and more frequent dust storms. Coupled with the effect of continuing drought incidents, plant cover removal was greatly accelerated. Climate change can impact agricultural sustainability in Jordan in two interrelated ways: first, by diminishing the long-term ability of agroecosystems to provide food and fiber locally; and second, by inducing shifts in agricultural regions that may encroach upon natural habitats, at the expense of floral and faunal diversity. Global warming may encourage the expansion of agricultural activities into regions now occupied by natural ecosystems such as rangelands in the Badia region and forests. Such encroachment will have adverse effects on the fragile ecosystem in those areas (Badia and steppe areas). Primary model test results showed that the reduction of rainfall by 10 to 20% had a negative impact while the increase in rainfall by 10 to 20% had a positive impact on grain yield for both barley and wheat at the different temperature regimes. This is due to the fact that water is the main limiting growth factor for wheat and barley under rainfed agriculture on Jordan. The warming (increase in temperature by 1 to 4˚ C) had negative impact on barley grain yield while it had a positive impact on grain yield of wheat.

  5. Collective violence caused by climate change and how it threatens health and human rights.

    PubMed

    Levy, Barry S; Sidel, Victor W

    2014-06-14

    The weight of scientific evidence indicates that climate change is causally associated with collective violence. This evidence arises from individual studies over wide ranges of time and geographic location, and from two extensive meta-analyses. Complex pathways that underlie this association are not fully understood; however, increased ambient temperatures and extremes of rainfall, with their resultant adverse impacts on the environment and risk factors for violence, appear to play key roles. Collective violence due to climate change poses serious threats to health and human rights, including by causing morbidity and mortality directly and also indirectly by damage to the health-supporting infrastructure of society, forcing people to migrate from their homes and communities, damaging the environment, and diverting human and financial resources. This paper also briefly addresses issues for future research on the relationship between climate change and collective violence, the prevention of collective violence due to climate change, and States' obligations to protect human rights, to prevent collective violence, and to promote and support measures to mitigate and adapt to climate change. Copyright © 2014 Levy and Sidel. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  6. EPA's Role in International Climate Adaptation

    EPA Pesticide Factsheets

    Climate change will impact communities around the world in varying ways and to varying degrees, over time. Yet people living in developing countries are likely to be more adversely affected by current and anticipated climate changes, especially cities.

  7. Assessing the effects of urbanization and climate change on groundwater management in China

    NASA Astrophysics Data System (ADS)

    Hua, S.; Zheng, C.

    2017-12-01

    Groundwater is expected to be more vulnerable in the future due to climate change coupled with rapid urbanization. Thus, protecting future groundwater resources under the impact of urbanization and climate change is necessary towards more sustainable groundwater resource development. This study is intended to shed lights on how water managers may plan for the adverse effects of urbanization and climate change on groundwater quality. A new approach is presented in which the groundwater vulnerability under future climate change scenarios is employed as a constraint to urban expansion. An original form of the Land Transformation Model (LTM) and a revised LTM simulation are applied to model the urbanization. The results indicated that there would be a notable and uneven urban growth between 2010 and 2050. Future groundwater vulnerability is expected to shift significantly under future climate change scenarios. The results of the revised LTM project more urban expansion in the central regions of China, while those of the original LTM project urban expansion in throughout China, although the two projections have the same areas of expansion. The urban expansion simulated by the original LTM follows the historical trend under the drivers of socioeconomic, political and geographic factors. However, the revised LTM drives the urban expansion to the regions with relatively lower groundwater vulnerability, in contrast to the historical trend. This study demonstrates that the integration of LTM and future groundwater vulnerability in the urban planning can better protect the groundwater resource and promote more sustainable socioeconomic development. The methodology developed in this study provides water managers and city planners a useful groundwater management tool for mitigating the risks associated with rapid urbanization and climate change.

  8. U.S. Navy Climate Change Roadmap

    DTIC Science & Technology

    2010-04-01

    Climate change is a national security challenge with strategic implications for the Navy. Climate change will lead to increased tensions in nations...with weak economies and political institutions. While climate change alone is not likely to lead to future conflict, it may be a contributing factor... Climate change is affecting, and will continue to affect, U.S. military installations and access to natural resources worldwide. It will affect the

  9. iSeeChange: Crowdsourced Climate Change Reporting

    NASA Astrophysics Data System (ADS)

    Drapkin, J. K.

    2012-12-01

    Directly engaging local communities about their climate change experiences has never been more important. As weather and climate become more unpredictable, these experiences provide a baseline for community decisions, developing adaptation strategies, and planning for the future. Typically, climate change is documented in a top-down fashion: a scientist has a question, makes observations, and publishes a study; in the best case scenario, a journalist reports on the results; if there's time, a local anecdote is sought to put the results in a familiar context. iSeeChange, a public media project funded by the Corporation for Public Broadcasting, reports local environmental change in reverse and turns community questions and conversations with scientists into reported stories that promote opportunities to learn about climate change's affects on the environment and daily life. iSeeChange engages residents of the North Fork Valley region of western Colorado in a multiplatform conversation with scientists about how they perceive their environment is changing through the course of a year - season to season. By bringing together public radio, a mobile reporting and cellular engagement strategy, and a custom crowdsourcing multimedia platform, iSeeChange provides a central access point to collect observations (texts, photographs, voice recordings, and video), organize conversations and interviews with scientists, and report stories online and on air. In this way, iSeeChange is building a dynamic crowdsourced reservoir of information that can increase awareness of environmental problems and potentially disseminate useful information about climate change and successful adaptation strategies. Ultimately, by understanding the community's information needs in a localized question-driven context, the iSeeChange platform presents opportunities for the science community to better understand the value of information and develop better ways to tailor information for communities to use

  10. Climate Change: From Science to Practice.

    PubMed

    Wheeler, Nicola; Watts, Nick

    2018-03-01

    Climate change poses a significant threat to human health. Understanding how climate science can be translated into public health practice is an essential first step in enabling robust adaptation and improving resiliency to climate change. Recent research highlights the importance of iterative approaches to public health adaptation to climate change, enabling uncertainties of health impacts and barriers to adaptation to be accounted for. There are still significant barriers to adaptation, which are context-specific and thus present unique challenges to public health practice. The implementation of flexible adaptation approaches, using frameworks targeted for public health, is key to ensuring robust adaptation to climate change in public health practice. The BRACE framework provides an excellent approach for health adaptation to climate change. Combining this with the insights provided and by the adaptation pathways approach allows for more deliberate accounting of long-term uncertainties. The mainstreaming of climate change adaptation into public health practice and planning is important in facilitating this approach and overcoming the significant barriers to effective adaptation. Yet, the immediate and future limits to adaptation provide clear justification for urgent and accelerated efforts to mitigate climate change.

  11. Climate Change 2014: Technical Summary

    USGS Publications Warehouse

    Field, Chrisopher B.; Barros, Vicente; Mach, Katherine; Mastrandrea, Michael; van Aalst, Maarten; Adger, Niel; Arent, Douglas J; Barnett, Jonathan; Betts, Richard; Bilir, Eren; Birkmann, Joern; Carmin, Joann; Chadee, Dave; Challinor, Andrew; Chaterjee, Monalisa; Cramer, Wolfgang; Davidson, Debra; Estrada, Yuka; Gatusso, Jean-Pierre; Hijioka, Yasuakai; Yohe, Gary; Hiza, Margaret; Hoegh-Guldberg, Ove; Huang, He-Qing; Insarov, Gregory; Jones, Roger; Kovats, Sari; Lankao, Patricia Romero; Larsen, Joan Nymand; Losada, Iñigo; Marengo, José; McLean, Roger; Mearns, Linda; Mechler, Reinhard; Morton, John; Niang, Isabelle; Oki, Taikan; Olwoch, Jane Mukarugwiza; Opondo, Maggie; Poloczanska, Elvira; Pörtner, Hans -O.; Reisinger, Andy; Revi, Aromar; Schmidt, Daniela; Shaw, Rebecca; Solecki, William; Stone, Dáithí; Stone, John; Strzepek, Ken; Suarez, Avelino G.; Tschakert, Petra; Valentini, Riccardo; Vicuna, Sebastian; Villamizar, Alicia; Vincent, Katharine; Warren, Rachel; White, Leslie; Wilbanks, Thomas; Wong, Poh Poh

    2014-01-01

    Human interference with the climate system is occurring (WGI AR5 SPM Section D.3; WGI AR5 Sections 2.2, 6.3, 10.3 to 10.6, 10.9). Climate change poses risks for human and natural systems. The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC’s Fifth Assessment Report (WGII AR5) evaluates how patterns of risks and potential benefits are shifting due to climate change. It considers how impacts and risks related to climate change can be reduced and managed through adaptation and mitigation. The report assesses needs, options, opportunities, constraints, resilience, limits, and other aspects associated with adaptation. It recognizes that risks of climate change will vary across regions and populations, through space and time, dependent on myriad factors including the extent of adaptation and mitigation. For the past 2 decades, IPCC’s Working Group II has developed assessments of climate change impacts, adaptation, and vulnerability. The WGII AR5 builds from the WGII contribution to the IPCC’s Fourth Assessment Report (WGII AR4), published in 2007, and the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), published in 2012. It follows the Working Group I contribution to the AR5. The WGII AR5 is presented in two parts (Part A: Global and Sectoral Aspects, and Part B: Regional Aspects), reflecting the expanded literature basis and multidisciplinary approach, increased focus on societal impacts and responses, and continued regionally comprehensive coverage. [1.1 to 1.3] The number of scientific publications available for assessing climate change impacts, adaptation, and vulnerability more than doubled between 2005 and 2010, with especially rapid increases in publications related to adaptation, allowing for a more robust assessment that supports policymaking (high confidence). The diversity of the topics and regions covered has similarly expanded, as has

  12. Feframing Climate Change for Environmental Health.

    PubMed

    Weems, Caitlin; Subramaniam, Prithwi Raj

    2017-04-01

    Repeated warnings by the scientific community on the dire consequences of climate change through global warming to the ecology and sustenance of our planet have not been give appropriate attention by the U.S. public. Research has shown that climate change is responsible for catastrophic weather occurrences--such as floods, tornadoes, hurricanes, and heat waves--resulting in environmental and public health issues. The purpose of this report is to examine factors influencing public views on climate change. Theoretical and political perspectives are examined to unpack opinions held by the public in the U.S. on climate change. The Health Belief Model is used as an example to showcase the efficacy of an individual behavior change program in providing the synergy to understand climate change at the microlevel. The concept of reframing is discussed as a strategy to alter how the public views climate change.

  13. Hybrid Zones: Windows on Climate Change

    PubMed Central

    Larson, Erica L.; Harrison, Richard G.

    2016-01-01

    Defining the impacts of anthropogenic climate change on biodiversity and species distributions is currently a high priority. Niche models focus primarily on predicted changes in abiotic factors; however, species interactions and adaptive evolution will impact the ability of species to persist in the face of changing climate. Our review focuses on the use of hybrid zones to monitor species' responses to contemporary climate change. Monitoring hybrid zones provides insight into how range boundaries shift in response to climate change by illuminating the combined effects of species interactions and physiological sensitivity. At the same time, the semi-permeable nature of species boundaries allows us to document adaptive introgression of alleles associated with response to climate change. PMID:25982153

  14. The Copernicus Climate Change Service (C3S): A European Answer to Climate Change

    NASA Astrophysics Data System (ADS)

    Thepaut, Jean-Noel

    2016-04-01

    Copernicus is the European Commission's flagship Earth observation programme that delivers freely accessible operational data and information services. ECMWF has been entrusted to operate two key parts of the Copernicus programme, which will bring a consistent standard to the measurement, forecasting and prediction of atmospheric conditions and climate change: • The Copernicus Atmosphere Monitoring Service, CAMS, provides daily forecasts detailing the makeup composition of the atmosphere from the ground up to the stratosphere. • The Copernicus Climate Change Service (C3S) (in development) will routinely monitor and analyse more than 20 essential climate variables to build a global picture of our climate, from the past to the future, as well as developing customisable climate indicators for relevant economic sectors, such as energy, water management, agriculture, insurance, health…. C3S has now taken off and a number of proof-of-concept sectoral climate services have been initiated. This paper will focus on the description and expected outcome of these proof-of-concept activities as well as the definition of a roadmap towards a fully operational European Climate Change Service.

  15. Quantitative approaches in climate change ecology

    PubMed Central

    Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.

  16. Biotech crops: imperative for achieving the millenium development goals and sustainability of agriculture in the climate change era.

    PubMed

    Husaini, Amjad M; Tuteja, Narendra

    2013-01-01

    Biotechnological intervention in the development of crops has opened new vistas in agriculture. Central to the accomplishment of the Millennium Development Goals (MDGs), biotech-agriculture is essential in meeting these targets. Biotech crops have already made modest contributions toward ensuring food and nutrition security by reducing losses and increasing productivity, with less pesticide input. These crops could help address some of the major challenges in agriculture-based economies created by climate change. Projections of global climate change expect the concentration of greenhouse gases to increase, aridization of the environment to increase, temperature fluctuations to occur sharply and frequently, and spatial and temporal distribution of rainfall to be disturbed-all of which will increase abiotic stress-related challenges to crops. Countering these challenges and to meet the food requirement of the ever-increasing world population (expected to reach 9 billion by 2030) we need to (1) develop and use biotech crops for mitigating adverse climatic changes; (2) develop biotech crops resilient to adverse environmental conditions; and (3) address the issues/non-issues raised by NGO's and educate the masses about the benefits of biotech crops.

  17. Lakes as sentinels of climate change

    PubMed Central

    Adrian, Rita; O’Reilly, Catherine M.; Zagarese, Horacio; Baines, Stephen B.; Hessen, Dag O.; Keller, Wendel; Livingstone, David M.; Sommaruga, Ruben; Straile, Dietmar; Van Donk, Ellen; Weyhenmeyer, Gesa A.; Winder, Monika

    2010-01-01

    While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment. PMID:20396409

  18. Forest disturbances under climate change

    NASA Astrophysics Data System (ADS)

    Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.

    2017-06-01

    Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.

  19. Forest disturbances under climate change

    PubMed Central

    Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.

    2017-01-01

    Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests. PMID:28861124

  20. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual

  1. Using Satellites to Understand Climate and Climate Change

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric

    2007-01-01

    This viewgraph presentation reviews the measurement of climate with the use of satellites. The basic greenhouse effect, Ice-albedo feedback, climate models and observations, aerosol-cloud interactions, and the Antarctic are discussed, along with the human effect on climate change.

  2. Climate Change, Climate Justice, and Environmental Health: Implications for the Nursing Profession.

    PubMed

    Nicholas, Patrice K; Breakey, Suellen

    2017-11-01

    Climate change is an emerging challenge linked to negative outcomes for the environment and human health. Since the 1960s, there has been a growing recognition of the need to address climate change and the impact of greenhouse gas emissions implicated in the warming of our planet. There are also deleterious health outcomes linked to complex climate changes that are emerging in the 21st century. This article addresses the social justice issues associated with climate change and human health and discussion of climate justice. Discussion paper. A literature search of electronic databases was conducted for articles, texts, and documents related to climate change, climate justice, and human health. The literature suggests that those who contribute least to global warming are those who will disproportionately be affected by the negative health outcomes of climate change. The concept of climate justice and the role of the Mary Robinson Foundation-Climate Justice are discussed within a framework of nursing's professional responsibility and the importance of social justice for the world's people. The nursing profession must take a leadership role in engaging in policy and advocacy discussions in addressing the looming problems associated with climate change. Nursing organizations have adopted resolutions and engaged in leadership roles to address climate change at the local, regional, national, and global level. It is essential that nurses embrace concepts related to social justice and engage in the policy debate regarding the deleterious effects on human health related to global warming and climate change. Nursing's commitment to social justice offers an opportunity to offer significant global leadership in addressing the health implications related to climate change. Recognizing the negative impacts of climate change on well-being and the underlying socioeconomic reasons for their disproportionate and inequitable distribution can expand and optimize the profession's role

  3. Integrating Climate Change Into Nursing Curricula.

    PubMed

    McDermott-Levy, Ruth; Jackman-Murphy, Kathryn P; Leffers, Jeanne M; Jordan, Lisa

    2018-03-28

    Climate change is a significant threat to human health across the life cycle. Nurses play an important role in mitigation, adaptation, and resilience to climate change. The use of health care resources, air quality and extreme heat, mental health, and natural disasters are major content areas across undergraduate nursing curricula that influence or are influenced by climate change. Teaching strategies and resources are offered to prepare nursing students to address climate change and human health.

  4. Global Climate Change.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1989-01-01

    Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

  5. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  6. Estimating farmers' willingness to pay for climate change adaptation: the case of the Malaysian agricultural sector.

    PubMed

    Masud, Muhammad Mehedi; Junsheng, Ha; Akhtar, Rulia; Al-Amin, Abul Quasem; Kari, Fatimah Binti

    2015-02-01

    This paper estimates Malaysian farmers' willingness to pay (WTP) for a planned adaptation programme for addressing climate issues in the Malaysian agricultural sector. We used the contingent valuation method (CVM) for a monetary valuation of farmers' preferences for a planned adaptation programme by ascertaining the value attached to address climatic issues in the Malaysian agricultural sector. Structured questionnaires were distributed among the sampled farmers. The study found that 74 % of respondents were willing to pay for a planned adaptation programme and that several socioeconomic and motivation factors have greater influence on their WTP. This paper clearly specifies the steps needed for all institutional bodies to better address issues in climate change. The outcomes of this paper will support policy makers to better design an efficient adaptation framework for adapting to the adverse impacts of climate change.

  7. A Model for Pre-Service Teachers' Climate Change Awareness and Willingness to Act for Pro-Climate Change Friendly Behavior: Adaptation of Awareness to Climate Change Questionnaire

    ERIC Educational Resources Information Center

    Dal, Burçkin; Alper, Umut; Özdem-Yilmaz, Yasemin; Öztürk, Nilay; Sönmez, Duygu

    2015-01-01

    Public awareness of the negative effects of climate change is vital since it leads to collective action for prevention and adaptation. However, investigations on to what extent people are aware of the climate change issue are rare in the literature. The present study reported the adaptation process of awareness to climate change questionnaire into…

  8. Climate change hotspots in the CMIP5 global climate model ensemble.

    PubMed

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  9. Linking models of human behaviour and climate alters projected climate change

    NASA Astrophysics Data System (ADS)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; Carr, Eric; Metcalf, Sara S.; Winter, Jonathan M.; Howe, Peter D.; Fefferman, Nina; Franck, Travis; Zia, Asim; Kinzig, Ann; Hoffman, Forrest M.

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4-6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with the largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.

  10. Natural versus anthropogenic climate change: Swedish farmers' joint construction of climate perceptions.

    PubMed

    Asplund, Therese

    2016-07-01

    While previous research into understandings of climate change has usually examined general public perceptions, this study offers an audience-specific departure point. This article analyses how Swedish farmers perceive climate change and how they jointly shape their understandings. The agricultural sector is of special interest because it both contributes to and is directly affected by climate change. Through focus group discussions with Swedish farmers, this study finds that (1) farmers relate to and understand climate change through their own experiences, (2) climate change is understood either as a natural process subject to little or no human influence or as anthropogenic and (3) various communication tools contribute to the formation of natural and anthropogenic climate change frames. The article ends by discussing frame resonance and frame clash in public understanding of climate change and by comparing potential similarities and differences in how various segments of the public make sense of climate change. © The Author(s) 2014.

  11. Being Prepared for Climate Change: Checklists of Potential Climate Change Risks, from Step 3

    EPA Pesticide Factsheets

    The Being Prepared for Climate Change workbook is a guide for constructing a climate change adaptation plan based on identifying risks and their consequences. These checklists (from Step 3 of the workbook) help users identify risks.

  12. Land degradation and climate change: building climate resilience in agriculture

    USDA-ARS?s Scientific Manuscript database

    Land degradation and climate change pose enormous risks to global food security. Land degradation increases the vulnerability of agroecological systems to climate change and reduces the effectiveness of adaptation options. Yet these interactions have largely been omitted from climate impact assessme...

  13. Climate Change in the North American Arctic: A One Health Perspective.

    PubMed

    Dudley, Joseph P; Hoberg, Eric P; Jenkins, Emily J; Parkinson, Alan J

    2015-12-01

    Climate change is expected to increase the prevalence of acute and chronic diseases among human and animal populations within the Arctic and subarctic latitudes of North America. Warmer temperatures are expected to increase disease risks from food-borne pathogens, water-borne diseases, and vector-borne zoonoses in human and animal populations of Arctic landscapes. Existing high levels of mercury and persistent organic pollutant chemicals circulating within terrestrial and aquatic ecosystems in Arctic latitudes are a major concern for the reproductive health of humans and other mammals, and climate warming will accelerate the mobilization and biological amplification of toxic environmental contaminants. The adverse health impacts of Arctic warming will be especially important for wildlife populations and indigenous peoples dependent upon subsistence food resources from wild plants and animals. Additional research is needed to identify and monitor changes in the prevalence of zoonotic pathogens in humans, domestic dogs, and wildlife species of critical subsistence, cultural, and economic importance to Arctic peoples. The long-term effects of climate warming in the Arctic cannot be adequately predicted or mitigated without a comprehensive understanding of the interactive and synergistic effects between environmental contaminants and pathogens in the health of wildlife and human communities in Arctic ecosystems. The complexity and magnitude of the documented impacts of climate change on Arctic ecosystems, and the intimacy of connections between their human and wildlife communities, makes this region an appropriate area for development of One Health approaches to identify and mitigate the effects of climate warming at the community, ecosystem, and landscape scales.

  14. Effects of climate change on the wash-off of volatile organic compounds from urban roads.

    PubMed

    Mahbub, Parvez; Goonetilleke, Ashantha; Ayoko, Godwin A; Egodawatta, Prasanna

    2011-09-01

    The predicted changes in rainfall characteristics due to climate change could adversely affect stormwater quality in highly urbanised coastal areas throughout the world. This in turn will exert a significant influence on the discharge of pollutants to estuarine and marine waters. Hence, an in-depth analysis of the effects of such changes on the wash-off of volatile organic compounds (VOCs) from urban roads in the Gold Coast region in Australia was undertaken. The rainfall characteristics were simulated using a rainfall simulator. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the VOC wash-off under climate change. It was found that low, low to moderate and high rain events due to climate change will affect the wash-off of toluene, ethylbenzene, meta-xylene, para-xylene and ortho-xylene from urban roads in Gold Coast. Total organic carbon (TOC) was identified as predominant carrier of toluene, meta-xylene and para-xylene in <1 μm to 150 μm fractions and for ethylbenzene in 150 μm to >300 μm fractions under such dominant rain events due to climate change. However, ortho-xylene did not show such affinity towards either TOC or TSS (total suspended solids) under the simulated climatic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Climate change, agricultural insecticide exposure, and risk for freshwater communities.

