Science.gov

Sample records for adverse myocardial remodeling

  1. Cardiac restricted overexpression of membrane type-1 matrix metalloproteinase causes adverse myocardial remodeling following myocardial infarction.

    PubMed

    Spinale, Francis G; Mukherjee, Rupak; Zavadzkas, Juozas A; Koval, Christine N; Bouges, Shenikqua; Stroud, Robert E; Dobrucki, Lawrence W; Sinusas, Albert J

    2010-09-24

    The membrane type-1 matrix metalloproteinase (MT1-MMP) is a unique member of the MMP family, but induction patterns and consequences of MT1-MMP overexpression (MT1-MMPexp), in a left ventricular (LV) remodeling process such as myocardial infarction (MI), have not been explored. MT1-MMP promoter activity (murine luciferase reporter) increased 20-fold at 3 days and 50-fold at 14 days post-MI. MI was then induced in mice with cardiac restricted MT1-MMPexp (n = 58) and wild type (WT, n = 60). Post-MI survival was reduced (67% versus 46%, p < 0.05), and LV ejection fraction was lower in the post-MI MT1-MMPexp mice compared with WT (41 ± 2 versus 32 ± 2%,p < 0.05). In the post-MI MT1-MMPexp mice, LV myocardial MMP activity, as assessed by radiotracer uptake, and MT1-MMP-specific proteolytic activity using a specific fluorogenic assay were both increased by 2-fold. LV collagen content was increased by nearly 2-fold in the post-MI MT1-MMPexp compared with WT. Using a validated fluorogenic construct, it was discovered that MT1-MMP proteolytically processed the pro-fibrotic molecule, latency-associated transforming growth factor-1 binding protein (LTBP-1), and MT1-MMP-specific LTBP-1 proteolytic activity was increased by 4-fold in the post-MI MT1-MMPexp group. Early and persistent MT1-MMP promoter activity occurred post-MI, and increased myocardial MT1-MMP levels resulted in poor survival, worsening of LV function, and significant fibrosis. A molecular mechanism for the adverse LV matrix remodeling with MT1-MMP induction is increased processing of pro-fibrotic signaling molecules. Thus, a proteolytically diverse portfolio exists for MT1-MMP within the myocardium and likely plays a mechanistic role in adverse LV remodeling.

  2. The Emerging Prominence of the Cardiac Mast Cell as a Potent Mediator of Adverse Myocardial Remodeling

    PubMed Central

    Janicki, Joseph S.; Brower, Gregory L.; Levick, Scott P.

    2015-01-01

    Cardiac mast cells store and release a variety of biologically active mediators, several of which have been implicated in the activation of matrix metalloproteinases in the volume-overloaded heart, while others are involved in the fibrotic process in pressure-overloaded hearts. Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension, myocardial infarction, and chronic cardiac volume overload. Also, there is evolving evidence implicating the cardiac mast cell as having a major role in the adverse remodeling underlying these cardiovascular disorders. Thus, the cardiac mast cell is the focus of this chapter that begins with a historical background, followed by sections on methods for their isolation and characterization, endogenous secretagogues, phenotype, and ability of estrogen to alter their phenotype so as to provide cardioprotection. Finally the role of mast cells in myocardial remodeling secondary to a sustained cardiac volume overload, hypertension, and ischemic injury and future research directions are discussed. PMID:25388248

  3. Residual Myocardial Iron Following Intramyocardial Hemorrhage During the Convalescent Phase of Reperfused ST-Segment–Elevation Myocardial Infarction and Adverse Left Ventricular Remodeling

    PubMed Central

    Bulluck, Heerajnarain; Rosmini, Stefania; Abdel-Gadir, Amna; White, Steven K.; Bhuva, Anish N.; Treibel, Thomas A.; Fontana, Marianna; Ramlall, Manish; Hamarneh, Ashraf; Sirker, Alex; Herrey, Anna S.; Manisty, Charlotte; Yellon, Derek M.; Kellman, Peter; Moon, James C.

    2016-01-01

    Background— The presence of intramyocardial hemorrhage (IMH) in ST-segment–elevation myocardial infarction patients reperfused by primary percutaneous coronary intervention has been associated with residual myocardial iron at follow-up, and its impact on adverse left ventricular (LV) remodeling is incompletely understood and is investigated here. Methods and Results— Forty-eight ST-segment–elevation myocardial infarction patients underwent cardiovascular magnetic resonance at 4±2 days post primary percutaneous coronary intervention, of whom 40 had a follow-up scan at 5±2 months. Native T1, T2, and T2* maps were acquired. Eight out of 40 (20%) patients developed adverse LV remodeling. A subset of 28 patients had matching T2* maps, of which 15/28 patients (54%) had IMH. Eighteen of 28 (64%) patients had microvascular obstruction on the acute scan, of whom 15/18 (83%) patients had microvascular obstruction with IMH. On the follow-up scan, 13/15 patients (87%) had evidence of residual iron within the infarct zone. Patients with residual iron had higher T2 in the infarct zone surrounding the residual iron when compared with those without. In patients with adverse LV remodeling, T2 in the infarct zone surrounding the residual iron was also higher than in those without (60 [54–64] ms versus 53 [51–56] ms; P=0.025). Acute myocardial infarct size, extent of microvascular obstruction, and IMH correlated with the change in LV end-diastolic volume (Pearson’s rho of 0.64, 0.59, and 0.66, respectively; P=0.18 and 0.62, respectively, for correlation coefficient comparison) and performed equally well on receiver operating characteristic curve for predicting adverse LV remodeling (area under the curve: 0.99, 0.94, and 0.95, respectively; P=0.19 for receiver operating characteristic curve comparison). Conclusions— The majority of ST-segment–elevation myocardial infarction patients with IMH had residual myocardial iron at follow-up. This was associated with

  4. Circulating Endothelial Cells and Endothelial Function predict Major Adverse Cardiac Events and Early Adverse Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Magdy, Abdel Hamid; Bakhoum, Sameh; Sharaf, Yasser; Sabry, Dina; El-Gengehe, Ahmed T; Abdel-Latif, Ahmed

    2016-01-01

    Endothelial progenitor cells (EPCs) and circulating endothelial cells (CECs) are mobilized from the bone marrow and increase in the early phase after ST-elevation myocardial infarction (STEMI). The aim of this study was to assess the prognostic significance of CECs and indices of endothelial dysfunction in patients with STEMI. In 78 patients with acute STEMI, characterization of CD34+/VEGFR2+ CECs, and indices of endothelial damage/dysfunction such as brachial artery flow mediated dilatation (FMD) were determined. Blood samples for CECs assessment and quantification were obtained within 24 hours of admission and FMD was assessed during the index hospitalization. At 30 days follow up, the primary composite end point of major cardiac adverse events (MACE) consisting of all-cause mortality, recurrent non-fatal MI, or heart failure and the secondary endpoint of early adverse left ventricular (LV) remodeling were analyzed. The 17 patients (22%) who developed MACE had significantly higher CEC level (P = 0.004), vWF level (P =0.028), and significantly lower FMD (P = 0.006) compared to the remaining patients. Logistic regression analysis showed that CECs level and LV ejection fraction were independent predictors of MACE. The areas under the receiver operating characteristic curves (ROC) for CEC level, FMD, and the logistic model with both markers were 0.73, 0.75, and 0.82 respectively for prediction of the MACE. The 16 patients who developed the secondary endpoint had significantly higher CEC level compared to remaining patients (p =0.038). In conclusion, increased circulating endothelial cells and endothelial dysfunction predicted the occurrence of major adverse cardiac events and adverse cardiac remodeling in patients with STEMI. PMID:26864952

  5. Sustained myocardial production of stromal cell-derived factor-1α was associated with left ventricular adverse remodeling in patients with myocardial infarction.

    PubMed

    Uematsu, Manabu; Yoshizaki, Toru; Shimizu, Takuya; Obata, Jun-ei; Nakamura, Takamitsu; Fujioka, Daisuke; Watanabe, Kazuhiro; Watanabe, Yosuke; Kugiyama, Kiyotaka

    2015-11-15

    The role of stromal cell-derived factor-1α (SDF-1α) expressed in infarcted myocardium is unknown in humans. We examined whether SDF-1α produced in an infarcted myocardial lesion may play a role in left ventricle (LV) remodeling and dysfunction in patients with acute myocardial infarction (AMI). We measured SDF-1α levels in plasma obtained from aortic root (AO) and anterior interventricular vein (AIV) in the early phase (2 wk after MI) and the chronic phase (6 mo after MI) in 80 patients with anterior MI. An increment in SDF-1α level from AO to AIV, reflecting SDF-1α release from infarcted myocardium, was more frequent in patients with MI in the early phase of MI [n = 52 (65%), P = 0.03] but not in the chronic phase of MI [n = 46 (58%), P = 0.11] compared with that in control patients [n = 6/17 (35%)]. On linear regression analysis, the transmyocardial gradient in SDF-1α level in the chronic phase of MI was correlated with percentage changes in LV end-diastolic volume index (r = 0.39, P < 0.001), LV end-systolic volume index (r = 0.38, P < 0.001), and LV ejection fraction (r = -0.26, P = 0.01) 6 mo after AMI. By contrast, the transmyocardial gradient of SDF-1α in the early phase of MI had no significant correlations. In conclusion, the production of SDF-1α in infarcted myocardium in the chronic phase of MI was associated with LV adverse remodeling and progressive dysfunction in AMI survivors.

  6. Angiotensin receptor blockade and angiotensin-converting-enzyme inhibition limit adverse remodeling of infarct zone collagens and global diastolic dysfunction during healing after reperfused ST-elevation myocardial infarction.

    PubMed

    Jugdutt, Bodh I; Idikio, Halliday; Uwiera, Richard R E

    2007-09-01

    To determine whether therapy with the angiotensin II type 1 receptor blocker (ARB) candesartan and the comparator angiotensin-converting-enzyme inhibitor (ACEI) enalapril during healing after reperfused ST-elevation myocardial infarction (RSTEMI) limit adverse remodeling of infarct zone (IZ) collagens and left ventricular (LV) diastolic dysfunction, we randomized 24 dogs surviving anterior RSTEMI (90-min coronary occlusion) to placebo, candesartan, and enalapril therapy between day 2 and 42. Six other dogs were sham. We measured regional IZ and non-infarct zone (NIZ) collagens (hydroxyproline; types I/III; cross-linking), transforming growth factor-beta (TGF-beta) and topography at 6 weeks, and hemodynamics, LV diastolic and systolic function, and remodeling over 6 weeks. Compared to sham, placebo-RSTEMI differentially altered regional collagens, with more pronounced increase in TGF-beta, hydroxyproline, and type I, insoluble, and cross-linked collagens in the IZ than NIZ, and increased IZ soluble and type III collagens at 6 weeks, and induced persistent LV filling pressure elevation, diastolic and systolic dysfunction, and LV remodeling over 6 weeks. Compared to placebo-RSTEMI, candesartan and enalapril limited adverse regional collagen remodeling, with normalization of type III, soluble and insoluble collagens and decrease in pyridinoline cross-linking in the IZ at 6 weeks, and attenuation of LV filling pressure, diastolic dysfunction, and remodeling over 6 weeks. The results suggest that candesartan and enalapril during healing after RSTEMI prevent rather than worsen adverse remodeling of IZ collagens and LV diastolic dysfunction, supporting the clinical use of ARBs and ACEIs during subacute RSTEMI.

  7. IL-17A promotes ventricular remodeling after myocardial infarction.

    PubMed

    Zhou, Su-Feng; Yuan, Jing; Liao, Meng-Yang; Xia, Ni; Tang, Ting-Ting; Li, Jing-Jing; Jiao, Jiao; Dong, Wen-Yong; Nie, Shao-Fang; Zhu, Zheng-Feng; Zhang, Wen-Cai; Lv, Bing-Jie; Xiao, Hong; Wang, Qing; Tu, Xin; Liao, Yu-Hua; Shi, Guo-Ping; Cheng, Xiang

    2014-10-01

    Inflammatory responses play an important role in the pathogenesis of adverse ventricular remodeling after myocardial infarction (MI). We previously demonstrated that interleukin (IL)-17A plays a pathogenic role in myocardial ischemia/reperfusion injury and viral myocarditis. However, the role of IL-17A in post-MI remodeling and the related mechanisms have not been fully elucidated. Acute MI was induced by permanent ligation of the left anterior descending coronary artery in C57BL/6 mice. Repletion of IL-17A significantly aggravated both early- and late-phase ventricular remodeling, as demonstrated by increased infarct size, deteriorated cardiac function, increased myocardial fibrosis, and cardiomyocyte apoptosis. By contrast, genetic IL-17A deficiency had the opposite effect. Additional studies in vitro indicated that IL-17A induces neonatal cardiomyocyte (from C57BL/6 mice) apoptosis through the activation of p38, p53 phosphorylation, and Bax redistribution. These data demonstrate that IL-17A induces cardiomyocyte apoptosis through the p38 mitogen-activated protein kinase (MAPK)-p53-Bax signaling pathway and promotes both early- and late-phase post-MI ventricular remodeling. IL-17A might be an important target in preventing heart failure after MI. Key message: We demonstrated that IL-17A plays a pathogenic role both in the early and late stages of post-MI remodeling. IL-17A induces murine cardiomyocyte apoptosis. IL-17A induces murine cardiomyocyte apoptosis through the p38 MAPK-p53-Bax signaling pathway.

  8. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction

    PubMed Central

    Tejada, Thor; Tan, Lin; Torres, Rebecca A.; Calvert, John W.; Lambert, Jonathan P.; Zaidi, Madiha; Husain, Murtaza; Berce, Maria D.; Naib, Hussain; Pejler, Gunnar; Abrink, Magnus; Graham, Robert M.; Lefer, David J.; Naqvi, Nawazish; Husain, Ahsan

    2016-01-01

    Heart disease is a leading cause of death in adults. Here, we show that a few days after coronary artery ligation and reperfusion, the ischemia-injured heart elaborates the cardioprotective polypeptide, insulin-like growth factor-1 (IGF-1), which activates IGF-1 receptor prosurvival signaling and improves cardiac left ventricular systolic function. However, this signaling is antagonized by the chymase, mouse mast cell protease 4 (MMCP-4), which degrades IGF-1. We found that deletion of the gene encoding MMCP-4 (Mcpt4), markedly reduced late, but not early, infarct size by suppressing IGF-1 degradation and, consequently, diminished cardiac dysfunction and adverse structural remodeling. Our findings represent the first demonstration to our knowledge of tissue IGF-1 regulation through proteolytic degradation and suggest that chymase inhibition may be a viable therapeutic approach to enhance late cardioprotection in postischemic heart disease. PMID:27274047

  9. Mitochondria, myocardial remodeling, and cardiovascular disease.

    PubMed

    Verdejo, Hugo E; del Campo, Andrea; Troncoso, Rodrigo; Gutierrez, Tomás; Toro, Barbra; Quiroga, Clara; Pedrozo, Zully; Munoz, Juan Pablo; Garcia, Lorena; Castro, Pablo F; Lavandero, Sergio

    2012-12-01

    The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca(2+) buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca(2+) handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease.

  10. Mitochondria, myocardial remodeling, and cardiovascular disease.

    PubMed

    Verdejo, Hugo E; del Campo, Andrea; Troncoso, Rodrigo; Gutierrez, Tomás; Toro, Barbra; Quiroga, Clara; Pedrozo, Zully; Munoz, Juan Pablo; Garcia, Lorena; Castro, Pablo F; Lavandero, Sergio

    2012-12-01

    The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca(2+) buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca(2+) handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease. PMID:22972531

  11. PARP inhibition and postinfarction myocardial remodeling.

    PubMed

    Halmosi, Robert; Deres, Laszlo; Gal, Roland; Eros, Krisztian; Sumegi, Balazs; Toth, Kalman

    2016-08-01

    Coronary artery disease accounts for the greatest proportion of cardiovascular diseases therefore it is the major cause of death worldwide. Its therapeutic importance is indicated by still high mortality of myocardial infarction, which is one of the most severe forms of CVDs. Moreover, the risk of developing heart failure is very high among survivors. Heart failure is accompanied by high morbidity and mortality rate, therefore this topic is in the focus of researchers' interest. After a myocardial infarct, at first ventricular hypertrophy develops as a compensatory mechanism to decrease wall stress but finally leads to left ventricular dilation. This phenomenon is termed as myocardial remodeling. The main characteristics of underlying mechanisms involve cardiomyocyte growth, vessel changes and increased collagen production, in all of which several mechanical stress induced neurohumoral agents, oxidative stress and signal transduction pathways are involved. The long term activation of these processes ultimately leads to left ventricular dilation and heart failure with decreased systolic function. Oxidative stress causes DNA breaks producing the activation of nuclear poly(ADP-ribose) polymerase-1 (PARP-1) enzyme that leads to energy depletion and unfavorable modulation of different kinase cascades (Akt-1/GSK-3β, MAPKs, various PKC isoforms) and thus it promotes the development of heart failure. Therefore inhibition of PARP enzyme could offer a promising new therapeutical approach to prevent the onset of heart failure among postinfarction patients. The purpose of this review is to give a comprehensive summary about the most significant experimental results and mechanisms in postinfarction remodeling. PMID:27392900

  12. Multimodality Imaging of Myocardial Injury and Remodeling

    PubMed Central

    Kramer, Christopher M.; Sinusas, Albert J.; Sosnovik, David E.; French, Brent A.; Bengel, Frank M.

    2011-01-01

    Advances in cardiovascular molecular imaging have come at a rapid pace over the last several years. Multiple approaches have been taken to better understand the structural, molecular, and cellular events that underlie the progression from myocardial injury to myocardial infarction (MI) and, ultimately, to congestive heart failure. Multimodality molecular imaging including SPECT, PET, cardiac MRI, and optical approaches is offering new insights into the pathophysiology of MI and left ventricular remodeling in small-animal models. Targets that are being probed include, among others, angiotensin receptors, matrix metalloproteinases, integrins, apoptosis, macrophages, and sympathetic innervation. It is only a matter of time before these advances are applied in the clinical setting to improve post-MI prognostication and identify appropriate therapies in patients to prevent the onset of congestive heart failure. PMID:20395347

  13. Myocardial Tissue Remodeling in Adolescent Obesity

    PubMed Central

    Shah, Ravi V.; Abbasi, Siddique A.; Neilan, Tomas G.; Hulten, Edward; Coelho‐Filho, Otavio; Hoppin, Alison; Levitsky, Lynne; de Ferranti, Sarah; Rhodes, Erinn T.; Traum, Avram; Goodman, Elizabeth; Feng, Henry; Heydari, Bobak; Harris, William S.; Hoefner, Daniel M.; McConnell, Joseph P.; Seethamraju, Ravi; Rickers, Carsten; Kwong, Raymond Y.; Jerosch‐Herold, Michael

    2013-01-01

    Background Childhood obesity is a significant risk factor for cardiovascular disease in adulthood. Although ventricular remodeling has been reported in obese youth, early tissue‐level markers within the myocardium that precede organ‐level alterations have not been described. Methods and Results We studied 21 obese adolescents (mean age, 17.7±2.6 years; mean body mass index [BMI], 41.9±9.5 kg/m2, including 11 patients with type 2 diabetes [T2D]) and 12 healthy volunteers (age, 15.1±4.5 years; BMI, 20.1±3.5 kg/m2) using biomarkers of cardiometabolic risk and cardiac magnetic resonance imaging (CMR) to phenotype cardiac structure, function, and interstitial matrix remodeling by standard techniques. Although left ventricular ejection fraction and left atrial volumes were similar in healthy volunteers and obese patients (and within normal body size‐adjusted limits), interstitial matrix expansion by CMR extracellular volume fraction (ECV) was significantly different between healthy volunteers (median, 0.264; interquartile range [IQR], 0.253 to 0.271), obese adolescents without T2D (median, 0.328; IQR, 0.278 to 0.345), and obese adolescents with T2D (median, 0.376; IQR, 0.336 to 0.407; P=0.0001). ECV was associated with BMI for the entire population (r=0.58, P<0.001) and with high‐sensitivity C‐reactive protein (r=0.47, P<0.05), serum triglycerides (r=0.51, P<0.05), and hemoglobin A1c (r=0.76, P<0.0001) in the obese stratum. Conclusions Obese adolescents (particularly those with T2D) have subclinical alterations in myocardial tissue architecture associated with inflammation and insulin resistance. These alterations precede significant left ventricular hypertrophy or decreased cardiac function. PMID:23963758

  14. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling.

  15. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling. PMID:17386182

  16. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism.

    PubMed

    Joki, Yusuke; Ohashi, Koji; Yuasa, Daisuke; Shibata, Rei; Ito, Masanori; Matsuo, Kazuhiro; Kambara, Takahiro; Uemura, Yusuke; Hayakawa, Satoko; Hiramatsu-Ito, Mizuho; Kanemura, Noriyoshi; Ogawa, Hayato; Daida, Hiroyuki; Murohara, Toyoaki; Ouchi, Noriyuki

    2015-03-27

    Ischemic heart disease is one of the leading causes of death. Fibroblast growth factor 21 (FGF21) is a circulating factor with an anti-diabetic property. Skeletal muscle is an important source of FGF21 production. Here, we investigated whether skeletal muscle-derived FGF21 modulates cardiac remodeling in a murine model of myocardial infarction. Myocardial infarction was produced in C57BL/6J wild-type (WT) mice by the permanent ligation of the left anterior descending coronary artery (LAD). Adenoviral vectors expressing FGF21 (Ad-FGF21) or control β-galactosidase were intramuscularly injected into mice at 3 days before permanent LAD ligation. Intramuscular injection of Ad-FGF21 increased plasma FGF21 levels in WT mice compared with control. Treatment of WT mice with Ad-FGF21 led to improvement of left ventricular systolic dysfunction and dilatation at 2 weeks after LAD ligation. Ad-FGF21 administration to WT mice also led to enhancement of capillary density in the infarct border zone, and reduction of myocyte apoptosis in the remote zone, which were accompanied by decreased expression of pro-inflammatory cytokines. Furthermore, treatment of WT mice with Ad-FGF21 increased plasma levels of adiponectin, which is a cardioprotective adipokine. The beneficial effects of Ad-FGF21 on cardiac dysfunction and inflammatory response after myocardial infarction were diminished in adiponectin-knockout mice. These data suggest that muscle-derived FGF21 ameliorates adverse cardiac remodeling after myocardial infarction, at least in part, through an adiponectin-dependent mechanism.

  17. Estrogen Inhibits Mast Cell Chymase Release to Prevent Pressure Overload-Induced Adverse Cardiac Remodeling

    PubMed Central

    Li, Jianping; Jubair, Shaiban; Janicki, Joseph S.

    2014-01-01

    Estrogen regulation of myocardial chymase and chymase effects on cardiac remodeling are unknown. To test the hypothesis that estrogen prevents pressure overload-induced adverse cardiac remodeling by inhibiting mast cell chymase release, transverse aortic constriction or sham surgery was performed in 7-week-old intact and ovariectomized rats. Three days prior to creating the constriction, additional groups of ovariectomized rats began receiving 17β-Estradiol, a chymase inhibitor, or a mast cell stabilizer. Left ventricular function, cardiomyocyte size, collagen volume fraction, mast cell density and degranulation, and myocardial and plasma chymase levels were assessed 18 days post-surgery. Aortic constriction resulted in ventricular hypertrophy in intact and ovariectomized groups while collagen volume fraction was increased only in ovariectomized rats. Chymase protein content was increased by aortic constriction in the intact and ovariectomized groups with the magnitude of the increase being greater in ovariectomized rats. Mast cell density and degranulation, plasma chymase levels and myocardial active transforming growth factor- 1 levels were increased by aortic constriction only in ovariectomized rats. Estrogen replacement markedly attenuated the constriction-increased myocardial chymase, mast cell density and degranulation, plasma chymase and myocardial active transforming growth factor- 1 as well as prevented ventricular hypertrophy and increased collagen volume fraction. Chymostatin attenuated the aortic constriction induced ventricular hypertrophy and collagen volume fraction in the ovariectomized rats similar to that achieved by estrogen replacement. Nedocromil yielded similar effects except for the reduction of chymase content. We conclude that the estrogen-inhibited release of mast cell chymase is responsible for the cardioprotection against transverse aortic constriction-induced adverse cardiac remodeling. PMID:25403608

  18. Estrogen inhibits mast cell chymase release to prevent pressure overload-induced adverse cardiac remodeling.

    PubMed

    Li, Jianping; Jubair, Shaiban; Janicki, Joseph S

    2015-02-01

    Estrogen regulation of myocardial chymase and chymase effects on cardiac remodeling are unknown. To test the hypothesis that estrogen prevents pressure overload-induced adverse cardiac remodeling by inhibiting mast cell (MC) chymase release, transverse aortic constriction or sham surgery was performed in 7-week-old intact and ovariectomized (OVX) rats. Three days before creating the constriction, additional groups of OVX rats began receiving 17β-estradiol, a chymase inhibitor, or a MC stabilizer. Left ventricular function, cardiomyocyte size, collagen volume fraction, MC density and degranulation, and myocardial and plasma chymase levels were assessed 18 days postsurgery. Aortic constriction resulted in ventricular hypertrophy in intact and OVX groups, whereas collagen volume fraction was increased only in OVX rats. Chymase protein content was increased by aortic constriction in the intact and OVX groups, with the magnitude of the increase being greater in OVX rats. MC density and degranulation, plasma chymase levels, and myocardial active transforming growth factor-β1 levels were increased by aortic constriction only in OVX rats. Estrogen replacement markedly attenuated the constriction-increased myocardial chymase, MC density and degranulation, plasma chymase, and myocardial active transforming growth factor-β1, as well as prevented ventricular hypertrophy and increased collagen volume fraction. Chymostatin attenuated the aortic constriction-induced ventricular hypertrophy and collagen volume fraction in the OVX rats similar to that achieved by estrogen replacement. Nedocromil yielded similar effects, except for the reduction of chymase content. We conclude that the estrogen-inhibited release of MC chymase is responsible for the cardioprotection against transverse aortic constriction-induced adverse cardiac remodeling.

  19. Mechanisms contributing to myocardial potassium channel diversity, regulation and remodeling.

    PubMed

    Yang, Kai-Chien; Nerbonne, Jeanne M

    2016-04-01

    In the mammalian heart, multiple types of K(+) channels contribute to the control of cardiac electrical and mechanical functioning through the regulation of resting membrane potentials, action potential waveforms and refractoriness. There are similarly vast arrays of K(+) channel pore-forming and accessory subunits that contribute to the generation of functional myocardial K(+) channel diversity. Maladaptive remodeling of K(+) channels associated with cardiac and systemic diseases results in impaired repolarization and increased propensity for arrhythmias. Here, we review the diverse transcriptional, post-transcriptional, post-translational, and epigenetic mechanisms contributing to regulating the expression, distribution, and remodeling of cardiac K(+) channels under physiological and pathological conditions. PMID:26391345

  20. Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling.

    PubMed

    Lindsey, Merry L; Iyer, Rugmani Padmanabhan; Jung, Mira; DeLeon-Pennell, Kristine Y; Ma, Yonggang

    2016-02-01

    Despite current optimal therapeutic regimens, approximately one in four patients diagnosed with myocardial infarction (MI) will go on to develop congestive heart failure, and heart failure has a high five-year mortality rate of 50%. Elucidating mechanisms whereby heart failure develops post-MI, therefore, is highly needed. Matrix metalloproteinases (MMPs) are key enzymes involved in post-MI remodeling of the left ventricle (LV). While MMPs process cytokine and extracellular matrix (ECM) substrates to regulate the inflammatory and fibrotic components of the wound healing response to MI, MMPs also serve as upstream signaling initiators with direct actions on cell signaling cascades. In this review, we summarize the current literature regarding MMP roles in post-MI LV remodeling. We also identify the current knowledge gaps and provide templates for experiments to fill these gaps. A more complete understanding of MMP roles, particularly with regards to upstream signaling roles, may provide new strategies to limit adverse LV remodeling.

  1. Echocardiographic Predictors for Left Ventricular Remodeling after Acute ST Elevation Myocardial Infarction with Low Risk Group: Speckle Tracking Analysis

    PubMed Central

    Na, Hyun-Min; Lee, Joo Myung; Cha, Myung-Jin; Yoon, Yeonyee E.; Lee, Seung-Pyo; Kim, Hyung-Kwan; Kim, Yong-Jin; Sohn, Dae-Won

    2016-01-01

    Background We sought to assess echocardiographic predictors of left ventricular (LV) adverse remodeling after successfully reperfused acute ST elevation myocardial infarction (STEMI). LV remodeling is commonly found in STEMI patients and it may suggest adverse outcome in acute myocardial infarction. We sought to identify whether 2D strain and torsion be independent parameters for prediction of LV adverse remodeling. Methods We investigated 208 patients with low-risk STEMI patients who had follow up echocardiography at 6 or more months. After clinical assessments, all patients received revascularization according to current guideline. LV remodeling was defined as > 20% increase in end-diastolic volume (EDV) at follow up. Results During the follow-up (11.9 ± 5.3 months), 53 patients (25.5%) showed LV remodeling. In univariate analysis, EDV, end-systolic volume, deceleration time (DT), CK-MB, and global longitudinal strain (GLS) were associated with LV remodeling. In multivariate analysis, EDV [hazard ratio (HR): 0.922, 95% confidence interval (CI): 0.897–0.948, p< 0.001], GLS (HR: 0.842, 95% CI: 0.728–0.974, p = 0.020), DT (HR: 0.989, 95% CI: 0.980–0.998, p = 0.023) and CK-MB (HR: 1.003, 95% CI: 1.000–1.005, p = 0.033) independently predicted LV remodeling. However, global circumferential strain, net twist, and twist or untwist rate were not associated with remodeling. Conclusion Of various parameters of speckle strain, only GLS predicted adverse remodeling in STEMI patients. PMID:27358705

  2. Extracellular Ubiquitin: Role in Myocyte Apoptosis and Myocardial Remodeling.

    PubMed

    Scofield, Stephanie L C; Amin, Parthiv; Singh, Mahipal; Singh, Krishna

    2015-01-01

    Ubiquitin (UB) is a highly conserved low molecular weight (8.5 kDa) protein. It consists of 76 amino acid residues and is found in all eukaryotic cells. The covalent linkage of UB to a variety of cellular proteins (ubiquitination) is one of the most common posttranslational modifications in eukaryotic cells. This modification generally regulates protein turnover and protects the cells from damaged or misfolded proteins. The polyubiquitination of proteins serves as a signal for degradation via the 26S proteasome pathway. UB is present in trace amounts in body fluids. Elevated levels of UB are described in the serum or plasma of patients under a variety of conditions. Extracellular UB is proposed to have pleiotropic roles including regulation of immune response, anti-inflammatory, and neuroprotective activities. CXCR4 is identified as receptor for extracellular UB in hematopoietic cells. Heart failure represents a major cause of morbidity and mortality in western society. Cardiac remodeling is a determinant of the clinical course of heart failure. The components involved in myocardial remodeling include-myocytes, fibroblasts, interstitium, and coronary vasculature. Increased sympathetic nerve activity in the form of norepinephrine is a common feature during heart failure. Acting via β-adrenergic receptor (β-AR), norepinephrine is shown to induce myocyte apoptosis and myocardial fibrosis. β-AR stimulation increases extracellular levels of UB in myocytes, and UB inhibits β-AR-stimulated increases in myocyte apoptosis and myocardial fibrosis. This review summarizes intracellular and extracellular functions of UB with particular emphasis on the role of extracellular UB in cardiac myocyte apoptosis and myocardial remodeling. PMID:26756642

  3. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction.

    PubMed

    Hofmann, Ulrich; Frantz, Stefan

    2015-01-16

    A large body of evidence produced during decades of research indicates that myocardial injury activates innate immunity. On the one hand, innate immunity both aggravates ischemic injury and impedes remodeling after myocardial infarction (MI). On the other hand, innate immunity activation contributes to myocardial healing, as exemplified by monocytes' central role in the formation of a stable scar and protection against intraventricular thrombi after acute infarction. Although innate leukocytes can recognize a wide array of self-antigens via pattern recognition receptors, adaptive immunity activation requires highly specific cooperation between antigen-presenting cells and distinct antigen-specific receptors on lymphocytes. We have only recently begun to examine lymphocyte activation's relationship to adaptive immunity and significance in the context of ischemic myocardial injury. There is some experimental evidence that CD4(+) T-cells contribute to ischemia-reperfusion injury. Several studies have shown that CD4(+) T-cells, especially CD4(+) T-regulatory cells, improve wound healing after MI, whereas depleting B-cells is beneficial post MI. That T-cell activation after MI is induced by T-cell receptor signaling implicates autoantigens that have not yet been identified in this context. Also, the significance of lymphocytes in humans post MI remains unclear, primarily as a result of methodology. This review summarizes current experimental evidence of lymphocytes' activation, functional role, and crosstalk with innate leukocytes in myocardial ischemia-reperfusion injury, wound healing, and remodeling after myocardial infarction.

  4. Cells involved in extracellular matrix remodeling after acute myocardial infarction

    PubMed Central

    Garcia, Larissa Ferraz; Mataveli, Fábio D’Aguiar; Mader, Ana Maria Amaral Antônio; Theodoro, Thérèse Rachell; Justo, Giselle Zenker; Pinhal, Maria Aparecida da Silva

    2015-01-01

    Objective Evaluate the effects of VEGF165 gene transfer in the process of remodeling of the extracellular matrix after an acute myocardial infarct. Methods Wistar rats were submitted to myocardial infarction, after the ligation of the left descending artery, and the left ventricle ejection fraction was used to classify the infarcts into large and small. The animals were divided into groups of ten, according to the size of infarcted area (large or small), and received or not VEGF165 treatment. Evaluation of different markers was performed using immunohistochemistry and digital quantification. The primary antibodies used in the analysis were anti-fibronectin, anti-vimentin, anti-CD44, anti-E-cadherin, anti-CD24, anti-alpha-1-actin, and anti-PCNA. The results were expressed as mean and standard error, and analyzed by ANOVA, considering statistically significant if p≤0.05. Results There was a significant increase in the expression of undifferentiated cell markers, such as fibronectin (protein present in the extracellular matrix) and CD44 (glycoprotein present in the endothelial cells). However, there was decreased expression of vimentin and PCNA, indicating a possible decrease in the process of cell proliferation after treatment with VEGF165. Markers of differentiated cells, E-cadherin (adhesion protein between myocardial cells), CD24 (protein present in the blood vessels), and alpha-1-actin (specific myocyte marker), showed higher expression in the groups submitted to gene therapy, compared to non-treated group. The value obtained by the relation between alpha-1-actin and vimentin was approximately three times higher in the groups treated with VEGF165, suggesting greater tissue differentiation. Conclusion The results demonstrated the important role of myocytes in the process of tissue remodeling, confirming that VEGF165 seems to provide a protective effect in the treatment of acute myocardial infarct. PMID:25993074

  5. Myocardial Connective Tissue Growth Factor (CCN2/CTGF) Attenuates Left Ventricular Remodeling after Myocardial Infarction

    PubMed Central

    Gravning, Jørgen; Ørn, Stein; Kaasbøll, Ole Jørgen; Martinov, Vladimir N.; Manhenke, Cord; Dickstein, Kenneth; Edvardsen, Thor; Attramadal, Håvard; Ahmed, Mohammed Shakil

    2012-01-01

    Aims Myocardial CCN2/CTGF is induced in heart failure of various etiologies. However, its role in the pathophysiology of left ventricular (LV) remodeling after myocardial infarction (MI) remains unresolved. The current study explores the role of CTGF in infarct healing and LV remodeling in an animal model and in patients admitted for acute ST-elevation MI. Methods and Results Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) and non-transgenic littermate controls (NLC) were subjected to permanent ligation of the left anterior descending coronary artery. Despite similar infarct size (area of infarction relative to area at risk) 24 hours after ligation of the coronary artery in Tg-CTGF and NLC mice, Tg-CTGF mice disclosed smaller area of scar tissue, smaller increase of cardiac hypertrophy, and less LV dilatation and deterioration of LV function 4 weeks after MI. Tg-CTGF mice also revealed substantially reduced mortality after MI. Remote/peri-infarct tissue of Tg-CTGF mice contained reduced numbers of leucocytes, macrophages, and cells undergoing apoptosis as compared with NLC mice. In a cohort of patients with acute ST-elevation MI (n = 42) admitted to hospital for percutaneous coronary intervention (PCI) serum-CTGF levels (s-CTGF) were monitored and related to infarct size and LV function assessed by cardiac MRI. Increase in s-CTGF levels after MI was associated with reduced infarct size and improved LV ejection fraction one year after MI, as well as attenuated levels of CRP and GDF-15. Conclusion Increased myocardial CTGF activities after MI are associated with attenuation of LV remodeling and improved LV function mediated by attenuation of inflammatory responses and inhibition of apoptosis. PMID:23284892

  6. Rat Heterotopic Heart Transplantation Model to Investigate Unloading-Induced Myocardial Remodeling

    PubMed Central

    Fu, Xuebin; Segiser, Adrian; Carrel, Thierry P.; Tevaearai Stahel, Hendrik T.; Most, Henriette

    2016-01-01

    Unloading of the failing left ventricle in order to achieve myocardial reverse remodeling and improvement of contractile function has been developed as a strategy with the increasing frequency of implantation of left ventricular assist devices in clinical practice. But, reverse remodeling remains an elusive target, with high variability and exact mechanisms still largely unclear. The small animal model of heterotopic heart transplantation (hHTX) in rodents has been widely implemented to study the effects of complete and partial unloading on cardiac failing and non-failing tissue to better understand the structural and molecular changes that underlie myocardial recovery. We herein review the current knowledge on the effects of volume unloading the left ventricle via different methods of hHTX in rats, differentiating between changes that contribute to functional recovery and adverse effects observed in unloaded myocardium. We focus on methodological aspects of heterotopic transplantation, which increase the correlation between the animal model and the setting of the failing unloaded human heart. Last, but not least, we describe the late use of sophisticated techniques to acquire data, such as small animal MRI and catheterization, as well as ways to assess unloaded hearts under “reloaded” conditions. While giving regard to certain limitations, heterotopic rat heart transplantation certainly represents the crucial model to mimic unloading-induced changes in the heart and as such the intricacies and challenges deserve highest consideration. Careful translational research will further improve our knowledge of the reverse remodeling process and how to potentiate its effect in order to achieve recovery of contractile function in more patients. PMID:27807535

  7. Widespread Myocardial Delivery of Heart-Derived Stem Cells by Nonocclusive Triple-Vessel Intracoronary Infusion in Porcine Ischemic Cardiomyopathy: Superior Attenuation of Adverse Remodeling Documented by Magnetic Resonance Imaging and Histology

    PubMed Central

    Tseliou, Eleni; Kanazawa, Hideaki; Dawkins, James; Gallet, Romain; Kreke, Michelle; Smith, Rachel; Middleton, Ryan; Valle, Jackelyn; Marbán, Linda; Kar, Saibal; Makkar, Rajendra; Marbán, Eduardo

    2016-01-01

    Single-vessel, intracoronary infusion of stem cells under stop-flow conditions has proven safe but achieves only limited myocardial coverage. Continuous flow intracoronary delivery to one or more coronary vessels may achieve broader coverage for treating cardiomyopathy, but has not been investigated. Using nonocclusive coronary guiding catheters, we infused allogeneic cardiosphere-derived cells (CDCs) either in a single vessel or sequentially in all three coronary arteries in porcine ischemic cardiomyopathy and used magnetic resonance imaging (MRI) to assess structural and physiological outcomes. Vehicle-infused animals served as controls. Single-vessel stop-flow and continuous-flow intracoronary infusion revealed equivalent effects on scar size and function. Sequential infusion into each of the three major coronary vessels under stop-flow or continuous-flow conditions revealed equal efficacy, but less elevation of necrotic biomarkers with continuous-flow delivery. In addition, multi-vessel delivery resulted in enhanced global and regional tissue function compared to a triple-vessel placebo-treated group. The functional benefits after global cell infusion were accompanied histologically by minimal inflammatory cellular infiltration, attenuated regional fibrosis and enhanced vessel density in the heart. Sequential multi-vessel non-occlusive delivery of CDCs is safe and provides enhanced preservation of left ventricular function and structure. The current findings provide preclinical validation of the delivery method currently undergoing clinical testing in the Dilated cardiomYopathy iNtervention With Allogeneic MyocardIally-regenerative Cells (DYNAMIC) trial of CDCs in heart failure patients. PMID:26784932

  8. Potential role of renin-angiotensin system blockade for preventing myocardial ischemia/reperfusion injury and remodeling after myocardial infarction.

    PubMed

    Dai, Wangde; Kloner, Robert A

    2011-03-01

    Experimental and clinical studies have demonstrated that myocardial ischemia induces activation of various components of the renin-angiotensin system (RAS), including angiotensinogen, renin, angiotensin-converting enzyme (ACE), angiotensins, and angiotensin receptors, in the acute phase of myocardial infarction and the postinfarction remodeling process. Pharmacological inhibition of the RAS by administration of renin inhibitors, ACE inhibitors, and angiotensin receptor blockers has shown beneficial effects on the pathological processes of myocardial infarction in both experimental animal studies and clinical trials. However, the potential mechanisms responsible for the cardioprotection of RAS inhibition remain unclear. In this review, we discuss roles of RAS blocking in the prevention of myocardial ischemia/reperfusion injury and postinfarction remodeling.

  9. Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context

    PubMed Central

    Ajijola, Olujimi A.; Yagishita, Daigo; Patel, Krishan J.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; So, Eileen; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Myocardial infarction (MI) induces neural and electrical remodeling at scar border zones. The impact of focal MI on global functional neural remodeling is not well understood. Sympathetic stimulation was performed in swine with anteroapical infarcts (MI; n = 9) and control swine (n = 9). A 56-electrode sock was placed over both ventricles to record electrograms at baseline and during left, right, and bilateral stellate ganglion stimulation. Activation recovery intervals (ARIs) were measured from electrograms. Global and regional ARI shortening, dispersion of repolarization, and activation propagation were assessed before and during sympathetic stimulation. At baseline, mean ARI was shorter in MI hearts than control hearts (365 ± 8 vs. 436 ± 9 ms, P < 0.0001), dispersion of repolarization was greater in MI versus control hearts (734 ± 123 vs. 362 ± 32 ms2, P = 0.02), and the infarcted region in MI hearts showed longer ARIs than noninfarcted regions (406 ± 14 vs. 365 ± 8 ms, P = 0.027). In control animals, percent ARI shortening was greater on anterior than posterior walls during right stellate ganglion stimulation (P = 0.0001), whereas left stellate ganglion stimulation showed the reverse (P = 0.0003). In infarcted animals, this pattern was completely lost. In 50% of the animals studied, sympathetic stimulation, compared with baseline, significantly altered the direction of activation propagation emanating from the intramyocardial scar during pacing. In conclusion, focal distal anterior MI alters regional and global pattern of sympathetic innervation, resulting in shorter ARIs in infarcted hearts, greater repolarization dispersion, and altered activation propagation. These conditions may underlie the mechanisms by which arrhythmias are initiated when sympathetic tone is enhanced. PMID:23893167

  10. [The expression of Akt kinase in the heart ventricles under hypoxic preconditioning and myocardial remodeling].

    PubMed

    Portnichenko, A G; Lapikova-Briginskaia, T Iu; Vasilenko, M I; Portnichenko, G V; Maslov, L N; Moĭbenko, A A

    2013-01-01

    Activation of Akt-dependent mechanisms may play a significant role in the cellular response under hypoxic preconditioning and myocardial remodeling. The impact of hypoxic preconditioning, and remodeling on the expression of Akt kinase in the heart ventricles was investigated. Wistar male rats, the residents of plains or middle altitude (2100 m above sea level), were exposed to hypoxic preconditioning by "lifting" in the barochamber at the "height" of 5,600 m in 3 h. In the right and left ventricles of the heart, Akt protein expression was determined by Western blotting. It was shown, that hypoxic preconditioning causes the induction of Akt kinase in the ventricles during the period of delayed cardioprotection (1-3 days after preconditioning). Myocardial remodeling induced by chronic hypoxia in middle altitude was associated with elevated Akt expression in the myocardium, more pronounced in the left ventricle. Progression of hypoxic myocardial remodeling found in part of the animals was accompanied by a reduction of the cell hypoxic reactivity, including Akt induction in response to preconditioning. Thus, Akt kinase is involved in the mechanisms of hypoxia induced late preconditioning and myocardial remodeling in chronic hypoxia. Inhibitory regulatory mechanism was found to limit the induction of Akt in myocardium after remodeling.

  11. Tumor Necrosis Factor Receptor Associated Factor 2 Signaling Provokes Adverse Cardiac Remodeling in the Adult Mammalian Heart

    PubMed Central

    Divakaran, Vijay G.; Evans, Sarah; Topkara, Veli K.; Diwan, Abhinav; Burchfield, Jana; Gao, Feng; Dong, Jianwen; Tzeng, Huei-Ping; Sivasubramanian, Natarajan; Barger, Philip M.; Mann, Douglas L.

    2013-01-01

    Background Tumor necrosis factor (TNF) superfamily ligands that provoke a dilated cardiac phenotype signal through a common scaffolding protein termed TNF receptor associated factor 2 (TRAF2); however, virtually nothing is known with regard to TRAF2 signaling in the adult mammalian heart. Methods and Results We generated multiple founder lines of mice with cardiac restricted overexpression of TRAF2 and characterized the phenotype of mice with higher expression levels of TRAF2 (MHC-TRAF2HC). MHC-TRAF2HC transgenic mice developed a time-dependent increase in cardiac hypertrophy, LV dilation and adverse LV remodeling, and a significant decrease in LV +dP/dt and −dP/dt when compared to littermate (LM) controls (p < 0.05 compared to LM). During the early phases of LV remodeling there was a significant increase in total matrix metalloproteinase (MMP) activity that corresponded with a decrease in total myocardial fibrillar collagen content. As the MHC-TRAF2HC mice aged, there was a significant decrease in total MMP activity accompanied by an increase in total fibrillar collagen content and an increase in myocardial tissue inhibitor of metalloproteinase-1 levels. There was a significant increase in NF-κB activation at 4 – 12 weeks and JNK activation at 4 weeks in the MHCs TRAF2HC mice. Transciptional profiling revealed that > 95% of the hypertrophic/dilated cardiomyopathy-related genes that were significantly upregulated genes in the MHC-TRAF2HC hearts contained κB elements in their promoters. Conclusions These results show for the first time that targeted overexpression of TRAF2 is sufficient to mediate adverse cardiac remodeling in the heart. PMID:23493088

  12. Reversibility of Adverse, Calcineurin-Dependent Cardiac Remodeling

    PubMed Central

    Berry, Jeff M.; Le, Vien; Rotter, David; Battiprolu, Pavan K.; Grinsfelder, Bennett; Tannous, Paul; Burchfield, Jana S.; Czubryt, Michael; Backs, Johannes; Olson, Eric N.; Rothermel, Beverly A.; Hill, Joseph A.

    2011-01-01

    Background Studies to dissect the role of calcineurin in pathological cardiac remodeling have relied heavily on murine models, where genetic gain- and loss-of-function manipulations are initiated at or before birth. However, the great majority of clinical cardiac pathology occurs in adults. Yet, nothing is known about the effects of calcineurin when its activation commences in adulthood. Further, despite the fact that ventricular hypertrophy is a well established risk factor for heart failure, the relative pace and progression of these two major phenotypic features of heart disease are unknown. Methods and Results We engineered mice harboring in cardiomyocytes a constitutively active calcineurin transgene driven by a tetracycline-responsive promoter element. Expression of the mutant calcineurin transgene was initiated for variable lengths of time to determine the natural history of disease pathogenesis, and to determine when, if ever, these events are reversible. Activation of the calcineurin transgene in adult mice triggered rapid and robust cardiac growth with features characteristic of pathological hypertrophy. Concentric hypertrophy preceded the development of systolic dysfunction, fetal gene activation, fibrosis, and clinical heart failure. Further, cardiac hypertrophy reversed spontaneously when calcineurin activity was turned off, and expression of fetal genes reverted to baseline. Fibrosis, a prominent feature of pathological cardiac remodeling, manifested partial reversibility. Conclusions Together, these data establish and define the deleterious effects of calcineurin signaling in adult heart and reveal that calcineurin-dependent hypertrophy with concentric geometry precedes systolic dysfunction and heart failure. Furthermore, these findings demonstrate that during much of the disease process, calcineurin-dependent remodeling remains reversible. PMID:21700928

  13. The effect of long-term amiodarone administration on myocardial fibrosis and evolution of left ventricular remodeling in a porcine model of ischemic cardiomyopathy.

    PubMed

    Zagorianou, Anastasia; Marougkas, Meletios; Drakos, Stavros G; Diakos, Nikolaos; Konstantopoulos, Panagiotis; Perrea, Despina N; Anastasiou-Nana, Maria; Malliaras, Konstantinos

    2016-01-01

    Amiodarone is effective in suppressing arrhythmias in heart failure patients. We investigated the effect of long-term amiodarone administration on myocardial fibrosis and left ventricular (LV) remodeling in a porcine model of ischemic cardiomyopathy. Eighteen infarcted farm pigs were randomized to receive long-term amiodarone administration for 3 months (n = 9) or conventional follow-up (n = 9). Evolution of LV remodeling over 3 months post-myocardial infarction was examined at tissue level (myocyte size, myocardial fibrosis and vascular density assessed by whole-field digital histopathology), organ level (LV structure and function assessed by echocardiography), and systemic level (BNP and MMP-9 levels). Long-term administration of the standard anti-arrhythmic doses of amiodarone was not associated with adverse effects on myocardial fibrosis and other features of adverse cardiac remodeling. This favorable safety profile suggests that long-term anti-arrhythmic therapy with amiodarone warrants further clinical investigation in the subpopulation of heart failure patients with significantly increased burden of arrhythmias. PMID:27652141

  14. Air pollution and adverse cardiac remodeling: clinical effects and basic mechanisms.

    PubMed

    Liu, Yonggang; Goodson, Jamie M; Zhang, Bo; Chin, Michael T

    2015-01-01

    Exposure to air pollution has long been known to trigger cardiovascular events, primarily through activation of local and systemic inflammatory pathways that affect the vasculature. Detrimental effects of air pollution exposure on heart failure and cardiac remodeling have also been described in human populations. Recent studies in both human subjects and animal models have provided insights into the basic physiological, cellular and molecular mechanisms that play a role in adverse cardiac remodeling. This review will give a brief overview of the relationship between air pollution and cardiovascular disease, describe the clinical effects of air pollution exposure on cardiac remodeling, describe the basic mechanisms that affect remodeling as described in human and animal systems and will discuss future areas of investigation.

  15. [Molecular targets and novel pharmacological options to prevent myocardial hypertrophic remodeling].

    PubMed

    Coppini, Raffaele; Ferrantini, Cecilia; Poggesi, Corrado; Mugelli, Alessandro; Olivotto, Iacopo

    2016-03-01

    Myocardial hypertrophic remodeling is a pathophysiological feature of several cardiac conditions and is the hallmark of hypertrophic cardiomyopathy (HCM), the most common monogenic inherited disease of the heart. In recent years, preclinical and clinical studies investigated the underlying molecular mechanisms and intracellular signaling pathways involved in pathologic cardiomyocyte hypertrophy and highlighted a number of possible molecular targets of therapy aimed at preventing its development. Early prevention of myocardial hypertrophic remodeling is particularly sought after in HCM, as current therapeutic strategies are unable to remove the primary cause of disease, i.e. the disease-causing gene mutation. Studies on transgenic animal models or human myocardial samples from patients with HCM identified intracellular calcium overload as a central mechanism driving pathological hypertrophy. In this review, we analyze recent preclinical and clinical studies on animal models and patients with HCM aimed at preventing or modifying hypertrophic myocardial remodeling. Mounting evidence shows that prevention of pathological hypertrophy is a feasible strategy in HCM and will enter the clinical practice in the near future. Considering the close mechanistic similarities between HCM and secondary hypertrophy, these studies are also relevant for the common forms of cardiac hypertrophy, such as hypertensive or valvular heart disease. PMID:27029877

  16. [Molecular targets and novel pharmacological options to prevent myocardial hypertrophic remodeling].

    PubMed

    Coppini, Raffaele; Ferrantini, Cecilia; Poggesi, Corrado; Mugelli, Alessandro; Olivotto, Iacopo

    2016-03-01

    Myocardial hypertrophic remodeling is a pathophysiological feature of several cardiac conditions and is the hallmark of hypertrophic cardiomyopathy (HCM), the most common monogenic inherited disease of the heart. In recent years, preclinical and clinical studies investigated the underlying molecular mechanisms and intracellular signaling pathways involved in pathologic cardiomyocyte hypertrophy and highlighted a number of possible molecular targets of therapy aimed at preventing its development. Early prevention of myocardial hypertrophic remodeling is particularly sought after in HCM, as current therapeutic strategies are unable to remove the primary cause of disease, i.e. the disease-causing gene mutation. Studies on transgenic animal models or human myocardial samples from patients with HCM identified intracellular calcium overload as a central mechanism driving pathological hypertrophy. In this review, we analyze recent preclinical and clinical studies on animal models and patients with HCM aimed at preventing or modifying hypertrophic myocardial remodeling. Mounting evidence shows that prevention of pathological hypertrophy is a feasible strategy in HCM and will enter the clinical practice in the near future. Considering the close mechanistic similarities between HCM and secondary hypertrophy, these studies are also relevant for the common forms of cardiac hypertrophy, such as hypertensive or valvular heart disease.

  17. Inhibition of Histone Deacetylases Preserves Myocardial Performance and Prevents Cardiac Remodeling through Stimulation of Endogenous Angiomyogenesis

    PubMed Central

    Zhang, Ling; Qin, Xin; Zhao, Yu; Fast, Loren; Zhuang, Shougang; Liu, Paul; Cheng, Guangmao

    2012-01-01

    We have previously shown that the inhibition of histone deacetylases (HDACs) protects the heart against acute myocardial ischemia and reperfusion injury. We also demonstrated that HDAC inhibition stimulates myogenesis and angiogenesis in a cultured embryonic stem cell model. We investigate whether in vivo inhibition of HDAC preserves cardiac performance and prevents cardiac remodeling in mouse myocardial infarction (MI) through the stimulation of endogenous regeneration. MI was created by ligation of the left descending artery. Animals were divided into three groups: 1) sham group, animals that underwent thoracotomy without MI; 2) MI, animals that underwent MI; and 3) MI + trichostatin A (TSA), MI animals that received a daily intraperitoneal injection of TSA. In addition, infarcted mice received a daily intraperitoneal injection of TSA (0.1 mg/kg), a selective HDAC inhibitor. 5-Bromo-2-deoxyuridine (50 mg/kg) was delivered every other day to pulse-chase label in vivo endogenous cardiac replication. Eight weeks later, the MI hearts showed a reduction in ventricular contractility. HDAC inhibition increased the improvement of myocardial functional recovery after MI, which was associated with the prevention of myocardial remodeling and reduction of myocardial and serum tumor necrosis factor α. HDAC inhibition enhanced the formation of new myocytes and microvessels, which was consistent with the robust increase in proliferation and cytokinesis in the MI hearts. An increase in angiogenic response was demonstrated in MI hearts receiving TSA treatment. It is noteworthy that TSA treatment significantly inhibited HDAC activity and increased phosphorylation of Akt-1, but decreased active caspase 3. Taken together, our results indicate that HDAC inhibition preserves cardiac performance and mitigates myocardial remodeling through stimulating cardiac endogenous regeneration. PMID:22271820

  18. Testosterone Replacement Modulates Cardiac Metabolic Remodeling after Myocardial Infarction by Upregulating PPARα

    PubMed Central

    Yang, Jing

    2016-01-01

    Despite the importance of testosterone as a metabolic hormone, its effects on myocardial metabolism in the ischemic heart remain unclear. Myocardial ischemia leads to metabolic remodeling, ultimately resulting in ATP deficiency and cardiac dysfunction. In the present study, the effects of testosterone replacement on the ischemic heart were assessed in a castrated rat myocardial infarction model established by ligating the left anterior descending coronary artery 2 weeks after castration. The results of real-time PCR and Western blot analyses showed that peroxisome proliferator-activated receptor α (PPARα) decreased in the ischemic myocardium of castrated rats, compared with the sham-castration group, and the mRNA expression of genes involved in fatty acid metabolism (the fatty acid translocase CD36, carnitine palmitoyltransferase I, and medium-chain acyl-CoA dehydrogenase) and glucose transporter-4 also decreased. A decline in ATP levels in the castrated rats was accompanied by increased cardiomyocyte apoptosis and fibrosis and impaired cardiac function, compared with the sham-castration group, and these detrimental effects were reversed by testosterone replacement. Taken together, our findings suggest that testosterone can modulate myocardial metabolic remodeling by upregulating PPARα after myocardial infarction, exerting a protective effect on cardiac function. PMID:27413362

  19. Effects of pharmacological suppression of plasminogen activator inhibitor-1 in myocardial remodeling after ischemia reperfusion injury.

    PubMed

    Watanabe, Ryo; Nakajima, Takuya; Ogawa, Masahito; Suzuki, Jun-ichi; Muto, Susumu; Itai, Akiko; Hirata, Yasunobu; Nagai, Ryozo; Isobe, Mitsuaki

    2011-01-01

    Plasminogen activator inhibitor-1 (PAI-1) contributes to cardiac ventricular remodeling because migration of inflammatory cells and attenuation of extracellular matrix degradation are caused by plasmin and matrix metalloproteinase. However, the roles of PAI-1 in myocardial ischemia reperfusion (I/R) injury and the following inflammatory response have not yet been well elucidated. To clarify the role of PAI-1 in myocardial I/R injury, we used a specific PAI-1 inhibitor (IMD-1622) in a rat model. The left anterior descending coronary artery was ligated and reperfusion was performed by loosening the suture after 30 minutes of arterial occlusion. A single administration of IMD-1622 (20 mg/kg) or vehicle was given intraperitoneally and then the rats were sacrificed on day 1 or day 14 after I/R. Blood pressure, echocardiograms, histopathology, and molecular examination were performed. The examinations revealed that PAI-1 inhibitor showed limited effects on cardiac dysfunction and ventricular remodeling after I/R. We conclude that the pharmacological inhibition of PAI-1 may not affect ventricular remodeling after myocardial I/R injury.

  20. Multiscale Characterization of Impact of Infarct Size on Myocardial Remodeling in an Ovine Infarct Model

    PubMed Central

    Zhang, Pei; Li, Tielou; Griffith, Bartley P; Wu, Zhongjun J

    2015-01-01

    The surviving myocardium initially compensates the loss of injured myocardium after myocardial infarction (MI) and gradually becomes progressively dysfunctional. There have been limited studies of the influence of infarct size on temporal and spatial alteration of myocardium during progressive myocardial remodeling. MI with three infarct sizes (15%, 25% and 35% of left ventricular wall) was created in an ovine infarction model. The progressive LV remodeling over a 12 week period was studied. Echocardiography, sonomicrometry, histological and molecular analyses were carried out to evaluate cardiac function, regional tissue contractile function and structural remodeling, and regional cardiomycyte hypertrophy and calcium handling proteins. The 15%, 25% and 35% MI groups at 12 weeks after MI had normalized LV end diastole volumes of 1.4±0.2, 1.7±0.3 and 2.0±0.4 mL/Kg, normalized end systole volumes of 1.0±0.1, 1.0±0.2 and 1.3±0.3 mL/Kg and LV ejection fractions of 43%±3%, 42%±6% and 34%±4%, respectively. They all differed from a sham group (p<0.05). All the three MI groups exhibited larger wall areal expansion (remodeling strain), larger cardiomyocyte size and altered expression of calcium handing proteins in the adjacent myocardium compared to the remote counterpart from the infarct. Significant correlation was found between myocardiocyte size and remodeling strain in the adjacent zone. A comparative analysis among the three MI groups showed that a larger infarct size (35% vs. 15% MI) was associated with larger remodeling strain, impairment severity of cellular structure and composition, and regional contractile function at regional tissue level and LV cardiac function at organ level. PMID:26540290

  1. Multiscale Characterization of Impact of Infarct Size on Myocardial Remodeling in an Ovine Infarct Model.

    PubMed

    Zhang, Pei; Li, Tielou; Griffith, Bartley P; Wu, Zhongjun J

    2015-01-01

    The surviving myocardium initially compensates the loss of injured myocardium after myocardial infarction (MI) and gradually becomes progressively dysfunctional. There have been limited studies on the effect of infarct size on temporal and spatial alterations in the myocardium during progressive myocardial remodeling. MI with three infarct sizes, i.e. 15, 25 and 35% of the left ventricular (LV) wall, was created in an ovine infarction model. The progressive LV remodeling over a 12-week period was studied. Echocardiography, sonomicrometry, and histological and molecular analyses were carried out to evaluate cardiac function, regional tissue contractile function, structural remodeling and cardiomyocyte hypertrophy, and calcium handling proteins. Twelve weeks after MI, the 15, 25 and 35% MI groups had normalized LV end diastole volumes of 1.4 ± 0.2, 1.7 ± 0.3 and 2.0 ± 0.4 ml/kg, normalized end systole volumes of 1.0 ± 0.1, 1.0 ± 0.2 and 1.3 ± 0.3 ml/kg and LV ejection fractions of 43 ± 3, 42 ± 6 and 34 ± 4%, respectively. They all differed from the sham group (p < 0.05). All the three MI groups exhibited larger wall areal expansion (remodeling strain), larger cardiomyocyte size and altered expression of calcium handing proteins in the adjacent myocardium compared to the remote counterpart from the infarct. A significant correlation was found between cardiomyocyte size and remodeling strain in the adjacent zone. A comparative analysis among the three MI groups showed that a larger infarct size (35 vs. 15% MI) was associated with larger remodeling strain, more serious impairment in the cellular structure and composition, and regional contractile function at regional tissue level and LV function at organ level.

  2. Cardioprotective effect of polydatin on ventricular remodeling after myocardial infarction in coronary artery ligation rats.

    PubMed

    Gao, Yan; Gao, Jianping; Chen, Changxun; Wang, Huilin; Guo, Juan; Wu, Rong

    2015-05-01

    The purpose of this study was to explore the effect of polydatin on ventricular remodeling after myocardial infarction in coronary artery ligation rats and to elucidate the underlying mechanisms. A rat model of ventricular remodeling after myocardial infarction was established by left coronary artery ligation. Rats with coronary artery ligation were randomly divided into five groups: control, plus 40 mg/kg captopril, plus 25 mg/kg polydatin, plus 50 mg/kg polydatin, and plus 100 mg/kg polydatin. The sham-operated group was used as a negative control. Rats were administered intragastrically with the corresponding drugs or drinking water for seven weeks. At the end of the treatment, the left ventricular weight index and heart weight index were assessed. The cross-sectional size of cardiomyocytes was measured by staining myocardium tissue with hematoxylin and eosin. Collagen content was counted by Sirius red in aqueous saturated picric acid. The concentrations of angiotensin I, angiotensin II, aldosterone, and endothelin 1 in myocardium or serum were determined by radioimmunoassay. Hydroxyproline and nitric oxide concentrations and glutathione peroxidase and catalase activities in serum were measured by ultraviolet spectrophotometry. Our results showed that seven weeks of polydatin treatment resulted in a significantly reduced left ventricular weight index, heart weight index, serum concentrations of hydroxyproline and aldosterone, an increased concentration of nitric oxide as well as enhanced activities of glutathione peroxidase and catalase. Myocardial angiotensin I, angiotensin II, and endothelin 1 levels were also reduced. The cardiomyocyte cross-sectional area and collagen deposition diminished. This study suggests that polydatin may attenuate ventricular remodeling after myocardial infarction in coronary artery ligation rats through restricting the excessive activation of the renin-angiotensin-aldosterone system and inhibiting peroxidation.

  3. Remote Zone Extracellular Volume and Left Ventricular Remodeling in Survivors of ST-Elevation Myocardial Infarction

    PubMed Central

    Carberry, Jaclyn; Carrick, David; Haig, Caroline; Rauhalammi, Samuli M.; Ahmed, Nadeem; Mordi, Ify; McEntegart, Margaret; Petrie, Mark C.; Eteiba, Hany; Hood, Stuart; Watkins, Stuart; Lindsay, Mitchell; Davie, Andrew; Mahrous, Ahmed; Ford, Ian; Sattar, Naveed; Welsh, Paul; Radjenovic, Aleksandra; Oldroyd, Keith G.

    2016-01-01

    The natural history and pathophysiological significance of tissue remodeling in the myocardial remote zone after acute ST-elevation myocardial infarction (STEMI) is incompletely understood. Extracellular volume (ECV) in myocardial regions of interest can now be measured with cardiac magnetic resonance imaging. Patients who sustained an acute STEMI were enrolled in a cohort study (BHF MR-MI [British Heart Foundation Magnetic Resonance Imaging in Acute ST-Segment Elevation Myocardial Infarction study]). Cardiac magnetic resonance was performed at 1.5 Tesla at 2 days and 6 months post STEMI. T1 modified Look-Locker inversion recovery mapping was performed before and 15 minutes after contrast (0.15 mmol/kg gadoterate meglumine) in 140 patients at 2 days post STEMI (mean age: 59 years, 76% male) and in 131 patients at 6 months post STEMI. Remote zone ECV was lower than infarct zone ECV (25.6±2.8% versus 51.4±8.9%; P<0.001). In multivariable regression, left ventricular ejection fraction was inversely associated with remote zone ECV (P<0.001), and diabetes mellitus was positively associated with remote zone ECV (P=0.010). No ST-segment resolution (P=0.034) and extent of ischemic area at risk (P<0.001) were multivariable associates of the change in remote zone ECV at 6 months (ΔECV). ΔECV was a multivariable associate of the change in left ventricular end-diastolic volume at 6 months (regression coefficient [95% confidence interval]: 1.43 (0.10–2.76); P=0.036). ΔECV is implicated in the pathophysiology of left ventricular remodeling post STEMI, but because the effect size is small, ΔECV has limited use as a clinical biomarker of remodeling. Clinical Trial Registration— URL: https://www.clinicaltrials.gov. Unique identifier: NCT02072850. PMID:27354423

  4. Protection of cardiac cell-to-cell coupling attenuate myocardial remodeling and proarrhythmia induced by hypertension.