    PubMed

    Kattwinkel, Mira; Kühne, Jan-Valentin; Foit, Kaarina; Liess, Matthias

    2011-09-01

    Climate change exerts direct effects on ecosystems but has additional indirect effects due to changes in agricultural practice. These include the increased use of pesticides, changes in the areas that are cultivated, and changes in the crops cultivated. It is well known that pesticides, and in particular insecticides, affect aquatic ecosystems adversely. To implement effective mitigation measures it is necessary to identify areas that are affected currently and those that will be affected in the future. As a consequence, we predicted potential exposure to insecticide (insecticide runoff potential, RP) under current conditions (1990) and under a model scenario of future climate and land use (2090) using a spatially explicit model on a continental scale, with a focus on Europe. Space-for-time substitution was used to predict future levels of insecticide application, intensity of agricultural land use, and cultivated crops. To assess the indirect effects of climate change, evaluation of the risk of insecticide exposure was based on a trait-based, climate-insensitive indicator system (SPEAR, SPEcies At Risk). To this end, RP and landscape characteristics that are relevant for the recovery of affected populations were combined to estimate the ecological risk (ER) of insecticides for freshwater communities. We predicted a strong increase in the application of, and aquatic exposure to, insecticides under the future scenario, especially in central and northern Europe. This, in turn, will result in a severe increase in ER in these regions. Hence, the proportion of stream sites adjacent to arable land that do not meet the requirements for good ecological status as defined by the EU Water Framework Directive will increase (from 33% to 39% for the EU-25 countries), in particular in the Scandinavian and Baltic countries (from 6% to 19%). Such spatially explicit mapping of risk enables the planning of adaptation and mitigation strategies including vegetated buffer strips and

  16. Climate change, wine, and conservation.

    PubMed

    Hannah, Lee; Roehrdanz, Patrick R; Ikegami, Makihiko; Shepard, Anderson V; Shaw, M Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A; Hijmans, Robert J

    2013-04-23

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.

  17. Climate change, wine, and conservation

    PubMed Central

    Hannah, Lee; Roehrdanz, Patrick R.; Ikegami, Makihiko; Shepard, Anderson V.; Shaw, M. Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A.; Hijmans, Robert J.

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

  18. Women, e-waste, and technological solutions to climate change.

    PubMed

    McAllister, Lucy; Magee, Amanda; Hale, Benjamin

    2014-06-14

    In this paper, we argue that a crossover class of climate change solutions (which we term "technological solutions") may disproportionately and adversely impact some populations over others. We begin by situating our discussion in the wider climate discourse, particularly with regard to the Millennium Development Goals (MDGs) and the Basel Convention. We then suggest that many of the most attractive technological solutions to climate change, such as solar energy and electric car batteries, will likely add to the rapidly growing stream of electronic waste ("e-waste"). This e-waste may have negative downstream effects on otherwise disenfranchised populations. We argue that e-waste burdens women unfairly and disproportionately, affecting their mortality/morbidity and fertility, as well as the development of their children. Building on this, we claim that these injustices are more accurately captured as problems of recognition rather than distribution, since women are often institutionally under-acknowledged both in the workplace and in the home. Without institutional support and representation, women and children are deprived of adequate safety equipment, health precautions, and health insurance. Finally, we return to the question of climate justice in the context of the human right to health and argue for greater inclusion and recognition of women waste workers and other disenfranchised groups in forging future climate agreements. Copyright © 2014 McAllister, Magee. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  19. Health Impact of Climate Change in Older People: An Integrative Review and Implications for Nursing.

    PubMed

    Leyva, Erwin William A; Beaman, Adam; Davidson, Patricia M

    2017-11-01

    Older people account for the highest proportion of mortality from extreme weather events associated with climate change. This article aims to describe the health impacts of climate change on older people. An integrative review was conducted with 30 studies retrieved from PubMed, EBSCO, and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) on climate stressors, determinants of resilient capacity, risk factors, and health outcomes. Heat, temperature variability, and air pollution increase mortality risk in older people, especially from cardiovascular and respiratory diseases. Floods are linked with increasing incidence of post-traumatic stress disorder, depression, and anxiety. Facing these adversities, older people exhibit both vulnerability and resilience. Research gaps exist in understanding the full spectrum of the resilience experience of older people, and appreciating areas wherein nursing can play a pivotal role. Recognizing the vulnerabilities of older people in the context of climate change is important. Identifying opportunities to promote resilience is an important focus for nurses to develop tailored and targeted nursing interventions. © 2017 Sigma Theta Tau International.

  20. Managing Climate Change Refugia for Climate Adaptation

    EPA Science Inventory

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  1. Advancing Climate Change and Impacts Science Through Climate Informatics

    NASA Astrophysics Data System (ADS)

    Lenhardt, W.; Pouchard, L. C.; King, A. W.; Branstetter, M. L.; Kao, S.; Wang, D.

    2010-12-01

    This poster will outline the work to date on developing a climate informatics capability at Oak Ridge National Laboratory (ORNL). The central proposition of this effort is that the application of informatics and information science to the domain of climate change science is an essential means to bridge the realm of high performance computing (HPC) and domain science. The goal is to facilitate knowledge capture and the creation of new scientific insights. For example, a climate informatics capability will help with the understanding and use of model results in domain sciences that were not originally in the scope. From there, HPC can also benefit from feedback as the new approaches may lead to better parameterization in the models. In this poster we will summarize the challenges associated with climate change science that can benefit from the systematic application of informatics and we will highlight our work to date in creating the climate informatics capability to address these types of challenges. We have identified three areas that are particularly challenging in the context of climate change science: 1) integrating model and observational data across different spatial and temporal scales, 2) model linkages, i.e. climate models linked to other models such as hydrologic models, and 3) model diagnostics. Each of these has a methodological component and an informatics component. Our project under way at ORNL seeks to develop new approaches and tools in the context of linking climate change and water issues. We are basing our work on the following four use cases: 1) Evaluation/test of CCSM4 biases in hydrology (precipitation, soil water, runoff, river discharge) over the Rio Grande Basin. User: climate modeler. 2) Investigation of projected changes in hydrology of Rio Grande Basin using the VIC (Variable Infiltration Capacity Macroscale) Hydrologic Model. User: watershed hydrologist/modeler. 3) Impact of climate change on agricultural productivity of the Rio Grande

  2. Climate change: believing and seeing implies adapting.

    PubMed

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  3. Climate change and climate variability: personal motivation for adaptation and mitigation

    PubMed Central

    2011-01-01

    Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4 - 4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1 - 3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1) or plan, OR = 2.2 (95% CI: 1.5 -3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4) or an emergency plan OR = 1.5 (95%CI: 1.0 - 2.2). Conclusions Motivation for

  4. Climate change and climate variability: personal motivation for adaptation and mitigation.

    PubMed

    Semenza, Jan C; Ploubidis, George B; George, Linda A

    2011-05-21

    Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4-4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1-3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2-3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4-3.1) or plan, OR = 2.2 (95% CI: 1.5-3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1-2.4) or an emergency plan OR = 1.5 (95%CI: 1.0-2.2). Motivation for voluntary mitigation is mostly dependent on

  5. Advancing the framework for considering the effects of climate change on worker safety and health.

    PubMed

    Schulte, P A; Bhattacharya, A; Butler, C R; Chun, H K; Jacklitsch, B; Jacobs, T; Kiefer, M; Lincoln, J; Pendergrass, S; Shire, J; Watson, J; Wagner, G R

    2016-11-01

    In 2009, a preliminary framework for how climate change could affect worker safety and health was described. That framework was based on a literature search from 1988-2008 that supported seven categories of climate-related occupational hazards: (1) increased ambient temperature; (2) air pollution; (3) ultraviolet radiation exposure; (4) extreme weather; (5) vector-borne diseases and expanded habitats; (6) industrial transitions and emerging industries; and (7) changes in the built environment. This article reviews the published literature from 2008-2014 in each of the seven categories. Additionally, three new topics related to occupational safety and health are considered: mental health effects, economic burden, and potential worker safety and health impacts associated with the nascent field of climate intervention (geoengineering). Beyond updating the literature, this article also identifies key priorities for action to better characterize and understand how occupational safety and health may be associated with climate change events and ensure that worker health and safety issues are anticipated, recognized, evaluated, and mitigated. These key priorities include research, surveillance, risk assessment, risk management, and policy development. Strong evidence indicates that climate change will continue to present occupational safety and health hazards, and this framework may be a useful tool for preventing adverse effects to workers.

  6. Advancing the framework for considering the effects of climate change on worker safety and health

    PubMed Central

    Schulte, P.A.; Bhattacharya, A.; Butler, C.R.; Chun, H.K.; Jacklitsch, B.; Jacobs, T.; Kiefer, M.; Lincoln, J.; Pendergrass, S.; Shire, J.; Watson, J.; Wagner, G.R.

    2016-01-01

    ABSTRACT In 2009, a preliminary framework for how climate change could affect worker safety and health was described. That framework was based on a literature search from 1988–2008 that supported seven categories of climate-related occupational hazards: (1) increased ambient temperature; (2) air pollution; (3) ultraviolet radiation exposure; (4) extreme weather; (5) vector-borne diseases and expanded habitats; (6) industrial transitions and emerging industries; and (7) changes in the built environment. This article reviews the published literature from 2008–2014 in each of the seven categories. Additionally, three new topics related to occupational safety and health are considered: mental health effects, economic burden, and potential worker safety and health impacts associated with the nascent field of climate intervention (geoengineering). Beyond updating the literature, this article also identifies key priorities for action to better characterize and understand how occupational safety and health may be associated with climate change events and ensure that worker health and safety issues are anticipated, recognized, evaluated, and mitigated. These key priorities include research, surveillance, risk assessment, risk management, and policy development. Strong evidence indicates that climate change will continue to present occupational safety and health hazards, and this framework may be a useful tool for preventing adverse effects to workers. PMID:27115294

  7. Future integrated aquifer vulnerability assessment considering land use / land cover and climate change using DRASTIC and SWAT

    NASA Astrophysics Data System (ADS)

    Jang, W.; Engel, B.; Chaubey, I.

    2015-12-01

    Climate change causes significant changes to temperature regimes and precipitation patterns across the world. Such alterations in climate pose serious risks for not only inland freshwater ecosystems but also groundwater systems, and may adversely affect numerous critical services they provide to humans. All groundwater results from precipitation, and precipitation is affected by climate change. Climate change is also influenced by land use / land cover (LULC) change and vice versa. According to Intergovernmental Panel on Climate Change (IPCC) reports, climate change is caused by global warming which is generated by the increase of greenhouse gas (GHG) emissions in the atmosphere. LULC change is a major driving factor causing an increase in GHG emissions. LULC change data (years 2006-2100) will be produced by the Land Transformation Model (LTM) which simulates spatial patterns of LULC change over time. MIROC5 (years 2006-2100) will be obtained considering GCMs and ensemble characteristics such as resolution and trend of temperature and precipitation which is a consistency check with observed data from local weather stations and historical data from GCMs output data. Thus, MIROC5 will be used to account for future climate change scenarios and relationship between future climate change and alteration of groundwater quality in this study. For efficient groundwater resources management, integrated aquifer vulnerability assessments (= intrinsic vulnerability + hazard potential assessment) are required. DRASTIC will be used to evaluate intrinsic vulnerability, and aquifer hazard potential will be evaluated by Soil and Water Assessment Tool (SWAT) which can simulate pollution potential from surface and transport properties of contaminants. Thus, for effective integrated aquifer vulnerability assessment for LULC and climate change in the Midwestern United States, future projected LULC and climate data from the LTM and GCMs will be incorporated with DRASTIC and SWAT. It is

  8. Sediment transport patterns and climate change: the downstream Tuul River case study, Northern Mongolia.

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2014-05-01

    Ongoing changes in the Central Asian climate including increasing temperatures can influence the hydrological regimes of rivers and the waterborne transport of sediments. Changes in the latter, especially in combination with adverse human activities, may severely impact water quality and aquatic ecosystems. However, waterborne transport of sediments is a result of complex processes and varies considerably between, and even within, river systems. There is therefore a need to increase our general knowledge about sediment transport under changing climate conditions. The Tuul River, the case site of this study, is located in the upper part of the basin of the Selenga River that is the main tributary to Lake Baikal, a UNESCO World Heritage Site. Like many other rivers located in the steppes of Northern Mongolia, the Tuul River is characterized by a hydrological regime that is not disturbed by engineered structures such as reservoirs and dams. However, the water quality of the downstream Tuul River is increasingly affected by adverse human activities - including placer gold mining. The largest contribution to the annual river discharge occurs during the relatively warm period in May to August. Typically, there are numerous rainfall events during this period that cause considerable river flow peaks. Parallel work has furthermore shown that due to climate change, the daily variability of discharge and numbers of peak flow events in the Tuul River Basin has increased during the past 60 years. This trend is expected to continue. We here aim at increasing our understanding of future sediment transport patterns in the Tuul River, specifically considering the scenario that peak flow events may become more frequent due to climate change. We use a one-dimensional sediment transport model of the downstream reach of the river to simulate natural patterns of sediment transport for a recent hydrological year. In general, the results show that sediment transport varies considerably

  9. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    NASA Astrophysics Data System (ADS)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  10. America's Climate Choices: Informing an Effective Response to Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Liverman, D. M.; McConnell, M. C.; Raven, P.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study examines information needs and recommends ways the federal government can better inform responses by enhancing climate change and greenhouse gas information and reporting systems and by improving climate communication and education. Demand for better information to support climate-related decisions has grown rapidly as people, organizations, and governments have moved ahead with plans and actions to reduce greenhouse gas emissions and to adapt to the impacts of climate change. To meet this demand, good information systems and services are needed. Without such systems, decision makers cannot evaluate whether particular policies and actions are achieving their goals or should be modified. Although the many non-federal efforts to reduce emissions and/or adapt to future climate changes carry considerable potential to reduce risks related to climate change, there is currently no comprehensive way to assess the effectiveness of those efforts. In addition, the diverse climate change responses to date have resulted in a patchwork of regional, state, and local policies that has prompted many state and business leaders to call for the development of a more predictable and coherent policy environment at the federal level. This report demonstrates that the nation lacks comprehensive, robust, and credible information and reporting systems to inform climate choices and evaluate their effectiveness. This report also argues that decision makers can benefit from a systematic and iterative framework for responding to climate change, in which decisions and policies can be revised in light of new information and experience and that improved information and reporting systems allow for ongoing evaluation of responses to climate risks. The

  11. Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada

    USGS Publications Warehouse

    Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and

  12. Climate change portal established

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-12-01

    The World Bank has developed a Climate Change Knowledge Portal as a kind of “onestop shop” for climate-related information, data, and tools. The portal provides access to global, regional, and national data and reports with an aim to providing a resource for learning about climate information and increasing knowledge on climate change—related actions. For more information, see http://sdwebx.worldbank.org/climateportal/.

  13. Western water and climate change.

    PubMed

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  14. The economics of abrupt climate change.

    PubMed

    Perrings, Charles

    2003-09-15

    The US National Research Council defines abrupt climate change as a change of state that is sufficiently rapid and sufficiently widespread in its effects that economies are unprepared or incapable of adapting. This may be too restrictive a definition, but abrupt climate change does have implications for the choice between the main response options: mitigation (which reduces the risks of climate change) and adaptation (which reduces the costs of climate change). The paper argues that by (i) increasing the costs of change and the potential growth of consumption, and (ii) reducing the time to change, abrupt climate change favours mitigation over adaptation. Furthermore, because the implications of change are fundamentally uncertain and potentially very high, it favours a precautionary approach in which mitigation buys time for learning. Adaptation-oriented decision tools, such as scenario planning, are inappropriate in these circumstances. Hence learning implies the use of probabilistic models that include socioeconomic feedbacks.

  15. Global Climate Change and Children's Health.

    PubMed

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.

  16. Synopsis of climate change

    Treesearch

    Angela Jardine; Jonathan Long

    2014-01-01

    Changes in climate can interact with other stressors to transform ecosystems and alter the services those ecosystems provide. This synopsis presents themes that run through the synthesis report regarding the impacts of a changing climate on the forests and waters of the synthesis area as well as long-term, broad-scale, science-based strategies to promote system...

  17. Designing ecological climate change impact assessments to reflect key climatic drivers

    USGS Publications Warehouse

    Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.

    2017-01-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.

  18. Designing ecological climate change impact assessments to reflect key climatic drivers.

    PubMed

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  19. Linking models of human behaviour and climate alters projected climate change

    DOE PAGES

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; ...

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4–6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with themore » largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Lastly, our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.« less

  20. Linking models of human behaviour and climate alters projected climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4–6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with themore » largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Lastly, our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.« less

  1. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.

    PubMed

    Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos

    2017-12-01

    Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.

  2. Climate change risk analysis framework (CCRAF) a probabilistic tool for analyzing climate change uncertainties

    NASA Astrophysics Data System (ADS)

    Legget, J.; Pepper, W.; Sankovski, A.; Smith, J.; Tol, R.; Wigley, T.

    2003-04-01

    Potential risks of human-induced climate change are subject to a three-fold uncertainty associated with: the extent of future anthropogenic and natural GHG emissions; global and regional climatic responses to emissions; and impacts of climatic changes on economies and the biosphere. Long-term analyses are also subject to uncertainty regarding how humans will respond to actual or perceived changes, through adaptation or mitigation efforts. Explicitly addressing these uncertainties is a high priority in the scientific and policy communities Probabilistic modeling is gaining momentum as a technique to quantify uncertainties explicitly and use decision analysis techniques that take advantage of improved risk information. The Climate Change Risk Assessment Framework (CCRAF) presented here a new integrative tool that combines the probabilistic approaches developed in population, energy and economic sciences with empirical data and probabilistic results of climate and impact models. The main CCRAF objective is to assess global climate change as a risk management challenge and to provide insights regarding robust policies that address the risks, by mitigating greenhouse gas emissions and by adapting to climate change consequences. The CCRAF endogenously simulates to 2100 or beyond annual region-specific changes in population; GDP; primary (by fuel) and final energy (by type) use; a wide set of associated GHG emissions; GHG concentrations; global temperature change and sea level rise; economic, health, and biospheric impacts; costs of mitigation and adaptation measures and residual costs or benefits of climate change. Atmospheric and climate components of CCRAF are formulated based on the latest version of Wigley's and Raper's MAGICC model and impacts are simulated based on a modified version of Tol's FUND model. The CCRAF is based on series of log-linear equations with deterministic and random components and is implemented using a Monte-Carlo method with up to 5000

  3. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  4. Climate Change and the Federal Budget

    DTIC Science & Technology

    1998-08-01

    in the area of global climate change and to review current federal spending programs and tax policies that relate to climate change . The memorandum...policymakers as they consider options to respond to international proposals for reducing the threat of climate change . In accordance with CBO’s mandate

  5. Hydrologic refugia, plants, and climate change.

    PubMed

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  6. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan.

    PubMed

    Abid, Muhammad; Schilling, Janpeter; Scheffran, Jürgen; Zulfiqar, Farhad

    2016-03-15

    Pakistan is among the countries highly exposed and vulnerable to climate change. The country has experienced many severe floods, droughts and storms over the last decades. However, little research has focused on the investigation of vulnerability and adaptation to climate-related risks in Pakistan. Against this backdrop, this article investigates the farm level risk perceptions and different aspects of vulnerability to climate change including sensitivity and adaptive capacity at farm level in Pakistan. We interviewed a total of 450 farming households through structured questionnaires in three districts of Punjab province of Pakistan. This study identified a number of climate-related risks perceived by farm households such as extreme temperature events, insect attacks, animal diseases and crop pests. Limited water availability, high levels of poverty and a weak role of local government in providing proper infrastructure were the factors that make farmers more sensitive to climate-related risks. Uncertainty or reduction in crop and livestock yields; changed cropping calendars and water shortage were the major adverse impacts of climate-related risks reported by farmers in the study districts. Better crop production was reported as the only positive effect. Further, this study identified a number of farm level adaptation methods employed by farm households that include changes in crop variety, crop types, planting dates and input mix, depending upon the nature of the climate-related risks. Lack of resources, limited information, lack of finances and institutional support were some constraints that limit the adaptive capacity of farm households. This study also reveals a positive role of cooperation and negative role of conflict in the adaptation process. The study suggests to address the constraints to adaptation and to improve farm level cooperation through extended outreach and distribution of institutional services, particularly climate-specific farm advisory

  7. Creating Effective Dialogue Around Climate Change

    NASA Astrophysics Data System (ADS)

    Kiehl, J. T.

    2015-12-01

    Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.

  8. Responding to the Consequences of Climate Change

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  9. Modeling Climate Change in the Absence of Climate Change Data. Editorial Comment

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.

    1995-01-01

    Practitioners of climate change prediction base many of their future climate scenarios on General Circulation Models (GCM's), each model with differing assumptions and parameter requirements. For representing the atmosphere, GCM's typically contain equations for calculating motion of particles, thermodynamics and radiation, and continuity of water vapor. Hydrology and heat balance are usually included for continents, and sea ice and heat balance are included for oceans. The current issue of this journal contains a paper by Van Blarcum et al. (1995) that predicts runoff from nine high-latitude rivers under a doubled CO2 atmosphere. The paper is important since river flow is an indicator variable for climate change. The authors show that precipitation will increase under the imposed perturbations and that owing to higher temperatures earlier in the year that cause the snow pack to melt sooner, runoff will also increase. They base their simulations on output from a GCM coupled with an interesting water routing scheme they have devised. Climate change models have been linked to other models to predict deforestation.

  10. Ocean Observations of Climate Change

    NASA Astrophysics Data System (ADS)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  11. Climate change and food security.