    PubMed

    Egan Benova, T; Szeiffova Bacova, B; Viczenczova, C; Diez, E; Barancik, M; Tribulova, N

    2016-09-19

    Gap junction connexin channels are important determinants of myocardial conduction and synchronization that is crucial for coordinated heart function. One of the main risk factors for cardiovascular events that results in heart attack, congestive heart failure, stroke as well as sudden arrhythmic death is hypertension. Mislocalization and/or dysfunction of specific connexin-43 channels due to hypertension-induced myocardial remodeling have been implicated in the occurrence of life-threatening arrhythmias and heart failure in both, humans as well as experimental animals. Recent studies suggest that down-regulation of myocardial connexin-43, its abnormal distribution and/or phosphorylation might be implicated in this process. On the other hand, treatment of hypertensive animals with cardioprotective drugs (e.g. statins) or supplementation with non-pharmacological compounds, such as melatonin, omega-3 fatty acids and red palm oil protects from lethal arrhythmias. The antiarrhythmic effects are attributed to the attenuation of myocardial connexin-43 abnormalities associated with preservation of myocardial architecture and improvement of cardiac conduction. Findings uncover novel mechanisms of cardioprotective (antihypertensive and antiarrhythmic) effects of compounds that are used in clinical settings. Well-designed trials are needed to explore the antiarrhythmic potential of these compounds in patients suffering from hypertension.

  5. Protection of cardiac cell-to-cell coupling attenuate myocardial remodeling and proarrhythmia induced by hypertension.

    PubMed

    Egan Benova, T; Szeiffova Bacova, B; Viczenczova, C; Diez, E; Barancik, M; Tribulova, N

    2016-09-19

    Gap junction connexin channels are important determinants of myocardial conduction and synchronization that is crucial for coordinated heart function. One of the main risk factors for cardiovascular events that results in heart attack, congestive heart failure, stroke as well as sudden arrhythmic death is hypertension. Mislocalization and/or dysfunction of specific connexin-43 channels due to hypertension-induced myocardial remodeling have been implicated in the occurrence of life-threatening arrhythmias and heart failure in both, humans as well as experimental animals. Recent studies suggest that down-regulation of myocardial connexin-43, its abnormal distribution and/or phosphorylation might be implicated in this process. On the other hand, treatment of hypertensive animals with cardioprotective drugs (e.g. statins) or supplementation with non-pharmacological compounds, such as melatonin, omega-3 fatty acids and red palm oil protects from lethal arrhythmias. The antiarrhythmic effects are attributed to the attenuation of myocardial connexin-43 abnormalities associated with preservation of myocardial architecture and improvement of cardiac conduction. Findings uncover novel mechanisms of cardioprotective (antihypertensive and antiarrhythmic) effects of compounds that are used in clinical settings. Well-designed trials are needed to explore the antiarrhythmic potential of these compounds in patients suffering from hypertension. PMID:27643938

  6. Cardiac Remodeling, Adaptations and Associated Myocardial Mechanics in Hypertensive Heart Diseases

    PubMed Central

    Lai, Yau-Huei; Lo, Chi-In; Wu, Yih-Jer; Hung, Chung-Lieh; Yeh, Hung-I

    2013-01-01

    Hypertension is the leading cause of heart failure and cardiovascular comorbidities in developed countries. Left ventricular structural/functional alterations such as concentric remodeling or hypertrophy have been extensively studied in hypertensive heart diseases. Furthermore, it is also well-recognized that diastolic function actually deteriorates in hypertensive subjects prior to overt heart failure. Novel imaging modality techniques such as myocardial deformation have allowed for early detection of regional/global myocardial contractile dysfunction. Myocardial deformation, which can be quantified by measuring the systolic strain and strain rate in three different directions (longitudinal, circumferential and radial), has facilitated new insights into the understanding of cardiac systolic mechanics in subjects with early stage myocardial damage. Previous studies had shown that longitudinal function remains the most sensitive parameter in identifying hypertension-related myocardial dysfunction, particularly for those patients who had developed LV hypertrophy. Instead, preserved or enhanced short-axis function, when presented as circumferential or radial strains, may remain relatively preserved or enhanced in order to compensate for longitudinal functional decline. In this manner, global cardiac pumping in terms of ejection fraction may remain relatively unchanged. The early recognition of subclinical systolic dysfunction and associated mechanical compensation in the context of hypertension is crucial, which potentially helps to identify a disease stage that is still responsive to therapeutic intervention. PMID:27122686

  7. Effects of ghrelin on Cx43 regulation and electrical remodeling after myocardial infarction in rats.

    PubMed

    Yuan, Ming-Jie; Huang, He; Tang, Yan-Hong; Wu, Gang; Gu, Yong-Wei; Chen, Yong-Jun; Huang, Cong-Xin

    2011-11-01

    Ghrelin is a novel growth hormone-releasing peptide, which has been shown to exert beneficial effects on ventricular remodeling. In this study, we investigated whether ghrelin could decrease vulnerability to ventricular arrhythmias in rats with myocardial infarction and the possible mechanism. Twenty-four hours after ligation of the anterior descending artery, adult male Sprague-Dawley rats were randomized to ghrelin (100 μg/kg) and saline (control group) for 4 weeks. Sham animals underwent thoracotomy and pericardiotomy, but not LAD ligation. Myocardial endothelin-1 (ET-1) levels were significantly elevated in saline-treated rats at the border zone compared with sham-operated rats. Myocardial connexin43 (Cx43) expression at the border zone was significantly decreased in saline-treated infarcted rats compared with sham-operated rats. Ghrelin significantly decreased the inducibility of ventricular tachyarrhythmias compared with control group. Arrhythmias sores during programmed stimulation in saline-treated rats were significantly higher than scores in those treated with ghrelin. The electrophysiological improvement of fatal ventricular tachyarrhythmias was accompanied with increased immunofluorescence-stained Cx43, myocardial Cx43 protein and mRNA levels in ghrelin treated rats. We also shown that ghrelin significantly decreased tissue ET-1 levels at the infarcted border zone. Thus, ghrelin showed the protective effect on ventricular arrhythmias after myocardial infarction. Although the precise mechanism by which ghrelin modulates the dephosphorylation of Cx43 remains unknown, it is most likely that the ghrelin increased expression of Cx43 through the inhibition of ET-1.

  8. Collagen remodeling after myocardial infarction in the rat heart.

    PubMed Central

    Cleutjens, J. P.; Verluyten, M. J.; Smiths, J. F.; Daemen, M. J.

    1995-01-01

    In this study changes in the amount and distribution of types I and III collagen mRNA and protein were investigated in the rat heart after induction of a left ventricular myocardial infarction (MI). Sham operated rats served as controls. The animals were sacrificed at different time intervals after operation. Northern blotting of cardiac RNA and hybridization with cDNA probes for types I and III procollagen revealed a 5- to 15-fold increase in the infarcted left ventricle. Type III procollagen mRNA levels were already increased at day 2 after MI, whereas type I procollagen mRNA followed this response at day 4 after MI. This increase was sustained for at least 21 days in the infarcted left ventricle for type III procollagen mRNA, whereas type 1 procollagen mRNA levels were still elevated at 90 days after MI. In the noninfarcted right ventricle a 5- to 7-fold increase was observed for both type I and type III procollagen mRNA levels, but only at day 4 after MI. In the non-infarcted septum a transient increase was observed for type I procollagen mRNA from day 7-21 (4- to 5-fold increase) and a decline to sham levels thereafter. In the septum type III procollagen mRNA levels were only elevated at 7 days after MI (4- to 5-fold increase) compared with sham operated controls. In situ hybridization with the same types I and III procollagen probes showed procollagen mRNA-producing cells in the infarcted area around necrotic cardiomyocytes, and in the interstitial cells in the non-infarcted part of the myocardium. No labeling was detected above cardiomyocytes. Combined in situ hybridization and immunohistochemistry showed that the collagen mRNA producing cells have a myofibroblast-like phenotype in the infarcted myocardium and are fibroblasts in the noninfarcted septum and right ventricle. The increase in types I and III procollagen mRNA in both infarcted and non-infarcted myocardium was followed by an increased collagen deposition, measured by computerized morphometry on

  9. Electrotonic remodeling following myocardial infarction in dogs susceptible and resistant to sudden cardiac death.

    PubMed

    Del Rio, Carlos L; McConnell, Patrick I; Kukielka, Monica; Dzwonczyk, Roger; Clymer, Bradley D; Howie, Michael B; Billman, George E

    2008-02-01

    Passive electrical remodeling following myocardial infarction (MI) is well established. These changes can alter electrotonic loading and trigger the remodeling of repolarization currents, a potential mechanism for ventricular fibrillation (VF). However, little is known about the role of passive electrical markers as tools to identify VF susceptibility post-MI. This study investigated electrotonic remodeling in the post-MI ventricle, as measured by myocardial electrical impedance (MEI), in animals prone to and resistant to VF. MI was induced in dogs by a two-stage left anterior descending (LAD) coronary artery ligation. Before infarction, MEI electrodes were placed in remote (left circumflex, LCX) and infarcted (LAD) myocardium. MEI was measured in awake animals 1, 2, 7, and 21 days post-MI. Subsequently, VF susceptibility was tested by a 2-min LCX occlusion during exercise; 12 animals developed VF (susceptible, S) and 12 did not (resistant, R). The healing infarct had lower MEI than the normal myocardium. This difference was stable by day 2 post-MI (287 +/- 32 Omega vs. 425 +/- 62 Omega, P < 0.05). Significant differences were observed between resistant and susceptible animals 7 days post-MI; susceptible dogs had a wider electrotonic gradient between remote and infarcted myocardium (R: 89 +/- 60 Omega vs. S: 180 +/- 37 Omega). This difference increased over time in susceptible animals (252 +/- 53 Omega at 21 days) due to post-MI impedance changes on the remote myocardium. These data suggest that early electrotonic changes post-MI could be used to assess later arrhythmia susceptibility. In addition, passive-electrical changes could be a mechanism driving active-electrical remodeling post-MI, thereby facilitating the induction of arrhythmias.

  10. Fibroblast Growth Factor-9 Enhances M2 Macrophage Differentiation and Attenuates Adverse Cardiac Remodeling in the Infarcted Diabetic Heart

    PubMed Central

    Singla, Dinender K.; Singla, Reetu D.; Abdelli, Latifa S.; Glass, Carley

    2015-01-01

    Inflammation has been implicated as a perpetrator of diabetes and its associated complications. Monocytes, key mediators of inflammation, differentiate into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages upon infiltration of damaged tissue. However, the inflammatory cell types, which propagate diabetes progression and consequential adverse disorders, remain unclear. The current study was undertaken to assess monocyte infiltration and the role of fibroblast growth factor-9 (FGF-9) on monocyte to macrophage differentiation and cardioprotection in the diabetic infarcted heart. Db/db diabetic mice were assigned to sham, myocardial infarction (MI), and MI+FGF-9 groups. MI was induced by permanent coronary artery ligation and animals were subjected to 2D transthoracic echocardiography two weeks post-surgery. Immunohistochemical and immunoassay results from heart samples collected suggest significantly increased infiltration of monocytes (Mean ± SEM; MI: 2.02% ± 0.23% vs. Sham 0.75% ± 0.07%; p<0.05) and associated pro-inflammatory cytokines (TNF-α, MCP-1, and IL-6), adverse cardiac remodeling (Mean ± SEM; MI: 33% ± 3.04% vs. Sham 2.2% ± 0.33%; p<0.05), and left ventricular dysfunction (Mean ± SEM; MI: 35.4% ± 1.25% vs. Sham 49.19% ± 1.07%; p<0.05) in the MI group. Importantly, treatment of diabetic infarcted myocardium with FGF-9 resulted in significantly decreased monocyte infiltration (Mean ± SEM; MI+FGF-9: 1.39% ± 0.1% vs. MI: 2.02% ± 0.23%; p<0.05), increased M2 macrophage differentiation (Mean ± SEM; MI+FGF-9: 4.82% ± 0.86% vs. MI: 0.85% ± 0.3%; p<0.05) and associated anti-inflammatory cytokines (IL-10 and IL-1RA), reduced adverse remodeling (Mean ± SEM; MI+FGF-9: 11.59% ± 1.2% vs. MI: 33% ± 3.04%; p<0.05), and improved cardiac function (Fractional shortening, Mean ± SEM; MI+FGF-9: 41.51% ± 1.68% vs. MI: 35.4% ± 1.25%; p<0.05). In conclusion, our data suggest FGF-9 possesses novel therapeutic potential in its ability to

  11. Activin A Predicts Left Ventricular Remodeling and Mortality in Patients with ST-Elevation Myocardial Infarction

    PubMed Central

    Lin, Jeng-Feng; Hsu, Shun-Yi; Teng, Ming-Sheng; Wu, Semon; Hsieh, Chien-An; Jang, Shih-Jung; Liu, Chih-Jen; Huang, Hsuan-Li; Ko, Yu-Lin

    2016-01-01

    Background Activin A levels increase in a variety of heart diseases including ST-elevation myocardial infarction (STEMI). The aim of this study is to investigate whether the level of activin A can be beneficial in predicting left ventricular remodeling, heart failure, and death in patients with ST-elevation myocardial infarction (STEMI). Methods We enrolled 278 patients with STEMI who had their activin A levels measured on day 2 of hospitalization. Echocardiographic studies were performed at baseline and were repeated 6 months later. Thereafter, the clinical events of these patients were followed for a maximum of 3 years, including all-cause death and readmission for heart failure. Results During hospitalization, higher activin A level was associated with higher triglyceride level, lower left ventricular ejection fraction (LVEF), and lower left ventricular end diastolic ventricular volume index (LVEDVI) in multivariable linear regression model. During follow-up, patients with activin A levels > 129 pg/ml had significantly lower LVEF, and higher LVEDVI at 6 months. Kaplan-Meier survival curves showed that activin A level > 129 pg/ml was a predictor of all-cause death (p = 0.022), but not a predictor of heart failure (p = 0.767). Conclusions Activin A level > 129 pg/ml predicts worse left ventricular remodeling and all-cause death in STEMI. PMID:27471355

  12. Childhood obesity and cardiac remodeling: from cardiac structure to myocardial mechanics.

    PubMed

    Tadic, Marijana; Cuspidi, Cesare

    2015-08-01

    Epidemic of obesity, especially morbid obesity, among children and adolescents, is a key factor associated with the dramatic increase in prevalence of type 2 diabetes mellitus, arterial hypertension, and metabolic syndrome in this population. Furthermore, childhood obesity represents a very important predictor of obesity in adulthood that is related to cardiovascular and cerebrovascular diseases. Overweight and obesity in children and adolescents are associated with impairment of cardiac structure and function. The majority of studies investigated the influence of obesity on left ventricular remodeling. However, the impact of obesity on the right ventricle, both the atria, and myocardial mechanics has been insufficiently studied. The aim of this review article is to summarize all data about heart remodeling in childhood, from cardiac size, throughout systolic and diastolic function, to myocardial mechanics, using a wide range of mainly echocardiographic techniques and parameters. Additionally, we sought to present current knowledge about the influence of weight loss, achieved by various therapeutic approaches, on the improvement of cardiac geometry, structure, and function in obese children and adolescents. PMID:25798901

  13. Transient Receptor Potential Channels Contribute to Pathological Structural and Functional Remodeling After Myocardial Infarction

    PubMed Central

    Davis, Jennifer; Correll, Robert N.; Trappanese, Danielle M.; Hoffman, Nicholas E.; Troupes, Constantine D.; Berretta, Remus M.; Kubo, Hajime; Madesh, Muniswamy; Chen, Xiongwen; Gao, Erhe; Molkentin, Jeffery D.; Houser, Steven R.

    2014-01-01

    Rationale The cellular and molecular basis for post myocardial infarction (MI) structural and functional remodeling is not well understood. Objective To determine if Ca2+ influx through transient receptor potential (canonical) (TRPC) channels contributes to post-MI structural and functional remodeling. Methods and Results TRPC1/3/4/6 channel mRNA increased after MI in mice and was associated with TRPC-mediated Ca2+ entry. Cardiac myocyte specific expression of a dominant negative (dn: loss of function) TRPC4 channel increased basal myocyte contractility and reduced hypertrophy and cardiac structural and functional remodeling after MI while increasing survival. We used adenovirus-mediated expression of TRPC3/4/6 channels in cultured adult feline myocytes (AFMs) to define mechanistic aspects of these TRPC-related effects. TRPC3/4/6 over expression in AFMs induced calcineurin (Cn)-Nuclear Factor of Activated T cells (NFAT) mediated hypertrophic signaling, which was reliant on caveolae targeting of TRPCs. TRPC3/4/6 expression in AFMs increased rested state contractions and increased spontaneous sarcoplasmic reticulum (SR) Ca2+ sparks mediated by enhanced phosphorylation of the ryanodine receptor. TRPC3/4/6 expression was associated with reduced contractility and response to catecholamines during steady state pacing, likely due to enhanced SR Ca2+ leak. Conclusions Ca2+ influx through TRPC channels expressed after MI activates pathological cardiac hypertrophy and reduces contractility reserve. Blocking post-MI TRPC activity improved post-MI cardiac structure and function. PMID:25047165

  14. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration.

    PubMed

    Talman, Virpi; Ruskoaho, Heikki

    2016-09-01

    Ischemic cell death during a myocardial infarction leads to a multiphase reparative response in which the damaged tissue is replaced with a fibrotic scar produced by fibroblasts and myofibroblasts. This also induces geometrical, biomechanical, and biochemical changes in the uninjured ventricular wall eliciting a reactive remodeling process that includes interstitial and perivascular fibrosis. Although the initial reparative fibrosis is crucial for preventing rupture of the ventricular wall, an exaggerated fibrotic response and reactive fibrosis outside the injured area are detrimental as they lead to progressive impairment of cardiac function and eventually to heart failure. In this review, we summarize current knowledge of the mechanisms of both reparative and reactive cardiac fibrosis in response to myocardial infarction, discuss the potential of inducing cardiac regeneration through direct reprogramming of fibroblasts and myofibroblasts into cardiomyocytes, and review the currently available and potential future therapeutic strategies to inhibit cardiac fibrosis. Graphical abstract Reparative response following a myocardial infarction. Hypoxia-induced cardiomyocyte death leads to the activation of myofibroblasts and a reparative fibrotic response in the injured area. Right top In adult mammals, the fibrotic scar formed at the infarcted area is permanent and promotes reactive fibrosis in the uninjured myocardium. Right bottom In teleost fish and newts and in embryonic and neonatal mammals, the initial formation of a fibrotic scar is followed by regeneration of the cardiac muscle tissue. Induction of post-infarction cardiac regeneration in adult mammals is currently the target of intensive research and drug discovery attempts. PMID:27324127

  15. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration.

    PubMed

    Talman, Virpi; Ruskoaho, Heikki

    2016-09-01

    Ischemic cell death during a myocardial infarction leads to a multiphase reparative response in which the damaged tissue is replaced with a fibrotic scar produced by fibroblasts and myofibroblasts. This also induces geometrical, biomechanical, and biochemical changes in the uninjured ventricular wall eliciting a reactive remodeling process that includes interstitial and perivascular fibrosis. Although the initial reparative fibrosis is crucial for preventing rupture of the ventricular wall, an exaggerated fibrotic response and reactive fibrosis outside the injured area are detrimental as they lead to progressive impairment of cardiac function and eventually to heart failure. In this review, we summarize current knowledge of the mechanisms of both reparative and reactive cardiac fibrosis in response to myocardial infarction, discuss the potential of inducing cardiac regeneration through direct reprogramming of fibroblasts and myofibroblasts into cardiomyocytes, and review the currently available and potential future therapeutic strategies to inhibit cardiac fibrosis. Graphical abstract Reparative response following a myocardial infarction. Hypoxia-induced cardiomyocyte death leads to the activation of myofibroblasts and a reparative fibrotic response in the injured area. Right top In adult mammals, the fibrotic scar formed at the infarcted area is permanent and promotes reactive fibrosis in the uninjured myocardium. Right bottom In teleost fish and newts and in embryonic and neonatal mammals, the initial formation of a fibrotic scar is followed by regeneration of the cardiac muscle tissue. Induction of post-infarction cardiac regeneration in adult mammals is currently the target of intensive research and drug discovery attempts.

  16. Alterations in vasomotor control of coronary resistance vessels in remodelled myocardium of swine with a recent myocardial infarction.

    PubMed

    Duncker, Dirk J; de Beer, Vincent J; Merkus, Daphne

    2008-05-01

    The mechanism underlying the progressive deterioration of left ventricular (LV) dysfunction after myocardial infarction (MI) towards overt heart failure remains incompletely understood, but may involve impairments in coronary blood flow regulation within remodelled myocardium leading to intermittent myocardial ischemia. Blood flow to the remodelled myocardium is hampered as the coronary vasculature does not grow commensurate with the increase in LV mass and because extravascular compression of the coronary vasculature is increased. In addition to these factors, an increase in coronary vasomotor tone, secondary to neurohumoral activation and endothelial dysfunction, could also contribute to the impaired myocardial oxygen supply. Consequently, we explored, in a series of studies, the alterations in regulation of coronary resistance vessel tone in remodelled myocardium of swine with a 2 to 3-week-old MI. These studies indicate that myocardial oxygen balance is perturbed in remodelled myocardium, thereby forcing the myocardium to increase its oxygen extraction. These perturbations do not appear to be the result of blunted beta-adrenergic or endothelial NO-mediated coronary vasodilator influences, and are opposed by an increased vasodilator influence through opening of K(ATP) channels. Unexpectedly, we observed that despite increased circulating levels of noradrenaline, angiotensin II and endothelin-1, alpha-adrenergic tone remained negligible, while the coronary vasoconstrictor influences of endogenous endothelin and angiotensin II were virtually abolished. We conclude that, early after MI, perturbations in myocardial oxygen balance are observed in remodelled myocardium. However, adaptive alterations in coronary resistance vessel control, consisting of increased vasodilator influences in conjunction with blunted vasoconstrictor influences, act to minimize the impairments of myocardial oxygen balance.

  17. Aerobic Training after Myocardial Infarction: Remodeling Evaluated by Cardiac Magnetic Resonance

    PubMed Central

    Izeli, Nataly Lino; dos Santos, Aurélia Juliana; Crescêncio, Júlio César; Gonçalves, Ana Clara Campagnolo Real; Papa, Valéria; Marques, Fabiana; Pazin-Filho, Antônio; Gallo-Júnior, Lourenço; Schmidt, André

    2016-01-01

    Background Numerous studies show the benefits of exercise training after myocardial infarction (MI). Nevertheless, the effects on function and remodeling are still controversial. Objectives To evaluate, in patients after (MI), the effects of aerobic exercise of moderate intensity on ventricular remodeling by cardiac magnetic resonance imaging (CMR). Methods 26 male patients, 52.9 ± 7.9 years, after a first MI, were assigned to groups: trained group (TG), 18; and control group (CG), 8. The TG performed supervised aerobic exercise on treadmill twice a week, and unsupervised sessions on 2 additional days per week, for at least 3 months. Laboratory tests, anthropometric measurements, resting heart rate (HR), exercise test, and CMR were conducted at baseline and follow-up. Results The TG showed a 10.8% reduction in fasting blood glucose (p = 0.01), and a 7.3-bpm reduction in resting HR in both sitting and supine positions (p < 0.0001). There was an increase in oxygen uptake only in the TG (35.4 ± 8.1 to 49.1 ± 9.6 mL/kg/min, p < 0.0001). There was a statistically significant decrease in the TG left ventricular mass (LVmass) (128.7 ± 38.9 to 117.2 ± 27.2 g, p = 0.0032). There were no statistically significant changes in the values of left ventricular end-diastolic volume (LVEDV) and ejection fraction in the groups. The LVmass/EDV ratio demonstrated a statistically significant positive remodeling in the TG (p = 0.015). Conclusions Aerobic exercise of moderate intensity improved physical capacity and other cardiovascular variables. A positive remodeling was identified in the TG, where a left ventricular diastolic dimension increase was associated with LVmass reduction. PMID:26959403

  18. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction

    PubMed Central

    Beaumont, Eric; Southerland, Elizabeth M.; Hardwick, Jean C.; Wright, Gary L.; Ryan, Shannon; Li, Ying; KenKnight, Bruce H.; Armour, J. Andrew

    2015-01-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions. PMID:26276818

  19. Exercise and nutrition in myocardial matrix metabolism, remodeling, regeneration, epigenetics, microcirculation, and muscle.

    PubMed

    Tyagi, Suresh C; Joshua, Irving G

    2014-07-01

    Remodeling and myocardial matrix metabolism contributes to cardiac endothelium-myocyte (perivascular fibrosis), myocyte-myocyte (interstitial fibrosis), and mitochondrion-myocyte (fusion and fission) coupling. Matrix metalloproteinases (MMPs), and tissue inhibitor of metalloproteinases (TIMPs) play differential roles in different tissues and diseases. For example, although present in the heart, MMP-3 is known as stromelysin (i.e., stromal tissue enzyme). Interestingly, TIMP-3 causes apoptosis. Exercise and nutrition are synergistic in the mitigation of diseases: exercise releases exosomes containing miRNAs. Nutrition/vitamins B6 and B12 regulate the metabolism of homocysteine (an epigenetic byproduct of DNA/RNA/protein methylation). Thus, epigenetic silencing is an important therapeutic target. The statistical analysis of cohorts may be less indicative for the treatment of a disease, particularly if the 2 twins are different in terms of responding to the medicine for the same disease, therefore, personalized medicine is the future of therapy. PMID:24959992

  20. Intravenous myocardial contrast echocardiography predicts regional and global left ventricular remodelling after acute myocardial infarction: comparison with low dose dobutamine stress echocardiography

    PubMed Central

    Abe, Y; Muro, T; Sakanoue, Y; Komatsu, R; Otsuka, M; Naruko, T; Itoh, A; Yoshiyama, M; Haze, K; Yoshikawa, J

    2005-01-01

    Objective: To assess the role of intravenous myocardial contrast echocardiography (MCE) in predicting functional recovery and regional or global left ventricular (LV) remodelling after acute myocardial infarction (AMI) compared with low dose dobutamine stress echocardiography (LDSE). Methods: 21 patients with anterior AMI and successful primary angioplasty underwent MCE and LDSE during the subacute stage (2–4 weeks after AMI). Myocardial perfusion and contractile reserve were assessed in each segment (12 segment model) with MCE and LDSE. The 118 dyssynergic segments in the subacute stage were classified as recovered, unchanged, or remodelled according to wall motion at six months’ follow up. Percentage increase in LV end diastolic volume (%ΔEDV) was also calculated. Results: The presence of perfusion was less accurate than the presence of contractile reserve in predicting regional recovery (55% v 81%, p < 0.0001). However, the absence of perfusion was more accurate than the absence of contractile reserve in predicting regional remodelling (83% v 48%, p < 0.0001). The number of segments without perfusion was an independent predictor of %ΔEDV, whereas the number of segments without contractile reserve was not. The area under the receiver operating characteristic curve showed that the number of segments without perfusion predicted substantial LV dilatation (%ΔEDV > 20%) more accurately than did the number of segments without contractile reserve (0.88 v 0.72). Conclusion: In successfully revascularised patients with AMI, myocardial perfusion assessed by MCE is predictive of regional and global LV remodelling rather than of functional recovery, whereas contractile reserve assessed by LDSE is predictive of functional recovery rather than of LV remodelling. PMID:15797931

  1. Simvastatin ameliorates ventricular remodeling via the TGF-β1 signaling pathway in rats following myocardial infarction

    PubMed Central

    XIAO, XIANGBIN; CHANG, GUANGLEI; LIU, JIAN; SUN, GUANGYUN; LIU, LI; QIN, SHU; ZHANG, DONGYING

    2016-01-01

    Statins are widely used in patients with cardiovascular diseases. A considerable number of previous studies revealed that the intracellular signaling of transforming growth factor (TGF)-β1 mediated the development of cardiomyocyte hypertrophy and interstitial fibrosis. However, whether statins can ameliorate ventricular remodeling in post-myocardial infarction via the TGF-β1 signaling pathway remains to be rigorously tested. The left anterior descending artery was ligated to induce a rat model of myocardial infarction. The rat model of myocardial infarction was treated with simvastatin through gastric gavage (10, 20 or 40 mg kg−1·d−1). All rats were sacrificed on day 28 after the myocardial infarction operation. The results revealed that simvastatin significantly improved the hemodynamic indexes, left ventricular mass index, the myocardial tissue structure, the cardiomyocyte cross-sectional area and the collagen volume fraction, and also showed that the levels of TGF-β1, TGF-activated kinase (TAK)1 and drosophila mothers against decapentaplegic (Smad)3 were significantly reduced following treatment with simvastatin, while the levels of Smad7 in the simvastatin treatment groups were markedly increased. The results of the present study suggested that statins ameliorated ventricular remodeling in post-myocardial infarction rats via the TGF-β1 signaling pathway, which provided a novel explanation for the pleiotropic effects of statins that benefit the cardiovascular system. PMID:27121011

  2. Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction.

    PubMed

    Huang, Yan; Wang, Dandan; Wang, Xin; Zhang, Yijie; Liu, Tao; Chen, Yuting; Tang, Yanhong; Wang, Teng; Hu, Dan; Huang, Congxin

    2016-01-01

    CC chemokine receptor 9 (CCR9), which is a unique receptor for CC chemokine ligand (CCL25), is mainly expressed on lymphocytes, dendritic cells (DCs) and monocytes/macrophages. CCR9 mediates the chemotaxis of inflammatory cells and participates in the pathological progression of inflammatory diseases. However, the role of CCR9 in the pathological process of myocardial infarction (MI) remains unexplored; inflammation plays a key role in this process. Here, we used CCR9 knockout mice to determine the functional significance of CCR9 in regulating post-MI cardiac remodeling and its underlying mechanism. MI was induced by surgical ligation of the left anterior descending coronary artery in CCR9 knockout mice and their CCR9+/+ littermates. Our results showed that the CCR9 expression levels were up-regulated in the hearts of the MI mice. Abrogation of CCR9 improved the post-MI survival rate and left ventricular (LV) dysfunction and decreased the infarct size. In addition, the CCR9 knockout mice exhibited attenuated inflammation, apoptosis, structural and electrical remodeling compared with the CCR9+/+ MI mice. Mechanistically, CCR9 mainly regulated the pathological response by interfering with the NF-κB and MAPK signaling pathways. In conclusion, the data reveal that CCR9 serves as a novel modulator of pathological progression following MI through NF-κB and MAPK signaling.

  3. Galectin-1 controls cardiac inflammation and ventricular remodeling during acute myocardial infarction.

    PubMed

    Seropian, Ignacio M; Cerliani, Juan P; Toldo, Stefano; Van Tassell, Benjamín W; Ilarregui, Juan M; González, Germán E; Matoso, Mirian; Salloum, Fadi N; Melchior, Ryan; Gelpi, Ricardo J; Stupirski, Juan C; Benatar, Alejandro; Gómez, Karina A; Morales, Celina; Abbate, Antonio; Rabinovich, Gabriel A

    2013-01-01

    Galectin-1 (Gal-1), an evolutionarily conserved β-galactoside-binding lectin, plays essential roles in the control of inflammation and neovascularization. Although identified as a major component of the contractile apparatus of cardiomyocytes, the potential role of Gal-1 in modulating heart pathophysiology is uncertain. Here, we aimed to characterize Gal-1 expression and function in the infarcted heart. Expression of Gal-1 was substantially increased in the mouse heart 7 days after acute myocardial infarction (AMI) and in hearts from patients with end-stage chronic heart failure. This lectin was localized mainly in cardiomyocytes and inflammatory infiltrates in peri-infarct areas, but not in remote areas. Both simulated hypoxia and proinflammatory cytokines selectively up-regulated Gal-1 expression in mouse cardiomyocytes, whereas anti-inflammatory cytokines inhibited expression of this lectin or had no considerable effect. Compared with their wild-type counterpart, Gal-1-deficient (Lgals1(-/-)) mice showed enhanced cardiac inflammation, characterized by increased numbers of macrophages, natural killer cells, and total T cells, but reduced frequency of regulatory T cells, leading to impaired cardiac function at baseline and impaired ventricular remodeling 7 days after nonreperfused AMI. Treatment of mice with recombinant Gal-1 attenuated cardiac damage in reperfused AMI. Taken together, our results indicate a protective role for Gal-1 in normal cardiac homeostasis and postinfarction remodeling by preventing cardiac inflammation. Thus, Gal-1 treatment represents a potential novel strategy to attenuate heart failure in AMI.

  4. Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction

    PubMed Central

    Huang, Yan; Wang, Dandan; Wang, Xin; Zhang, Yijie; Liu, Tao; Chen, Yuting; Tang, Yanhong; Wang, Teng; Hu, Dan; Huang, Congxin

    2016-01-01

    CC chemokine receptor 9 (CCR9), which is a unique receptor for CC chemokine ligand (CCL25), is mainly expressed on lymphocytes, dendritic cells (DCs) and monocytes/macrophages. CCR9 mediates the chemotaxis of inflammatory cells and participates in the pathological progression of inflammatory diseases. However, the role of CCR9 in the pathological process of myocardial infarction (MI) remains unexplored; inflammation plays a key role in this process. Here, we used CCR9 knockout mice to determine the functional significance of CCR9 in regulating post-MI cardiac remodeling and its underlying mechanism. MI was induced by surgical ligation of the left anterior descending coronary artery in CCR9 knockout mice and their CCR9+/+ littermates. Our results showed that the CCR9 expression levels were up-regulated in the hearts of the MI mice. Abrogation of CCR9 improved the post-MI survival rate and left ventricular (LV) dysfunction and decreased the infarct size. In addition, the CCR9 knockout mice exhibited attenuated inflammation, apoptosis, structural and electrical remodeling compared with the CCR9+/+ MI mice. Mechanistically, CCR9 mainly regulated the pathological response by interfering with the NF-κB and MAPK signaling pathways. In conclusion, the data reveal that CCR9 serves as a novel modulator of pathological progression following MI through NF-κB and MAPK signaling. PMID:27585634

  5. Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction.

    PubMed

    Huang, Yan; Wang, Dandan; Wang, Xin; Zhang, Yijie; Liu, Tao; Chen, Yuting; Tang, Yanhong; Wang, Teng; Hu, Dan; Huang, Congxin

    2016-01-01

    CC chemokine receptor 9 (CCR9), which is a unique receptor for CC chemokine ligand (CCL25), is mainly expressed on lymphocytes, dendritic cells (DCs) and monocytes/macrophages. CCR9 mediates the chemotaxis of inflammatory cells and participates in the pathological progression of inflammatory diseases. However, the role of CCR9 in the pathological process of myocardial infarction (MI) remains unexplored; inflammation plays a key role in this process. Here, we used CCR9 knockout mice to determine the functional significance of CCR9 in regulating post-MI cardiac remodeling and its underlying mechanism. MI was induced by surgical ligation of the left anterior descending coronary artery in CCR9 knockout mice and their CCR9+/+ littermates. Our results showed that the CCR9 expression levels were up-regulated in the hearts of the MI mice. Abrogation of CCR9 improved the post-MI survival rate and left ventricular (LV) dysfunction and decreased the infarct size. In addition, the CCR9 knockout mice exhibited attenuated inflammation, apoptosis, structural and electrical remodeling compared with the CCR9+/+ MI mice. Mechanistically, CCR9 mainly regulated the pathological response by interfering with the NF-κB and MAPK signaling pathways. In conclusion, the data reveal that CCR9 serves as a novel modulator of pathological progression following MI through NF-κB and MAPK signaling. PMID:27585634

  6. Regulatory role of CARD3 in left ventricular remodelling and dysfunction after myocardial infarction.

    PubMed

    Li, Liangpeng; Wang, Xiaodi; Chen, Wen; Qi, Haoyu; Jiang, Ding-Sheng; Huang, Ling; Huang, Fuhua; Wang, Liming; Li, Hongliang; Chen, Xin

    2015-11-01

    Caspase activation and recruitment domain 3 (CARD3) is a caspase recruitment domain (CARD)-containing serine/threonine kinase and plays a pivotal role in apoptosis, immunity, tissue development and proliferation. To date, the causal relationship between CARD3 and myocardial infarction (MI) remains largely unexplored. This study aimed to identify the functional significance of CARD3 in the regulation of cardiac remodelling after MI and the underlying mechanisms of its effects. The levels of CARD3 expression were up-regulated in failing human and mouse post-infarction hearts. In addition, CARD3-knockout (KO) mice and transgenic mice overexpressing CARD3 in the heart were then generated and subjected to MI. Compared with wild-type (WT) control mice, CARD3-KO mice developed smaller infarct sizes, improved survival rates, and preserved left ventricle (LV) function after MI. Significantly, CARD3-KO hearts had less cardiomyocyte apoptosis and inflammatory cell infiltration in the infarct border zone. Attenuated LV remodelling was also observed in the KO hearts following MI, with reduced cardiac hypertrophy and fibrosis. Conversely, CARD3 overexpression resulted in the opposite MI-induced phenotype. Similar results were observed in ex vivo-cultured neonatal rat cardiomyocytes exposed to hypoxia. Mechanistically, we discovered that the CARD3-mediated detrimental effects of MI were associated with the activation of the NF-κB and p38 signalling cascades. Taken together, these data demonstrate that CARD3 serves as a novel positive modulator of ventricular remodelling after MI via the regulation of the NF-κB and p38 signalling. Thus, CARD3 may be a promising therapeutic target for the treatment of heart failure after MI.

  7. Angiotensin receptors alter myocardial infarction-induced remodeling of the guinea pig cardiac plexus.

    PubMed

    Hardwick, Jean C; Ryan, Shannon E; Powers, Emily N; Southerland, E Marie; Ardell, Jeffrey L

    2015-07-15

    Neurohumoral remodeling is fundamental to the evolution of heart disease. This study examined the effects of chronic treatment with an ACE inhibitor (captopril, 3 mg·kg(-1)·day(-1)), AT1 receptor antagonist (losartan, 3 mg·kg(-1)·day(-1)), or AT2 receptor agonist (CGP42112A, 0.14 mg·kg(-1)·day(-1)) on remodeling of the guinea pig intrinsic cardiac plexus following chronic myocardial infarction (MI). MI was surgically induced and animals recovered for 6 or 7 wk, with or without drug treatment. Intracellular voltage recordings from whole mounts of the cardiac plexus were used to monitor changes in neuronal responses to norepinephrine (NE), muscarinic agonists (bethanechol), or ANG II. MI produced an increase in neuronal excitability with NE and a loss of sensitivity to ANG II. MI animals treated with captopril exhibited increased neuronal excitability with NE application, while MI animals treated with CGP42112A did not. Losartan treatment of MI animals did not alter excitability with NE compared with untreated MIs, but these animals did show an enhanced synaptic efficacy. This effect on synaptic function was likely due to presynaptic AT1 receptors, since ANG II was able to reduce output to nerve fiber stimulation in control animals, and this effect was prevented by inclusion of losartan in the bath solution. Analysis of AT receptor expression by Western blot showed a decrease in both AT1 and AT2 receptors with MI that was reversed by all three drug treatments. These data indicate that neuronal remodeling of the guinea pig cardiac plexus following MI is mediated, in part, by activation of both AT1 and AT2 receptors.

  8. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats

    PubMed Central

    Gimenes, C.; Gimenes, R.; Rosa, C. M.; Xavier, N. P.; Campos, D. H. S.; Fernandes, A. A. H.; Cezar, M. D. M.; Guirado, G. N.; Cicogna, A. C.; Takamoto, A. H. R.; Okoshi, M. P.; Okoshi, K.

    2015-01-01

    We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary diabetes (DM-Sed), and exercised diabetes (DM-Ex). Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV) papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73 ± 0.49; C-Ex: 5.67 ± 0.53; DM-Sed: 6.41 ± 0.54; DM-Ex: 5.81 ± 0.50 mm; P < 0.05 DM-Sed vs C-Sed and DM-Ex). Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats. PMID:26509175

  9. Are there gender differences in left ventricular remodeling after myocardial infarction in rats?

    PubMed Central

    Antonio, Ednei Luiz; Serra, Andrey Jorge; dos Santos, Alexandra Alberta; Vieira, Stella Sousa; Silva, Jairo Montemor Augusto; Yoshizaki, Amanda; Sofia, Renato Rodrigues; Tucci, Paulo José Ferreira

    2015-01-01

    Objective An unclear issue is whether gender may influence at cardiac remodeling after myocardial infarction (MI). We evaluated left ventricle remodeling in female and male rats post-MI. Methods Rats were submitted to anterior descending coronary occlusion. Echocardiographic evaluations were performed on the first and sixth week post-occlusion to determine myocardial infarction size and left ventricle systolic function (FAC, fractional area change). Pulsed Doppler was applied to analyze left ventricle diastolic function using the following parameters: E wave, A wave, E/A ratio. Two-way ANOVA was applied for comparisons, complemented by the Bonferroni test. A P≤=0.05 was considered significant. Results There were no significant differences between genders for morphometric parameters on first (MI [Female (FE): 44.0±5.0 vs. Male (MA): 42.0±3.0%]; diastolic [FE: 0.04±0.003 vs. MA: 0.037±0.005, mm/g] and systolic [FE: 0.03±0.0004 vs. MA: 0.028±0.005, mm/g] diameters of left ventricle) and sixth (MI [FE: 44.0±5.0 vs. MA: 42.0±3.0, %]; diastolic [FE: 0.043±0.01 vs. MA: 0.034±0.005, mm/g] and systolic [FE: 0.035±0.01 vs. MA: 0.027±0.005, mm/g] of LV) week. Similar findings were reported for left ventricle functional parameters on first (FAC [FE: 34.0±6.0 vs. MA: 32.0±4.0, %]; wave E [FE: 70.0±18.0 vs. MA: 73.0±14.0, cm/s]; wave A [FE: 20.0±12.0 vs. MA: 28.0±13.0, cm/s]; E/A [FE: 4.9±3.4 vs. MA: 3.3±1.8]) and sixth (FAC [FE: 29.0±7.0 vs. MA: 31.0±7.0, %]; wave E [FE: 85.0±18.0 vs. MA: 87.0±20.0, cm/s]; wave A [FE: 20.0±11.0 vs. MA: 28.0±17.0, cm/s]; E/A [FE: 6.2±4.0 vs. MA: 4.6±3.4]) week. Conclusion Gender does not influence left ventricle remodeling post-MI in rats. PMID:25859870

  10. Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia–reperfusion injury: A preclinical study of a porous polyurethane material in a porcine model

    PubMed Central

    Hashizume, Ryotaro; Fujimoto, Kazuro L.; Hong, Yi; Guan, Jianjun; Toma, Catalin; Tobita, Kimimasa; Wagner, William R.

    2013-01-01

    Objective Myocardial infarction (MI) can lead to irreversible adverse left ventricular remodeling resulting in subsequent severe dysfunction. The objective of this study was to investigate the potential for biodegradable, elastomeric patch implantation to positively alter the remodeling process after MI in a porcine model. Methods Yorkshire pigs underwent a 60-minute catheter balloon occlusion of the left circumflex artery. Two weeks after MI animals underwent epicardial placement of a biodegradable, porous polyurethane (poly(ester urethane)urea; PEUU) patch (MI+PEUU, n = 7) or sham surgery (MI+sham, n = 8). Echocardiography before surgery and at 4 and 8 weeks after surgery measured the end-diastolic area (EDA) and fractional area change (% FAC). All animals were humanely killed 8 weeks after surgery and hearts were histologically assessed. Results At 8 weeks, echocardiography revealed greater EDA values in the MI+sham group (23.6 ± 6.6 cm2 , mean ± standard deviaation) than in the MI+PEUU group (15.9 ± 2.5 cm2) (P < .05) and a lower %FAC in the MI+sham group (24.8 ± 7.6) than in the MI+PEUU group (35.9 ± 7.8) (P < .05). The infarcted ventricular wall was thicker in the MI+PEUU group (1.56 ± 0.5 cm) than in the MI+sham group (0.91 ± 0.24 cm) (P < .01). Conclusions Biodegradable elastomeric PEUU patch implantation onto the porcine heart 2 weeks post-MI attenuated left ventricular adverse remodeling and functional deterioration and was accompanied by increased neovascularization. These findings, although limited to a 2-month follow-up, may suggest an attractive clinical option to moderate post-MI cardiac failure. PMID:23219497

  11. Exercise training reduces cardiac dysfunction and remodeling in ovariectomized rats submitted to myocardial infarction.

    PubMed

    Almeida, Simone Alves de; Claudio, Erick Roberto Gonçalves; Mengal, Vinícius; Mengal, Vinícius Franskoviaky; Oliveira, Suelen Guedes de; Merlo, Eduardo; Podratz, Priscila Lang; Gouvêa, Sônia Alves; Graceli, Jones Bernardes; de Abreu, Gláucia Rodrigues

    2014-01-01

    The aim of this study was to evaluate whether exercise training (ET) prevents or minimizes cardiac dysfunction and pathological ventricular remodeling in ovariectomized rats subjected to myocardial infarction (MI) and to examine the possible mechanisms involved in this process. Ovariectomized Wistar rats were subjected to either MI or fictitious surgery (Sham) and randomly divided into the following groups: Control, OVX+SHAMSED, OVX+SHAMET, OVX+MISED and OVX+MIET. ET was performed on a motorized treadmill (5x/wk, 60 min/day, 8 weeks). Cardiac function was assessed by ventricular catheterization and Dihydroethidium fluorescence (DHE) was evaluated to analyze cardiac oxidative stress. Histological analyses were made to assess collagen deposition, myocyte hypertrophy and infarct size. Western Blotting was performed to analyze the protein expression of catalase and SOD-2, as well as Gp91phox and AT1 receptor (AT1R). MI-trained rats had significantly increased in +dP/dt and decreased left ventricular end-diastolic pressure compared with MI-sedentary rats. Moreover, oxidative stress and collagen deposition was reduced, as was myocyte hypertrophy. These effects occurred in parallel with a reduction in both AT1R and Gp91phox expression and an increase in catalase expression. SOD-2 expression was not altered. These results indicate that ET improves the functional cardiac parameters associated with attenuation of cardiac remodeling in ovariectomized rats subjected to MI. The mechanism seems to be related to a reduction in the expression of both the AT1 receptor and Gp91phox as well as an increase in the antioxidant enzyme catalase, which contributes to a reduction in oxidative stress. Therefore, ET may be an important therapeutic target for the prevention of heart failure in postmenopausal women affected by MI. PMID:25551214

  12. Intermediate monocytes lead to enhanced myocardial remodelling in STEMI patients with diabetes.

    PubMed

    Lu, Wenbin; Zhang, Ziwei; Fu, Cong; Ma, Genshan

    2015-01-01

    This study aimed to evaluate the potential associations of intermediate monocytes (CD14(++)CD16(+)) with myocardial remodelling in ST segment elevation myocardial infarction (STEMI) patients with diabetes.A total of 67 STEMI patients with diabetes were enrolled. The control group consisted of 65 STEMI patients without diabetes. All patients received emergency medical services for reperfusion therapy in less than 12 hours after onset of AMI. Blinded to patient clinical characteristics, monocyte subset analysis was performed using flow cytometry immediately after admission. mRNA of Chemokine Decoy Receptor D6 in each subset of monocytes was validated by Q-PCR. Expression of CCL2 in patient plasma was determined with an Elisa kit. Infarct size and left ventricular ejection fraction (LVEF) were measured using 3-dimensional echocardiography 3 days and 6 months after AMI. The incidences of recurrent cardiovascular events and death in each group were measured using the Kaplan-Meier estimator in follow-up during the next 24 months. Cox proportional-hazard models were further used to analyze the relationship of monocyte cell counts and event-free survival after adjusting for confounding factors.The number of circulating intermediate monocytes was significantly correlated with LVEF% and infarct size (r = -0.32; P = 0.008; r = 0.57, P < 0.001) in STEMI patients with diabetes compared with those without diabetes 6 months after AMI. Chemokine Decoy Receptor D6 transcript levels were lower in intermediate monocytes of STEMI patients with diabetes compared to the subsets in STEMI patients without diabetes (P < 0.001). Higher levels of CCL2 (pg/mL) were observed in STEMI patients with diabetes compared to STEMI patients without diabetes (P < 0.001). During a mean follow-up period of 24 ± 1 month, recurrent cardiovascular events or death occurred in 23 patients belonging to the STEMI with diabetes group and 10 belonging to the control group. Univariate Kaplan-Meier analysis

  13. Pathological Role of Serum- and Glucocorticoid-Regulated Kinase 1 in Adverse Ventricular Remodeling

    PubMed Central

    Das, Saumya; Aiba, Takeshi; Rosenberg, Michael; Hessler, Katherine; Xiao, Chunyang; Quintero, Pablo A.; Ottaviano, Filomena G.; Knight, Ashley C.; Graham, Evan L.; Boström, Pontus; Morissette, Michael R.; del Monte, Federica; Begley, Michael J.; Cantley, Lewis C.; Ellinor, Patrick T.; Tomaselli, Gordon F.; Rosenzweig, Anthony

    2012-01-01

    Background Heart failure is a growing cause of morbidity and mortality. Cardiac PI3-kinase signaling promotes cardiomyocyte survival and function but is paradoxically activated in heart failure, suggesting chronic activation of this pathway may become maladaptive. Here we investigated the downstream PI3-kinase effector, SGK1 (serum- and glucocorticoid-regulated kinase-1), in heart failure and its complications. Methods and Results We found that cardiac SGK1 is activated in human and murine heart failure. We investigated the role of SGK1 in the heart using cardiac-specific expression of constitutively-active or dominant-negative SGK1. Cardiac-specific activation of SGK1 in mice increased mortality, cardiac dysfunction, and ventricular arrhythmias. The pro-arrhythmic effects of SGK1 were linked to biochemical and functional changes in the cardiac sodium channel and could be reversed by treatment with ranolazine, a blocker of the late sodium current. Conversely, cardiac-specific inhibition of SGK1 protected mice after hemodynamic stress from fibrosis, heart failure, and sodium channel alterations. Conclusions SGK1 appears both necessary and sufficient for key features of adverse ventricular remodeling and may provide a novel therapeutic target in cardiac disease. PMID:23019294

  14. Renin Inhibition and AT1R blockade improve metabolic signaling, oxidant stress and myocardial tissue remodeling

    PubMed Central

    Whaley-Connell, Adam; Habibi, Javad; Rehmer, Nathan; Ardhanari, Sivakumar; Hayden, Melvin R; Pulakat, Lakshmi; Krueger, Caroline; M Ferrario, Carlos; DeMarco, Vincent G; Sowers, James R

    2013-01-01

    Objective Strategies that block angiotensin II actions on its angiotensin type 1 receptor or inhibit actions of aldosterone have been shown to reduce myocardial hypertrophy and interstitial fibrosis in states of insulin resistance. Thereby, we sought to determine if combination of direct renin inhibition with angiotensin type 1 receptor blockade in vivo, through greater reductions in systolic blood pressure (SBP) and aldosterone would attenuate left ventricular hypertrophy and interstitial fibrosis to a greater extent than either intervention alone. Materials/Methods We utilized the transgenic Ren2 rat which manifests increased tissue expression of murine renin which, in turn, results in increased renin-angiotensin system activity, aldosterone secretion and insulin resistance. Ren2 rats were treated with aliskiren, valsartan, the combination (aliskiren+valsartan), or vehicle for 21 days. Results Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic blood pressure, elevated serum aldosterone levels, cardiac tissue hypertrophy, interstitial fibrosis and ultrastructural remodeling. These biochemical and functional alterations were accompanied by increases in the NADPH oxidase subunit Nox2 and 3-nitrotyrosine content along with increases in mammalian target of rapamycin and reductions in protein kinase B phosphorylation. Combination therapy contributed to greater reductions in systolic blood pressure and serum aldosterone but did not result in greater improvement in metabolic signaling or markers of oxidative stress, fibrosis or hypertrophy beyond either intervention alone. Conclusions Thereby, our data suggest that the greater impact of combination therapy on reductions in aldosterone does not translate into greater reductions in myocardial fibrosis or hypertrophy in this transgenic model of tissue renin overexpression. PMID:23352204

  15. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction

    PubMed Central

    Troidl, C; Möllmann, H; Nef, H; Masseli, F; Voss, S; Szardien, S; Willmer, M; Rolf, A; Rixe, J; Troidl, K; Kostin, S; Hamm, C; Elsässer, A

    2009-01-01

    An important goal in cardiology is to minimize myocardial necrosis and to support a discrete but resilient scar formation after myocardial infarction (MI). Macrophages are a type of cells that influence cardiac remodelling during MI. Therefore, the goal of the present study was to investigate their transcriptional profile and to identify the type of activation during scar tissue formation. Ligature of the left anterior descending coronary artery was performed in mice. Macrophages were isolated from infarcted tissue using magnetic cell sorting after 5 days. The total RNA of macrophages was subjected to microarray analysis and compared with RNA from MI and LV-control. mRNA abundance of relevant targets was validated by quantitative real-time PCR 2, 5 and 10 days after MI (qRT-PCR). Immunohistochemistry was performed to localize activation type-specific proteins. The genome scan revealed 68 targets predominantly expressed by macrophages after MI. Among these targets, an increased mRNA abundance of genes, involved in both the classically (tumour necrosis factor α, interleukin 6, interleukin 1β) and the alternatively (arginase 1 and 2, mannose receptor C type 1, chitinase 3-like 3) activated phenotype of macrophages, was found 5 days after MI. This observation was confirmed by qRT-PCR. Using immunohistochemistry, we confirmed that tumour necrosis factor α, representing the classical activation, is strongly transcribed early after ligature (2 days). It was decreased after 5 and 10 days. Five days after MI, we found a fundamental change towards alternative activation of macrophages with up-regulation of arginase 1. Our results demonstrate that macrophages are differentially activated during different phases of scar tissue formation after MI. During the early inflammatory phase, macrophages are predominantly classically activated, whereas their phenotype changes during the important transition from inflammation to scar tissue formation into an alternatively activated

  16. Adapting extracellular matrix proteomics for clinical studies on cardiac remodeling post-myocardial infarction.

    PubMed

    Lindsey, Merry L; Hall, Michael E; Harmancey, Romain; Ma, Yonggang

    2016-01-01

    Following myocardial infarction (MI), the left ventricle (LV) undergoes a series of cardiac wound healing responses that involve stimulation of robust inflammation to clear necrotic myocytes and tissue debris and induction of extracellular matrix (ECM) protein synthesis to generate a scar. Proteomic strategies provide us with a means to index the ECM proteins expressed in the LV, quantify amounts, determine functions, and explore interactions. This review will focus on the efforts taken in the proteomics research field that have expanded our understanding of post-MI LV remodeling, concentrating on the strengths and limitations of different proteomic approaches to glean information that is specific to ECM turnover in the post-MI setting. We will discuss how recent advances in sample preparation and labeling protocols increase our successes at detecting components of the cardiac ECM proteome. We will summarize how proteomic approaches, focusing on the ECM compartment, have progressed over time to current gel-free methods using decellularized fractions or labeling strategies that will be useful for clinical applications. This review will provide an overview of how cardiac ECM proteomics has evolved over the last decade and will provide insight into future directions that will drive forward our understanding of cardiac ECM turnover in the post-MI LV. PMID:27651752

  17. Essential role of sympathetic endothelin A receptors for adverse cardiac remodeling

    PubMed Central

    Lehmann, Lorenz H.; Rostosky, Julia S.; Buss, Sebastian J.; Kreusser, Michael M.; Krebs, Jutta; Mier, Walter; Enseleit, Frank; Spiger, Katharina; Hardt, Stefan E.; Wieland, Thomas; Haass, Markus; Lüscher, Thomas F.; Schneider, Michael D.; Parlato, Rosanna; Gröne, Hermann-Josef; Haberkorn, Uwe; Yanagisawa, Masashi; Katus, Hugo A.; Backs, Johannes

    2014-01-01

    In preclinical studies, endothelin receptor A (ETA) antagonists (ETAi) attenuated the progression of heart failure (HF). However, clinical HF trials failed to demonstrate beneficial effects of ETAi. These conflicting data may be explained by the possibility that established HF drugs such as adrenergic receptor blockers interfered with the mechanism of ETAi action in clinical trials. Here we report that mice lacking ETA only in sympathetic neurons (SN-KO) showed less adverse structural remodeling and cardiac dysfunction in response to pathological pressure overload induced by transverse aortic constriction (TAC). In contrast, mice lacking ETA only in cardiomyocytes (CM-KO) were not protected. TAC led to a disturbed sympathetic nerve function as measured by cardiac norepinephrine (NE) tissue levels and [124I]-metaiodobenzylguanidine-PET, which was prevented in SN-KO. In a rat model of HF, ETAi improved cardiac and sympathetic nerve function. In cocultures of cardiomyocytes (CMs) and sympathetic neurons (SNs), endothelin-1 (ET1) led to a massive NE release and exaggerated CM hypertrophy compared with CM monocultures. ETA-deficient CMs gained a hypertrophic response through wild-type SNs, but ETA-deficient SNs failed to mediate exaggerated CM hypertrophy. Furthermore, ET1 mediated its effects indirectly via NE in CM-SN cocultures through adrenergic receptors and histone deacetylases, resulting in activation of the prohypertrophic transcription factor myocyte enhancer factor 2. In conclusion, sympathetic ETA amplifies ET1 effects on CMs through adrenergic signaling pathways. Thus, antiadrenergic therapies may blunt potentially beneficial effects of ETAi. Taken together, this may indicate that patients with β blocker intolerance or disturbed sympathetic nerve function could be evaluated for a potential benefit from ETAi. PMID:25197047

  18. MnSODtg Mice Control Myocardial Inflammatory and Oxidative Stress and Remodeling Responses Elicited in Chronic Chagas Disease

    PubMed Central

    Dhiman, Monisha; Wan, Xianxiu; Popov, Vsevolod L.; Vargas, Gracie; Garg, Nisha Jain

    2013-01-01

    Background We utilized genetically modified mice equipped with a variable capacity to scavenge mitochondrial and cellular reactive oxygen species to investigate the pathological significance of oxidative stress in Chagas disease. Methods and Results C57BL/6 mice (wild type, MnSODtg, MnSOD+/−, GPx1−/−) were infected with Trypanosoma cruzi and harvested during the chronic disease phase. Chronically infected mice exhibited a substantial increase in plasma levels of inflammatory markers (nitric oxide, myeloperoxidase), lactate dehydrogenase, and myocardial levels of inflammatory infiltrate and oxidative adducts (malondialdehyde, carbonyls, 3‐nitrotyrosine) in the order of wild type=MnSOD+/−>GPx1−/−>MnSODtg. Myocardial mitochondrial damage was pronounced and associated with a >50% decline in mitochondrial DNA content in chronically infected wild‐type and GPx1−/− mice. Imaging of intact heart for cardiomyocytes and collagen by the nonlinear optical microscopy techniques of multiphoton fluorescence/second harmonic generation showed a significant increase in collagen (>10‐fold) in chronically infected wild‐type mice, whereas GPx1−/− mice exhibited a basal increase in collagen that did not change during the chronic phase. Chronically infected MnSODtg mice exhibited a marginal decline in mitochondrial DNA content and no changes in collagen signal in the myocardium. P47phox−/− mice lacking phagocyte‐generated reactive oxygen species sustained a low level of myocardial oxidative stress and mitochondrial DNA damage in response to Trypanosoma cruzi infection. Yet chronically infected p47phox−/− mice exhibited increase in myocardial inflammatory and remodeling responses, similar to that noted in chronically infected wild‐type mice. Conclusions Inhibition of oxidative burst of phagocytes was not sufficient to prevent pathological cardiac remodeling in Chagas disease. Instead, enhancing the mitochondrial reactive oxygen species scavenging

  19. Haptoglobin genotype is a determinant of survival and cardiac remodeling after myocardial infarction in diabetic mice

    PubMed Central

    Asaf, Roy; Blum, Shany; Roguin, Ariel; Kalet-Litman, Shiri; Kheir, Jad; Frisch, Avi; Miller-Lotan, Rachel; Levy, Andrew P

    2009-01-01

    Background We have recently demonstrated in man that a functional allelic polymorphism in the Haptoglobin (Hp) gene plays a major role in determining survival and congestive heart failure after myocardial infarction (MI). We sought to recapitulate the effect of Hp type on outcomes and cardiac remodeling after MI in transgenic mice. Methods The Hp 2 allele exists only in man. Wild type C57Bl/6 mice carry the Hp 1 allele with high homology to the human Hp 1 allele. We genetically engineered a murine Hp 2 allele and targeted its insertion by homologous recombination to the murine Hp locus to create Hp 2 mice. Diabetes Mellitus (DM) was induced with streptozotocin. MI was produced by occlusion of the left anterior descending artery in DM C57Bl/6 mice carrying the Hp 1 or Hp 2 allele. MI size was determined with TTC staining. Left ventricular (LV) function and dimensions were assessed by 2-dimensional echocardiography. Results In the absence of DM, Hp 1-1 and Hp 2-2 mice had similar LV dimensions and LV function. MI size was similar in DM Hp 1-1 and 2-2 mice 24 hours after MI (50.2 ± 2.1%and 46.9 ± 5.5%, respectively, p = 0.6). However, DM Hp 1-1 mice had a significantly lower mortality rate than DM Hp 2-2 mice 30 days after MI (HR 0.41, 95% CI (0.19–0.95), p = 0.037 by log rank). LV chamber dimensions were significantly increased in DM Hp 2-2 mice compared to DM Hp 1-1 mice 30 days after MI (0.196 ± 0.01 cm2 vs. 0.163 ± 0.01 cm2, respectively; p = 0.029). Conclusion In DM mice the Hp 2-2 genotype is associated with increased mortality and more severe cardiac remodeling 30 days after MI. PMID:19490627

  20. Human vasculogenic cells form functional blood vessels and mitigate adverse remodeling after ischemia reperfusion injury in rats.

    PubMed

    Kang, Kyu-Tae; Coggins, Matthew; Xiao, Chunyang; Rosenzweig, Anthony; Bischoff, Joyce

    2013-10-01

    Cell-based therapies to restore heart function after infarction have been tested in pre-clinical models and clinical trials with mixed results, and will likely require both contractile cells and a vascular network to support them. We and others have shown that human endothelial colony forming cells (ECFC) combined with mesenchymal progenitor cells (MPC) can be used to "bio-engineer" functional human blood vessels. Here we investigated whether ECFC + MPC form functional vessels in ischemic myocardium and whether this affects cardiac function or remodeling. Myocardial ischemia/reperfusion injury (IRI) was induced in 12-week-old immunodeficient rats by ligation of the left anterior descending coronary artery. After 40 min, myocardium was reperfused and ECFC + MPC (2 × 10(6) cells, 2:3 ratio) or PBS was injected. Luciferase assays after injection of luciferase-labeled ECFC + MPC showed that 1,500 ECFC were present at day 14. Human ECFC-lined perfused vessels were directly visualized by femoral vein injection of a fluorescently-tagged human-specific lectin in hearts injected with ECFC + MPC but not PBS alone. While infarct size at day 1 was no different, LV dimensions and heart weight to tibia length ratios were lower in cell-treated hearts compared with PBS at 4 months, suggesting post-infarction remodeling was ameliorated by local cell injection. Fractional shortening, LV wall motion score, and fibrotic area were not different between groups at 4 months. However, pressure-volume loops demonstrated improved cardiac function and reduced volumes in cell-treated animals. These data suggest that myocardial delivery of ECFC + MPC at reperfusion may provide a therapeutic strategy to mitigate LV remodeling and cardiac dysfunction after IRI.

  1. [Reverse myocardial remodeling in patients with aortic valve disease and mitral insufficiency in early postoperative period].

    PubMed

    Belov, Iu V; Katkov, A I; Seslavinskaia, T V; Vinokurov, I A; Salagaev, G I

    2015-01-01

    Surgical treatment of patients with aortic valve disease and concomitant mitral insufficiency remains debatable. We analyzed early postoperative results of surgical treatment of 80 patients depending on type of surgery. All patients were divided into three groups: the 1st - aortic valve replacement in patients without mitral valve dysfunction (control group) (n=44); the 2nd - isolated aortic valve replacement in patients with concomitant mitral regurgitation degree 2-3 (n=18), the 3rd - simultaneous aortic and mitral valve replacement (n=18). Combined valve replacement was associated with more intraoperative blood loss (852.78±442.08 ml) compared with aortic valve replacement (658.7±374.09 ml), p<0.05. In patients with mitral regurgitation greater hematocrit decrease was observed (22.13±3.6% in group 2 and 21.4±4.48 in group 3) in comparison with control group (24.17±3.72% in group 1), p<0.05. Incidence of postoperative complications did not differ in all groups. Mortality rate was 6.8% in group 1 and 11.1% in group 3, there were no deaths in group 2. Both valves correction provided faster myocardial remodeling. Left ventricular end-diastolic volume decreased on 50 ml in group 3, on 33.67 ml in group 2 and on 50.73 ml in group 1 (p<0.05). Pulmonary pressure decreased on 20 mm Hg in group 3, on 13 mm Hg - in group 2 and on 12.57 mm Hg - in group 1, p<0.05. In groups 1 and 3 pulmonary pressure became normal after operation, in group 2 signs of pulmonary hypertension were observed (pressure - 35.3 mm Hg). Analysis of the results showed that simultaneous mitral and aortic valves replacement initiates normalization of intracardiac hemodynamics in early postoperative period. PMID:26081181

  2. Endothelial cells overexpressing IL-8 receptor reduce cardiac remodeling and dysfunction following myocardial infarction.

    PubMed

    Zhao, Xiangmin; Zhang, Wei; Xing, Dongqi; Li, Peng; Fu, Jinyan; Gong, Kaizheng; Hage, Fadi G; Oparil, Suzanne; Chen, Yiu-Fai

    2013-08-15

    The endothelium is a dynamic component of the cardiovascular system that plays an important role in health and disease. This study tested the hypothesis that targeted delivery of endothelial cells (ECs) overexpressing neutrophil membrane IL-8 receptors IL8RA and IL8RB reduces acute myocardial infarction (MI)-induced left ventricular (LV) remodeling and dysfunction and increases neovascularization in the area at risk surrounding the infarcted tissue. MI was created by ligating the left anterior descending coronary artery in 12-wk-old male Sprague-Dawley rats. Four groups of rats were studied: group 1: sham-operated rats without MI or EC transfusion; group 2: MI rats with intravenous vehicle; group 3: MI rats with transfused ECs transduced with empty adenoviral vector (Null-EC); and group 4: MI rats with transfused ECs overexpressing IL8RA/RB (1.5 × 10⁶ cells post-MI). Two weeks after MI, LV function was assessed by echocardiography; infarct size was assessed by triphenyltetrazolium chloride (live tissue) and picrosirus red (collagen) staining, and capillary density and neutrophil infiltration in the area at risk were measured by CD31 and MPO immunohistochemical staining, respectively. When compared with the MI + vehicle and MI-Null-EC groups, transfusion of IL8RA/RB-ECs decreased neutrophil infiltration and pro-inflammatory cytokine expression and increased capillary density in the area at risk, decreased infarct size, and reduced MI-induced LV dysfunction. These findings provide proof of principle that targeted delivery of ECs is effective in repairing injured cardiac tissue. Targeted delivery of ECs to infarcted hearts provides a potential novel strategy for the treatment of acute MI in humans.

  3. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction.

    PubMed

    Dorsey, Shauna M; McGarvey, Jeremy R; Wang, Hua; Nikou, Amir; Arama, Leron; Koomalsingh, Kevin J; Kondo, Norihiro; Gorman, Joseph H; Pilla, James J; Gorman, Robert C; Wenk, Jonathan F; Burdick, Jason A

    2015-11-01

    Injectable biomaterials are an attractive therapy to attenuate left ventricular (LV) remodeling after myocardial infarction (MI). Although studies have shown that injectable hydrogels improve cardiac structure and function in vivo, temporal changes in infarct material properties after treatment have not been assessed. Emerging imaging and modeling techniques now allow for serial, non-invasive estimation of infarct material properties. Specifically, cine magnetic resonance imaging (MRI) assesses global LV structure and function, late-gadolinium enhancement (LGE) MRI enables visualization of infarcted tissue to quantify infarct expansion, and spatial modulation of magnetization (SPAMM) tagging provides passive wall motion assessment as a measure of tissue strain, which can all be used to evaluate infarct properties when combined with finite element (FE) models. In this work, we investigated the temporal effects of degradable hyaluronic acid (HA) hydrogels on global LV remodeling, infarct thinning and expansion, and infarct stiffness in a porcine infarct model for 12 weeks post-MI using MRI and FE modeling. Hydrogel treatment led to decreased LV volumes, improved ejection fraction, and increased wall thickness when compared to controls. FE model simulations demonstrated that hydrogel therapy increased infarct stiffness for 12 weeks post-MI. Thus, evaluation of myocardial tissue properties through MRI and FE modeling provides insight into the influence of injectable hydrogel therapies on myocardial structure and function post-MI.

  4. Depressed expression of MuRF1 and MAFbx in areas remote of recent myocardial infarction: a mechanism contributing to myocardial remodeling?

    PubMed

    Conraads, Viviane M; Vrints, Christiaan J; Rodrigus, Inez E; Hoymans, Vicky Y; Van Craenenbroeck, Emeline M; Bosmans, Johan; Claeys, Marc J; Van Herck, Paul; Linke, Axel; Schuler, Gerhard; Adams, Volker

    2010-03-01

    Ventricular remodeling following myocardial infarction (MI) includes myocardial hypertrophy, a process requiring increased protein synthesis and sarcomere assembly. The anti-hypertrophic effect of MuRF1/MafBx, both muscle-specific E3-ubiquitin ligases, has been demonstrated in animal experiments and in cultured cardiomyocytes. We assessed MuRF1/MAFbx expression in myocardium remote of recently (<2 weeks) infarcted regions (MI), compared with patients undergoing coronary artery bypass surgery, with normal systolic function and without previous infarction (control or Con). Left ventricular myocardial biopsies were obtained from the contralateral normal zone in MI (n = 14) patients and from the Con (n = 12) group. MuRF-1/MAFbx expression was assessed using RT-PCR and Western blot (WB). In addition, the myocardial expression of TNF-alpha was measured (RT-PCR) and troponin I, beta-myosin and phosphorylated Akt/Akt (pAkt/Akt) were quantified (WB). MuRF1 and MAFbx expression (mRNA and protein level) were significantly reduced in biopsies from MI patients. TNF-alpha was significantly higher in MI and exhibited a negative correlation with MuRF1 and MAFbx. The expression of troponin I and cardiomyocyte size were increased in MI in comparison to Con, whereas beta-myosin expression was not altered. When compared with Con, pAkt/Akt was elevated. The results of the present study suggest that the atrogenes MuRF1/MAFbx are involved in regulating the hypertrophic response, characteristic of the early post-infarction remodeling phase. Reduced expression of MuRF1 and MAFbx in the myocardium might permit hypertrophy, which is supported by the elevation of troponin I. A regulatory role of TNF-alpha needs to be confirmed in further experiments. PMID:19859778

  5. Depressed expression of MuRF1 and MAFbx in areas remote of recent myocardial infarction: a mechanism contributing to myocardial remodeling?

    PubMed

    Conraads, Viviane M; Vrints, Christiaan J; Rodrigus, Inez E; Hoymans, Vicky Y; Van Craenenbroeck, Emeline M; Bosmans, Johan; Claeys, Marc J; Van Herck, Paul; Linke, Axel; Schuler, Gerhard; Adams, Volker

    2010-03-01

    Ventricular remodeling following myocardial infarction (MI) includes myocardial hypertrophy, a process requiring increased protein synthesis and sarcomere assembly. The anti-hypertrophic effect of MuRF1/MafBx, both muscle-specific E3-ubiquitin ligases, has been demonstrated in animal experiments and in cultured cardiomyocytes. We assessed MuRF1/MAFbx expression in myocardium remote of recently (<2 weeks) infarcted regions (MI), compared with patients undergoing coronary artery bypass surgery, with normal systolic function and without previous infarction (control or Con). Left ventricular myocardial biopsies were obtained from the contralateral normal zone in MI (n = 14) patients and from the Con (n = 12) group. MuRF-1/MAFbx expression was assessed using RT-PCR and Western blot (WB). In addition, the myocardial expression of TNF-alpha was measured (RT-PCR) and troponin I, beta-myosin and phosphorylated Akt/Akt (pAkt/Akt) were quantified (WB). MuRF1 and MAFbx expression (mRNA and protein level) were significantly reduced in biopsies from MI patients. TNF-alpha was significantly higher in MI and exhibited a negative correlation with MuRF1 and MAFbx. The expression of troponin I and cardiomyocyte size were increased in MI in comparison to Con, whereas beta-myosin expression was not altered. When compared with Con, pAkt/Akt was elevated. The results of the present study suggest that the atrogenes MuRF1/MAFbx are involved in regulating the hypertrophic response, characteristic of the early post-infarction remodeling phase. Reduced expression of MuRF1 and MAFbx in the myocardium might permit hypertrophy, which is supported by the elevation of troponin I. A regulatory role of TNF-alpha needs to be confirmed in further experiments.

  6. [The process of ventricular remodeling after acute myocardial infarct associated with left ventricular aneurysm and ventricular septum rupture treated with radical surgery].

    PubMed

    Hůla, J

    1997-01-01

    Even after a successful operation of mechanical complications on account of acute myocardial infarction gradually developing adverse remodelling of the left ventricle has to be envisaged. In a six-year clinical study by means of echocardiography the authors followed up systematically some cardiac dimensions and volumes and functional systolic and diastolic left ventricular parameters. The changes pertained in particular to the endsystolic and enddiastolic volume, the ejection fraction, the peak maximum rate, early and late diastolic filling and their ratio as well as to indirect values of the mean pressure in the pulmonary artery. These changes, which at first indicated impaired relaxation, are caused subsequently by increasing stiffness of the left ventricle. With regard to the large number of complicated pathophysiological phenomena pertaining to active relaxation and passive elastic properties of the left ventricle during ventricular diastole, different Doppler parameters must be evaluated very carefully, individually and with regard to the clinical condition. Attention is drawn to the importance of complicating mitral regurgitations and an increased pressure in the left atrium and lesser circulation after aneurysmectomy of the left ventricle. Mitral regurgitation has an impact on the process of left ventricular filling investigated by means of diastolic Doppler functions. Despite limitations of echocardiographic methods within the framework of assessment of diastolic left ventricular functions after myocardial infarction echocardiography remains the main means for evaluating left ventricular function by a non-invasive route and its position in this respect is irreplaceable. Further experimental work is needed for better understanding, use and more intelligent interpretation of non-invasive parameters of left ventricular function also in these complicated conditions after surgery of mechanical complications resulting from myocardial infarction. PMID:9221569

  7. Compatibility of Astragalus and Salvia extract inhibits myocardial fibrosis and ventricular remodeling by regulation of protein kinase D1 protein

    PubMed Central

    Mao, Bingyu; Nuan, Liu; Yang, Lei; Zeng, Xiaotao

    2015-01-01

    Aims: This study is to determine the effect of astragalus and salvia extract on the alteration of myocardium in a rat model of myocardial infarction. Methods: A total of 40 male Sprague-Dawley rats were randomly divided into the sham-operated group, the control group, the Astragalus group, the Salvia group, and the compatibility of Astragalus and Salvia and group. The cardiac functions were determined at 8 weeks after treatment. Hematoxylin-eosin staining was performed to observe the morphology and arrangement of cardiomyocytes. Masson’s trichrome staining was performed to investigate the distribution of myocardial interstitial collagen. Immunohistochemical staining was performed to determine the expression ofprotein kinase D1 in myocardial tissues. Results: In the sham-operated group, the Astragalus group, the Salvia group, and the compatibility of Astragalus and Salvia group, the left ventricular systolic pressure and the maximum rate of left ventricular pressure were significantly increased while the left ventricular end diastolic pressure were significantly decreased when compared with those in the control group (P < 0.05). Normal morphology and arrangement of cardiomyocytes were maintained in the compatibility of Astragalus and Salvia group. Contents of collagen fibers in myocardial tissues were decreased in the compatibility of Astragalus and Salvia group (P < 0.05). Expression levels of protein kinase D1 were significantly decreased in cardiomyocytes of the compatibility of Astragalus and Salvia group. Conclusions: Compatibility of Astragalus and Salvia extract may inhibit myocardial fibrosis and ventricular remodeling by regulation of protein kinase D1 protein in a rat model of myocardial infarction. PMID:26064267

  8. Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction.

    PubMed

    Morimoto, Hajime; Takahashi, Masafumi; Izawa, Atsushi; Ise, Hirohiko; Hongo, Minoru; Kolattukudy, Pappachan E; Ikeda, Uichi

    2006-10-13

    Myocardial infarction (MI) is accompanied by inflammatory responses that lead to the recruitment of leukocytes and subsequent myocardial damage, healing, and scar formation. Because monocyte chemoattractant protein-1 (MCP-1) (also known as CCL2) regulates monocytic inflammatory responses, we investigated the effect of cardiac MCP-1 overexpression on left ventricular (LV) dysfunction and remodeling in a murine MI model. Transgenic mice expressing the mouse JE-MCP-1 gene under the control of the alpha-cardiac myosin heavy chain promoter (MHC/MCP-1 mice) were used for this purpose. MHC/MCP-1 mice had reduced infarct area and scar formation and improved LV dysfunction after MI. These mice also showed induction of macrophage infiltration and neovascularization; however, few bone marrow-derived endothelial cells were detected in MHC/MCP-1 mice whose bone marrow was replaced with that of Tie2/LacZ transgenic mice. Flow cytometry analysis showed no increase in endothelial progenitor cells (CD34+/Flk-1+ cells) in MHC/MCP-1 mice. Marked myocardial interleukin (IL)-6 secretion, STAT3 activation, and LV hypertrophy were observed after MI in MHC/MCP-1 mice. Furthermore, cardiac myofibroblasts accumulated after MI in MHC/MCP-1 mice. In vitro experiments revealed that a combination of IL-6 with MCP-1 synergistically stimulated and sustained STAT3 activation in cardiomyocytes. MCP-1, IL-6, and hypoxia directly promoted the differentiation of cardiac fibroblasts into myofibroblasts. Our results suggest that cardiac overexpression of MCP-1 induced macrophage infiltration, neovascularization, myocardial IL-6 secretion, and accumulation of cardiac myofibroblasts, thereby resulting in the prevention of LV dysfunction and remodeling after MI. They also provide a new insight into the role of cardiac MCP-1 in the pathophysiology of MI. PMID:16990567

  9. Combined biomarker testing for the prediction of left ventricular remodelling in ST-elevation myocardial infarction

    PubMed Central

    Reinstadler, Sebastian Johannes; Feistritzer, Hans-Josef; Reindl, Martin; Klug, Gert; Mayr, Agnes; Mair, Johannes; Jaschke, Werner; Metzler, Bernhard

    2016-01-01

    Objective The utility of different biomarkers for the prediction of left ventricular remodelling (LVR) following ST-elevation myocardial infarction (STEMI) has been evaluated in several studies. However, very few data exist on the prognostic value of combined biomarkers. The aim of this study was to comprehensively investigate the prognostic value for LVR of routinely available biomarkers measured after reperfused STEMI. Methods Serial measurements of N-terminal pro-B-type natriuretic peptide (NT-proBNP), high-sensitivity cardiac troponin T (hs-cTnT), aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and high-sensitivity C reactive protein (hs-CRP) were performed in 123 patients with STEMI treated with primary percutaneous coronary intervention in this prospective observational study. Patients underwent cardiac MRI at 2 (1–4) and 125 (121–146) days after infarction. An increase in end-diastolic volume of ≥20% was defined as LVR. Results LVR occurred in 16 (13%) patients. Peak concentrations of the following biomarkers showed significant areas under the curves (AUCs) for the prediction of LVR—NT-proBNP: 0.68 (95% CI 0.59 to 0.76, p=0.03), hs-cTnT: 0.75 (95% CI 0.66 to 0.82, p<0.01), AST: 0.72 (95% CI 0.63 to 0.79, p<0.01), ALT: 0.66 (95% CI 0.57 to 0.75, p=0.03), LDH: 0.78 (95% CI 0.70 to 0.85, p<0.01) and hs-CRP: 0.63 (95% CI 0.54 to 0.72, p=0.05). The combination of all biomarkers yielded a significant increase in AUC to 0.85 (95% CI 0.77 to 0.91) (all vs NT-proBNP: p=0.02, all vs hs-cTnT: p=0.02, all vs AST: p<0.01, all vs ALT: p<0.01, all vs hs-CRP: p<0.01 and all vs LDH: p=0.04). Conclusions In patients with reperfused STEMI, the combined assessment of peak NT-proBNP, hs-cTnT, AST, ALT, hs-CRP and LDH provide incremental prognostic information for the prediction of LVR when compared with single-biomarker measurement. PMID:27738517

  10. Role of infarction artery status in left ventricular remodeling after acute myocardial infarction.

    PubMed

    Sanchis, J; Insa, L; Bodí, V; Egea, S; Monmeneu, J V; Chorro, F J; Llácer, A; López Merino, V

    1997-04-18

    The aim of this study was to evaluate the relation between the infarction artery status and left ventricular volumes, independently of regional ventricular dysfunction, at 4-6 weeks after a first myocardial infarction. The study group consisted of 100 patients, of whom 80 received thrombolytic treatment. Coronary and contrast left ventricular angiograms were performed at 36+/-5 days postinfarction. Left ventricular end-diastolic and end-systolic volumes were measured. The centerline chord motion method was used to calculate the extent of wall motion abnormality (percentage of chords with hypokinetic motion) and its severity (maximum units of S.D. below the normal wall motion reference). Minimum lumen diameter, patency and collateral flow in the infarction artery were also analyzed. Eight patients (group I) showed occlusion with poor collateral flow in the infarction artery, 22 patients (group II) occlusion with good collateral flow, 38 patients (group III) severe residual stenosis (minimum lumen diameter < or = 1 mm), and 32 patients (group IV) non-severe residual stenosis (minimum lumen diameter > 1 mm). Patients from group I presented greater wall motion abnormality in terms of both extent (P=0.005) and severity (P=0.007), and greater end-diastolic (P=0.07) and end-systolic (P=0.0008) volumes; there were no differences among groups II, III and IV. By stepwise multivariate regression analysis, the extent of wall motion abnormality was the main determinant of end-diastolic (P=0.0001) and end-systolic (P=0.0001) volumes; occlusion with poor collateral flow was also a significant independent factor for end-systolic volume (P=0.03). Total occlusion (including both with and without collaterals) and the minimum lumen diameter did not correlate with end-diastolic and end-systolic volumes. We concluded that (A) the extent of regional dysfunction is the primary determinant of left ventricular volumes at 4-6 weeks postinfarction. (B) The status of the infarction artery is a

  11. Factor XIII Deficiency Causes Cardiac Rupture, Impairs Wound Healing, and Aggravates Cardiac Remodeling in Mice With Myocardial Infarction

    PubMed Central

    Nahrendorf, Matthias; Hu, Kai; Frantz, Stefan; Jaffer, Farouc A.; Tung, Ching-Hsuan; Hiller, Karl-Heinz; Voll, Sabine; Nordbeck, Peter; Sosnovik, David; Gattenlöhner, Stefan; Novikov, Mikhail; Dickneite, Gerhard; Reed, Guy L.; Jakob, Peter; Rosenzweig, Anthony; Bauer, Wolfgang R.; Weissleder, Ralph; Ertl, Georg

    2014-01-01

    Background Identification of key molecular players in myocardial healing could lead to improved therapies, reduction of scar formation, and heart failure after myocardial infarction (MI). We hypothesized that clotting factor XIII (FXIII), a transglutaminase involved in wound healing, may play an important role in MI given prior clinical and mouse model data. Methods and Results To determine whether a truly causative relationship existed between FXIII activity and myocardial healing, we prospectively studied myocardial repair in FXIII-deficient mice. All FXIII−/− and FXIII−/+ (FXIII activity <5% and 70%) mice died within 5 days after MI from left ventricular rupture. In contradistinction, FXIII−/− mice that received 5 days of intravenous FXIII replacement therapy had normal survival rates; however, cardiac MRI demonstrated worse left ventricular remodeling in these reconstituted FXIII−/− mice. Using a FXIII-sensitive molecular imaging agent, we found significantly greater FXIII activity in wild-type mice and FXIII−/− mice receiving supplemental FXIII than in FXIII−/− mice (P<0.05). In FXIII−/− but not in reconstituted FXIII−/− mice, histology revealed diminished neutrophil migration into the MI. Reverse transcriptase–polymerase chain reaction studies suggested that the impaired inflammatory response in FXIII−/− mice was independent of intercellular adhesion molecule and lipopolysaccharide-induced CXC chemokine, both important for cell migration. After MI, expression of matrix metalloproteinase-9 was 650% higher and collagen-1 was 53% lower in FXIII−/− mice, establishing an imbalance in extracellular matrix turnover and providing a possible mechanism for the observed cardiac rupture in the FXIII−/− mice. Conclusions These data suggest that FXIII has an important role in murine myocardial healing after infarction. PMID:16505171

  12. Anti-inflammatory, Antithrombotic and Cardiac Remodeling Preventive Effects of Eugenol in Isoproterenol-Induced Myocardial Infarction in Wistar Rat.

    PubMed

    Mnafgui, Kais; Hajji, Raouf; Derbali, Fatma; Gammoudi, Anis; Khabbabi, Gaddour; Ellefi, Hedi; Allouche, Noureddine; Kadri, Adel; Gharsallah, Neji

    2016-10-01

    This study aimed to evaluate the antithrombotic, anti-inflammatory and anti-cardiac remodeling properties of eugenol in isoproterenol-induced myocardial infarction in rats. Male Wistar rats were randomly divided into four groups, control, iso [100 mg/kg body weight was injected subcutaneously into rats at an interval of 24 h for 2 days (6th and 7th day) to induce MI] and pretreated animals with clopidogrel (0.2 mg/kg) and eugenol (50 mg/kg) orally for 7 days and intoxicated with isoproterenol (Iso + Clop) and (Iso + EG) groups. Isoproterenol-induced myocardial infarcted rats showed notable changes in the ECG pattern, increase in heart weight index, deterioration in the hemodynamic function and rise in plasma level of troponin-T, CK-MB and LDH and ALT by 316, 74, 172 and 45 %, respectively, with histological myocardium necrosis and cells inflammatory infiltration. In addition, significant increases in plasma levels of inflammatory biomarkers such as fibrinogen, α1, α2, β1, β2 and γ globulins with decrease level of albumin were observed in infarcted rats as compared to normal ones. Else, the angiotensin-converting enzyme (ACE) activity in plasma, kidney and heart of the isoproterenol-induced rats was significantly increased by 34, 47 and 93 %, respectively, as compared to normal group. However, the administration of eugenol induced a clear improvement in cardiac biomarkers injury, reduced inflammatory mediators proteins, increased heart activities of superoxide dismutase and glutathione peroxidase with reduce in thiobarbituric acid-reactive substances content and inhibition of ventricular remodeling process through inhibition of ACE activity. Overall, eugenol evidences high preventive effects from cardiac remodeling process.

  13. Deficiency of MAPK-activated protein kinase 2 (MK2) prevents adverse remodelling and promotes endothelial healing after arterial injury.

    PubMed

    Kapopara, P R; von Felden, J; Soehnlein, O; Wang, Y; Napp, L C; Sonnenschein, K; Wollert, K C; Schieffer, B; Gaestel, M; Bauersachs, J; Bavendiek, U

    2014-12-01

    Maladaptive remodelling of the arterial wall after mechanical injury (e. g. angioplasty) is characterised by inflammation, neointima formation and media hypertrophy, resulting in narrowing of the affected artery. Moreover, mechanical injury of the arterial wall causes loss of the vessel protecting endothelial cell monolayer. Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2), a major downstream target of p38 MAPK, regulates inflammation, cell migration and proliferation, essential processes for vascular remodelling and re-endothelialisation. Therefore, we investigated the role of MK2 in remodelling and re-endothelialisation after arterial injury in genetically modified mice in vivo. Hypercholesterolaemic low-density-lipoprotein-receptor-deficient mice (ldlr-/-) were subjected to wire injury of the common carotid artery. MK2-deficiency (ldlr-/-/mk2-/-) nearly completely prevented neointima formation, media hypertrophy, and lumen loss after injury. This was accompanied by reduced proliferation and migration of MK2-deficient smooth muscle cells. In addition, MK2-deficiency severely reduced monocyte adhesion to the arterial wall (day 3 after injury, intravital microscopy), which may be attributed to reduced expression of the chemokine ligands CCL2 and CCL5. In line, MK2-deficiency significantly reduced the content of monocytes, neutrophiles and lymphocytes of the arterial wall (day 7 after injury, flow cytometry). In conclusion, in a model of endothelial injury (electric injury), MK2-deficiency strongly increased proliferation of endothelial cells and improved re-endothelialisation of the arterial wall after injury. Deficiency of MK2 prevents adverse remodelling and promotes endothelial healing of the arterial wall after injury, suggesting that MK2-inhibition is a very attractive intervention to prevent restenosis after percutaneous therapeutic angioplasty. PMID:25120198

  14. Repeated sauna therapy attenuates ventricular remodeling after myocardial infarction in rats by increasing coronary vascularity of noninfarcted myocardium.

    PubMed

    Sobajima, Mitsuo; Nozawa, Takashi; Shida, Takuya; Ohori, Takashi; Suzuki, Takayuki; Matsuki, Akira; Inoue, Hiroshi

    2011-08-01

    Repeated sauna therapy (ST) increases endothelial nitric oxide synthase (eNOS) activity and improves cardiac function in heart failure as well as peripheral blood flow in ischemic limbs. The present study investigates whether ST can increase coronary vascularity and thus attenuate cardiac remodeling after myocardial infarction (MI). We induced MI by ligating the left coronary artery of Wistar rats. The rats were placed in a far-infrared dry sauna at 41°C for 15 min and then at 34°C for 20 min once daily for 4 wk. Cardiac hemodynamic, histopathological, and gene analyses were performed. Despite the similar sizes of MI between the ST and non-ST groups (51.4 ± 0.3 vs. 51.1 ± 0.2%), ST reduced left ventricular (LV) end-diastolic (9.7 ± 0.4 vs. 10.7 ± 0.5 mm, P < 0.01) and end-systolic (8.6 ± 0.5 vs. 9.6 ± 0.6 mm, P < 0.01) dimensions and attenuated MI-induced increases in LV end-diastolic pressure. Cross-sectional areas of cardiomyocytes were smaller in ST rats and associated with a significant reduction in myocardial atrial natriuretic peptide mRNA levels. Vascular density was reduced in the noninfarcted myocardium of non-ST rats, and the density of cells positive for CD31 and for α-smooth muscle actin was decreased. These decreases were attenuated in ST rats compared with non-ST rats and associated with increases in myocardial eNOS and vascular endothelial growth factor mRNA levels. In conclusion, ST attenuates cardiac remodeling after MI, at least in part, through improving coronary vascularity in the noninfarcted myocardium. Repeated ST might serve as a novel noninvasive therapy for patients with MI.

  15. Myocardial remodeling in diabetic cardiomyopathy associated with cardiac mast cell activation.

    PubMed

    Huang, Zhi Gang; Jin, Qun; Fan, Min; Cong, Xiao Liang; Han, Shu Fang; Gao, Hai; Shan, Yi

    2013-01-01

    Diabetic cardiomyopathy is a specific disease process distinct from coronary artery disease and hypertension. The disease features cardiac remodeling stimulated by hyperglycemia of the left ventricle wall and disrupts contractile functions. Cardiac mast cells may be activated by metabolic byproducts resulted from hyperglycermia and then participate in the remodeling process by releasing a multitude of cytokines and bioactive enzymes. Nedocromil, a pharmacologic stabilizer of mast cells, has been shown to normalize cytokine levels and attenuate cardiac remodeling. In this study, we describe the activation of cardiac mast cells by inducing diabetes in normal mice using streptozotocin (STZ). Next, we treated the diabetic mice with nedocromil for 12 weeks and then examined their hearts for signs of cardiac remodeling and quantified contractile function. We observed significantly impaired heart function in diabetic mice, as well as increased cardiac mast cell density and elevated mast cell secretions that correlated with gene expression and aberrant cytokine levels associated with cardiac remodeling. Nedocromil treatment halted contractile dysfunction in diabetic mice and reduced cardiac mast cell density, which correlated with reduced bioactive enzyme secretions, reduced expression of extracellular matrix remodeling factors and collagen synthesis, and normalized cytokine levels. However, the results showed nedocromil treatments did not return diabetic mice to a normal state. We concluded that manipulation of cardiac mast cell function is sufficient to attenuate cardiomyopathy stimulated by diabetes, but other cellular pathways also contribute to the disease process.

  16. Gender differences in cardiac hypertrophic remodeling.

    PubMed

    Patrizio, Mario; Marano, Giuseppe

    2016-01-01

    Cardiac remodeling is a complex process that occurs in response to different types of cardiac injury such as ischemia and hypertension, and that involves cardiomyocytes, fibroblasts, vascular smooth muscle cells, vascular endothelial cells, and inflammatory cells. The end result is cardiomyocyte hypertrophy, fibrosis, inflammation, vascular, and electrophysiological remodeling. This paper reviews a large number of studies on the influence of gender on pathological cardiac remodeling and shows how sex differences result in different clinical outcomes and therapeutic responses, with males which generally develop greater cardiac remodeling responses than females. Although estrogens appear to have an important role in attenuating adverse cardiac remodeling, the mechanisms through which gender modulates myocardial remodeling remain to be identified. PMID:27364397

  17. Traditional formula, modern application: chinese medicine formula sini tang improves early ventricular remodeling and cardiac function after myocardial infarction in rats.

    PubMed

    Liu, Jiangang; Peter, Karoline; Shi, Dazhuo; Zhang, Lei; Dong, Guoju; Zhang, Dawu; Breiteneder, Heimo; Jakowitsch, Johannes; Ma, Yan

    2014-01-01

    SINI TANG (SNT) IS A TRADITIONAL CHINESE HERBAL FORMULA CONSISTING OF FOUR DIFFERENT HERBS: the root of Aconitum carmichaelii, the bark of Cinnamomum cassia, the rhizome of Zingiber officinale, and the root of Glycyrrhiza uralensis. This study aims to evaluate the improvement of early ventricular remodeling and cardiac function in myocardial infarction (MI) rats by SNT. A MI model was established by ligation of the left anterior descending coronary artery. Following treatment for 4 weeks, ultrasonic echocardiography was performed. Myocardial histopathological changes were observed using haematoxylin and eosin staining. Collagens (type I and type III), transforming growth factor- β 1 (TGF- β 1), and Toll-like receptors (TLR-2 and TLR-4) were measured in plasma, serum, and myocardial tissue. SNT treatment decreased the infarct size, the left ventricular cavity area/heart cavity area ratio, and the left ventricle dimension at end systole and increased the left ventricular ejection fraction. SNT reduced the levels of TLR-2 and TLR-4 in myocardial tissue significantly and decreased the collagens content in serum and in myocardial tissue. SNT could partially reduce the level of TGF- β 1 in serum and in myocardial tissue. Our data suggest that the Chinese medicine formula SNT has the potential to improve early ventricular remodeling and cardiac function after MI.

  18. Design and rationale of the Reduction of Infarct Expansion and Ventricular Remodeling with Erythropoietin After Large Myocardial Infarction (REVEAL) trial

    PubMed Central

    Melloni, Chiara; Rao, Sunil V.; Povsic, Thomas J.; Melton, Laura; Kim, Raymond J.; Kilaru, Rakhi; Patel, Manesh; Talan, Mark; Ferrucci, Luigi; Longo, Dan L.; Lakatta, Edward G.; Najjar, Samer S.; Harrington, Robert A.

    2010-01-01

    Background Acute myocardial infarction (MI) remains a leading cause of death despite advances in pharmacologic and percutaneous therapies. Animal models of ischemia/reperfusion have demonstrated that single-dose erythropoietin (EPO) may reduce infarct size, decrease apoptosis, and increase neovascularization, possibly through mobilization of endothelial progenitor cells (EPCs). Study Design REVEAL is a randomized, double-blind, placebo-controlled, multicenter trial evaluating the effects of epoetin alfa on infarct size and left ventricular (LV) remodeling in patients with large MIs. The trial comprises a dose-escalation safety phase and a single-dose efficacy phase using the highest acceptable epoetin alfa dose up to 60,000 units. Up to 250 STEMI patients undergoing primary or rescue percutaneous coronary intervention (PCI) will be randomized to intravenous epoetin alfa or placebo within 4 hours of successful reperfusion. The primary study endpoint is infarct size expressed as a percentage of LV mass, as measured by cardiac magnetic resonance imaging 2–6 days post study medication administration. Secondary endpoints will assess changes in EPC numbers and changes in indices of ventricular remodeling. Conclusion The REVEAL trial will evaluate the safety and efficacy of the highest tolerated single dose of epoetin alfa in patients who have undergone successful rescue or primary PCI for acute STEMI. PMID:21095264

  19. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction

    PubMed Central

    HUO, LIANYING; SHI, WENBING; CHONG, LING; WANG, JINLONG; ZHANG, KAI; LI, YUFENG

    2016-01-01

    Left ventricular remodeling results in cardiac dysfunction and accounts for the majority of the morbidity and mortality following myocardial infarction (MI). The aim of the present study was to investigate the effect of asiatic acid (AA) on cardiac function and left ventricular remodeling in a rat model of MI and explore the underlying mechanisms. Rats were subjected to coronary artery ligation to model MI and orally treated with AA. After 4 weeks, cardiac function was assessed by echocardiography. Cardiomyocyte cross-sectional area was recorded, and the expression levels of a number of inflammatory cytokines were detected using ELISA. The degree of interstitial fibrosis was determined by evaluating the mRNA expression levels of collagen II and III. Western blot analysis was performed to detect the expression levels of total and phosphorylated p38 MAPK and ERK1/2, to investigate whether they are involved in the mechanism underlying the effect of AA on the heart. Rats subjected to MI displayed significantly impaired cardiac function compared with those subjected to a sham procedure, while this change was reversed by treatment with AA. Furthermore, AA markedly inhibited cardiac hypertrophy, reduced the mRNA expression levels of inflammatory cytokines and decreased interstitial fibrosis in the infarct border zone of MI model rats compared with those in vehicle-treated MI model rats. Furthermore, the phosphorylation of p38 MAPK and ERK1/2 was blocked by AA in the MI rats but not in the sham rats. In summary, AA treatment preserved cardiac function and inhibited left ventricular remodeling, potentially by blocking the phosphorylation of p38 MAPK and ERK1/2 in the infarct border zone of the ischemic myocardium, indicating that AA may be a novel candidate for development as a therapy for MI. PMID:26889217

  20. Assessment of the Utility of the Septal E/(E′ × S′) Ratio and Tissue Doppler Index in Predicting Left Ventricular Remodeling after Acute Myocardial Infarction

    PubMed Central

    Kenar Tiryakioglu, Selma; Yalin, Kıvanc; Coskun, Senol

    2016-01-01

    Background. The aim of this study is to show whether the septal E/(E′ × S′) ratio assessed by tissue Doppler echocardiography can predict left ventricular remodeling after first ST segment elevation myocardial infarction treated successfully with primary percutaneous intervention. Methods. Consecutive patients (n = 111) presenting with acute anterior myocardial infarction for the first time in their life were enrolled. All patients underwent successful primary percutaneous coronary intervention. Standard and tissue Doppler echocardiography were performed in the first 24-36 hours of admission. Echocardiographic examination was repeated after 6 months to reassess left ventricular volumes. Septal E/(E′ × S′) ratio was assessed by pulsed Doppler echocardiography. Results. Group 1 consisted of 33 patients with left ventricular (LV) remodeling, and Group 2 had 78 patients without LV remodeling. E/(E′ × S′) was significantly higher in Group 1 (4.1 ± 1.9 versus 1.65 ± 1.32, p = 0.001). The optimal cutoff value for E/(E′ × S′) ratio was 2.34 with 87.0% sensitivity and 82.1% specificity. Conclusion. Septal E/(E′ × S′) values measured after the acute anterior myocardial infarction can strongly predict LV remodeling in the 6-month follow-up. In the risk assessment, the septal E/(E′ × S′) can be evaluated together with the conventional echocardiographic techniques. PMID:27703973

  1. An Elevated Glycemic Gap is Associated with Adverse Outcomes in Diabetic Patients with Acute Myocardial Infarction

    PubMed Central

    Liao, Wen-I; Lin, Chin-Sheng; Lee, Chien-Hsing; Wu, Ya-Chieh; Chang, Wei-Chou; Hsu, Chin-Wang; Wang, Jen-Chun; Tsai, Shih-Hung

    2016-01-01

    Acute hyperglycemia is a frequent finding in patients presenting to the emergency department (ED) with acute myocardial infarction (AMI). The prognostic role of hyperglycemia in diabetic patients with AMI remains controversial. We retrospectively reviewed patients’ medical records to obtain demographic data, clinical presentation, major adverse cardiac events (MACEs), several clinical scores and laboratory data, including the plasma glucose level at initial presentation and HbA1c levels. The glycemic gap, which represents changes in serum glucose levels during the index event, was calculated from the glucose level upon ED admission minus the HbA1c-derived average glucose (ADAG). We enrolled 331 patients after the review of medical records. An elevated glycemic gap between admission serum glucose levels and ADAG were associated with an increased risk of mortality in patients. The glycemic gap showed superior discriminative power regarding the development of MACEs when compared with the admission glucose level. The calculation of the glycemic gap may increase the discriminative powers of established clinical scoring systems in diabetic patients presenting to the ED with AMI. In conclusion, the glycemic gap could be used as an adjunct parameter to assess the severity and prognosis of diabetic patients presenting with AMI. However, the usefulness of the glycemic gap should be further explored in prospective longitudinal studies. PMID:27291987

  2. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited

    PubMed Central

    Kurian, Gino A.; Rajagopal, Rashmi; Vedantham, Srinivasan; Rajesh, Mohanraj

    2016-01-01

    Oxidative and reductive stress are dual dynamic phases experienced by the cells undergoing adaptation towards endogenous or exogenous noxious stimulus. The former arises due to the imbalance between the reactive oxygen species production and antioxidant defenses, while the latter is due to the aberrant increase in the reducing equivalents. Mitochondrial malfunction is the common denominator arising from the aberrant functioning of the rheostat that maintains the homeostasis between oxidative and reductive stress. Recent experimental evidences suggest that the maladaptation during oxidative stress could play a pivotal role in the pathophysiology of major cardiovascular diseases such as myocardial infraction, atherosclerosis, and diabetic cardiovascular complications. In this review we have discussed the role of oxidative and reductive stress pathways in the pathogenesis of myocardial ischemia/reperfusion injury and diabetic cardiomyopathy (DCM). Furthermore, we have provided impetus for the development of subcellular organelle targeted antioxidant drug therapy for thwarting the deterioration of the failing myocardium in the aforementioned cardiovascular conditions. PMID:27313825

  3. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited.

    PubMed

    Kurian, Gino A; Rajagopal, Rashmi; Vedantham, Srinivasan; Rajesh, Mohanraj

    2016-01-01

    Oxidative and reductive stress are dual dynamic phases experienced by the cells undergoing adaptation towards endogenous or exogenous noxious stimulus. The former arises due to the imbalance between the reactive oxygen species production and antioxidant defenses, while the latter is due to the aberrant increase in the reducing equivalents. Mitochondrial malfunction is the common denominator arising from the aberrant functioning of the rheostat that maintains the homeostasis between oxidative and reductive stress. Recent experimental evidences suggest that the maladaptation during oxidative stress could play a pivotal role in the pathophysiology of major cardiovascular diseases such as myocardial infraction, atherosclerosis, and diabetic cardiovascular complications. In this review we have discussed the role of oxidative and reductive stress pathways in the pathogenesis of myocardial ischemia/reperfusion injury and diabetic cardiomyopathy (DCM). Furthermore, we have provided impetus for the development of subcellular organelle targeted antioxidant drug therapy for thwarting the deterioration of the failing myocardium in the aforementioned cardiovascular conditions. PMID:27313825

  4. [Metformin and left ventricular remodeling after acute myocardial infarction: molecular mechanisms and clinical implications].

    PubMed

    Paneni, Francesco; Costantino, Sarah; Cosentino, Francesco

    2015-04-01

    Despite clear advances in reperfusion therapy and pharmacological treatment, a large proportion of patients with an acute myocardial infarction will die of its consequences. In this regard, it is very important to understand the molecular processes underpinning ischemia-reperfusion injury and occurrence of left ventricular dysfunction, with the aim to develop mechanism-based therapeutic strategies. Experimental evidence indicates that metformin, a biguanide often used in the treatment of diabetes, has favorable effects on left ventricular function. This effect is largely mediated by activation of AMP-activated protein kinase (AMPK), a key molecule orchestrating many biochemical processes such as glucose uptake, glycolysis, oxidation of free fatty acids and mitochondrial biogenesis. These processes significantly contribute to raise ATP levels and restore myocardial contractile efficiency. AMPK also activates endothelial nitric oxide synthase and promotes autophagy, thus preventing inflammation and cellular death. These basic studies prompted many researchers to test the cardioprotective effects of metformin in the clinical setting. In diabetic patients with ST-elevation myocardial infarction (STEMI), retrospective analyses showed that metformin is associated with reduced infarct size as compared to non-metformin-based strategies, implicating beneficial effects beyond glucose control. A recent randomized trial, the GIPS-III study, has postulated that metformin may improve left ventricular function following STEMI even in patients without diabetes. Metformin (500 mg twice/day), administered 3h after percutaneous coronary intervention, did not result in improved left ventricular ejection fraction after 4-month follow-up. Based on these results, it remains unclear whether metformin exerts a cardioprotective effect regardless of glycemic control. Further randomized studies in diabetic and nondiabetic patients are required to address these important questions. The present

  5. Pharmacovigilance program to monitor adverse reactions of recombinant streptokinase in acute myocardial infarction

    PubMed Central

    Betancourt, Blas Y; Marrero-Miragaya, María A; Jiménez-López, Giset; Valenzuela-Silva, Carmen; García-Iglesias, Elizeth; Hernández-Bernal, Francisco; Debesa-García, Francisco; González-López, Tania; Alvarez-Falcón, Leovaldo; López-Saura, Pedro A

    2005-01-01

    Background Streptokinase (SK) is an effective fibrinolytic agent for the treatment of acute myocardial infarction (AMI). The objective of the present study was to assess the adverse drug reactions (ADRs) associated with intravenous recombinant SK in patients with AMI in routine clinical practice. Methods A national, prospective and spontaneous reporting-based pharmacovigilance program was conducted in Cuba. Patient demographics, suspected ADR description, elements to define causality, and outcomes were documented and analyzed. Results A total of 1496 suspected ADRs identified in 792 patients out of the 1660 (47.7 %) prescriptions reported in the program, were received from July 1995 to July 2002. Most of the patients (71.3%) were male, 67.2% were white and mean age was 61.6 ± 13.0 years. The mean time interval between the onset of symptoms and the start of the SK infusion was 4.9 ± 3.7 h. The most frequently reported ADRs were hypotension, arrhythmias, chills, tremors, vomiting, nauseas, allergy, bleeding and fever. ADR severity was 38% mild, 38% moderate, 10% severe, and 4% very severe. Only 3 patients with hemorrhagic stroke were reported. Seventy-two patients died in-hospital mainly because of cardiac causes associated with the patient's underlying clinical condition. Mortality was 3 times more likely in patients suffering arrhythmias than in those without this event (odds ratio 3.1, 95% CI: 1.8 to 5.1). Most of the reported ADRs were classified as possibly or probably associated with the study medication. Conclusion Recombinant SK was associated with a similar post-marketing safety profile to those suggested in previous clinical trials. PMID:16262910

  6. A clinical risk score of myocardial fibrosis predicts adverse outcomes in aortic stenosis

    PubMed Central

    Chin, Calvin W.L.; Messika-Zeitoun, David; Shah, Anoop S.V.; Lefevre, Guillaume; Bailleul, Sophie; Yeung, Emily N.W.; Koo, Maria; Mirsadraee, Saeed; Mathieu, Tiffany; Semple, Scott I.; Mills, Nicholas L.; Vahanian, Alec; Newby, David E.; Dweck, Marc R.

    2016-01-01

    Aims Midwall myocardial fibrosis on cardiovascular magnetic resonance (CMR) is a marker of early ventricular decompensation and adverse outcomes in aortic stenosis (AS). We aimed to develop and validate a novel clinical score using variables associated with midwall fibrosis. Methods and results One hundred forty-seven patients (peak aortic velocity (Vmax) 3.9 [3.2,4.4] m/s) underwent CMR to determine midwall fibrosis (CMR cohort). Routine clinical variables that demonstrated significant association with midwall fibrosis were included in a multivariate logistic score. We validated the prognostic value of the score in two separate outcome cohorts of asymptomatic patients (internal: n = 127, follow-up 10.3 [5.7,11.2] years; external: n = 289, follow-up 2.6 [1.6,4.5] years). Primary outcome was a composite of AS-related events (cardiovascular death, heart failure, and new angina, dyspnoea, or syncope). The final score consisted of age, sex, Vmax, high-sensitivity troponin I concentration, and electrocardiographic strain pattern [c-statistic 0.85 (95% confidence interval 0.78–0.91), P < 0.001; Hosmer–Lemeshow χ2 = 7.33, P = 0.50]. Patients in the outcome cohorts were classified according to the sensitivity and specificity of this score (both at 98%): low risk (probability score <7%), intermediate risk (7–57%), and high risk (>57%). In the internal outcome cohort, AS-related event rates were >10-fold higher in high-risk patients compared with those at low risk (23.9 vs. 2.1 events/100 patient-years, respectively; log rank P < 0.001). Similar findings were observed in the external outcome cohort (31.6 vs. 4.6 events/100 patient-years, respectively; log rank P < 0.001). Conclusion We propose a clinical score that predicts adverse outcomes in asymptomatic AS patients and potentially identifies high-risk patients who may benefit from early valve replacement. PMID:26491110

  7. Pentaerythritol Tetranitrate Targeting Myocardial Reactive Oxygen Species Production Improves Left Ventricular Remodeling and Function in Rats With Ischemic Heart Failure.

    PubMed

    Fraccarollo, Daniela; Galuppo, Paolo; Neuser, Jonas; Bauersachs, Johann; Widder, Julian D

    2015-11-01

    Reduced nitric oxide bioavailability contributes to progression of cardiac dysfunction and remodeling in ischemic heart failure. Clinical use of organic nitrates as nitric oxide donors is limited by development of nitrate tolerance and reactive oxygen species formation. We investigated the effects of long-term therapy with pentaerythritol tetranitrate (PETN), an organic nitrate devoid of tolerance, in rats with congestive heart failure after extensive myocardial infarction. Seven days after coronary artery ligation, rats were randomly allocated to treatment with PETN (80 mg/kg BID) or placebo for 9 weeks. Long-term PETN therapy prevented the progressive left ventricular dilatation and improved left ventricular contractile function and relaxation in rats with congestive heart failure. Mitochondrial superoxide anion production was markedly increased in the failing left ventricular myocardium and nearly normalized by PETN treatment. Gene set enrichment analysis revealed that PETN beneficially modulated the dysregulation of mitochondrial genes involved in energy metabolism, paralleled by prevention of uncoupling protein-3, thioredoxin-2, and superoxide dismutase-2 downregulation. Moreover, PETN provided a remarkable protective effect against reactive fibrosis in chronically failing hearts. Mechanistically, induction of heme oxygenase-1 by PETN prevented mitochondrial superoxide generation, NOX4 upregulation, and ensuing formation of extracellular matrix proteins in fibroblasts from failing hearts. In summary, PETN targeting reactive oxygen species generation prevented the changes of mitochondrial antioxidant enzymes and progressive fibrotic remodeling, leading to amelioration of cardiac functional performance. Therefore, PETN might be a promising therapeutic option in the treatment of ischemic heart diseases involving oxidative stress and impairment in nitric oxide bioactivity.

  8. Significance of myocardial tenascin‐C expression in left ventricular remodelling and long‐term outcome in patients with dilated cardiomyopathy

    PubMed Central

    Yokokawa, Tetsuro; Nakayama, Takafumi; Nagai, Toshiyuki; Matsuyama, Taka‐aki; Ohta‐Ogo, Keiko; Ikeda, Yoshihiko; Ishibashi‐Ueda, Hatsue; Nakatani, Takeshi; Yasuda, Satoshi; Takeishi, Yasuchika; Ogawa, Hisao; Anzai, Toshihisa

    2016-01-01

    Aim Dilated cardiomyopathy (DCM) has a variety of causes, and no useful approach to predict left ventricular (LV) remodelling and long‐term outcome has yet been established. Myocardial tenascin‐C (TNC) is known to appear under pathological conditions, possibly to regulate cardiac remodelling. The aim of this study was to clarify the significance of myocardial TNC expression in LV remodelling and the long‐term outcome in DCM. Methods and results One hundred and twenty‐three consecutive DCM patients who underwent endomyocardial biopsy for initial diagnosis were studied. Expression of TNC in biopsy sections was analysed immunohistochemically to quantify the ratio of the TNC‐positive area to the whole myocardial tissue area (TNC area). Clinical parameters associated with TNC area were investigated. The patients were divided into two groups based on receiver operating characteristic analysis of TNC area to predict death: high TNC group with TNC area ≥2.3% (22 patients) and low TNC group with TNC area <2.3% (101 patients). High TNC was associated with diabetes mellitus. Comparing echocardiographic findings between before and 9 months after endomyocardial biopsy, the low TNC group was associated with decreased LV end‐diastolic diameter and increased LV ejection fraction, whereas the high TNC group was not. Survival analysis revealed a worse outcome in the high TNC group than in the low TNC group (P < 0.001). Multivariable Cox regression analysis revealed that TNC area was independently associated with poor outcome (HR = 1.347, P = 0.032). Conclusions Increased myocardial TNC expression was associated with worse LV remodeling and long‐term outcome in DCM. PMID:26763891

  9. Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction.

    PubMed

    Li, Qiaoling; Xie, Jun; Li, Ruotian; Shi, Jian; Sun, Jiayin; Gu, Rong; Ding, Liang; Wang, Lian; Xu, Biao

    2014-05-01

    MicroRNAs are involved in the regulation of various cellular processes, including cell apoptosis and autophagy. Expression of microRNA-99a (miR-99a) is reduced in apoptotic neonatal mice ventricular myocytes (NMVMs) subjected to hypoxia. We hypothesize that miR-99a might restore cardiac function after myocardial infarction (MI) by up-regulation of myocyte autophagy and apoptosis. We observed down-regulated miR-99a expression in NMVMs exposed to hypoxia using TaqMan quantitative reverse transcriptase-polymerase chain reaction analysis (RT-PCR). We also observed that miR-99a overexpression decreased hypoxia-mediated apoptosis in cultured NMVMs. To investigate whether overexpression of miR-99a in vivo could improve cardiac function in ischaemic heart, adult C57/BL6 mice undergoing MI were randomized into two groups and were intra-myocardially injected with lenti-99a-green fluorescent protein (GFP) or lenti-GFP (control). Four weeks after MI, lenti-99a-GFP group showed significant improvement in both left ventricular (LV) function and survival ratio, as compared to the lenti-GFP group. Histological analysis, western blotting analysis and electron microscopy revealed decreased cellular apoptosis and increased autophagy in cardiomyocytes of lenti-99a-GFP group. Furthermore, western blotting analysis showed inhibited mammalian target of rapamycin (mTOR) expression in the border zones of hearts in miR-99a-treated group. Our results demonstrate that miR-99a overexpression improves both cardiac function and survival ratio in a murine model of MI by preventing cell apoptosis and increasing autophagy via an mTOR/P70/S6K signalling pathway. These findings suggest that miR-99a plays a cardioprotective role in post-infarction LV remodelling and increased expression of miR-99a may have a therapeutic potential in ischaemic heart disease.

  10. Permanent ligation of the left anterior descending coronary artery in mice: a model of post-myocardial infarction remodelling and heart failure.

    PubMed

    Muthuramu, Ilayaraja; Lox, Marleen; Jacobs, Frank; De Geest, Bart

    2014-12-02

    Heart failure is a syndrome in which the heart fails to pump blood at a rate commensurate with cellular oxygen requirements at rest or during stress. It is characterized by fluid retention, shortness of breath, and fatigue, in particular on exertion. Heart failure is a growing public health problem, the leading cause of hospitalization, and a major cause of mortality. Ischemic heart disease is the main cause of heart failure. Ventricular remodelling refers to changes in structure, size, and shape of the left ventricle. This architectural remodelling of the left ventricle is induced by injury (e.g., myocardial infarction), by pressure overload (e.g., systemic arterial hypertension or aortic stenosis), or by volume overload. Since ventricular remodelling affects wall stress, it has a profound impact on cardiac function and on the development of heart failure. A model of permanent ligation of the left anterior descending coronary artery in mice is used to investigate ventricular remodelling and cardiac function post-myocardial infarction. This model is fundamentally different in terms of objectives and pathophysiological relevance compared to the model of transient ligation of the left anterior descending coronary artery. In this latter model of ischemia/reperfusion injury, the initial extent of the infarct may be modulated by factors that affect myocardial salvage following reperfusion. In contrast, the infarct area at 24 hr after permanent ligation of the left anterior descending coronary artery is fixed. Cardiac function in this model will be affected by 1) the process of infarct expansion, infarct healing, and scar formation; and 2) the concomitant development of left ventricular dilatation, cardiac hypertrophy, and ventricular remodelling. Besides the model of permanent ligation of the left anterior descending coronary artery, the technique of invasive hemodynamic measurements in mice is presented in detail.

  11. Inflammatory markers in ST-elevation acute myocardial infarction.

    PubMed

    Seropian, Ignacio M; Sonnino, Chiara; Van Tassell, Benjamin W; Biasucci, Luigi M; Abbate, Antonio

    2016-08-01

    After acute myocardial infarction, ventricular remodeling is characterized by changes at the molecular, structural, geometrical and functional level that determine progression to heart failure. Inflammation plays a key role in wound healing and scar formation, affecting ventricular remodeling. Several, rather different, components of the inflammatory response were studied as biomarkers in ST-elevation acute myocardial infarction. Widely available and inexpensive tests, such as leukocyte count at admission, as well as more sophisticated immunoassays provide powerful predictors of adverse outcome in patients with ST-elevation acute myocardial infarction. We review the value of inflammatory markers in ST-elevation acute myocardial infarction and their association with ventricular remodeling, heart failure and sudden death. In conclusion, the use of these biomarkers may identify subjects at greater risk of adverse events and perhaps provide an insight into the mechanisms of disease progression.

  12. Overexpression of glutathione peroxidase attenuates myocardial remodeling and preserves diastolic function in diabetic heart.

    PubMed

    Matsushima, Shouji; Kinugawa, Shintaro; Ide, Tomomi; Matsusaka, Hidenori; Inoue, Naoki; Ohta, Yukihiro; Yokota, Takashi; Sunagawa, Kenji; Tsutsui, Hiroyuki

    2006-11-01

    Oxidative stress plays an important role in the structural and functional abnormalities of diabetic heart. Glutathione peroxidase (GSHPx) is a critical antioxidant enzyme that removes H(2)O(2) in both the cytosol and mitochondia. We hypothesized that the overexpression of GSHPx gene could attenuate left ventricular (LV) remodeling in diabetes mellitus (DM). We induced DM by injection of streptozotocin (160 mg/kg ip) in male GSHPx transgenic mice (TG+DM) and nontransgenic wildtype littermates (WT+DM). GSHPx activity was higher in the hearts of TG mice compared with WT mice, with no significant changes in other antioxidant enzymes. LV thiobarbituric acid-reactive substances measured in TG+DM at 8 wk were significantly lower than those in WT+DM (58 +/- 3 vs. 71 +/- 5 nmol/g, P < 0.05). Heart rate and aortic blood pressure were comparable between groups. Systolic function was preserved normal in WT+DM and TG+DM mice. In contrast, diastolic function was impaired in WT+DM and was improved in TG+DM as assessed by the deceleration time of peak velocity of transmitral diastolic flow and the time needed for relaxation of 50% maximal LV pressure to baseline value (tau; 13.5 +/- 1.2 vs. 8.9 +/- 0.7 ms, P < 0.01). The TG+DM values were comparable with those of WT+Control (tau; 7.8 +/- 0.2 ms). Improvement of LV diastolic function was accompanied by the attenuation of myocyte hypertrophy, interstitial fibrosis, and apoptosis. Overexpression of GSHPx gene ameliorated LV remodeling and diastolic dysfunction in DM. Therapies designed to interfere with oxidative stress might be beneficial to prevent cardiac abnormalities in DM. PMID:16844917

  13. Aliskiren and valsartan mediate left ventricular remodeling post-myocardial infarction in mice through MMP-9 effects.

    PubMed

    Ramirez, Trevi A; Iyer, Rugmani Padmanabhan; Ghasemi, Omid; Lopez, Elizabeth F; Levin, Daniel B; Zhang, Jianhua; Zamilpa, Rogelio; Chou, Youn-Min; Jin, Yu-Fang; Lindsey, Merry L

    2014-07-01

    We evaluated whether aliskiren, valsartan, or a combination of both was protective following myocardial infarction (MI) through effects on matrix metalloproteinase (MMP)-9. C57BL/6J wild type (WT, n=94) and MMP-9 null (null, n=85) mice were divided into 4 groups at 3h post-MI: saline (S), aliskiren (A; 50mg/kg/day), valsartan (V; 40mg/kg/day), or A+V and compared to no MI controls at 28days post-MI. All groups had similar infarct areas, and survival rates were higher in the null mice. The treatments influenced systolic function and hypertrophy index, as well as extracellular matrix (ECM) and inflammatory genes in the remote region, indicating that primary effects were on the viable myocardium. Saline treated WT mice showed increased end systolic and diastolic volumes and hypertrophy index, along with reduced ejection fraction. MMP-9 deletion improved LV function post-MI. Aliskiren attenuated the increase in end systolic volume and hypertrophy index, while valsartan improved end diastolic volumes and aliskiren+valsartan improved the hypertrophy index only when MMP-9 was absent. Extracellular matrix and inflammatory gene expression showed distinct patterns among the treatment groups, indicating a divergence in mechanisms of remodeling. This study shows that MMP-9 regulates aliskiren and valsartan effects in mice. These results in mice provide mechanistic insight to help translate these findings to post-MI patients.

  14. TWEAK-Fn14 Cytokine-Receptor Axis: A New Player of Myocardial Remodeling and Cardiac Failure

    PubMed Central

    Novoyatleva, Tatyana; Sajjad, Amna; Engel, Felix B.

    2013-01-01

    Tumor necrosis factor (TNF) has been firmly established as a pathogenic factor in heart failure, a significant socio-economic burden. In this review, we will explore the role of other members of the TNF/TNF receptor superfamily (TNFSF/TNFRSF) in cardiovascular diseases (CVDs) focusing on TWEAK and its receptor Fn14, new players in myocardial remodeling and heart failure. The TWEAK/Fn14 pathway controls a variety of cellular activities such as proliferation, differentiation, and apoptosis and has diverse biological functions in pathological mechanisms like inflammation and fibrosis that are associated with CVDs. Furthermore, it has recently been shown that the TWEAK/Fn14 axis is a positive regulator of cardiac hypertrophy and that deletion of Fn14 receptor protects from right heart fibrosis and dysfunction. We discuss the potential use of the TWEAK/Fn14 axis as biomarker for CVDs as well as therapeutic target for future treatment of human heart failure based on supporting data from animal models and in vitro studies. Collectively, existing data strongly suggest the TWEAK/Fn14 axis as a potential new therapeutic target for achieving cardiac protection in patients with CVDs. PMID:24611063

  15. Intravenous and intramyocardial injection of apoptotic white blood cell suspensions prevents ventricular remodelling by increasing elastin expression in cardiac scar tissue after myocardial infarction.

    PubMed

    Lichtenauer, Michael; Mildner, Michael; Baumgartner, Andrea; Hasun, Matthias; Werba, Gregor; Beer, Lucian; Altmann, Patrick; Roth, Georg; Gyöngyösi, Mariann; Podesser, Bruno Karl; Ankersmit, Hendrik Jan

    2011-06-01

    Congestive heart failure developing after acute myocardial infarction (AMI) is a major cause of morbidity and mortality. Clinical trials of cell-based therapy after AMI evidenced only a moderate benefit. We could show previously that suspensions of apoptotic peripheral blood mononuclear cells (PBMC) are able to reduce myocardial damage in a rat model of AMI. Here we experimentally examined the biochemical mechanisms involved in preventing ventricular remodelling and preserving cardiac function after AMI. Cell suspensions of apoptotic cells were injected intravenously or intramyocardially after experimental AMI induced by coronary artery ligation in rats. Administration of cell culture medium or viable PBMC served as controls. Immunohistological analysis was performed to analyse the cellular infiltrate in the ischaemic myocardium. Cardiac function was quantified by echocardiography. Planimetry of the infarcted hearts showed a significant reduction of infarction size and an improvement of post AMI remodelling in rats treated with suspensions of apoptotic PBMC (injected either intravenously or intramoycardially). Moreover, these hearts evidenced enhanced homing of macrophages and cells staining positive for c-kit, FLK-1, IGF-I and FGF-2 as compared to controls. A major finding in this study further was that the ratio of elastic and collagenous fibres within the scar tissue was altered in a favourable fashion in rats injected with apoptotic cells. Intravenous or intramyocardial injection of apoptotic cell suspensions results in attenuation of myocardial remodelling after experimental AMI, preserves left ventricular function, increases homing of regenerative cells and alters the composition of cardiac scar tissue. The higher expression of elastic fibres provides passive energy to the cardiac scar tissue and results in prevention of ventricular remodelling.

  16. Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling.

    PubMed

    Holopainen, Tanja; Räsänen, Markus; Anisimov, Andrey; Tuomainen, Tomi; Zheng, Wei; Tvorogov, Denis; Hulmi, Juha J; Andersson, Leif C; Cenni, Bruno; Tavi, Pasi; Mervaala, Eero; Kivelä, Riikka; Alitalo, Kari

    2015-10-20

    Cardiac hypertrophy accompanies many forms of heart disease, including ischemic disease, hypertension, heart failure, and valvular disease, and it is a strong predictor of increased cardiovascular morbidity and mortality. Deletion of bone marrow kinase in chromosome X (Bmx), an arterial nonreceptor tyrosine kinase, has been shown to inhibit cardiac hypertrophy in mice. This finding raised the possibility of therapeutic use of Bmx tyrosine kinase inhibitors, which we have addressed here by analyzing cardiac hypertrophy in gene-targeted mice deficient in Bmx tyrosine kinase activity. We found that angiotensin II (Ang II)-induced cardiac hypertrophy is significantly reduced in mice deficient in Bmx and in mice with inactivated Bmx tyrosine kinase compared with WT mice. Genome-wide transcriptomic profiling showed that Bmx inactivation suppresses myocardial expression of genes related to Ang II-induced inflammatory and extracellular matrix responses whereas expression of RNAs encoding mitochondrial proteins after Ang II administration was maintained in Bmx-inactivated hearts. Very little or no Bmx mRNA was expressed in human cardiomyocytes whereas human cardiac endothelial cells expressed abundant amounts. Ang II stimulation of endothelial cells increased Bmx phosphorylation, and Bmx gene silencing inhibited downstream STAT3 signaling, which has been implicated in cardiac hypertrophy. Furthermore, activation of the mechanistic target of rapamycin complex 1 pathway by Ang II treatment was decreased in the Bmx-deficient hearts. Our results demonstrate that inhibition of the cross-talk between endothelial cells and cardiomyocytes by Bmx inactivation suppresses Ang II-induced signals for cardiac hypertrophy. These results suggest that the endothelial Bmx tyrosine kinase could provide a target to attenuate the development of cardiac hypertrophy. PMID:26430242

  17. Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling

    PubMed Central

    Holopainen, Tanja; Räsänen, Markus; Anisimov, Andrey; Tuomainen, Tomi; Zheng, Wei; Tvorogov, Denis; Hulmi, Juha J.; Andersson, Leif C.; Cenni, Bruno; Tavi, Pasi; Mervaala, Eero; Kivelä, Riikka; Alitalo, Kari

    2015-01-01

    Cardiac hypertrophy accompanies many forms of heart disease, including ischemic disease, hypertension, heart failure, and valvular disease, and it is a strong predictor of increased cardiovascular morbidity and mortality. Deletion of bone marrow kinase in chromosome X (Bmx), an arterial nonreceptor tyrosine kinase, has been shown to inhibit cardiac hypertrophy in mice. This finding raised the possibility of therapeutic use of Bmx tyrosine kinase inhibitors, which we have addressed here by analyzing cardiac hypertrophy in gene-targeted mice deficient in Bmx tyrosine kinase activity. We found that angiotensin II (Ang II)-induced cardiac hypertrophy is significantly reduced in mice deficient in Bmx and in mice with inactivated Bmx tyrosine kinase compared with WT mice. Genome-wide transcriptomic profiling showed that Bmx inactivation suppresses myocardial expression of genes related to Ang II-induced inflammatory and extracellular matrix responses whereas expression of RNAs encoding mitochondrial proteins after Ang II administration was maintained in Bmx-inactivated hearts. Very little or no Bmx mRNA was expressed in human cardiomyocytes whereas human cardiac endothelial cells expressed abundant amounts. Ang II stimulation of endothelial cells increased Bmx phosphorylation, and Bmx gene silencing inhibited downstream STAT3 signaling, which has been implicated in cardiac hypertrophy. Furthermore, activation of the mechanistic target of rapamycin complex 1 pathway by Ang II treatment was decreased in the Bmx-deficient hearts. Our results demonstrate that inhibition of the cross-talk between endothelial cells and cardiomyocytes by Bmx inactivation suppresses Ang II-induced signals for cardiac hypertrophy. These results suggest that the endothelial Bmx tyrosine kinase could provide a target to attenuate the development of cardiac hypertrophy. PMID:26430242

  18. Both enalapril and losartan attenuate sarcolemmal Na+-K+-ATPase remodeling in failing rat heart due to myocardial infarction.

    PubMed

    Guo, Xiaobing; Wang, Jingwei; Elimban, Vijayan; Dhalla, Naranjan S

    2008-04-01

    To investigate the mechanisms underlying the depressed sarcolemmal (SL) Na(+)-K(+)-ATPase activity in congestive heart failure (CHF), different isoforms and gene expression of Na(+)-K(+)-ATPase were examined in the failing left ventricle (LV) at 8 weeks after myocardial infarction (MI). In view of the increased activity of renin-angiotensin system (RAS) in CHF, these parameters were also studied after 5 weeks of treatment with enalapril (10 mg x kg-1 x day-1), an angiotensin-converting enzyme inhibitor, and losartan (20 mg.kg-1.day-1), an angiotensin II type 1 receptor antagonist, starting at 3 weeks after the coronary ligation in rats. The infarcted animals showed LV dysfunction and depressed SL Na(+)-K(+)-ATPase activity. Protein content and mRNA levels for Na(+)-K(+)-ATPase alpha2 isoform were decreased whereas those for Na(+)-K(+)-ATPase alpha3 isoform were increased in the failing LV. On the other hand, no significant changes were observed in protein content or mRNA levels for Na(+)-K(+)-ATPase alpha1 and beta1 isoforms. The treatment of infarcted animals with enalapril or losartan improved LV function and attenuated the depression in Na(+)-K(+)-ATPase alpha2 isoform as well as the increase in alpha3 isoform, at both the protein and mRNA levels; however, combination therapy with enalapril and losartan did not produce any additive effects. These results provide further evidence that CHF due to MI is associated with remodeling of SL membrane and suggest that the blockade of RAS plays an important role in preventing these alterations in the failing heart.