    PubMed

    Gregory, P J; Ingram, J S I; Brklacich, M

    2005-11-29

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their

  12. Climate change and food security

    PubMed Central

    Gregory, P.J; Ingram, J.S.I; Brklacich, M

    2005-01-01

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their

  13. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  14. Robust features of future climate change impacts on sorghum yields in West Africa

    NASA Astrophysics Data System (ADS)

    Sultan, B.; Guan, K.; Kouressy, M.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.; Lobell, D. B.

    2014-10-01

    West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031-2060 compared to a baseline of 1961-1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16-20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential

  15. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  16. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget R.; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard F.; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  17. How does climate change cause extinction?

    PubMed Central

    Cahill, Abigail E.; Aiello-Lammens, Matthew E.; Fisher-Reid, M. Caitlin; Hua, Xia; Karanewsky, Caitlin J.; Yeong Ryu, Hae; Sbeglia, Gena C.; Spagnolo, Fabrizio; Waldron, John B.; Warsi, Omar; Wiens, John J.

    2013-01-01

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies. PMID:23075836

  18. Invertebrates, ecosystem services and climate change.

    PubMed

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  19. How does climate change cause extinction?

    PubMed

    Cahill, Abigail E; Aiello-Lammens, Matthew E; Fisher-Reid, M Caitlin; Hua, Xia; Karanewsky, Caitlin J; Ryu, Hae Yeong; Sbeglia, Gena C; Spagnolo, Fabrizio; Waldron, John B; Warsi, Omar; Wiens, John J

    2013-01-07

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

  20. Climate Change Ignorance: An Unacceptable Legacy

    ERIC Educational Resources Information Center

    Boon, Helen J.

    2015-01-01

    Climate change effects will be most acutely felt by future generations. Recent prior research has shown that school students' knowledge of climate change science is very limited in rural Australia. The purpose of this study was to assess the capacity of preservice teachers and parents to transmit climate change information and understanding to…

  1. Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain

    2011-12-01

    Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.

  2. Climate Change Education in Earth System Science

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  3. Floods in a changing climate

    Treesearch

    Theresa K. Andersen; Marshall J. Shepherd

    2013-01-01

    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  4. Adaptation of farming practices could buffer effects of climate change on northern prairie wetlands

    USGS Publications Warehouse

    Voldseth, R.A.; Johnson, W.C.; Guntenspergen, G.R.; Gilmanov, T.; Millett, B.V.

    2009-01-01

    Wetlands of the Prairie Pothole Region of North America are vulnerable to climate change. Adaptation of farming practices to mitigate adverse impacts of climate change on wetland water levels is a potential watershed management option. We chose a modeling approach (WETSIM 3.2) to examine the effects of changes in climate and watershed cover on the water levels of a semi-permanent wetland in eastern South Dakota. Land-use practices simulated were unmanaged grassland, grassland managed with moderately heavy grazing, and cultivated crops. Climate scenarios were developed by adjusting the historical climate in combinations of 2??C and 4??C air temperature and ??10% precipitation. For these climate change scenarios, simulations of land use that produced water levels equal to or greater than unmanaged grassland under historical climate were judged to have mitigative potential against a drier climate. Water levels in wetlands surrounded by managed grasslands were significantly greater than those surrounded by unmanaged grassland. Management reduced both the proportion of years the wetland went dry and the frequency of dry periods, producing the most dynamic vegetation cycle for this modeled wetland. Both cultivated crops and managed grassland achieved water levels that were equal or greater than unmanaged grassland under historical climate for the 2??C rise in air temperature, and the 2??C rise plus 10% increase in precipitation scenarios. Managed grassland also produced water levels that were equal or greater than unmanaged grassland under historical climate for the 4??C rise plus 10% increase in precipitation scenario. Although these modeling results stand as hypotheses, they indicate that amelioration potential exists for a change in climate up to an increase of 2??C or 4??C with a concomitant 10% increase in precipitation. Few empirical data exist to verify the results of such land-use simulations; however, adaptation of farming practices is one possible mitigation

  5. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  6. Conservation and adaptation to climate change.

    PubMed

    Brooke, Cassandra

    2008-12-01

    The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science-policy interface. Similarly, boundary organizations-organizations or institutions that bridge different scales or mediate the relationship between science and policy-could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.

  7. Climate change threatens European conservation areas

    PubMed Central

    Araújo, Miguel B; Alagador, Diogo; Cabeza, Mar; Nogués-Bravo, David; Thuiller, Wilfried

    2011-01-01

    Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58 ± 2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63 ± 2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P<0.001), but Natura 2000 areas retain climate suitability for species no better and sometimes less effectively than unprotected areas. The risk is high that ongoing efforts to conserve Europe's biodiversity are jeopardized by climate change. New policies are required to avert this risk. PMID:21447141

  8. Mental health effects of climate change.

    PubMed

    Padhy, Susanta Kumar; Sarkar, Sidharth; Panigrahi, Mahima; Paul, Surender

    2015-01-01

    We all know that 2014 has been declared as the hottest year globally by the Meteorological department of United States of America. Climate change is a global challenge which is likely to affect the mankind in substantial ways. Not only climate change is expected to affect physical health, it is also likely to affect mental health. Increasing ambient temperatures is likely to increase rates of aggression and violent suicides, while prolonged droughts due to climate change can lead to more number of farmer suicides. Droughts otherwise can lead to impaired mental health and stress. Increased frequency of disasters with climate change can lead to posttraumatic stress disorder, adjustment disorder, and depression. Changes in climate and global warming may require population to migrate, which can lead to acculturation stress. It can also lead to increased rates of physical illnesses, which secondarily would be associated with psychological distress. The possible effects of mitigation measures on mental health are also discussed. The paper concludes with a discussion of what can and should be done to tackle the expected mental health issues consequent to climate change.

  9. A changing climate of skepticism: The factors shaping climate change coverage in the US press.

    PubMed

    Schmid-Petri, Hannah; Adam, Silke; Schmucki, Ivo; Häussler, Thomas

    2017-05-01

    Skepticism toward climate change has a long tradition in the United States. We focus on mass media as the conveyors of the image of climate change and ask: Is climate change skepticism still a characteristic of US print media coverage? If so, to what degree and in what form? And which factors might pave the way for skeptics entering mass media debates? We conducted a quantitative content analysis of US print media during one year (1 June 2012 to 31 May 2013). Our results show that the debate has changed: fundamental forms of climate change skepticism (such as denial of anthropogenic causes) have been abandoned in the coverage, being replaced by more subtle forms (such as the goal to avoid binding regulations). We find no evidence for the norm of journalistic balance, nor do our data support the idea that it is the conservative press that boosts skepticism.

  10. [Variation trends of natural vegetation net primary productivity in China under climate change scenario].

    PubMed

    Zhao, Dong-sheng; Wu, Shao-hong; Yin, Yun-he

    2011-04-01

    Based on the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) for climate change study, and according to the features of natural environment in China, the operation mechanism of the model was adjusted, and the parameters were modified. With the modified LPJ model and taking 1961-1990 as baseline period, the responses of natural vegetation net primary productivity (NPP) in China to climate change in 1991-2080 were simulated under the Special Report on Emissions Scenarios (SRES) B2 scenario. In 1961-1990, the total NPP of natural vegetation in China was about 3.06 Pg C a(-1); in 1961-2080, the total NPP showed a fluctuant decreasing trend, with an accelerated decreasing rate. Under the condition of slight precipitation change, the increase of mean air temperature would have definite adverse impact on the NPP. Spatially, the NPP decreased from southeast coast to northwest inland, and this pattern would have less variation under climate change. In eastern China with higher NPP, especially in Northeast China, east of North China, and Loess Plateau, the NPP would mainly have a decreasing trend; while in western China with lower NPP, especially in the Tibetan Plateau and Tarim Basin, the NPP would be increased. With the intensive climate change, such a variation trend of NPP would be more obvious.

  11. Climate change, marine environments, and the US Endangered species act.

    PubMed

    Seney, Erin E; Rowland, Melanie J; Lowery, Ruth Ann; Griffis, Roger B; McClure, Michelle M

    2013-12-01

    Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate-related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and "distinct population segments" may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case-by-case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species' continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA-listed species' survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long-term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El

  12. [Climatic change and public health: scenarios after the coming into force of the Kyoto Protocol].

    PubMed

    Ballester, Ferran; Díaz, Julio; Moreno, José Manuel

    2006-03-01

    According to the reports of the intergovernmental panel for climatic change (IPCC) human beings of the present and near future are going to experiment, in fact we are already experimenting, important changes in the world climate. Conscious of the magnitude of the problem, international organizations have taken a series of initiatives headed to stop the climatic change and to reduce its impact. This willingness has been shaped into the agreements established in the Kyoto protocol, where countries commit to reduce greenhouse-effect gas emissions. Kyoto protocol has come into force on February 16th 2005 with the support of 141 signing countries. Among the major worries are the effects which climatic change may have upon health, such as: 1) changes in the morbidity- mortality related to temperature; 2) Effects on health related with extreme meteorological events (tornados, storms, hurricanes and extreme raining); 3) Air pollution and increase of associated health effects; d) Diseases transmitted by food and water and 4) Infectious diseases transmitted by vectors and by rodents. Even if all the countries in the world committed to the Kyoto Protocol, some consequences of the climatic change will be inevitable; among them some will have a negative impact on health. It would be necessary to adapt a key response strategy to minimize the impacts of climatic change and to reduce, at minimum cost, its adverse effects on health. From the Public Health position, a relevant role can and must be played concerning the understanding of the risks for health of such climatic changes, the design of surveillance systems to evaluate possible impacts, and the establishment of systems to prevent or reduce damages as well as the identification and development of investigation needs.

  13. Climate project screening tool: an aid for climate change adaptation

    Treesearch

    Toni Lyn Morelli; Sharon Yeh; Nikola M. Smith; Mary Beth Hennessy; Constance I. Millar

    2012-01-01

    To address the impacts of climate change, land managers need techniques for incorporating adaptation into ongoing or impending projects. We present a new tool, the Climate Project Screening Tool (CPST), for integrating climate change considerations into project planning as well as for developing concrete adaptation options for land managers. We designed CPST as part of...

  14. 'Changing climate, changing health, changing stories' profile: using an EcoHealth approach to explore impacts of climate change on inuit health.

    PubMed

    Harper, S L; Edge, V L; Cunsolo Willox, A

    2012-03-01

    Global climate change and its impact on public health exemplify the challenge of managing complexity and uncertainty in health research. The Canadian North is currently experiencing dramatic shifts in climate, resulting in environmental changes which impact Inuit livelihoods, cultural practices, and health. For researchers investigating potential climate change impacts on Inuit health, it has become clear that comprehensive and meaningful research outcomes depend on taking a systemic and transdisciplinary approach that engages local citizens in project design, data collection, and analysis. While it is increasingly recognised that using approaches that embrace complexity is a necessity in public health, mobilizing such approaches from theory into practice can be challenging. In 2009, the Rigolet Inuit Community Government in Rigolet, Nunatsiavut, Canada partnered with a transdisciplinary team of researchers, health practitioners, and community storytelling facilitators to create the Changing Climate, Changing Health, Changing Stories project, aimed at developing a multi-media participatory, community-run methodological strategy to gather locally appropriate and meaningful data to explore climate-health relationships. The goal of this profile paper is to describe how an EcoHealth approach guided by principles of transdisciplinarity, community participation, and social equity was used to plan and implement this climate-health research project. An overview of the project, including project development, research methods, project outcomes to date, and challenges encountered, is presented. Though introduced in this one case study, the processes, methods, and lessons learned are broadly applicable to researchers and communities interested in implementing EcoHealth approaches in community-based research.

  15. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    ERIC Educational Resources Information Center

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  16. Climate Change, Health, and Communication: A Primer.

    PubMed

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.

  17. The essential interactions between understanding climate variability and climate change

    NASA Astrophysics Data System (ADS)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  18. Tools for Teaching Climate Change Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maestas, A.M.; Jones, L.A.

    2005-03-18

    The Atmospheric Radiation Measurement Climate Research Facility (ACRF) develops public outreach materials and educational resources for schools. Studies prove that science education in rural and indigenous communities improves when educators integrate regional knowledge of climate and environmental issues into school curriculum and public outreach materials. In order to promote understanding of ACRF climate change studies, ACRF Education and Outreach has developed interactive kiosks about climate change for host communities close to the research sites. A kiosk for the North Slope of Alaska (NSA) community was installed at the Iupiat Heritage Center in 2003, and a kiosk for the Tropical Westernmore » Pacific locales will be installed in 2005. The kiosks feature interviews with local community elders, regional agency officials, and Atmospheric Radiation Measurement (ARM) Program scientists, which highlight both research and local observations of some aspects of environmental and climatic change in the Arctic and Pacific. The kiosks offer viewers a unique opportunity to learn about the environmental concerns and knowledge of respected community elders, and to also understand state-of-the-art climate research. An archive of interviews from the communities will also be distributed with supplemental lessons and activities to encourage teachers and students to compare and contrast climate change studies and oral history observations from two distinct locations. The U.S. Department of Energy's ACRF supports education and outreach efforts for communities and schools located near its sites. ACRF Education and Outreach has developed interactive kiosks at the request of the communities to provide an opportunity for the public to learn about climate change from both scientific and indigenous perspectives. Kiosks include interviews with ARM scientists and provide users with basic information about climate change studies as well as interviews with elders and community leaders

  19. Public Perception of Uncertainties Within Climate Change Science.

    PubMed

    Visschers, Vivianne H M

    2018-01-01

    Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.

  20. Adapting agriculture to climate change: a review

    NASA Astrophysics Data System (ADS)

    Anwar, Muhuddin Rajin; Liu, De Li; Macadam, Ian; Kelly, Georgina

    2013-07-01

    The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer's training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short

  1. Climate Change Education for General Education Faculty

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Fox-Lykens, R.; Fuoco, M. J.; Phalen, L.; Harcourt, P.; Veron, D. E.; Rogers, M.; Merrill, J.

    2016-12-01

    As MADE-CLEAR scientists, our ultimate goal is to inform the public about climate change through education. Education will provide citizens with important tools for adapting and coping against climate change through the understanding of the cause and effects of climate change, and the role they play in counteracting these effects. MADE-CLEAR is connecting educators with resources such as lesson plans and hands-on activities so they can easily incorporate climate change into their curriculum. This past year Delaware State University held workshops for Chemistry and Math faculty to provide information and resources to help integrate climate change education into their classes. We presented them with information on climate change and demonstrated several laboratory activities that would be applicable to their classes. Such activities included a sea level rise graphing exercise, ocean acidification pH demonstration, ocean acidification's effect on organism's demonstration, carbon dioxide variability and heat trapping gas simulation. The goals of the workshops are to implement a multidisciplinary approach in climate change education. Workshops are prepared hands-on heavy followed by the lectures and video resources. Pre- and post-workshop assessment questions on the workshop contents are provided to monitor faculty understanding of the climate change content. In doing so, we aim to improve climate literacy in our higher education students.

  2. Climate change and forest fires.

    PubMed

    Flannigan, M D; Stocks, B J; Wotton, B M

    2000-11-15

    This paper addresses the impacts of climate change on forest fires and describes how this, in turn, will impact on the forests of the United States. In addition to reviewing existing studies on climate change and forest fires we have used two transient general circulation models (GCMs), namely the Hadley Centre and the Canadian GCMs, to estimate fire season severity in the middle of the next century. Ratios of 2 x CO2 seasonal severity rating (SSR) over present day SSR were calculated for the means and maximums for North America. The results suggest that the SSR will increase by 10-50% over most of North America; although, there are regions of little change or where the SSR may decrease by the middle of the next century. Increased SSRs should translate into increased forest fire activity. Thus, forest fires could be viewed as an agent of change for US forests as the fire regime will respond rapidly to climate warming. This change in the fire regime has the potential to overshadow the direct effects of climate change on species distribution and migration.

  3. Managing Climate Change Refugia for Biodiversity ...

    EPA Pesticide Factsheets

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, approaches will need to address critical uncertainties in both the physical basis for projected landscape changes, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on air temperatures and associated microclimatic changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local responses and thermal dynamics. Yet important questions remain. Drawing on case studies, we illustrate some key uncertainties in the responses of species and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted research within an adaptive management framework.In this workshop, we will showcase the latest science on climate refugia and participants will interact through small group discussions, relevant examples, and facilitated dialogue to i

  4. Conceptual Model of Climate Change Impacts at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewart, Jean Marie

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual modelmore » of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).« less

  5. Making climate change tangible for strategic adaptation planning: The Climate Corridor Approach

    NASA Astrophysics Data System (ADS)

    Orlowsky, Boris; Calanca, Pierluigi; Ali, Irshad; Ali, Jawad; Elguera Hilares, Agustin; Huggel, Christian; Khan, Inamullah; Neukom, Raphael; Nizami, Arjumand; Qazi, Muhammad Abbas; Robledo, Carmenza; Rohrer, Mario; Salzmann, Nadine; Schmidt, Kaspar

    2017-04-01

    Climate change is a global phenomenon and difficult to grasp. Although its importance is generally acknowledged, impacts of (future) climate change on human activities are in many cases not taken into account explicitly, in particular when planning development projects. This is due to technical and conceptual challenges, missing financial and human resources and competing priorities. Neglecting climate change can become problematic, if a proposed activity requires specific climatological conditions under which it becomes feasible, a simple example being crop cultivation that needs certain temperature an d precipitation ranges. Comparing such ``climate corridors'' to future climate projections provides an intuitive and low-cost yet quantitative means for assessing needs for, and viability of, adaptation activities under climate change - a "poor man's approach" to climate suitability analysis. A chief advantage of this approach is its modest demand on data. Three case studies from Pakistan, Peru and Tajikistan show that climate corridor analysis can deliver robust results and can be used to efficiently communicate risks and challenges of climate change to partners and stakeholders in the developing countries.

  6. Knowing climate change, embodying climate praxis: experiential knowledge in southern Appalachia

    Treesearch

    Jennifer L. Rice; Brian J. Burke; Nik Heynen

    2015-01-01

    Whether used to support or impede action, scientific knowledge is now, more than ever, the primary framework for political discourse on climate change. As a consequence, science has become a hegemonic way of knowing climate change by mainstream climate politics, which not only limits the actors and actions deemed legitimate in climate politics but also silences...

  7. Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change

    NASA Astrophysics Data System (ADS)

    Folberth, Christian; Yang, Hong; Gaiser, Thomas; Liu, Junguo; Wang, Xiuying; Williams, Jimmy; Schulin, Rainer

    2014-04-01

    Much of Africa is among the world’s regions with lowest yields in staple food crops, and climate change is expected to make it more difficult to catch up in crop production in particular in the long run. Various agronomic measures have been proposed for lifting agricultural production in Africa and to adapt it to climate change. Here, we present a projection of potential climate change impacts on maize yields under different intensification options in Sub-Saharan Africa (SSA) using an agronomic model, GIS-based EPIC (GEPIC). Fallow and nutrient management options taken into account are (a) conventional intensification with high mineral N supply and a bare fallow, (b) moderate mineral N supply and cowpea rotation, and (c) moderate mineral N supply and rotation with a fast growing N fixing tree Sesbania sesban. The simulations suggest that until the 2040s rotation with Sesbania will lead to an increase in yields due to increasing N supply besides improving water infiltration and soils’ water holding capacity. Intensive cultivation with a bare fallow or an herbaceous crop like cowpea in the rotation is predicted to result in lower yields and increased soil erosion during the same time span. However, yields are projected to decrease in all management scenarios towards the end of the century, should temperature increase beyond critical thresholds. The results suggest that the effect of eco-intensification as a sole means of adapting agriculture to climate change is limited in Sub-Saharan Africa. Highly adverse temperatures would rather have to be faced by improved heat tolerant cultivars, while strongly adverse decreases in precipitation would have to be faced by expanding irrigation where feasible. While the evaluation of changes in agro-environmental variables like soil organic carbon, erosion, and soil humidity hints that these are major factors influencing climate change resilience of the field crop, no direct relationship between these factors, crop yields, and

  8. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study

    PubMed Central

    Hansen, Kaj M.; Christensen, Jesper H.; Brandt, Jørgen

    2015-01-01

    Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition. PMID:26378551

  9. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study.

    PubMed

    Hansen, Kaj M; Christensen, Jesper H; Brandt, Jørgen

    2015-09-10

    Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition.

  10. Global Climate Change: Threat Multiplier for AFRICOM?

    DTIC Science & Technology

    2007-11-06

    climate change , stability for Africa hinges upon mitigating the effects of global climate change to prevent future conflicts such as Darfur, and the...instability that fosters terrorism. The National Security Act of 2010 will formally address climate change and the planning requirement for the threat...of Responsibility (AOR). He will need to integrate multinational and multiagency cooperation to address climate change forecasts. The author

  11. Climate change-related migration and infectious disease.

    PubMed

    McMichael, Celia

    2015-01-01

    Anthropogenic climate change will have significant impacts on both human migration and population health, including infectious disease. It will amplify and alter migration pathways, and will contribute to the changing ecology and transmission dynamics of infectious disease. However there has been limited consideration of the intersections between migration and health in the context of a changing climate. This article argues that climate-change related migration - in conjunction with other drivers of migration - will contribute to changing profiles of infectious disease. It considers infectious disease risks for different climate-related migration pathways, including: forced displacement, slow-onset migration particularly to urban-poor areas, planned resettlement, and labor migration associated with climate change adaptation initiatives. Migration can reduce vulnerability to climate change, but it is critical to better understand and respond to health impacts - including infectious diseases - for migrant populations and host communities.

  12. Climate change and amphibians

    USGS Publications Warehouse

    Corn, P.S.

    2005-01-01

    Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  13. Impacts of weighting climate models for hydro-meteorological climate change studies

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe; Caya, Daniel

    2017-06-01

    Weighting climate models is controversial in climate change impact studies using an ensemble of climate simulations from different climate models. In climate science, there is a general consensus that all climate models should be considered as having equal performance or in other words that all projections are equiprobable. On the other hand, in the impacts and adaptation community, many believe that climate models should be weighted based on their ability to better represent various metrics over a reference period. The debate appears to be partly philosophical in nature as few studies have investigated the impact of using weights in projecting future climate changes. The present study focuses on the impact of assigning weights to climate models for hydrological climate change studies. Five methods are used to determine weights on an ensemble of 28 global climate models (GCMs) adapted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. Using a hydrological model, streamflows are computed over a reference (1961-1990) and future (2061-2090) periods, with and without post-processing climate model outputs. The impacts of using different weighting schemes for GCM simulations are then analyzed in terms of ensemble mean and uncertainty. The results show that weighting GCMs has a limited impact on both projected future climate in term of precipitation and temperature changes and hydrology in terms of nine different streamflow criteria. These results apply to both raw and post-processed GCM model outputs, thus supporting the view that climate models should be considered equiprobable.