  19. Ablation of C/EBP homologous protein increases the acute phase mortality and doesn't attenuate cardiac remodeling in mice with myocardial infarction.

    PubMed

    Luo, Guangjin; Li, Qingman; Zhang, Xiajun; Shen, Liang; Xie, Jiahe; Zhang, Jingwen; Kitakaze, Masafumi; Huang, Xiaobo; Liao, Yulin

    2015-08-14

    Endoplasmic reticulum stress is a proapoptotic and profibrotic stimulus. Ablation of C/EBP homologous protein (CHOP) is reported to reverse cardiac dysfunction by attenuating cardiac endoplasmic reticulum stress in mice with pressure overload or ischemia/reperfusion, but it is unclear whether loss of CHOP also inhibits cardiac remodeling induced by permanent-infarction. In mice with permanent ligation of left coronary artery, we found that ablation of CHOP increased the acute phase mortality. For the mice survived to 4 weeks, left ventricular anterior (LV) wall thickness was larger in CHOP knockout mice than in the wildtype littermates, while no difference was noted on posterior wall thickness, LV dimensions, LV fractional shortening and ejection fraction. Similarly, invasive assessment of LV hemodynamics, morphological analysis of heart and lung weight indexes, myocardial fibrosis and TUNEL-assessed apoptosis showed no significant differences between CHOP knockout mice and their wildtype ones, while in mice with ischemia for 45 min and reperfusion for 1 week, myocardial fibrosis and apoptosis in the infarct area were significantly attenuated in CHOP knockout mice. These findings indicate that ablation of CHOP doesn't ameliorate cardiac remodeling induced by permanent-myocardial infarction, which implicates that early reperfusion is a prerequisite for ischemic myocardium to benefit from CHOP inhibition.

  20. Hydrogen Sulfide Alleviates Myocardial Collagen Remodeling in Association with Inhibition of TGF-β/Smad Signaling Pathway in Spontaneously Hypertensive Rats

    PubMed Central

    Sun, Lili; Jin, Hongfang; Sun, Lujing; Chen, Siyao; Huang, Yaqian; Liu, Jia; Li, Zhenzhen; Zhao, Manman; Sun, Yan; Tang, Chaoshu; Zhao, Bin; Du, Junbao

    2014-01-01

    The study was designed to explore the role and possible mechanisms of hydrogen sulfide (H2S) in the regulation of myocardial collagen remodeling in spontaneously hypertensive rats (SHRs). We treated nine-week-old male SHRs and age- and sex-matched Wistar–Kyoto rats (WKYs) with NaHS (90 μmol/kg−1·day−1) for 9 wks. At 18 wks, plasma H2S, tail arterial pressure, morphology of the heart, myocardial ultrastructure and collagen volume fraction (CVF), myocardial expressions of collagen I and III protein and procollagen I and III mRNA, transforming growth factor-β1 (TGF-β1), TGF-β type I receptor (TβR-I), type II receptor (TβR-II), p-Smad2 and 3, matrix metalloproteinase (MMP)-13 and tissue inhibitors of MMP (TIMP)-1 proteins were determined. TGF-β1-stimulated cultured cardiac fibroblasts (CFs) were used to further study the mechanisms. The results showed that compared with WKYs, SHRs showed a reduced plasma H2S, elevated tail artery pressure and increased myocardial collagen, TGF-β1, TβR-II, p-Smad2 and p-Smad3 expressions. However, NaHS markedly decreased tail artery pressure and inhibited myocardial collagen, TGF-β1, TβR-II, p-Smad2 and p-Smad3 protein expressions, but H2S had no effect on the expressions of MMP-13 and TIMP-1. Hydralazine reduced blood pressure but had no effect on myocardial collagen, MMP-13 and TIMP-1 expressions and TGF-β1/Smad signaling pathway. H2S prevented activation of the TGF-β1/Smad signaling pathway and abnormal collagen synthesis in CFs. In conclusion, the results suggested that H2S could prevent myocardial collagen remodeling in SHR. The mechanism might be associated with inhibition of collagen synthesis via TGF-β1/Smad signaling pathway. PMID:25222913

  1. MicroRNA-214 Inhibits Left Ventricular Remodeling in an Acute Myocardial Infarction Rat Model by Suppressing Cellular Apoptosis via the Phosphatase and Tensin Homolog (PTEN).

    PubMed

    Yang, Xingwei; Qin, Yanjun; Shao, Suxia; Yu, Yueqing; Zhang, Chongyang; Dong, Hua; Lv, Guangwei; Dong, Shimin

    2016-01-01

    The aims of the present study were to determine the role of miR-214 on left ventricular remodeling of rat heart with acute myocardial infarction (AMI) and to further investigate the underlying mechanism of miR-214-mediated myocardial protection. AMI was induced in which adenovirus-expressing miR-214 (Ad-miR-214), anti-miR-214, or Ad-GFP had been delivered into rats hearts 4 days prior, while a phosphatase and tensin homolog (PTEN) inhibitor was administered via intra-peritoneal injection 30 minutes prior to AMI. Changes in hemodynamic parameters were detected and recorded. Left ventricular (LV) dimensions and LV/BW were measured. Quantitative RT-PCR was used to determine the miR-214 expression levels of the myocytes in the infarcted, border, and non-infarcted areas of the LV. Myocardial infarct size was also measured. Flow cytometry analysis was performed to examine cellular apoptosis. Western blot analysis was performed to examine PTEN expression. The results showed that miR-214 was upregulated in both border and infarcted areas. Myocardial cell apoptosis was decreased in the Ad-miR-214 group, but was increased in the anti-miR-214 group, while there were no differences among the Ad-GFP-group, PTEN-ad-miR-214 group, or PTEN-anti-miR-214 group. Myocardial infarct size, LV dimensions, heart rate (HR), and LV end-diastolic pressure (LVEDP) were decreased while the maximal rates of rise or decline in blood pressure in the ventricular chamber (± dp/dt) and LV systolic pressure (LVSP) were increased in the Ad-miR-214 group, all of which exhibited opposite changes in the anti-miR-214 group. PTEN was downregulated in the Ad-miR-214 group and upregulated in the anti-miR-214 group. PTEN was decreased in both the border and infarcted areas compared with non-infarcted areas. The study results suggest that Ad-miR-214 improves LV remodeling and decreases the apoptosis of myocardial cells through PTEN, suggesting a possible mechanism by which Ad-miR-214 functions in protecting

  2. An unusual adverse effect of sildenafil citrate: acute myocardial infarction in a nitrate-free patient.

    PubMed

    Cakmak, Huseyin Altug; Ikitimur, Baris; Karadag, Bilgehan; Ongen, Zeki

    2012-10-19

    Myocardial infarction (MI) associated with sildenafil citrate is seen rarely in patients without any history of coronary artery disease. We report a nitrate-free patient with a history of cardiovascular risk factors who developed acute MI after taking sildenafil. A 44-year-old man diagnosed with acute anterior ST segment elevation MI 120 min after self-administration of 150 mg sildenafil was admitted before attempting any sexual intercourse. The coronary angiography revealed 99% occlusion of the left anterior descending artery (LAD) and a bare-metal stent was implanted. He was discharged after 5 days without any complication. Sildenafil may cause coronary steal or may lead to vasodilation causing hypotension in patient with pre-existing cardiovascular disease, especially in patients on nitrate therapy. Our patient was nitrate free, with normal blood pressure values. Emotional stimulation associated with anticipated sexual activity may have been a triggering factor for vulnerable coronary plaque rupture.

  3. Exercise intensity-dependent reverse and adverse remodeling of voltage-gated Ca(2+) channels in mesenteric arteries from spontaneously hypertensive rats.

    PubMed

    Chen, Yu; Zhang, Hanmeng; Zhang, Yanyan; Lu, Ni; Zhang, Lin; Shi, Lijun

    2015-10-01

    Exercise can be regarded as a drug for treating hypertension, and the 'dosage' (intensity/volume) is therefore of great importance. L-type voltage-gated Ca(2+) (Cav1.2) channels on the plasma membrane of vascular smooth muscle cells have a pivotal role in modulating the vascular tone, and the upregulation of Cav1.2 channels is a hallmark feature of hypertension. The present study investigated the beneficial and adverse effects of exercise at different intensities on the remodeling of the Cav1.2 channel in mesenteric arteries (MAs) of spontaneously hypertensive rats (SHRs). Moderate- (SHR-M, 18-20 m min(-1)) and high-intensity (SHR-H, 26-28 m min(-1)) aerobic exercise training groups were created for SHRs and lasted for 8 weeks (1 h per day, 5 d per week). Age-matched sedentary SHRs and normotensive Wistar-Kyoto rats (WKY) were used as controls. The mesenteric arterial mechanical and functional properties were evaluated. Moderate-intensity exercise training induced a lower systolic blood pressure and heart rate in these rats compared with sedentary SHRs. BayK 8644 and nifedipine induced vasoconstriction and dose-dependent vasorelaxation, respectively, in the mesenteric arterial rings. Moderate-intensity exercise significantly suppressed the increase in BayK 8644-induced vasoconstriction, tissue sensitivity to nifedipine, Cav1.2 channel current density and Cav1.2 α1C-subunit protein expression in MAs from SHRs. However, high-intensity exercise training aggravated all of these hypertension-associated functional and molecular alterations of Cav1.2 channels. These results indicate that moderate-intensity aerobic training may act as a drug and effectively reverse the remodeling of Cav1.2 channels in hypertension to restore the vascular function in MAs, but that high-intensity exercise exaggerates the adverse remodeling of Cav1.2 channels and worsens the vascular function. PMID:25902901

  4. Systematic drug safety evaluation based on public genomic expression (Connectivity Map) data: myocardial and infectious adverse reactions as application cases.

    PubMed

    Wang, Kejian; Weng, Zuquan; Sun, Liya; Sun, Jiazhi; Zhou, Shu-Feng; He, Lin

    2015-02-13

    Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure-activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. In the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation.

  5. Systematic drug safety evaluation based on public genomic expression (Connectivity Map) data: myocardial and infectious adverse reactions as application cases.

    PubMed

    Wang, Kejian; Weng, Zuquan; Sun, Liya; Sun, Jiazhi; Zhou, Shu-Feng; He, Lin

    2015-02-13

    Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure-activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. In the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation. PMID:25576362

  6. Design and rationale of a multicentre, randomised, double-blind, placebo-controlled clinical trial to evaluate the effect of vitamin D on ventricular remodelling in patients with anterior myocardial infarction: the VITamin D in Acute Myocardial Infarction (VITDAMI) trial

    PubMed Central

    Tuñón, José; González-Hernández, Ignacio; Llanos-Jiménez, Lucía; Alonso-Martín, Joaquín; Escudier-Villa, Juan M; Tarín, Nieves; Cristóbal, Carmen; Sanz, Petra; Pello, Ana M; Aceña, Álvaro; Carda, Rocío; Orejas, Miguel; Tomás, Marta; Beltrán, Paula; Calero Rueda, Marta; Marcos, Esther; Serrano-Antolín, José María; Gutiérrez-Landaluce, Carlos; Jiménez, Rosa; Cabezudo, Jorge; Curcio, Alejandro; Peces-Barba, Germán; González-Parra, Emilio; Muñoz-Siscart, Raquel; González-Casaus, María Luisa; Lorenzo, Antonio; Huelmos, Ana; Goicolea, Javier; Ibáñez, Borja; Hernández, Gonzalo; Alonso-Pulpón, Luis M; Farré, Jerónimo; Lorenzo, Óscar; Mahíllo-Fernández, Ignacio; Egido, Jesús

    2016-01-01

    Introduction Decreased plasma vitamin D (VD) levels are linked to cardiovascular damage. However, clinical trials have not demonstrated a benefit of VD supplements on left ventricular (LV) remodelling. Anterior ST-elevation acute myocardial infarction (STEMI) is the best human model to study the effect of treatments on LV remodelling. We present a proof-of-concept study that aims to investigate whether VD improves LV remodelling in patients with anterior STEMI. Methods and analysis The VITamin D in Acute Myocardial Infarction (VITDAMI) trial is a multicentre, randomised, double-blind, placebo-controlled trial. 144 patients with anterior STEMI will be assigned to receive calcifediol 0.266 mg capsules (Hidroferol SGC)/15 days or placebo on a 2:1 basis during 12 months. Primary objective: to evaluate the effect of calcifediol on LV remodelling defined as an increase in LV end-diastolic volume ≥10% (MRI). Secondary objectives: change in LV end-diastolic and end-systolic volumes, ejection fraction, LV mass, diastolic function, sphericity index and size of fibrotic area; endothelial function; plasma levels of aminoterminal fragment of B-type natriuretic peptide, galectin-3 and monocyte chemoattractant protein-1; levels of calcidiol (VD metabolite) and other components of mineral metabolism (fibroblast growth factor-23 (FGF-23), the soluble form of its receptor klotho, parathormone and phosphate). Differences in the effect of VD will be investigated according to the plasma levels of FGF-23 and klotho. Treatment safety and tolerability will be assessed. This is the first study to evaluate the effect of VD on cardiac remodelling in patients with STEMI. Ethics and dissemination This trial has been approved by the corresponding Institutional Review Board (IRB) and National Competent Authority (Agencia Española de Medicamentos y Productos Sanitarios (AEMPS)). It will be conducted in accordance with good clinical practice (International Council for Harmonisation of

  7. A novel cardiac muscle-derived biomaterial reduces dyskinesia and postinfarct left ventricular remodeling in a mouse model of myocardial infarction

    PubMed Central

    O'Connor, Daniel M; Naresh, Nivedita K; Piras, Bryan A; Xu, Yaqin; Smith, Robert S; Epstein, Frederick H; Hossack, John A; Ogle, Roy C; French, Brent A

    2015-01-01

    Extracellular matrix (ECM) degradation after myocardial infarction (MI) leaves the myocardium structurally weakened and, as a result, susceptible to early infarct zone dyskinesia and left ventricular (LV) remodeling. While various cellular and biomaterial preparations have been transplanted into the infarct zone in hopes of improving post-MI LV remodeling, an allogeneic cardiac muscle-derived ECM extract has yet to be developed and tested in the setting of reperfused MI. We sought to determine the effects of injecting a novel cardiac muscle-derived ECM into the infarct zone on early dyskinesia and LV remodeling in a mouse model of MI. Cardiac muscle ECM was extracted from frozen mouse heart tissue by a protocol that enriches for basement membrane constituents. The extract was injected into the infarct zone immediately after ischemia/reperfusion injury (n = 6). Echocardiography was performed at baseline and at days 2, 7, 14, and 28 post-MI to assess 3D LV volumes and cardiac function, as compared to infarcted controls (n = 9). Early infarct zone dyskinesia was measured on day 2 post-MI using a novel metric, the dyskinesia index. End-systolic volume was significantly reduced in the ECM-treated group compared to controls by day 14. Ejection fraction and stroke volume were also significantly improved in the ECM-treated group. ECM-treated hearts showed a significant (P < 0.005) reduction in dyskinetic motion on day 2. Thus, using high-frequency ultrasound, it was shown that treatment with a cardiac-derived ECM preparation reduced early infarct zone dyskinesia and post-MI LV remodeling in a mouse model of reperfused MI. PMID:25825543

  8. Attenuation of increased secretory leukocyte protease inhibitor, matricellular proteins and angiotensin II and left ventricular remodeling by candesartan and omapatrilat during healing after reperfused myocardial infarction.

    PubMed

    Palaniyappan, Ariv; Uwiera, Richard R E; Idikio, Halliday; Menon, Vijay; Jugdutt, Catherine; Jugdutt, Bodh I

    2013-04-01

    While secretory-leukocyte-protease-inhibitor (SLPI) may promote skin wound healing, its role in infarct healing after reperfused myocardial infarction (RMI) remains unclear. Short-term intravenous angiotensin II (AngII) receptor blocker therapy with candesartan (CN) attenuates increased SLPI and markers of early matrix/left ventricular (LV) in acute RMI. To determine whether reducing effects of AngII with CN or the vasopeptidase inhibitor omapatrilat (OMA) during the healing phase after RMI attenuates SLPI and other mediators of healing and matrix/LV remodeling, we measured these in Sprague-Dawley rats randomized to oral placebo, CN (30 mg/kg/day) or OMA (10 mg/kg/day) therapy during healing between days 2 and 23 after RMI and sham. On day-25, RMI-placebo showed significant LV remodeling, systolic/diastolic dysfunction and impaired passive compliance, and ischemic zone increases in SLPI, secreted-protein-acidic-and-rich-in-cysteine (SPARC) and osteopontin (OPN) mRNA and protein. In addition, metalloproteinase (MMP)-9 and -2, a-disintegrin-and-metalloproteinase (ADAM)-10 and -17, inducible-nitric-oxide-synthase (iNOS), pro-inflammatory cytokines interleukin (IL)-6, and tumor necrosis factor-α, transforming growth factor (TGF)-β(1) and its signaling molecule p-Smad-2, myeloperoxidase (MPO), AngII, MPO-positive granulocytes, MAC387-positive macrophages and monocytes, scar collagens, cardiomyocyte and fibroblast apoptosis, and microvascular no-reflow also increased whereas anti-inflammatory cytokine IL-10 decreased. Both CN and OMA attenuated all the changes except IL-10, which normalized. Thus, CN or OMA treatment during healing after RMI results in attenuation of SLPI as well as tissue AngII and mediators of inflammation and matrix/LV remodeling including SPARC, OPN, and ADAMs. Whether increasing SLPI on top of background AngII inhibition or therapy such as CN or OMA might produce added remodeling benefit needs study.

  9. Reoxygenation‐Derived Toxic Reactive Oxygen/Nitrogen Species Modulate the Contribution of Bone Marrow Progenitor Cells to Remodeling After Myocardial Infarction

    PubMed Central

    Moldovan, Nicanor I.; Anghelina, Mirela; Varadharaj, Saradhadevi; Butt, Omer I.; Wang, Tiangshen; Yang, Fuchun; Moldovan, Leni; Zweier, Jay L.

    2014-01-01

    Background The core region of a myocardial infarction is notoriously unsupportive of cardiomyocyte survival. However, there has been less investigation of the potentially beneficial spontaneous recruitment of endogenous bone marrow progenitor cells (BMPCs) within infarcted areas. In the current study we examined the role of tissue oxygenation and derived toxic species in the control of BMPC engraftment during postinfarction heart remodeling. Methods and Results For assessment of cellular origin, local oxygenation, redox status, and fate of cells in the infarcted region, myocardial infarction in mice with or without LacZ+ bone marrow transplantation was induced by coronary ligation. Sham‐operated mice served as controls. After 1 week, LacZ+ BMPC‐derived cells were found inhomogeneously distributed into the infarct zone, with a lower density at its core. Electron paramagnetic resonance (EPR) oximetry showed that pO2 in the infarct recovered starting on day 2 post–myocardial infarction, concomitant with wall thinning and erythrocytes percolating through muscle microruptures. Paralleling this reoxygenation, increased generation of reactive oxygen/nitrogen species was detected at the infarct core. This process delineated a zone of diminished BMPC engraftment, and at 1 week infiltrating cells displayed immunoreactive 3‐nitrotyrosine and apoptosis. In vivo treatment with a superoxide dismutase mimetic significantly reduced reactive oxygen species formation and amplified BMPC accumulation. This treatment also salvaged wall thickness by 43% and left ventricular ejection fraction by 27%, with significantly increased animal survival. Conclusions BMPC engraftment in the infarct inversely mirrored the distribution of reactive oxygen/nitrogen species. Antioxidant treatment resulted in increased numbers of engrafted BMPCs, provided functional protection to the heart, and decreased the incidence of myocardial rupture and death. PMID:24419735

  10. Left ventricular energy model predicts adverse events in women with suspected myocardial ischemia: results from the NHLBI-sponsored women’s ischemia syndrome evaluation (WISE) study

    PubMed Central

    Weinberg, Nicole; Pohost, Gerald M.; Bairey Merz, C. Noel; Shaw, Leslee J.; Sopko, George; Fuisz, Anthon; Rogers, William J.; Walsh, Edward G.; Johnson, B. Delia; Sharaf, Barry L.; Pepine, Carl J.; Mankad, Sunil; Reis, Steven E.; Rayarao, Geetha; Vido, Diane A.; Bittner, Vera; Tauxe, Lindsey; Olson, Marian B.; Kelsey, Sheryl F.; Biederman, Robert WW

    2013-01-01

    Objectives To assess the prognostic value of a left ventricular energy-model in women with suspected myocardial ischemia. Background The prognostic value of internal energy utilization (IEU) of the left ventricle in women with suspected myocardial ischemia is unknown. Methods Women [n=227, mean age 59±12 years (range, 31-86 years)], with symptoms of myocardial ischemia, underwent myocardial perfusion imaging (MPI) assessment for regional perfusion defects along with measurement of ventricular volumes separately by gated Single Photon Emission Computed Tomography (SPECT) (n=207) and magnetic resonance imaging (MRI) (n=203). During follow-up (40±17 months), time to first major adverse cardiovascular event (MACE, death, myocardial infarction or hospitalization for congestive heart failure) was analyzed using MRI and gated SPECT variables. Results Adverse events occurred in 31 (14%). Multivariable Cox models were formed for each modality: IEU and wall thickness by MRI (Chi-squared 34, P<0.005) and IEU and systolic blood pressure by gated SEPCT (Chi-squared 34, P<0.005). The models remained predictive after adjustment for age, disease history and Framingham risk score. For each Cox model, patients were categorized as high-risk if the model hazard was positive and not high-risk otherwise. Kaplan-Meier analysis of time to MACE was performed for high-risk vs. not high-risk for MR (log rank 25.3, P<0.001) and gated SEPCT (log rank 18.2, P<0.001) models. Conclusions Among women with suspected myocardial ischemia a high internal energy utilization has higher prognostic value than either a low EF or the presence of a myocardial perfusion defect assessed using two independent modalities of MR or gated SPECT. PMID:24015377

  11. Impaired Glucose Tolerance or Newly Diagnosed Diabetes Mellitus Diagnosed during Admission Adversely Affects Prognosis after Myocardial Infarction: An Observational Study

    PubMed Central

    George, Anish; Bhatia, Raghav T.; Buchanan, Gill L.; Whiteside, Anne; Moisey, Robert S.; Beer, Stephen F.; Chattopadhyay, Sudipta; Sathyapalan, Thozhukat; John, Joseph

    2015-01-01

    Objective To investigate the prognostic effect of newly diagnosed diabetes mellitus (NDM) and impaired glucose tolerance (IGT) post myocardial infarction (MI). Research Design and Methods Retrospective cohort study of 768 patients without preexisting diabetes mellitus post-MI at one centre in Yorkshire between November 2005 and October 2008. Patients were categorised as normal glucose tolerance (NGT n = 337), IGT (n = 279) and NDM (n = 152) on pre- discharge oral glucose tolerance test (OGTT). Primary end-point was the first occurrence of major adverse cardiovascular events (MACE) including cardiovascular death, non-fatal MI, severe heart failure (HF) or non-haemorrhagic stroke. Secondary end-points were all cause mortality and individual components of MACE. Results Prevalence of NGT, impaired fasting glucose (IFG), IGT and NDM changed from 90%, 6%, 0% and 4% on fasting plasma glucose (FPG) to 43%, 1%, 36% and 20% respectively after OGTT. 102 deaths from all causes (79 as first events of which 46 were cardiovascular), 95 non fatal MI, 18 HF and 9 non haemorrhagic strokes occurred during 47.2 ± 9.4 months follow up. Event free survival was lower in IGT and NDM groups. IGT (HR 1.54, 95% CI: 1.06–2.24, p = 0.024) and NDM (HR 2.15, 95% CI: 1.42–3.24, p = 0.003) independently predicted MACE free survival. IGT and NDM also independently predicted incidence of MACE. NDM but not IGT increased the risk of secondary end-points. Conclusion Presence of IGT and NDM in patients presenting post-MI, identified using OGTT, is associated with increased incidence of MACE and is associated with adverse outcomes despite adequate secondary prevention. PMID:26571120

  12. Systematic drug safety evaluation based on public genomic expression (Connectivity Map) data: Myocardial and infectious adverse reactions as application cases

    SciTech Connect

    Wang, Kejian; Weng, Zuquan; Sun, Liya; Sun, Jiazhi; Zhou, Shu-Feng; He, Lin

    2015-02-13

    Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure–activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. In the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation. - Highlights: • Drugs causing common toxicity lead to similar in vitro gene expression changes. • We built a model to predict drug toxicity with drug-specific expression profiles. • Drugs with FDA black box warnings were effectively identified by our model. • In vitro assay can detect severe toxicity in the early stage of drug development.

  13. SERIAL ULTRASOUND EVALUATION OF INTRAMYOCARDIAL STRAIN AFTER REPERFUSED MYOCARDIAL INFARCTION REVEALS THAT REMOTE ZONE DYSSYNCHRONY DEVELOPS IN CONCERT WITH LEFT VENTRICULAR REMODELING

    PubMed Central

    Li, Yinbo; Garson, Christopher D.; Xu, Yaqin; Helm, Patrick A.; Hossack, John A.; French, Brent A.

    2011-01-01

    This study noninvasively evaluated the development of left ventricular (LV) dyssynchrony following reperfused myocardial infarction (MI) in mice using an ultrasonic speckle-tracking method. Eight C57BL/6J mice were assessed by high-resolution echocardiography at baseline and at eight time-points following MI. Images were acquired at 1mm elevational intervals encompassing the entire LV to determine chamber volumes and radial strain. Receiver-operating characteristic (ROC) analysis of regional radial strain was used to segment the three-dimensional (3-D) LV into infarct, adjacent and remote zones. This in vivo segmentation was correlated to histologic infarct size (R = 0.89, p < 0.01) in a short-axis, slice-by-slice comparison. The onset of dyssynchrony during LV remodeling was assessed by standard deviation of time to peak radial strain in the infarct, adjacent and remote zones. It was discovered that the form of LV dyssynchrony that develops in the remote zone late after MI does so in concert with the progression of LV remodeling (R = 0.70, p < 0.05). PMID:21640480

  14. Delivery of an engineered HGF fragment in an extracellular matrix-derived hydrogel prevents negative LV remodeling post-myocardial infarction

    PubMed Central

    Sonnenberg, Sonya; Rane, Aboli A.; Liu, Cassie J.; Rao, Nikhil; Agmon, Gillie; Suarez, Sophia; Wang, Raymond; Munoz, Adam; Bajaj, Vaibhav; Zhang, Shirley; Braden, Rebecca; Schup-Magoffin, Pamela J.; Kwan, Oi Ling; DeMaria, Anthony N.; Cochran, Jennifer R.; Christman, Karen L.

    2015-01-01

    Hepatocyte growth factor (HGF) has been shown to have anti-fibrotic, pro-angiogenic, and cardioprotective effects; however, it is highly unstable and expensive to manufacture, hindering its clinical translation. Recently, a HGF fragment (HGF-f), an alternative c-MET agonist, was engineered to possess increased stability and recombinant expression yields. In this study, we assessed the potential of HGF-f, delivered in an extracellular matrix (ECM)-derived hydrogel, as a potential treatment for myocardial infarction (MI). HGF-f protected cardiomyocytes from serum-starvation and induced down-regulation of fibrotic markers in whole cardiac cell isolate compared to the untreated control. The ECM hydrogel prolonged release of HGF-f compared to collagen gels, and in vivo delivery of HGF-f from ECM hydrogels mitigated negative remodeling, improved fractional area change (FAC), and increased arteriole density in rat myocardial infarction model. These results indicate that HGF-f may be a viable alternative to using recombinant HGF, and that an ECM hydrogel can be employed to increase growth factor retention and efficacy. PMID:25662495

  15. Delivery of an engineered HGF fragment in an extracellular matrix-derived hydrogel prevents negative LV remodeling post-myocardial infarction.

    PubMed

    Sonnenberg, Sonya B; Rane, Aboli A; Liu, Cassie J; Rao, Nikhil; Agmon, Gillie; Suarez, Sophia; Wang, Raymond; Munoz, Adam; Bajaj, Vaibhav; Zhang, Shirley; Braden, Rebecca; Schup-Magoffin, Pamela J; Kwan, Oi Ling; DeMaria, Anthony N; Cochran, Jennifer R; Christman, Karen L

    2015-03-01

    Hepatocyte growth factor (HGF) has been shown to have anti-fibrotic, pro-angiogenic, and cardioprotective effects; however, it is highly unstable and expensive to manufacture, hindering its clinical translation. Recently, a HGF fragment (HGF-f), an alternative c-MET agonist, was engineered to possess increased stability and recombinant expression yields. In this study, we assessed the potential of HGF-f, delivered in an extracellular matrix (ECM)-derived hydrogel, as a potential treatment for myocardial infarction (MI). HGF-f protected cardiomyocytes from serum-starvation and induced down-regulation of fibrotic markers in whole cardiac cell isolate compared to the untreated control. The ECM hydrogel prolonged release of HGF-f compared to collagen gels, and in vivo delivery of HGF-f from ECM hydrogels mitigated negative left ventricular (LV) remodeling, improved fractional area change (FAC), and increased arteriole density in a rat myocardial infarction model. These results indicate that HGF-f may be a viable alternative to using recombinant HGF, and that an ECM hydrogel can be employed to increase growth factor retention and efficacy.

  16. Effects of an early treatment with lisinopril and isosorbide-5-mononitrate on hemodynamics and late ventricular remodelling in rats with 9-week myocardial infarction.

    PubMed

    Riva, E; Kurosaki, M; Porzio, S; Latini, R; Lagrasta, C; Olivetti, G

    1995-06-01

    This study was undertaken to assess whether the converting enzyme inhibitor lisinopril, and the long-acting nitrate, isosorbide-5-mononitrate, affect left ventricle dysfunction and anatomical remodelling in rats with myocardial infarction. Lisinopril, isosorbide-5-mononitrate or vehicle were given to rats (n = 10-14 per group) immediately after coronary artery occlusion (by an intravenous bolus) and then for nine weeks (in drinking water). At the end of the study, left ventricular pressures were measured, the heart arrested in diastole, and infarct size, left ventricular chamber volume and wall thicknesses measured. Lisinopril significantly lowered systemic blood pressure and left ventricular systolic pressure in rats with small (< 15% scarred tissue of the left ventricle) and large (> 15%) infarcts; the weight of the left ventricle (including the septum) was reduced by 24% and 28% in animals with small and large infarcts, respectively. Lisinopril lowered left ventricular end-diastolic pressure (by 33% and 39%) and chamber volume (by 4% and 34%) in rats with small and large infarcts, respectively, compared with controls (NS). The combined anatomical and hemodynamic changes led to a reduction of the circumferential wall stress by 20% and 44% in lisinopril-treated rats with small and large infarcts, respectively (NS). No significant changes were seen in the nitrate-treated hearts compared with controls. Lisinopril, given early after myocardial infarction and continued for nine weeks, significantly affected cardiac hemodynamics and ventricular weights in rats with infarcts of different sizes.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Influence of gender on the risk of death and adverse events in patients with acute myocardial infarction undergoing pharmacoinvasive strategy.

    PubMed

    Lanaro, Eduardo; Caixeta, Adriano; Soares, Juliana A; Alves, Cláudia Maria Rodrigues; Barbosa, Adriano Henrique Pereira; Souza, José Augusto Marcondes; Sousa, José Marconi Almeida; Amaral, Amaury; Ferreira, Guilherme M; Moreno, Antônio Célio; Júnior, Iran Gonçalves; Stefanini, Edson; Carvalho, Antônio Carlos

    2014-11-01

    Pharmacoinvasive treatment is an acceptable alternative for patients with ST-segment elevation myocardial infarction (STEMI) in developing countries. The present study evaluated the influence of gender on the risks of death and major adverse cardiovascular events (MACE) in this population. Seven municipal emergency rooms and the Emergency Mobile Healthcare Service in São Paulo treated STEMI patients with tenecteplase. The patients were subsequently transferred to a tertiary teaching hospital for early (<24 h) coronary angiography. A total of 469 patients were evaluated [329 men (70.1%)]. Compared to men, women had more advanced age (60.2 ± 12.3 vs. 56.5 ± 11 years; p = 0.002); lower body mass index (BMI; 25.85 ± 5.07 vs. 27.04 ± 4.26 kg/m2; p = 0.009); higher rates of hypertension (70.7 vs. 59.3%, p = 0.02); higher incidence of hypothyroidism (20.0 vs. 5.5%; p < 0.001), chronic renal failure (10.0 vs. 8.8%; p = 0.68), peripheral vascular disease (PVD; 19.3 vs. 4.3%; p = 0.03), and previous history of stroke (6.4 vs. 1.3%; p = 0.13); and higher thrombolysis in myocardial infarction risk scores (40.0 vs. 23.7%; p < 0.001). The overall in-hospital mortality and MACE rates for women versus men were 9.3 versus 4.9% (p = 0.07) and 12.9 versus 7.9% (p = 0.09), respectively. By multivariate analysis, diabetes (OR 4.15; 95% CI 1.86-9.25; p = 0.001), previous stroke (OR 4.81; 95% CI 1.49-15.52; p = 0.009), and hypothyroidism (OR 3.75; 95% CI 1.44-9.81; p = 0.007), were independent predictors of mortality, whereas diabetes (OR 2.05; 95% CI 1.03-4.06; p = 0.04), PVD (OR 2.38; 95% CI 0.88-6.43; p = 0.08), were predictors of MACE. In STEMI patients undergoing pharmacoinvasive strategy, mortality and MACE rates were twice as high in women; however, this was due to a higher prevalence of risk factors and not gender itself. PMID:24671733

  18. Usefulness of the Myocardial Infarction and Cardiac Arrest Calculator as a Discriminator of Adverse Cardiac Events After Elective Hip and Knee Surgery.

    PubMed

    Peterson, Brandon; Ghahramani, Mehrdad; Harris, Stephanie; Suchniak-Mussari, Kristen; Bedi, Gurneet; Bulathsinghala, Charles; Foy, Andrew

    2016-06-15

    The 2014 American College of Cardiology and American Heart Association guidelines on perioperative evaluation recommend differentiating patients at low risk (<1%) versus elevated risk (≥1%) for cardiac complications to guide appropriate preoperative testing. Among the tools recommended for estimating perioperative risk is the National Surgical Quality Improvement Program (NSQIP) Myocardial Infarction and Cardiac Arrest (MICA) risk calculator. We investigated whether the NSQIP MICA risk calculator would accurately discriminate adverse cardiac events in a cohort of adult patients undergoing elective orthopedic surgery. We retrospectively reviewed 1,098 consecutive, elective orthopedic surgeries performed at Hershey Medical Center from January 1, 2013, to December 31, 2014. Adverse cardiac events were defined as myocardial infarction or cardiac arrest within 30 days of surgery. The mean estimated risk for adverse cardiac events using the NSQIP MICA risk calculator was 0.54%, which was not significantly different (p = 1) compared with the observed incidence of 0.64% (7 of 1,098 procedures). The c-statistic for discriminating adverse cardiac events was 0.85 (95% CI 0.67 to 1) for the NSQIP MICA risk calculator and 0.9 (95% CI 0.75 to 1) for the Revised Cardiac Risk Index. In conclusion, the NSQIP MICA risk calculator is a good discriminator of adverse cardiac events in patients undergoing elective hip and knee surgery, performing comparably to the Revised Cardiac Risk Index. PMID:27131613

  19. Cardio-protecteffect of qiliqiangxin capsule on left ventricular remodeling, dysfunction and apoptosis in heart failure rats after chronic myocardial infarction

    PubMed Central

    Liang, Tuo; Zhang, Yuhui; Yin, Shijie; Gan, Tianyi; An, Tao; Zhang, Rongcheng; Wang, Yunhong; Huang, Yan; Zhou, Qiong; Zhang, Jian

    2016-01-01

    Background: Qiliqiangxin (QL) capsule is a traditional Chinese medicine which has been approved for the treatment of chronic heart failure. Evidences proved that QL capsules further reduced the NT-proBNP levels and improved left ventricular ejection fraction in CHF patients but the evidence supporting its underlying mechanism is still unclear. Methods and Results: Myocardial infarction (MI) -Heart failure (HF) Sprague-Dawley ratsmodel and neonatal rat cardiac myocytes (NRCMs) were used. Animals were assigned into 4 groups, normal group (n=6), shame-operation group (n=6), MI rats 4 weeks after left anterior descending coronary artery ligation were randomized into vehicle group (n=8), QL group (n=8). QL significantly attenuated cardiac dysfunction and ventricle remodeling as echocardiography and hemodynamic measurements showed improvement in left ventricular ejection fraction, fractional shortening, ±dp/dt and left ventricular end diastolic and systolic diameters in QL treated group compared with the vehicle group. Improvements ininterstitial fibrosisand mitochondrial structures were also exhibited by Sirius Red staining, RT-PCR and electron microscopy. QL treatment improved apoptosis and VEGF expression in rats marginal infract area. Complementary experiments analyzed the improved apoptosis and up-regulate of VEGF in ischemia-hypoxia cultivated NRCMs is in an Akt dependent manner and can be reversed by Akt inhibitor. Conclusion: QL capsule can improve cardiac dysfunction and ventricular remodeling in MI-HF ratsmodel, this cardiac protective efficacy may be concerned with attenuated apoptosis and cardiac fibrosis. Up-regulated VEGF expression and Akt phosphorylation may take part in this availability. PMID:27347313

  20. Myocardial Galectin-3 Expression Is Associated with Remodeling of the Pressure-Overloaded Heart and May Delay the Hypertrophic Response without Affecting Survival, Dysfunction, and Cardiac Fibrosis.

    PubMed

    Frunza, Olga; Russo, Ilaria; Saxena, Amit; Shinde, Arti V; Humeres, Claudio; Hanif, Waqas; Rai, Vikrant; Su, Ya; Frangogiannis, Nikolaos G

    2016-05-01

    The β-galactoside-binding animal lectin galectin-3 is predominantly expressed by activated macrophages and is a promising biomarker for patients with heart failure. Galectin-3 regulates inflammatory and fibrotic responses; however, its role in cardiac remodeling remains unclear. We hypothesized that galectin-3 may be up-regulated in the pressure-overloaded myocardium and regulate hypertrophy and fibrosis. In normal mouse myocardium, galectin-3 was constitutively expressed in macrophages and was localized in atrial but not ventricular cardiomyocytes. In a mouse model of transverse aortic constriction, galectin-3 expression was markedly up-regulated in the pressure-overloaded myocardium. Early up-regulation of galectin-3 was localized in subpopulations of macrophages and myofibroblasts; however, after 7 to 28 days of transverse aortic constriction, a subset of cardiomyocytes in fibrotic areas contained large amounts of galectin-3. In vitro, cytokine stimulation suppressed galectin-3 synthesis by macrophages and cardiac fibroblasts. Correlation studies revealed that cardiomyocyte- but not macrophage-specific galectin-3 localization was associated with adverse remodeling and dysfunction. Galectin-3 knockout mice exhibited accelerated cardiac hypertrophy after 7 days of pressure overload, whereas female galectin-3 knockouts had delayed dilation after 28 days of transverse aortic constriction. However, galectin-3 loss did not affect survival, systolic and diastolic dysfunction, cardiac fibrosis, and cardiomyocyte hypertrophy in the pressure-overloaded heart. Despite its potential role as a prognostic biomarker, galectin-3 is not a critical modulator of cardiac fibrosis but may delay the hypertrophic response. PMID:26948424

  1. Sex-related differences in intrinsic myocardial properties influence cardiac function in middle-aged rats during infarction-induced left ventricular remodeling.

    PubMed

    Dedkov, Eduard I; Bogatyryov, Yevgen; Pavliak, Kristina; Santos, Adora T; Chen, Yue-Feng; Zhang, Youhua; Pingitore, Alessandro

    2016-06-01

    We previously determined that residual left ventricular (LV) myocardium of middle-aged rats had sex-related differences in regional tissue properties 4 weeks after a large myocardial infarction (MI). However, the impact of such differences on cardiac performance remained unclear. Therefore, our current study aimed to elucidate whether sex-related changes in MI-induced myocardial remodeling can influence cardiac function. A similar-sized MI was induced in 12-month-old male (M-MI) and female (F-MI) Sprague-Dawley rats by ligation of the left coronary artery. The cardiac function was monitored for 2 months after MI and then various LV parameters were compared between sexes. We found that although two sex groups had a similar pattern of MI-induced decline in LV function, F-MI rats had greater cardiac performance compared to M-MI rats, considering the higher values of EF (39.9 ± 3.4% vs. 26.7 ± 7.7%, P < 0.05), SW index (40.4 ± 2.1 mmHg • mL/kg vs. 20.2 ± 3.3 mmHg • mL/kg, P < 0.001), and CI (139.2 ± 7.9 mL/min/kg vs. 74.9 ± 14.7 mL/min/kg, P < 0.01). The poorer pumping capacity in M-MI hearts was associated with markedly reduced LV compliance and prolonged relaxation. On the tissue level, F-MI rats revealed a higher, than in M-MI rats, density of cardiac myocytes in the LV free wall (2383.8 ± 242.6 cells/mm(2) vs. 1785.7 ± 55.9 cells/mm(2), P < 0.05). The latter finding correlated with a lower density of apoptotic cardiac myocytes in residual LV myocardium of F-MI rats (0.18 ± 0.08 cells/mm(2) vs. 0.91 ± 0.30 cells/mm(2) in males, P < 0.01). Thus, our data suggested that F-MI rats had markedly attenuated decline in cardiac performance compared to males due to ability of female rats to better retain functionally favorable intrinsic myocardial properties.

  2. Theophylline produces an adverse effect on myocardial lactate metabolism at a therapeutic serum concentration: an effect blocked by verapamil.

    PubMed

    Bittar, G; Friedman, H S; Dominguez, A; Vorperian, V

    1991-04-01

    To assess the actions of theophylline on coronary blood flow and myocardial energetics, 1 mg/kg/min of this methylxanthine was infused i.v. in the dog for 15 min, producing an average concentration of 18 +/- 3 micrograms/ml. Heart rate increased by 20 +/- 7 min-1, P less than .05, but left ventricular (LV) systolic and end-diastolic pressures, cardiac output and LV peak dp/dt did not change. Although coronary vascular resistance decreased by 0.26 +/- 0.08 mm Hg/ml/min, P less than .05, coronary flow and myocardial oxygen consumption and extraction did not change. Myocardial lactate extraction decreased, from 22 +/- 2 to 1 +/- 5%, P less than .05. The decrement in lactate extraction was not related to heart rate, but to the change in LV peak dp/dt, r = 0.74, P less than .05. Furthermore, with verapamil, 0.2 mg/kg, pretreatment, and 0.2 mg/kg, during the theophylline infusion, reduction in lactate extraction was blocked and LV peak dp/dt increased by 843 +/- 311 mm Hg/sec, P less than .05. Thus, at therapeutic concentrations, theophylline reduces myocardial lactate extraction, an effect that is associated with the absence of the expected inotropic actions of theophylline. However, when verapamil is administered with theophylline, a reduction of myocardial extraction does not occur and myocardial inotropy is enhanced.

  3. Matrix metalloproteinases: drug targets for myocardial infarction

    PubMed Central

    Yabluchanskiy, Andriy; Li, Yaojun; Chilton, Robert J.; Lindsey, Merry L.

    2013-01-01

    Myocardial infarction (MI) remains a major cause of morbidity and mortality worldwide. Rapid advances in the treatment of acute MI have significantly improved short-term outcomes in patient, due in large part to successes in preventing myocardial cell death and limiting infarct area during the time of ischemia and subsequent reperfusion. Matrix metalloproteases (MMPs) play key roles in post-MI cardiac remodeling and in the development of adverse outcomes. This review highlights the importance of MMPs in the injury and remodeling response of the left ventricle and also discusses their potential as therapeutic targets Additional pre-clinical and clinical research is needed to further investigate and understand the cardioprotective effects of MMPs inhibitors. PMID:23316962

  4. Suppressed Production of Soluble Fms-Like Tyrosine Kinase-1 Contributes to Myocardial Remodeling and Heart Failure.

    PubMed

    Seno, Ayako; Takeda, Yukiji; Matsui, Masaru; Okuda, Aya; Nakano, Tomoya; Nakada, Yasuki; Kumazawa, Takuya; Nakagawa, Hitoshi; Nishida, Taku; Onoue, Kenji; Somekawa, Satoshi; Watanabe, Makoto; Kawata, Hiroyuki; Kawakami, Rika; Okura, Hiroyuki; Uemura, Shiro; Saito, Yoshihiko

    2016-09-01

    Soluble fms-like tyrosine kinase-1 (sFlt-1), an endogenous inhibitor of vascular endothelial growth factor and placental growth factor, is involved in the pathogenesis of cardiovascular disease. However, the significance of sFlt-1 in heart failure has not been fully elucidated. We found that sFlt-1 is decreased in renal failure and serves as a key molecule in atherosclerosis. In this study, we aimed to investigate the role of the decreased sFlt-1 production in heart failure, using sFlt-1 knockout mice. sFlt-1 knockout mice and wild-type mice were subjected to transverse aortic constriction and evaluated after 7 days. The sFlt-1 knockout mice had significantly higher mortality (52% versus 15%; P=0.0002) attributable to heart failure and showed greater cardiac hypertrophy (heart weight to body weight ratio, 8.95±0.45 mg/g in sFlt-1 knockout mice versus 6.60±0.32 mg/g in wild-type mice; P<0.0001) and cardiac dysfunction, which was accompanied by a significant increase in macrophage infiltration and cardiac fibrosis, than wild-type mice after transverse aortic constriction. An anti-placental growth factor-neutralizing antibody prevented pressure overload-induced cardiac hypertrophy, fibrosis, and cardiac dysfunction. Moreover, monocyte chemoattractant protein-1 expression was significantly increased in the hypertrophied hearts of sFlt-1 knockout mice compared with wild-type mice. Monocyte chemoattractant protein-1 inhibition with neutralizing antibody ameliorated maladaptive cardiac remodeling in sFlt-1 knockout mice after transverse aortic constriction. In conclusion, decreased sFlt-1 production plays a key role in the aggravation of cardiac hypertrophy and heart failure through upregulation of monocyte chemoattractant protein-1 expression in pressure-overloaded heart.

  5. Myocardial Fibrosis Identified by Cardiac Magnetic Resonance Late Gadolinium Enhancement is Associated with Adverse Ventricular Mechanics and Ventricular Tachycardia Late After Fontan Operation

    PubMed Central

    Rathod, Rahul H.; Prakash, Ashwin; Powell, Andrew J.; Geva, Tal

    2014-01-01

    Objectives To evaluate the relationship between myocardial fibrosis identified by cardiac magnetic resonance (CMR) and ventricular performance and arrhythmias in patients late after the Fontan operation. Background Patients who have undergone the Fontan palliation may develop ventricular dysfunction and arrhythmias, but the mechanisms and risk factors are poorly defined. Methods All patients who have had a Fontan operation and a CMR study with the myocardial delayed enhancement technique from January 2002 to November 2008 were retrospectively identified. Results Of 90 patients (mean age at study 23.1 ± 10.9 years), 25 (28%) had positive late gadolinium enhancement (LGE) in the ventricular myocardium. Patients with positive LGE had lower mean ejection fraction (EF) (45% v. 56%, P<0.001), increased median end-diastolic volume (EDVi) (100 mL/BSA1.3 v. 82 mL/BSA1.3, P=0.004), increased median ventricular massi (63 g/BSA1.3 v. 45 g/BSA1.3, P<0.001), higher frequency of regional wall motion abnormalities (52% v. 28%, P=0.05), and higher frequency of non-sustained ventricular tachycardia (NSVT) (36% v. 11%, P=0.01). Multivariate regression analysis demonstrated that more extensive positive LGE, expressed as percent LGE of total myocardial mass, was associated with lower EF (P=0.002), increased EDVi (P<0.001), increased massi (P<0.001), and a higher frequency of NSVT (OR 1.2, 95% CI 1.1 to 1.4, P=0.006). Conclusions In this cohort of late Fontan survivors, myocardial fibrosis was common and associated with adverse ventricular mechanics and higher prevalence of NSVT. Further studies are warranted to examine the utility of LGE for risk stratification and treatment of ventricular arrhythmia and dysfunction in Fontan patients. PMID:20394877

  6. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms

    PubMed Central

    2014-01-01

    Introduction Among the plethora of cells under investigation to restore a functional myocardium, mesenchymal stromal cells (MSCs) have been granted considerable interest. However, whereas the beneficial effects of bone marrow MSCs (BM-MSCs) in the context of the diseased heart are widely reported, data are still scarce on MSCs from the umbilical cord matrix (UCM-MSCs). Herein we report on the effect of UCM-MSC transplantation to the infarcted murine heart, seconded by the dissection of the molecular mechanisms at play. Methods Human umbilical cord tissue-derived MSCs (UCX®), obtained by using a proprietary technology developed by ECBio, were delivered via intramyocardial injection to C57BL/6 females subjected to permanent ligation of the left descending coronary artery. Moreover, medium produced by cultured UCX® preconditioned under normoxia (CM) or hypoxia (CMH) was collected for subsequent in vitro assays. Results Evaluation of the effects upon intramyocardial transplantation shows that UCX® preserved cardiac function and attenuated cardiac remodeling subsequent to myocardial infarction (MI). UCX® further led to increased capillary density and decreased apoptosis in the injured tissue. In vitro, UCX®-conditioned medium displayed (a) proangiogenic activity by promoting the formation of capillary-like structures by human umbilical vein endothelial cells (HUVECs), and (b) antiapoptotic activity in HL-1 cardiomyocytes subjected to hypoxia. Moreover, in adult murine cardiac Sca-1+ progenitor cells (CPCs), conditioned medium enhanced mitogenic activity while activating a gene program characteristic of cardiomyogenic differentiation. Conclusions UCX® preserve cardiac function after intramyocardial transplantation in a MI murine model. The cardioprotective effects of UCX® were attributed to paracrine mechanisms that appear to enhance angiogenesis, limit the extent of the apoptosis, augment proliferation, and activate a pool of resident CPCs. Overall, these results

  7. [EFFICACY OF STANDARD TWO-YEAR COMPREHENSIVE THERAPY TO ACHIEVE TARGET BLOOD PRESSURE AND REGRESSION DEGREES OF REMODELING OF THE LEFT VENTRICULAR HYPERTROPHY IN PATIENTS AFTER ACUTE MYOCARDIAL INFARCTION WITH COMORBID HYPERTENSION].

    PubMed

    Denesiuk, E V

    2015-01-01

    The study involved 23 men after acute myocardial infarction (AMI) with comorbid arterial hypertension (AH). Mean age of patients was 56.7 years. Recurrent myocardial infarction was determined in 38.4%, cardiac failure I-III functional classes--100% of the cases. All patients underwent clinical examination, electrocardiography and echocardiography, blood lipid profile. Standard comprehensive treatment for two years included an perindopril 5-10 mg/day, beta-blocker bisoprolol--5-10 mg/day, antisclerotic drug atorvastatin--20 mg/day and aspirin--75 mg/day. The patients after treatment was determined by a gradual increase towards the target of AT at 3, 6 and 12 to 24 months. Concentric left ventricular hypertrophy (LVH) before treatment was determined in 47.8%, eccentric--in 52.2% of patients. In the study of degrees of LVH I (initial) the extent to treatment was determined by 4.3%, II (moderate)--26.1%, III (large)--at 69.6%, indicating the development of cardiac remodeling. After the treatment was determined by marked reduction III (large) degree and transfer it in the II (moderate) and I (small) degree of left ventricular hypertrophy due to more or less pronounced changes remodeling left ventricular. The obtained data allow a more detailed and adequately assess the structural and functional outcome variables and determine the regression of myocardial hypertrophy in the background to achieve target blood pressure, which is important in practical cardiology. PMID:27491146

  8. [EFFICACY OF STANDARD TWO-YEAR COMPREHENSIVE THERAPY TO ACHIEVE TARGET BLOOD PRESSURE AND REGRESSION DEGREES OF REMODELING OF THE LEFT VENTRICULAR HYPERTROPHY IN PATIENTS AFTER ACUTE MYOCARDIAL INFARCTION WITH COMORBID HYPERTENSION].

    PubMed

    Denesiuk, E V

    2015-01-01

    The study involved 23 men after acute myocardial infarction (AMI) with comorbid arterial hypertension (AH). Mean age of patients was 56.7 years. Recurrent myocardial infarction was determined in 38.4%, cardiac failure I-III functional classes--100% of the cases. All patients underwent clinical examination, electrocardiography and echocardiography, blood lipid profile. Standard comprehensive treatment for two years included an perindopril 5-10 mg/day, beta-blocker bisoprolol--5-10 mg/day, antisclerotic drug atorvastatin--20 mg/day and aspirin--75 mg/day. The patients after treatment was determined by a gradual increase towards the target of AT at 3, 6 and 12 to 24 months. Concentric left ventricular hypertrophy (LVH) before treatment was determined in 47.8%, eccentric--in 52.2% of patients. In the study of degrees of LVH I (initial) the extent to treatment was determined by 4.3%, II (moderate)--26.1%, III (large)--at 69.6%, indicating the development of cardiac remodeling. After the treatment was determined by marked reduction III (large) degree and transfer it in the II (moderate) and I (small) degree of left ventricular hypertrophy due to more or less pronounced changes remodeling left ventricular. The obtained data allow a more detailed and adequately assess the structural and functional outcome variables and determine the regression of myocardial hypertrophy in the background to achieve target blood pressure, which is important in practical cardiology.

  9. Platelet/lymphocyte ratio was associated with impaired myocardial perfusion and both in-hospital and long-term adverse outcome in patients with ST-segment elevation acute myocardial infarction undergoing primary coronary intervention

    PubMed Central

    Tabakci, Mehmet M.; Simsek, Zeki; Arslantas, Ugur; Durmus, Halil I.; Ocal, Lutfi; Demirel, Muhittin; Ozturkeri, Burak; Ozal, Ender; Kargin, Ramazan

    2015-01-01

    Introduction Platelet/lymphocyte ratio (PLR) has been shown to be an inflammatory and thrombotic biomarker for coronary heart disease, but its prognostic value in ST-segment elevation myocardial infarction (STEMI) has not been fully investigated. Aim To investigate the relationship between PLR and no-reflow, along with the in-hospital and long-term outcomes in patients with STEMI. Material and methods In the present study, we included 304 consecutive patients suffering from STEMI who underwent primary percutaneous coronary intervention (p-PCI). Patients were stratified according to PLR tertiles based on the blood samples obtained in the emergency room upon admission. No-reflow after p-PCI was defined as a coronary thrombolysis in myocardial infarction (TIMI) flow grade ≤ 2 after vessel recanalization, or TIMI flow grade 3 together with a final myocardial blush grade (MBG) < 2. Results The mean follow-up period was 24 months (range: 22–26 months). The number of patients characterized with no-reflow was counted to depict increments throughout successive PLR tertiles (14% vs. 20% vs. 45%, p < 0.001). In-hospital major adverse cardiovascular events and death increased as the PLR increased (p < 0.001, p < 0.001). Long-term MACE and death also increased as the PLR increased (p < 0.001, p < 0.001). Multivariable logistic regression analysis revealed that PLR remained an independent predictor for both in-hospital (OR = 1.01, 95% CI: 1.00–1.01; p = 0.002) and major long-term (OR = 1.01, 95% CI: 1.00–1.01; p < 0.001) adverse cardiac events. Conclusions Platelet/lymphocyte ratio on admission is a strong and independent predictor of both the no-reflow phenomenon and long-term prognosis following p-PCI in patients with STEMI. PMID:26677378

  10. miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1

    PubMed Central

    Li, Rui; Geng, Hai-hua; Xiao, Jie; Qin, Xiao-teng; Wang, Fu; Xing, Jun-hui; Xia, Yan-fei; Mao, Yang; Liang, Jing-wen; Ji, Xiao-ping

    2016-01-01

    miRs (microRNAs, miRNAs) intricately regulate physiological and pathological processes. Although miR-7a/b protects against cardiomyocyte injury in ischemia/reperfusion injury, the function of miR-7a/b in myocardial infarction (MI)-induced cardiac remodeling remains unclear. Here, we sought to investigate the function of miR-7a/b in post-MI remodeling in a mouse model and to determine the underlying mechanisms involved. miR-7a/b overexpression improved cardiac function, attenuated cardiac remodeling and reduced fibrosis and apoptosis, whereas miR-7a/b silencing caused the opposite effects. Furthermore, miR-7a/b overexpression suppressed specific protein 1 (Sp1) and poly (ADP-ribose) polymerase (PARP-1) expression both in vivo and in vitro, and a luciferase reporter activity assay showed that miR-7a/b could directly bind to Sp1. Mithramycin, an inhibitor of the DNA binding activity of Sp1, effectively repressed PARP-1 and caspase-3, whereas knocking down miR-7a/b partially counteracted these beneficial effects. Additionally, an immunoprecipitation assay indicated that hypoxia triggered activation of the binding activity of Sp1 to the promoters of PARP-1 and caspase-3, which is abrogated by miR-7a/b. In summary, these findings identified miR-7a/b as protectors of cardiac remodeling and hypoxia-induced injury in H9c2 cardiomyoblasts involving Sp1 and PARP-1. PMID:27384152

  11. Effect on short- and long-term major adverse cardiac events of statin treatment in patients with acute myocardial infarction and renal dysfunction.

    PubMed

    Lim, Sang Yup; Bae, Eun Hui; Choi, Joon Seok; Kim, Chang Seong; Park, Jeong Woo; Ma, Seong Kwon; Jeong, Myung Ho; Kim, Soo Wan

    2012-05-15

    The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) reduce major adverse cardiac events (MACE) and mortality in patients with acute coronary syndrome. We investigated the effectiveness of statin therapy in reducing MACE in patients with acute myocardial infarction (AMI) and renal dysfunction (RD). In the present retrospective study of 12,853 patients with AMI, the patients were categorized into 4 groups: group I, statin therapy and no RD (estimated glomerular filtration rate ≥60 ml/min/1.73 m(2)); group II, neither statin therapy nor RD; group III, statin therapy and RD; group IV, no statin therapy but RD. The primary end points were death and complications during the hospital course. The secondary end points were MACE during 1 year of follow-up after AMI. Significant differences in the composite MACE during 12 months of follow-up were observed among the 4 groups (group I, 11.7%; group II, 19.0%; group III, 26.7%; and group IV, 45.5%; p <0.001). In a Cox proportional hazards model, mortality at 12 months increased stepwise from group II to IV compared to group I. Moreover, MACE-free survival in the severe RD group (estimated glomerular filtration rate <30 mL/min/1.73 m(2)) was also greater in the statin-treated group. In conclusion, statin therapy reduced MACE at 1 year of follow-up in patients with AMI regardless of RD.

  12. Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor

    PubMed Central

    Howangyin, Kiave-Yune; Zlatanova, Ivana; Pinto, Cristina; Ngkelo, Anta; Cochain, Clément; Rouanet, Marie; Vilar, José; Lemitre, Mathilde; Stockmann, Christian; Fleischmann, Bernd K.; Mallat, Ziad

    2016-01-01

    Background— In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction. Methods and Results— We generated double-deficient mice for Mertk and Mfge8 (Mertk−/−/Mfge8−/−) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk−/−), or Mfge8-deficient (Mfge8−/−) animals, Mertk−/−/Mfge8−/− mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6CHigh and Low monocytes and macrophages. In parallel, Mertk−/−/Mfge8−/− bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6CHigh and Ly6CHow monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6CHigh/Ly6CLow monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre+/VEGFAfl/fl mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis. Conclusions— After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the

  13. Effect of culprit-lesion remodeling versus plaque rupture on three-year outcome in patients with acute coronary syndrome.

    PubMed

    Okura, Hiroyuki; Kobayashi, Yoshio; Sumitsuji, Satoru; Terashima, Mitsuyasu; Kataoka, Toru; Masutani, Motomaru; Ohyanagi, Mitsumasa; Shimada, Kenei; Taguchi, Haruyuki; Yasuga, Yuji; Takeda, Yoshihiro; Ohashi, Yoshitaka; Awano, Kojiro; Fujii, Kenichi; Mintz, Gary S

    2009-03-15

    To investigate intravascular ultrasound predictors of long-term clinical outcome in patients with acute coronary syndrome, 94 patients with a first acute coronary syndrome with both preintervention intravascular ultrasound imaging and long-term follow-up were enrolled in this study. Remodeling index was defined as external elastic membrane cross-sectional area at the target lesion divided by that at the proximal reference. Arterial remodeling was defined as either positive (PR: remodeling index >1.05) or intermediate/negative remodeling (remodeling index < or =1.05). Clinical events were death, myocardial infarction, and target-lesion revascularization. Patients were followed up for a mean of 3 years. PR was observed in 50 (53%), and intermediate/negative remodeling, in 44 (47%). During the 3-year follow-up, there were 20 target-lesion revascularization events and 5 deaths (2 cardiac and 3 noncardiac), but no myocardial infarctions. Patients with PR showed significantly lower major adverse cardiac event (MACE; death, myocardial infarction, and target-lesion revascularization)-free survival (log-rank p = 0.03). However, patients with plaque rupture showed a nonsignificant trend toward lower MACE-free survival (p = 0.13), but there were no significant differences in MACE-free survival between those with single versus multiple plaque ruptures. Using multivariate logistic regression analysis, only culprit lesion PR was an independent predictor of MACEs (p = 0.04). In conclusion, culprit-lesion remodeling rather than the presence or absence of culprit-lesion plaque rupture was a strong predictor of long-term (3-year) clinical outcome in patients with acute coronary syndrome. PMID:19268733

  14. Metformin and its effects on myocardial dimension and left ventricular hypertrophy in normotensive patients with coronary heart disease (the MET-REMODEL study): rationale and design of the MET-REMODEL study.

    PubMed

    Mohan, Mohapradeep; McSwiggan, Stephen; Baig, Fatima; Rutherford, Lynn; Lang, Chim C

    2015-02-01

    Left ventricular hypertrophy (LVH) is a common and independent risk factor for cardiovascular events in patients with coronary artery disease (CAD). Controlling blood pressure is the standard approach to the management of LVH, but this is only partially effective as LVH also persists in normotensive patients. Apart from blood pressure (BP), other main risk factors associated with LVH are insulin resistance (IR) and central obesity. The diabetic medication, Metformin, reduces IR and aids weight loss and may therefore regress LVH. The MET REMODEL study will investigate the ability of Metformin to regress LVH in 64 patients with CAD. The MET-REMODEL trial is a single-center, phase IV, double blind, randomized, placebo-controlled trial to investigate the efficacy of Metformin in regression of the independent cardiac risk factor of LVH in patients with CAD who are insulin resistant. A minimum of 64 adults with a history of CAD with LVH and IR will be randomized into two groups to receive, either Metformin XL or placebo. The primary endpoint of this trial is to investigate any change in left ventricular mass index. Secondary endpoints include changes to insulin resistance measured using fasting insulin resistance index (FIRI), obesity, LV size, and function and improvement in endothelial function. A positive result will assist clinicians to identify a new mechanism for LVH regression by administering Metformin XL. This may also lead to investigating the mortality benefit of Metformin in patients with CAD and LVH.

  15. Approaches to Improving Cardiac Structure and Function During and After an Acute Myocardial Infarction: Acute and Chronic Phases.

    PubMed

    Kloner, Robert A; Dai, Wangde; Hale, Sharon L; Shi, Jianru

    2016-07-01

    While progress has been made in improving survival following myocardial infarction, this injury remains a major source of mortality and morbidity despite modern reperfusion therapy. While one approach has been to develop therapies to reduce lethal myocardial cell reperfusion injury, this concept has not translated to the clinics, and several recent negative clinical trials raise the question of whether reperfusion injury is important in humans undergoing reperfusion for acute ST segment elevation myocardial infarction. Therapy aimed at reducing myocardial cell death while the myocytes are still ischemic is more likely to further reduce myocardial infarct size. Developing new therapies to further reduce left ventricular remodeling after the acute event is another approach to preserving structure and function of the heart after infarction. Such therapy may include chronic administration of pharmacologic agents and/or therapies developed from the field of regenerative cardiology, including cellular or non-cellular materials such as extracellular matrix. The optimal therapy will be to administer agents that both reduce myocardial infarct size in the acute phase of infarction as well as reduce adverse left ventricular remodeling during the chronic or healing phase of myocardial infarction. Such a dual approach will help optimize the preservation of both cardiac structure and function.

  16. Time-dependent changes in the expression of thyroid hormone receptor alpha 1 in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling.