  14. Double Exposure: Photographing Climate Change

    NASA Astrophysics Data System (ADS)

    Arnold, D. P.; Wake, C. P.; Romanow, G. B.

    2008-12-01

    Double Exposure, Photographing Climate Change, is a fine-art photography exhibition that examines climate change through the prism of melting glaciers. The photographs are twinned shots of glaciers, taken in the mid-20th century by world-renowned photographer Brad Washburn, and in the past two years by Boston journalist/photographer David Arnold. Arnold flew in Washburn's aerial "footprints", replicating stunning black and white photographs, and documenting one irreversible aspect of climate change. Double Exposure is art with a purpose. It is designed to educate, alarm and inspire its audiences. Its power lies in its beauty and the shocking changes it has captured through a camera lens. The interpretive text, guided by numerous experts in the fields of glaciology, global warming and geology, helps convey the message that climate change has already forced permanent changes on the face of our planet. The traveling exhibit premiered at Boston's Museum of Science in April and is now criss-crossing the nation. The exhibit covers changes in the 15 glaciers that have been photographed as well as related information about global warming's effect on the planet today.

  15. India's National Action Plan on Climate Change.

    PubMed

    Pandve, Harshal T

    2009-04-01

    Climate change is one of the most critical global challenges of our times. Recent events have emphatically demonstrated our growing vulnerability to climate change. Climate change impacts will range from affecting agriculture - further endangering food security - to sea-level rise and the accelerated erosion of coastal zones, increasing intensity of natural disasters, species extinction, and the spread of vector-borne diseases. India released its much-awaited National Action Plan on Climate Change (NAPCC) to mitigate and adapt to climate change on June 30, 2008, almost a year after it was announced. The NAPCC runs through 2017 and directs ministries to submit detailed implementation plans to the Prime Minister's Council on Climate Change by December 2008. This article briefly reviews the plan and opinion about it from different experts and organizations.

  16. Changing Minds about the Changing Climate: a Longitudinal Study of the Impacts of a Climate Change Curriculum on Undergraduate Student Knowledge and Attitudes.

    NASA Astrophysics Data System (ADS)

    Burkholder, K. C.; Mooney, S.

    2016-12-01

    In the fall of 2013, 24 sophomore students enrolled in a three-course Learning Community entitled "The Ethics and Science of Climate Change." This learning community was comprised of two disciplinary courses in environmental ethics and environmental science as well as a seminar course in which the students designed and delivered climate change education events in the community beyond campus. Students were surveyed prior to and upon completion of the semester using a variant of the Yale Climate Literacy Survey in order to assess their knowledge of and attitudes towards climate change. An analysis of those survey results demonstrated that the non-traditional curriculum resulted in significant improvements that extended beyond disciplinary knowledge of climate change: the student attitudes about climate change and our cultural response to the issues associated with climate change shifted as well. Finally, a third administration of the survey (n=17) plus follow up interviews with 10 of those original students conducted during the students' senior year in 2016 suggest that the changes that the students underwent as sophomores were largely retained.

  17. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation

    PubMed Central

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such

  18. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation.

    PubMed

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such

  19. A history of the science and politics of climate change: the role of the Intergovernmental Panel on Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolin, B.

    2007-11-15

    In response to growing concern about human-induced global climate change, the UN Intergovernmental Panel on Climate Change (IPCC) was formed in 1988. Written by its first Chairman, this book is a unique overview of the history of the IPCC. It describes and evaluates the intricate interplay between key factors in the science and politics of climate change, the strategy that has been followed, and the regretfully slow pace in getting to grips with the uncertainties that have prevented earlier action being taken. The book also highlights the emerging conflict between establishing a sustainable global energy system and preventing a seriousmore » change in global climate. Contents are: Part I. The Early History of the Climate Change Issue: 1. Nineteenth century discoveries; 2. The natural carbon cycle and life on earth; 3. Global research initiatives in meteorology and climatology; 4. Early international assessments of climate change; Part II. The Climate Change Issue Becomes One of Global Concern: 5. Setting the stage; 6. The scientific basis for a climate convention; 7. Serving the Intergovernmental Negotiating Committee; 8. The Second IPP Assessment Report; 9. In the aftermath of the IPCC Second Assessment; 10. The Kyoto Protocol is agreed and a third assessment begun; 11. A decade of hesitance and slow progress; Part III. A Turning Point in Addressing Climate Change?: 12. Key scientific finding of prime political relevance; 13. Climate change and the future global energy supply system; Concluding remarks. 9 figs.« less

  20. The impact of climate change on air conditioning requirements in Andalusia at a detailed scale

    NASA Astrophysics Data System (ADS)

    Limones-Rodríguez, Natalia; Marzo-Artigas, Javier; Pita-López, María Fernanda; Díaz-Cuevas, María Pilar

    2017-11-01

    This work calculates the current heating and cooling degree days and also examines heating and cooling degree days in relation to three subdivisions of the twenty-first century. On the basis of these data, we were able to calculate the heating and cooling degree months and degree years. After examining both sets of data, we studied the total needs of air conditioning—also referred to in the current paper as climatization needs——for Andalusia as a whole. The results indicate an increase in air conditioning needs, and we also noted that the areas adversely affected by this increase were more numerous than those which benefited, at the end of the century. It should be noted that climate change will also necessitate the gradual replacement of heating with cooling, which will require profound changes in the energy, land planning, and housing policies of the region. The true magnitude of the challenge becomes clear when the climatization degree days are related to the population which they affect; the majority of the population is located in areas where the climatization needs will increase over the course of the century. Undoubtedly, this issue is a major protagonist in the climate change adaptation process in Andalusia.

  1. Projected change in global fisheries revenues under climate change

    PubMed Central

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-01-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries. PMID:27600330

  2. Modelling climate change and malaria transmission.

    PubMed

    Parham, Paul E; Michael, Edwin

    2010-01-01

    The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here

  3. Incorporating Student Activities into Climate Change Education

    NASA Astrophysics Data System (ADS)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about

  4. Survey of International Members of the American Thoracic Society on Climate Change and Health.

    PubMed

    Sarfaty, Mona; Kreslake, Jennifer; Ewart, Gary; Guidotti, Tee L; Thurston, George D; Balmes, John R; Maibach, Edward W

    2016-10-01

    The American Thoracic Society (ATS), in collaboration with George Mason University, surveyed international members of the society to assess perceptions, clinical experiences, and preferred policy responses related to global climate change. A recruitment email was sent by the ATS President in October 2015 to 5,013 international members. Subsequently, four reminder emails were sent to nonrespondents. Responses were received from 489 members in 68 countries; the response rate was 9.8%. Half of respondents reported working in countries in Asia (25%) or Europe (25%), with the remainder in South America (18%), North America (Canada and Mexico) (18%), Australia or New Zealand (9%), and Africa (6%). Survey estimate confidence intervals were ± 5% or smaller. A high percentage of international ATS survey respondents judged that climate change is happening (96%), that it is driven by human activity (70%), and that it is relevant to patient care ("a great deal"/"a moderate amount") (80%). A majority of respondents also indicated they are already observing health impacts of climate change among their patients; most commonly as increases in chronic disease severity from air pollution (88%), allergic symptoms from exposure to plants or mold (72%), and severe weather injuries (69%). An even larger majority anticipated seeing these climate-related health impacts in the next two decades. Respondents further indicated that physicians and physician organizations should play an active role in educating patients, the public, and policy makers on the human health effects of climate change. International ATS respondents, like their counterparts in the U.S., observed that human health is already adversely affected by climate change, and support responses to address this situation.

  5. 77 FR 2996 - National Fish, Wildlife, and Plants Climate Adaptation Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... (Strategy). The adverse impacts of climate change transcend political and administrative boundaries. No... principles and science-based practices--for reducing the negative impacts of climate change on fish, wildlife... resource adaptation to climate change, and will describe mechanisms that will foster collaboration among...

  6. 78 FR 19514 - National Fish, Wildlife, and Plants Climate Adaptation Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... changing climate. Input from public comments and workshops has been incorporated in the development of this... or Strategy). The adverse impacts of climate change transcend political and administrative boundaries... effects of climate change. This Strategy presents a unified approach--reflecting shared principles and...

  7. Aging, Climate Change, and Legacy Thinking

    PubMed Central

    Fried, Linda; Moody, Rick

    2012-01-01

    Climate change is a complex, long-term public health challenge. Older people are especially susceptible to certain climate change impacts, such as heat waves. We suggest that older people may be a resource for addressing climate change because of their concern for legacy—for leaving behind values, attitudes, and an intact world to their children and grandchildren. We review the theoretical basis for “legacy thinking” among older people. We offer suggestions for research on this phenomenon, and for action to strengthen the sense of legacy. At a time when older populations are growing, understanding and promoting legacy thinking may offer an important strategy for addressing climate change. PMID:22698047

  8. Abrupt climate change and extinction events

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.

    1988-01-01

    There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.

  9. Abrupt Impacts of Climate Change: Anticipating Surprises

    NASA Astrophysics Data System (ADS)

    White, James W. C.; Alley, Richard B.; Archer, David E.; Barnosky, Anthony D.; Dunlea, Edward; Foley, Jonathan; Fu, Rong; Holland, Marika M.; Lozier, M. Susan; Schmitt, Johanna; Smith, Laurence C.; Sugihara, George; Thompson, David W. J.; Weaver, Andrew J.; Wofsy, Steven C.

    2014-05-01

    Levels of carbon dioxide and other greenhouse gases in Earth's atmosphere are exceeding levels recorded in the past millions of years, and thus climate is being forced beyond the range of the recent geological era. Lacking concerted action by the world's nations, it is clear that the future climate will be warmer, sea levels will rise, global rainfall patterns will change, and ecosystems will be altered. However, there is still uncertainty about how we will arrive at that future climate state. Although many projections of future climatic conditions have predicted steadily changing conditions giving the impression that communities have time to gradually adapt, the scientific community has been paying increasing attention to the possibility that at least some changes will be abrupt, perhaps crossing a threshold or "tipping point" to change so quickly that there will be little time to react. This presentation will synopsize the new US National Research Council Report, Abrupt Impacts of Climate Change: Anticipating Surprises, highlighting areas of increased and decreased concern, as well as areas of new concern. Emphasis is placed on not only abrupt change in physical climate, but on abrupt changes in human and natural systems that can occur as a result of a slowly changing climate. The report calls for action now on an abrupt change early warning system (ACEWS) if societies are to be resilient to climate change.

  10. Connectivity planning to address climate change.

    PubMed

    Nuñez, Tristan A; Lawler, Joshua J; McRae, Brad H; Pierce, D John; Krosby, Meade B; Kavanagh, Darren M; Singleton, Peter H; Tewksbury, Joshua J

    2013-04-01

    As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present-day spatial gradients of temperature. We modified a cost-distance algorithm to model these corridors and tested the model with data on current land-use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land-use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático. © 2013 Society for Conservation Biology.

  11. National Security and Global Climate Change

    DTIC Science & Technology

    2008-01-01

    The uncertainty, confusion, and speculation about the causes, effects, and implications of global climate change (GCC) often paralyze serious...against scientific indications of global climate change , but to consider how it would pose challenges to national security, explore options for facing...generals and admirals, released a report concluding that projected climate change poses a serious threat to America’s national security. This article

  12. Public Inaccuracy in Meta-perceptions of Climate Change

    NASA Astrophysics Data System (ADS)

    Swim, J.; Fraser, J.

    2012-12-01

    Public perceptions of climate change and meta-perceptions of the public and climate scientist's perceptions of climate change were assessed to benchmark the National Network for Climate Change Interpretation's impacts. Meta-perceptions are important to examine because they can have implications for willingness to take action to address climate change. For instance, recent research suggests a tendency to misperceive that there is disagreement among climate scientists is predictive of lack of support for climate change policies. Underestimating public concern about climate change could also be problematic: it could lead individuals to withdraw from personal efforts to reduce impact and engage others in discussions about climate change. Presented results will demonstrate that respondents in a national survey underestimated the percent of the public who were very concerned, concerned or cautious about climate change and overestimated the extent others were disengaged, doubted, or non-believers. They underestimated the percent of the public who likely believed that humans caused climate change and overestimate the percent that believed climate change was not happening nor human induced. Finally, they underestimated the percent of the public that believed climate change threatened ocean health. The results also explore sources of misperceptions. First, correlates with TV viewing habits suggest that inaccuracy is a result of too little attention to network news, with one exception: Greater attention to FOX among doubters reduced accuracy. Second, adding to other evidence that basic cognitive heuristics (such as availability heuristic) influence perceptions of climate change, we show that that false consensus effects account for meta-perceptions of the public and climate scientists beliefs. The false consensus effect, in combination with underestimating concern among the public, results in those most concerned about climate change and those who believe it to be human

  13. Climate Change--Scientific and Political

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2000-08-01

    On Monday, June 12, the federal government released a "Public Review Draft" of Climate Change Impacts on the United States (1). The report contains peer-reviewed information that should be of interest to the general public and certainly will make excellent summer reading for those of us who teach chemistry or other sciences. The U.S. Global Change Research Project (USGCRP), was initiated in 1990 by the U.S. Congress to provide lawmakers with information about negative and positive impacts of global warming. In 1997, USGCRP began the National Assessment of the Potential Consequences of Climate Variability and Change. Five teams, each consisting of experts from government, industry, and academic and public organizations, used sophisticated computer models to analyze regional impacts of climate change and prepare a national synthesis of existing information. They forecast significant changes during the 21st century, including an increase in temperature in the U.S. of 3-6 °C. (This is similar to the difference in temperature between the present and the last ice age.) Many regions of the country are likely to become more like the regions immediately to their south. For example, the climate in New York City is predicted to become more like the 20th-century climate of Atlanta, and Atlanta more like Houston.

  14. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data

  15. Climate change-related migration and infectious disease

    PubMed Central

    McMichael, Celia

    2015-01-01

    Anthropogenic climate change will have significant impacts on both human migration and population health, including infectious disease. It will amplify and alter migration pathways, and will contribute to the changing ecology and transmission dynamics of infectious disease. However there has been limited consideration of the intersections between migration and health in the context of a changing climate. This article argues that climate-change related migration - in conjunction with other drivers of migration – will contribute to changing profiles of infectious disease. It considers infectious disease risks for different climate-related migration pathways, including: forced displacement, slow-onset migration particularly to urban-poor areas, planned resettlement, and labor migration associated with climate change adaptation initiatives. Migration can reduce vulnerability to climate change, but it is critical to better understand and respond to health impacts – including infectious diseases - for migrant populations and host communities. PMID:26151221

  16. Climate Change, Soils, and Human Health

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.

    2013-04-01

    According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical

  17. Challenges and Possibilities in Climate Change Education

    ERIC Educational Resources Information Center

    Pruneau,, Diane; Khattabi, Abdellatif; Demers, Melanie

    2010-01-01

    Educating and communicating about climate change is challenging. Researchers reported that climate change concepts are often misunderstood. Some people do not believe that climate change will have impacts on their own life. Other challenges may include people's difficulty in perceiving small or gradual environmental changes, the fact that…

  18. U.S. Navy Task Force Climate Change

    NASA Astrophysics Data System (ADS)

    Miller, T.; McBride, B.; St. John, C.

    2011-12-01

    In May 2009, the Chief of Naval Operations established Task Force Climate Change (TFCC) to develop Navy policy, plans, and recommendations regarding future investments to adapt to the world's changing climate. With a near-term focus on the changing Arctic ocean and consequent increase in access to the region, TFCC has adopted a science-based approach in collaboration with other U.S. government agencies, international partners, industry, and academia. TFCC has developed two roadmaps that provide 5-year action plans for the Navy to address the Arctic and global climate change. Critical elements of both roadmaps are assessments of: (1) current and projected climate change, (2) resulting impacts to Naval missions and infrastructure, and (3) associated risks of not taking adaptation actions that are operationally, environmentally, and ecologically sustainable. Through TFCC, the Navy acknowledges the link between climate change and national security, and engages in extensive outreach and strategic communication to remain informed on the best climate science and promote public understanding and support regarding the Navy's climate change efforts.

  19. Choice of baseline climate data impacts projected species' responses to climate change.

    PubMed

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. © 2016 John Wiley

  20. What Is Climate Change?

    ERIC Educational Resources Information Center

    Beswick, Adele

    2007-01-01

    Weather consists of those meteorological events, such as rain, wind and sunshine, which can change day-by-day or even hour-by-hour. Climate is the average of all these events, taken over a period of time. The climate varies over different parts of the world. Climate is usually defined as the average of the weather over a 30-year period. It is when…

  1. Mangrove ecosystems under climate change

    USGS Publications Warehouse

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  2. Understanding global climate change scenarios through bioclimate stratification

    NASA Astrophysics Data System (ADS)

    Soteriades, A. D.; Murray-Rust, D.; Trabucco, A.; Metzger, M. J.

    2017-08-01

    Despite progress in impact modelling, communicating and understanding the implications of climatic change projections is challenging due to inherent complexity and a cascade of uncertainty. In this letter, we present an alternative representation of global climate change projections based on shifts in 125 multivariate strata characterized by relatively homogeneous climate. These strata form climate analogues that help in the interpretation of climate change impacts. A Random Forests classifier was calculated and applied to 63 Coupled Model Intercomparison Project Phase 5 climate scenarios at 5 arcmin resolution. Results demonstrate how shifting bioclimate strata can summarize future environmental changes and form a middle ground, conveniently integrating current knowledge of climate change impact with the interpretation advantages of categorical data but with a level of detail that resembles a continuous surface at global and regional scales. Both the agreement in major change and differences between climate change projections are visually combined, facilitating the interpretation of complex uncertainty. By making the data and the classifier available we provide a climate service that helps facilitate communication and provide new insight into the consequences of climate change.

  3. Targeting climate diversity in conservation planning to build resilience to climate change

    USGS Publications Warehouse

    Heller, Nicole E.; Kreitler, Jason R.; Ackerly, David; Weiss, Stuart; Recinos, Amanda; Branciforte, Ryan; Flint, Lorraine E.; Flint, Alan L.; Micheli, Elisabeth

    2015-01-01

    Climate change is raising challenging concerns for systematic conservation planning. Are methods based on the current spatial patterns of biodiversity effective given long-term climate change? Some conservation scientists argue that planning should focus on protecting the abiotic diversity in the landscape, which drives patterns of biological diversity, rather than focusing on the distribution of focal species, which shift in response to climate change. Climate is one important abiotic driver of biodiversity patterns, as different climates host different biological communities and genetic pools. We propose conservation networks that capture the full range of climatic diversity in a region will improve the resilience of biotic communities to climate change compared to networks that do not. In this study we used historical and future hydro-climate projections from the high resolution Basin Characterization Model to explore the utility of directly targeting climatic diversity in planning. Using the spatial planning tool, Marxan, we designed conservation networks to capture the diversity of climate types, at the regional and sub-regional scale, and compared them to networks we designed to capture the diversity of vegetation types. By focusing on the Conservation Lands Network (CLN) of the San Francisco Bay Area as a real-world case study, we compared the potential resilience of networks by examining two factors: the range of climate space captured, and climatic stability to 18 future climates, reflecting different emission scenarios and global climate models. We found that the climate-based network planned at the sub-regional scale captured a greater range of climate space and showed higher climatic stability than the vegetation and regional based-networks. At the same time, differences among network scenarios are small relative to the variance in climate stability across global climate models. Across different projected futures, topographically heterogeneous areas

  4. The Costs of Climate Change

    NASA Astrophysics Data System (ADS)

    Guo, Jason

    2018-03-01

    This research paper talks about the economic costs of climate change, as well as the costs involved in responding to climate change with alternative fuels. This paper seeks to show that climate change, although seemingly costly in the short run, will both save future generations trillions of dollars and serve as a good economic opportunity. Scientists have long argued that the fate of humanity depends on a shift towards renewable energy. However, this paper will make clear that there is also an economic struggle. By embracing alternative fuels, we will not only lessen the danger and the frequency of these natural disasters but also strengthen the world’s financial state. Although a common argument against responding to climate change is that it is too expensive to make the switch, this research shows that in the future, it will save millions of lives and trillions of dollars. The only question left for policymakers is whether they will grasp this energy source shift.

  5. Western water and climate change

    USGS Publications Warehouse

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris P.

    2015-01-01

    In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries and agricultural demands. Finally, California's Bay-Delta system is a remarkably localized and severe weakness at the heart of the region's trillion-dollar economy. It is threatened by the full range of potential climate-change impacts expected across the West, along with major vulnerabilities to increased flooding and rising sea levels.

  6. Climate Change and Algal Blooms =

    NASA Astrophysics Data System (ADS)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  7. Climate risk index for Italy

    NASA Astrophysics Data System (ADS)

    Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna

    2018-06-01

    We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  8. Climate change is a bioethics problem.

    PubMed

    Macpherson, Cheryl Cox

    2013-07-01

    Climate change harms health and damages and diminishes environmental resources. Gradually it will cause health systems to reduce services, standards of care, and opportunities to express patient autonomy. Prominent public health organizations are responding with preparedness, mitigation, and educational programs. The design and effectiveness of these programs, and of similar programs in other sectors, would be enhanced by greater understanding of the values and tradeoffs associated with activities and public policies that drive climate change. Bioethics could generate such understanding by exposing the harms and benefits in different cultural, socioeconomic, and geographic contexts, and through interdisciplinary risk assessments. Climate change is a bioethics problem because it harms everyone and involves health, values, and responsibilities. This article initiates dialog about the responsibility of bioethics to promote transparency and understanding of the social values and conflicts associated with climate change, and the actions and public policies that allow climate change to worsen. © 2013 John Wiley & Sons Ltd.

  9. Climate change and species interactions: ways forward.

    PubMed

    Angert, Amy L; LaDeau, Shannon L; Ostfeld, Richard S

    2013-09-01

    With ongoing and rapid climate change, ecologists are being challenged to predict how individual species will change in abundance and distribution, how biotic communities will change in structure and function, and the consequences of these climate-induced changes for ecosystem functioning. It is now well documented that indirect effects of climate change on species abundances and distributions, via climatic effects on interspecific interactions, can outweigh and even reverse the direct effects of climate. However, a clear framework for incorporating species interactions into projections of biological change remains elusive. To move forward, we suggest three priorities for the research community: (1) utilize tractable study systems as case studies to illustrate possible outcomes, test processes highlighted by theory, and feed back into modeling efforts; (2) develop a robust analytical framework that allows for better cross-scale linkages; and (3) determine over what time scales and for which systems prediction of biological responses to climate change is a useful and feasible goal. We end with a list of research questions that can guide future research to help understand, and hopefully mitigate, the negative effects of climate change on biota and the ecosystem services they provide. © 2013 New York Academy of Sciences.

  10. Ice Storms in a Changing Climate

    DTIC Science & Technology

    2016-06-01

    CHANGING CLIMATE by Jennifer M. McNitt June 2016 Thesis Advisor: Wendell Nuss Co-Advisor: David W. Titley THIS PAGE INTENTIONALLY LEFT...SUBTITLE ICE STORMS IN A CHANGING CLIMATE 5. FUNDING NUMBERS 6. AUTHOR(S) Jennifer M. McNitt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...increase in global temperatures, due to climate change , could affect the frequency, intensity, and geographic location of ice storms. Three known ice

  11. The Copernicus programme and its Climate Change Service (C3S): a European answer to Climate Change

    NASA Astrophysics Data System (ADS)

    Pinty, Bernard; Thepaut, Jean-Noel; Dee, Dick

    2016-07-01

    In November 2014, The European Centre for Medium-range Weather Forecasts (ECMWF) signed an agreement with the European Commission to deliver two of the Copernicus Earth Observation Programme Services on the Commission's behalf. The ECMWF delivered services - the Copernicus Climate Change Service (C3S) and Atmosphere Monitoring Service (CAMS) - will bring a consistent standard to how we measure and predict atmospheric conditions and climate change. They will maximise the potential of past, current and future earth observations - ground, ocean, airborne, satellite - and analyse these to monitor and predict atmospheric conditions and in the future, climate change. With the wealth of free and open data that the services provide, they will help business users to assess the impact of their business decisions and make informed choices, delivering a more energy efficient and climate aware economy. These sound investment decisions now will not only stimulate growth in the short term, but reduce the impact of climate change on the economy and society in the future. C3S is in its proof of concept phase and through its climate data store will provide global and regional climate data reanalyses; multi-model seasonal forecasts; customisable visual data to enable examination of wide range of scenarios and model the impact of changes; access to all the underlying data, including climate data records from various satellite and in-situ observations. In addition, C3S will provide key indicators on climate change drivers (such as carbon dioxide) and impacts (such as reducing glaciers). The aim of these indicators will be to support European adaptation and mitigation policies in a number of economic sectors. The presentation will provide an overview of this newly created Service, its various components and activities, and a roadmap towards achieving a fully operational European Climate Service at the horizon 2019-2020. It will focus on the requirements for quality-assured Observation

  12. Attribution of maize yield increase in China to climate change and technological advancement between 1980 and 2010

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Zhao, Junfang; Wu, Dingrong; Mu, Jia; Xu, Yanhong

    2014-12-01

    Crop yields are affected by climate change and technological advancement. Objectively and quantitatively evaluating the attribution of crop yield change to climate change and technological advancement will ensure sustainable development of agriculture under climate change. In this study, daily climate variables obtained from 553 meteorological stations in China for the period 1961-2010, detailed observations of maize from 653 agricultural meteorological stations for the period 1981-2010, and results using an Agro-Ecological Zones (AEZ) model, are used to explore the attribution of maize (Zea mays L.) yield change to climate change and technological advancement. In the AEZ model, the climatic potential productivity is examined through three step-by-step levels: photosynthetic potential productivity, photosynthetic thermal potential productivity, and climatic potential productivity. The relative impacts of different climate variables on climatic potential productivity of maize from 1961 to 2010 in China are then evaluated. Combined with the observations of maize, the contributions of climate change and technological advancement to maize yield from 1981 to 2010 in China are separated. The results show that, from 1961 to 2010, climate change had a significant adverse impact on the climatic potential productivity of maize in China. Decreased radiation and increased temperature were the main factors leading to the decrease of climatic potential productivity. However, changes in precipitation had only a small effect. The maize yields of the 14 main planting provinces in China increased obviously over the past 30 years, which was opposite to the decreasing trends of climatic potential productivity. This suggests that technological advancement has offset the negative effects of climate change on maize yield. Technological advancement contributed to maize yield increases by 99.6%-141.6%, while climate change contribution was from -41.4% to 0.4%. In particular, the actual

  13. Wind and rain are the primary climate factors driving changing phenology of an aerial insectivore.

    PubMed

    Irons, Rachel D; Harding Scurr, April; Rose, Alexandra P; Hagelin, Julie C; Blake, Tricia; Doak, Daniel F

    2017-04-26

    While the ecological effects of climate change have been widely observed, most efforts to document these impacts in terrestrial systems have concentrated on the impacts of temperature. We used tree swallow ( Tachycineta bicolor ) nest observations from two widely separated sites in central Alaska to examine the aspects of climate affecting breeding phenology at the northern extent of this species' range. We found that two measures of breeding phenology, annual lay and hatch dates, are more strongly predicted by windiness and precipitation than by temperature. At our longest-monitored site, breeding phenology has advanced at nearly twice the rate seen in more southern populations, and these changes correspond to long-term declines in windiness. Overall, adverse spring climate conditions known to negatively impact foraging success of swallows (wet, windy weather) appear to influence breeding phenology more than variation in temperature. Separate analyses show that short windy periods significantly delay initiation of individual clutches within years. While past reviews have emphasized that increasing variability in climate conditions may create physiological and ecological challenges for natural populations, we find that long-term reductions in inclement weather corresponded to earlier reproduction in one of our study populations. To better predict climate change impacts, ecologists need to more carefully test effects of multiple climate variables, including some, like windiness, that may be of paramount importance to some species, but have rarely been considered as strong drivers of ecological responses to climate alteration. © 2017 The Author(s).

  14. Wind and rain are the primary climate factors driving changing phenology of an aerial insectivore

    PubMed Central

    Irons, Rachel D.; Harding Scurr, April; Rose, Alexandra P.; Hagelin, Julie C.; Blake, Tricia

    2017-01-01

    While the ecological effects of climate change have been widely observed, most efforts to document these impacts in terrestrial systems have concentrated on the impacts of temperature. We used tree swallow (Tachycineta bicolor) nest observations from two widely separated sites in central Alaska to examine the aspects of climate affecting breeding phenology at the northern extent of this species' range. We found that two measures of breeding phenology, annual lay and hatch dates, are more strongly predicted by windiness and precipitation than by temperature. At our longest-monitored site, breeding phenology has advanced at nearly twice the rate seen in more southern populations, and these changes correspond to long-term declines in windiness. Overall, adverse spring climate conditions known to negatively impact foraging success of swallows (wet, windy weather) appear to influence breeding phenology more than variation in temperature. Separate analyses show that short windy periods significantly delay initiation of individual clutches within years. While past reviews have emphasized that increasing variability in climate conditions may create physiological and ecological challenges for natural populations, we find that long-term reductions in inclement weather corresponded to earlier reproduction in one of our study populations. To better predict climate change impacts, ecologists need to more carefully test effects of multiple climate variables, including some, like windiness, that may be of paramount importance to some species, but have rarely been considered as strong drivers of ecological responses to climate alteration. PMID:28446701

  15. Science Teachers' Perspectives about Climate Change

    ERIC Educational Resources Information Center

    Dawson, Vaille

    2012-01-01

    Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change…

  16. A roadmap to effective urban climate change adaptation

    NASA Astrophysics Data System (ADS)

    Setiadi, R.

    2018-03-01

    This paper outlines a roadmap to effective urban climate change adaptation built from our practical understanding of the evidence and effects of climate change and the preparation of climate change adaptation strategies and plans. This roadmap aims to drive research in achieving fruitful knowledge and solution-based achievable recommendations in adapting to climate change in urban areas with effective and systematic manner. This paper underscores the importance of the interplay between local government initiatives and a national government for effective adaptation to climate change and takes into account the policy process and politics. This paper argues that effective urban climate change adaptation has a contribution to build urban resilience and helps the achievement of national government goals and targets in climate change adaptation.

  17. A systematic approach to community resilience that reduces the federal fiscal exposure to climate change

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Albert, M. R.; White, K. D.

    2016-12-01

    Despite widely available information about the adverse impacts of climate change to the public, including both private sector and federal fiscal exposure, there remain opportunities to effectively translate this knowledge into action. Further delay of climate preparedness and resilience actions imposes a growing toll on American communities and the United States fiscal budget. We hypothesize that a set of four criteria must be met before a community can translate climate disturbances into preparedness action. We examine four case studies to review these proposed criteria, we discuss the critical success factors that can build community resilience, and we define an operational strategy that could support community resilience while reducing the federal fiscal exposure to climate change. This operational strategy defines a community response system that integrates social science research, builds on the strengths of different sectors, values existing resources, and reduces the planning-to-action time. Our next steps are to apply this solution in the field, and to study the dynamics of community engagement and the circular economy.

  18. Climate change and sustainable development: realizing the opportunity.

    PubMed

    Robinson, John; Bradley, Mike; Busby, Peter; Connor, Denis; Murray, Anne; Sampson, Bruce; Soper, Wayne

    2006-02-01

    Manifold linkages exist between climate change and sustainable development. Although these are starting to receive attention in the climate exchange literature, the focus has typically been on examining sustainable development through a climate change lens, rather than vice versa. And there has been little systematic examination of how these linkages may be fostered in practice. This paper examines climate change through a sustainable development lens. To illustrate how this might change the approach to climate change issues, it reports on the findings of a panel of business, local government, and academic representatives in British Columbia, Canada, who were appointed to advise the provincial government on climate change policy. The panel found that sustainable development may offer a significantly more fruitful way to pursue climate policy goals than climate policy itself. The paper discusses subsequent climate change developments in the province and makes suggestions as how best to pursue such a sustainability approach in British Columbia and other jurisdictions.

  19. Climate change over Leh (Ladakh), India

    NASA Astrophysics Data System (ADS)

    Chevuturi, A.; Dimri, A. P.; Thayyen, R. J.

    2018-01-01

    Mountains over the world are considered as the indicators of climate change. The Himalayas are comprised of five ranges, viz., Pir Panjal, Great Himalayas, Zanskar, Ladhak, and Karakorum. The Ladakh region lies in the northernmost state of India, Jammu and Kashmir, in the Ladhak range. It has a unique cold-arid climate and lies immediately south of the Karakorum range. With scarce water resources, such regions show high sensitivity and vulnerability to the change in climate and need urgent attention. The objective of this study is to understand the climate of the Ladakh region and to characterize its changing climate. Using different temperature and precipitation datasets over Leh and surrounding regions, we statistically analyze the current trends of climatic patterns over the region. The study shows that the climate over Leh shows a warming trend with reduced precipitation in the current decade. The reduced average seasonal precipitation might also be associated with some indications of reducing number of days with higher precipitation amounts over the region.

  20. Perception, attitude and behavior in relation to climate change: a survey among CDC health professionals in Shanxi province, China.

    PubMed

    Wei, Junni; Hansen, Alana; Zhang, Ying; Li, Hong; Liu, Qiyong; Sun, Yehuan; Bi, Peng

    2014-10-01

    A better understanding of public perceptions, attitude and behavior in relation to climate change will provide an important foundation for government׳s policy-making, service provider׳s guideline development and the engagement of local communities. The purpose of this study was to assess the perception towards climate change, behavior change, mitigation and adaptation measures issued by the central government among the health professionals in the Centres for Disease Control and Prevention (CDC) in China. In 2013, a cross-sectional questionnaire survey was undertaken among 314 CDC health professionals in various levels of CDC in Shanxi Province, China. Descriptive analyses were performed. More than two thirds of the respondents believed that climate change has happened at both global and local levels, and climate change would lead to adverse impacts to human beings. Most respondents (74.8%) indicated the emission of greenhouse gases was the cause of climate change, however there was a lack of knowledge about greenhouse gases and their sources. Media was the main source from which respondents obtained the information about climate change. A majority of respondents showed that they were willing to change behavior, but their actions were limited. In terms of mitigation and adaptation measures issued by the Chinese Government, respondents׳ perception showed inconsistency between strategies and relevant actions. Moreover, although the majority of respondents believed some strategies and measures were extremely important to address climate change, they were still concerned about economic development, energy security, and local environmental protection. There are gaps between perceptions and actions towards climate change among these health professionals. Further efforts need to be made to raise the awareness of climate change among health professionals, and to promote relevant actions to address climate change in the context of the proposed policies with local

  1. Climate change and forest disturbances

    Treesearch

    Virginia H. Dale; Linda A. Joyce; Steve McNulty; Ronald P. Neilson; Matthew P. Ayres; Michael D. Flannigan; Paul J. Hanson; Lloyd C. Irland; Ariel E. Lugo; Chris J. Peterson; Daniel Simberloff; Frederick J. Swanson; Brian J. Stocks; Michael Wotton

    2001-01-01

    This article examines how eight disturbances influence forest structure, composition, and function, and how climate change may influence the severity, frequency, and magnitude of disturbances to forests. We focus on examples from the United States, although these influences occur worldwide. We also consider options for coping with disturbance under changing climate....

  2. Using simple chaotic models to interpret climate under climate change: Implications for probabilistic climate prediction

    NASA Astrophysics Data System (ADS)

    Daron, Joseph

    2010-05-01

    Exploring the reliability of model based projections is an important pre-cursor to evaluating their societal relevance. In order to better inform decisions concerning adaptation (and mitigation) to climate change, we must investigate whether or not our models are capable of replicating the dynamic nature of the climate system. Whilst uncertainty is inherent within climate prediction, establishing and communicating what is plausible as opposed to what is likely is the first step to ensuring that climate sensitive systems are robust to climate change. Climate prediction centers are moving towards probabilistic projections of climate change at regional and local scales (Murphy et al., 2009). It is therefore important to understand what a probabilistic forecast means for a chaotic nonlinear dynamic system that is subject to changing forcings. It is in this context that we present the results of experiments using simple models that can be considered analogous to the more complex climate system, namely the Lorenz 1963 and Lorenz 1984 models (Lorenz, 1963; Lorenz, 1984). Whilst the search for a low-dimensional climate attractor remains illusive (Fraedrich, 1986; Sahay and Sreenivasan, 1996) the characterization of the climate system in such terms can be useful for conceptual and computational simplicity. Recognising that a change in climate is manifest in a change in the distribution of a particular climate variable (Stainforth et al., 2007), we first establish the equilibrium distributions of the Lorenz systems for certain parameter settings. Allowing the parameters to vary in time, we investigate the dependency of such distributions to initial conditions and discuss the implications for climate prediction. We argue that the role of chaos and nonlinear dynamic behaviour ought to have more prominence in the discussion of the forecasting capabilities in climate prediction. References: Fraedrich, K. Estimating the dimensions of weather and climate attractors. J. Atmos. Sci

  3. Climate change and ecological public health.

    PubMed

    Goodman, Benny

    2015-02-17

    Climate change has been identified as a serious threat to human health, associated with the sustainability of current practices and lifestyles. Nurses should expand their health promotion role to address current and emerging threats to health from climate change and to address ecological public health. This article briefly outlines climate change and the concept of ecological public health, and discusses a 2012 review of the role of the nurse in health promotion.

  4. Challenges of climate change

    PubMed Central

    Husaini, Amjad M

    2014-01-01

    Kashmir valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as “Karewas”), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a ‘niche crop’ and is a recognized “geographical indication,” growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266

  5. Common Ground on Climate Change: Pairing Opposing Viewpoints for Conversations about Climate Change

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.; Duggan-Haas, D.; Hayhoe, K.

    2017-12-01

    In American public discourse, people tend to strongly identify with the viewpoints held by their cultural and political tribes. However, entrenched positions do little to advance understanding, or work toward solving problems constructively. Worse yet, it has become commonplace to dismiss or demonize those coming from a different point of view - leading to the vitriolic stalemate that often characterizes social media and comment threads when it comes to climate change. One way to break this pattern is to invite people with opposing opinions to actually talk to one another. This presentation describes the lessons learned during the Common Ground on Climate Change project, in which people with contrasting views about climate change engage in a moderated interview with each other. Prior to the interview, participants complete a set of values-based questions. The goal is to reveal areas of common ground between apparent opposites, such as a sense of stewardship for Earth's resources, or an opinion that solutions to climate change will be more beneficial than harmful. The structure of the interviews is based on the hypothesis that if a conversation begins with an appreciation of common values, it becomes easier to broach areas of disagreement. Participants are matched up in one-on-one moderated interviews where they are encouraged to share their concerns, ideas, and priorities about the validity of climate science, the need for urgent action, and the types of solutions they find most tenable. Emerging themes from this series of interviews include the value of a diversity of outlooks, and the ability for moderated conversations to find surprising areas of agreement. Articles about the interviews also appear on the Yale Climate Connections website, https://www.yaleclimateconnections.org/author/karin/.

  6. Incorporating climate change and morphological uncertainty into coastal change hazard assessments

    USGS Publications Warehouse

    Baron, Heather M.; Ruggiero, Peter; Wood, Nathan J.; Harris, Erica L.; Allan, Jonathan; Komar, Paul D.; Corcoran, Patrick

    2015-01-01

    Documented and forecasted trends in rising sea levels and changes in storminess patterns have the potential to increase the frequency, magnitude, and spatial extent of coastal change hazards. To develop realistic adaptation strategies, coastal planners need information about coastal change hazards that recognizes the dynamic temporal and spatial scales of beach morphology, the climate controls on coastal change hazards, and the uncertainties surrounding the drivers and impacts of climate change. We present a probabilistic approach for quantifying and mapping coastal change hazards that incorporates the uncertainty associated with both climate change and morphological variability. To demonstrate the approach, coastal change hazard zones of arbitrary confidence levels are developed for the Tillamook County (State of Oregon, USA) coastline using a suite of simple models and a range of possible climate futures related to wave climate, sea-level rise projections, and the frequency of major El Niño events. Extreme total water levels are more influenced by wave height variability, whereas the magnitude of erosion is more influenced by sea-level rise scenarios. Morphological variability has a stronger influence on the width of coastal hazard zones than the uncertainty associated with the range of climate change scenarios.

  7. Forests and climate change: forcings, feedbacks, and the climate benefits of forests.

    PubMed

    Bonan, Gordon B

    2008-06-13

    The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

  8. Climate Change and Fish Availability

    NASA Astrophysics Data System (ADS)

    Teng, Paul P. S.; Lassa, Jonatan; Caballero-Anthony, Mely

    Human consumption of fish has been trending upwards in the past decades and this is projected to continue. The main sources of fish are from wild fisheries (marine and freshwater) and aquaculture. Climate change is anticipated to affect the availability of fish through its effect on these two sources as well as on supply chain processes such as storage, transport, processing and retail. Climate change is known to result in warmer and more acid oceans. Ocean acidification due to higher CO2 concentration levels at sea modifies the distribution of phytoplankton and zooplankton to affect wild, capture fisheries. Higher temperature causes warm-water coral reefs to respond with species replacement and bleaching, leading to coral cover loss and habitat loss. Global changes in climatic systems may also cause fish invasion, extinction and turnover. While this may be catastrophic for small scale fish farming in poor tropical communities, there are also potential effects on animal protein supply shifts at local and global scales with food security consequences. This paper discusses the potential impacts of climate change on fisheries and aquaculture in the Asian Pacific region, with special emphasis on Southeast Asia. The key question to be addressed is “What are the impacts of global climate change on global fish harvests and what does it mean to the availability of fish?”

  9. Climate Change and Food Safety: Beyond Production

    NASA Astrophysics Data System (ADS)

    Ziska, L. H.; Crimmins, A. R.

    2016-12-01

    There is merited interest in determining the extent of climate disruption on agricultural production and food security. However, additional aspects of food security, including food safety, nutrition and distribution have, overall, received less attention. Beginning in 2013, the U.S. Global Change Research Program as part of the ongoing National Climate Assessment, began a directed effort to evaluate the vulnerability of climate change to these under-represented aspects of food security for developed countries. Based on this extensive review of current science, several key findings were developed: (a) Climate change, including rising temperatures and changes in weather extremes, is expected to increase the exposure of food to certain pathogens and toxins; (b) Climate change will increase human exposure to chemical contaminants in food through several pathways; (c) The nutritional value of agriculturally important food crops, including cereals, will decrease in response to the ongoing increase in atmospheric carbon dioxide; (d) Increases in the frequency or intensity of extreme weather events associated with climate change may disrupt food distribution. These findings will be presented as a means to describe the state of the science and expand on food security research in the broader context of public health and climate change.

  10. Climate change and avian influenza

    PubMed Central

    Slingenbergh, J.; Xiao, X.

    2009-01-01

    Summary This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in water bird populations will continue with endless adaptation and evolution. In domestic poultry, too little is known about the direct effect of environmental factors on highly pathogenic avian influenza transmission and persistence to allow inference about the possible effect of climate change. However, possible indirect links through changes in the distribution of duck-crop farming are discussed. PMID:18819672

  11. Integrating Climate Change into Great Lakes Protection

    NASA Astrophysics Data System (ADS)

    Hedman, S.

    2012-12-01

    Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency

  12. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change

    PubMed Central

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274

  13. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    PubMed

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  14. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  15. Climate change impacts on food system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  16. Are life history events of a northern breeding population of Cooper's Hawks influenced by changing climate?