    PubMed

    Pantos, Constantinos; Mourouzis, Iordanis; Xinaris, Christodoulos; Kokkinos, Alexandros D; Markakis, Konstantinos; Dimopoulos, Antonios; Panagiotou, Matthew; Saranteas, Theodosios; Kostopanagiotou, Georgia; Cokkinos, Dennis V

    2007-04-01

    The present study investigated whether changes in thyroid hormone (TH) signalling can occur after acute myocardial infarction (AMI) with possible physiological consequences on myocardial performance. TH may regulate several genes encoding important structural and regulatory proteins particularly through the TR alpha 1 receptor which is predominant in the myocardium. AMI was induced in rats by ligating the left coronary artery while sham-operated animals served as controls. This resulted in impaired cardiac function in AMI animals after 2 and 13 weeks accompanied by a shift in myosin isoforms expression towards a fetal phenotype in the non-infarcted area. Cardiac hypertrophy was evident in AMI hearts after 13 weeks but not at 2 weeks. This response was associated with a differential pattern of TH changes at 2 and 13 weeks; T(3) and T(4) levels in plasma were not changed at 2 weeks but T(3) was significantly lower and T(4) remained unchanged at 13 weeks. A twofold increase in TR alpha 1 expression was observed after 13 weeks in the non-infarcted area, P<0.05 versus sham operated, while TR alpha 1 expression remained unchanged at 2 weeks. A 2.2-fold decrease in TR beta 1 expression was found in the non-infarcted area at 13 weeks, P<0.05, while no change in TR beta 1 expression was seen at 2 weeks. Parallel studies with neonatal cardiomyocytes showed that phenylephrine (PE) administration resulted in 4.5-fold increase in the expression of TR alpha 1 and 1.6-fold decrease in TR beta 1 expression versus untreated, P<0.05. In conclusion, cardiac dysfunction which occurs at late stages after AMI is associated with increased expression of TR alpha 1 receptor and lower circulating tri-iodothyronine levels. Thus, apo-TR alpha 1 receptor state may prevail contributing to cardiac fetal phenotype. Furthermore, down-regulation of TR beta 1 also contributes to fetal phenotypic changes. alpha1-adrenergic signalling is, at least in part, involved in this response.

  17. Global myocardial strain assessment by different imaging modalities to predict outcomes after ST-elevation myocardial infarction: A systematic review

    PubMed Central

    Shetye, Abhishek; Nazir, Sheraz A; Squire, Iain B; McCann, Gerald P

    2015-01-01

    AIM: To conduct a systematic review relating myocardial strain assessed by different imaging modalities for prognostication following ST-elevation myocardial infarction (STEMI). METHODS: An online literature search was performed in PubMed and OVID® electronic databases to identify any studies that assessed global myocardial strain parameters using speckle-tracking echocardiography (STE) and/or cardiac magnetic resonance imaging (CMR) techniques [either myocardial tagging or feature tracking (FT) software] in an acute STEMI cohort (days 0-14 post-event) to predict prognosis [either development of major adverse cardiac events (MACE)] or adverse left ventricular (LV) remodelling at follow-up (≥ 6 mo for MACE, ≥ 3 mo for remodelling). Search was restricted to studies within the last 20 years. All studies that matched the pre-defined search criteria were reviewed and their results interpreted. Due to considerable heterogeneity between studies, meta-analysis was not performed. RESULTS: A total of seven studies (n = 7) were identified that matched the search criteria. All studies used STE to evaluate strain parameters - five (n = 5) assessed global longitudinal strain (GLS) (n = 5), one assessed GLS rate (GLS-R) (n = 1) and one assessed both (n = 1). Three studies showed that GLS independently predicted the development of adverse LV remodelling by multivariate analysis - odds ratio between 1.19 (CI: 1.04-1.37, P < 0.05) and 10 (CI: 6.7-14, P < 0.001) depending on the study. Four studies showed that GLS predicted the development of MACE - hazard ratio (HR) between 1.1 (CI: 1-1.1, P = 0.006) and 2.34 (1.10-4.97, P < 0.05). One paper found that GLS-R could significantly predict MACE - HR 18 (10-35, P < 0.001) - whilst another showed it did not. GLS < -10.85% had sensitivity/specificity of 89.7%/91% respectively for predicting the development of remodelling whilst GLS < -13% could predict the development of MACE with sensitivity/specificity of 100%/89% respectively. No

  18. Beneficial effects of selective HDL-raising gene transfer on survival, cardiac remodelling and cardiac function after myocardial infarction in mice.

    PubMed

    Gordts, S C; Muthuramu, I; Nefyodova, E; Jacobs, F; Van Craeyveld, E; De Geest, B

    2013-11-01

    Post-myocardial infarction (MI) ejection fraction is decreased in patients with low high-density lipoprotein (HDL) cholesterol levels, independent of the degree of coronary atherosclerosis. The objective of this study is to evaluate whether selective HDL-raising gene transfer exerts cardioprotective effects post MI. Gene transfer in C57BL/6 low-density lipoprotein receptor (LDLr)(-/-) mice was performed with the E1E3E4-deleted adenoviral vector AdA-I, inducing hepatocyte-specific expression of human apo A-I, or with the control vector Adnull. A ligation of the left anterior descending coronary artery was performed 2 weeks after transfer or saline injection. HDL cholesterol levels were persistently 1.5-times (P<0.0001) higher in AdA-I mice compared with controls. Survival was increased (P<0.01) in AdA-I MI mice compared with control MI mice during the 28-day follow-up period (hazard ratio for mortality 0.42; 95% confidence interval 0.24-0.76). Longitudinal morphometric analysis demonstrated attenuated infarct expansion and inhibition of left ventricular (LV) dilatation in AdA-I MI mice compared with controls. AdA-I transfer exerted immunomodulatory effects and increased neovascularisation in the infarct zone. Increased HDL after AdA-I transfer significantly improved systolic and diastolic cardiac function post MI, and led to a preservation of peripheral blood pressure. In conclusion, selective HDL-raising gene transfer may impede the development of heart failure.

  19. p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling.

    PubMed

    García, Raquel; Nistal, J Francisco; Merino, David; Price, Nathan L; Fernández-Hernando, Carlos; Beaumont, Javier; González, Arantxa; Hurlé, María A; Villar, Ana V

    2015-07-01

    Transforming growth factor-β (TGF-β) induces miR-21 expression which contributes to fibrotic events in the left ventricle (LV) under pressure overload. SMAD effectors of TGF-β signaling interact with DROSHA to promote primary miR-21 processing into precursor miR-21 (pre-miR-21). We hypothesize that p-SMAD-2 and -3 also interact with DICER1 to regulate the processing of pre-miR-21 to mature miR-21 in cardiac fibroblasts under experimental and clinical pressure overload. The subjects of the study were mice undergoing transverse aortic constriction (TAC) and patients with aortic stenosis (AS). In vitro, NIH-3T3 fibroblasts transfected with pre-miR-21 responded to TGF-β1 stimulation by overexpressing miR-21. Overexpression and silencing of SMAD2/3 resulted in higher and lower production of mature miR-21, respectively. DICER1 co-precipitated along with SMAD2/3 and both proteins were up-regulated in the LV from TAC-mice. Pre-miR-21 was isolated bound to the DICER1 maturation complex. Immunofluorescence analysis revealed co-localization of p-SMAD2/3 and DICER1 in NIH-3T3 and mouse cardiac fibroblasts. DICER1-p-SMAD2/3 protein-protein interaction was confirmed by in situ proximity ligation assay. Myocardial up-regulation of DICER1 constituted a response to pressure overload in TAC-mice. DICER mRNA levels correlated directly with those of TGF-β1, SMAD2 and SMAD3. In the LV from AS patients, DICER mRNA was up-regulated and its transcript levels correlated directly with TGF-β1, SMAD2, and SMAD3. Our results support that p-SMAD2/3 interacts with DICER1 to promote pre-miR-21 processing to mature miR-21. This new TGFβ-dependent regulatory mechanism is involved in miR-21 overexpression in cultured fibroblasts, and in the pressure overloaded LV of mice and human patients.

  20. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation.

    PubMed

    Bernardo, Bianca C; Sapra, Geeta; Patterson, Natalie L; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A; McMullen, Julie R

    2015-01-01

    Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions. PMID:26660322

  1. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation

    PubMed Central

    Bernardo, Bianca C.; Sapra, Geeta; Patterson, Natalie L.; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A.; McMullen, Julie R.

    2015-01-01

    Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions. PMID:26660322

  2. A degradable, bioactive, gelatinized alginate hydrogel to improve stem cell/growth factor delivery and facilitate healing after myocardial infarction.

    PubMed

    Della Rocca, Domenico G; Willenberg, Bradley J; Ferreira, Leonardo F; Wate, Prateek S; Petersen, John W; Handberg, Eileen M; Zheng, Tong; Steindler, Dennis A; Terada, Naohiro; Batich, Christopher D; Byrne, Barry J; Pepine, Carl J

    2012-11-01

    Despite remarkable effectiveness of reperfusion and drug therapies to reduce morbidity and mortality following myocardial infarction (MI), many patients have debilitating symptoms and impaired left ventricular (LV) function highlighting the need for improved post-MI therapies. A promising concept currently under investigation is intramyocardial injection of high-water content, polymeric biomaterial gels (e.g., hydrogels) to modulate myocardial scar formation and LV adverse remodeling. We propose a degradable, bioactive hydrogel that forms a unique microstructure of continuous, parallel capillary-like channels (Capgel). We hypothesize that the innovative architecture and composition of Capgel can serve as a platform for endogenous cell recruitment and drug/cell delivery, therefore facilitating myocardial repair after MI.

  3. A degradable, bioactive, gelatinized alginate hydrogel to improve stem cell/growth factor delivery and facilitate healing after myocardial infarction

    PubMed Central

    Della Rocca, Domenico G.; Willenberg, Bradley J.; Ferreira, Leonardo F.; Wate, Prateek S.; Petersen, John W.; Handberg, Eileen M.; Zheng, Tong; Steindler, Dennis A.; Terada, Naohiro; Batich, Christopher D.; Byrne, Barry J.; Pepine, Carl J.

    2013-01-01

    Despite remarkable effectiveness of reperfusion and drug therapies to reduce morbidity and mortality following myocardial infarction (MI), many patients have debilitating symptoms and impaired left ventricular (LV) function highlighting the need for improved post-MI therapies. A promising concept currently under investigation is intramyocardial injection of high-water content, polymeric biomaterial gels (e.g., hydrogels) to modulate myocardial scar formation and LV adverse remodeling. We propose a degradable, bioactive hydrogel that forms a unique microstructure of continuous, parallel capillary-like channels (Capgel). We hypothesize that the innovative architecture and composition of Capgel can serve as a platform for endogenous cell recruitment and drug/cell delivery, therefore facilitating myocardial repair after MI. PMID:22939314

  4. Pay attention to cardiac remodeling in cancer cachexia.

    PubMed

    Zheng, Yawen; Chen, Han; Li, Xiaoqing; Sun, Yuping

    2016-07-01

    Cancer cachexia is a complex and multifaceted disease state characterized by fatigue, weakness, and loss of skeletal muscle and adipose tissue. Recently, the profound negative effects of cancer cachexia on cardiac tissue draw much attention, which is likely to contribute to mortality in tumor-bearing animals. The mechanism of cardiac remodeling is not so clear and involved with a series of molecular alterations. In cancer cachexia model, progressive loss of left ventricular mass and decrease in myocardial function is observed and cardiac autonomic functions are altered. Levels of several emerging cardiovascular neurohormones are found elevating in patients with cancer, but it is still controversial whether the changes could reflect the heart injury accurately. The remedy for cardiac remodeling has been explored. It is showed that exercise can modulate signaling pathways activated by wasting cytokines and impact on the resulting outcomes on heart adaptation. Some drugs, such as bisoprolol, spironolactone, perindopril, tandospirone, and simvastatin, can mitigate adverse effects of the tumor on the heart and prolong survival. PMID:27108265

  5. Role of exosomes in myocardial remodeling.

    PubMed

    Waldenström, Anders; Ronquist, Gunnar

    2014-01-17

    Exosomes are nanovesicles released from cells through exocytosis and are known to be mediators of proximal as well as distant cell-to-cell signaling. They are surrounded by a classical bilayered membrane with an exceptionally high cholesterol/phospholipid ratio. Exosomes were first described in 1977, then named prostasomes, and in 1987 the name exosome was coined. Exosomes contain surface proteins, some of which can act as labels in order to find their target cells. Exosomes also contain messages in the form of proteins and nucleic acids (RNA and DNA) that are transferable to target cells. Little is known and written about cardiac exosomes, although Gupta and Knowlton described exosomes containing HSP60 in 2007. It is now known that exosomes from cardiomyocytes can transfect other cells and that the metabolic milieu of the parental cell decides the quality of exosomes released such that they induce differential gene expression in transfected cells. Future clinical use of exosomes in diagnosis, monitoring disease progress, and treatment is promising. PMID:24436427

  6. Image-driven constitutive modeling of myocardial fibrosis

    NASA Astrophysics Data System (ADS)

    Wang, Vicky Y.; Niestrawska, Justyna A.; Wilson, Alexander J.; Sands, Gregory B.; Young, Alistair A.; LeGrice, Ian J.; Nash, Martyn P.

    2016-05-01

    Myocardial fibrosis is a pathological process that occurs during heart failure (HF). It involves microstructural remodeling of normal myocardial tissue, and consequent changes in both cardiac geometry and function. The role of myocardial structural remodeling in the progression of HF remains poorly understood. We propose a constitutive modeling framework, informed by high-resolution images of cardiac tissue structure, to model the mechanical response of normal and fibrotic myocardium. This image-driven constitutive modeling approach allows us to better reproduce and understand the relationship between structural and functional remodeling of ventricular myocardium during HF.

  7. Prenatal programming: adverse cardiac programming by gestational testosterone excess.

    PubMed

    Vyas, Arpita K; Hoang, Vanessa; Padmanabhan, Vasantha; Gilbreath, Ebony; Mietelka, Kristy A

    2016-01-01

    Adverse events during the prenatal and early postnatal period of life are associated with development of cardiovascular disease in adulthood. Prenatal exposure to excess testosterone (T) in sheep induces adverse reproductive and metabolic programming leading to polycystic ovarian syndrome, insulin resistance and hypertension in the female offspring. We hypothesized that prenatal T excess disrupts insulin signaling in the cardiac left ventricle leading to adverse cardiac programming. Left ventricular tissues were obtained from 2-year-old female sheep treated prenatally with T or oil (control) from days 30-90 of gestation. Molecular markers of insulin signaling and cardiac hypertrophy were analyzed. Prenatal T excess increased the gene expression of molecular markers involved in insulin signaling and those associated with cardiac hypertrophy and stress including insulin receptor substrate-1 (IRS-1), phosphatidyl inositol-3 kinase (PI3K), Mammalian target of rapamycin complex 1 (mTORC1), nuclear factor of activated T cells -c3 (NFATc3), and brain natriuretic peptide (BNP) compared to controls. Furthermore, prenatal T excess increased the phosphorylation of PI3K, AKT and mTOR. Myocardial disarray (multifocal) and increase in cardiomyocyte diameter was evident on histological investigation in T-treated females. These findings support adverse left ventricular remodeling by prenatal T excess.

  8. Prenatal programming: adverse cardiac programming by gestational testosterone excess.

    PubMed

    Vyas, Arpita K; Hoang, Vanessa; Padmanabhan, Vasantha; Gilbreath, Ebony; Mietelka, Kristy A

    2016-01-01

    Adverse events during the prenatal and early postnatal period of life are associated with development of cardiovascular disease in adulthood. Prenatal exposure to excess testosterone (T) in sheep induces adverse reproductive and metabolic programming leading to polycystic ovarian syndrome, insulin resistance and hypertension in the female offspring. We hypothesized that prenatal T excess disrupts insulin signaling in the cardiac left ventricle leading to adverse cardiac programming. Left ventricular tissues were obtained from 2-year-old female sheep treated prenatally with T or oil (control) from days 30-90 of gestation. Molecular markers of insulin signaling and cardiac hypertrophy were analyzed. Prenatal T excess increased the gene expression of molecular markers involved in insulin signaling and those associated with cardiac hypertrophy and stress including insulin receptor substrate-1 (IRS-1), phosphatidyl inositol-3 kinase (PI3K), Mammalian target of rapamycin complex 1 (mTORC1), nuclear factor of activated T cells -c3 (NFATc3), and brain natriuretic peptide (BNP) compared to controls. Furthermore, prenatal T excess increased the phosphorylation of PI3K, AKT and mTOR. Myocardial disarray (multifocal) and increase in cardiomyocyte diameter was evident on histological investigation in T-treated females. These findings support adverse left ventricular remodeling by prenatal T excess. PMID:27328820

  9. Prenatal programming: adverse cardiac programming by gestational testosterone excess

    PubMed Central

    Vyas, Arpita K.; Hoang, Vanessa; Padmanabhan, Vasantha; Gilbreath, Ebony; Mietelka, Kristy A.

    2016-01-01

    Adverse events during the prenatal and early postnatal period of life are associated with development of cardiovascular disease in adulthood. Prenatal exposure to excess testosterone (T) in sheep induces adverse reproductive and metabolic programming leading to polycystic ovarian syndrome, insulin resistance and hypertension in the female offspring. We hypothesized that prenatal T excess disrupts insulin signaling in the cardiac left ventricle leading to adverse cardiac programming. Left ventricular tissues were obtained from 2-year-old female sheep treated prenatally with T or oil (control) from days 30–90 of gestation. Molecular markers of insulin signaling and cardiac hypertrophy were analyzed. Prenatal T excess increased the gene expression of molecular markers involved in insulin signaling and those associated with cardiac hypertrophy and stress including insulin receptor substrate-1 (IRS-1), phosphatidyl inositol-3 kinase (PI3K), Mammalian target of rapamycin complex 1 (mTORC1), nuclear factor of activated T cells –c3 (NFATc3), and brain natriuretic peptide (BNP) compared to controls. Furthermore, prenatal T excess increased the phosphorylation of PI3K, AKT and mTOR. Myocardial disarray (multifocal) and increase in cardiomyocyte diameter was evident on histological investigation in T-treated females. These findings support adverse left ventricular remodeling by prenatal T excess. PMID:27328820

  10. The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction.

    PubMed

    van Nieuwenhoven, Frans A; Turner, Neil A

    2013-03-01

    Cardiac fibroblasts (CF) play a pivotal role in the repair and remodeling of the heart that occur following myocardial infarction (MI). The transition through the inflammatory, granulation and maturation phases of infarct healing is driven by cellular responses to local levels of cytokines, chemokines and growth factors that fluctuate in a temporal and spatial manner. In the acute inflammatory phase early after MI, CF contribute to the inflammatory milieu through increased secretion of proinflammatory cytokines and chemokines, and they promote extracellular matrix (ECM) degradation by increasing matrix metalloproteinase (MMP) expression and activity. In the granulation phase, CF migrate into the infarct zone, proliferate and produce MMPs and pro-angiogenic molecules to facilitate revascularization. Fibroblasts also undergo a phenotypic change to become myofibroblasts. In the maturation phase, inflammation is reduced by anti-inflammatory cytokines, and increased levels of profibrotic stimuli induce myofibroblasts to synthesize new ECM to form a scar. The scar is contracted through the mechanical force generated by myofibroblasts, preventing cardiac dilation. In this review we discuss the transition from myocardial inflammation to fibrosis with particular focus on how CF respond to alterations in proinflammatory and profibrotic signals. By furthering our understanding of these events, it is hoped that new therapeutic interventions will be developed that selectively reduce adverse myocardial remodeling post-MI, while sparing essential repair mechanisms.

  11. Postinfarct Left Ventricular Remodelling: A Prevailing Cause of Heart Failure

    PubMed Central

    Galli, Alessio; Lombardi, Federico

    2016-01-01

    Heart failure is a chronic disease with high morbidity and mortality, which represents a growing challenge in medicine. A major risk factor for heart failure with reduced ejection fraction is a history of myocardial infarction. The expansion of a large infarct scar and subsequent regional ventricular dilatation can cause postinfarct remodelling, leading to significant enlargement of the left ventricular chamber. It has a negative prognostic value, because it precedes the clinical manifestations of heart failure. The characteristics of the infarcted myocardium predicting postinfarct remodelling can be studied with cardiac magnetic resonance and experimental imaging modalities such as diffusion tensor imaging can identify the changes in the architecture of myocardial fibers. This review discusses all the aspects related to postinfarct left ventricular remodelling: definition, pathogenesis, diagnosis, consequences, and available therapies, together with experimental interventions that show promising results against postinfarct remodelling and heart failure. PMID:26989555

  12. Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure.

    PubMed

    Fu, Feng; Zhao, Kun; Li, Jia; Xu, Jie; Zhang, Yuan; Liu, Chengfeng; Yang, Weidong; Gao, Chao; Li, Jun; Zhang, Haifeng; Li, Yan; Cui, Qin; Wang, Haichang; Tao, Ling; Wang, Jing; Quon, Michael J; Gao, Feng

    2015-12-14

    A close link between heart failure (HF) and systemic insulin resistance has been well documented, whereas myocardial insulin resistance and its association with HF are inadequately investigated. This study aims to determine the role of myocardial insulin resistance in ischemic HF and its underlying mechanisms. Male Sprague-Dawley rats subjected to myocardial infarction (MI) developed progressive left ventricular dilation with dysfunction and HF at 4 wk post-MI. Of note, myocardial insulin sensitivity was decreased as early as 1 wk after MI, which was accompanied by increased production of myocardial TNF-α. Overexpression of TNF-α in heart mimicked impaired insulin signaling and cardiac dysfunction leading to HF observed after MI. Treatment of rats with a specific TNF-α inhibitor improved myocardial insulin signaling post-MI. Insulin treatment given immediately following MI suppressed myocardial TNF-α production and improved cardiac insulin sensitivity and opposed cardiac dysfunction/remodeling. Moreover, tamoxifen-induced cardiomyocyte-specific insulin receptor knockout mice exhibited aggravated post-ischemic ventricular remodeling and dysfunction compared with controls. In conclusion, MI induces myocardial insulin resistance (without systemic insulin resistance) mediated partly by ischemia-induced myocardial TNF-α overproduction and promotes the development of HF. Our findings underscore the direct and essential role of myocardial insulin signaling in protection against post-ischemic HF.

  13. Featured Article: Cardioprotective effects of lysyl oxidase inhibition against volume overload-induced extracellular matrix remodeling

    PubMed Central

    El Hajj, Elia C; El Hajj, Milad C; Ninh, Van K

    2015-01-01

    A hallmark of heart failure (HF) is adverse extracellular matrix (ECM) remodeling, which is regulated by the collagen cross-linking enzyme, lysyl oxidase (LOX). In this study, we evaluate the efficacy of LOX inhibition to prevent adverse left ventricular (LV) remodeling and dysfunction using an experimental model of HF. Sprague–Dawley rats were subjected to surgically induced volume overload (VO) by creation of aortocaval fistula (ACF). A LOX inhibitor, beta-aminopropionitrile (BAPN; 100 mg/kg/day), was administered to rats with ACF or sham surgery at eight weeks postsurgery. Echocardiography was used to assess progressive alterations in cardiac ventricular structure and function. Left ventricular (LV) catheterization was used to assess alterations in contractility, stiffness, LV pressure and volume, and other indices of cardiac function. The LV ECM alterations were assessed by: (a) histological staining of collagen, (b) protein expression of collagen types I and III, (c) hydroxyproline assay, and (d) cross-linking assay. LOX inhibition attenuated VO-induced increases in cardiac stress, and attenuated increases in interstitial myocardial collagen, total collagen, and protein levels of collagens I and III. Both echocardiography and catheterization measurements indicated improved cardiac function post-VO in BAPN treated rats vs. untreated. Inhibition of LOX attenuated VO-induced decreases in LV stiffness and cardiac function. Overall, our data indicate that LOX inhibition was cardioprotective in the volume overloaded heart. PMID:26582054

  14. A randomized, double-blind, placebo-controlled trial to evaluate the safety and effectiveness of intracoronary application of a novel bioabsorbable cardiac matrix for the prevention of ventricular remodeling after large ST-segment elevation myocardial infarction: Rationale and design of the PRESERVATION I trial.

    PubMed

    Rao, Sunil V; Zeymer, Uwe; Douglas, Pamela S; Al-Khalidi, Hussein; Liu, Jingyu; Gibson, C Michael; Harrison, Robert W; Joseph, Diane S; Heyrman, Reinilde; Krucoff, Mitchell W

    2015-11-01

    Postinfarction left ventricular (LV) remodeling can result in chronic heart failure and functional impairment. Although pharmacological strategies for established heart failure can be beneficial, preventing remodeling remains a challenge. Injectable bioabsorbable alginate or "bioabsorbable cardiac matrix" (BCM), composed of an aqueous mixture of sodium alginate and calcium gluconate, is a sterile colorless liquid that is a polysaccharide polymer produced from brown seaweed. When exposed to excess ionized calcium present in infarcted myocardium, BCM assembles to form a flexible gel, structurally resembling extracellular matrix, which provides temporary structural support to the infarct zone through and beyond the time needed for mature fibrotic tissue to develop. The PRESERVATION I trial is an early phase randomized, double-blind, placebo-controlled trial comparing intracoronary application of 4 mL of BCM with saline control in patients who develop large infarctions after successful reperfusion of large ST-segment elevation myocardial infarction (MI). Subjects will be randomized 2:1 to either BCM or saline control and will have the study device deployed through an intracoronary microcatheter in the infarct-related artery 2 to 5 days after index ST-segment elevation MI treated with successful primary or rescue percutaneous coronary intervention. The primary effectiveness end point is the absolute change in LV diastolic volume index as measured by 3-dimensional echocardiography from baseline to 6 months after BCM deployment. Secondary effectiveness end points include clinical outcomes, patient-reported quality of life, additional echocardiographic measures, and functional status measures. In summary, the PRESERVATION I trial is a randomized double-blind trial evaluating the effectiveness and safety of the novel device BCM in preventing LV remodeling patients who have large MIs despite undergoing successful primary or rescue percutaneous coronary intervention.

  15. Perioperative myocardial infarction in patients undergoing myocardial revascularization surgery

    PubMed Central

    Pretto, Pericles; Martins, Gerez Fernandes; Biscaro, Andressa; Kruczan, Dany David; Jessen, Barbara

    2015-01-01

    Introduction Perioperative myocardial infarction adversely affects the prognosis of patients undergoing coronary artery bypass graft and its diagnosis was hampered by numerous difficulties, because the pathophysiology is different from the traditional instability atherosclerotic and the clinical difficulty to be characterized. Objective To identify the frequency of perioperative myocardial infarction and its outcome in patients undergoing coronary artery bypass graft. Methods Retrospective cohort study performed in a tertiary hospital specialized in cardiology, from May 01, 2011 to April 30, 2012, which included all records containing coronary artery bypass graft records. To confirm the diagnosis of perioperative myocardial infarction criteria, the Third Universal Definition of Myocardial Infarction was used. Results We analyzed 116 cases. Perioperative myocardial infarction was diagnosed in 28 patients (24.1%). Number of grafts and use and cardiopulmonary bypass time were associated with this diagnosis and the mean age was significantly higher in this group. The diagnostic criteria elevated troponin I, which was positive in 99.1% of cases regardless of diagnosis of perioperative myocardial infarction. No significant difference was found between length of hospital stay and intensive care unit in patients with and without this complication, however patients with perioperative myocardial infarction progressed with worse left ventricular function and more death cases. Conclusion The frequency of perioperative myocardial infarction found in this study was considered high and as a consequence the same observed average higher troponin I, more cases of worsening left ventricular function and death. PMID:25859867

  16. Acute myocardial infarction in rats.

    PubMed

    Wu, Yewen; Yin, Xing; Wijaya, Cori; Huang, Ming-He; McConnell, Bradley K

    2011-01-01

    With heart failure leading the cause of death in the USA (Hunt), biomedical research is fundamental to advance medical treatments for cardiovascular diseases. Animal models that mimic human cardiac disease, such as myocardial infarction (MI) and ischemia-reperfusion (IR) that induces heart failure as well as pressure-overload (transverse aortic constriction) that induces cardiac hypertrophy and heart failure (Goldman and Tarnavski), are useful models to study cardiovascular disease. In particular, myocardial ischemia (MI) is a leading cause for cardiovascular morbidity and mortality despite controlling certain risk factors such as arteriosclerosis and treatments via surgical intervention (Thygesen). Furthermore, an acute loss of the myocardium following myocardial ischemia (MI) results in increased loading conditions that induces ventricular remodeling of the infarcted border zone and the remote non-infarcted myocardium. Myocyte apoptosis, necrosis and the resultant increased hemodynamic load activate multiple biochemical intracellular signaling that initiates LV dilatation, hypertrophy, ventricular shape distortion, and collagen scar formation. This pathological remodeling and failure to normalize the increased wall stresses results in progressive dilatation, recruitment of the border zone myocardium into the scar, and eventually deterioration in myocardial contractile function (i.e. heart failure). The progression of LV dysfunction and heart failure in rats is similar to that observed in patients who sustain a large myocardial infarction, survive and subsequently develops heart failure (Goldman). The acute myocardial infarction (AMI) model in rats has been used to mimic human cardiovascular disease; specifically used to study cardiac signaling mechanisms associated with heart failure as well as to assess the contribution of therapeutic strategies for the treatment of heart failure. The method described in this report is the rat model of acute myocardial

  17. Reverse Cardiac Remodeling: A Marker of Better Prognosis in Heart Failure

    PubMed Central

    Reis, José Rosino de Araújo Rocha; Cardoso, Juliano Novaes; Cardoso, Cristina Martins dos Reis; Pereira-Barretto, Antonio Carlos

    2015-01-01

    In heart failure syndrome, myocardial dysfunction causes an increase in neurohormonal activity, which is an adaptive and compensatory mechanism in response to the reduction in cardiac output. Neurohormonal activity is initially stimulated in an attempt to maintain compensation; however, when it remains increased, it contributes to the intensification of clinical manifestations and myocardial damage. Cardiac remodeling comprises changes in ventricular volume as well as the thickness and shape of the myocardial wall. With optimized treatment, such remodeling can be reversed, causing gradual improvement in cardiac function and consequently improved prognosis. PMID:26131706

  18. Myocardial Bridging

    PubMed Central

    Yuan, Shi-Min

    2016-01-01

    Myocardial bridging is rare. Myocardial bridges are most commonly localized in the middle segment of the left anterior descending coronary artery. The anatomic features of the bridges vary significantly. Alterations of the endothelial morphology and the vasoactive agents impact on the progression of atherosclerosis of myocardial bridging. Patients may present with chest pain, myocardial infarction, arrhythmia and even sudden death. Patients who respond poorly to the medical treatment with β-blockers warrant a surgical intervention. Myotomy is a preferred surgical procedure for the symptomatic patients. Coronary stent deployment has been in limited use due to the unsatisfactory long-term results. PMID:27074276

  19. Strategies for recruitment of stem cells to treat myocardial infarction.

    PubMed

    Shafiq, Muhammad; Lee, Sang-Hoon; Jung, Youngmee; Kim, Soo Hyun

    2015-01-01

    Heart failure is one of the most prominent causes of morbidity and mortality worldwide. According to the World Health Organization, coronary artery disease and myocardial infarction (MI) are responsible for 29% of deaths worldwide. MI results in obstruction of the blood supply to the heart and scar formation, and causes substantial death of cardiomyocytes in the infarct zone followed by an inflammatory response. Current treatment methodologies of MI and heart failure include organ transplantation, coronary artery bypass grafting, ventricular remodeling, cardiomyoplasty, and cellular therapy. Each of these methodologies has associated risks and benefits. Cellular cardiomyoplasty is a viable option to decrease the fibrosis of infarct scars, adverse post-ischemic remodeling, and improve heart function. However, the low rate of cell survival, shortage of cell sources and donors, tumorigenesis, and ethical issues hamper full exploitation of cell therapy for MI treatment. Consequently, the mobilization and recruitment of endogenous stem/progenitor cells from bone marrow, peripheral circulation, and cardiac tissues has immense potential through harnessing the host's own reparative capacities that result from interplay among cytokines, chemokines, and adhesion molecules. Therapeutic treatments to enhance the mobilization and homing of stem cells are under development. In this review, we present state-of-the-art approaches that are being pursued for stem cell mobilization and recruitment to regenerate infarcted myocardium. Potential therapeutic interventions and delivery strategies are discussed in detail.

  20. Strategies for recruitment of stem cells to treat myocardial infarction.

    PubMed

    Shafiq, Muhammad; Lee, Sang-Hoon; Jung, Youngmee; Kim, Soo Hyun

    2015-01-01

    Heart failure is one of the most prominent causes of morbidity and mortality worldwide. According to the World Health Organization, coronary artery disease and myocardial infarction (MI) are responsible for 29% of deaths worldwide. MI results in obstruction of the blood supply to the heart and scar formation, and causes substantial death of cardiomyocytes in the infarct zone followed by an inflammatory response. Current treatment methodologies of MI and heart failure include organ transplantation, coronary artery bypass grafting, ventricular remodeling, cardiomyoplasty, and cellular therapy. Each of these methodologies has associated risks and benefits. Cellular cardiomyoplasty is a viable option to decrease the fibrosis of infarct scars, adverse post-ischemic remodeling, and improve heart function. However, the low rate of cell survival, shortage of cell sources and donors, tumorigenesis, and ethical issues hamper full exploitation of cell therapy for MI treatment. Consequently, the mobilization and recruitment of endogenous stem/progenitor cells from bone marrow, peripheral circulation, and cardiac tissues has immense potential through harnessing the host's own reparative capacities that result from interplay among cytokines, chemokines, and adhesion molecules. Therapeutic treatments to enhance the mobilization and homing of stem cells are under development. In this review, we present state-of-the-art approaches that are being pursued for stem cell mobilization and recruitment to regenerate infarcted myocardium. Potential therapeutic interventions and delivery strategies are discussed in detail. PMID:25594408

  1. Myocardial Infarction and Functional Outcome Assessment in Pigs

    PubMed Central

    Koudstaal, Stefan; Jansen of Lorkeers, Sanne J.; Gho, Johannes M.I.H.; van Hout, Gerardus P.J; Jansen, Marlijn S.; Gründeman, Paul F.; Pasterkamp, Gerard; Doevendans, Pieter A.

    2014-01-01

    Introduction of newly discovered cardiovascular therapeutics into first-in-man trials depends on a strictly regulated ethical and legal roadmap. One important prerequisite is a good understanding of all safety and efficacy aspects obtained in a large animal model that validly reflect the human scenario of myocardial infarction (MI). Pigs are widely used in this regard since their cardiac size, hemodynamics, and coronary anatomy are close to that of humans. Here, we present an effective protocol for using the porcine MI model using a closed-chest coronary balloon occlusion of the left anterior descending artery (LAD), followed by reperfusion. This approach is based on 90 min of myocardial ischemia, inducing large left ventricle infarction of the anterior, septal and inferoseptal walls. Furthermore, we present protocols for various measures of outcome that provide a wide range of information on the heart, such as cardiac systolic and diastolic function, hemodynamics, coronary flow velocity, microvascular resistance, and infarct size. This protocol can be easily tailored to meet study specific requirements for the validation of novel cardioregenerative biologics at different stages (i.e. directly after the acute ischemic insult, in the subacute setting or even in the chronic MI once scar formation has been completed). This model therefore provides a useful translational tool to study MI, subsequent adverse remodeling, and the potential of novel cardioregenerative agents. PMID:24796715

  2. Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema.

    PubMed

    Desai, Ketaki V; Laine, Glen A; Stewart, Randolph H; Cox, Charles S; Quick, Christopher M; Allen, Steven J; Fischer, Uwe M

    2008-06-01

    Myocardial interstitial edema forms as a result of several disease states and clinical interventions. Acute myocardial interstitial edema is associated with compromised systolic and diastolic cardiac function and increased stiffness of the left ventricular chamber. Formation of chronic myocardial interstitial edema results in deposition of interstitial collagen, which causes interstitial fibrosis. To assess the effect of myocardial interstitial edema on the mechanical properties of the left ventricle and the myocardial interstitium, we induced acute and chronic interstitial edema in dogs. Acute myocardial edema was generated by coronary sinus pressure elevation, while chronic myocardial edema was generated by chronic pulmonary artery banding. The pressure-volume relationships of the left ventricular myocardial interstitium and left ventricular chamber for control animals were compared with acutely and chronically edematous animals. Collagen content of nonedematous and chronically edematous animals was also compared. Generating acute myocardial interstitial edema resulted in decreased left ventricular chamber compliance compared with nonedematous animals. With chronic edema, the primary form of collagen changed from type I to III. Left ventricular chamber compliance in animals made chronically edematous was significantly higher than nonedematous animals. The change in primary collagen type secondary to chronic left ventricular myocardial interstitial edema provides direct evidence for structural remodeling. The resulting functional adaptation allows the chronically edematous heart to maintain left ventricular chamber compliance when challenged with acute edema, thus preserving cardiac function over a wide range of interstitial fluid pressures. PMID:18375722

  3. Metallothioneins 1 and 2 Modulate Inflammation and Support Remodeling in Ischemic Cardiomyopathy in Mice.

    PubMed

    Duerr, Georg D; Dewald, Daniela; Schmitz, Eva J; Verfuerth, Luise; Keppel, Katharina; Peigney, Christine; Ghanem, Alexander; Welz, Armin; Dewald, Oliver

    2016-01-01

    Aims. Repetitive brief ischemia and reperfusion (I/R) is associated with left ventricular dysfunction during development of ischemic cardiomyopathy. We investigated the role of zinc-donor proteins metallothionein MT1 and MT2 in a closed-chest murine model of I/R. Methods. Daily 15-minute LAD-occlusion was performed for 1, 3, and 7 days in SV129 (WT)- and MT1/2 knockout (MT(-/-))-mice (n = 8-10/group). Hearts were examined with M-mode echocardiography and processed for histological and mRNA studies. Results. Expression of MT1/2 mRNA was transiently induced during repetitive I/R in WT-mice, accompanied by a transient inflammation, leading to interstitial fibrosis with left ventricular dysfunction without infarction. In contrast, MT(-/-)-hearts presented with enhanced apoptosis and small infarctions leading to impaired global and regional pump function. Molecular analysis revealed maladaptation of myosin heavy chain isoforms and antioxidative enzymes in MT1/2(-/-)-hearts. Despite their postponed chemokine induction we found a higher total neutrophil density and macrophage infiltration in small infarctions in MT(-/-)-hearts. Subsequently, higher expression of osteopontin 1 and tenascin C was associated with increased myofibroblast density resulting in predominately nonreversible fibrosis and adverse remodeling in MT1/2(-/-)-hearts. Conclusion. Cardioprotective effects of MT1/2 seem to be exerted via modulation of contractile elements, antioxidative enzymes, inflammatory response, and myocardial remodeling. PMID:27403038

  4. Molecular Imaging of Angiogenesis and Vascular Remodeling in Cardiovascular Pathology

    PubMed Central

    Golestani, Reza; Jung, Jae-Joon; Sadeghi, Mehran M.

    2016-01-01

    Angiogenesis and vascular remodeling are involved in a wide array of cardiovascular diseases, from myocardial ischemia and peripheral arterial disease, to atherosclerosis and aortic aneurysm. Molecular imaging techniques to detect and quantify key molecular and cellular players in angiogenesis and vascular remodeling (e.g., vascular endothelial growth factor and its receptors, αvβ3 integrin, and matrix metalloproteinases) can advance vascular biology research and serve as clinical tools for early diagnosis, risk stratification, and selection of patients who would benefit most from therapeutic interventions. To target these key mediators, a number of molecular imaging techniques have been developed and evaluated in animal models of angiogenesis and vascular remodeling. This review of the state of the art molecular imaging of angiogenesis and vascular (and valvular) remodeling, will focus mostly on nuclear imaging techniques (positron emission tomography and single photon emission tomography) that offer high potential for clinical translation. PMID:27275836

  5. Cocaine, a risk factor for myocardial infarction.

    PubMed

    Galasko, G I

    1997-06-01

    Cocaine usage goes back thousands of years, to the times of the Incas. Over the past 20 years, its use has increased dramatically, especially in America, and adverse cardiovascular reactions to the drug have begun to be reported. The first report of myocardial infarction temporally related to the recreational use of cocaine appeared in 1982. Since then, myocardial infarction has become recognized as the drug's most common cardiovascular consequence, with over 250 cases now documented in the literature. This review discusses the history of cocaine use, its pharmacology, the possible pathological mechanisms underlying the pathogenesis of myocardial ischaemia and infarction, and current ideas on the management of cocaine-induced myocardial infarction.

  6. Myocardialization of the cardiac outflow tract

    NASA Technical Reports Server (NTRS)

    van den Hoff, M. J.; Moorman, A. F.; Ruijter, J. M.; Lamers, W. H.; Bennington, R. W.; Markwald, R. R.; Wessels, A.

    1999-01-01

    During development, the single-circuited cardiac tube transforms into a double-circuited four-chambered heart by a complex process of remodeling, differential growth, and septation. In this process the endocardial cushion tissues of the atrioventricular junction and outflow tract (OFT) play a crucial role as they contribute to the mesenchymal components of the developing septa and valves in the developing heart. After fusion, the endocardial ridges in the proximal portion of the OFT initially form a mesenchymal outlet septum. In the adult heart, however, this outlet septum is basically a muscular structure. Hence, the mesenchyme of the proximal outlet septum has to be replaced by cardiomyocytes. We have dubbed this process "myocardialization." Our immunohistochemical analysis of staged chicken hearts demonstrates that myocardialization takes place by ingrowth of existing myocardium into the mesenchymal outlet septum. Compared to other events in cardiac septation, it is a relatively late process, being initialized around stage H/H28 and being basically completed around stage H/H38. To unravel the molecular mechanisms that are responsible for the induction and regulation of myocardialization, an in vitro culture system in which myocardialization could be mimicked and manipulated was developed. Using this in vitro myocardialization assay it was observed that under the standard culture conditions (i) whole OFT explants from stage H/H20 and younger did not spontaneously myocardialize the collagen matrix, (ii) explants from stage H/H21 and older spontaneously formed extensive myocardial networks, (iii) the myocardium of the OFT could be induced to myocardialize and was therefore "myocardialization-competent" at all stages tested (H/H16-30), (iv) myocardialization was induced by factors produced by, most likely, the nonmyocardial component of the outflow tract, (v) at none of the embryonic stages analyzed was ventricular myocardium myocardialization-competent, and finally

  7. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  8. Depression after myocardial infarction.

    PubMed

    Ziegelstein, R C

    2001-01-01

    Depression is an independent risk factor for increased postmyocardial infarction morbidity and mortality, even after controlling for the extent of coronary artery disease, infarct size, and the severity of left ventricular dysfunction. This risk factor takes on added significance when one considers that almost half of patients recovering from a myocardial infarction have major or minor depression and that major depression alone occurs in about one in five of these individuals. Despite the well-documented risk of depression, questions remain about the mechanism of the relationship between mood disturbance and adverse outcome. The link may be explained by an association with lower levels of social support, poor adherence to recommended medical therapy and lifestyle changes intended to reduce the risk of subsequent cardiac events, disturbances in autonomic tone, enhanced platelet activation and aggregation, and systemic immune activation. Unfortunately, questions about the pathophysiologic mechanism of depression in this setting are paralleled by uncertainties about the optimal treatment of depression for patients recovering from a myocardial infarction and by a lack of knowledge about whether treating depression lowers the associated increased mortality risk. Ongoing research studies will help to determine the benefits of psychosocial interventions and of antidepressant therapy for patients soon after myocardial infarction. Although the identification of depression as a risk factor may by itself be a reason to incorporate a comprehensive psychological evaluation into the routine care of patients with myocardial infarction, this practice should certainly become standard if studies show that treating depression reduces the increased mortality risk of these patients.

  9. Shengmai San Ameliorates Myocardial Dysfunction and Fibrosis in Diabetic db/db Mice

    PubMed Central

    Cao, Tong-Tong; Tian, Jing; Chen, Hui-hua; Lu, Rong

    2016-01-01

    In this study, we mainly investigated the effects of Shengmai San (SMS) on diabetic cardiomyopathy (DCM) in db/db mice. The db/db mice were randomly divided into model group and SMS group, while C57BLKS/J inbred mice were used as controls. After 24-week treatment, blood glucose, body weight, and heart weight were determined. Hemodynamic changes in the left ventricle were measured using catheterization. The myocardial structure and subcellular structural changes were observed by HE staining and electron microscopy; the myocardium collagen content was quantified by Masson staining. To further explore the protective mechanism of SMS, we analyzed the expression profiles of fibrotic related proteins. Compared to nondiabetic mice, db/db mice exhibited enhanced diastolic myocardial dysfunction and adverse structural remodeling. Higher expression of profibrotic proteins and lower levels of extracellular matrix degradation were also observed. After SMS oral administration for 24 weeks, cardiac dysfunction, hypertrophy, and fibrosis in diabetic mice were greatly improved. Moreover, increased profibrotic protein expression was strongly reversed by SMS treatment in db/db mice. The results demonstrate that SMS exerts a cardioprotective effect against DCM by attenuating myocardial hypertrophy and fibrosis via a TGF-β dependent pathway. PMID:27200101

  10. Shengmai San Ameliorates Myocardial Dysfunction and Fibrosis in Diabetic db/db Mice.

    PubMed

    Zhao, Juan; Cao, Tong-Tong; Tian, Jing; Chen, Hui-Hua; Zhang, Chen; Wei, Hong-Chang; Guo, Wei; Lu, Rong

    2016-01-01

    In this study, we mainly investigated the effects of Shengmai San (SMS) on diabetic cardiomyopathy (DCM) in db/db mice. The db/db mice were randomly divided into model group and SMS group, while C57BLKS/J inbred mice were used as controls. After 24-week treatment, blood glucose, body weight, and heart weight were determined. Hemodynamic changes in the left ventricle were measured using catheterization. The myocardial structure and subcellular structural changes were observed by HE staining and electron microscopy; the myocardium collagen content was quantified by Masson staining. To further explore the protective mechanism of SMS, we analyzed the expression profiles of fibrotic related proteins. Compared to nondiabetic mice, db/db mice exhibited enhanced diastolic myocardial dysfunction and adverse structural remodeling. Higher expression of profibrotic proteins and lower levels of extracellular matrix degradation were also observed. After SMS oral administration for 24 weeks, cardiac dysfunction, hypertrophy, and fibrosis in diabetic mice were greatly improved. Moreover, increased profibrotic protein expression was strongly reversed by SMS treatment in db/db mice. The results demonstrate that SMS exerts a cardioprotective effect against DCM by attenuating myocardial hypertrophy and fibrosis via a TGF-β dependent pathway. PMID:27200101

  11. Interleukin-1 alpha is a crucial danger signal triggering acute myocardial inflammation during myocardial infarction

    PubMed Central

    Lugrin, Jérôme; Parapanov, Roumen; Rosenblatt-Velin, Nathalie; Rignault-Clerc, Stéphanie; Feihl, François; Waeber, Bernard; Müller, Olivier; Vergely, Catherine; Zeller, Marianne; Tardivel, Aubry; Schneider, Pascal; Pacher, Pal; Liaudet, Lucas

    2014-01-01

    Myocardial infarction (MI) induces a sterile inflammatory response which contributes to adverse cardiac remodeling. The initiating mechanisms of this response remain incompletely defined. We found that necrotic cardiomyocytes released a heat-labile pro-inflammatory signal activating MAP kinases and NF-κB in cardiac fibroblasts, with secondary production of cytokines. This response was abolished in Myd88−/− fibroblasts, but was unaffected in nlrp3-deficient fibroblasts. Despite MyD88-dependency, the response was TLR-independent, as explored in TLR reporter cells, pointing to the implication of the IL-1 pathway. Indeed, necrotic cardiomyocytes released IL-1α, but not IL-1β, and the immune activation of cardiac fibroblasts was abrogated by an IL-1 receptor antagonist and an IL-1α blocking antibody. Moreover, immune responses triggered by necrotic Il1a−/− cardiomyocytes were markedly reduced. In vivo, mice exposed to MI released IL-1α in the plasma, and post-ischemic inflammation was attenuated in Il1a−/− mice. Thus, our findings identify IL-1α as a crucial early danger signal triggering post-MI inflammation. PMID:25505286

  12. Remodeling of Cell-Cell Junctions in Arrhythmogenic Cardiomyopathy

    PubMed Central

    Asimaki, Angeliki; Saffitz, Jeffrey E.

    2015-01-01

    Arrhythmogenic cardiomyopathy (AC) is a primary myocardial disorder characterized by a high incidence of ventricular arrhythmias often preceding the onset of ventricular remodeling and dysfunction. Approximately 50% of patients diagnosed with AC have one or more mutations in genes encoding desmosomal proteins, although non-desmosomal genes have also been associated with the disease. Increasing evidence implicates remodeling of intercalated disk proteins reflecting abnormal responses to mechanical load and aberrant cell signaling pathways in the pathogenesis of AC. This review summarizes recent advances in understanding disease mechanisms in AC that have come from studies of human myocardium and experimental models. PMID:24460198

  13. Exosomes and cardiac repair after myocardial infarction.

    PubMed

    Sahoo, Susmita; Losordo, Douglas W

    2014-01-17

    Myocardial infarction is a leading cause of death among all cardiovascular diseases. The analysis of molecular mechanisms by which the ischemic myocardium initiates repair and remodeling indicates that secreted soluble factors are key players in communication to local and distant tissues, such as bone marrow. Recently, actively secreted membrane vesicles, including exosomes, are being recognized as new candidates with important roles in intercellular and tissue-level communication. In this review, we critically examine the emerging role of exosomes in local and distant microcommunication mechanisms after myocardial infarction. A comprehensive understanding of the role of exosomes in cardiac repair after myocardial infarction could bridge a major gap in knowledge of the repair mechanism after myocardial injury.

  14. Myocardial Bridge

    MedlinePlus

    ... artery. See also on this site: Ask a Texas Heart Institute Doctor: Search "myocardial bridge" Updated August ... comments. Terms of Use and Privacy Policy © Copyright Texas Heart Institute All rights reserved.

  15. Non-invasive technology that improves cardiac function after experimental myocardial infarction: Whole Body Periodic Acceleration (pGz).

    PubMed

    Uryash, Arkady; Bassuk, Jorge; Kurlansky, Paul; Altamirano, Francisco; Lopez, Jose R; Adams, Jose A

    2015-01-01

    Myocardial infarction (MI) may produce significant inflammatory changes and adverse ventricular remodeling leading to heart failure and premature death. Pharmacologic, stem cell transplantation, and exercise have not halted the inexorable rise in the prevalence and great economic costs of heart failure despite extensive investigations of such treatments. New therapeutic modalities are needed. Whole Body Periodic Acceleration (pGz) is a non-invasive technology that increases pulsatile shear stress to the endothelium thereby producing several beneficial cardiovascular effects as demonstrated in animal models, normal humans and patients with heart disease. pGz upregulates endothelial derived nitric oxide synthase (eNOS) and its phosphorylation (p-eNOS) to improve myocardial function in models of myocardial stunning and preconditioning. Here we test whether pGz applied chronically after focal myocardial infarction in rats improves functional outcomes from MI. Focal MI was produced by left coronary artery ligation. One day after ligation animals were randomized to receive daily treatments of pGz for four weeks (MI-pGz) or serve as controls (MI-CONT), with an additional group as non-infarction controls (Sham). Echocardiograms and invasive pressure volume loop analysis were carried out. Infarct transmurality, myocardial fibrosis, and markers of inflammatory and anti-inflammatory cytokines were determined along with protein analysis of eNOS, p-eNOS and inducible nitric oxide synthase (iNOS).At four weeks, survival was 80% in MI-pGz vs 50% in MI-CONT (p< 0.01). Ejection fraction and fractional shortening and invasive pressure volume relation indices of afterload and contractility were significantly better in MI-pGz. The latter where associated with decreased infarct transmurality and decreased fibrosis along with increased eNOS, p-eNOS. Additionally, MI-pGz had significantly lower levels of iNOS, inflammatory cytokines (IL-6, TNF-α), and higher level of anti

  16. Non-Invasive Technology That Improves Cardiac Function after Experimental Myocardial Infarction: Whole Body Periodic Acceleration (pGz)

    PubMed Central

    Kurlansky, Paul; Altamirano, Francisco; Lopez, Jose R.

    2015-01-01

    Myocardial infarction (MI) may produce significant inflammatory changes and adverse ventricular remodeling leading to heart failure and premature death. Pharmacologic, stem cell transplantation, and exercise have not halted the inexorable rise in the prevalence and great economic costs of heart failure despite extensive investigations of such treatments. New therapeutic modalities are needed. Whole Body Periodic Acceleration (pGz) is a non-invasive technology that increases pulsatile shear stress to the endothelium thereby producing several beneficial cardiovascular effects as demonstrated in animal models, normal humans and patients with heart disease. pGz upregulates endothelial derived nitric oxide synthase (eNOS) and its phosphorylation (p-eNOS) to improve myocardial function in models of myocardial stunning and preconditioning. Here we test whether pGz applied chronically after focal myocardial infarction in rats improves functional outcomes from MI. Focal MI was produced by left coronary artery ligation. One day after ligation animals were randomized to receive daily treatments of pGz for four weeks (MI-pGz) or serve as controls (MI-CONT), with an additional group as non-infarction controls (Sham). Echocardiograms and invasive pressure volume loop analysis were carried out. Infarct transmurality, myocardial fibrosis, and markers of inflammatory and anti-inflammatory cytokines were determined along with protein analysis of eNOS, p-eNOS and inducible nitric oxide synthase (iNOS).At four weeks, survival was 80% in MI-pGz vs 50% in MI-CONT (p< 0.01). Ejection fraction and fractional shortening and invasive pressure volume relation indices of afterload and contractility were significantly better in MI-pGz. The latter where associated with decreased infarct transmurality and decreased fibrosis along with increased eNOS, p-eNOS. Additionally, MI-pGz had significantly lower levels of iNOS, inflammatory cytokines (IL-6, TNF-α), and higher level of anti

  17. Using biomaterials to improve the efficacy of cell therapy following acute myocardial infarction.

    PubMed

    Traverse, Jay H

    2012-02-01

    Cardiovascular cell therapy has the potential to improve left ventricular (LV) function and alter the course of adverse LV remodeling following acute myocardial infarction (AMI). However, current therapy using autologous intracoronary bone marrow mononuclear cells results in only minimal recovery of LV function. A major impediment appears to be limited retention and engraftment of the transplanted cells, in part due to loss of the extracellular matrix (ECM) following AMI that can lead to apoptosis of the delivered cells through the mechanism of anoikis. Recent pre-clinical studies suggest that the delivery of ECM surrogates to the infarct zone following AMI significantly improves LV function through multiple mechanisms. The use of ECM surrogates in conjunction with stem cell administration may represent a new paradigm for cardiac repair following AMI. This review discusses the potential use of biologically based ECM surrogates in the clinical setting following STEMI.

  18. Assessment of Myocardial Fibrosis with Cardiac Magnetic Resonance

    PubMed Central

    Nathan, Mewton; Ying, Liu Chia; Pierre, Croisille; David, Bluemke; João, Lima

    2011-01-01

    Diffuse interstitial or replacement myocardial fibrosis are common features of a broad variety of cardiomyopathies. Myocardial fibrosis leads to impaired cardiac diastolic and systolic function and is related to adverse cardiovascular events. Cardiac magnetic resonance (CMR) may uniquely characterize the extent of replacement fibrosis and may have prognostic value in various cardiomyopathies. Myocardial T1 mapping is an emerging technique that could improve CMR’s diagnostic accuracy especially for interstitial diffuse myocardial fibrosis. As such, CMR could be integrated in the monitoring and the therapeutic management of a large number of patients. This review summarizes the advantages and limitations of CMR for the assessment of myocardial fibrosis. PMID:21329834

  19. Assessment of myocardial fibrosis with cardiovascular magnetic resonance.

    PubMed

    Mewton, Nathan; Liu, Chia Ying; Croisille, Pierre; Bluemke, David; Lima, João A C

    2011-02-22

    Diffuse interstitial or replacement myocardial fibrosis is a common feature of a broad variety of cardiomyopathies. Myocardial fibrosis leads to impaired cardiac diastolic and systolic function and is related to adverse cardiovascular events. Cardiovascular magnetic resonance (CMR) may uniquely characterize the extent of replacement fibrosis and may have prognostic value in various cardiomyopathies. Myocardial longitudinal relaxation time mapping is an emerging technique that could improve CMR's diagnostic accuracy, especially for interstitial diffuse myocardial fibrosis. As such, CMR could be integrated in the monitoring and therapeutic management of a large number of patients. This review summarizes the advantages and limitations of CMR for the assessment of myocardial fibrosis. PMID:21329834

  20. Epigenetic regulation of aortic remodeling in hyperhomocysteinemia

    PubMed Central

    Narayanan, Nithya; Pushpakumar, Sathnur Basappa; Givvimani, Srikanth; Kundu, Sourav; Metreveli, Naira; James, Dexter; Bratcher, Adrienne P.; Tyagi, Suresh C.

    2014-01-01

    Hyperhomocysteinemia (HHcy) is prevalent in patients with hypertension and is an independent risk factor for aortic pathologies. HHcy is known to cause an imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), leading to the accumulation of collagen in the aorta and resulting in stiffness and development of hypertension. Although the exact mechanism of extracellular matrix (ECM) remodeling is unclear, emerging evidence implicates epigenetic regulation involving DNA methylation. Our purpose was to investigate whether 5-aza-2′-deoxycytidine (Aza), a DNA methyltransferase (DNMT1) inhibitor, reduces high blood pressure (BP) by regulating aortic ECM remodeling in HHcy. Wild-type and cystathionine β-synthase (CBS)+/− HHcy mice were treated with Aza (0.5 mg/kg body weight). In HHcy mice, Aza treatment normalized the plasma homocysteine (Hcy) level and BP. Thoracic and abdominal aorta ultrasound revealed a reduction in the resistive index and wall-to-lumen ratio. Vascular response to phenylephrine, acetylcholine, and sodium nitroprusside improved after Aza in HHcy mice. Histology showed a marked reduction in collagen deposition in the aorta. Aza treatment decreased the expression of DNMT1, MMP9, TIMP1, and S-adenosyl homocysteine hydrolase (SAHH) and upregulated methylene tetrahydrofolate reductase (MTHFR). We conclude that reduction of DNA methylation by Aza in HHcy reduces adverse aortic remodeling to mitigate hypertension.—Narayanan, N., Pushpakumar, S. B., Givvimani, S., Kundu, S., Metreveli, N., James, D., Bratcher, A. P., Tyagi, S. C. Epigenetic regulation of aortic remodeling in hyperhomocysteinemia. PMID:24739303

  1. Physiological Implications of Myocardial Scar Structure.

    PubMed

    Richardson, William J; Clarke, Samantha A; Quinn, T Alexander; Holmes, Jeffrey W

    2015-10-01

    Once myocardium dies during a heart attack, it is replaced by scar tissue over the course of several weeks. The size, location, composition, structure, and mechanical properties of the healing scar are all critical determinants of the fate of patients who survive the initial infarction. While the central importance of scar structure in determining pump function and remodeling has long been recognized, it has proven remarkably difficult to design therapies that improve heart function or limit remodeling by modifying scar structure. Many exciting new therapies are under development, but predicting their long-term effects requires a detailed understanding of how infarct scar forms, how its properties impact left ventricular function and remodeling, and how changes in scar structure and properties feed back to affect not only heart mechanics but also electrical conduction, reflex hemodynamic compensations, and the ongoing process of scar formation itself. In this article, we outline the scar formation process following a myocardial infarction, discuss interpretation of standard measures of heart function in the setting of a healing infarct, then present implications of infarct scar geometry and structure for both mechanical and electrical function of the heart and summarize experiences to date with therapeutic interventions that aim to modify scar geometry and structure. One important conclusion that emerges from the studies reviewed here is that computational modeling is an essential tool for integrating the wealth of information required to understand this complex system and predict the impact of novel therapies on scar healing, heart function, and remodeling following myocardial infarction. PMID:26426470

  2. Plasma Levels of Transforming Growth Factor-β1 Reflect Left Ventricular Remodeling in Aortic Stenosis

    PubMed Central

    Villar, Ana V.; Cobo, Manuel; Llano, Miguel; Montalvo, Cecilia; González-Vílchez, Francisco; Martín-Durán, Rafael; Hurlé, María A.; Nistal, J. Francisco

    2009-01-01

    Background TGF-β1 is involved in cardiac remodeling through an auto/paracrine mechanism. The contribution of TGF-β1 from plasmatic source to pressure overload myocardial remodeling has not been analyzed. We investigated, in patients with valvular aortic stenosis (AS), and in mice subjected to transverse aortic arch constriction (TAC), whether plasma TGF-β1 relates with myocardial remodeling, reflected by LV transcriptional adaptations of genes linked to myocardial hypertrophy and fibrosis, and by heart morphology and function. Methodology/Principal Findings The subjects of the study were: 39 patients operated of AS; 27 healthy volunteers; 12 mice subjected to TAC; and 6 mice sham-operated. Myocardial samples were subjected to quantitative PCR. Plasma TGF-β1 was determined by ELISA. Under pressure overload, TGF-β1 plasma levels were significantly increased both in AS patients and TAC mice. In AS patients, plasma TGF-β1 correlated directly with aortic transvalvular gradients and LV mass surrogate variables, both preoperatively and 1 year after surgery. Plasma TGF-β1 correlated positively with the myocardial expression of genes encoding extracellular matrix (collagens I and III, fibronectin) and sarcomeric (myosin light chain-2, β-myosin heavy chain) remodelling targets of TGF-β1, in TAC mice and in AS patients. Conclusions/Significance A circulating TGF-β1-mediated mechanism is involved, in both mice and humans, in the excessive deposition of ECM elements and hypertrophic growth of cardiomyocytes under pressure overload. The possible value of plasma TGF-β1 as a marker reflecting preoperative myocardial remodeling status in AS patients deserves further analysis in larger patient cohorts. PMID:20041033

  3. Reverse cardiac remodeling enabled by mechanical unloading of the left ventricle.

    PubMed

    Malliaras, Konstantinos G; Terrovitis, John V; Drakos, Stavros G; Nanas, John N

    2009-03-01

    Cardiac remodeling is a characteristic and basic component of heart failure progression and is associated with a poor prognosis. Attenuating or reversing remodeling is an accepted goal of heart failure therapy. Cardiac mechanical support with left ventricular assist devices, in addition to its established role as "bridge to transplantation" or "destination therapy" in patients not eligible for cardiac transplantation, offers the potential for significant and sustained myocardial recovery through reverse remodeling. This review discusses the emerging role of left ventricular assist devices as a "bridge to recovery". Clinical and basic aspects of cardiac remodeling and cardiac reverse remodeling enabled by mechanical unloading, potential candidates for this modality of treatment as well as unresolved issues regarding the use of mechanical circulatory support as a bridge to recovery are discussed. PMID:20559975

  4. Constitutive glycogen synthase kinase-3α/β activity protects against chronic β-adrenergic remodelling of the heart

    PubMed Central

    Webb, Ian G.; Nishino, Yasuhiro; Clark, James E.; Murdoch, Colin; Walker, Simon J.; Makowski, Marcus R.; Botnar, Rene M.; Redwood, Simon R.; Shah, Ajay M.; Marber, Michael S.

    2010-01-01

    Aims Glycogen synthase kinase 3 (GSK-3) signalling is implicated in the growth of the heart during development and in response to stress. However, its precise role remains unclear. We set out to characterize developmental growth and response to chronic isoproterenol (ISO) stress in knockin (KI) mice lacking the critical N-terminal serines, 21 of GSK-3α and 9 of GSK-3β respectively, required for inactivation by upstream kinases. Methods and results Between 5 and 15 weeks, KI mice grew more rapidly, but normalized heart weight and contractile performance were similar to wild-type (WT) mice. Isolated hearts of both genotypes responded comparably to acute ISO infusion with increases in heart rate and contractility. In WT mice, chronic subcutaneous ISO infusion over 14 days resulted in cardiac hypertrophy, interstitial fibrosis, and impaired contractility, accompanied by foetal gene reactivation. These effects were all significantly attenuated in KI mice. Indeed, ISO-treated KI hearts demonstrated reversible physiological remodelling traits with increased stroke volume and a preserved contractile response to acute adrenergic stimulation. Furthermore, simultaneous pharmacological inhibition of GSK-3 in KI mice treated with chronic subcutaneous ISO recapitulated the adverse remodelling phenotype seen in WT hearts. Conclusion Expression of inactivation-resistant GSK-3α/β does not affect eutrophic myocardial growth but protects against pathological hypertrophy induced by chronic adrenergic stimulation, maintaining cardiac function and attenuating interstitial fibrosis. Accordingly, strategies to prevent phosphorylation of Ser-21/9, and consequent inactivation of GSK-3α/β, may enable a sustained cardiac response to chronic β-agonist stimulation while preventing pathological remodelling. PMID:20299330

  5. Metallothioneins 1 and 2 Modulate Inflammation and Support Remodeling in Ischemic Cardiomyopathy in Mice

    PubMed Central

    Dewald, Daniela; Schmitz, Eva J.; Verfuerth, Luise; Keppel, Katharina; Peigney, Christine; Ghanem, Alexander; Welz, Armin; Dewald, Oliver

    2016-01-01

    Aims. Repetitive brief ischemia and reperfusion (I/R) is associated with left ventricular dysfunction during development of ischemic cardiomyopathy. We investigated the role of zinc-donor proteins metallothionein MT1 and MT2 in a closed-chest murine model of I/R. Methods. Daily 15-minute LAD-occlusion was performed for 1, 3, and 7 days in SV129 (WT)- and MT1/2 knockout (MT−/−)-mice (n = 8–10/group). Hearts were examined with M-mode echocardiography and processed for histological and mRNA studies. Results. Expression of MT1/2 mRNA was transiently induced during repetitive I/R in WT-mice, accompanied by a transient inflammation, leading to interstitial fibrosis with left ventricular dysfunction without infarction. In contrast, MT−/−-hearts presented with enhanced apoptosis and small infarctions leading to impaired global and regional pump function. Molecular analysis revealed maladaptation of myosin heavy chain isoforms and antioxidative enzymes in MT1/2−/−-hearts. Despite their postponed chemokine induction we found a higher total neutrophil density and macrophage infiltration in small infarctions in MT−/−-hearts. Subsequently, higher expression of osteopontin 1 and tenascin C was associated with increased myofibroblast density resulting in predominately nonreversible fibrosis and adverse remodeling in MT1/2−/−-hearts. Conclusion. Cardioprotective effects of MT1/2 seem to be exerted via modulation of contractile elements, antioxidative enzymes, inflammatory response, and myocardial remodeling. PMID:27403038

  6. In vivo experience with natural scaffolds for myocardial infarction: the times they are a-changin'.

    PubMed

    Perea-Gil, Isaac; Prat-Vidal, Cristina; Bayes-Genis, Antoni

    2015-12-06

    Treating a myocardial infarction (MI), the most frequent cause of death worldwide, remains one of the most exciting medical challenges in the 21st century. Cardiac tissue engineering, a novel emerging treatment, involves the use of therapeutic cells supported by a scaffold for regenerating the infarcted area. It is essential to select the appropriate scaffold material; the ideal one should provide a suitable cellular microenvironment, mimic the native myocardium, and allow mechanical and electrical coupling with host tissues. Among available scaffold materials, natural scaffolds are preferable for achieving these purposes because they possess myocardial extracellular matrix properties and structures. Here, we review several natural scaffolds for applications in MI management, with a focus on pre-clinical studies and clinical trials performed to date. We also evaluate scaffolds combined with different cell types and proteins for their ability to promote improved heart function, contractility and neovascularization, and attenuate adverse ventricular remodeling. Although further refinement is necessary in the coming years, promising results indicate that natural scaffolds may be a valuable translational therapeutic option with clinical impact in MI repair.