    PubMed

    Rosenfield, Robert N; Hardin, Madeline G; Bielefeldt, John; Keyel, Edward R

    2017-01-01

    Numerous studies have demonstrated earlier timing of spring migration and egg-laying in small passerines, but documentation of such responses to recent climate change in the life histories of higher trophic feeding birds such as raptors is relatively scarce. Raptors may be particularly susceptible to possible adverse effects of climate change due to their longer generation turnover times and lower reproductive capacity, which could lead to population declines because of an inability to match reproductive timing with optimal brood rearing conditions. Conversely adaptively favorable outcomes due to the influence of changing climate may occur. In general, birds that seasonally nest earlier typically have higher reproductive output compared to conspecifics that nest later in the season. Given the strong seasonal decline in reproductive output, and the heritability of nesting phenology, it is possible that nesting seasons would (adaptively) advance over time. Recent climate warming may release prior ecological constraints on birds that depend on food availability at the time of egg production, as do various raptors including Cooper's Hawks ( Accipiter cooperii ). Under this scenario, productivity, especially clutch size, might increase because it is likely that this reproductive demographic may be the most immediate response to the earlier seasonal presence of food resources. We demonstrated a statistically significant shift of about 4-5 days to an earlier timing of egg-hatching in spring across 36 years during 1980-2015 for a partially migratory population of Cooper's Hawks in Wisconsin, United States, which is consistent with a recent study that showed that Cooper's Hawks had advanced their timing of spring migration during 1979-2012. Both studies occurred in the Great Lakes region, an area that compared to global averages is experiencing earlier and increased warming particularly in the spring in Wisconsin. The nesting period did not lengthen. We suggest that the

  17. Climate change is projected to outpace rates of niche change in grasses.

    PubMed

    Cang, F Alice; Wilson, Ashley A; Wiens, John J

    2016-09-01

    Climate change may soon threaten much of global biodiversity, especially if species cannot adapt to changing climatic conditions quickly enough. A critical question is how quickly climatic niches change, and if this speed is sufficient to prevent extinction as climates warm. Here, we address this question in the grass family (Poaceae). Grasses are fundamental to one of Earth's most widespread biomes (grasslands), and provide roughly half of all calories consumed by humans (including wheat, rice, corn and sorghum). We estimate rates of climatic niche change in 236 species and compare these with rates of projected climate change by 2070. Our results show that projected climate change is consistently faster than rates of niche change in grasses, typically by more than 5000-fold for temperature-related variables. Although these results do not show directly what will happen under global warming, they have troubling implications for a major biome and for human food resources. © 2016 The Author(s).

  18. Sustained Large-Scale Collective Climate Action Supported by Effective Climate Change Education Practice

    NASA Astrophysics Data System (ADS)

    Niepold, F., III; Crim, H.; Fiorile, G.; Eldadah, S.

    2017-12-01

    Since 2012, the Climate and Energy Literacy community have realized that as cities, nations and the international community seek solutions to global climate change over the coming decades, a more comprehensive, interdisciplinary approach to climate literacy—one that includes economic and social considerations—will play a vital role in knowledgeable planning, decision-making, and governance. City, county and state leaders are now leading the American response to a changing climate by incubating social innovation to prevail in the face of unprecedented change. Cities are beginning to realize the importance of critical investments to support the policies and strategies that will foster the climate literacy necessary for citizens to understand the urgency of climate actions and to succeed in a resilient post-carbon economy and develop the related workforce. Over decade of federal and non-profit Climate Change Education effective methods have been developed that can support municipality's significant educational capabilities for the purpose of strengthening and scaling city, state, business, and education actions designed to sustain and effectively address this significant social change. Looking to foster the effective and innovative strategies that will enable their communities several networks have collaborated to identify recommendations for effective education and communication practices when working with different types of audiences. U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, the National Wildlife Federation, NOAA Climate Program Office, Tri-Agency Climate Change Education Collaborative and the Climate Literacy and Energy Awareness Network (CLEAN) are working to develop a new web portal that will highlight "effective" practices that includes the acquisition and use of climate change knowledge to inform decision-making. The purpose of the web portal is to transfer effective practice to support communities to be

  19. Climate change and the Delta

    USGS Publications Warehouse

    Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.

    2016-01-01

    Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful

  20. IPCC Report Calls Climate Changes Unprecedented

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-10-01

    Warming of the Earth's climate "is unequivocal and since the 1950s many of the observed changes are unprecedented over decades to millennia," according to a new assessment report by the Intergovernmental Panel on Climate Change (IPCC). The 27 September summary for policy makers of IPCC's report "Climate Change 2013: The Physical Science Basis" also states that "it is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century."

  1. Avoiding dangerous climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans Joachim Schellnhuber; Wolfgang Cramer; Nebojsa Nakicenovic

    2006-02-15

    In 2005 the UK Government hosted the Avoiding Dangerous Climate Change conference to take an in-depth look at the scientific issues associated with climate change. This volume presents the most recent findings from the leading international scientists that attended the conference. The topics addressed include critical thresholds and key vulnerabilities of the climate system, impacts on human and natural systems, socioeconomic costs and benefits of emissions pathways, and technological options for meeting different stabilisation levels of greenhouse gases in the atmosphere. Contents are: Foreword from Prime Minister Tony Blair; Introduction from Rajendra Pachauri, Chairman of the IPCC; followed by 41more » papers arranged in seven sections entitled: Key Vulnerabilities of the Climate System and Critical Thresholds; General Perspectives on Dangerous Impacts; Key Vulnerabilities for Ecosystems and Biodiversity; Socio-Economic Effects; Regional Perspectives; Emission Pathways; and Technological Options. Four papers have been abstracted separately for the Coal Abstracts database.« less

  2. Leveraging the Novel Climates of Arboreta to Understand Tree Responses to Climate Change

    NASA Astrophysics Data System (ADS)

    Ettinger, A.; Wolkovich, E. M.; Joly, S.

    2016-12-01

    Rising global temperatures are expected to cause large-scale changes to forests, including altered mortality and recruitment rates, and dramatic changes in species composition, but exactly how tree growth will be affected by climate change is uncertain. Studies to date suggest that temperate and boreal tree responses to warming range from growing faster, slower, or at unchanged rates. Here we present an approach and preliminary findings that will improve predictions of tree responses to climate change by studying how tree traits, including phenology (e.g. the timing of leaf-out), wood density, leaf mass area, and height, relate to climate sensitivity (i.e. growth responses to annual changes in climate, Figure 1). We demonstrate how arboreta can be used to understand tree responses to climate change using 500 individuals across 65 tree species growing at the Arnold Arboretum, Boston, Massachusetts. Arboretum provide a unique opportunities for understanding temperate tree responses to climate change: they provide large collections of woody species growing together that enable traits to be studied across diverse species in a phylogenetic context. Furthermore, many species in arboreta are nonnative and have been exposed to "novel" climates that may resemble future conditions in their native distributions. We use a phylogenetic approach to understand how annual growth and climate sensitivity relate to focal traits, and asses what these findings may tell us about tree responses to climate change.

  3. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges

    PubMed Central

    Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map’s coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions. PMID:27618445

  4. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges.

    PubMed

    Zanin, Marina; Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map's coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions.

  5. Turning Misinformation into Climate Change Education

    NASA Astrophysics Data System (ADS)

    Borah, N.; Cook, J.

    2017-12-01

    Misinformation reduces science literacy and interferes with new learning. This undermines the application of science to understanding and addressing important societal issues. Intentional misinformation and fake news is of growing concern to the scientists, educators and policymakers. Specifically, misinformation about human-caused climate change has become prominent in recent times creating confusion among the public. Hence, interventions that inoculate people against climate change misinformation are very much necessary. One of the most promising applications of inoculation is in the classroom, using a teaching approach known as misconception-based learning. This involves explaining scientific concepts while directly refuting related misconceptions. Misconception-based learning is a powerful way to neutralize the influence of climate change misinformation by increasing both science literacy and critical thinking skills. Students do not possess as many erroneous preconceptions about climate change relative to adults and hence correcting such misconceptions among students is more effective using this teaching approach. The misconception-based teaching approach has a number of benefits. It results in greater and longer-lasting learning gains relative to standard lessons. It equips students with the tools and knowledge to distinguish between facts and myths and increases confidence to engage in constructive discussion with family and friends about climate change. Further, research has shown that students have an effect on parents' environmental attitudes and behavior. Consequently, misconception-based learning presents the opportunity to reach the adult community through the students. We have developed a high school climate change curriculum based on the misconception-based learning framework. Our intent is to run a pilot project that tests the impact of this curriculum on students' climate perceptions, and any second-order influence on their parents. This research

  6. Generating Arguments about Climate Change

    ERIC Educational Resources Information Center

    Golden, Barry; Grooms, Jonathon; Sampson, Victor; Oliveri, Robin

    2012-01-01

    This unit is a different and fun way to engage students with an extremely important topic, climate change, which cuts across scientific and nonscientific disciplines. While climate change itself may not be listed in the curriculum of every science class, the authors contend that such a unit is appropriate for virtually any science curriculum.…

  7. Teaching about Global Climate Change

    ERIC Educational Resources Information Center

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  8. Solar Changes and Climate Changes. (Invited)

    NASA Astrophysics Data System (ADS)

    Feynman, J.

    2009-12-01

    During the early decades of the Space Age there was general agreement in the scientific community on two facts: (1) sunspot cycles continued without interruption; (2) decadal timescale variations in the solar output has no effect on Earth’s climate. Then in 1976 Jack Eddy published a paper called ‘The Maunder Minimum” in Science magazine arguing that neither of these two established facts was true. He reviewed the observations from the 17th century that show the Sun did not appear to cycle for several decades and he related that to the cold winters in Northern Europe at that time. The paper has caused three decades of hot discussions. When Jack Eddy died on June 10th of this year the arguments were sill going on, and there were no sunspots that day. The Sun was in the longest and deepest solar minimum since 1900. In this talk I will describe the changes in the solar output that have taken place over the last few decades and put them in their historical context. I will also review recent work on the influence of decadal and century scale solar variations on the Earth’s climate. It is clear that this long, deep “solar minimum” is an opportunity to make fundamental progress on our understanding of the solar dynamo and to separate climate change due to the Sun from anthropogenic climate change.

  9. A Statistical Modeling Framework for Projecting Future Ambient Ozone and its Health Impact due to Climate Change

    PubMed Central

    Chang, Howard H.; Hao, Hua; Sarnat, Stefanie Ebelt

    2014-01-01

    The adverse health effects of ambient ozone are well established. Given the high sensitivity of ambient ozone concentrations to meteorological conditions, the impacts of future climate change on ozone concentrations and its associated health effects are of concern. We describe a statistical modeling framework for projecting future ozone levels and its health impacts under a changing climate. This is motivated by the continual effort to evaluate projection uncertainties to inform public health risk assessment. The proposed approach was applied to the 20-county Atlanta metropolitan area using regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program. Future ozone levels and ozone-related excesses in asthma emergency department (ED) visits were examined for the period 2041–2070. The computationally efficient approach allowed us to consider 8 sets of climate model outputs based on different combinations of 4 RCMs and 4 general circulation models. Compared to the historical period of 1999–2004, we found consistent projections across climate models of an average 11.5% higher ozone levels (range: 4.8%, 16.2%), and an average 8.3% (range: −7% to 24%) higher number of ozone exceedance days. Assuming no change in the at-risk population, this corresponds to excess ozone-related ED visits ranging from 267 to 466 visits per year. Health impact projection uncertainty was driven predominantly by uncertainty in the health effect association and climate model variability. Calibrating climate simulations with historical observations reduced differences in projections across climate models. PMID:24764746

  10. Mars Recent Climate Change Workshop

    NASA Astrophysics Data System (ADS)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  11. Public Engagement on Climate Change

    NASA Astrophysics Data System (ADS)

    Curry, J.

    2011-12-01

    Climate change communication is complicated by complexity of the scientific problem, multiple perspectives on the magnitude of the risk from climate change, often acrimonious disputes between scientists, high stakes policy options, and overall politicization of the issue. Efforts to increase science literacy as a route towards persuasion around the need for a policy like cap and trade have failed, because the difficulty that a scientist has in attempting to make sense of the social and political complexity is very similar to the complexity facing the general public as they try to make sense of climate science itself. In this talk I argue for a shift from scientists and their institutions as information disseminators to that of public engagement and enablers of public participation. The goal of engagement is not just to inform, but to enable, motivate and educate the public regarding the technical, political, and social dimensions of climate change. Engagement is a two-way process where experts and decision-makers seek input and learn from the public about preferences, needs, insights, and ideas relative to climate change impacts, vulnerabilities, solutions and policy options. Effective public engagement requires that scientists detach themselves from trying to control what the public does with the acquired knowledge and motivation. The goal should not be to "sell" the public on particular climate change solutions, since such advocacy threatens public trust in scientists and their institutions. Conduits for public engagement include the civic engagement approach in the context of community meetings, and perhaps more significantly, the blogosphere. Since 2006, I have been an active participant in the climate blogosphere, focused on engaging with people that are skeptical of AGW. A year ago, I started my own blog Climate Etc. at judithcurry.com. The demographic that I have focused my communication/engagement activities are the technically educated and scientifically

  12. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    NASA Astrophysics Data System (ADS)

    Karpudewan, Mageswary; Roth, Wolff-Michael; Abdullah, Mohd Nor Syahrir Bin

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that child-centred, 5E learning cycle-based climate change activities would have over more traditional teacher-centred activities on Malaysian Year 5 primary students (11 years). A quasi-experimental design involving a treatment (n = 55) and a group representing typical teaching method (n = 60) was used to measure the effectiveness of these activities on (a) increasing children's knowledge about global warming; (b) changing their attitudes to be more favourable towards the environment and (c) identify the relationship between knowledge and attitude that exist in this study. Statistically significant differences in favour of the treatment group were detected for both knowledge and environmental attitudes. Non-significant relationship was identified between knowledge and attitude in this study. Interviews with randomly selected students from treatment and comparison groups further underscore these findings. Implications are discussed.

  13. Paleoclimates: Understanding climate change past and present

    USGS Publications Warehouse

    Cronin, Thomas M.

    2010-01-01

    The field of paleoclimatology relies on physical, chemical, and biological proxies of past climate changes that have been preserved in natural archives such as glacial ice, tree rings, sediments, corals, and speleothems. Paleoclimate archives obtained through field investigations, ocean sediment coring expeditions, ice sheet coring programs, and other projects allow scientists to reconstruct climate change over much of earth's history. When combined with computer model simulations, paleoclimatic reconstructions are used to test hypotheses about the causes of climatic change, such as greenhouse gases, solar variability, earth's orbital variations, and hydrological, oceanic, and tectonic processes. This book is a comprehensive, state-of-the art synthesis of paleoclimate research covering all geological timescales, emphasizing topics that shed light on modern trends in the earth's climate. Thomas M. Cronin discusses recent discoveries about past periods of global warmth, changes in atmospheric greenhouse gas concentrations, abrupt climate and sea-level change, natural temperature variability, and other topics directly relevant to controversies over the causes and impacts of climate change. This text is geared toward advanced undergraduate and graduate students and researchers in geology, geography, biology, glaciology, oceanography, atmospheric sciences, and climate modeling, fields that contribute to paleoclimatology. This volume can also serve as a reference for those requiring a general background on natural climate variability.

  14. Climate Change and Children: Health Risks of Abatement Inaction, Health Gains from Action.

    PubMed

    McMichael, Anthony J

    2014-08-14

    As human-driven climate change advances, many adults fret about the losses of livelihoods, houses and farms that may result. Children fret about their parents' worries and about information they hear, but do not really understand about the world's climate and perhaps about their own futures. In chronically worried or anxious children, blood cortisol levels rise and adverse changes accrue in various organ systems that prefigure adult-life diseases. Meanwhile, for many millions of children in poor countries who hear little news and live with day-to-day fatalism, climate change threatens the fundamentals of life-food sufficiency, safe drinking water and physical security-and heightens the risks of diarrhoeal disease, malaria and other climate-sensitive infections. Poor and disadvantaged populations, and especially their children, will bear the brunt of climate-related trauma, disease and premature death over the next few decades and, less directly, from social disruption, impoverishment and displacement. The recent droughts in Somalia as the Indian Ocean warmed and monsoonal rains failed, on top of chronic civil war, forced hundreds of thousands of Somali families into north-eastern Kenya's vast Dadaab refugee camps, where, for children, shortages of food, water, hygiene and schooling has endangered physical, emotional and mental health. Children warrant special concern, both as children per se and as the coming generation likely to face ever more extreme climate conditions later this century. As children, they face diverse risks, from violent weather, proliferating aeroallergens, heat extremes and mobilised microbes, through to reduced recreational facilities, chronic anxieties about the future and health hazards of displacement and local resource conflict. Many will come to regard their parents' generation and complacency as culpable.

  15. Climate Change Education for Mitigation and Adaptation

    ERIC Educational Resources Information Center

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  16. Climatic change controls productivity variation in global grasslands

    PubMed Central

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W.; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A.; Li, Yue

    2016-01-01

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms. PMID:27243565

  17. Climate Change and Underserved Communities.

    PubMed

    Ziegler, Carol; Morelli, Vincent; Fawibe, Omotayo

    2017-03-01

    Climate change is the greatest global health threat of the twenty-first century, yet it is not widely understood as a health hazard by primary care providers in the United States. Aside from increasing displacement of populations and acute trauma resulting from increasing frequency of natural disasters, the impact of climate change on temperature stress, vector-borne illnesses, cardiovascular and respiratory illnesses, and mental health is significant, with disproportionate impact on underserved and marginalized populations. Primary care providers must be aware of the impact of climate change on the health of their patients and advocate for adaptation and mitigation policies for the populations they serve. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Vulnerability of European freshwater catchments to climate change.

    PubMed

    Markovic, Danijela; Carrizo, Savrina F; Kärcher, Oskar; Walz, Ariane; David, Jonathan N W

    2017-09-01

    Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for

  19. Climate-society feedbacks and the avoidance of dangerous climate change

    NASA Astrophysics Data System (ADS)

    Jarvis, A. J.; Leedal, D. T.; Hewitt, C. N.

    2012-09-01

    The growth in anthropogenic CO2 emissions experienced since the onset of the Industrial Revolution is the most important disturbance operating on the Earth's climate system. To avoid dangerous climate change, future greenhouse-gas emissions will have to deviate from business-as-usual trajectories. This implies that feedback links need to exist between climate change and societal actions. Here, we show that, consciously or otherwise, these feedbacks can be represented by linking global mean temperature change to the growth dynamics of CO2 emissions. We show that the global growth of new renewable sources of energy post-1990 represents a climate-society feedback of ~0.25%yr-1 per degree increase in global mean temperature. We also show that to fulfil the outcomes negotiated in Durban in 2011, society will have to become ~ 50 times more responsive to global mean temperature change than it has been since 1990. If global energy use continues to grow as it has done historically then this would result in amplification of the long-term endogenous rate of decarbonization from -0.6%yr-1 to ~-13%yr-1. It is apparent that modest levels of feedback sensitivity pay large dividends in avoiding climate change but that the marginal return on this effort diminishes rapidly as the required feedback strength increases.

  20. Impact of socio-demographic factors on the mitigating actions for climate change: a path analysis with mediating effects of attitudinal variables.

    PubMed

    Masud, Muhammad Mehedi; Akhatr, Rulia; Nasrin, Shamima; Adamu, Ibrahim Mohammed

    2017-12-01

    Socio-demographic factors play a significant role in increasing the individual's climate change awareness and in setting a favorable individual attitude towards its mitigation. To better understand how the adversative effects of climate change can be mitigated, this study attempts to investigate the impact of socio-demographic factors on the mitigating actions of the individuals (MAOI) on climate change. Qualitative data were collected from a face-to-face survey of 360 respondents in the Kuala Lumpur region of Malaysia through a close-ended questionnaire. Analysis was conducted on the mediating effects of attitudinal variables through the path model by using the SEM. Findings indicate that the socio-demographic factors such as gender, age, education, income, and ethnicity can greatly influence the individual's awareness, attitude, risk perception, and knowledge of climate change issues. The results drawn from this study also revealed that the attitudinal factors act as a mediating effect between the socio-demographic factors and the MAOI, thereby, indicating that both the socio-demographic factors and the attitudinal factors have significant effects on the MAOI towards climate change. The outcome of this study can help policy makers and other private organizations to decide on the appropriate actions to take in managing climate change effects. These actions which encompass improving basic climate change education and making the public more aware of the local dimensions of climate change are important for harnessing public engagement and support that can also stimulate climate change awareness and promote mitigating actions to n protect the environment from the impact of climate change.

  1. Climate Change: An Activity.

    ERIC Educational Resources Information Center

    Lewis, Garry

    1995-01-01

    Presents a segment of the Geoscience Education booklet, Climate Change, that contains information and activities that enable students to gain a better appreciation of the possible effects human activity has on the Earth's climate. Describes the Terrace Temperatures activity that leads students through an investigation using foraminifera data to…

  2. Integrated Assessment of Climate Change, Agricultural Land Use, and Regional Carbon Changes

    NASA Astrophysics Data System (ADS)

    MU, J.

    2014-12-01

    Changes in land use have caused a net release of carbon to the atmosphere over the last centuries and decades1. On one hand, agriculture accounts for 52% and 84% of global anthropogenic methane and nitrous oxide emissions, respectively. On the other hand, many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management2. From this perspective, land use change that reduces emissions and/or increases carbon sequestration can play an important role in climate change mitigation. As shown in Figure 1, this paper is an integrated study of climate impacts, land uses, and regional carbon changes to examine, link and assess climate impacts on regional carbon changes via impacts on land uses. This study will contribute to previous research in two aspects: impacts of climate change on future land uses under an uncertain future world and projections of regional carbon dynamics due to changes in future land use. Specifically, we will examine how land use change under historical climate change using observed data and then project changes in land use under future climate projections from 14 Global Climate Models (GCMs) for two emission scenarios (i.e., RCP4.5 and RCP8.5). More importantly, we will investigate future land use under uncertainties with changes in agricultural development and social-economic conditions along with a changing climate. By doing this, we then could integrate with existing efforts by USGS land-change scientists developing and parameterizing models capable of projecting changes across a full spectrum of land use and land cover changes and track the consequences on ecosystem carbon to provide better information for land managers and policy makers when informing climate change adaptation and mitigation policies.

  3. Navigating Negative Conversations in Climate Change

    NASA Astrophysics Data System (ADS)

    Mandia, S. A.; Abraham, J. P.; Dash, J. W.; Ashley, M. C.