  7. Nucleosome Remodeling and Epigenetics

    PubMed Central

    Becker, Peter B.; Workman, Jerry L.

    2013-01-01

    Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called “nucleosome remodeling” ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone–DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. “Remodeling” may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states. PMID:24003213

  8. Myocardial mechanics in cardiomyopathies.

    PubMed

    Modesto, Karen; Sengupta, Partho P

    2014-01-01

    Cardiomyopathies are a heterogeneous group of diseases that can be phenotypically recognized by specific patterns of ventricular morphology and function. The authors summarize recent clinical observations that mechanistically link the multidirectional components of left ventricular (LV) deformation with morphological phenotypes of cardiomyopathies for offering key insights into the transmural heterogeneity of myocardial function. Subendocardial dysfunction predominantly alters LV longitudinal shortening, lengthening and suction performance and contributes to the phenotypic patterns of heart failure (HF) with preserved ejection fraction (EF) seen with hypertrophic and restrictive patterns of cardiomyopathy. On the other hand, a more progressive transmural disease results in reduction of LV circumferential and twist mechanics leading to the phenotypic pattern of dilated cardiomyopathy and the clinical syndrome of HF with reduced (EF). A proper characterization of LV transmural mechanics, energetics, and space-time distributions of pressure and shear stress may allow recognition of early functional changes that can forecast progression or reversal of LV remodeling. Furthermore, the interactions between LV muscle and fluid mechanics hold the promise for offering newer mechanistic insights and tracking impact of novel therapies.

  9. Remodeling and Shuttling

    PubMed Central

    Rodrigueza, Wendi V.; Williams, Kevin Jon; Rothblat, George H.; Phillips, Michael C.

    2016-01-01

    In normal physiology, cells are exposed to cholesterol acceptors of different sizes simultaneously. The current study examined the possible interactions between two different classes of acceptors, one large (large unilamellar phospholipid vesicles, LUVs) and one small (HDL or other small acceptors), added separately or in combination to Fu5AH rat hepatoma cells. During a 24-hour incubation, LUVs of palmitoyl-oleoyl phosphatidylcholine at 1 mg phospholipid (PL) per milliliter extracted ≈20% of cellular unesterified cholesterol (UC) label and mass in a slow, continuous fashion (half-time [t½] for UC efflux was ≈50 hours) and human HDL3 at 25 μg PL per milliliter extracted ≈15% cellular UC label with no change in cellular cholesterol mass (t½ of ≈8 hours). In contrast, the combination of LUVs and HDL3 extracted over 90% of UC label (t½ of ≈4 hours) and ≈50% of the UC mass, indicating synergy. To explain this synergy, specific particle interactions were examined, namely, remodeling, in which the two acceptors alter each other’s composition and thus the ability to mobilize cellular cholesterol, and shuttling, in which the small acceptor ferries cholesterol from cells to the large acceptor. To examine remodeling, LUVs and HDL were coincubated and reisolated before application to cells. This HDL became UC depleted, PL enriched, and lost a small amount of apolipoprotein A-I. Compared with equivalent numbers of control HDL particles, remodeled HDL caused faster efflux (t½ ≈4 hours) and exhibited a greater capacity to sequester cellular cholesterol over 24 hours (≈38% versus ≈15% for control HDL), consistent with their enrichment in PL. Remodeled LUVs still extracted ≈20% of cellular UC. Thus, remodeling accounted for some but not all of the synergy between LUVs and HDL. To examine shuttling, several approaches were used. First, reisolation of particles after an 8-hour exposure to cells revealed that HDL contained very little of the cellular UC

  10. Safe Oral Triiodo-L-Thyronine Therapy Protects from Post-Infarct Cardiac Dysfunction and Arrhythmias without Cardiovascular Adverse Effects

    PubMed Central

    Rajagopalan, Viswanathan; Zhang, Youhua; Ojamaa, Kaie; Chen, Yue-feng; Pingitore, Alessandro; Pol, Christine J.; Saunders, Debra; Balasubramanian, Krithika; Towner, Rheal A.; Gerdes, A. Martin

    2016-01-01

    Background A large body of evidence suggests that thyroid hormones (THs) are beneficial for the treatment of cardiovascular disorders. We have shown that 3 days of triiodo-L-thyronine (T3) treatment in myocardial infarction (MI) rats increased left ventricular (LV) contractility and decreased myocyte apoptosis. However, no clinically translatable protocol is established for T3 treatment of ischemic heart disease. We hypothesized that low-dose oral T3 will offer safe therapeutic benefits in MI. Methods and Results Adult female rats underwent left coronary artery ligation or sham surgeries. T3 (~6 μg/kg/day) was available in drinking water ad libitum immediately following MI and continuing for 2 month(s) (mo). Compared to vehicle-treated MI, the oral T3-treated MI group at 2 mo had markedly improved anesthetized Magnetic Resonance Imaging-based LV ejection fraction and volumes without significant negative changes in heart rate, serum TH levels or heart weight, indicating safe therapy. Remarkably, T3 decreased the incidence of inducible atrial tachyarrhythmias by 88% and improved remodeling. These were accompanied by restoration of gene expression involving several key pathways including thyroid, ion channels, fibrosis, sympathetic, mitochondria and autophagy. Conclusions Low-dose oral T3 dramatically improved post-MI cardiac performance, decreased atrial arrhythmias and cardiac remodeling, and reversed many adverse changes in gene expression with no observable negative effects. This study also provides a safe and effective treatment/monitoring protocol that should readily translate to humans. PMID:26981865

  11. Myocardial abscess complicating healed myocardial infarction.

    PubMed Central

    Weisz, S.; Young, D. G.

    1977-01-01

    An isolated myocardial abscess due to Bacteroides fragilis developed in the scar of a myocardial infarction. Fever, chills and signs of pericarditis were the main clinical features. Mild enteritis 1 week prior to the onset of symptoms related to the abscess was the most likely cause of the bacteremia. The diagnosis was established at thoracotomy, performed because of cardiac tamponade. Thirteen other cases of isolated bacterial myocardial abscess accompanying myocardial infarction have been reported, but all the infarctions were recent. Surgical resection for a suspected myocardial abscess should be considered in view of the high mortality, largely from cardiac rupture. Images FIG. 1 PMID:861868

  12. Unequal Sized Pupils Due to Escitalopram; Adverse Events to Dietary Supplements Causing Emergency Department Visits; Compulsive Masturbation Due to Pramipexole; Metformin-Induced Lactic Acidosis Masquerading As an Acute Myocardial Infarction.

    PubMed

    Mancano, Michael A

    2016-05-01

    The purpose of this feature is to heighten awareness of specific adverse drug reactions (ADRs), discuss methods of prevention, and promote reporting of ADRs to the US Food and Drug Administration's (FDA's) Med Watch program (800-FDA-1088). If you have reported an interesting, preventable ADR to Med Watch, please consider sharing the account with our readers. Write to Dr. Mancano at ISMP, 200 Lakeside Drive, Suite 200, Horsham, PA 19044 (phone: 215-707-4936; e-mail: mmancano@temple.edu). Your report will be published anonymously unless otherwise requested. This feature is provided by the Institute for Safe Medication Practices (ISMP) in cooperation with the FDA's Med Watchprogram and Temple University School of Pharmacy. ISMP is an FDA Med Watch partner. PMID:27303087

  13. Remodeling with the sun

    SciTech Connect

    Bodzin, S.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar hot water, photovoltaics. Two side bars discuss the sunplace: a passive solar room and angles and overhangs.

  14. [Effects of aldosterone receptor blocker therapy on cardiac remodeling].

    PubMed

    Boccanelli, A; Battagliese, A

    2006-01-01

    Cardiac remodeling is a physiologic or pathologic condition that occurs after myocardial infarction, pressure overload, myocardial inflammatory diseases, idiopathic dilated cardiomyopathy or volume overload. In spite of different etiologies, molecular, biochemical and mechanical processes are the same. The change in left ventricular function brings about a complex neuro-hormonal disorder, and disease progression is due to the combined action of several biological factors with toxic effects on the heart and vessels. The renin-angiotensin-aldosterone system (RAAS) is very important in this process, through the effects on hydro-saline balance or through direct processes on myocardium. A direct effect of aldosterone in myocardial fibrosis after the detection of heart tissue aldosterone production has been demonstrated. In the past, the attention of physicians and researchers was focused on angiotensin II inhibition; and therefore, on angiotensin-converting enzyme (ACE) inhibitors, considering them sufficient to antagonize the effects of aldosterone. Nevertheless, this theory has been confuted in recent studies, with the evidence of elevated plasmatic aldosterone levels in patients treated with ACE-inhibitors and angiotensin receptor blockers. This phenomenon probably is due to the activation of secondary ACTH mediated pathways of trial aldosterone production. It has been demonstrated that aldosterone receptor inhibition is effective in reducing cardiac remodeling and mortality. AREA-IN CHF is the first multicentric, double blind, randomized, placebo control study to compare canrenone, an aldosterone receptor blocker, with placebo. The primary end point is the echocardiographic evaluation of left ventricular remodeling. Secondary end points are left ventricular end-systolic volume, ejection fraction, diastolic filling patterns, NYHA functional class, and mortality and hospitalizations of cardiac origin. In addition, bio-humoral effects of aldosterone receptor blocker

  15. Optimized Local Infarct Restraint Improves Left Ventricular Function and Limits Remodeling

    PubMed Central

    Koomalsingh, Kevin J.; Witschey, Walter R.T.; McGarvey, Jeremy R.; Shuto, Takashi; Kondo, Norihiro; Xu, Chun; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.; Pilla, James J.

    2013-01-01

    Background Preventing expansion and dyskinetic movement of a myocardial infarction (MI) can limit left ventricular (LV) remodeling. Using a device designed to produce variable alteration of infarct stiffness and geometry, we sought to understand how these parameters affect LV function and remodeling early after MI. Methods Ten pigs had posterolateral infarctions. An unexpanded device was placed in 5 animals at the time of infarction, and 5 animals served as untreated controls. One week after MI animals underwent MRI to assess LV size and regional function. In the treatment group, after initial imaging, the device was expanded with 2ml, 4ml, 6ml, 8ml and 10ml of saline. The optimal degree of inflation was defined as that which maximized stroke volume (SV). The device was left optimally inflated in the treatment animals for three additional weeks. Results One week after MI, device inflation to ≥6ml significantly (p<0.05) decreased endsystolic volume (ESV) (0ml:59.9ml±3.8, 6ml:54.0ml≥±3.1, 8ml:50.5ml±4.8, 10ml:46.1ml±2.2) and increased ejection fraction (EF) (0ml:34.6%±1.6, 6ml:39.7%±0.9, 8ml:43.1%±2.7, 10ml:44.1%±0.9). SV significantly (p<0.05) improved for the 6ml and 8ml volumes (0ml: 31.2ml±2.6, 6ml: 35.7ml±2.0, 8ml: 37.5ml±1.9) but trended downward for 10ml (36.6ml±2.8). At four-weeks after MI, end-diastolic volume and ESV were unchanged from one-week values in the treatment group while the control group continued to dilate. SV (38.2±4.4ml vs. 34.0.1±4.8ml, p=0.08) and EF (36.0±2.6% vs. 27.6±1.4%, p=0.04) were also better in the treatment animals. Conclusions Optimized isolated infarct restraint can limit adverse LV remodeling after MI. The tested device affords the potential for a patient-specific therapy to preserve cardiac function after MI. PMID:23146279

  16. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  17. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling.

    PubMed

    Oka, Toru; Xu, Jian; Kaiser, Robert A; Melendez, Jaime; Hambleton, Michael; Sargent, Michelle A; Lorts, Angela; Brunskill, Eric W; Dorn, Gerald W; Conway, Simon J; Aronow, Bruce J; Robbins, Jeffrey; Molkentin, Jeffery D

    2007-08-01

    The cardiac extracellular matrix is a dynamic structural support network that is both influenced by, and a regulator of, pathological remodeling and hypertrophic growth. In response to pathologic insults, the adult heart reexpresses the secreted extracellular matrix protein periostin (Pn). Here we show that Pn is critically involved in regulating the cardiac hypertrophic response, interstitial fibrosis, and ventricular remodeling following long-term pressure overload stimulation and myocardial infarction. Mice lacking the gene encoding Pn (Postn) were more prone to ventricular rupture in the first 10 days after a myocardial infarction, but surviving mice showed less fibrosis and better ventricular performance. Pn(-/-) mice also showed less fibrosis and hypertrophy following long-term pressure overload, suggesting an intimate relationship between Pn and the regulation of cardiac remodeling. In contrast, inducible overexpression of Pn in the heart protected mice from rupture following myocardial infarction and induced spontaneous hypertrophy with aging. With respect to a mechanism underlying these alterations, Pn(-/-) hearts showed an altered molecular program in fibroblast function. Indeed, fibroblasts isolated from Pn(-/-) hearts were less effective in adherence to cardiac myocytes and were characterized by a dramatic alteration in global gene expression (7% of all genes). These are the first genetic data detailing the function of Pn in the adult heart as a regulator of cardiac remodeling and hypertrophy. PMID:17569887

  18. No-Regrets Remodeling, 2nd Edition

    SciTech Connect

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  19. Remodeling of the myocardium in early trabeculation and cardiac valve formation; a role for TGFβ2.

    PubMed

    Kruithof, Boudewijn P T; Kruithof-De-Julio, Marianna; Poelmann, Robert E; Gittenberger-De-Groot, Adriana C; Gaussin, Vinciane; Goumans, Marie-José

    2013-01-01

    Trabeculation and the formation of the leaflets of the mitral and tricuspid valves both involve remodeling of the embryonic myocardium. The nature and possible connection of these myocardial remodeling processes, however, are unclear. Therefore, we examined the morphogenesis of the early ventricular and atrioventricular (AV) myocardium and report for the first time that the formation of the early trabeculae and the positioning of the valve primordia (endocardial cushions) into the ventricular lumen are part of one continuous myocardial remodeling process, which involves the dissociation of the myocardial layers. For the endocardial cushions, this process results in delamination from the AV myocardium. The AV myocardium that will harbor the right lateral cushion is the exception and becomes positioned in the ventricular lumen by folding of the right ventricle. As a consequence, remodeling of the left and right AV myocardium occurs differently with implications for the formation of the mural leaflets and annulus fibrosis. At both the right and left side, the valvular myocardium harbors a distinct molecular phenotype and its removal from the cardiac leaflets involves a second wave of delamination. Interestingly, in the TGFβ2-KO mouse, which is a known model for cushion and valve defects, remodeling of the early myocardium is disturbed as indicated by defective trabeculae formation, persistence of valvular myocardium, disturbed myocardial phenotypes and differential defects at left and right side of the AV canal. Based on these results we propose a new model clarifying early trabeculae formation and AV valve formation and provide new inroads for an enhanced understanding of congenital heart defects.

  20. Physiological Implications of Myocardial Scar Structure

    PubMed Central

    Richardson, WJ; Clarke, SA; Quinn, TA; Holmes, JW

    2016-01-01

    Once myocardium dies during a heart attack, it is replaced by scar tissue over the course of several weeks. The size, location, composition, structure and mechanical properties of the healing scar are all critical determinants of the fate of patients who survive the initial infarction. While the central importance of scar structure in determining pump function and remodeling has long been recognized, it has proven remarkably difficult to design therapies that improve heart function or limit remodeling by modifying scar structure. Many exciting new therapies are under development, but predicting their long-term effects requires a detailed understanding of how infarct scar forms, how its properties impact left ventricular function and remodeling, and how changes in scar structure and properties feed back to affect not only heart mechanics but also electrical conduction, reflex hemodynamic compensations, and the ongoing process of scar formation itself. In this article, we outline the scar formation process following an MI, discuss interpretation of standard measures of heart function in the setting of a healing infarct, then present implications of infarct scar geometry and structure for both mechanical and electrical function of the heart and summarize experiences to date with therapeutic interventions that aim to modify scar geometry and structure. One important conclusion that emerges from the studies reviewed here is that computational modeling is an essential tool for integrating the wealth of information required to understand this complex system and predict the impact of novel therapies on scar healing, heart function, and remodeling following myocardial infarction. PMID:26426470

  1. Myocardial protection with mild hypothermia.

    PubMed

    Tissier, Renaud; Ghaleh, Bijan; Cohen, Michael V; Downey, James M; Berdeaux, Alain

    2012-05-01

    Mild hypothermia, 32-35° C, is very potent at reducing myocardial infarct size in rabbits, dogs, sheep, pigs, and rats. The benefit is directly related to reduction in normothermic ischaemic time, supporting the relevance of early and rapid cooling. The cardioprotective effect of mild hypothermia is not limited to its recognized reduction of infarct size, but also results in conservation of post-ischaemic contractile function, prevention of no-reflow or microvascular obstruction, and ultimately attenuation of left ventricular remodelling. The mechanism of the anti-infarct effect does not appear to be related to diminished energy utilization and metabolic preservation, but rather to survival signalling that involves either the extracellular signal-regulated kinases and/or the Akt/phosphoinositide 3-kinase/mammalian target of rapamycin pathways. Initial clinical trials of hypothermia in patients with ST-segment elevation myocardial infarction were disappointing, probably because cooling was too slow to shorten normothermic ischaemic time appreciably. New approaches to more rapid cooling have recently been described and may soon be available for clinical use. Alternatively, it may be possible to pharmacologically mimic the protection provided by cooling soon after the onset of ischaemia with an activator of mild hypothermia signalling, e.g. extracellular signal-regulated kinase activator, that could be given by emergency medical personnel. Finally, the protection afforded by cooling can be added to that of pre- and post-conditioning because their mechanisms differ. Thus, myocardial salvage might be greatly increased by rapidly cooling patients as soon as possible and then giving a pharmacological post-conditioning agent immediately prior to reperfusion. PMID:22131353

  2. TAK1 Regulates Myocardial Response to Pathological Stress via NFAT, NFκB, and Bnip3 Pathways.

    PubMed

    Li, Lei; Chen, Yi; Li, Jing; Yin, Haifeng; Guo, Xiaoyun; Doan, Jessica; Molkentin, Jeffery D; Liu, Qinghang

    2015-11-13

    TAK1 (TGFβ-activated kinase-1) signaling is essential in regulating a number of important biological functions, including innate immunity, inflammatory response, cell growth and differentiation, and myocardial homeostasis. The precise role of TAK1 in the adult heart under pathological conditions remains largely unknown. Importantly, we observed that TAK1 is upregulated during compensatory hypertrophy but downregulated in end-stage heart failure. Here we generated transgenic mice with inducible expression of an active TAK1 mutant (TAK1ΔN) in the adult heart. TAK1ΔN transgenic mice developed greater cardiac hypertrophy compared with control mice after transverse aortic constriction (TAC), which was largely blocked by ablation of calcineurin Aβ. Expression of TAK1ΔN also promoted NFAT (nuclear factor of activated T-cells) transcriptional activity in luciferase reporter mice at baseline, which was further enhanced after TAC. Our results revealed that activation of TAK1 promoted adaptive cardiac hypertrophy through a cross-talk between calcineurin-NFAT and IKK-NFκB pathways. More significantly, adult-onset inducible expression of TAK1ΔN protected the myocardium from adverse remodeling and heart failure after myocardial infarction or long-term pressure overload, by preventing cardiac cell death and fibrosis. Mechanistically, TAK1 exerts its cardioprotective effect through activation of NFAT/NFκB, downregulation of Bnip3, and inhibition of cardiac cell death.

  3. Anti‐Remodeling and Anti‐Fibrotic Effects of the Neuregulin‐1β Glial Growth Factor 2 in a Large Animal Model of Heart Failure

    PubMed Central

    Galindo, Cristi L.; Kasasbeh, Ehab; Murphy, Abigail; Ryzhov, Sergey; Lenihan, Sean; Ahmad, Farhaan A.; Williams, Philip; Nunnally, Amy; Adcock, Jamie; Song, Yanna; Harrell, Frank E.; Tran, Truc‐Linh; Parry, Tom J.; Iaci, Jen; Ganguly, Anindita; Feoktistov, Igor; Stephenson, Matthew K.; Caggiano, Anthony O.; Sawyer, Douglas B.; Cleator, John H.

    2014-01-01

    Background Neuregulin‐1β (NRG‐1β) is a growth factor critical for cardiac development and repair with therapeutic potential for heart failure. We previously showed that the glial growth factor 2 (GGF2) isoform of NRG‐1β improves cardiac function in rodents after myocardial infarction (MI), but its efficacy in a large animal model of cardiac injury has not been examined. We therefore sought to examine the effects of GGF2 on ventricular remodeling, cardiac function, and global transcription in post‐MI swine, as well as potential mechanisms for anti‐remodeling effects. Methods and Results MI was induced in anesthetized swine (n=23) by intracoronary balloon occlusion. At 1 week post‐MI, survivors (n=13) received GGF2 treatment (intravenous, biweekly for 4 weeks; n=8) or were untreated (n=5). At 5 weeks post‐MI, fractional shortening was higher (32.8% versus 25.3%, P=0.019), and left ventricular (LV) end‐diastolic dimension lower (4.5 versus 5.3 cm, P=0.003) in GGF2‐treated animals. Treatment altered expression of 528 genes, as measured by microarrays, including collagens, basal lamina components, and matricellular proteins. GGF2‐treated pigs exhibited improvements in LV cardiomyocyte mitochondria and intercalated disk structures and showed less fibrosis, altered matrix structure, and fewer myofibroblasts (myoFbs), based on trichrome staining, electron microscopy, and immunostaining. In vitro experiments with isolated murine and rat cardiac fibroblasts demonstrate that NRG‐1β reduces myoFbs, and suppresses TGFβ‐induced phospho‐SMAD3 as well as αSMA expression. Conclusions These results suggest that GGF2/NRG‐1β prevents adverse remodeling after injury in part via anti‐fibrotic effects in the heart. PMID:25341890

  4. [The role of B type natriuretic peptide in the assessment of post myocardial infarction prognosis].

    PubMed

    Ben Halima, A; Ibn el Hadj, Z; Chrigui, R; Kammoun, I; Lefi, A; Chine, S; Gargouri, S; Keskes, H; Kachboura, S

    2006-10-01

    Recently cardiac peptides have received close attention as cardiovascular markers. Brain (B type) natriuretic peptide is a neurohormone synthesized predominantly in ventricular myocardium. Previous studies have shown that this hormone can provide prognostic information in patients with myocardial infarction. The aim of this review is to evaluate the impact of plasma levels of BNP on prediction of left ventricular ejection fraction and remodelling and major cardiac events after myocardial infarction.

  5. Myocardial imaging. Coxsackie myocarditis

    SciTech Connect

    Wells, R.G.; Ruskin, J.A.; Sty, J.R.

    1986-09-01

    A 3-week-old male neonate with heart failure associated with Coxsackie virus infection was imaged with Tc-99m PYP and TI-201. The abnormal imaging pattern suggested myocardial infarction. Autopsy findings indicated that the cause was myocardial necrosis secondary to an acute inflammatory process. Causes of abnormal myocardial uptake of Tc-99m PYP in pediatrics include infarction, myocarditis, cardiomyopathy, bacterial endocarditis, and trauma. Myocardial imaging cannot provide a specific cause diagnosis. Causes of myocardial infarction in pediatrics are listed in Table 1.

  6. Relationship between self-reported residential indoor remodeling and semen quality: a case-control study

    PubMed Central

    Miao, Mao-Hua; Li, Zheng; Li, De-Kun; Yan, Bei; Liang, Hong; Zhi, Er-Lei; Du, Hong-Wei; Yuan, Wei

    2015-01-01

    The present study examined the association between residential indoor remodeling and poor semen quality. Sperm donors aged 18–45 years old were recruited in Shanghai, China. Semen specimens were collected and analyzed. An in-person interview was conducted to obtain information on the history of indoor remodeling and potential confounders. A total of 70 participants with abnormal semen quality (case group) and 68 controls were examined. A total of 20 subjects reported indoor remodeling in the recent 24 months, and among them 17 subjects reported indoor remodeling in the recent 12 months. Compared with participants with no history of indoor remodeling, participants with a history of indoor remodeling in the recent 24 months were more than three times as likely to have poor sperm quality (adjusted odds ratio = 3.8, 95% confidence interval: 1.3–12.0) after controlling for potential confounders. The association was strengthened when the analysis was restricted to those who had indoor remodeling in the recent 12 months. Our findings provide preliminary evidence that indoor remodeling has an adverse effect on semen quality. PMID:25432500

  7. Vaccine Adverse Events

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Vaccines, Blood & Biologics Home Vaccines, Blood & Biologics Safety & Availability ( ... Center for Biologics Evaluation & Research Vaccine Adverse Events Vaccine Adverse Events Share Tweet Linkedin Pin it More ...

  8. microRNAs and Cardiovascular Remodeling.

    PubMed

    Ono, Koh

    2015-01-01

    Heart failure (HF) is associated with significant morbidity and mortality attributable largely to structural changes in the heart and with associated cardiac dysfunction. Remodeling is defined as alteration of the mass, dimensions, or shape of the heart (termed cardiac or ventricular remodeling) and vessels (vascular remodeling) in response to hemodynamic load and/or cardiovascular injury in association with neurohormonal activation. Remodeling may be described as physiologic or pathologic; alternatively, remodeling may be classified as adaptive or maladaptive. The importance of remodeling as a pathogenic mechanism has been controversial because factors leading to remodeling as well as the remodeling itself may be major determinants of patients' prognosis. The basic mechanisms of cardiovascular remodeling, and especially the roles of microRNAs in HF progression and vascular diseases, will be reviewed here.

  9. Mechano-electrical coupling as framework for understanding functional remodeling during LBBB and CRT.

    PubMed

    Kuijpers, Nico H L; Hermeling, Evelien; Lumens, Joost; ten Eikelder, Huub M M; Delhaas, Tammo; Prinzen, Frits W

    2014-06-15

    It is not understood why, after onset of left bundle-branch block (LBBB), acute worsening of cardiac function is followed by a further gradual deterioration of function, whereas most adverse cardiac events lead to compensatory adaptations. We investigated whether mechano-electrical coupling (MEC) can explain long-term remodeling with LBBB and cardiac resynchronization therapy (CRT). To this purpose, we used an integrative modeling approach relating local ventricular electrophysiology, calcium handling, and excitation-contraction coupling to global cardiovascular mechanics and hemodynamics. Each ventricular wall was composed of multiple mechanically and electrically coupled myocardial segments. MEC was incorporated by allowing adaptation of L-type Ca(2+) current aiming at minimal dispersion of local external work, an approach that we previously applied to replicate T-wave memory in a synchronous heart after a period of asynchronous activation. LBBB instantaneously decreased left-ventricular stroke work and increased end-diastolic volume. During sustained LBBB, MEC reduced intraventricular dispersion of mechanical workload and repolarization. However, MEC-induced reduction in contractility in late-activated regions was larger than the contractility increase in early-activated regions, resulting in further decrease of stroke work and increase of end-diastolic volume. Upon the start of CRT, stroke work increased despite a wider dispersion of mechanical workload. During sustained CRT, MEC-induced reduction in dispersion of workload and repolarization coincided with a further reduction in end-diastolic volume. In conclusion, MEC may represent a useful framework for better understanding the long-term changes in cardiac electrophysiology and contraction following LBBB as well as CRT.

  10. Substrate stiffness-regulated matrix metalloproteinase output in myocardial cells and cardiac fibroblasts: implications for myocardial fibrosis.

    PubMed

    Xie, Jing; Zhang, Quanyou; Zhu, Ting; Zhang, Yanyan; Liu, Bailin; Xu, Jianwen; Zhao, Hucheng

    2014-06-01

    Cardiac fibrosis, an important pathological feature of structural remodeling, contributes to ventricular stiffness, diastolic dysfunction, arrhythmia and may even lead to sudden death. Matrix stiffness, one of the many mechanical factors acting on cells, is increasingly appreciated as an important mediator of myocardial cell behavior. Polydimethylsiloxane (PDMS) substrates were fabricated with different stiffnesses to mimic physiological and pathological heart tissues, and the way in which the elastic modulus of the substrate regulated matrix-degrading gelatinases in myocardial cells and cardiac fibroblasts was explored. Initially, an increase in cell spreading area was observed, concomitant with the increase in PDMS stiffness in both cells. Later, it was demonstrated that the MMP-2 gene expression and protein activity in myocardial cells and cardiac fibroblasts can be enhanced with an increase in PDMS substrate stiffness and, moreover, such gene- and protein-related increases had a significant linear correlation with the elastic modulus. In comparison, the MMP-9 gene and protein expressions were up-regulated in cardiac fibroblasts only, not in myocardial cells. These results implied that myocardial cells and cardiac fibroblasts in the myocardium could sense the stiffness in pathological fibrosis and showed a differential but positive response in the expression of matrix-degrading gelatinases when exposed to an increased stiffening of the matrix in the microenvironment. The phenomenon of cells sensing pathological matrix stiffness can help to increase understanding of the mechanism underlying myocardial fibrosis and may ultimately lead to planning cure strategies.

  11. Thymosin-β4 prevents cardiac rupture and improves cardiac function in mice with myocardial infarction.

    PubMed

    Peng, Hongmei; Xu, Jiang; Yang, Xiao-Ping; Dai, Xiangguo; Peterson, Edward L; Carretero, Oscar A; Rhaleb, Nour-Eddine

    2014-09-01

    Thymosin-β4 (Tβ4) promotes cell survival, angiogenesis, and tissue regeneration and reduces inflammation. Cardiac rupture after myocardial infarction (MI) is mainly the consequence of excessive regional inflammation, whereas cardiac dysfunction after MI results from a massive cardiomyocyte loss and cardiac fibrosis. It is possible that Tβ4 reduces the incidence of cardiac rupture post-MI via anti-inflammatory actions and that it decreases adverse cardiac remodeling and improves cardiac function by promoting cardiac cell survival and cardiac repair. C57BL/6 mice were subjected to MI and treated with either vehicle or Tβ4 (1.6 mg·kg(-1)·day(-1) ip via osmotic minipump) for 7 days or 5 wk. Mice were assessed for 1) cardiac remodeling and function by echocardiography; 2) inflammatory cell infiltration, capillary density, myocyte apoptosis, and interstitial collagen fraction histopathologically; 3) gelatinolytic activity by in situ zymography; and 4) expression of ICAM-1 and p53 by immunoblot analysis. Tβ4 reduced cardiac rupture that was associated with a decrease in the numbers of infiltrating inflammatory cells and apoptotic myocytes, a decrease in gelatinolytic activity and ICAM-1 and p53 expression, and an increase in the numbers of CD31-positive cells. Five-week treatment with Tβ4 ameliorated left ventricular dilation, improved cardiac function, markedly reduced interstitial collagen fraction, and increased capillary density. In a murine model of acute MI, Tβ4 not only decreased mortality rate as a result of cardiac rupture but also significantly improved cardiac function after MI. Thus, the use of Tβ4 could be explored as an alternative therapy in preventing cardiac rupture and restoring cardiac function in patients with MI.

  12. Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice.

    PubMed

    Puhl, Sarah-Lena; Müller, Andreas; Wagner, Michael; Devaux, Yvan; Böhm, Michael; Wagner, Daniel R; Maack, Christoph

    2015-07-15

    Although exercise mediates beneficial effects in patients after myocardial infarction (MI), the underlying mechanisms as well as the question of whether an early start of exercise after MI is safe or even beneficial are incompletely resolved. The present study analyzed the effects of exercise before and reinitiated early after MI on cardiac remodeling and function. Male C57BL/6N mice were housed sedentary or with the opportunity to voluntarily exercise for 6 wk before MI induction (ligation of the left anterior descending coronary artery) or sham operation. After a 5-day exercise-free phase after MI, mice were allowed to reexercise for another 4 wk. Exercise before MI induced adaptive hypertrophy with moderate increases in heart weight, cardiomyocyte diameter, and left ventricular (LV) end-diastolic volume, but without fibrosis. In sedentary mice, MI induced eccentric LV hypertrophy with massive fibrosis but maintained systolic LV function. While in exercised mice gross LV end-diastolic volumes and systolic function did not differ from sedentary mice after MI, LV collagen content and thinning of the infarcted area were reduced. This was associated with ameliorated activation of inflammation, mediated by TNF-α, IL-1β, and IL-6, as well as reduced activation of matrix metalloproteinase 9. In contrast, no differences in the activation patterns of various MAPKs or adenosine receptor expressions were observed 5 wk after MI in sedentary or exercised mice. In conclusion, continuous exercise training before and with an early reonset after MI ameliorates adverse LV remodeling by attenuating inflammation, fibrosis, and scar thinning. Therefore, an early reonset of exercise after MI can be encouraged.

  13. Computer-based assessment of left ventricular regional ejection fraction in patients after myocardial infarction

    NASA Astrophysics Data System (ADS)

    Teo, S.-K.; Su, Y.; Tan, R. S.; Zhong, L.

    2014-03-01

    After myocardial infarction (MI), the left ventricle (LV) undergoes progressive remodeling which adversely affects heart function and may lead to development of heart failure. There is an escalating need to accurately depict the LV remodeling process for disease surveillance and monitoring of therapeutic efficacy. Current practice of using ejection fraction to quantitate LV function is less than ideal as it obscures regional variation and anomaly. Therefore, we sought to (i) develop a quantitative method to assess LV regional ejection fraction (REF) using a 16-segment method, and (ii) evaluate the effectiveness of REF in discriminating 10 patients 1-3 months after MI and 9 normal control (sex- and agematched) based on cardiac magnetic resonance (CMR) imaging. Late gadolinium enhancement (LGE) CMR scans were also acquired for the MI patients to assess scar extent. We observed that the REF at the basal, mid-cavity and apical regions for the patient group is significantly lower as compared to the control group (P < 0.001 using a 2-tail student t-test). In addition, we correlated the patient REF over these regions with their corresponding LGE score in terms of 4 categories - High LGE, Low LGE, Border and Remote. We observed that the median REF decreases with increasing severity of infarction. The results suggest that REF could potentially be used as a discriminator for MI and employed to measure myocardium homogeneity with respect to degree of infarction. The computational performance per data sample took approximately 25 sec, which demonstrates its clinical potential as a real-time cardiac assessment tool.

  14. Impact of aldosterone antagonists on the substrate for atrial fibrillation: Aldosterone promotes oxidative stress and atrial structural/electrical remodeling

    PubMed Central

    Mayyas, Fadia; Alzoubi, Karem H.; Van Wagoner, David R.

    2014-01-01

    Atrial fibrillation (AF), the most common cardiac arrhythmia, is an electrocardiographic description of a condition with multiple and complex underlying mechanisms. Oxidative stress is an important driver of structural remodeling that creates a substrate for AF. Oxidant radicals may promote increase of atrial oxidative damage, electrical and structural remodeling, and atrial inflammation. AF and other cardiovascular morbidities activate angiotensin (Ang-II)-dependent and independent cascades. A key component of the renin–angiotensin-aldosterone system (RAAS) is the mineralocorticoid aldosterone. Recent studies provide evidence of myocardial aldosterone synthesis. Aldosterone promotes cardiac oxidative stress, inflammation and structural/electrical remodeling via multiple mechanisms. In HF patients, aldosterone production is enhanced. In patients and in experimental HF and AF models, aldosterone receptor antagonists have favorable influences on cardiac remodeling and oxidative stress. Therapeutic approaches that seek to reduce AF burden by modulating the aldosterone system are likely beneficial but underutilized. PMID:23993726

  15. Special Report: The Rush to Remodel

    ERIC Educational Resources Information Center

    Nation's Schools, 1973

    1973-01-01

    As more and more districts scurry to remodel outdated buildings and individual rooms, the detailed how-to-do-it sometimes gets lost in the overall planning. This article furnishes specific help in ways to remodel economically. (Author/JN)

  16. Adverse Stress, Hippocampal Networks, and Alzheimer's Disease

    PubMed Central

    Rothman, Sarah M.; Mattson, Mark P.

    2009-01-01

    Recent clinical data have implicated chronic adverse stress as a potential risk factor in the development of Alzheimer's disease (AD) and data also suggest that normal, physiological stress responses may be impaired in AD. It is possible that pathology associated with AD causes aberrant responses to chronic stress, due to potential alterations in the hypothalamic-pituitary-adrenal (HPA) axis. Recent work in rodent models of AD suggests that chronic adverse stress exacerbates the cognitive deficits and hippocampal pathology that are present in the AD brain. This review summarizes recent findings obtained in experimental AD models regarding the influence of chronic adverse stress on the underlying cellular and molecular disease processes including the potential role of glucocorticoids. Emerging findings suggest that both AD and chronic adverse stress affect hippocampal neural networks in a similar fashion. We describe alterations in hippocampal plasticity that occur in both chronic stress and AD including dendritic remodeling, neurogenesis and long-term potentiation. Finally, we outline potential roles for oxidative stress and neurotrophic factor signaling as key determinants of the impact of chronic stress on the plasticity of neural networks and AD pathogenesis. PMID:19943124

  17. Methane attenuates myocardial ischemia injury in rats through anti-oxidative, anti-apoptotic and anti-inflammatory actions.

    PubMed

    Chen, Ouyang; Ye, Zhouheng; Cao, Zhiyong; Manaenko, Anatol; Ning, Ke; Zhai, Xiao; Zhang, Rongjia; Zhang, Ting; Chen, Xiao; Liu, Wenwu; Sun, Xuejun

    2016-01-01

    Myocardial infarction (MI) remains the most frequent cardiovascular disease with high mortality. Recently, methane has been shown protective effects on small intestinal ischemia-reperfusion injury. We hypothesized that methane-rich saline (MS) could protect the myocardium again MI via its anti-oxidative, anti-apoptotic and anti-inflammatory effects. In experiment 1, tetrazolium chloride staining and detection of myocardial enzymes and oxidative and inflammatory parameters were performed at 12h after MI to determine the optimal dose at which intraperitoneal MS exerted the best protective effects on MI. In experiment 2, rats were treated with 10 ml/kg MS. Myocyte apoptosis was detected 72 h after MI, and cardiac function and myocardial remodeling were evaluated 4 weeks after MI. Results showed different dose of MS reduced infarct area, decreased myocardial enzymes, inhibited inflammation and oxidative stress following MI. The optimal dose of MS was 10 mg/kg. Moreover, treatment with 10mg/kg MS for 3 days significantly reduced myocyte apoptosis, improved cardiac function and inhibited myocardial remodeling (reduced anterior wall thickness, attenuated myocyte hypertrophy, and decreased myocardial collagen). MS protects the myocardium of MI rats via its anti-oxidative, anti-inflammatory, anti-apoptotic and anti-remodeling activities. Thus, MS provides a novel and promising strategy for the treatment of ischemic heart diseases. PMID:26585905

  18. Nrf2-Mediated Cardiac Maladaptive Remodeling and Dysfunction in a Setting of Autophagy Insufficiency.

    PubMed

    Qin, Qingyun; Qu, Chen; Niu, Ting; Zang, Huimei; Qi, Lei; Lyu, Linmao; Wang, Xuejun; Nagarkatti, Mitzi; Nagarkatti, Prakash; Janicki, Joseph S; Wang, Xing Li; Cui, Taixing

    2016-01-01

    Nuclear factor erythroid-2-related factor 2 (Nrf2) appears to exert either a protective or detrimental effect on the heart; however, the underlying mechanism remains poorly understood. Herein, we uncovered a novel mechanism for turning off the Nrf2-mediated cardioprotection and switching on Nrf2-mediated cardiac dysfunction. In a murine model of pressure overload-induced cardiac remodeling and dysfunction via transverse aortic arch constriction, knockout of Nrf2 enhanced myocardial necrosis and death rate during an initial stage of cardiac adaptation when myocardial autophagy function is intact. However, knockout of Nrf2 turned out to be cardioprotective throughout the later stage of cardiac maladaptive remodeling when myocardial autophagy function became insufficient. Transverse aortic arch constriction -induced activation of Nrf2 was dramatically enhanced in the heart with impaired autophagy, which is induced by cardiomyocyte-specific knockout of autophagy-related gene (Atg)5. Notably, Nrf2 activation coincided with the upregulation of angiotensinogen (Agt) only in the autophagy-impaired heart after transverse aortic arch constriction. Agt5 and Nrf2 gene loss-of-function approaches in combination with Jak2 and Fyn kinase inhibitors revealed that suppression of autophagy inactivated Jak2 and Fyn and nuclear translocation of Fyn, while enhancing nuclear translocation of Nrf2 and Nrf2-driven Agt expression in cardiomyocytes. Taken together, these results indicate that the pathophysiological consequences of Nrf2 activation are closely linked with the functional integrity of myocardial autophagy during cardiac remodeling. When autophagy is intact, Nrf2 is required for cardiac adaptive responses; however, autophagy impairment most likely turns off Fyn-operated Nrf2 nuclear export thus activating Nrf2-driven Agt transcription, which exacerbates cardiac maladaptation leading to dysfunction. PMID:26573705

  19. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    SciTech Connect

    Ostrup, Olga; Hyttel, Poul; Klaerke, Dan A.; Collas, Philippe

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  20. Pharmacological Elevation of Circulating Bioactive Phosphosphingolipids Enhances Myocardial Recovery After Acute Infarction

    PubMed Central

    Klyachkin, Yuri M.; Nagareddy, Prabakara R.; Ye, Shaojing; Wysoczynski, Marcin; Asfour, Ahmed; Gao, Erhe; Sunkara, Manjula; Brandon, Ja A.; Annabathula, Rahul; Ponnapureddy, Rakesh; Solanki, Matesh; Pervaiz, Zahida H.; Smyth, Susan S.; Ratajczak, Mariusz Z.; Morris, Andrew J.

    2015-01-01

    of BMSPC mobilization after AMI correlates with cardiac recovery, the molecular events driving BMSPC mobilization and homing are poorly understood. The present study confirms the role of bioactive lipids in BMSPC mobilization after AMI and proposes a new strategy that improves cardiac recovery. Inhibiting sphingosine-1 phosphate (S1P) lyase (SPL) allows for the augmentation of the plasma levels of S1P and stem cell mobilization. These findings demonstrate that early transient SPL inhibition after MI correlates with increased stem cell mobilization and their homing to the infarct border zones. Augmenting BMSPC mobilization correlated with the formation of new blood vessels and cardiomyocytes and c-Kit cell proliferation. These novel findings on the cellular level were associated with functional cardiac recovery, reduced adverse remodeling, and a decrease in scar size. Taken together, these data indicate that pharmacological elevation of bioactive lipid levels can be beneficial in the early phase after cardiac ischemic injury. These findings provide the first evidence that a carefully timed transient pharmacological upregulation of bioactive lipids after AMI could be therapeutic, because it results in significant cardiac structural and functional improvements. PMID:26371341

  1. Neural remodeling in retinal degeneration.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  2. Evidence of structural remodeling in the dyssynchronous failing heart.

    PubMed

    Helm, Patrick A; Younes, Laurent; Beg, Mirza F; Ennis, Daniel B; Leclercq, Christophe; Faris, Owen P; McVeigh, Elliot; Kass, David; Miller, Michael I; Winslow, Raimond L

    2006-01-01

    Ventricular remodeling of both geometry and fiber structure is a prominent feature of several cardiac pathologies. Advances in MRI and analytical methods now make it possible to measure changes of cardiac geometry, fiber, and sheet orientation at high spatial resolution. In this report, we use diffusion tensor imaging to measure the geometry, fiber, and sheet architecture of eight normal and five dyssynchronous failing canine hearts, which were explanted and fixed in an unloaded state. We apply novel computational methods to identify statistically significant changes of cardiac anatomic structure in the failing and control heart populations. The results demonstrate significant regional differences in geometric remodeling in the dyssynchronous failing heart versus control. Ventricular chamber dilatation and reduction in wall thickness in septal and some posterior and anterior regions are observed. Primary fiber orientation showed no significant change. However, this result coupled with the local wall thinning in the septum implies an altered transmural fiber gradient. Further, we observe that orientation of laminar sheets become more vertical in the early-activated septum, with no significant change of sheet orientation in the late-activated lateral wall. Measured changes in both fiber gradient and sheet structure will affect both the heterogeneity of passive myocardial properties as well as electrical activation of the ventricles.

  3. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  4. Vascular Remodeling in Pulmonary Hypertension

    PubMed Central

    Shimoda, Larissa A; Laurie, Steven S.

    2013-01-01

    Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions and the appearance of cells expressing smooth muscle specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular trans-differentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting. PMID:23334338

  5. Frontiers in growth and remodeling.

    PubMed

    Menzel, Andreas; Kuhl, Ellen

    2012-06-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  6. Chromatin remodeling in plant development.

    PubMed

    Jarillo, José A; Piñeiro, Manuel; Cubas, Pilar; Martínez-Zapater, José M

    2009-01-01

    Plant development results from specific patterns of gene expression that are tightly regulated in a spatio-temporal manner. Chromatin remodeling plays a central role in establishing these expression patterns and maintaining epigenetic transcriptional states through successive rounds of mitosis that take place within a cell lineage. Plant epigenetic switches occur not only at the embryo stage, but also during postembryonic developmental transitions, suggesting that chromatin remodeling activities in plants can provide a higher degree of regulatory flexibility which probably underlies their developmental plasticity. Here, we highlight recent progress in the understanding of plant chromatin dynamic organization, facilitating the activation or repression of specific sets of genes involved in different developmental programs and integrating them with the response to environmental signals. Chromatin conformation controls gene expression both in actively dividing undifferentiated cells and in those already fate-determined. In this context, we first describe chromatin reorganization activities required to maintain meristem function stable through DNA replication and cell division. Organ initiation at the apex, with emphasis on reproductive development, is next discussed to uncover the chromatin events involved in the establishment and maintenance of expression patterns associated with differentiating cells; this is illustrated with the complex epigenetic regulation of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Finally, we discuss the involvement of chromatin remodeling in plant responses to environmental cues and to different types of stress conditions.

  7. Hypothyroidism and Its Rapid Correction Alter Cardiac Remodeling

    PubMed Central

    Itani, Tarek; Moubarak, Majed; Aftimos, Georges; Farès, Nassim

    2014-01-01

    The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10) group and a group treated with 6-propyl-2-thiouracil (PTU) (n = 20) to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6) and pro-fibrotic transforming growth factor beta 1 (TGF-β1), were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease. PMID:25333636

  8. Hydrogen sulfide improves cardiomyocytes electrical remodeling post ischemia/reperfusion injury in rats.

    PubMed

    Sun, Ying-Gang; Wang, Xin-Yan; Chen, Xiu; Shen, Cheng-Xing; Li, Yi-Gang

    2015-01-01

    Hydrogen sulfide (H2S), produced by cystanthionine-γ-lysase (CSE) in the cardiovascular system, is an endogenous gaseous mediator exerting pronounced physiological effects as the third gasotransmitter in addition to nitric oxide (NO) and carbon monoxide (CO). Accumulating evidence indicated that H2S could mediate the cardioprotective effects in myocardial ischemia model. Ventricular arrhythmia is the most important risk factor for cardiac mortality and sudden death after acute myocardial infarction (AMI). The potential impact of H2S on cardiomyocytes electrical remodeling post ischemic insult is not fully explored now. Present study investigated the role of H2S on cardiomyocytes electrical remodeling in rats with ischemia/reperfusion injury. H2S concentration was reduced and arrhythmia score was increased in this model. CSE mRNA level was also upregulated in the ischemic myocardium. Exposure to exogenous NaHS reduced the action potential duration (APD), inhibited L-type Ca(2+) channels and activated K(ATP) channels in cardiomyocytes isolated from ischemic myocardium Exogenous H2S application improves electrical remodeling in cardiomyocytes isolated from ischemic myocardium. These results indicated that reduced H2S level might be linked to ischemia/reperfusion induced arrhythmias. PMID:25755736

  9. Hydrogen sulfide improves cardiomyocytes electrical remodeling post ischemia/reperfusion injury in rats

    PubMed Central

    Sun, Ying-Gang; Wang, Xin-Yan; Chen, Xiu; Shen, Cheng-Xing; Li, Yi-Gang

    2015-01-01

    Hydrogen sulfide (H2S), produced by cystanthionine-γ-lysase (CSE) in the cardiovascular system, is an endogenous gaseous mediator exerting pronounced physiological effects as the third gasotransmitter in addition to nitric oxide (NO) and carbon monoxide (CO). Accumulating evidence indicated that H2S could mediate the cardioprotective effects in myocardial ischemia model. Ventricular arrhythmia is the most important risk factor for cardiac mortality and sudden death after acute myocardial infarction (AMI). The potential impact of H2S on cardiomyocytes electrical remodeling post ischemic insult is not fully explored now. Present study investigated the role of H2S on cardiomyocytes electrical remodeling in rats with ischemia/reperfusion injury. H2S concentration was reduced and arrhythmia score was increased in this model. CSE mRNA level was also upregulated in the ischemic myocardium. Exposure to exogenous NaHS reduced the action potential duration (APD), inhibited L-type Ca2+ channels and activated KATP channels in cardiomyocytes isolated from ischemic myocardium Exogenous H2S application improves electrical remodeling in cardiomyocytes isolated from ischemic myocardium. These results indicated that reduced H2S level might be linked to ischemia/reperfusion induced arrhythmias. PMID:25755736

  10. Cardiac fibroblast GSK-3β regulates ventricular remodeling and dysfunction in ischemic heart

    PubMed Central

    Lal, Hind; Ahmad, Firdos; Zhou, Jibin; Yu, Justine E.; Vagnozzi, Ronald J.; Guo, Yuanjun; Yu, Daohai; Tsai, Emily J.; Woodgett, James; Gao, Erhe; Force, Thomas

    2014-01-01

    Background Myocardial infarction-induced remodeling includes chamber dilatation, contractile dysfunction, and fibrosis. Of these, fibrosis is the least understood. Following MI, activated cardiac fibroblasts (CFs) deposit extracellular matrix. Current therapies to prevent fibrosis are inadequate and new molecular targets are needed. Methods and Results Herein we report that GSK-3β is phosphorylated (inhibited) in fibrotic tissues from ischemic human and mouse heart. Using two fibroblast-specific GSK-3β knockout mouse models, we show that deletion of GSK-3β in CFs leads to fibrogenesis, left ventricular dysfunction and excessive scarring in the ischemic heart. Deletion of GSK-3β induces a pro-fibrotic myofibroblast phenotype in isolated CFs, in post-MI hearts, and in MEFs deleted for GSK-3β. Mechanistically, GSK-3β inhibits pro-fibrotic TGF-β1-SMAD-3 signaling via interactions with SMAD-3. Moreover, deletion of GSK-3β resulted in the suppression of SMAD-3 transcriptional activity. This pathway is central to the pathology since a small molecule inhibitor of SMAD-3 largely prevented fibrosis and limited LV remodeling. Conclusion These studies support targeting GSK-3β in myocardial fibrotic disorders and establish critical roles of CFs in remodeling and ventricular dysfunction. PMID:24899689

  11. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    PubMed

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations.

  12. Methods employed for induction and analysis of experimental myocardial infarction in mice.

    PubMed

    Borst, Oliver; Ochmann, Carmen; Schönberger, Tanja; Jacoby, Christoph; Stellos, Konstantinos; Seizer, Peter; Flögel, Ulrich; Lang, Florian; Gawaz, Meinrad

    2011-01-01

    Myocardial ischemia und subsequent reperfusion is followed by a complex sequence of pathophysiological responses involving inflammatory cell infiltration and cytokine release as well as postinfarction wound healing and myocardial tissue remodeling. With the development of gene targeted mice the contribution of individual gene products to the pathophysiology of myocardial ischemia and reperfusion can be defined leading to an increasing interest in the widely-used mouse model of myocardial infarction. This methological paper describes in detail the required equipment, surgical instruments, drugs and additional material, the methods of anesthesia and analgesia, the procedures involved in preparation of the animal, tracheotomy, intubation, thoracotomy, occlusion of the left descending artery, removal of the heart, determination of infarct size, analysis of cardiac functional parameters with echocardiography and magnetic resonance imaging (MRI) as well as determination of the morphological consequences utilizing gelatin zymography, histology and immunohistochemistry. PMID:21865843

  13. Parametric techniques for characterizing myocardial tissue by magnetic resonance imaging (part 1): T1 mapping.

    PubMed

    Perea Palazón, R J; Ortiz Pérez, J T; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Solé Arqués, M

    2016-01-01

    The development of myocardial fibrosis is a common process in the appearance of ventricular dysfunction in many heart diseases. Magnetic resonance imaging makes it possible to accurately evaluate the structure and function of the heart, and its role in the macroscopic characterization of myocardial fibrosis by late enhancement techniques has been widely validated clinically. Recent studies have demonstrated that T1-mapping techniques can quantify diffuse myocardial fibrosis and the expansion of the myocardial extracellular space in absolute terms. However, further studies are necessary to validate the usefulness of this technique in the early detection of tissue remodeling at a time when implementing early treatment would improve a patient's prognosis. This article reviews the state of the art for T1 mapping of the myocardium, its clinical applications, and its limitations. PMID:26944850

  14. Methods employed for induction and analysis of experimental myocardial infarction in mice.

    PubMed

    Borst, Oliver; Ochmann, Carmen; Schönberger, Tanja; Jacoby, Christoph; Stellos, Konstantinos; Seizer, Peter; Flögel, Ulrich; Lang, Florian; Gawaz, Meinrad

    2011-01-01

    Myocardial ischemia und subsequent reperfusion is followed by a complex sequence of pathophysiological responses involving inflammatory cell infiltration and cytokine release as well as postinfarction wound healing and myocardial tissue remodeling. With the development of gene targeted mice the contribution of individual gene products to the pathophysiology of myocardial ischemia and reperfusion can be defined leading to an increasing interest in the widely-used mouse model of myocardial infarction. This methological paper describes in detail the required equipment, surgical instruments, drugs and additional material, the methods of anesthesia and analgesia, the procedures involved in preparation of the animal, tracheotomy, intubation, thoracotomy, occlusion of the left descending artery, removal of the heart, determination of infarct size, analysis of cardiac functional parameters with echocardiography and magnetic resonance imaging (MRI) as well as determination of the morphological consequences utilizing gelatin zymography, histology and immunohistochemistry.

  15. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation.

    PubMed

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  16. Erythrocyte Stiffness during Morphological Remodeling Induced by Carbon Ion Radiation

    PubMed Central

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  17. ACE inhibition prevents diastolic Ca2+ overload and loss of myofilament Ca2+ sensitivity after myocardial infarction

    PubMed Central

    Zalvidea, Santiago; Andre, Lucas; Loyer, Xavier; Cassan, Cécile; Sainte-Marie, Yannis; Thireau, Jérôme; Sjaastad, Ivar; Heymes, Christophe; Pasquié, Jean-Luc; Cazorla, Olivier; Aimond, Franck; Richard, Sylvain

    2012-01-01

    Prevention of adverse cardiac remodeling after myocardial infarction (MI) remains a therapeutic challenge. Angiotensin-converting enzyme inhibitors (ACE-I) are a well-established first-line treatment. ACE-I delay fibrosis, but little is known about their molecular effects on cardiomyocytes. We investigated the effects of the ACE-I delapril on cardiomyocytes in a mouse model of heart failure (HF) after MI. Mice were randomly assigned to three groups: Sham, MI, and MI-D (6 weeks of treatment with a non-hypotensive dose of delapril started 24h after MI). Echocardiography and pressure-volume loops revealed that MI induced hypertrophy and dilatation, and altered both contraction and relaxation of the left ventricle. At the cellular level, MI cardiomyocytes exhibited reduced contraction, slowed relaxation, increased diastolic Ca2+ levels, decreased Ca2+-transient amplitude, and diminished Ca2+ sensitivity of myofilaments. In MI-D mice, however, both mortality and cardiac remodeling were decreased when compared to non-treated MI mice. Delapril maintained cardiomyocyte contraction and relaxation, prevented diastolic Ca2+ overload and retained the normal Ca2+ sensitivity of contractile proteins. Delapril maintained SERCA2a activity through normalization of P-PLB/PLB (for both Ser16-PLB and Thr17-PLB) and PLB/SERCA2a ratios in cardiomyocytes, favoring normal reuptake of Ca2+ in the sarcoplasmic reticulum. In addition, delapril prevented defective cTnI function by normalizing the expression of PKC, enhanced in MI mice. In conclusion, early therapy with delapril after MI preserved the normal contraction/relaxation cycle of surviving cardiomyocytes with multiple direct effects on key intracellular mechanisms contributing to preserve cardiac function. PMID:22280358

  18. Depressive Symptoms Are Associated with Mental Stress-Induced Myocardial Ischemia after Acute Myocardial Infarction

    PubMed Central

    Wei, Jingkai; Pimple, Pratik; Shah, Amit J.; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon A.; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Objectives Depression is an adverse prognostic factor after an acute myocardial infarction (MI), and an increased propensity toward emotionally-driven myocardial ischemia may play a role. We aimed to examine the association between depressive symptoms and mental stress-induced myocardial ischemia in young survivors of an MI. Methods We studied 98 patients (49 women and 49 men) age 38–60 years who were hospitalized for acute MI in the previous 6 months. Patients underwent myocardial perfusion imaging at rest, after mental stress (speech task), and after exercise or pharmacological stress. A summed difference score (SDS), obtained with observer-independent software, was used to quantify myocardial ischemia under both stress conditions. The Beck Depression Inventory-II (BDI-II) was used to measure depressive symptoms, which were analyzed as overall score, and as separate somatic and cognitive depressive symptom scores. Results There was a significant positive association between depressive symptoms and SDS with mental stress, denoting more ischemia. After adjustment for demographic and lifestyle factors, disease severity and medications, each incremental depressive symptom was associated with 0.14 points higher SDS. When somatic and cognitive depressive symptoms were examined separately, both somatic [β = 0.17, 95% CI: (0.04, 0.30), p = 0.01] and cognitive symptoms [β = 0.31, 95% CI: (0.07, 0.56), p = 0.01] were significantly associated with mental stress-induced ischemia. Depressive symptoms were not associated with ischemia induced by exercise or pharmacological stress. Conclusion Among young post-MI patients, higher levels of both cognitive and somatic depressive symptoms are associated with a higher propensity to develop myocardial ischemia with mental stress, but not with physical (exercise or pharmacological) stress. PMID:25061993

  19. Pulsatile Fluid Shear in Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Frangos, John A.

    1997-01-01

    The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress.

  20. Time-dependent remodeling of transmural architecture underlying abnormal ventricular geometry in chronic volume overload heart failure

    PubMed Central

    Ashikaga, Hiroshi; Omens, Jeffrey H.; Covell, James W.

    2010-01-01

    To test the hypothesis that the abnormal ventricular geometry in failing hearts may be accounted for by regionally selective remodeling of myocardial laminae or sheets, we investigated remodeling of the transmural architecture in chronic volume overload induced by an aortocaval shunt. We determined three-dimensional finite deformation at apical and basal sites in left ventricular anterior wall of six dogs with the use of biplane cineradiography of implanted markers. Myocardial strains at end diastole were measured at a failing state referred to control to describe remodeling of myofibers and sheet structures over time. After 9 ± 2 wk (means ± SE) of volume overload, the myocardial volume within the marker sets increased by >20%. At 2 wk, the basal site had myofiber elongation (0.099 ± 0.030; P < 0.05), whereas the apical site did not [P = not significant (NS)]. Sheet shear at the basal site increased progressively toward the final study (0.040 ± 0.003 at 2 wk and 0.054 ± 0.021 at final; both P < 0.05), which contributed to a significant increase in wall thickness at the final study (0.181 ± 0.047; P < 0.05), whereas the apical site did not (P = NS). We conclude that the remodeling of the transmural architecture is regionally heterogeneous in chronic volume overload. The early differences in fiber elongation seem most likely due to a regional gradient in diastolic wall stress, whereas the late differences in wall thickness are most likely related to regional differences in the laminar architecture of the wall. These results suggest that the temporal progression of ventricular remodeling may be anatomically designed at the level of regional laminar architecture. PMID:15242833

  1. Aerobic Interval Training Attenuates Mitochondrial Dysfunction in Rats Post-Myocardial Infarction: Roles of Mitochondrial Network Dynamics

    PubMed Central

    Jiang, Hong-Ke; Wang, You-Hua; Sun, Lei; He, Xi; Zhao, Mei; Feng, Zhi-Hui; Yu, Xiao-Jiang; Zang, Wei-Jin

    2014-01-01

    Aerobic interval training (AIT) can favorably affect cardiovascular diseases. However, the effects of AIT on post-myocardial infarction (MI)—associated mitochondrial dysfunctions remain unclear. In this study, we investigated the protective effects of AIT on myocardial mitochondria in post-MI rats by focusing on mitochondrial dynamics (fusion and fission). Mitochondrial respiratory functions (as measured by the respiratory control ratio (RCR) and the ratio of ADP to oxygen consumption (P/O)); complex activities; dynamic proteins (mitofusin (mfn) 1/2, type 1 optic atrophy (OPA1) and dynamin-related protein1 (DRP1)); nuclear peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); and the oxidative signaling of extracellular signal-regulated kinase (ERK) 1/2, c-Jun NH2-terminal protein kinase (JNK) and P53 were observed. Post-MI rats exhibited mitochondrial dysfunction and adverse mitochondrial network dynamics (reduced fusion and increased fission), which was associated with activated ERK1/2-JNK-P53 signaling and decreased nuclear PGC-1α. After AIT, MI-associated mitochondrial dysfunction was improved (elevated RCR and P/O and enhanced complex I, III and IV activities); in addition, increased fusion (mfn2 and OPA1), decreased fission (DRP1), elevated nuclear PGC-1α and inactivation of the ERK1/2-JNK-P53 signaling were observed. These data demonstrate that AIT may restore the post-MI mitochondrial function by inhibiting dynamics pathological remodeling, which may be associated with inactivation of ERK1/2-JNK-P53 signaling and increase in nuclear PGC-1α expression. PMID:24675698

  2. Major adverse cardiac events during endurance sports.

    PubMed

    Belonje, Anne; Nangrahary, Mary; de Swart, Hans; Umans, Victor

    2007-03-15

    Major adverse cardiac events in endurance exercise are usually due to underlying and unsuspected heart disease. The investigators present an analysis of major adverse cardiac events that occurred during 2 consecutive annual long distance races (a 36-km beach cycling race and a 21-km half marathon) over the past 5 years. All patients with events were transported to the hospital. Most of the 62,862 participants were men (77%; mean age 40 years). Of these, 4 men (3 runners, 1 cyclist; mean age 48 years) collapsed during (n = 2) or shortly after the races, rendering a prevalence of 0.006%. Two patients collapsed after developing chest pain, 1 of whom needed resuscitation at the event site, which was successful. These patients had acute myocardial infarctions and underwent primary angioplasty. The third patient was resuscitated at the site but did not have coronary disease or inducible ventricular tachycardia or ventricular fibrillation and collapsed presumably because of catecholamine-induced ventricular fibrillation. The fourth patient experienced heat stroke and had elevated creatine kinase-MB and troponins in the absence of electrocardiographic changes. In conclusion, the risk for major adverse cardiac events during endurance sports in well-trained athletes is very low.

  3. 5-Lipoxygenase facilitates healing after myocardial infarction.

    PubMed

    Blömer, Nadja; Pachel, Christina; Hofmann, Ulrich; Nordbeck, Peter; Bauer, Wolfgang; Mathes, Denise; Frey, Anna; Bayer, Barbara; Vogel, Benjamin; Ertl, Georg; Bauersachs, Johann; Frantz, Stefan

    2013-07-01

    Early healing after myocardial infarction (MI) is characterized by a strong inflammatory reaction. Most leukotrienes are pro-inflammatory and are therefore potential mediators of healing and remodeling after myocardial ischemia. The enzyme 5-lipoxygenase (5-LOX) has a key role in the transformation of arachidonic acid in leukotrienes. Thus, we tested the effect of 5-LOX on healing after MI. After chronic coronary artery ligation, early mortality was significantly increased in 5-LOX(-/-) when compared to matching wildtype (WT) mice due to left ventricular rupture. This effect could be reproduced in mice treated with the 5-LOX inhibitor Zileuton. A perfusion mismatch due to the vasoactive potential of leukotrienes is not responsible for left ventricular rupture since local blood flow assessed by magnetic resonance perfusion measurements was not different. However, after MI, there was an accentuation of the inflammatory reaction with an increase of pro-inflammatory macrophages. Yet, mortality was not changed in chimeric mice (WT vs. 5-LOX(-/-) bone marrow in 5-LOX(-/-) animals), indicating that an altered function of 5-LOX(-/-) inflammatory cells is not responsible for the phenotype. Collagen production and accumulation of fibroblasts were significantly reduced in 5-LOX(-/-) mice in vivo after MI. This might be due to an impaired migration of 5-LOX(-/-) fibroblasts, as shown in vitro to serum. In conclusion, a lack or inhibition of 5-LOX increases mortality after MI because of healing defects. This is not mediated by a change in local blood flow, but through an altered inflammation and/or fibroblast function.