    2012-12-01

    Politically charged public discussions of climate change often lead to polarization as a direct result of many societal, economic, religious and other factors which form opinions. For instance, the general public views climate change as a political discussion rather than a scientific matter. Additionally, many media sources such as websites and mainstream venues and persons have served to promote the "controversy". Scientists who engage in a public discourse of climate change often encounter politically charged environments and audiences. Traditional presentations of the science without attention paid to political, social, or economic matters are likely to worsen the existing divide. An international organization, the Climate Science Rapid Response Team (CSRRT) suggests a strategy that can be used to navigate potentially troublesome situations with divided audiences. This approach can be used during live lecture presentations, and radio, print, or television interviews. The strategy involves identifying alternative motivations for taking action on climate change. The alternative motivations are tailored to the audience and can range from national defense, economic prosperity, religious motivation, patriotism, energy independence, or hunting/fishing reasons. Similar messaging modification can be used to faithfully and accurately convey the importance of taking action on climate change but present the motivations in a way that will be received by the audience.

  4. Climate risk index for Italy.

    PubMed

    Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna

    2018-06-13

    We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Authors.

  5. Climate risk index for Italy

    PubMed Central

    Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna

    2018-01-01

    We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712797

  6. Changing feedbacks in the climate-biosphere system

    Treesearch

    F. Stuart Chapin; James T. Randerson; A. David McGuire; Jonathan A. Foley; Christopher B. Field

    2008-01-01

    Ecosystems influence climate through multiple pathways, primarily by changing the energy, water, and greenhouse-gas balance of the atmosphere. Consequently, efforts to mitigate climate change through modification of one pathway, as with carbon in the Kyoto Protocol, only partially address the issue of ecosystem-climate interactions. For example, the cooling of climate...

  7. Climate change response framework overview: Chapter 1

    Treesearch

    Chris Swanston; Maria Janowiak; Patricia Butler

    2012-01-01

    Managers currently face the immense challenge of anticipating the effects of climate change on forest ecosystems and then developing and applying management responses for adapting forests to future conditions. The Climate Change Response Framework (CCRF) is a highly collaborative approach to helping land managers understand the potential effects of climate change on...

  8. Climate Change Impacts on Harmful Algal Blooms in U.S. Freshwaters: A Screening-Level Assessment.

    PubMed

    Chapra, Steven C; Boehlert, Brent; Fant, Charles; Bierman, Victor J; Henderson, Jim; Mills, David; Mas, Diane M L; Rennels, Lisa; Jantarasami, Lesley; Martinich, Jeremy; Strzepek, Kenneth M; Paerl, Hans W

    2017-08-15

    Cyanobacterial harmful algal blooms (CyanoHABs) have serious adverse effects on human and environmental health. Herein, we developed a modeling framework that predicts the effect of climate change on cyanobacteria concentrations in large reservoirs in the contiguous U.S. The framework, which uses climate change projections from five global circulation models, two greenhouse gas emission scenarios, and two cyanobacterial growth scenarios, is unique in coupling climate projections with a hydrologic/water quality network model of the contiguous United States. Thus, it generates both regional and nationwide projections useful as a screening-level assessment of climate impacts on CyanoHAB prevalence as well as potential lost recreation days and associated economic value. Our projections indicate that CyanoHAB concentrations are likely to increase primarily due to water temperature increases tempered by increased nutrient levels resulting from changing demographics and climatic impacts on hydrology that drive nutrient transport. The combination of these factors results in the mean number of days of CyanoHAB occurrence ranging from about 7 days per year per waterbody under current conditions, to 16-23 days in 2050 and 18-39 days in 2090. From a regional perspective, we find the largest increases in CyanoHAB occurrence in the Northeast U.S., while the greatest impacts to recreation, in terms of costs, are in the Southeast.

  9. Changes in the Shadow: The Shifting Role of Shaded Leaves in Global Carbon and Water Cycles Under Climate Change

    NASA Astrophysics Data System (ADS)

    He, Liming; Chen, Jing M.; Gonsamo, Alemu; Luo, Xiangzhong; Wang, Rong; Liu, Yang; Liu, Ronggao

    2018-05-01

    Globally shaded leaves contribute to more than a half of the total increase in gross primary production (GPP; 7.6 Pg C) for 1982-2016. During 1982-2016, the fraction of shaded GPP increases by 1.1% (p < 0.01) in tropical forests and decreases by 1.4% (p < 0.01) and 1.8% (p < 0.01) in evergreen needleleaf and deciduous needleleaf boreal forests, respectively, suggesting an ecological niche of certain canopy structure for ecosystems to achieve maximum GPP. Unlike transpiration from sunlit leaves that has a turning point in the trend in 2003, global transpiration from shaded leaves steadily increased at the rate of 34 km3/year (p < 0.0001) during 1982-2016. Our study therefore suggests that shaded leaves have an increasing role in buffering the adverse impact of climate change and extremes. Further studies are still needed to reduce the uncertainties in reported trends arisen from climate forcing data, leaf area index, and land cover and land change products.

  10. Probabilistic Integrated Assessment of ``Dangerous'' Climate Change

    NASA Astrophysics Data System (ADS)

    Mastrandrea, Michael D.; Schneider, Stephen H.

    2004-04-01

    Climate policy decisions are being made despite layers of uncertainty. Such decisions directly influence the potential for ``dangerous anthropogenic interference with the climate system.'' We mapped a metric for this concept, based on Intergovernmental Panel on Climate Change assessment of climate impacts, onto probability distributions of future climate change produced from uncertainty in key parameters of the coupled social-natural system-climate sensitivity, climate damages, and discount rate. Analyses with a simple integrated assessment model found that, under midrange assumptions, endogenously calculated, optimal climate policy controls can reduce the probability of dangerous anthropogenic interference from ~45% under minimal controls to near zero.

  11. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    PubMed

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  12. Interactive effects of global climate change and pollution on marine microbes: the way ahead

    PubMed Central

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Ângela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future. PMID:23789087

  13. Undergraduate Students' Conceptions of Natural and Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Trenbath, K. L.

    2011-12-01

    Scientists and educators strive to improve climate literacy throughout society, whether through communication of research findings or though classroom teaching. Despite these efforts, climate change misconceptions exist in students and the general public. When educators present evidence that contradicts misconceptions, students may begin to struggle with their inaccurate ideas and perhaps transition towards a scientifically-accepted understanding. These transitions, called conceptual change, can occur in college climate change courses. The purpose of this presentation is to describe college students' ideas of natural and anthropogenic climate change and the way these ideas change throughout a climate change course. This presentation is based on five case studies of undergraduate students in a large lecture-hall course dedicated to climate change. Each case study student represents a different level of climate change understanding at the beginning of the semester. These case studies and subsequent cross-case analyses result from a qualitative research study using interviews, field notes, artifact analysis, coding and categorization, and research memos. The cases show shifts in all five students' ideas of natural and anthropogenic climate change. During the first month of class, the three lower achieving students expressed uncertainty about the increase in average global temperatures due to anthropogenic climate change. At the end of the semester, these students explained that warming from climate change is natural, yet the rate of this warming is increasing due to human activities. Two of the lower achieving students constructed definitions of climate change different than the definition used by the professor in the classroom. These students solidified the idea that the term "climate change" describes the change that results from natural forcings only, while the term "global warming" describes change in the climate that results from human-caused forcings. Their

  14. Managing the Risks of Extreme Events and Disasters in a Changing Climate: Lessons for Adaptation to Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Mastrandrea, M.; Field, C. B.; Mach, K. J.; Barros, V.

    2013-12-01

    The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, published in 2012, integrates expertise in climate science, disaster risk reduction, and adaptation to inform discussions on how to reduce and manage the risks of extreme events and disasters in a changing climate. Impacts and the risks of disasters are determined by the interaction of the physical characteristics of weather and climate events with the vulnerability of exposed human society and ecosystems. The Special Report evaluates the factors that make people and infrastructure vulnerable to extreme events, trends in disaster losses, recent and future changes in the relationship between climate change and extremes, and experience with a wide range of options used by institutions, organizations, and communities to reduce exposure and vulnerability, and improve resilience, to climate extremes. Actions ranging from incremental improvements in governance and technology to more transformational changes are assessed. The Special Report provides a knowledge base that is also relevant to the broader context of managing the risks of climate change through mitigation, adaptation, and other responses, assessed in the IPCC's Fifth Assessment Report (AR5), to be completed in 2014. These themes include managing risks through an iterative process involving learning about risks and the effectiveness of responses, employing a portfolio of actions tailored to local circumstances but with links from local to global scales, and considering additional benefits of actions such as improving livelihoods and well-being. The Working Group II contribution to the AR5 also examines the ways that extreme events and their impacts contribute to understanding of vulnerabilities and adaptation deficits in the context of climate change, the extent to which impacts of climate change are experienced through changes in the frequency and severity of extremes as opposed to mean changes

  15. Climate change: potential implications for Ireland's biodiversity

    NASA Astrophysics Data System (ADS)

    Donnelly, Alison

    2018-03-01

    A national biodiversity and climate change adaptation plan is being developed for Ireland by the Department of Communications, Climate Action, and Environment. In order to inform such a plan, it was necessary to review and synthesize some of the recent literature pertaining to the impact of climate change on biodiversity in Ireland. Published research on this topic fell within three broad categories: (i) changes in the timing of life-cycle events (phenology) of plants, birds, and insects; (ii) changes in the geographic range of some bird species; and (iii) changes in the suitable climatic zones of key habitats and species. The synthesis revealed evidence of (i) a trend towards earlier spring activity of plants, birds, and insects which may result in a change in ecosystem function; (ii) an increase in the number of bird species; and (iii) both increases and decreases in the suitable climatic area of key habitats and species, all of which are expected to impact Ireland's future biodiversity. This process identified data gaps and limitations in available information both of which could be used to inform a focused research strategy. In addition, it raises awareness of the potential implications of climate change for biodiversity in Ireland and elsewhere and demonstrates the need for biodiversity conservation plans to factor climate change into future designs.

  16. Climate change: potential implications for Ireland's biodiversity.

    PubMed

    Donnelly, Alison

    2018-03-12

    A national biodiversity and climate change adaptation plan is being developed for Ireland by the Department of Communications, Climate Action, and Environment. In order to inform such a plan, it was necessary to review and synthesize some of the recent literature pertaining to the impact of climate change on biodiversity in Ireland. Published research on this topic fell within three broad categories: (i) changes in the timing of life-cycle events (phenology) of plants, birds, and insects; (ii) changes in the geographic range of some bird species; and (iii) changes in the suitable climatic zones of key habitats and species. The synthesis revealed evidence of (i) a trend towards earlier spring activity of plants, birds, and insects which may result in a change in ecosystem function; (ii) an increase in the number of bird species; and (iii) both increases and decreases in the suitable climatic area of key habitats and species, all of which are expected to impact Ireland's future biodiversity. This process identified data gaps and limitations in available information both of which could be used to inform a focused research strategy. In addition, it raises awareness of the potential implications of climate change for biodiversity in Ireland and elsewhere and demonstrates the need for biodiversity conservation plans to factor climate change into future designs.

  17. Climate change impacts on global food security.

    PubMed

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  18. Climate change, aeroallergens, natural particulates, and human health in Australia: state of the science and policy.

    PubMed

    Beggs, Paul John; Bennett, Charmian Margaret

    2011-03-01

    The objective of this article is to systematically review and assess what is known about the impacts of climate change on aeroallergens and other naturally derived particulates, and the associated human health impacts, and to examine responses to these in Australia, focusing on adaptation. Prior research was searched using several general and discipline-specific research databases. The review concludes that whereas there is little original research on the impacts of climate change on aeroallergens and other naturally derived particulates in Australia, or the human health consequences of these, research from overseas suggests that these impacts may be adverse and of considerable magnitude. More research is required to assess the impacts of climate change on these airborne particles and associated diseases in Australia and other parts of the Asia-Pacific. There are important policy implications of this review. There is a need for enhanced monitoring of the atmospheric environment and associated health conditions in Australia. Education about climate change and human health in general, and air quality and related diseases specifically, is required for the community, health professionals, and others. Improvements are needed in the preparedness of infrastructure, such as health care facilities and early warning systems, particularly for aeroallergens, and all of these adaptive policy responses require further research.

  19. Detection and Attribution of Anthropogenic Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  20. The potential impacts of climate change induced changes to tropical leaf albedo and its feedback on global climate

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Shenkin, A.; Bentley, L. P.; Malhi, Y.

    2017-12-01

    Tropical forest leaf albedo plays a critical role in global climate by determining how much radiation the planet absorbs near the equator. However, little is known about how tropical leaf albedo could be affected by climate change and how any such changes in albedo could, in turn, impact global climate. Here we measure sunlit leaf albedo along two elevation temperature gradients (a 3000-meter gradient in Peru (10 plots) and a 1500 m gradient in Australia (10 plots) and along two wet to dry transects (a 2000 mm yr-1 gradient in Ghana (10 plots) and a 2000 mm yr-1 gradient in Brazil (10 plots). We found a highly significant increase in visible leaf albedo with wetness at both wet to dry gradients. We also found a marginally significant trend of increased albedo with warmer temperatures along one of the elevation gradients. Leaf albedo can also be impacted by changes in species composition, variations in interspecific variation, and changes in leaf chlorophyll concentrations. We removed the dominant two species from the basal area weighting for each plots but found no significant change, a directional change of interspecific variation could change albedo by 0.01 in the NIR, and changes in chlorophyll could decrease visible albedo by 0.005. We then simulated changes in tropical leaf albedo with a climate model and show that such changes could act as a small negative feedback on climate, but most likely will not have a large impact on future climate.

  1. Our Globally Changing Climate. Chapter 1

    NASA Technical Reports Server (NTRS)

    Wuebbles, D. J.; Easterling, D. R.; Hayhoe, K.; Knutson, T.; Kopp, R. E.; Kossin, J. P.; Kunkel, K. E.; LeGrande, A. N.; Mears, C.; Sweet, W. V.; hide

    2017-01-01

    Since the Third U.S. National Climate Assessment (NCA3) was published in May 2014, new observations along multiple lines of evidence have strengthened the conclusion that Earth's climate is changing at a pace and in a pattern not explainable by natural influences. While this report focuses especially on observed and projected future changes for the United States, it is important to understand those changes in the global context (this chapter). The world has warmed over the last 150 years, especially over the last six decades, and that warming has triggered many other changes to Earth's climate. Evidence for a changing climate abounds, from the top of the atmosphere to the depths of the oceans. Thousands of studies conducted by tens of thousands of scientists around the world have documented changes in surface, atmospheric, and oceanic temperatures; melting glaciers; disappearing snow cover; shrinking sea ice; rising sea level; and an increase in atmospheric water vapor. Rainfall patterns and storms are changing, and the occurrence of droughts is shifting.

  2. Climate change and the Great Basin

    Treesearch

    Jeanne C. Chambers

    2008-01-01

    Climate change is expected to have significant impacts on the Great Basin by the mid-21st century. The following provides an overview of past and projected climate change for the globe and for the region.

  3. Environmental literacy framework with a focus on climate change (ELF): a framework and resources for teaching climate change

    NASA Astrophysics Data System (ADS)

    Huffman, L. T.; Blythe, D.; Dahlman, L. E.; Fischbein, S.; Johnson, K.; Kontar, Y.; Rack, F. R.; Kulhanek, D. K.; Pennycook, J.; Reed, J.; Youngman, B.; Reeves, M.; Thomas, R.

    2010-12-01

    The challenges of communicating climate change science to non-technical audiences present a daunting task, but one that is recognized in the science community as urgent and essential. ANDRILL's (ANtarctic geological DRILLing) international network of scientists, engineers, technicians and educators work together to convey a deeper understanding of current geoscience research as well as the process of science to non-technical audiences. One roadblock for educators who recognize the need to teach climate change has been the lack of a comprehensive, integrated set of resources and activities that are related to the National Science Education Standards. Pieces of the climate change puzzle can be found in the excellent work of the groups of science and education professionals who wrote the Essential Principles of Ocean Sciences, Climate Literacy: The Essential Principles of Climate Science, Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science, and Essential Principals and Fundamental Concepts for Atmospheric Science Literacy, but teachers have precious little time to search out the climate change goals and objectives in those frameworks and then find the resources to teach them. Through NOAA funding, ANDRILL has created a new framework, The Environmental Literacy Framework with a Focus on Climate Change (ELF), drawing on the works of the aforementioned groups, and promoting an Earth Systems approach to teaching climate change through five units: Atmosphere, Biosphere, Geosphere, Hydrosphere/Cryosphere, and Energy as the driver of interactions within and between the “spheres.” Each key concept in the framework has a hands-on, inquiry activity and matching NOAA resources for teaching the objectives. In its present form, we present a ‘road map’ for teaching climate change and a set of resources intended to continue to evolve over time.

  4. Local indicators of climate change: The potential contribution of local knowledge to climate research

    PubMed Central

    Reyes-García, Victoria; Fernández-Llamazares, Álvaro; Guèze, Maximilien; Garcés, Ariadna; Mallo, Miguel; Vila-Gómez, Margarita; Vilaseca, Marina

    2016-01-01

    Local knowledge has been proposed as a place-based tool to ground-truth climate models and to narrow their geographic sensitivity. To assess the potential role of local knowledge in our quest to understand better climate change and its impacts, we first need to critically review the strengths and weaknesses of local knowledge of climate change and the potential complementarity with scientific knowledge. With this aim, we conducted a systematic, quantitative meta-analysis of published peer-reviewed documents reporting local indicators of climate change (including both local observations of climate change and observed impacts on the biophysical and the social systems). Overall, primary data on the topic are not abundant, the methodological development is incipient, and the geographical extent is unbalanced. On the 98 case studies documented, we recorded the mention of 746 local indicators of climate change, mostly corresponding to local observations of climate change (40%), but also to observed impacts on the physical (23%), the biological (19%), and the socioeconomic (18%) systems. Our results suggest that, even if local observations of climate change are the most frequently reported type of change, the rich and fine-grained knowledge in relation to impacts on biophysical systems could provide more original contributions to our understanding of climate change at local scale. PMID:27642368

  5. Exploring the Climate Change, Migration and Conflict Nexus

    PubMed Central

    Burrows, Kate; Kinney, Patrick L.

    2016-01-01

    The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict. PMID:27110806

  6. Exploring the Climate Change, Migration and Conflict Nexus.

    PubMed

    Burrows, Kate; Kinney, Patrick L

    2016-04-22

    The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict.

  7. Responses of large mammals to climate change.

    PubMed

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.

  8. Responses of large mammals to climate change

    PubMed Central

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change. PMID:27583293

  9. Climate Change, Indoor Environment and Health

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  10. Health, Energy Efficiency and Climate Change

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  11. Intraspecific variation buffers projected climate change impacts on Pinus contorta

    PubMed Central

    Oney, Brian; Reineking, Björn; O'Neill, Gregory; Kreyling, Juergen

    2013-01-01

    Species distribution modeling (SDM) is an important tool to assess the impact of global environmental change. Many species exhibit ecologically relevant intraspecific variation, and few studies have analyzed its relevance for SDM. Here, we compared three SDM techniques for the highly variable species Pinus contorta. First, applying a conventional SDM approach, we used MaxEnt to model the subject as a single species (species model), based on presence–absence observations. Second, we used MaxEnt to model each of the three most prevalent subspecies independently and combined their projected distributions (subspecies model). Finally, we used a universal growth transfer function (UTF), an approach to incorporate intraspecific variation utilizing provenance trial tree growth data. Different model approaches performed similarly when predicting current distributions. MaxEnt model discrimination was greater (AUC – species model: 0.94, subspecies model: 0.95, UTF: 0.89), but the UTF was better calibrated (slope and bias – species model: 1.31 and −0.58, subspecies model: 1.44 and −0.43, UTF: 1.01 and 0.04, respectively). Contrastingly, for future climatic conditions, projections of lodgepole pine habitat suitability diverged. In particular, when the species' intraspecific variability was acknowledged, the species was projected to better tolerate climatic change as related to suitable habitat without migration (subspecies model: 26% habitat loss or UTF: 24% habitat loss vs. species model: 60% habitat loss), and given unlimited migration may increase amount of suitable habitat (subspecies model: 8% habitat gain or UTF: 12% habitat gain vs. species model: 51% habitat loss) in the climatic period 2070–2100 (SRES A2 scenario, HADCM3). We conclude that models derived from within-species data produce different and better projections, and coincide with ecological theory. Furthermore, we conclude that intraspecific variation may buffer against adverse effects of climate

  12. Public health impacts of climate change in Nepal.

    PubMed

    Joshi, H D; Dhimal, B; Dhimal, M; Bhusal, C L

    2011-04-01

    Climate change is a global issue in this century which has challenged the survival of living creatures affecting the life supporting systems of the earth: atmosphere, hydrosphere and lithosphere. Scientists have reached in a consensus that climate change is happening. The anthropogenic emission of greenhouse gases is responsible for global warming and therefore climate change. Climate change may directly or indirectly affect human health through a range of pathways related to temperature and precipitation. The aim of this article is to share knowledge on how climate change can affect public health in Nepal based on scientific evidence from global studies and experience gained locally. In this review attempt has been made to critically analyze the scientific studies as well as policy documents of Nepalese Government and shed light on public health impact of climate change in the context of Nepal. Detailed scientific study is recommended to discern impact of climate change on public health problems in Nepal.

  13. Transatlantic flight times and climate change

    NASA Astrophysics Data System (ADS)

    Williams, Paul

    2016-04-01

    Aircraft do not fly through a vacuum, but through an atmosphere whose meteorological characteristics are changing because of global warming. The impacts of aviation on climate change have long been recognised, but the impacts of climate change on aviation have only recently begun to emerge. These impacts include intensified turbulence (Williams and Joshi 2013) and increased take-off weight restrictions. A forthcoming study (Williams 2016) investigates the influence of climate change on flight routes and journey times. This is achieved by feeding synthetic atmospheric wind fields generated from climate model simulations into a routing algorithm of the type used operationally by flight planners. The focus is on transatlantic flights between London and New York, and how they change when the atmospheric concentration of carbon dioxide is doubled. It is found that a strengthening of the prevailing jet-stream winds causes eastbound flights to significantly shorten and westbound flights to significantly lengthen in all seasons, causing round-trip journey times to increase. Eastbound and westbound crossings in winter become approximately twice as likely to take under 5h 20m and over 7h 00m, respectively. The early stages of this effect perhaps contributed to a well-publicised British Airways flight from New York to London on 8 January 2015, which took a record time of only 5h 16m because of a strong tailwind from an unusually fast jet stream. Even assuming no future growth in aviation, extrapolation of our results to all transatlantic traffic suggests that aircraft may collectively be airborne for an extra 2,000 hours each year, burning an extra 7.2 million gallons of jet fuel at a cost of US 22 million, and emitting an extra 70 million kg of carbon dioxide. These findings provide further evidence of the two-way interaction between aviation and climate change. References Williams PD (2016) Transatlantic flight times and climate change. Environmental Research Letters, in

  14. Climate Change in Voyageurs National Park

    NASA Astrophysics Data System (ADS)

    Seeley, M. W.