  4. Loss of CEACAM1, a Tumor-Associated Factor, Attenuates Post-infarction Cardiac Remodeling by Inhibiting Apoptosis

    PubMed Central

    Wang, Yan; Chen, Yanmei; Yan, Yi; Li, Xinzhong; Chen, Guojun; He, Nvqin; Shen, Shuxin; Chen, Gangbin; Zhang, Chuanxi; Liao, Wangjun; Liao, Yulin; Bin, Jianping

    2016-01-01

    Carcinoembryonic antigen-related cell adhesion molecule1 (CEACAM1) is a tumor-associated factor that is known to be involved in apoptosis, but the role of CEACAM1 in cardiovascular disease is unclear. We aims to investigate whether CEACAM1 influences cardiac remodeling in mice with myocardial infarction (MI) and hypoxia-induced cardiomyocyte injury. Both serum in patients and myocardial CEACAM1 levels in mice were significantly increased in response to MI, while levels were elevated in neonatal rat cardiomyocytes (NRCs) exposed to hypoxia. Eight weeks after MI, a lower mortality rate, improved cardiac function, and less cardiac remodeling in CEACAM1 knock-out (KO) mice than in their wild-type (WT) littermates were observed. Moreover, myocardial expression of mitochondrial Bax, cytosolic cytochrome C, and cleaved caspase-3 was significantly lower in CEACAM1 KO mice than in WT mice. In cultured NRCs exposed to hypoxia, recombinant human CEACAM1 (rhCEACAM1) reduced mitochondrial membrane potential, upregulated mitochondrial Bax, increased cytosolic cytochrome C and cleaved caspase-3, and consequently increased apoptosis. RhCEACAM1 also increased the levels of GRP78 and CHOP in NRCs with hypoxia. All of these effects were abolished by silencing CEACAM1. Our study indicates that CEACAM1 exacerbates hypoxic cardiomyocyte injury and post-infarction cardiac remodeling by enhancing cardiomyocyte mitochondrial dysfunction and endoplasmic reticulum stress-induced apoptosis. PMID:26911181

  5. Good and bad sides of TGFβ-signaling in myocardial infarction.

    PubMed

    Euler, Gerhild

    2015-01-01

    Myocardial infarction is a prevailing cause of death in industrial countries. In spite of the good opportunities we have nowadays in interventional cardiology to reopen the clotted coronary arteries for reperfusion of ischemic areas, post-infarct remodeling emerges and contributes to unfavorable structural conversion processes in the myocardium, finally resulting in heart failure. The growth factor TGFβ is upregulated during these processes. In this review, an overview on the functional role of TGFβ signaling in the process of cardiac remodeling is given, as it can influence apoptosis, fibrosis and hypertrophy thereby predominantly aggravating ischemia/reperfusion injury.

  6. Regional Longitudinal Myocardial Deformation Provides Incremental Prognostic Information in Patients with ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Jensen, Jan Skov; Pedersen, Sune H.; Galatius, Søren; Fritz-Hansen, Thomas; Bech, Jan; Olsen, Flemming Javier; Mogelvang, Rasmus

    2016-01-01

    Background Global longitudinal systolic strain (GLS) has recently been demonstrated to be a superior prognosticator to conventional echocardiographic measures in patients after myocardial infarction (MI). The aim of this study was to evaluate the prognostic value of regional longitudinal myocardial deformation in comparison to GLS, conventional echocardiography and clinical information. Method In total 391 patients were admitted with ST-Segment elevation myocardial infarction (STEMI), treated with primary percutaneous coronary intervention and subsequently examined by echocardiography. All patients were examined by tissue Doppler imaging (TDI) and two-dimensional strain echocardiography (2DSE). Results During a median-follow-up of 5.3 (IQR 2.5–6.1) years the primary endpoint (death, heart failure or a new MI) was reached by 145 (38.9%) patients. After adjustment for significant confounders (including conventional echocardiographic parameters) and culprit lesion, reduced longitudinal performance in the anterior septal and inferior myocardial regions (but not GLS) remained independent predictors of the combined outcome. Furthermore, inferior myocardial longitudinal deformation provided incremental prognostic information to clinical and conventional echocardiographic information (Harrell's c-statistics: 0.63 vs. 0.67, p = 0.032). In addition, impaired longitudinal deformation outside the culprit lesion perfusion region was significantly associated with an adverse outcome (p<0.05 for all deformation parameters). Conclusion Regional longitudinal myocardial deformation measures, regardless if determined by TDI or 2DSE, are superior prognosticators to GLS. In addition, impaired longitudinal deformation in the inferior myocardial segment provides prognostic information over and above clinical and conventional echocardiographic risk factors. Furthermore, impaired longitudinal deformation outside the culprit lesion perfusion region seems to be a paramount marker of adverse

  7. Calcium channel blockade prevents pressure-dependent inward remodeling in isolated subendocardial resistance vessels.

    PubMed

    Sorop, Oana; Bakker, Erik N T P; Pistea, Adrian; Spaan, Jos A E; VanBavel, Ed

    2006-09-01

    The capacity for myocardial perfusion depends on the structure of the coronary microvascular bed. Coronary microvessels may adapt their structure to various stimuli. We tested whether the local pressure profile affects tone and remodeling of porcine coronary microvessels. Subendocardial vessels (approximately 160 microm, n=53) were cannulated and kept in organoid culture for 3 days under different transvascular pressure profiles: Osc 80: mean 80 mmHg, 60 mmHg peak-peak sine wave pulsation amplitude at 1.5 Hz; St 80: steady 80 mmHg; Osc 40: mean 40 mmHg, 30 mmHg amplitude; St 40: steady 40 mmHg. Under the Osc 80 profile, modest tone developed, reducing the diameter to 81+/-14% (mean+/-SE, n=6) of the maximal, passive diameter. No inward remodeling was found here, as determined from the passive pressure-diameter relation after 3 days of culture. Under all other profiles, much more tone developed (e.g., Osc 40: to 26+/-3%, n=7). In addition, these vessels showed eutrophic (i.e., without a change in wall cross-sectional area) inward remodeling (e.g., Osc 40: passive diameter reduction by 24+/-3%). The calcium blocker amlodipine induced maintained dilation in St 40 vessels and reversed the 22+/-3% (n=6) inward remodeling to 15+/-3% (n=8) outward remodeling toward day 3. Vessels required a functional endothelium to maintain structural integrity in culture. Our data indicate that reduction of either mean pressure or pulse pressure leads to microvascular constriction followed by inward remodeling. These effects could be reversed by amlodipine. Although microvascular pressure profiles distal to stenoses are poorly defined, these data suggest that vasodilator therapy could improve subendocardial microvascular function and structure in coronary artery disease.

  8. Cardiac stem cells and their roles in myocardial infarction.

    PubMed

    Hou, Jingying; Wang, Lingyun; Jiang, Jieyu; Zhou, Changqing; Guo, Tianzhu; Zheng, Shaoxin; Wang, Tong

    2013-06-01

    Myocardial infarction leads to loss of cardiomyocytes, scar formation, ventricular remodeling and eventually deterioration of heart function. Over the past decade, stem cell therapy has emerged as a novel strategy for patients with ischemic heart disease and its beneficial effects have been demonstrated by substantial preclinical and clinical studies. Efficacy of several types of stem cells in the therapy of cardiovascular diseases has already been evaluated. However, repair of injured myocardium through stem cell transplantation is restricted by critical safety issues and ethic concerns. Recently, the discovery of cardiac stem cells (CSCs) that reside in the heart itself brings new prospects for myocardial regeneration and reconstitution of cardiac tissues. CSCs are positive for various stem cell markers and have the potential of self-renewal and multilineage differentiation. They play a pivotal role in the maintenance of heart homeostasis and cardiac repair. Elucidation of their biological characteristics and functions they exert in myocardial infarction are very crucial to further investigations on them. This review will focus on the field of cardiac stem cells and discuss technical and practical issues that may involve in their clinical applications in myocardial infarction.

  9. Remodeling of the heart (membrane proteins and collagen) in hypertensive cardiopathy.

    PubMed

    Sainte Beuve, C; Leclercq, C; Rannou, F; Oliviero, P; Mansier, P; Chevalier, B; Swynghedauw, B; Charlemagne, D

    1992-06-01

    The basis for impaired left ventricular function of hearts in moderate to severe stages of hypertrophy and congestive heart failure remains uncertain. At the cellular level, the mechanisms governing the movements of calcium in the myocardium are actually depressed and might at least in part account for the slowing of the maximum shortening velocity and the impaired relaxation. These alterations of membrane proteins seem particularly important in species where the slowing of Vmax cannot be a consequence of the myosin heavy chain shift. They lead to an unstable equilibrium of calcium homeostasis and to calcium overload in heart failure. On the other hand, the enhanced density and remodeling of collagen in the hypertrophied heart, which would depend on elevation in circulating aldosterone, impair myocardial stiffness with diastolic dysfunction and lead to altered pumping capacity of the heart. Disturbances of calcium metabolism and matrix collagen remodeling enhance early afterdepolarizations and arrhythmias. PMID:1385839

  10. Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice.

    PubMed

    Ulrich, Victoria; Rotllan, Noemi; Araldi, Elisa; Luciano, Amelia; Skroblin, Philipp; Abonnenc, Mélanie; Perrotta, Paola; Yin, Xiaoke; Bauer, Ashley; Leslie, Kristen L; Zhang, Pei; Aryal, Binod; Montgomery, Rusty L; Thum, Thomas; Martin, Kathleen; Suarez, Yajaira; Mayr, Manuel; Fernandez-Hernando, Carlos; Sessa, William C

    2016-01-01

    Abnormal remodeling of atherosclerotic plaques can lead to rupture, acute myocardial infarction, and death. Enhancement of plaque extracellular matrix (ECM) may improve plaque morphology and stabilize lesions. Here, we demonstrate that chronic administration of LNA-miR-29 into an atherosclerotic mouse model improves indices of plaque morphology. This occurs due to upregulation of miR-29 target genes of the ECM (col1A and col3A) resulting in reduced lesion size, enhanced fibrous cap thickness, and reduced necrotic zones. Sustained LNA-miR-29 treatment did not affect circulating lipids, blood chemistry, or ECM of solid organs including liver, lung, kidney, spleen, or heart. Collectively, these data support the idea that antagonizing miR-29 may promote beneficial plaque remodeling as an independent approach to stabilize vulnerable atherosclerotic lesions. PMID:27137489

  11. Adverse reactions to cosmetics.

    PubMed

    Gendler, E

    1987-06-01

    Adverse reactions to cosmetics can be irritant or allergic and are most often caused by fragrances or preservatives. Preservatives include formaldehyde, formaldehyde releasers, and parabens. Other agents that cause allergy are paraphenylenediamine in hair dyes and toluene sulfonamide formaldehyde resin in nail polishes.

  12. Scientists Trace Adversity's Toll

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2012-01-01

    The stress of a spelling bee or a challenging science project can enhance a student's focus and promote learning. But the stress of a dysfunctional or unstable home life can poison a child's cognitive ability for a lifetime, according to new research. Those studies show that stress forms the link between childhood adversity and poor academic…

  13. Regulation of Cardiac Remodeling by Cardiac Na+/K+-ATPase Isoforms

    PubMed Central

    Liu, Lijun; Wu, Jian; Kennedy, David J.

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1–3). The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2) the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling. PMID:27667975

  14. Regulation of Cardiac Remodeling by Cardiac Na+/K+-ATPase Isoforms

    PubMed Central

    Liu, Lijun; Wu, Jian; Kennedy, David J.

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1–3). The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2) the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  15. Regulation of Cardiac Remodeling by Cardiac Na(+)/K(+)-ATPase Isoforms.

    PubMed

    Liu, Lijun; Wu, Jian; Kennedy, David J

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na(+)/K(+)-ATPase has multiple α isoforms (1-3). The expression of the α subunit of the Na(+)/K(+)-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na(+)/K(+)-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na(+)/K(+)-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na(+)/K(+)-ATPase regulates intracellular Ca(2+) signaling, contractility and pathological hypertrophy. The α3 isoform of the Na(+)/K(+)-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na(+)/K(+)-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na(+)/K(+)-ATPase in the cardiomyocytes. (2) the role of cardiac Na(+)/K(+)-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na(+)/K(+)-ATPase isoform may offer a new target for the prevention of cardiac remodeling. PMID:27667975

  16. Mapping genetic determinants of coronary microvascular remodeling in the spontaneously hypertensive rat.

    PubMed

    Mancini, Massimiliano; Petretto, Enrico; Kleinert, Christina; Scavone, Angela; De, Tisham; Cook, Stuart; Silhavy, Jan; Zidek, Vaclav; Pravenec, Michal; d'Amati, Giulia; Camici, Paolo G

    2013-01-01

    The mechanisms underlying coronary microvascular remodeling and dysfunction, which are critical determinants of abnormal myocardial blood flow regulation in human hypertension, are poorly understood. The spontaneously hypertensive rat (SHR) exhibits many features of human hypertensive cardiomyopathy. We demonstrate that remodeling of intramural coronary arterioles is apparent in the SHR already at 4 weeks of age, i.e. before the onset of systemic hypertension. To uncover possible genetic determinants of coronary microvascular remodeling, we carried out detailed histological and histomorphometric analysis of the heart and coronary vasculature in 30 weeks old SHR, age-matched Brown Norway (BN-Lx) parentals and BXH/HXB recombinant inbred (RI) strains. Using previously mapped expression quantitative trait loci (eQTLs), we carried out a genome-wide association analysis between genetic determinants of cardiac gene expression and histomorphometric traits. This identified 36 robustly mapped eQTLs in the heart which were associated with medial area of intramural coronary arterioles [false discovery rate (FDR) ~5%]. Transcripts, which were both under cis-acting genetic regulation and significantly correlated with medial area (FDR <5%), but not with blood pressure indices, were prioritized and four candidate genes were identified (Rtel1, Pla2g5, Dnaja4 and Rcn2) according to their expression levels and biological functions. Our results demonstrate that genetic factors play a role in the development of coronary microvascular remodeling and suggest blood pressure independent candidate genes for further functional experiments.

  17. Regulation of Cardiac Remodeling by Cardiac Na(+)/K(+)-ATPase Isoforms.

    PubMed

    Liu, Lijun; Wu, Jian; Kennedy, David J

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na(+)/K(+)-ATPase has multiple α isoforms (1-3). The expression of the α subunit of the Na(+)/K(+)-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na(+)/K(+)-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na(+)/K(+)-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na(+)/K(+)-ATPase regulates intracellular Ca(2+) signaling, contractility and pathological hypertrophy. The α3 isoform of the Na(+)/K(+)-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na(+)/K(+)-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na(+)/K(+)-ATPase in the cardiomyocytes. (2) the role of cardiac Na(+)/K(+)-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na(+)/K(+)-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  18. Remodeling in myocardium adjacent to an infarction in the pig left ventricle.

    PubMed

    Zimmerman, Scott D; Criscione, John; Covell, James W

    2004-12-01

    Changes in the structure of the "normal" ventricular wall adjacent to an infarcted area involve all components of the myocardium (myocytes, fibroblasts and the extracellular matrix, and the coronary vasculature) and their three-dimensional structural relationship. Assessing changes in these components requires tracking material markers in the remodeling tissue over long periods of time with a three-dimensional approach as well as a detailed histological evaluation of the remodeled structure. The purpose of the present study was to examine the hypotheses that changes in the tissue adjacent to an infarct are related to myocyte elongation, myofiber rearrangement, and changes in the laminar architecture of the adjacent tissue. Three weeks after myocardial infarction, noninfarcted tissue adjacent to the infarct remodeled by expansion along the direction of the fibers and in the cross fiber direction. These changes are consistent with myocyte elongation and myofiber rearrangement (slippage), as well as a change in cell shape to a more elliptical cross section with the major axis in the epicardial tangent plane, and indicate that reorientation of fibers either via "cell slippage" or changes in orientation of the laminar structure of the ventricular wall are quantitatively important aspects of the remodeling of the normally perfused myocardium.

  19. Clinical and Molecular Comparison of Pediatric and Adult Reverse Remodeling With Ventricular Assist Devices.

    PubMed

    Weia, Benjamin C; Adachi, Iki; Jacot, Jeffrey G

    2015-08-01

    Ventricular assist device (VAD) support induces reverse remodeling of failing myocardium that leads to occasional functional recovery of the adult heart. While there have been numerous clinical reports in adult patients with end-stage cardiomyopathy, little is known about reverse remodeling in children, which has increasing clinical potential with the recent expansion of pediatric VADs in the setting of static organ supply for heart transplantation. Pediatric myocardium also promises theoretical advantages for recovery over adult myocardium due to its greater abundance of cardiac progenitor cells. To identify potential targets of future studies, we conducted a literature review with two aims: (i) to summarize clinical cases of pediatric patients who exhibited cardiac recovery following VAD support; and (ii) to analyze genetic changes in pediatric myocardium induced by VAD support compared with those observed in adult patients. Several clinical series of pediatric VAD cases report that small proportions of their cohorts were weaned off from device support, but a lack of information about the etiology and support duration of these patients limits the ability to determine whether they represent reverse remodeling of myocardial structure or just recovery from acute illness. A comparison of pediatric and adult gene expression changes with VAD support reveals approximately 40% of genes to be oppositely regulated, indicating that the pediatric genetic response is distinct. These observations highlight a necessity to better understand reverse remodeling specific to pediatric myocardium, which is crucial to improving clinical strategies for bridge-to-recovery in children.

  20. Intracranial pressure and skull remodeling

    PubMed Central

    McCulley, Timothy J.; Jordan Piluek, W.; Chang, Jessica

    2014-01-01

    In this article we review bony changes resulting from alterations in intracranial pressure (ICP) and the implications for ophthalmologists and the patients for whom we care. Before addressing ophthalmic implications, we will begin with a brief overview of bone remodeling. Bony changes seen with chronic intracranial hypotension and hypertension will be discussed. The primary objective of this review was to bring attention to bony changes seen with chronic intracranial hypotension. Intracranial hypotension skull remodeling can result in enophthalmos. In advanced disease enophthalmos develops to a degree that is truly disfiguring. The most common finding for which subjects are referred is ocular surface disease, related to loss of contact between the eyelids and the cornea. Other abnormalities seen include abnormal ocular motility and optic atrophy. Recognition of such changes is important to allow for diagnosis and treatment prior to advanced clinical deterioration. Routine radiographic assessment of bony changes may allow for the identification of patient with abnormal ICP prior to the development of clinically significant disease. PMID:25859141

  1. Adrenocortical Zonation, Renewal, and Remodeling

    PubMed Central

    Pihlajoki, Marjut; Dörner, Julia; Cochran, Rebecca S.; Heikinheimo, Markku; Wilson, David B.

    2015-01-01

    The adrenal cortex is divided into concentric zones. In humans the major cortical zones are the zona glomerulosa, zona fasciculata, and zona reticularis. The adrenal cortex is a dynamic organ in which senescent cells are replaced by newly differentiated ones. This constant renewal facilitates organ remodeling in response to physiological demand for steroids. Cortical zones can reversibly expand, contract, or alter their biochemical profiles to accommodate needs. Pools of stem/progenitor cells in the adrenal capsule, subcapsular region, and juxtamedullary region can differentiate to repopulate or expand zones. Some of these pools appear to be activated only during specific developmental windows or in response to extreme physiological demand. Senescent cells can also be replenished through direct lineage conversion; for example, cells in the zona glomerulosa can transform into cells of the zona fasciculata. Adrenocortical cell differentiation, renewal, and function are regulated by a variety of endocrine/paracrine factors including adrenocorticotropin, angiotensin II, insulin-related growth hormones, luteinizing hormone, activin, and inhibin. Additionally, zonation and regeneration of the adrenal cortex are controlled by developmental signaling pathways, such as the sonic hedgehog, delta-like homolog 1, fibroblast growth factor, and WNT/β-catenin pathways. The mechanisms involved in adrenocortical remodeling are complex and redundant so as to fulfill the offsetting goals of organ homeostasis and stress adaptation. PMID:25798129

  2. HDL biogenesis, remodeling, and catabolism.

    PubMed

    Zannis, Vassilis I; Fotakis, Panagiotis; Koukos, Georgios; Kardassis, Dimitris; Ehnholm, Christian; Jauhiainen, Matti; Chroni, Angeliki

    2015-01-01

    In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research. PMID:25522986

  3. Cardiac remodeling associated with protein increase and lipid accumulation in early-stage chronic kidney disease in rats.

    PubMed

    Kuwahara, Mieko; Bannai, Kenji; Segawa, Hiroko; Miyamoto, Ken-ichi; Yamato, Hideyuki

    2014-09-01

    Chronic kidney disease (CKD) is associated with increased risks of cardiovascular morbidity and mortality. Cardiac remodeling including myocardial fibrosis and hypertrophy is frequently observed in CKD patients. In this study, we investigate the mechanism involved in cardiac hypertrophy associated with CKD using a rat model, by morphological and chemical component changes of the hypertrophic and non-hypertrophic hearts. Sprague-Dawley rats were 4/5 nephrectomized (Nx) at 11 weeks of age and assigned to no treatment and treatment with AST-120, which was reported to affect the cardiac damage, at 18 weeks of age. At 26 weeks of age, the rats were euthanized under anesthesia, and biochemical tests as well as analysis of cardiac condition were performed by histological and spectrophotometric methods. Cardiac hypertrophy and CKD were observed in 4/5 Nx rats even though vascular calcification and myocardial fibrosis were not detected. The increasing myocardial protein was confirmed in hypertrophic hearts by infrared spectroscopy. The absorption of amide I and other protein bands in hypertrophic hearts increased at the same position as in normal cardiac absorption. Infrared spectra also showed that lipid accumulation was also detected in hypertrophic heart. Conversely, the absorptions of protein were obviously reduced in the myocardium of non-hypertrophic heart with CKD compared to that of hypertrophic heart. The lipid associated absorption was also decreased in non-hypertrophic heart. Our results suggest that cardiac remodeling associated with relatively early-stage CKD may be suppressed by reducing increased myocardial protein and ameliorating cardiac lipid load.

  4. Bone remodeling and silicon deficiency in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alveolar bone undergoes continuous remodeling to meet physiologic and functional demands. The aim of the present work was to evaluate histologically and histomorphometrically the effect of silicon deficiency on bone modeling and remodeling in the periodontal cortical plate. Two groups of weaning mal...

  5. Chromatin Remodelers: From Function to Dysfunction.

    PubMed

    Längst, Gernot; Manelyte, Laura

    2015-01-01

    Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development. PMID:26075616

  6. Nucleosome dynamics during chromatin remodeling in vivo

    PubMed Central

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    ABSTRACT Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  7. Lipid Acyl Chain Remodeling in Yeast

    PubMed Central

    Renne, Mike F.; Bao, Xue; De Smet, Cedric H.; de Kroon, Anton I. P. M.

    2015-01-01

    Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed. PMID:26819558

  8. Adverse reactions to cosmetics.

    PubMed

    Dogra, A; Minocha, Y C; Kaur, S

    2003-01-01

    Adverse reaction to cosmetics constitute a small but significant number of cases of contact dermatitis with varied appearances. These can present as contact allergic dermatitis, photodermatitis, contact irritant dermatitis, contact urticaria, hypopigmentation, hyperpigmentation or depigmentation, hair and nail breakage. Fifty patients were included for the study to assess the role of commonly used cosmetics in causing adverse reactions. It was found that hair dyes, lipsticks and surprisingly shaving creams caused more reaction as compared to other cosmetics. Overall incidence of contact allergic dermatitis seen was 3.3% with patients own cosmetics. Patch testing was also done with the basic ingredients and showed positive results in few cases where casual link could be established. It is recommended that labeling of the cosmetics should be done to help the dermatologists and the patients to identify the causative allergen in cosmetic preparation.

  9. Myocardial diseases of animals.

    PubMed Central

    Van Vleet, J. F.; Ferrans, V. J.

    1986-01-01

    In this review we have attempted a comprehensive compilation of the cardiac morphologic changes that occur in spontaneous and experimental myocardial diseases of animals. Our coverage addresses diseases of mammals and birds and includes these diseases found in both domesticated and wild animals. A similar review of the myocardial diseases in this broad range of animal species has not been attempted previously. We have summarized and illustrated the gross, microscopic, and ultrastructural alterations for these myocardial diseases; and, whenever possible, we have reviewed their biochemical pathogenesis. We have arranged the myocardial diseases for presentation and discussion according to an etiologic classification with seven categories. These include a group of idiopathic or primary cardiomyopathies recognized in man (hypertrophic, dilated, and restrictive types) and a large group of secondary cardiomyopathies with known causes, such as inherited tendency; nutritional deficiency; toxicity; physical injury and shock; endocrine disorders, and myocarditides of viral, bacterial, and protozoal causation. Considerable overlap exists between each of the etiologic groups in the spectrum of pathologic alterations seen in the myocardium. These include various degenerative changes, myocyte necrosis, and inflammatory lesions. However, some diseases show rather characteristic myocardial alterations such as vacuolar degeneration in anthracycline cardiotoxicity, myofibrillar lysis in furazolidone cardiotoxicity, calcification in calcinosis of mice, glycogen accumulation in the glycogenoses, lipofuscinosis in cattle, fatty degeneration in erucic acid cardiotoxicity, myofiber disarray in hypertrophic cardiomyopathy, and lymphocytic inflammation with inclusion bodies in canine parvoviral myocarditis. The myocardial diseases represent the largest group in the spectrum of spontaneous cardiac diseases of animals. Pericardial and endocardial diseases and congential cardiac diseases are

  10. Chromatin remodeling in nuclear cloning.

    PubMed

    Wade, Paul A; Kikyo, Nobuaki

    2002-05-01

    Nuclear cloning is a procedure to create new animals by injecting somatic nuclei into unfertilized oocytes. Recent successes in mammalian cloning with differentiated adult nuclei strongly indicate that oocyte cytoplasm contains unidentified remarkable reprogramming activities with the capacity to erase the previous memory of cell differentiation. At the heart of this nuclear reprogramming lies chromatin remodeling as chromatin structure and function define cell differentiation through regulation of the transcriptional activities of the cells. Studies involving the modification of chromatin elements such as selective uptake or release of binding proteins, covalent histone modifications including acetylation and methylation, and DNA methylation should provide significant insight into the molecular mechanisms of nuclear dedifferentiation and redifferentiation in oocyte cytoplasm.

  11. Thyroid Hormone and Vascular Remodeling.

    PubMed

    Ichiki, Toshihiro

    2016-01-01

    Both hyperthyroidism and hypothyroidism affect the cardiovascular system. Hypothyroidism is known to be associated with enhanced atherosclerosis and ischemic heart diseases. The accelerated atherosclerosis in the hypothyroid state has been traditionally ascribed to atherogenic lipid profile, diastolic hypertension, and impaired endothelial function. However, recent studies indicate that thyroid hormone has direct anti-atherosclerotic effects, such as production of nitric oxide and suppression of smooth muscle cell proliferation. These data suggest that thyroid hormone inhibits atherogenesis through direct effects on the vasculature as well as modification of risk factors for atherosclerosis. This review summarizes the basic and clinical studies on the role of thyroid hormone in vascular remodeling. The possible application of thyroid hormone mimetics to the therapy of hypercholesterolemia and atherosclerosis is also discussed. PMID:26558400

  12. Early experimental hypertension preserves the myocardial microvasculature but aggravates cardiac injury distal to chronic coronary artery obstruction.

    PubMed

    Urbieta Caceres, Victor Hugo; Lin, Jing; Zhu, Xiang-Yang; Favreau, Frederic D; Gibson, Matthew E; Crane, John A; Lerman, Amir; Lerman, Lilach O

    2011-02-01

    Coronary artery disease is a leading cause of death. Hypertension (HT) increases the incidence of cardiac events, but its effect on cardiac adaptation to coexisting coronary artery stenosis (CAS) is unclear. We hypothesized that concurrent HT modulates microvascular function in chronic CAS and aggravates microvascular remodeling and myocardial injury. Four groups of pigs (n=6 each) were studied: normal, CAS, HT, and CAS+HT. CAS and HT were induced by placing local irritant coils in the left circumflex coronary artery and renal artery, respectively. Six weeks later multidetector computerized tomography (CT) was used to assess systolic and diastolic function, microvascular permeability, myocardial perfusion, and responses to adenosine in the "area at risk." Microvascular architecture, inflammation, and fibrosis were then explored in cardiac tissue. Basal myocardial perfusion was similarly decreased in CAS and CAS+HT, but its response to adenosine was significantly more attenuated in CAS. Microvascular permeability in CAS+HT was greater than in CAS and was accompanied by amplified myocardial inflammation, fibrosis, and microvascular remodeling, as well as cardiac systolic and diastolic dysfunction. On the other hand, compared with normal, micro-CT-derived microvascular (20-200 μm) transmural density decreased in CAS but not in HT or CAS+HT. We conclude that the coexistence of early renovascular HT exacerbated myocardial fibrosis and vascular remodeling distal to CAS. These changes were not mediated by loss of myocardial microvessels, which were relatively preserved, but possibly by exacerbated myocardial inflammation and fibrosis. HT modulates cardiac adaptive responses to CAS and bears cardiac functional consequences. PMID:21131477

  13. How Biomaterials Can Influence Various Cell Types in the Repair and Regeneration of the Heart after Myocardial Infarction

    PubMed Central

    Lister, Zachary; Rayner, Katey J.; Suuronen, Erik J.

    2016-01-01

    The healthy heart comprises many different cell types that work together to preserve optimal function. However, in a diseased heart the function of one or more cell types is compromised which can lead to many adverse events, one of which is myocardial infarction (MI). Immediately after MI, the cardiac environment is characterized by excessive cardiomyocyte death and inflammatory signals leading to the recruitment of macrophages to clear the debris. Proliferating fibroblasts then invade, and a collagenous scar is formed to prevent rupture. Better functional restoration of the heart is not achieved due to the limited regenerative capacity of cardiac tissue. To address this, biomaterial therapy is being investigated as an approach to improve regeneration in the infarcted heart, as they can possess the potential to control cell function in the infarct environment and limit the adverse compensatory changes that occur post-MI. Over the past decade, there has been considerable research into the development of biomaterials for cardiac regeneration post-MI; and various effects have been observed on different cell types depending on the biomaterial that is applied. Biomaterial treatment has been shown to enhance survival, improve function, promote proliferation, and guide the mobilization and recruitment of different cells in the post-MI heart. This review will provide a summary on the biomaterials developed to enhance cardiac regeneration and remodeling post-MI with a focus on how they control macrophages, cardiomyocytes, fibroblasts, and endothelial cells. A better understanding of how a biomaterial interacts with the different cell types in the heart may lead to the development of a more optimized biomaterial therapy for cardiac regeneration. PMID:27486578

  14. Myocardial perfusion and contraction in acute ischemia and chronic ischemic heart disease.

    PubMed

    Canty, John M; Suzuki, Gen

    2012-04-01

    A large body of evidence has demonstrated that there is a close coupling between regional myocardial perfusion and contractile function. When ischemia is mild, this can result in the development of a new balance between supply and energy utilization that allows the heart to adapt for a period of hours over which myocardial viability can be maintained, a phenomenon known as "short-term hibernation". Upon reperfusion after reversible ischemia, regional myocardial function remains depressed. The "stunned myocardium" recovers spontaneously over a period of hours to days. The situation in myocardium subjected to chronic repetitive ischemia is more complex. Chronic dysfunction can initially reflect repetitive stunning with insufficient time for the heart to recover between episodes of spontaneous ischemia. As the frequency and/or severity of ischemia increases, the heart undergoes a series of adaptations which downregulate metabolism to maintain myocyte viability at the expense of contractile function. The resulting "hibernating myocardium" develops regional myocyte cellular hypertrophy as a compensatory response to ischemia-induced apoptosis along with a series of molecular adaptations that while regional, are similar to global changes found in advanced heart failure. As a result, flow-function relations become independently affected by tissue remodeling and interventions that stimulate myocyte regeneration. Similarly, chronic vascular remodeling may alter flow regulation in a fashion that increases myocardial vulnerability to ischemia. Here we review our current understanding of myocardial flow-function relations during acute ischemia in normal myocardium and highlight newly identified complexities in their interpretation in viable chronically dysfunctional myocardium with myocyte cellular and molecular remodeling. This article is part of a Special Issue entitled "Coronary Blood Flow".

  15. Native Myocardial T1 as a Biomarker of Cardiac Structure in Non-Ischemic Cardiomyopathy.

    PubMed

    Shah, Ravi V; Kato, Shingo; Roujol, Sebastien; Murthy, Venkatesh; Bellm, Steven; Kashem, Abyaad; Basha, Tamer; Jang, Jihye; Eisman, Aaron S; Manning, Warren J; Nezafat, Reza

    2016-01-15

    Diffuse myocardial fibrosis is involved in the pathology of nonischemic cardiomyopathy (NIC). Recently, the application of native (noncontrast) myocardial T1 measurement has been proposed as a method for characterizing diffuse interstitial fibrosis. To determine the association of native T1 with myocardial structure and function, we prospectively studied 39 patients with NIC (defined as left ventricular ejection fraction (LVEF) ≤ 50% without cardiac magnetic resonance (CMR) evidence of previous infarction) and 27 subjects with normal LVEF without known overt cardiovascular disease. T1, T2, and extracellular volume fraction (ECV) were determined over 16 segments across the base, mid, and apical left ventricular (LV). NIC participants (57 ± 15 years) were predominantly men (74%), with a mean LVEF 34 ± 10%. Subjects with NIC had a greater native T1 (1,131 ± 51 vs 1,069 ± 29 ms; p <0.0001), a greater ECV (0.28 ± 0.04 vs 0.25 ± 0.02, p = 0.002), and a longer myocardial T2 (52 ± 8 vs 47 ± 5 ms; p = 0.02). After multivariate adjustment, a lower global native T1 time in NIC was associated with a greater LVEF (β = -0.59, p = 0.0003), greater right ventricular ejection fraction (β = -0.47, p = 0.006), and smaller left atrial volume index (β = 0.51, p = 0.001). The regional distribution of native myocardial T1 was similar in patients with and without NIC. In NIC, native myocardial T1 is elevated in all myocardial segments, suggesting a global (not regional) abnormality of myocardial tissue composition. In conclusion, native T1 may represent a rapid, noncontrast alternative to ECV for delineating myocardial tissue remodeling in NIC.

  16. Native Myocardial T1 as a Biomarker of Cardiac Structure in Non-Ischemic Cardiomyopathy.

    PubMed

    Shah, Ravi V; Kato, Shingo; Roujol, Sebastien; Murthy, Venkatesh; Bellm, Steven; Kashem, Abyaad; Basha, Tamer; Jang, Jihye; Eisman, Aaron S; Manning, Warren J; Nezafat, Reza

    2016-01-15

    Diffuse myocardial fibrosis is involved in the pathology of nonischemic cardiomyopathy (NIC). Recently, the application of native (noncontrast) myocardial T1 measurement has been proposed as a method for characterizing diffuse interstitial fibrosis. To determine the association of native T1 with myocardial structure and function, we prospectively studied 39 patients with NIC (defined as left ventricular ejection fraction (LVEF) ≤ 50% without cardiac magnetic resonance (CMR) evidence of previous infarction) and 27 subjects with normal LVEF without known overt cardiovascular disease. T1, T2, and extracellular volume fraction (ECV) were determined over 16 segments across the base, mid, and apical left ventricular (LV). NIC participants (57 ± 15 years) were predominantly men (74%), with a mean LVEF 34 ± 10%. Subjects with NIC had a greater native T1 (1,131 ± 51 vs 1,069 ± 29 ms; p <0.0001), a greater ECV (0.28 ± 0.04 vs 0.25 ± 0.02, p = 0.002), and a longer myocardial T2 (52 ± 8 vs 47 ± 5 ms; p = 0.02). After multivariate adjustment, a lower global native T1 time in NIC was associated with a greater LVEF (β = -0.59, p = 0.0003), greater right ventricular ejection fraction (β = -0.47, p = 0.006), and smaller left atrial volume index (β = 0.51, p = 0.001). The regional distribution of native myocardial T1 was similar in patients with and without NIC. In NIC, native myocardial T1 is elevated in all myocardial segments, suggesting a global (not regional) abnormality of myocardial tissue composition. In conclusion, native T1 may represent a rapid, noncontrast alternative to ECV for delineating myocardial tissue remodeling in NIC. PMID:26684511

  17. Bovine myocardial epithelial inclusions.

    PubMed

    Baker, D C; Schmidt, S P; Langheinrich, K A; Cannon, L; Smart, R A

    1993-01-01

    Light microscopic, histochemical, immunohistochemical, and ultrastructural methods were used to examine myocardial epithelial masses in the hearts of ten cattle. The tissues consisted of paraffin-embedded or formalin-fixed samples from eight hearts that were being inspected in slaughter houses and from two hearts from calves that died of septicemia. The ages of the cattle ranged from 4 days to 12 years; the breeds were unspecified for all but one Hereford female and the two Holstein calves; and there were three males, four females, and three steers. The masses in these cases were compared with similar appearing lesions found in other animal species. The lesions in the bovine hearts were single to multiple, well circumscribed, found in the left ventricle wall, and composed of squamous to cuboidal epithelial cells that formed tubular, ductular, and acinar structures with lumens that were void or filled with amorphous protein globules. Electron microscopic examination revealed epithelial cells that had sparse apical microvilli, tight apical intercellular junctions, perinuclear bundles of filaments, and rare cilia. Almost half of the bovine epithelial masses (4/9) had occasional diastase-resistant periodic acid-Schiff-positive granules in their cytoplasm, and few had hyaluronidase-resistant alcian blue-positive granules (2/9) or colloidal iron-positive granules (1/9). All myocardial masses had abundant collagen surrounding the tubular and acinar structures, and 2/9 had elastin fibers as well. None of the myocardial masses had Churukian-Schenk or Fontana Masson's silver staining granules in epithelial cells. Immunohistochemically, all bovine myocardial tumors stained positively for cytokeratin (8/8), and occasional masses stained positively for vimentin (3/8) or carcinoembryonic antigen (3/8). None of the masses stained positively for desmin. The myocardial epithelial tumors most likely represent endodermal rests of tissue misplaced during organogenesis.

  18. Adverse effects of cannabis.

    PubMed

    2011-01-01

    Cannabis, Cannabis sativa L., is used to produce a resin that contains high levels of cannabinoids, particularly delta9-tetrahydrocannabinol (THC), which are psychoactive substances. Although cannabis use is illegal in France and in many other countries, it is widely used for its relaxing or euphoric effects, especially by adolescents and young adults. What are the adverse effects of cannabis on health? During consumption? And in the long term? Does cannabis predispose users to the development of psychotic disorders? To answer these questions, we reviewed the available evidence using the standard Prescrire methodology. The long-term adverse effects of cannabis are difficult to evaluate. Since and associated substances, with or without the user's knowledge. Tobacco and alcohol consumption, and particular lifestyles and behaviours are often associated with cannabis use. Some traits predispose individuals to the use of psychoactive substances in general. The effects of cannabis are dosedependent.The most frequently report-ed adverse effects are mental slowness, impaired reaction times, and sometimes accentuation of anxiety. Serious psychological disorders have been reported with high levels of intoxication. The relationship between poor school performance and early, regular, and frequent cannabis use seems to be a vicious circle, in which each sustains the other. Many studies have focused on the long-term effects of cannabis on memory, but their results have been inconclusive. There do not * About fifteen longitudinal cohort studies that examined the influence of cannabis on depressive thoughts or suicidal ideation have yielded conflicting results and are inconclusive. Several longitudinal cohort studies have shown a statistical association between psychotic illness and self-reported cannabis use. However, the results are difficult to interpret due to methodological problems, particularly the unknown reliability of self-reported data. It has not been possible to

  19. Adverse effects of cannabis.

    PubMed

    2011-01-01

    Cannabis, Cannabis sativa L., is used to produce a resin that contains high levels of cannabinoids, particularly delta9-tetrahydrocannabinol (THC), which are psychoactive substances. Although cannabis use is illegal in France and in many other countries, it is widely used for its relaxing or euphoric effects, especially by adolescents and young adults. What are the adverse effects of cannabis on health? During consumption? And in the long term? Does cannabis predispose users to the development of psychotic disorders? To answer these questions, we reviewed the available evidence using the standard Prescrire methodology. The long-term adverse effects of cannabis are difficult to evaluate. Since and associated substances, with or without the user's knowledge. Tobacco and alcohol consumption, and particular lifestyles and behaviours are often associated with cannabis use. Some traits predispose individuals to the use of psychoactive substances in general. The effects of cannabis are dosedependent.The most frequently report-ed adverse effects are mental slowness, impaired reaction times, and sometimes accentuation of anxiety. Serious psychological disorders have been reported with high levels of intoxication. The relationship between poor school performance and early, regular, and frequent cannabis use seems to be a vicious circle, in which each sustains the other. Many studies have focused on the long-term effects of cannabis on memory, but their results have been inconclusive. There do not * About fifteen longitudinal cohort studies that examined the influence of cannabis on depressive thoughts or suicidal ideation have yielded conflicting results and are inconclusive. Several longitudinal cohort studies have shown a statistical association between psychotic illness and self-reported cannabis use. However, the results are difficult to interpret due to methodological problems, particularly the unknown reliability of self-reported data. It has not been possible to

  20. Human Engineered Heart Muscles Engraft and Survive Long-Term in a Rodent Myocardial Infarction Model

    PubMed Central

    Riegler, Johannes; Tiburcy, Malte; Ebert, Antje; Tzatzalos, Evangeline; Raaz, Uwe; Abilez, Oscar J.; Shen, Qi; Kooreman, Nigel G.; Neofytou, Evgenios; Chen, Vincent C.; Wang, Mouer; Meyer, Tim; Tsao, Philip S.; Connolly, Andrew J.; Couture, Larry A.; Gold, Joseph D.; Zimmermann, Wolfram H.; Wu, Joseph C.

    2015-01-01

    Rational Tissue engineering approaches may improve survival and functional benefits from human embryonic stem cell-derived cardiomyocte (ESC-CM) transplantation, thereby potentially preventing dilative remodelling and progression to heart failure. Objective Assessment of transport stability, long term survival, structural organisation, functional benefits, and teratoma risk of engineered heart muscle (EHM) in a chronic myocardial infarction (MI) model. Methods and Results We constructed EHMs from ESC-CMs and released them for transatlantic shipping following predefined quality control criteria. Two days of shipment did not lead to adverse effects on cell viability or contractile performance of EHMs (n=3, P=0.83, P=0.87). After ischemia/reperfusion (I/R) injury, EHMs were implanted onto immunocompromised rat hearts at 1 month to simulate chronic ischemia. Bioluminescence imaging (BLI) showed stable engraftment with no significant cell loss between week 2 and 12 (n=6, P=0.67), preserving up to 25% of the transplanted cells. Despite high engraftment rates and attenuated disease progression (change in ejection fraction for EHMs −6.7±1.4% vs control −10.9±1.5%, n>12, P=0.05), we observed no difference between EHMs containing viable or non-viable human cardiomyocytes in this chronic xenotransplantation model (n>12, P=0.41). Grafted cardiomyocytes showed enhanced sarcomere alignment and increased connexin 43 expression at 220 days after transplantation. No teratomas or tumors were found in any of the animals (n=14) used for long-term monitoring. Conclusions EHM transplantation led to high engraftment rates, long term survival, and progressive maturation of human cardiomyocytes. However, cell engraftment was not correlated with functional improvements in this chronic MI model. Most importantly, the safety of this approach was demonstrated by the lack of tumor or teratoma formation. PMID:26291556

  1. A Translational Study of a New Therapeutic Approach for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin into Reperfused Myocardium Reduces Ischemia-Reperfusion Injury in a Preclinical Porcine Model

    PubMed Central

    Ichimura, Kenzo; Matoba, Tetsuya; Nakano, Kaku; Tokutome, Masaki; Honda, Katsuya; Koga, Jun-ichiro; Egashira, Kensuke

    2016-01-01

    Background There is an unmet need to develop an innovative cardioprotective modality for acute myocardial infarction, for which interventional reperfusion therapy is hampered by ischemia-reperfusion (IR) injury. We recently reported that bioabsorbable poly(lactic acid/glycolic acid) (PLGA) nanoparticle-mediated treatment with pitavastatin (pitavastatin-NP) exerts a cardioprotective effect in a rat IR injury model by activating the PI3K-Akt pathway and inhibiting inflammation. To obtain preclinical proof-of-concept evidence, in this study, we examined the effect of pitavastatin-NP on myocardial IR injury in conscious and anesthetized pig models. Methods and Results Eighty-four Bama mini-pigs were surgically implanted with a pneumatic cuff occluder at the left circumflex coronary artery (LCx) and telemetry transmitters to continuously monitor electrocardiogram as well as to monitor arterial blood pressure and heart rate. The LCx was occluded for 60 minutes, followed by 24 hours of reperfusion under conscious conditions. Intravenous administration of pitavastatin-NP containing ≥ 8 mg/body of pitavastatin 5 minutes before reperfusion significantly reduced infarct size; by contrast, pitavastatin alone (8 mg/body) showed no therapeutic effects. Pitavastatin-NP produced anti-apoptotic effects on cultured cardiomyocytes in vitro. Cardiac magnetic resonance imaging performed 4 weeks after IR injury revealed that pitavastatin-NP reduced the extent of left ventricle remodeling. Importantly, pitavastatin-NP exerted no significant effects on blood pressure, heart rate, or serum biochemistry. Exploratory examinations in anesthetized pigs showed pharmacokinetic analysis and the effects of pitavastatin-NP on no-reflow phenomenon. Conclusions NP-mediated delivery of pitavastatin to IR-injured myocardium exerts cardioprotective effects on IR injury without apparent adverse side effects in a preclinical conscious pig model. Thus, pitavastatin-NP represents a novel therapeutic

  2. Magnetic resonance imaging in interventional therapy of patients with acute myocardial infarction prior to and after treatment

    PubMed Central

    Li, Yuzhou; Li, Chunrong; Jin, Hongrui; Huang, Wenqi

    2016-01-01

    The aim of the study was to investigate the cardiac magnetic resonance (CMR) imaging in interventional therapy of patients with acute myocardial infarction prior to and after treatment. Fifty-six cases of AMI patients with elective treatment by percutaneous coronary intervention (PCI) were continuously selected. Patients with an incidence of 7–10 days were treated with CMR and echocardiography to evaluate the quality of myocardial infarction, visual score method (VSM), wall motion score abnormality, left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD) and left ventricular ejection fraction (LVEF). Patients with an incidence of 10–14 days were treated with PCI, and CMR and echocardiography were evaluated after 6 months, after which the occurrence of major adverse cardiac events (MACE) were compared. The infarction quality, VSM score and wall motion abnormality (WMA) score were significantly reduced following surgery, and the difference was statistically significant (P<0.05). Ultrasound evaluation of LVEDD, LVESD, and LVEF prior to and after surgery was compared, and the difference was not statistically significant (P>0.05). Evaluation of the magnetic resonance imaging (MRI) in LVEDD prior to surgery was increased compared with that of the ultrasound in LVEDD, whereas MRI in LVESD and LVEF was decreased compared to that of the ultrasound obtained for LVESD and LVEF. Additionally, postoperative LVEDD was reduced compared with preoperative LVEDD, whereas LVEF was increased, and the difference was statistically significant (P<0.05). However, the evaluation of LVESD using the two methods exhibited no significant change. MACE occurred in 7 (12.5%) of 56 cases. The infarction quality of patients in the MACE group following surgery indicated that VSM and WMA scores were significantly higher than the group without MACE, while LVEF was lower than the MACE group following surgery, and the difference was statistically significant

  3. Vaccine adverse events.

    PubMed

    Follows, Jill

    2012-01-01

    Millions of adults are vaccinated annually against the seasonal influenza virus. An undetermined number of individuals will develop adverse events to the influenza vaccination. Those who suffer substantiated vaccine injuries, disabilities, and aggravated conditions may file a timely, no-fault and no-cost petition for financial compensation under the National Vaccine Act in the Vaccine Court. The elements of a successful vaccine injury claim are described in the context of a claim showing the seasonal influenza vaccination was the cause of Guillain-Barré syndrome.

  4. [Adverse events prevention ability].

    PubMed

    Aparo, Ugo Luigi; Aparo, Andrea

    2007-03-01

    The issue of how to address medical errors is the key to improve the health care system performances. Operational evidence collected in the last five years shows that the solution is only partially linked to future technological developments. Cultural and organisational changes are mandatory to help to manage and drastically reduce the adverse events in health care organisations. Classical management, merely based on coordination and control, is inadequate. Proactive, self-organising network based structures must be put in place and managed using adaptive, fast evolving management tools. PMID:17484160

  5. [Adverse events prevention ability].

    PubMed

    Aparo, Ugo Luigi; Aparo, Andrea

    2007-03-01

    The issue of how to address medical errors is the key to improve the health care system performances. Operational evidence collected in the last five years shows that the solution is only partially linked to future technological developments. Cultural and organisational changes are mandatory to help to manage and drastically reduce the adverse events in health care organisations. Classical management, merely based on coordination and control, is inadequate. Proactive, self-organising network based structures must be put in place and managed using adaptive, fast evolving management tools.

  6. Maternal uterine vascular remodeling during pregnancy.

    PubMed

    Osol, George; Mandala, Maurizio

    2009-02-01

    Sufficient uteroplacental blood flow is essential for normal pregnancy outcome and is accomplished by the coordinated growth and remodeling of the entire uterine circulation, as well as the creation of a new fetal vascular organ: the placenta. The process of remodeling involves a number of cellular processes, including hyperplasia and hypertrophy, rearrangement of existing elements, and changes in extracellular matrix. In this review, we provide information on uterine blood flow increases during pregnancy, the influence of placentation type on the distribution of uterine vascular resistance, consideration of the patterns, nature, and extent of maternal uterine vascular remodeling during pregnancy, and what is known about the underlying cellular mechanisms.

  7. Perioperative Assessment of Myocardial Deformation

    PubMed Central

    Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.

    2014-01-01

    Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to

  8. The Dynamic Nature of Hypertrophic and Fibrotic Remodeling of the Fish Ventricle

    PubMed Central

    Keen, Adam N.; Fenna, Andrew J.; McConnell, James C.; Sherratt, Michael J.; Gardner, Peter; Shiels, Holly A.

    2016-01-01

    Chronic pressure or volume overload can cause the vertebrate heart to remodel. The hearts of fish remodel in response to seasonal temperature change. Here we focus on the passive properties of the fish heart. Building upon our previous work on thermal-remodeling of the rainbow trout ventricle, we hypothesized that chronic cooling would initiate fibrotic cardiac remodeling, with increased myocardial stiffness, similar to that seen with pathological hypertrophy in mammals. We hypothesized that, in contrast to pathological hypertrophy in mammals, the remodeling response in fish would be plastic and the opposite response would occur following chronic warming. Rainbow trout held at 10°C (control group) were chronically (>8 weeks) exposed to cooling (5°C) or warming (18°C). Chronic cold induced hypertrophy in the highly trabeculated inner layer of the fish heart, with a 41% increase in myocyte bundle cross-sectional area, and an up-regulation of hypertrophic marker genes. Cold acclimation also increased collagen deposition by 1.7-fold and caused an up-regulation of collagen promoting genes. In contrast, chronic warming reduced myocyte bundle cross-sectional area, expression of hypertrophic markers and collagen deposition. Functionally, the cold-induced fibrosis and hypertrophy were associated with increased passive stiffness of the whole ventricle and with increased micromechanical stiffness of tissue sections. The opposite occurred with chronic warming. These findings suggest chronic cooling in the trout heart invokes a hypertrophic phenotype with increased cardiac stiffness and fibrosis that are associated with pathological hypertrophy in the mammalian heart. The loss of collagen and increased compliance following warming is particularly interesting as it suggests fibrosis may oscillate seasonally in the fish heart, revealing a more dynamic nature than the fibrosis associated with dysfunction in mammals. PMID:26834645

  9. Early myocardial damage assessment in dystrophinopathies using 99Tcm-MIBI gated myocardial perfusion imaging

    PubMed Central

    Zhang, Li; Liu, Zhe; Hu, Ke-You; Tian, Qing-Bao; Wei, Ling-Ge; Zhao, Zhe; Shen, Hong-Rui; Hu, Jing

    2015-01-01

    Background Early detection of muscular dystrophy (MD)-associated cardiomyopathy is important because early medical treatment may slow cardiac remodeling and attenuate symptoms of cardiac dysfunction; however, no sensitive and standard diagnostic method for MD at an earlier stage has been well-recognized. Thus, the aim of this study was to test the early diagnostic value of technetium 99m-methoxyisobutylisonitrile (99Tcm-MIBI) gated myocardial perfusion imaging (G-MPI) for MD. Methods and results Ninety-one patients underwent 99Tcm-MIBI G-MPI examinations when they were diagnosed with Duchenne muscular dystrophy (DMD) (n=77) or Becker muscular dystrophy (BMD; n=14). 99Tcm-MIBI G-MPI examinations were repeated in 43 DMD patients who received steroid treatments for 2 years as a follow-up examination. Myocardial defects were observed in nearly every segment of the left ventricular wall in both DMD and BMD patients compared with controls, especially in the inferior walls and the apices by using 99Tcm-MIBI G-MPI. Cardiac wall movement impairment significantly correlated with age in the DMD and BMD groups (rs=0.534 [P<0.05] and rs=0.784 [P<0.05], respectively). Intermittent intravenous doses of glucocorticoids and continuation with oral steroid treatments significantly improved myocardial function in DMD patients (P<0.05), but not in BMD patients. Conclusion 99Tcm-MIBI G-MPI is a sensitive and safe approach for early evaluation of cardiomyopathy in patients with DMD or BMD, and can serve as a candidate method for the evaluation of progression, prognosis, and assessment of the effect of glucocorticoid treatment in these patients. PMID:26677332

  10. Screening for adverse events.

    PubMed

    Karson, A S; Bates, D W

    1999-02-01

    Adverse events (AEs) in medical patients are common, costly, and often preventable. Development of quality improvement programs to decrease the number and impact of AEs demands effective methods for screening for AEs on a routine basis. Here we describe the impact, types, and potential causes of AEs and review various techniques for identifying AEs. We evaluate the use of generic screening criteria in detail and describe a recent study of the sensitivity and specificity of individual generic screening criteria and combinations of these criteria. In general, the most sensitive screens were the least specific and no small sub-set of screens identified a large percentage of adverse events. Combinations of screens that were limited to administrative data were the least expensive, but none were particularly sensitive, although in practice they might be effective since routine screening is currently rarely done. As computer systems increase in sophistication sensitivity will improve. We also discuss recent studies that suggest that programs that screen for and identify AEs can be useful in reducing AE rates. While tools for identifying AEs have strengths and weaknesses, they can play an important role in organizations' quality improvement portfolios. PMID:10468381

  11. [The relation between the low T3 syndrome in the clinical course of myocardial infarction and heart failure].

    PubMed

    Frączek, Magdalena Maria; Gackowski, Andrzej; Przybylik-Mazurek, Elwira; Nessler, Jadwiga

    2016-06-01

    It has been proven that either excess or deficiency of thyroid hormones has harmful influence on the cardiovascular system function. On the other hand, severe systemic conditions like myocardial infarction or severe heart failure may affect thyroid hormones secretion and their peripheral conversion, leading to low T3 syndrome. Amongst many mechanisms causing T4 to T3 conversion disturbances, important role plays decreased activity of D1 deiodinase and increased activity of D3 deiodinase. The animal research confirmed that thyroid hormones influence cardiomiocytes phenotype and morphology. They inhibit inflammation, apoptosis and cardiac remodelling after myocardial infarction. It was also proven that free triiodothyronine similarly to brain natriuretic peptide predict long-term prognosis in chronic and acute heart failure patients. Potential influence of low T3 syndrome on the course of myocardial infarction and heart failure may have significant impact on the future research on individualization of myocardial infarction and heart failure treatment depending on patient's thyroid status. PMID:27403906

  12. [The relation between the low T3 syndrome in the clinical course of myocardial infarction and heart failure].

    PubMed

    Frączek, Magdalena Maria; Gackowski, Andrzej; Przybylik-Mazurek, Elwira; Nessler, Jadwiga

    2016-06-01

    It has been proven that either excess or deficiency of thyroid hormones has harmful influence on the cardiovascular system function. On the other hand, severe systemic conditions like myocardial infarction or severe heart failure may affect thyroid hormones secretion and their peripheral conversion, leading to low T3 syndrome. Amongst many mechanisms causing T4 to T3 conversion disturbances, important role plays decreased activity of D1 deiodinase and increased activity of D3 deiodinase. The animal research confirmed that thyroid hormones influence cardiomiocytes phenotype and morphology. They inhibit inflammation, apoptosis and cardiac remodelling after myocardial infarction. It was also proven that free triiodothyronine similarly to brain natriuretic peptide predict long-term prognosis in chronic and acute heart failure patients. Potential influence of low T3 syndrome on the course of myocardial infarction and heart failure may have significant impact on the future research on individualization of myocardial infarction and heart failure treatment depending on patient's thyroid status.

  13. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model.

    PubMed

    D'Amore, Antonio; Yoshizumi, Tomo; Luketich, Samuel K; Wolf, Matthew T; Gu, Xinzhu; Cammarata, Marcello; Hoff, Richard; Badylak, Stephen F; Wagner, William R

    2016-11-01

    As an intervention to abrogate ischemic cardiomyopathy, the concept of applying a temporary, local patch to the surface of the recently infarcted ventricle has been explored from a number of design perspectives. Two important features considered for such a cardiac patch include the provision of appropriate mechanical support and the capacity to influence the remodeling pathway by providing cellular or biomolecule delivery. The objective of this report was to focus on these two features by first evaluating the incorporation of a cardiac extracellular matrix (ECM) component, and second by evaluating the impact of patch anisotropy on the pathological remodeling process initiated by myocardial infarction. The functional outcomes of microfibrous, elastomeric, biodegradable cardiac patches have been evaluated in a rat chronic infarction model. Ten weeks after infarction and 8 wk after patch epicardial placement, echocardiographic function, tissue-level structural remodeling (e.g., biaxial mechanical response and microstructural analysis), and cellular level remodeling were assessed. The results showed that the incorporation of a cardiac ECM altered the progression of several keys aspects of maladaptive remodeling following myocardial infarction. This included decreasing LV global mechanical compliance, inhibiting echocardiographically-measured functional deterioration, mitigating scar formation and LV wall thinning, and promoting angiogenesis. In evaluating the impact of patch anisotropy, no effects from the altered patch mechanics were detected after 8 wk, possibly due to patch fibrous encapsulation. Overall, this study demonstrates the benefit of a cardiac patch design that combines both ventricle mechanical support, through a biodegradable, fibrillary elastomeric component, and the incorporation of ECM-based hydrogel components. PMID:27579776

  14. Hybrid approach of ventricular assist device and autologous bone marrow stem cells implantation in end-stage ischemic heart failure enhances myocardial reperfusion

    PubMed Central

    2011-01-01

    We challenge the hypothesis of enhanced myocardial reperfusion after implanting a left ventricular assist device together with bone marrow mononuclear stem cells in patients with end-stage ischemic cardiomyopathy. Irreversible myocardial loss observed in ischemic cardiomyopathy leads to progressive cardiac remodelling and dysfunction through a complex neurohormonal cascade. New generation assist devices promote myocardial recovery only in patients with dilated or peripartum cardiomyopathy. In the setting of diffuse myocardial ischemia not amenable to revascularization, native myocardial recovery has not been observed after implantation of an assist device as destination therapy. The hybrid approach of implanting autologous bone marrow stem cells during assist device implantation may eventually improve native cardiac function, which may be associated with a better prognosis eventually ameliorating the need for subsequent heart transplantation. The aforementioned hypothesis has to be tested with well-designed prospective multicentre studies. PMID:21247486

  15. Raise the Floor When Remodeling Science Labs

    ERIC Educational Resources Information Center

    Nation's Schools, 1972

    1972-01-01

    A new remodeling idea adopts the concept of raised floor covering gas, water, electrical, and drain lines. The accessible floor has removable panels set into an adjustable support frame 24 inches above a concrete subfloor. (Author)

  16. Lead Poisoning in Remodeling of Old Homes

    ERIC Educational Resources Information Center

    Barnes, Bart

    1973-01-01

    An article based on Dr. Muriel D. Wolf's study of elevated blood lead levels in children and adults present during the remodeling of old homes. Lead poisoning examples, symptoms, and precautions are given. (ST)

  17. The role of Interleukin Receptor Associated Kinase (IRAK)-M in regulation of myofibroblast phenotype in vitro, and in an experimental model of non-reperfused myocardial infarction.

    PubMed

    Saxena, Amit; Shinde, Arti V; Haque, Zaffar; Wu, Yi-Jin; Chen, Wei; Su, Ya; Frangogiannis, Nikolaos G

    2015-12-01

    In the infarcted myocardium, necrotic cardiomyocytes activate innate immune pathways, stimulating pro-inflammatory signaling cascades. Although inflammation plays an important role in clearance of the infarct from dead cells and matrix debris, repair of the infarcted heart requires timely activation of signals that negatively regulate the innate immune response, limiting inflammatory injury. We have previously demonstrated that Interleukin receptor-associated kinase (IRAK)-M, a member of the IRAK family that suppresses toll-like receptor/interleukin-1 signaling, is upregulated in the infarcted heart in both macrophages and fibroblasts, and restrains pro-inflammatory activation attenuating adverse remodeling. Although IRAK-M is known to suppress inflammatory activation of macrophages, its role in fibroblasts remains unknown. Our current investigation examines the effects of IRAK-M on fibroblast phenotype and function. In vitro, IRAK-M null cardiac fibroblasts have impaired capacity to contract free-floating collagen pads. IRAK-M loss reduces transforming growth factor (TGF)-β-mediated α-smooth muscle actin (α-SMA) expression. IRAK-M deficient cardiac fibroblasts exhibit a modest reduction in TGF-β-stimulated Smad activation and increased expression of the α-SMA repressor, Y-box binding protein (YB)-1. In a model of non-reperfused myocardial infarction, IRAK-M absence does not affect collagen content and myofibroblast density in the infarcted and remodeling myocardium, but increases YB-1 levels and is associated with attenuated α-SMA expression in isolated infarct myofibroblasts. Our findings suggest that, in addition to its role in restraining inflammation following reperfused infarction, IRAK-M may also contribute to myofibroblast conversion.

  18. The role of Interleukin Receptor Associated Kinase (IRAK)-M in regulation of myofibroblast phenotype in vitro, and in an experimental model of non-reperfused myocardial infarction.

    PubMed

    Saxena, Amit; Shinde, Arti V; Haque, Zaffar; Wu, Yi-Jin; Chen, Wei; Su, Ya; Frangogiannis, Nikolaos G

    2015-12-01

    In the infarcted myocardium, necrotic cardiomyocytes activate innate immune pathways, stimulating pro-inflammatory signaling cascades. Although inflammation plays an important role in clearance of the infarct from dead cells and matrix debris, repair of the infarcted heart requires timely activation of signals that negatively regulate the innate immune response, limiting inflammatory injury. We have previously demonstrated that Interleukin receptor-associated kinase (IRAK)-M, a member of the IRAK family that suppresses toll-like receptor/interleukin-1 signaling, is upregulated in the infarcted heart in both macrophages and fibroblasts, and restrains pro-inflammatory activation attenuating adverse remodeling. Although IRAK-M is known to suppress inflammatory activation of macrophages, its role in fibroblasts remains unknown. Our current investigation examines the effects of IRAK-M on fibroblast phenotype and function. In vitro, IRAK-M null cardiac fibroblasts have impaired capacity to contract free-floating collagen pads. IRAK-M loss reduces transforming growth factor (TGF)-β-mediated α-smooth muscle actin (α-SMA) expression. IRAK-M deficient cardiac fibroblasts exhibit a modest reduction in TGF-β-stimulated Smad activation and increased expression of the α-SMA repressor, Y-box binding protein (YB)-1. In a model of non-reperfused myocardial infarction, IRAK-M absence does not affect collagen content and myofibroblast density in the infarcted and remodeling myocardium, but increases YB-1 levels and is associated with attenuated α-SMA expression in isolated infarct myofibroblasts. Our findings suggest that, in addition to its role in restraining inflammation following reperfused infarction, IRAK-M may also contribute to myofibroblast conversion. PMID:26542797

  19. Bone Remodeling Under Pathological Conditions.

    PubMed

    Xiao, Wenmei; Li, Shuai; Pacios, Sandra; Wang, Yu; Graves, Dana T

    2016-01-01

    Bone is masterfully programmed to repair itself through the coupling of bone formation following bone resorption, a process referred to as coupling. In inflammatory or other conditions, the balance between bone resorption and bone formation shifts so that a net bone loss results. This review focuses on four pathologic conditions in which remodeling leads to net loss of bone, postmenopausal osteoporosis, arthritis, periodontal disease, and disuse bone loss, which is similar to bone loss associated with microgravity. In most of these there is an acceleration of the resorptive process due to increased formation of bone metabolic units. This initially leads to a net bone loss since the time period of resorption is much faster than the time needed for bone formation that follows. In addition, each of these processes is characterized by an uncoupling that leads to net bone loss. Mechanisms responsible for increased rates of bone resorption, i.e. the formation of more bone metabolic units, involve enhanced expression of inflammatory cytokines and increased expression of RANKL. Moreover, the reasons for uncoupling are discussed which range from a decrease in expression of growth factors and bone morphogenetic proteins to increased expression of factors that inhibit Wnt signaling. PMID:26599114

  20. Pesticides and myocardial infarction incidence and mortality among male pesticide applicators in the Agricultural Health Study.