    2011-12-01

    Voyageurs National Park was created in 1975. This beautifully forested and lake-dominated landscape shared between Minnesota and Canada has few roads and must be seen by water. The islands and Kabetogama Peninsula are part of the Canadian Shield, some of the oldest exposed rock in the world. Voyageurs National Park boasts many unique landscape and climatic attributes, and like most mid-latitude regions of the northern hemisphere climate change is in play there. The statistical signals of change in the climate record are evident from both temperature and precipitation measurements. The history of these measurements goes back over 100 years. Additionally, studies and measurements of the lakes and general ecosystem already show some consequences of these climate changes. Mean temperature measurements are generally warmer than they once were, most notably in the winter season. Minimum temperatures have changed more than maximum temperatures. Precipitation has trended upward, but has also changed in character with greater frequency and contribution from thunderstorm rainfalls across the park. In addition variability in annual precipitation has become more amplified, as the disparity between wet and dry years has grown wider. Some changes are already in evidence in terms of bird migration patterns, earlier lake ice-out dates, warmer water temperatures with more algal blooms, decline in lake clarity, and somewhat longer frost-free seasons. Climate change will continue to have impacts on Voyageurs National Park, and likely other national parks across the nation. Furthermore scientists may find that the study, presentation, and discussion about climate impacts on our national parks is a particularly engaging way to educate citizens and improve climate literacy as we contemplate what adaptation and mitigation policies should be enacted to preserve the quality of our national parks for future generations.

  15. A framework to assess the impacts of climate change on stream health indicators in Michigan watersheds

    NASA Astrophysics Data System (ADS)

    Woznicki, S. A.; Nejadhashemi, A. P.; Tang, Y.; Wang, L.

    2016-12-01

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a baseline of 1980-2000 to 2020-2040. Flow regime variables representing variability, duration of extreme events, and timing of low and high flow events were sensitive to changes in climate. The stream health indicators were relatively insensitive to changing climate at the watershed scale. However, there were many instances of individual reaches that were projected to experience declines in stream health. Using the probability of stream health decline coupled with the magnitude of the decline, maps of

  16. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    ERIC Educational Resources Information Center

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  17. Protecting Your Forest from Climate Change

    Treesearch

    Steven McNulty

    2009-01-01

    Climate change is already impacting our forests and the situation is ongoing. As a landowner, there are management tools that you can use to help reduce the likelihood that climate change will cause serious harm to your forest.

  18. Global Climate Change and Children's Health.

    PubMed

    2015-11-01

    Rising global temperatures are causing major physical, chemical, and ecological changes in the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as "climate change," are the result of contemporary human activity. Climate change poses threats to human health, safety, and security, and children are uniquely vulnerable to these threats. The effects of climate change on child health include: physical and psychological sequelae of weather disasters; increased heat stress; decreased air quality; altered disease patterns of some climate-sensitive infections; and food, water, and nutrient insecurity in vulnerable regions. The social foundations of children's mental and physical health are threatened by the specter of far-reaching effects of unchecked climate change, including community and global instability, mass migrations, and increased conflict. Given this knowledge, failure to take prompt, substantive action would be an act of injustice to all children. A paradigm shift in production and consumption of energy is both a necessity and an opportunity for major innovation, job creation, and significant, immediate associated health benefits. Pediatricians have a uniquely valuable role to play in the societal response to this global challenge. Copyright © 2015 by the American Academy of Pediatrics.

  19. The interplay between climate change, forests, and disturbances.

    PubMed

    Dale, V H; Joyce, L A; McNulty, S; Neilson, R P

    2000-11-15

    Climate change affects forests both directly and indirectly through disturbances. Disturbances are a natural and integral part of forest ecosystems, and climate change can alter these natural interactions. When disturbances exceed their natural range of variation, the change in forest structure and function may be extreme. Each disturbance affects forests differently. Some disturbances have tight interactions with the species and forest communities which can be disrupted by climate change. Impacts of disturbances and thus of climate change are seen over a board spectrum of spatial and temporal scales. Future observations, research, and tool development are needed to further understand the interactions between climate change and forest disturbances.

  20. Climate change impact on soil erosion in the Mandakini River Basin, North India

    NASA Astrophysics Data System (ADS)

    Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar

    2017-09-01

    Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.

  1. Water access, water scarcity, and climate change.

    PubMed

    Mukheibir, Pierre

    2010-05-01

    This article investigates the approaches of the various discourses operating in the water sector and how they address the issues of scarcity and equitable access under projected climate change impacts. Little synergy exists between the different approaches dealing with these issues. Whilst being a sustainable development and water resources management issue, a holistic view of access, scarcity and the projected impacts of climate change is not prevalent in these discourses. The climate change discourse too does not adequately bridge the gap between these issues. The projected impacts of climate change are likely to exacerbate the problems of scarcity and equitable access unless appropriate adaptation strategies are adopted and resilience is built. The successful delivery of accessible water services under projected climate change impacts therefore lies with an extension of the adaptive water management approach to include equitable access as a key driver.

  2. Simulating Climate Change in Ireland

    NASA Astrophysics Data System (ADS)

    Nolan, P.; Lynch, P.

    2012-04-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.

  3. How Five Master Teachers Teach about Climate Chang

    NASA Astrophysics Data System (ADS)

    Bloch, L.

    2015-12-01

    The AGU Position Statement, "Human-Induced Climate Change Requires Urgent Action," calls on scientists to "[work] with stakeholders to identify relevant information, and [to convey] understanding clearly and accurately, both to decision makers and to the general public". Everyday, K-12 teachers communicate with an important segment of the general public, and they represent important stakeholders with unique needs. The terms 'global warming', 'greenhouse effect', and 'climate change' appear nowhere in the 1996 National Science Education Standards, but under the Next Generation Science Standards, millions of teachers- most of whom have little to no experience teaching about climate change- will be required to cover the topic. This presentation discusses research conducted with five veteran public school teachers, each of whom has been teaching about climate change for many years. The group comprises three high school teachers, a middle school teacher, and an elementary school teacher. The study examined: 1) What these teachers teach about climate change; 2) How they teach about climate change; 3) What resources they use in teaching and learning about climate change; and 4) How they think the scientific community can support teachers in their efforts to teach about climate change. The teachers varied in their teaching practices and in their conceptions of 'climate change', but they all said that the academic community can support climate change education by developing locally relevant educational resources. Scientists working with K-12 teachers can build on the work of these master teachers, and attendees can access detailed descriptions of all of the lessons and the associated learning materials.

  4. Regional-Scale Climate Change: Observations and Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, andmore » we conducted studies of changes in phonological indicators based on various climatic thresholds.« less

  5. Perception, attitude and behavior in relation to climate change: A survey among CDC health professionals in Shanxi province, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Junni, E-mail: junxinni@163.com; Hansen, Alana, E-mail: alana.hansen@adelaide.edu.au; Zhang, Ying, E-mail: ying.zhang@sydney.edu.au

    Background: A better understanding of public perceptions, attitude and behavior in relation to climate change will provide an important foundation for government's policy-making, service provider's guideline development and the engagement of local communities. The purpose of this study was to assess the perception towards climate change, behavior change, mitigation and adaptation measures issued by the central government among the health professionals in the Centres for Disease Control and Prevention (CDC) in China. Methods: In 2013, a cross-sectional questionnaire survey was undertaken among 314 CDC health professionals in various levels of CDC in Shanxi Province, China. Descriptive analyses were performed. Results:more » More than two thirds of the respondents believed that climate change has happened at both global and local levels, and climate change would lead to adverse impacts to human beings. Most respondents (74.8%) indicated the emission of greenhouse gases was the cause of climate change, however there was a lack of knowledge about greenhouse gases and their sources. Media was the main source from which respondents obtained the information about climate change. A majority of respondents showed that they were willing to change behavior, but their actions were limited. In terms of mitigation and adaptation measures issued by the Chinese Government, respondents' perception showed inconsistency between strategies and relevant actions. Moreover, although the majority of respondents believed some strategies and measures were extremely important to address climate change, they were still concerned about economic development, energy security, and local environmental protection. Conclusion: There are gaps between perceptions and actions towards climate change among these health professionals. Further efforts need to be made to raise the awareness of climate change among health professionals, and to promote relevant actions to address climate change in the

  6. Coastal vulnerability: climate change and natural hazards perspectives

    NASA Astrophysics Data System (ADS)

    Romieu, E.; Vinchon, C.

    2009-04-01

    erosion (i.e. its characteristics that create potential harm), and integrate them in a risk assessment. Global change is considered by modifications of hazard, anthropogenic pressure and exposition, in order to point out possible modification of vulnerabilities. 3) Learning from both perspectives Coastal vulnerability in its "end in itself" and climate change dimension is a widespread tool for decision makers but it can be inadequate when vulnerability is a component of risk. This is mainly due to the consideration of climate change as a "hazard", so that coastal vulnerability is seen as the possible adverse impacts of climate change. As a matter of fact, this concept is clearly well considered by managers, who feel deeply concerned by climate change. However, coastal risk managers would gain in considering climate change more like a driver able to modify existing hazards than like the pressure in itself. Using this concept could lead to new perspectives of coastal risk mitigation for decision makers (social vulnerability, risk perception…), learning from other disciplines and sciences thanks to research projects such as MOVE (FP7). Acknowledgements The authors would like to thank the BRGM coastal team for rich discussions and fruitful collaborations in coastal vulnerability studies, more specially Déborah Idier for animating the Vulsaco project and Manuel Garcin for his work on tsunamis in Sri Lanka. They are also grateful to the MISEEVA and MOVE teams, which are doing some great trans-disciplinary work. References Birkmann, J., 2006. Measuring vulnerability to Natural Hazards : towards disaster resilient societies. United Nations University Press. Boruff, B. J., Emrich, C., Cutter, S. L., 2005. Erosion hazard vulnerability of US coastal counties. Journal of Coastal Research. 21, 932-942. Douglas, J., 2007. Physical vulnerability modelling in natural hazard risk assessment. Natural Hazards and Earth System Sciences. 7, 283-288. IPCC, 2001. Climate change 2001

  7. Evaluation of climatic changes in South-Asia

    NASA Astrophysics Data System (ADS)

    Kjellstrom, Erik; Rana, Arun; Grigory, Nikulin; Renate, Wilcke; Hansson, Ulf; Kolax, Michael

    2016-04-01

    Literature has sufficient evidences of climate change impact all over the world and its impact on various sectors. In light of new advancements made in climate modeling, availability of several climate downscaling approaches, the more robust bias correction methods with varying complexities and strengths, in the present study we performed a systematic evaluation of climate change impact over South-Asia region. We have used different Regional Climate Models (RCMs) (from CORDEX domain), (Global Climate Models GCMs) and gridded observations for the study area to evaluate the models in historical/control period (1980-2010) and changes in future period (2010-2099). Firstly, GCMs and RCMs are evaluated against the Gridded observational datasets in the area using precipitation and temperature as indicative variables. Observational dataset are also evaluated against the reliable set of observational dataset, as pointed in literature. Bias, Correlation, and changes (among other statistical measures) are calculated for the entire region and both the variables. Eventually, the region was sub-divided into various smaller domains based on homogenous precipitation zones to evaluate the average changes over time period. Spatial and temporal changes for the region are then finally calculated to evaluate the future changes in the region. Future changes are calculated for 2 Representative Concentration Pathways (RCPs), the middle emission (RCP4.5) and high emission (RCP8.5) and for both climatic variables, precipitation and temperature. Lastly, Evaluation of Extremes is performed based on precipitation and temperature based indices for whole region in future dataset. Results have indicated that the whole study region is under extreme stress in future climate scenarios for both climatic variables i.e. precipitation and temperature. Precipitation variability is dependent on the location in the area leading to droughts and floods in various regions in future. Temperature is hinting

  8. Undergraduate Students As Effective Climate Change Communicators

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Joseph, J.; Mullendore, G. L.

    2014-12-01

    The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. The program is in its third year. More than 75 students participated in a guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Three Colleges were involved in the program: Engineering, Education, and Science.

  9. Impacts of Climate Change on Ecosystem Services

    USDA-ARS?s Scientific Manuscript database

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This techn...

  10. Climate Change Made Simple

    ERIC Educational Resources Information Center

    Shallcross, Dudley E.; Harrison, Tim G.

    2007-01-01

    The newly revised specifications for GCSE science involve greater consideration of climate change. This topic appears in either the chemistry or biology section, depending on the examination board, and is a good example of "How Science Works." It is therefore timely that students are given an opportunity to conduct some simple climate modelling.…

  11. The 7 Aarhus Statements on Climate Change

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen; Svenning, Jens-Christian; Olesen, Jørgen E.; Besenbacher, Flemming; Læssøe, Jeppe; Seidenkrantz, Marit-Solveig; Lange, Lene

    2009-03-01

    More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5-7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference. The statements were also communicated to the Danish Government as well as to the press. This article is the product of the collective subsequent work of the seven theme responsibles and is a presentation of each theme statement in detail, emphasizing the current state of knowledge and how it may be used to minimize the expected negative impacts of future climate change.

  12. The climate crisis: An introductory guide to climate change

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.

    2011-06-01

    Human-induced climate change, sometimes called “global warming,” has, unfortunately, become a “hot” topic, embroiled in controversy, misinformation, and claims and counterclaims. It should not be this way, because there are many scientific facts that provide solid information on which to base policy. There is a very strong observational, theoretical, and modeling base in physical science that underpins current understanding of what has happened to Earth's climate and why and what the prospects are for the future under certain assumptions. Moreover, these changes have impacts, which are apt to grow, on the environment and human society. To avoid or reduce these impacts and the economic and human effects of undesirable future climate change requires actions that are strongly opposed by those with vested interests in the status quo, some of whom have funded misinformation campaigns that have successfully confused the public and some politicians, leading to paralysis in political action. Without mitigation of climate change, one would suppose that at least society would plan sensibly for the changes already happening and projected, but such future adaptation plans are also largely in limbo. The implication is that we will suffer the consequences. All of these aspects are addressed in this informative and attractive book, which is written for a fairly general but technically informed audience. The book is strongly based upon the 2007 Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) and therefore has a solid scientific basis. Many figures, graphs, and maps come from the three IPCC working group reports, although the captions often do not explain the detail shown. Given that the IPCC reports totaled nearly 3000 pages, to distill the complex material down to 249 pages is no mean task, and the authors have succeeded quite well.

  13. Undocumented migration in response to climate change

    PubMed Central

    Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.

    2016-01-01

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986–1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification. PMID:27570840

  14. Undocumented migration in response to climate change.

    PubMed

    Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M; Runfola, Daniel M

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986-1999. We employ two measures of climate change, the warm spell duration index ( WSDI ) and the precipitation during extremely wet days ( R99PTOT ). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.

  15. Ecological response to global climatic change

    USGS Publications Warehouse

    Malanson, G.P.; Butler, D.R.; Walsh, S. J.; Janelle, Donald G.; Warf, Barney; Hansen, Kathy

    2004-01-01

    Climate change and ecological change go hand in hand. Because we value our ecological environment, any change has the potential to be a problem. Geographers have been drawn to this challenge, and have been successful in addressing it, because the primary ecological response to climate changes in the past — the waxing and waning of the great ice sheets over the past 2 million years – was the changing geographic range of the biota. Plants and animals changed their location. Geographers have been deeply involved in documenting the changing biota of the past, and today we are called upon to help assess the possible responses to ongoing and future climatic change and, thus, their impacts. Assessing the potential responses is important for policy makers to judge the outcomes of action or inaction and also sets the stage for preparation for and mitigation of change.

  16. America's Climate Choices: Adapting to the Impacts of Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Wilbanks, T.; Yohe, G.; Mengelt, C.; Casola, J.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study assessed, this study assessed how the nation can begin to adapt to the impacts of climate change. Much of the nation’s experience to date in managing and protecting its people, resources, and infrastructure is based on the historic record of climate variability during a period of relatively stable climate. Adaptation to climate change calls for a new paradigm - one that considers a range of possible future climate conditions and associated impacts. The Adapting to the Impacts of Climate Change report calls for action at all levels of government, NGOs, and the private sector to assess vulnerabilities to the impacts of climate change and identify options for adaptation. Current adaptation efforts are hampered by a lack of solid information about the benefits, costs, and effectiveness of various adaptation options, by uncertainty about future climate change impacts at a scale necessary for decision-making, and by a lack of coordination. The report outlines a risk management framework that can be applied to assess vulnerabilities, compare and evaluate potential adaptation options, recognizing that decision makers across the country are likely to pursue a diverse set of adaptation measures. A major research effort is needed to improve knowledge about current and future vulnerabilities, explore new adaptation options, and better inform adaptation decisions. Therefore, the report also emphasizes the need to continually re-assess adaptation decisions as the experience and knowledge regarding effective adaptation evolves. A national adaptation strategy is needed in which the federal government would support and enhance adaptation activities undertaken by state, local, tribal, and private entities; identify and modify

  17. Health Impacts of Climate Change in the Solomon Islands: An Assessment and Adaptation Action Plan

    PubMed Central

    Spickett, Jeffery T; Katscherian, Dianne

    2014-01-01

    The Pacific island countries are particularly vulnerable to the environmental changes wrought by global climate change such as sea level rise, more frequent and intense extreme weather events and increasing temperatures. The potential biophysical changes likely to affect these countries have been identified and it is important that consideration be given to the implications of these changes on the health of their citizens. The potential health impacts of climatic changes on the population of the Solomon Islands were assessed through the use of a Health Impact Assessment framework. The process used a collaborative and consultative approach with local experts to identify the impacts to health that could arise from local environmental changes, considered the risks associated with these and proposed appropriate potential adaptive responses. Participants included knowledgeable representatives from the biophysical, socio-economic, infrastructure, environmental diseases and food sectors. The risk assessments considered both the likelihood and consequences of the health impacts occurring using a qualitative process. To mitigate the adverse effects of the health impacts, an extensive range of potential adaptation strategies were developed. The overall process provided an approach that could be used for further assessments as well as an extensive range of responses which could be used by sectors and to assist future decision making associated with the Solomon Islands’ responses to climate change. PMID:25168977

  18. Strategic Program for Biodiversity and Water Resource Management and Climate Change Adaptation in Pakistan

    NASA Astrophysics Data System (ADS)

    Sher, Hassan; Aldosari, Ali

    2014-05-01

    Population pressure, climate change and resulting extreme weather scenarios, armed con?ict and economic pressure have put the situation of Pakistan's biodiversity at risk. Melting glaciers, deforestation, erosion, landslides and depletion of agricultural areas are aggravating the regulation of water ?ow in Pakistan. In Pakistan agro-biodiversity is central to human survival and play vital role in the economy of the country. It contributes 21% to the GDP, employs 45% of the labor force and contributes 71% of the export earnings. Agro- biodiversity in Pakistan is greatly affected by short term climate variability and could be harmed signi?cantly by long-term climate change. As the duration of crop growth cycle is related to temperature, an increase in temperature will speed up crop growth and shorten the duration between sowing and harvesting. This shortening could have an adverse effect on productivity of crops. The present assessment also revealed that hydrological cycle is also likely to be in?uenced by global warming. Since the agricultural crops are heavily dependent on the water, and water resources are inextricably linked with climate; therefore, the projected climate change has serious implications for water resources of the country. The freshwater resources, in Pakistan, are based on snow- and glacier-melt and monsoon rains, both being highly sensitive to climate change. The country speci?c current information strongly suggests that: decrease in glacier volume and snow cover leading to alterations in the seasonal ?ow pattern of Indus River System; increased annual ?ows for a few decades followed by decline in ?ows in subsequent years; increase in the formation and burst of glacial lakes; higher frequency and intensity of extreme climate events coupled with irregular monsoon rains causing frequent ?oods and droughts; and greater demand of water due to higher evapotranspiration rates at elevated temperatures. These trends will have large impact on the spatial

  19. Climate Change: A Multidisciplinary Approach, Second Edition

    NASA Astrophysics Data System (ADS)

    Kirk-Davidoff, Daniel

    2008-07-01

    William Burroughs, who died in November 2007, was a wonderfully clear and evocative writer. Chapter 3 of his last work, Climate Change: A Multidisciplinary Approach, begins with the loveliest four-paragraph description of the general circulation of the Earth's atmosphere I have ever encountered. His writing also shines in his descriptions of the climate record of the past few thousand years, and in his introduction to the measurement of climate change. Unfortunately, the book is marred by inconsistencies in its treatment of climate dynamics, as well as by a number of idiosyncratic choices of emphasis that detract from the book's quality as a general introduction to the science of climate change.

  20. U.S. Funding is insufficient to address the human health impacts of and public health responses to climate variability and change.

    PubMed

    Ebi, Kristie L; Balbus, John; Kinney, Patrick L; Lipp, Erin; Mills, David; O'Neill, Marie S; Wilson, Mark L

    2009-06-01

    The need to identify and try to prevent adverse health impacts of climate change has risen to the forefront of climate change policy debates and become a top priority of the public health community. Given the observed and projected changes in climate and weather patterns, their current and anticipated health impacts, and the significant degree of regulatory discussion underway in the U.S. government, it is reasonable to determine the extent of federal investment in research to understand, avoid, prepare for, and respond to the human health impacts of climate change in the United States. In this commentary we summarize the health risks of climate change in the United States and examine the extent of federal funding devoted to understanding, avoiding, preparing for, and responding to the human health risks of climate change. Future climate change is projected to exacerbate various current health problems, including heat-related mortality, diarrheal diseases, and diseases associated with exposure to ozone and aeroallergens. Demographic trends and geophysical and socioeconomic factors could increase overall vulnerability. Despite these risks, extramural federal funding of climate change and health research is estimated to be < $3 million per year. Given the real risks that climate change poses for U.S. populations, the National Institutes of Health, Centers for Disease Control and Prevention, U.S. Environmental Protection Agency, and other agencies need to have robust intramural and extramural programs, with funding of > $200 million annually. Oversight of the size and priorities of these programs could be provided by a standing committee within the National Academy of Sciences.