    PubMed

    Mills, Katherine T; Blair, Aaron; Freeman, Laura E Beane; Sandler, Dale P; Hoppin, Jane A

    2009-10-01

    Acute organophosphate and carbamate pesticide poisonings result in adverse cardiac outcomes. The cardiac effects of chronic low-level pesticide exposure have not been studied. The authors analyzed self-reported lifetime use of pesticides reported at enrollment (1993-1997) and myocardial infarction mortality through 2006 and self-reported nonfatal myocardial infarction through 2003 among male pesticide applicators in the Agricultural Health Study. Using proportional hazard models, the authors estimated the association between lifetime use of 49 pesticides and fatal and nonfatal myocardial infarction. There were 476 deaths from myocardial infarction among 54,069 men enrolled in the study and 839 nonfatal myocardial infarctions among the 32,024 participants who completed the follow-up interview. Fatal and nonfatal myocardial infarctions were associated with commonly reported risk factors, including age and smoking. There was little evidence of an association between having used pesticides, individually or by class, and myocardial infarction mortality (e.g., insecticide hazard ratio (HR) = 0.91, 95% confidence interval (CI): 0.67, 1.24; herbicide HR = 0.74, 95% CI: 0.49, 1.10) or nonfatal myocardial infarction incidence (e.g., insecticide HR = 0.85, 95% CI: 0.66, 1.09; herbicide HR = 0.91, 95% CI: 0.61, 1.36). There was no evidence of a dose response with any pesticide measure. In a population with low risk for myocardial infarction, the authors observed little evidence of increased risk of myocardial infarction mortality or nonfatal myocardial infarction associated with the occupational use of pesticides.

  1. Pesticides and Myocardial Infarction Incidence and Mortality Among Male Pesticide Applicators in the Agricultural Health Study

    PubMed Central

    Mills, Katherine T.; Blair, Aaron; Freeman, Laura E. Beane; Sandler, Dale P.

    2009-01-01

    Acute organophosphate and carbamate pesticide poisonings result in adverse cardiac outcomes. The cardiac effects of chronic low-level pesticide exposure have not been studied. The authors analyzed self-reported lifetime use of pesticides reported at enrollment (1993–1997) and myocardial infarction mortality through 2006 and self-reported nonfatal myocardial infarction through 2003 among male pesticide applicators in the Agricultural Health Study. Using proportional hazard models, the authors estimated the association between lifetime use of 49 pesticides and fatal and nonfatal myocardial infarction. There were 476 deaths from myocardial infarction among 54,069 men enrolled in the study and 839 nonfatal myocardial infarctions among the 32,024 participants who completed the follow-up interview. Fatal and nonfatal myocardial infarctions were associated with commonly reported risk factors, including age and smoking. There was little evidence of an association between having used pesticides, individually or by class, and myocardial infarction mortality (e.g., insecticide hazard ratio (HR) = 0.91, 95% confidence interval (CI): 0.67, 1.24; herbicide HR = 0.74, 95% CI: 0.49, 1.10) or nonfatal myocardial infarction incidence (e.g., insecticide HR = 0.85, 95% CI: 0.66, 1.09; herbicide HR = 0.91, 95% CI: 0.61, 1.36). There was no evidence of a dose response with any pesticide measure. In a population with low risk for myocardial infarction, the authors observed little evidence of increased risk of myocardial infarction mortality or nonfatal myocardial infarction associated with the occupational use of pesticides. PMID:19700503

  2. Remodeling kitchens: A smorgasbord of energy savings

    SciTech Connect

    Sullivan, B.

    1995-09-01

    The kitchen is often the busiest room in the house and is most likely to remodeled repeatedly over the life of a house. The kitchen also represents a concentration of household energy use. Remodeling a kitchen can mean introducing a host of new energy-saving features or making major energy blunders. This article discusses ways to utilized the best features: layout and design; appliances; lighting; windows and skylights; ventilation; insulation and air sealing; water; household recycling; green building materials.

  3. [Bone remodelling using the boundary element method].

    PubMed

    Martínez, Gabriela; Cerrolaza, Miguel

    2003-01-01

    An algorithm for the mathematical representation of external bone remodeling is proposed. The Boundary element method is used for the numerical analysis of trabecular bone, together with the remodeling algorithm presented by Fridez. The versatility and power of the algorithm discussed herein are shown by some numerical examples. As well, the method converges very fast to the solution, which is one of the main advantages of the proposed numerical scheme.

  4. Biomechanics of vascular mechanosensation and remodeling

    PubMed Central

    Baeyens, Nicolas; Schwartz, Martin A.

    2016-01-01

    Flowing blood exerts a frictional force, fluid shear stress (FSS), on the endothelial cells that line the blood and lymphatic vessels. The magnitude, pulsatility, and directional characteristics of FSS are constantly sensed by the endothelium. Sustained increases or decreases in FSS induce vessel remodeling to maintain proper perfusion of tissue. In this review, we discuss these mechanisms and their relevance to physiology and disease, and propose a model for how information from different mechanosensors might be integrated to govern remodeling. PMID:26715421

  5. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    SciTech Connect

    Zitta, Karina; Brandt, Berenice; Wuensch, Annegret; Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens; Albrecht, Martin

    2010-09-03

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined

  6. Silent myocardial ischemia.

    PubMed

    Gutterman, David D

    2009-05-01

    Although much progress has been made in reducing mortality from ischemic cardiovascular disease, this condition remains the leading cause of death throughout the world. This might in part be due to the fact that over half of patients have a catastrophic event (heart attack or sudden death) as their initial manifestation of coronary disease. Contributing to this statistic is the observation that the majority of myocardial ischemic episodes are silent, indicating an inability or failure to sense ischemic damage or stress on the heart. This review examines the clinical characteristics of silent myocardial ischemia, and explores mechanisms involved in the generation of angina pectoris. Possible mechanisms for the more common manifestation of injurious reductions in coronary flow; namely, silent ischemia, are also explored. A new theory for the mechanism of silent ischemia is proposed. Finally, the prognostic importance of silent ischemia and potential future directions for research are discussed.

  7. Myocardial apoptosis and SIDS.

    PubMed

    Grasmeyer, Sarah; Madea, Burkhard

    2015-01-01

    Apoptosis mediates cardiac damage in severe forms of myocarditis. In fatal myocarditis, large amounts of cardiomyocytes show apoptotic DNA fragmentation, while in human controls, few apoptotic cardiomyocytes are found. In the present study the frequency of apoptosis in 88 SIDS cases (category 1b according to the San Diego Classification) and 15 control cases was investigated. In every case myocardial samples from 8 standard locations were collected. Detection of apoptotic cardiomyocytes was performed by TUNEL method. Furthermore the myocardial tissue was stained with HE and immunohistochemical methods (LCA, CD68, CD45-R0). More than 90% of the slides did not contain apoptotic cardiomyocytes at all. The detection rate of apoptotic cardiomyocytes was almost equal in control group (26.7%) and SIDS group (23.86%). A quantification of apoptotic cardiomyocytes per mm(2) revealed no significant difference between both groups either. Altogether there is no evidence for a higher rate of apoptosis in SIDS.

  8. ISMP Adverse Drug Reactions

    PubMed Central

    2013-01-01

    The purpose of this feature is to heighten awareness of specific adverse drug reactions (ADRs), discuss methods of prevention, and promote reporting of ADRs to the US Food and Drug Administration’s (FDA’s) MedWatch program (800-FDA-1088). If you have reported an interesting, preventable ADR to MedWatch, please consider sharing the account with our readers. Write to Dr. Mancano at ISMP, 200 Lakeside Drive, Suite 200, Horsham, PA 19044 (phone: 215-707-4936; e-mail: mmancano@temple.edu). Your report will be published anonymously unless otherwise requested. This feature is provided by the Institute for Safe Medication Practices (ISMP) in cooperation with the FDA’s MedWatch program and Temple University School of Pharmacy. ISMP is an FDA MedWatch partner. PMID:24421544

  9. Physiology and pathophysiology of bone remodeling.

    PubMed

    Raisz, L G

    1999-08-01

    The skeleton is a metabolically active organ that undergoes continuous remodeling throughout life. This remodeling is necessary both to maintain the structural integrity of the skeleton and to subserve its metabolic functions as a storehouse of calcium and phosphorus. These dual functions often come into conflict under conditions of changing mechanical forces or metabolic and nutritional stress. The bone remodeling cycle involves a complex series of sequential steps that are highly regulated. The "activation" phase of remodeling is dependent on the effects of local and systemic factors on mesenchymal cells of the osteoblast lineage. These cells interact with hematopoietic precursors to form osteoclasts in the "resorption" phase. Subsequently, there is a "reversal" phase during which mononuclear cells are present on the bone surface. They may complete the resorption process and produce the signals that initiate formation. Finally, successive waves of mesenchymal cells differentiate into functional osteoblasts, which lay down matrix in the "formation" phase. The effects of calcium-regulating hormones on this remodeling cycle subserve the metabolic functions of the skeleton. Other systemic hormones control overall skeletal growth. The responses to changes in mechanical force and repair of microfractures, as well as the maintenance of the remodeling cycle, are determined locally by cytokines, prostaglandins, and growth factors. Interactions between systemic and local factors are important in the pathogenesis of osteoporosis as well as the skeletal changes in hyperparathyroidism and hyperthyroidism. Local factors are implicated in the pathogenesis of the skeletal changes associated with immobilization, inflammation, and Paget disease of bone. PMID:10430818

  10. Epigenomic regulation of oncogenesis by chromatin remodeling.

    PubMed

    Kumar, R; Li, D-Q; Müller, S; Knapp, S

    2016-08-25

    Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy. PMID:26804164

  11. Myocardial gene therapy

    NASA Astrophysics Data System (ADS)

    Isner, Jeffrey M.

    2002-01-01

    Gene therapy is proving likely to be a viable alternative to conventional therapies in coronary artery disease and heart failure. Phase 1 clinical trials indicate high levels of safety and clinical benefits with gene therapy using angiogenic growth factors in myocardial ischaemia. Although gene therapy for heart failure is still at the pre-clinical stage, experimental data indicate that therapeutic angiogenesis using short-term gene expression may elicit functional improvement in affected individuals.

  12. Myocardial Tagging With SSFP

    PubMed Central

    Herzka, Daniel A.; Guttman, Michael A.; McVeigh, Elliot R.

    2007-01-01

    This work presents the first implementation of myocardial tagging with refocused steady-state free precession (SSFP) and magnetization preparation. The combination of myocardial tagging (a noninvasive method for quantitative measurement of regional and global cardiac function) with the high tissue signal-to-noise ratio (SNR) obtained with SSFP is shown to yield improvements in terms of the myocardium–tag contrast-to-noise ratio (CNR) and tag persistence when compared to the current standard fast gradient-echo (FGRE) tagging protocol. Myocardium–tag CNR and tag persistence were studied using numerical simulations as well as phantom and human experiments. Both quantities were found to decrease with increasing imaging flip angle (α) due to an increased tag decay rate and a decrease in myocardial steady-state signal. However, higher α yielded better blood–myocardium contrast, indicating that optimal α is dependent on the application: higher α for better blood–myocardium boundary visualization, and lower α for better tag persistence. SSFP tagging provided the same myocardium–tag CNR as FGRE tagging when acquired at four times the bandwidth and better tag– and blood–myocardium CNRs than FGRE tagging when acquired at equal or twice the receiver bandwidth (RBW). The increased acquisition efficiency of SSFP allowed decreases in breath-hold duration, or increases in temporal resolution, as compared to FGRE. PMID:12541254

  13. Thrombospondins in the transition from myocardial infarction to heart failure.

    PubMed

    Kirk, Jonathan A; Cingolani, Oscar H

    2016-01-01

    The heart's reaction to ischemic injury from a myocardial infarction involves complex cross-talk between the extra-cellular matrix (ECM) and different cell types within the myocardium. The ECM functions not only as a scaffold where myocytes beat synchronously, but an active signaling environment that regulates the important post-MI responses. The thrombospondins are matricellular proteins that modulate cell--ECM interactions, functioning as "sensors" that mediate outside-in and inside-out signaling. Thrombospondins are highly expressed during embryonic stages, and although their levels decrease during adult life, can be re-expressed in high quantities in response to cardiac stress including myocardial infarction and heart failure. Like a Swiss-army knife, the thrombospondins possess many tools: numerous binding domains that allow them to interact with other elements of the ECM, cell surface receptors, and signaling molecules. It is through these that the thrombospondins function. In the present review, we provide basic as well as clinical evidence linking the thrombospondin proteins with the post myocardial infarction response, including inflammation, fibrotic matrix remodeling, angiogenesis, as well as myocyte hypertrophy, apoptosis, and contractile dysfunction in heart failure. We will describe what is known regarding the intracellular signaling pathways that are involved with these responses, paving the road for future studies identifying these proteins as therapeutic targets for cardiac disease.

  14. Incomplete RV Remodeling After Transcatheter ASD Closure in Pediatric Age.

    PubMed

    Agha, Hala M; El-Saiedi, Sonia A; Shaltout, Mohamed F; Hamza, Hala S; Nassar, Hayat H; Abdel-Aziz, Doaa M; Tantawy, Amira Esmat El

    2015-10-01

    Published data showing the intermediate effect of transcatheter device closure of atrial septal defect (ASD) in the pediatric age-group are scarce. The objective of the study was to assess the effects of transcatheter ASD closure on right and left ventricular functions by tissue Doppler imaging (TDI). The study included 37 consecutive patients diagnosed as ASD secundum by transthoracic echocardiography and TEE and referred for transcatheter closure at Cairo University Specialized Pediatric Hospital, Egypt, from October 2010 to July 2013. Thirty-seven age- and sex-matched controls were selected. TDI was obtained using the pulsed Doppler mode, interrogating the right cardiac border (the tricuspid annulus) and lateral mitral annulus, and myocardial performance index (MPI) was calculated at 1-, 3-, 6- and 12-month post-device closure. Transcatheter closure of ASD and echocardiographic examinations were successfully performed in all patients. There were no significant differences between two groups as regards the age, gender, weight or BSA. TDI showed that patients with ASD had significantly prolonged isovolumetric contraction, relaxation time and MPI compared with control group. Decreased tissue Doppler velocities of RV and LV began at one-month post-closure compared with the controls. Improvement in RVMPI and LVMPI began at 1-month post-closure, but they are still prolonged till 1 year. Reverse remodeling of right and left ventricles began 1 month after transcatheter ASD closure, but did not completely normalize even after 1 year of follow-up by tissue Doppler imaging.

  15. Extracellular matrix remodelling after coxsackievirus B3-induced murine myocarditis.

    PubMed Central

    Gómez, R. M.; Castagnino, C. G.; Berría, M. I.

    1992-01-01

    Weanling inbred Balb/c mice were intraperitoneally inoculated with a myocarditic variant of coxsackievirus B3. At days 1, 2, 4, 6, 8, 10, 14, 24 and 30 post-infection (p.i.), myocardial tissue was harvested for viral infectivity titrations and histological studies, including routine techniques (haematoxylin-eosin, Masson trichrome and von Kossa) and specialized procedures (silver impregnation for reticulin, picrosirius red stain for collagen and immunoperoxidase labelling for laminin). Virus was isolated as from day 2, reached maximal infectivity at days 6-8 and decreased gradually to become undetectable by day 14. Early histological findings during the 1st week consisted mainly of scattered foci of necrotic myocytes showing calcium deposits; slight mononuclear cell infiltration and fragmentation of both reticulin fibres and pericellular laminin were also present. From the 2nd up to 4th week p.i., inflammatory reaction abated concomitantly with the gradual development of fibrosis, as evidenced by reticulin fibre thickening, irregular laminin distribution and collagen fibre increase. Our results suggest that viral-induced necrosis is able to trigger marked extracellular matrix remodelling even in the case of minimal inflammation. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1329915

  16. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice.

    PubMed

    Mellor, Kimberley M; Bell, James R; Young, Morag J; Ritchie, Rebecca H; Delbridge, Lea M D

    2011-06-01

    Fructose intake is linked with the increasing prevalence of insulin resistance and there is now evidence for a specific insulin-resistant cardiomyopathy. The aim of this study was to determine the cardiac-specific myocardial remodeling effects of high fructose dietary intake. Given the links between insulin signaling, reactive oxygen species generation and autophagy induction, we hypothesized that autophagy contributes to pathologic remodeling in the insulin-resistant heart, and in particular may be a feature of high fructose diet-induced cardiac phenotype. Male C57Bl/6 mice were fed a high fructose (60%) diet or nutrient-matched control diet for 12 weeks. Systemic and myocardial insulin-resistant status was characterized. Superoxide production (lucigenin) and cellular growth and death signaling pathways were examined in myocardial tissue. Myocardial structural remodeling was evaluated by measurement of heart weight indices and histological analysis of collagen deposition (picrosirius red). Fructose-fed mice exhibited hyperglycemia and glucose intolerance, but plasma insulin and blood pressure were unchanged. High fructose intake suppressed the myocardial Akt cell survival signaling coincident with increased cardiac superoxide generation (21% increase, p<0.05). Fructose feeding induced elevated autophagy (LC3B-II: LC3B-I ratio: 46% increase, p<0.05) but not apoptosis signaling (unchanged Bax-1:Bcl-2 ratio). Despite a 28% increase in interstitial fibrosis, no difference in heart weight was observed in fructose-fed mice. We provide the first evidence that myocardial autophagy activation is associated with systemic insulin resistance, and that high level fructose intake inflicts direct cardiac damage. Upregulated autophagy is associated with elevated cardiac superoxide production, suppressed cell survival signaling and fibrotic infiltration in fructose-fed mice. The novel finding that autophagy contributes to cardiac pathology in insulin resistance identifies a new

  17. Adiponectin mediates cardioprotection in oxidative stress-induced cardiac myocyte remodeling

    PubMed Central

    Essick, Eric E.; Ouchi, Noriyuki; Wilson, Richard M.; Ohashi, Koji; Ghobrial, Joanna; Shibata, Rei; Pimentel, David R.

    2011-01-01

    Reactive oxygen species (ROS) induce matrix metalloproteinase (MMP) activity that mediates hypertrophy and cardiac remodeling. Adiponectin (APN), an adipokine, modulates cardiac hypertrophy, but it is unknown if APN inhibits ROS-induced cardiomyocyte remodeling. We tested the hypothesis that APN ameliorates ROS-induced cardiomyocyte remodeling and investigated the mechanisms involved. Cultured adult rat ventricular myocytes (ARVM) were pretreated with recombinant APN (30 μg/ml, 18 h) followed by exposure to physiologic concentrations of H2O2 (1–200 μM). ARVM hypertrophy was measured by [3H]leucine incorporation and atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) gene expression by RT-PCR. MMP activity was assessed by in-gel zymography. ROS was induced with angiotensin (ANG)-II (3.2 mg·kg−1·day−1 for 14 days) in wild-type (WT) and APN-deficient (APN-KO) mice. Myocardial MMPs, tissue inhibitors of MMPs (TIMPs), p-AMPK, and p-ERK protein expression were determined. APN significantly decreased H2O2-induced cardiomyocyte hypertrophy by decreasing total protein, protein synthesis, ANF, and BNP expression. H2O2-induced MMP-9 and MMP-2 activities were also significantly diminished by APN. APN significantly increased p-AMPK in both nonstimulated and H2O2-treated ARVM. H2O2-induced p-ERK activity and NF-κB activity were both abrogated by APN pretreatment. ANG II significantly decreased myocardial p-AMPK and increased p-ERK expression in vivo in APN-KO vs. WT mice. ANG II infusion enhanced cardiac fibrosis and MMP-2-to-TIMP-2 and MMP-9-to-TIMP-1 ratios in APN-KO vs. WT mice. Thus APN inhibits ROS-induced cardiomyocyte remodeling by activating AMPK and inhibiting ERK signaling and NF-κB activity. Its effects on ROS and ultimately on MMP expression define the protective role of APN against ROS-induced cardiac remodeling. PMID:21666115

  18. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome.

    PubMed

    Gao, Ling; Cao, Jia-Tian; Liang, Yan; Zhao, Yi-Chao; Lin, Xian-Hua; Li, Xiao-Cui; Tan, Ya-Jing; Li, Jing-Yi; Zhou, Cheng-Liang; Xu, Hai-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-05-01

    Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling. PMID:26578366

  19. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome.

    PubMed

    Gao, Ling; Cao, Jia-Tian; Liang, Yan; Zhao, Yi-Chao; Lin, Xian-Hua; Li, Xiao-Cui; Tan, Ya-Jing; Li, Jing-Yi; Zhou, Cheng-Liang; Xu, Hai-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-05-01

    Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling.

  20. Cardiac remodelling and RAS inhibition.

    PubMed

    Ferrario, Carlos M

    2016-06-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin-angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  1. Sinapic Acid Prevents Hypertension and Cardiovascular Remodeling in Pharmacological Model of Nitric Oxide Inhibited Rats

    PubMed Central

    Silambarasan, Thangarasu; Manivannan, Jeganathan; Krishna Priya, Mani; Suganya, Natarajan; Chatterjee, Suvro; Raja, Boobalan

    2014-01-01

    Objectives Hypertensive heart disease is a constellation of abnormalities that includes cardiac fibrosis in response to elevated blood pressure, systolic and diastolic dysfunction. The present study was undertaken to examine the effect of sinapic acid on high blood pressure and cardiovascular remodeling. Methods An experimental hypertensive animal model was induced by L-NAME intake on rats. Sinapic acid (SA) was orally administered at a dose of 10, 20 and 40 mg/kg body weight (b.w.). Blood pressure was measured by tail cuff plethysmography system. Cardiac and vascular function was evaluated by Langendorff isolated heart system and organ bath studies, respectively. Fibrotic remodeling of heart and aorta was assessed by histopathologic analyses. Oxidative stress was measured by biochemical assays. mRNA and protein expressions were assessed by RT-qPCR and western blot, respectively. In order to confirm the protective role of SA on endothelial cells through its antioxidant property, we have utilized the in vitro model of H2O2-induced oxidative stress in EA.hy926 endothelial cells. Results Rats with hypertension showed elevated blood pressure, declined myocardial performance associated with myocardial hypertrophy and fibrosis, diminished vascular response, nitric oxide (NO) metabolites level, elevated markers of oxidative stress (TBARS, LOOH), ACE activity, depleted antioxidant system (SOD, CAT, GPx, reduced GSH), aberrant expression of TGF-β, β-MHC, eNOS mRNAs and eNOS protein. Remarkably, SA attenuated high blood pressure, myocardial, vascular dysfunction, cardiac fibrosis, oxidative stress and ACE activity. Level of NO metabolites, antioxidant system, and altered gene expression were also repaired by SA treatment. Results of in vitro study showed that, SA protects endothelial cells from oxidative stress and enhance the production of NO in a concentration dependent manner. Conclusions Taken together, these results suggest that SA may have beneficial role in the

  2. Region-specific alterations of global protein expression in the remodelled rat myocardium.

    PubMed

    Melle, Christian; Camacho, Juan A; Surber, Ralf; Betge, Stefan; Von Eggeling, Ferdinand; Zimmer, Thomas

    2006-12-01

    We applied the novel ProteinChip technology (SELDI-MS) to investigate and identify differentially regulated proteins upon myocardial remodelling in different heart regions. Tissue samples were isolated from the atria, the interventricular septum, and the right and left ventricles three months after surgically-induced myocardial infarction (MI) in rats. Corresponding protein extracts from control versus MI hearts were analysed on two different ProteinChip surfaces. In each of the functionally distinct cardiac regions, we obtained specific protein profile alterations upon myocardial remodelling. Most alterations were observed in the non-infarcted right ventricle, where down-regulation occurred more frequently than up-regulation of protein expression. Three of the differentially regulated proteins were identified: the metabolic enzyme triosephosphate isomerase (TIM), the cell signalling protein Raf-1 kinase inhibitory protein (RKIP), also known as phosphatidylethanolamine binding protein (PEBP), and the small heat shock protein alphaB-crystallin. These proteins showed a pronounced tissue-dependent regulation. TIM was down-regulated only in the atrium and in the left ventricle, RKIP/PEBP was down-regulated only in the right ventricle and in the interventricular septum, and alphaB-crystallin was up-regulated only in the right and in the left ventricle. A simple correlation of peak intensity changes using two of the identified peaks demonstrated the diagnostic potential of SELDI-MS. We conclude that this novel proteomic method is a powerful high-throughput tool for the fast detection of region-specific cardiac protein profiles in small biopsy samples, and that SELDI-MS may become a useful complementary technique for the diagnosis and prognosis of cardiac diseases. PMID:17089028

  3. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction.

    PubMed

    Gaetani, Roberto; Feyen, Dries A M; Verhage, Vera; Slaats, Rolf; Messina, Elisa; Christman, Karen L; Giacomello, Alessandro; Doevendans, Pieter A F M; Sluijter, Joost P G

    2015-08-01

    Cardiac cell therapy suffers from limitations related to poor engraftment and significant cell death after transplantation. In this regard, ex vivo tissue engineering is a tool that has been demonstrated to increase cell retention and survival. The aim of our study was to evaluate the therapeutic potential of a 3D-printed patch composed of human cardiac-derived progenitor cells (hCMPCs) in a hyaluronic acid/gelatin (HA/gel) based matrix. hCMPCs were printed in the HA/gel matrix (30 × 10(6) cells/ml) to form a biocomplex made of six perpendicularly printed layers with a surface of 2 × 2 cm and thickness of 400 μm, in which they retained their viability, proliferation and differentiation capability. The printed biocomplex was transplanted in a mouse model of myocardial infarction (MI). The application of the patch led to a significant reduction in adverse remodeling and preservation of cardiac performance as was shown by both MRI and histology. Furthermore, the matrix supported the long-term in vivo survival and engraftment of hCMPCs, which exhibited a temporal increase in cardiac and vascular differentiation markers over the course of the 4 week follow-up period. Overall, we developed an effective and translational approach to enhance hCMPC delivery and action in the heart.

  4. Cardiac oxytocin receptor blockade stimulates adverse cardiac remodeling in ovariectomized spontaneously hypertensive rats.

    PubMed

    Jankowski, Marek; Wang, Donghao; Danalache, Bogdan; Gangal, Marius; Gutkowska, Jolanta

    2010-08-01

    An increasing amount of evidence demonstrates the beneficial role of oxytocin (OT) in the cardiovascular system. Similar actions are attributed to genistein, an isoflavonic phytoestrogen. The treatment with genistein activates the OT system in the aorta of ovariectomized (OVX) Sprague-Dawley (SD) rats. The objective of this study was to determine the effects of low doses of genistein on the OT-induced effects in rat hypertension. The hypothesis tested was that treatment of OVX spontaneously hypertensive rats (SHRs) with genistein improves heart structure and heart work through a mechanism involving the specific OT receptor (OTR). OVX SHRs or SD rats were treated with genistein (in microg/g body wt sc, 10 days) in the presence or absence of an OT antagonist (OTA) [d(CH(2))(5), Tyr(Me)(2), Orn(8)]-vasotocin or a nonspecific estrogen receptor antagonist (ICI-182780). Vehicle-treated OVX rats served as controls. RT-PCR and Western blot analysis demonstrated that left ventricular (LV) OTR, downregulated by ovariectomy, increased in response to genistein. In SHRs or SD rats, this effect was blocked by OTA or ICI-182780 administration. The OTR was mainly localized in microvessels expressing the CD31 marker and colocalized with endothelial nitric oxide synthase. In SHRs, the genistein-stimulated OTR increases were associated with improved fractional shortening, decreased blood pressure (12 mmHg), decreased heart weight-to-body weight ratio, decreased fibrosis, and lowered brain natriuretic peptide in the LV. The prominent finding of the study is the detrimental effect of OTA treatment on the LV of SHRs. OTA treatment of OVX SHRs resulted in a dramatic worsening of ejection fractions and an augmented fibrosis. In conclusion, these results demonstrate that cardiac OTRs are involved in the regulation of cardiac function of OVX SHRs. The decreases of OTRs may contribute to cardiac pathology following menopause.

  5. Chromatin remodelling initiation during human spermiogenesis

    PubMed Central

    De Vries, Marieke; Ramos, Liliana; Housein, Zjwan; De Boer, Peter

    2012-01-01

    Summary During the last phase of spermatogenesis, spermiogenesis, haploid round spermatids metamorphose towards spermatozoa. Extensive cytoplasmic reduction and chromatin remodelling together allow a dramatic decrease of cellular, notably nuclear volume. DNA packing by a nucleosome based chromatin structure is largely replaced by a protamine based one. At the cytoplasmic level among others the acrosome and perinuclear theca (PNT) are formed. In this study we describe the onset of chromatin remodelling to occur concomitantly with acrosome and PNT development. In spread human round spermatid nuclei, we show development of a DAPI-intense doughnut-like structure co-localizing with the acrosomal sac and sub acrosomal PNT. At this structure we observe the first gradual decrease of nucleosomes and several histones. Histone post-translational modifications linked to chromatin remodelling such as H4K8ac and H4K16ac also delineate the doughnut, that is furthermore marked by H3K9me2. During the capping phase of acrosome development, the size of the doughnut-like chromatin domain increases, and this area often is marked by uniform nucleosome loss and the first appearance of transition protein 2 and protamine 1. In the acrosome phase at nuclear elongation, chromatin remodelling follows the downward movement of the marginal ring of the acrosome. Our results indicate that acrosome development and chromatin remodelling are interacting processes. In the discussion we relate chromatin remodelling to the available data on the nuclear envelope and the linker of nucleoskeleton and cytoskeleton (LINC) complex of spermatids, suggesting a signalling route for triggering chromatin remodelling. PMID:23213436

  6. Periprosthetic Bone Remodelling in Total Knee Arthroplasty

    PubMed Central

    GEORGEANU, Vlad; ATASIEI, Tudor; GRUIONU, Lucian

    2014-01-01

    Introduction: The clinical studies have shown that the displacement of the prosthesis components, especially of the tibial one is higher during the first year, after which it reaches an equilibrum position compatible with a good long term functioning. This displacement takes place due to bone remodelling close to the implant secondary to different loading concentrations over different areas of bone. Material and Method: Our study implies a simulation on a computational model using the finite element analysis. The simulation started taking into account arbitrary points because of non-linear conditions of bone-prosthesis interface and it was iterative.. A hundred consecutive situations corresponding to intermediate bone remodelling phases have been calculated according to given loadings. Bone remodelling was appreciated as a function of time and bone density for each constitutive element of the computational model created by finite element method. For each constitutive element a medium value of stress during the walking cycle was applied. Results: Analyse of proximal epiphysis-prosthesis complex slices showed that bone density increase is maintained all over the stem in the immediately post-operative period. At 10 months, the moment considered to be the end of bone remodelling, areas with increased bone density are fewer and smaller. Meanwhile, their distribution with a concentration toward the internal compartment in the distal metaphysis is preserved. Conclusions: After the total knee arthroplasty the tibial bone suffered a process of remodelling adapted to the new stress conditions. This bone remodelling can influence, sometimes negatively, especially in the cases with tibial component varus malposition, the fixation, respectively the survival of the prosthesis. This process has been demonstrated both by clinical trials and by simulation, using the finite elements method of periprosthetic bone remodelling. PMID:25553127

  7. Myocardial steatosis and necrosis in atria and ventricles of rats given pyruvate dehydrogenase kinase inhibitors.

    PubMed

    Jones, Huw Bowen; Reens, Jaimini; Johnson, Elizabeth; Brocklehurst, Simon; Slater, Ian

    2014-12-01

    Pharmaceutical therapies for non-insulin-dependent diabetes mellitus (NIDDM) include plasma glucose lowering by enhancing glucose utilization. The mitochondrial pyruvate dehydrogenase (PDH) complex is important in controlling the balance between glucose and fatty acid substrate oxidation. Administration of pyruvate dehydrogenase kinase inhibitors (PDHKIs) to rats effectively lowers plasma glucose but results in myocardial steatosis that in some instances is associated primarily with atrial and to a lesser degree with ventricular pathology. Induction of myocardial steatosis is not dose-dependent, varies from minimal to moderate severity, and is either of multifocal or diffuse distribution. Ventricular histopathology was restricted to few myocardial degenerative fibers, while that in the atrium/atria was of either acute or chronic appearance with the former showing myocardial degeneration/necrosis, acute myocarditis, edema, endothelial activation (rounding up), endocarditis, and thrombosis associated with moderate myocardial steatosis and the latter with myocardial loss, replacement fibrosis, and no apparent or minimal association with steatosis. The evidence from these evaluations indicate that excessive intramyocardial accumulation of lipid may be either primarily adverse or represents an indicator of other adversely affected cellular processes.

  8. Obesity and carotid artery remodeling

    PubMed Central

    Kozakova, M; Palombo, C; Morizzo, C; Højlund, K; Hatunic, M; Balkau, B; Nilsson, P M; Ferrannini, E

    2015-01-01

    Background/Objective: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness (IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS) in altered hemodynamic conditions characterized by body size-dependent increase in stroke volume (SV) and blood pressure (BP). Subjects/Methods: Common carotid artery (CCA) luminal diameter (LD), IMT and CWS were measured in three different populations in order to study: (A) cross-sectional associations between SV, BP, anthropometric parameters and CCA LD (266 healthy subjects with wide range of body weight (24–159 kg)); (B) longitudinal associations between CCA LD and 3-year IMT progression rate (ΔIMT; 571 healthy non-obese subjects without increased cardiovascular (CV) risk); (C) the impact of obesity on CCA geometry and CWS (88 obese subjects without CV complications and 88 non-obese subjects matched for gender and age). Results: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD was an independent determinant of ΔIMT, and ΔIMT of subjects in the highest LD quartile was significantly higher (28±3 μm) as compared with those in the lower quartiles (8±3, 16±4 and 16±3 μm, P=0.001, P<0.05 and P=0.01, respectively). In addition, CCA CWS decreased during the observational period in the highest LD quartile (from 54.2±8.6 to 51.6±7.4 kPa, P<0.0001). As compared with gender- and age-matched lean individuals, obese subjects had highly increased CCA LD and BP (P<0.0001 for both), but only slightly higher CWS (P=0.05) due to a significant increase in IMT (P=0.005 after adjustment for confounders). Conclusions: Our findings suggest that in obese subjects, the CCA wall thickens to compensate the luminal enlargement caused by body size-induced increase in SV, and therefore, to normalize the wall stress. CCA diameter in obesity could

  9. PPARs: Protectors or Opponents of Myocardial Function?

    PubMed Central

    Pol, Christine J.; Lieu, Melissa; Drosatos, Konstantinos

    2015-01-01

    Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPARα, PPARγ, and PPARδ. They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology on myocardial function. PMID:26713088

  10. A fly's view of neuronal remodeling.

    PubMed

    Yaniv, Shiri P; Schuldiner, Oren

    2016-09-01

    Developmental neuronal remodeling is a crucial step in sculpting the final and mature brain connectivity in both vertebrates and invertebrates. Remodeling includes degenerative events, such as neurite pruning, that may be followed by regeneration to form novel connections during normal development. Drosophila provides an excellent model to study both steps of remodeling since its nervous system undergoes massive and stereotypic remodeling during metamorphosis. Although pruning has been widely studied, our knowledge of the molecular and cellular mechanisms is far from complete. Our understanding of the processes underlying regrowth is even more fragmentary. In this review, we discuss recent progress by focusing on three groups of neurons that undergo stereotypic pruning and regrowth during metamorphosis, the mushroom body γ neurons, the dendritic arborization neurons and the crustacean cardioactive peptide peptidergic neurons. By comparing and contrasting the mechanisms involved in remodeling of these three neuronal types, we highlight the common themes and differences as well as raise key questions for future investigation in the field. WIREs Dev Biol 2016, 5:618-635. doi: 10.1002/wdev.241 For further resources related to this article, please visit the WIREs website. PMID:27351747

  11. STIM1-dependent Ca2+ microdomains are required for myofilament remodeling and signaling in the heart

    PubMed Central

    Parks, Cory; Alam, Mohammad Afaque; Sullivan, Ryan; Mancarella, Salvatore

    2016-01-01

    In non-excitable cells stromal interaction molecule 1 (STIM1) is a key element in the generation of Ca2+ signals that lead to gene expression, migration and cell proliferation. A growing body of literature suggests that STIM1 plays a key role in the development of pathological cardiac hypertrophy. However, the precise mechanisms involving STIM-dependent Ca2+ signaling in the heart are not clearly established. Here, we have investigated the STIM1-associated Ca2+ signals in cardiomyocytes and their relevance to pathological cardiac remodeling. We show that mice with inducible, cardiac-restricted, ablation of STIM1 exhibited left ventricular reduced contractility, which was corroborated by impaired single cell contractility. The spatial properties of STIM1-dependent Ca2+ signals determine restricted Ca2+ microdomains that regulate myofilament remodeling and activate spatially segregated pro-hypertrophic factors. Indeed, mice lacking STIM1 showed less adverse structural remodeling in response to pressure overload-induced cardiac hypertrophy. These results highlight how STIM1-dependent Ca2+ microdomains have a major impact on intracellular Ca2+ homeostasis, cytoskeletal remodeling and cellular signaling, even when excitation-contraction coupling is present. PMID:27150728

  12. The GSK-3 family as therapeutic target for myocardial diseases

    PubMed Central

    Lal, Hind; Ahmad, Firdos; Woodgett, James; Force, Thomas

    2014-01-01

    GSK-3 is one of the very few signaling molecules that regulate a truly astonishing number of critical intracellular signaling pathways. It has been implicated in a number of diseases including heart failure, bipolar disorder, diabetes, Alzheimer’s disease, aging, inflammation and cancer. Furthermore, a recent clinical trial has validated the feasibility of targeting GSK-3 with small molecule inhibitors for human diseases. In the current review we will focus on its expanding role in the heart, concentrating primarily on recent studies that have employed cardiomyocyte- and fibroblast-specific conditional gene deletion in mouse models. We will highlight the role of the GSK-3 isoforms in various pathological conditions including myocardial aging, ischemic injury, myocardial fibrosis and cardiomyocyte proliferation. We will discuss our recent findings that deletion of GSK-3α specifically in cardiomyocytes attenuates ventricular remodeling and cardiac dysfunction post-MI by limiting scar expansion and promoting cardiomyocyte proliferation. The recent emergence of GSK-3β as a regulator of myocardial fibrosis will also be discussed. We will review our very recent findings that specific deletion of GSK-3β in cardiac fibroblasts leads to fibrogenesis, left ventricular dysfunction and excessive scarring in the ischemic heart. Finally, we will examine the underlying mechanisms that drive the aberrant myocardial fibrosis in the models in which GSK-3β is specifically deleted in cardiac fibroblasts. We will summarize these recent results and offer explanations, whenever possible, and hypotheses when not. For these studies we will rely heavily on our models and those of others to reconcile some of the apparent inconsistencies in the literature. PMID:25552693

  13. Effect of flosequinan (BTS 49465) on myocardial oxygen consumption.

    PubMed

    Greenberg, S; Touhey, B; Paul, J

    1990-06-01

    BTS 49465 (flosequinan), a putative selective, balanced arterial and venous vasodilator, displays positive inotropic effects in doses lower than those producing vasodilation. Thus rather than unloading the myocardium, flosequinan may increase myocardial work and oxygen consumption (MVO2), and may adversely affect the patient with myocardial ischemia or compromised coronary blood flow. This study compared the effects of flosequinan with milrinone, a mixed positive inotropic agent and vasodilator, and with nitroprusside (SNP), a standard direct-acting vasodilator, on myocardial dP/dT, MVO2, and myocardial energetics in the normal pentobartital-anesthetized dog. The effect of flosequinan on myocardial work was also evaluated in the dog with propranolol-induced heart failure (PIHF). Fifteen minutes after intraduodenal (id) administration of flosequinan (0.3, 1.0, and 3.0 mg/kg) to seven dogs, mean myocardial dP/dT was increased by 11%, 27%, and 54%, respectively, whereas stroke MVO2 was increased by 10%, 24%, and 47%, respectively. Doses of flosequinan greater than 0.3 mg/kg decreased left ventricular (LV) work but LV efficiency decreased in a dose-related manner. Milrinone (0.1, 0.3, and 1.0 mg/kg, id) increased LV dp/dt by 34%, 68%, and 104% above basal values, while increasing stroke MVO2 by 24%, 106%, and 249%, respectively (n = 7). LV work and LV efficiency decreased after each dose of milrinone. SNP (0.001, 0.003, and 0.01 mg/kg/min, intravenously) did not increase dP/dT but decreased LV work by 28%, 42%, and 46% (n = 5). In animals with PIHF, flosequinan (1 and 3 mg/kg, id) increased LV dP/dT 58% and 87% and increased LV work by 58% and 76% above control values. It was concluded that (1) flosequinan is a positive inotropic agent as well as a vasodilator; (2) in the normal animal the energy cost of positive inotropic activity is less with flosequinan than with milrinone, despite the lesser vasodilating action of the former; and (3) in the animal with a depressed

  14. Computational Method for Identifying and Quantifying Shape Features of Human Left Ventricular Remodeling

    PubMed Central

    Ardekani, Siamak; Weiss, Robert G.; Lardo, Albert C.; George, Richard T.; Lima, Joao A. C.; Wu, Katherine C.; Miller, Michael I.; Winslow, Raimond L.; Younes, Laurent

    2010-01-01

    Left ventricular remodeling during the development of heart failure is a strong predictor of cardiovascular mortality. However, methods to objectively quantify remodeling-associated shape changes are not routinely available but may be possible with new computational anatomy tools. In this study, we analyzed and compared multi-detector computed tomographic (MDCT) images of ventricular shape at endsystole (ES) and end-diastole (ED) to determine whether regional structural characteristics could be identified and, as a proof of principle, whether differences in hearts of patients with anterior myocardial infarction (MI) and ischemic cardiomyopathy (ICM) could be distinguished from those with global nonischemic cardiomyopathy (NICM). MDCT images of hearts from 11 patients (5 with ICM) with ejection fractions (EF) > 35% were analyzed. An average ventricular shape model (template) was constructed for each cardiac phase by bringing heart shapes into correspondence using linear and nonlinear image matching algorithms. Next, transformation fields were computed between the template image and individual heart images in the population. Principal component analysis (PCA) method was used to quantify ventricular shape differences described by the transformation vector fields. Statistical analysis of PCA coefficients revealed significant ventricular shape differences at ED (p = 0.03) and ES (p = 0.03). For validation, a second set of 14 EF-matched patients (8 with ICM) were evaluated. The discrimination rule learned from the training data set was able to differentiate ICM from NICM patients (p = 0.008). Application of a novel shape analysis method to in vivo human cardiac images acquired on a clinical scanner is feasible and can quantify regional shape differences at end-systole in remodeled myopathic human myocardium. This approach may be useful in identifying differences in the remodeling process between ICM and NICM populations and possibly in differentiating the populations

  15. Angiographic adverse events during percutaneous coronary intervention fail to predict creatine kinase-MB elevation.

    PubMed

    Blankenship, James C; Islam, M Ashequl; Wood, G Craig; Iliadis, Elias A

    2004-09-01

    We attempted to determine if aggressive detection of angiographic adverse events during coronary intervention could predict subsequent creatine kinase (CK)-MB elevations. During coronary intervention, both fluoroscopy and cine angiography were used to detect angiographic adverse events. At least one angiographic adverse event occurred in 133/251 (53%) of procedures. CK-MB elevation occurred in 24% of procedures. Slow flow during the procedure (P=0.002) and chest discomfort at the end of the procedure (P=0.007) were the strongest predictors of CK-MB elevation. Among procedures with no angiographic adverse events, CK-MB elevation occurred in 15/121 (12%), accounting for 25% of CK-MB elevations. We conclude that CK-MB elevation occurs after angiographically uncomplicated coronary interventions even when angiographic adverse events are aggressively detected. Routine monitoring of cardiac enzymes is necessary to detect all patients who will experience myocardial injury after coronary intervention.

  16. Risk stratification after acute myocardial infarction in the reperfusion era.

    PubMed

    Michaels, A D; Goldschlager, N

    2000-01-01

    Historically, risk stratification for survivors of acute myocardial infarction (AMI) has centered on 3 principles: assessment of left ventricular function, detection of residual myocardial ischemia, and estimation of the risk for sudden cardiac death. Although these factors still have important prognostic implications for these patients, our ability to predict adverse cardiac events has significantly improved over the last several years. Recent studies have identified powerful predictors of adverse cardiac events available from the patient history, physical examination, initial electrocardiogram, and blood testing early in the evaluation of patients with AMI. Numerous studies performed in patients receiving early reperfusion therapy with either thrombolysis or primary angioplasty have emphasized the importance of a patent infarct related artery for long-term survival. The predictive value of a variety of noninvasive and invasive tests to predict myocardial electrical instability have been under active investigation in patients receiving early reperfusion therapy. The current understanding of the clinically important predictors of clinical outcomes in survivors of AMI is reviewed in this article. PMID:10661780

  17. Myocardial fibre calcification.

    PubMed Central

    McClure, J; Pieterse, A S; Pounder, D J; Smith, P S

    1981-01-01

    Three cases of myocardial fibre calcification found at post-mortem examination are described. In one case there was antemortem hypercalcaemia and hyperphosphataemia and the case was clearly an example of metastatic calcification. In the other two cases there was ischaemic myocardial necrosis and calcification was seen in fibres which were not overtly necrotic, but which were both in proximity to (the majority) and remote from the necrotic zones. Since renal failure with hyperphosphataemia was present in both cases, these were considered to be examples of augmented (by the hyperphosphataemia) dystrophic calcification. The histological, histochemical and ultrastructural features were identical in the three cases. Hydroxyapatite formation was observed initially in mitochondria, followed by spillage of crystals into the cytosol and ultimately into the interstitium. It is suggested that the fundamental lesion is a dysfunction of the fibre membrane; the similarity of this reaction with the calcification seen in skeletal muscle fibres in various myopathies is noted and a unifying hypothesis of the mechanism of skeletal and cardiac muscle fibre calcification is thereby suggested. Images PMID:7309897

  18. Valsartan after myocardial infarction.

    PubMed

    Güleç, Sadi

    2014-12-01

    One of the important problems of the patients undergoing acute myocardial infarction (MI) is early development of heart failure. It has been revealed in various studies that renin-angiotensin-aldosterone system (RAAS) has a significant role in this process. The studies conducted with angiotensin converting enzyme (ACE) inhibitors have resulted in decreased mortality rate. Another RAAS blocker which was discovered about ten years later than other ACE inhibitors in historical process is angiotensin receptor blockers (ARB) inhibiting the efficiency of angiotensin 2 by binding to angiotensin 1 receptor. Valsartan is one of the molecules of this group, which has higher number of large-scale randomized clinical studies. In this review, following presentation of a general overview on heart failure after acute MI, the efficiency of ARBs in this patient group will be discussed. This discussion will mostly emphasize the construction, outcomes and clinical importance of VALIANT (VALsartan In Acute myocardial iNfarcTion), which is the study on valsartan after acute MI heart failure. PMID:25604205

  19. Trauma induced myocardial infarction.

    PubMed

    Lolay, Georges A; Abdel-Latif, Ahmed K

    2016-01-15

    Chest Trauma in athletes is a common health problem. However, myocardial infarction secondary to coronary dissection in the setting of blunt chest trauma is extremely rare. We report a case of acute inferior wall myocardial infarction following blunt chest trauma. A 32-year-old male with no relevant medical problems was transferred to our medical center for retrosternal chest pain after being elbowed in the chest during a soccer game. Few seconds later, he started experiencing sharp retrosternal chest pain that was severe to that point where he called the emergency medical service. Upon arrival to the trauma department patient was still complaining of chest pain. ECG demonstrated ST segment elevation in the inferior leads with reciprocal changes in the lateral leads all consistent with active ischemia. After rolling out aortic dissection, patient was loaded with ASA, ticagerlor, heparin and was emergently taken to the cardiac catheterization lab. Coronary angiography demonstrated 100% thrombotic occlusion in the distal right coronary artery with TIMI 0 flow distally. After thrombus aspiration, a focal dissection was noted on the angiogram that was successfully stented. Two days after admission patient was discharged home. Echocardiography prior to discharge showed inferior wall akinesis, normal right ventricular systolic function and normal overall ejection fraction.

  20. Scar remodeling after strabismus surgery.

    PubMed Central

    Ludwig, I H

    1999-01-01

    limitation of versions, less separation of the tendons from sclera, and thicker appearance of the scar segments. The use of nonabsorbable sutures in the repair procedure reduced the recurrence rate. Histologic examination of the clinical stretched scar specimens showed dense connective tissue that was less well organized compared with normal tendon. In the tissue culture studies, cells cultured from the stretched scar specimens grew rapidly and were irregularly shaped. A high-molecular-weight protein was identified in the culture medium. By contrast, cells cultured from normal tendon (controls) grew more slowly and regularly, stopped growing at 4 days, and produced less total protein than cultured stretched scar specimens. In the animal model studies, the collagenase-treated sites showed elongated scars with increased collagen between the muscle and the sclera, as well as increased collagen creep rates, compared with the saline-treated controls. The use of nonabsorbable sutures in collagenase-treated animal model surgery sites was associated with shorter, thicker scars compared with similar sites sutured with absorbable sutures. CONCLUSIONS: A lengthened or stretched, remodeled scar between an operated muscle tendon and sclera is a common occurrence and is a factor contributing to the variability of outcome after strabismus repair, even years later. This abnormality may be revealed by careful exploration of previously operated muscles. Definitive repair requires firm reattachment of tendon to sclera with nonabsorbable suture support. Images FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 21 FIGURE 22 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 30 FIGURE 31 FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 FIGURE 38 FIGURE 39 FIGURE 40 FIGURE 41 FIGURE 42 FIGURE 43 FIGURE 44 FIGURE 45 FIGURE 46 FIGURE 52

  1. Fiber architecture in remodeled myocardium revealed with a quantitative diffusion CMR tractography framework and histological validation

    PubMed Central

    2012-01-01

    Background The study of myofiber reorganization in the remote zone after myocardial infarction has been performed in 2D. Microstructural reorganization in remodeled hearts, however, can only be fully appreciated by considering myofibers as continuous 3D entities. The aim of this study was therefore to develop a technique for quantitative 3D diffusion CMR tractography of the heart, and to apply this method to quantify fiber architecture in the remote zone of remodeled hearts. Methods Diffusion Tensor CMR of normal human, sheep, and rat hearts, as well as infarcted sheep hearts was performed ex vivo. Fiber tracts were generated with a fourth-order Runge-Kutta integration technique and classified statistically by the median, mean, maximum, or minimum helix angle (HA) along the tract. An index of tract coherence was derived from the relationship between these HA statistics. Histological validation was performed using phase-contrast microscopy. Results In normal hearts, the subendocardial and subepicardial myofibers had a positive and negative HA, respectively, forming a symmetric distribution around the midmyocardium. However, in the remote zone of the infarcted hearts, a significant positive shift in HA was observed. The ratio between negative and positive HA variance was reduced from 0.96 ± 0.16 in normal hearts to 0.22 ± 0.08 in the remote zone of the remodeled hearts (p<0.05). This was confirmed histologically by the reduction of HA in the subepicardium from −52.03° ± 2.94° in normal hearts to −37.48° ± 4.05° in the remote zone of the remodeled hearts (p < 0.05). Conclusions A significant reorganization of the 3D fiber continuum is observed in the remote zone of remodeled hearts. The positive (rightward) shift in HA in the remote zone is greatest in the subepicardium, but involves all layers of the myocardium. Tractography-based quantification, performed here for the first time in remodeled hearts, may provide a framework for assessing

  2. Cellular Mechanisms of Tissue Fibrosis. 2. Contributory pathways leading to myocardial fibrosis: moving beyond collagen expression

    PubMed Central

    Goldsmith, Edie C.; Bradshaw, Amy D.

    2013-01-01

    While the term “fibrosis” can be misleading in terms of the complex patterns and processes of myocardial extracellular matrix (ECM) remodeling, fibrillar collagen accumulation is a common consequence of relevant pathophysiological stimuli, such as pressure overload (PO) and myocardial infarction (MI). Fibrillar collagen accumulation in both PO and MI is predicated on a number of diverse cellular and extracellular events, which include changes in fibroblast phenotype (transdifferentiation), posttranslational processing and assembly, and finally, degradation. The expansion of a population of transformed fibroblasts/myofibroblasts is a significant cellular event with respect to ECM remodeling in both PO and MI. The concept that this cellular expansion within the myocardial ECM may be due, at least in part, to endothelial-mesenchymal transformation and thereby not dissimilar to events observed in cancer progression holds intriguing future possibilities. Studies regarding determinants of procollagen processing, such as procollagen C-endopeptidase enhancer (PCOLCE), and collagen assembly, such as the secreted protein acidic and rich in cysteine (SPARC), have identified potential new targets for modifying the fibrotic response in both PO and MI. Finally, the transmembrane matrix metalloproteinases, such as MMP-14, underscore the diversity and complexity of this ECM proteolytic family as this protease can degrade the ECM as well as induce a profibrotic response. The growing recognition that the myocardial ECM is a dynamic entity containing a diversity of matricellular and nonstructural proteins as well as proteases and that the fibrillar collagens can change in structure and content in a rapid temporal fashion has opened up new avenues for modulating what was once considered an irreversible event - myocardial fibrosis. PMID:23174564

  3. Adverse Reactions to Hallucinogenic Drugs.

    ERIC Educational Resources Information Center

    Meyer, Roger E. , Ed.

    This reports a conference of psychologists, psychiatrists, geneticists and others concerned with the biological and psychological effects of lysergic acid diethylamide and other hallucinogenic drugs. Clinical data are presented on adverse drug reactions. The difficulty of determining the causes of adverse reactions is discussed, as are different…

  4. Nocturnal Blood Pressure Pattern Affects Left Ventricular Remodeling and Late Gadolinium Enhancement in Patients with Hypertension and Left Ventricular Hypertrophy

    PubMed Central

    Yokota, Hajime; Imai, Yasuko; Tsuboko, Yusuke; Tokumaru, Aya M.; Fujimoto, Hajime; Harada, Kazumasa

    2013-01-01

    Background Left ventricular hypertrophy (LVH) is an independent predictor of cardiac mortality, regardless of its etiology. Previous studies have shown that high nocturnal blood pressure (BP) affects LV geometry in hypertensive patients. It has been suggested that continuous pressure overload affects the development of LVH, but it is unknown whether persistent pressure influences myocardial fibrosis or whether the etiology of LVH is associated with myocardial fibrosis. Comprehensive cardiac magnetic resonance (CMR) including the late gadolinium enhancement (LGE) technique can evaluate both the severity of changes in LV geometry and myocardial fibrosis. We tested the hypothesis that the nocturnal non-dipper BP pattern causes LV remodeling and fibrosis in patients with hypertension and LVH. Methods Forty-seven hypertensive patients with LVH evaluated by echocardiography (29 men, age 73.0±10.4 years) were examined by comprehensive CMR and 24-h ambulatory blood pressure monitoring (ABPM). Results and Conclusions Among the 47 patients, twenty-four had nocturnal non-dipper BP patterns. Patients with nocturnal non-dipper BP patterns had larger LV masses and scar volumes independent of etiologies than those in patients with dipper BP patterns (p = 0.035 and p = 0.015, respectively). There was no significant difference in mean 24-h systolic BP between patients with and without nocturnal dipper BP patterns (p = 0.367). Among hypertensive patients with LVH, the nocturnal non-dipper blood pressure pattern is associated with both LV remodeling and myocardial fibrosis independent of LVH etiology. PMID:23840777

  5. iPSC-derived human mesenchymal stem cells improve myocardial strain of infarcted myocardium.

    PubMed

    Miao, Qingfeng; Shim, Winston; Tee, Nicole; Lim, Sze Yun; Chung, Ying Ying; Ja, K P Myu Mia; Ooi, Ting Huay; Tan, Grace; Kong, Geraldine; Wei, Heming; Lim, Chong Hee; Sin, Yoong Kong; Wong, Philip

    2014-08-01

    We investigated global and regional effects of myocardial transplantation of human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) in infarcted myocardium. Acute myocardial infarction (MI) was induced by ligation of left coronary artery of severe combined immunodeficient mice before 2 × 10(5) iMSCs or cell-free saline were injected into peri-infarcted anterior free wall. Sham-operated animals received no injection. Global and regional myocardial function was assessed serially at 1-week and 8-week by segmental strain analysis by using two dimensional (2D) speckle tracking echocardiography. Early myocardial remodelling was observed at 1-week and persisted to 8-week with global contractility of ejection fraction and fractional area change in saline- (32.96 ± 14.23%; 21.50 ± 10.07%) and iMSC-injected (32.95 ± 10.31%; 21.00 ± 7.11%) groups significantly depressed as compared to sham control (51.17 ± 11.69%, P < 0.05; 34.86 ± 9.82%, P < 0.05). However, myocardial dilatation was observed in saline-injected animals (4.40 ± 0.62 mm, P < 0.05), but not iMSCs (4.29 ± 0.57 mm), when compared to sham control (3.74 ± 0.32 mm). Furthermore, strain analysis showed significant improved basal anterior wall strain (28.86 ± 8.16%, P < 0.05) in the iMSC group, but not saline-injected (15.81 ± 13.92%), when compared to sham control (22.18 ± 4.13%). This was corroborated by multi-segments deterioration of radial strain only in saline-injected (21.50 ± 5.31%, P < 0.05), but not iMSC (25.67 ± 12.53%), when compared to sham control (34.88 ± 5.77%). Improvements of the myocardial strain coincided with the presence of interconnecting telocytes in interstitial space of the infarcted anterior segment of the heart. Our results show that localized injection of iMSCs alleviates ventricular remodelling, sustains global and regional myocardial strain by paracrine-driven effect on neoangiogenesis and myocardial deformation/compliance via parenchymal and

  6. Strategies for Energy Efficient Remodeling: SEER 2003 Case Study Report

    SciTech Connect

    2004-11-01

    The goal of the Strategies for Energy Efficiency in Remodeling (SEER) project is to provide information, based on research and case studies, to remodelers and consumers about opportunities to increase home energy performance.

  7. Mechanical determinants of myocardial blood flow and its distribution.

    PubMed

    Archie, J P

    1975-07-01

    There are two mechanical determinants of coronary blood flow and its distribution: resistance and pressure gradient. Resistance is determined by blood viscosity and the anatomy and geometry of the coronary vascular bed. The coronary vascular pressure gradient is the difference between aortic root pressure and intramyocardial pressure. A number of factors such as coronary atherosclerosis, ventricular hypertrophy, and myocardial edema may adversely affect the determinants of coronary flow before, during, or after cardiopulmonary bypass, thereby lowering or eliminating regional or local coronary reserve and promoting the likelihood of a myocardial ischemic injury. The subendocardial layers of the left ventricle appear to be more vulnerable, perhaps in part because they depend entirely on diastolic coronary flow.

  8. Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling

    PubMed Central

    Schugar, Rebecca C.; Moll, Ashley R.; André d’Avignon, D.; Weinheimer, Carla J.; Kovacs, Attila; Crawford, Peter A.

    2014-01-01

    Objective Exploitation of protective metabolic pathways within injured myocardium still remains an unclarified therapeutic target in heart disease. Moreover, while the roles of altered fatty acid and glucose metabolism in the failing heart have been explored, the influence of highly dynamic and nutritionally modifiable ketone body metabolism in the regulation of myocardial substrate utilization, mitochondrial bioenergetics, reactive oxygen species (ROS) generation, and hemodynamic response to injury remains undefined. Methods Here we use mice that lack the enzyme required for terminal oxidation of ketone bodies, succinyl-CoA:3-oxoacid CoA transferase (SCOT) to determine the role of ketone body oxidation in the myocardial injury response. Tracer delivery in ex vivo perfused hearts coupled to NMR spectroscopy, in vivo high-resolution echocardiographic quantification of cardiac hemodynamics in nutritionally and surgically modified mice, and cellular and molecular measurements of energetic and oxidative stress responses are performed. Results While germline SCOT-knockout (KO) mice die in the early postnatal period, adult mice with cardiomyocyte-specific loss of SCOT (SCOT-Heart-KO) remarkably exhibit no overt metabolic abnormalities, and no differences in left ventricular mass or impairments of systolic function during periods of ketosis, including fasting and adherence to a ketogenic diet. Myocardial fatty acid oxidation is increased when ketones are delivered but cannot be oxidized. To determine the role of ketone body oxidation in the remodeling ventricle, we induced pressure overload injury by performing transverse aortic constriction (TAC) surgery in SCOT-Heart-KO and αMHC-Cre control mice. While TAC increased left ventricular mass equally in both groups, at four weeks post-TAC, myocardial ROS abundance was increased in myocardium of SCOT-Heart-KO mice, and mitochondria and myofilaments were ultrastructurally disordered. Eight weeks post-TAC, left ventricular

  9. Retinal remodeling in human retinitis pigmentosa.

    PubMed

    Jones, B W; Pfeiffer, R L; Ferrell, W D; Watt, C B; Marmor, M; Marc, R E

    2016-09-01

    Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies. PMID:27020758

  10. Revealing remodeler function: Varied and unique

    NASA Astrophysics Data System (ADS)

    Eastlund, Allen

    Chromatin remodelers perform a necessary and required function for the successful expression of our genetic code. By modifying, shifting, or ejecting nucleosomes from the chromatin structure they allow access to the underlying DNA to the rest of the cell's machinery. This research has focused on two major remodeler motors from major families of chromatin remodelers: the trimeric motor domain of RSC and the motor domain of the ISWI family, ISWI. Using primarily stopped-flow spectrofluorometry, I have categorized the time-dependent motions of these motor domains along their preferred substrate, double-stranded DNA. Combined with collected ATP utilization data, I present the subsequent analysis and associated conclusions that stem from the underlying assumptions and models. Interestingly, there is little in common between the investigated proteins aside from their favored medium. While RSC exhibits modest translocation characteristics and highly effective motion with the ability for large molecular forces, ISWI is not only structurally different but highly inefficient in its motion leading to difficulties in determining its specific translocation mechanics. While chromatin remodeling is a ubiquitous facet of eukaryotic life, there remains much to be understood about their general mechanisms.

  11. Chromatin remodelers: We are the drivers!!

    PubMed

    Tyagi, Monica; Imam, Nasir; Verma, Kirtika; Patel, Ashok K

    2016-07-01

    Chromatin is a highly dynamic structure that imparts structural organization to the genome and regulates the gene expression underneath. The decade long research in deciphering the significance of epigenetics in maintaining cellular integrity has embarked the focus on chromatin remodeling enzymes. These drivers have been categorized as readers, writers and erasers with each having significance of their own. Largely, on the basis of structure, ATP dependent chromatin remodelers have been grouped into 4 families; SWI/SNF, ISWI, IN080 and CHD. It is still unclear to what degree these enzymes are swayed by local DNA sequences when shifting a nucleosome to different positions. The ability of regulating active and repressive transcriptional state via open and close chromatin architecture has been well studied however, the significance of chromatin remodelers in regulating transcription at each step i.e. initiation, elongation and termination require further attention. The authors have highlighted the significance and role of different chromatin remodelers in transcription, DNA repair and histone variant deposition. PMID:27429206

  12. Challenging Modernization: Remodelling the Education Workforce

    ERIC Educational Resources Information Center

    Butt, Graham; Gunter, Helen

    2005-01-01

    This special edition enables an in-depth look at the process of modernization of education in England, in relation to other international developments. In particular we focus on the reform of teachers? work by examining the antecedence of the current policy of remodelling through three articles based on the Evaluation of the Department for…

  13. Arterial Remodeling Associates with CKD Progression

    PubMed Central

    Collin, Cédric; Karras, Alexandre; Laurent, Stéphane; Bozec, Erwan; Jacquot, Christian; Stengel, Bénédicte; Houillier, Pascal; Froissart, Marc; Boutouyrie, Pierre

    2011-01-01

    In CKD, large arteries remodel and become increasingly stiff. The greater pulsatile pressure reaching the glomerulus as a result of increased aortic stiffness could induce renal damage, suggesting that the stiffening and remodeling of large arteries could affect the progression of CKD. We measured carotid-femoral pulse wave velocity, aortic pressure and carotid remodeling and stiffness parameters in 180 patients with CKD (mean measured GFR, 32 ml/min per 1.73 m2) and followed them prospectively for a mean of 3.1 years. During follow-up, carotid stiffness significantly increased (+0.28 ± 0.05 m/s; P < 0.0001) but aortic stiffness did not. Carotid intima-media thickness decreased significantly during follow-up and the internal diameter of the carotid increased, producing increased circumferential wall stress (+2.08 ± 0.43 kPa/yr; P < 0.0001). In a linear mixed model, circumferential wall stress significantly associated with faster GFR decline after adjustment for risk factors of cardiovascular disease and progression of CKD. In a multivariable Cox model, carotid circumferential wall stress and pulse pressure independently associated with higher risk for ESRD. None of the arterial stiffness parameters associated with progression of CKD. In conclusion, maladaptive remodeling of the carotid artery and increased pulse pressure independently associate with faster decline of renal function and progression to ESRD. PMID:21493771

  14. Remodeling and vascular spaces in bone.

    PubMed

    Eriksen, Erik Fink; Eghbali-Fatourechi, Guiti Z; Khosla, Sundeep

    2007-01-01

    In recent years, we have come to appreciate that the close association between bone and vasculature plays a pivotal role in the regulation of bone remodeling and fracture repair. In 2001, Hauge et al. characterized a specialized vascular structure, the bone remodeling compartment (BRC), and showed that the outer lining of this compartment was made up of flattened cells, displaying all the characteristics of lining cells in bone. A decrease in bone turnover leads to a decrease in surfaces covered with remodeling compartments, whereas increased turnover causes an increase. Immunoreactivity for all major osteotropic growth factors and cytokines including osteoprotegerin (OPG) and RANKL has been shown in the cells lining the BRC, which makes the BRC the structure of choice for coupling between resorption and formation. The secretion of these factors inside a confined space separated from the bone marrow would facilitate local regulation of the remodeling process without interference from growth factors secreted by blood cells in the marrow space. The BRC creates an environment where cells inside the structure are exposed to denuded bone, which may enable direct cellular interactions with integrins and other matrix factors known to regulate osteoclast/osteoblast activity. However, the denuded bone surface inside the BRC also constitutes an ideal environment for the seeding of bone metastases, known to have high affinity for bone matrix. Reduction in BRC space brought about by antiresorptive therapies such as bisphosphonates reduce the number of skeletal events in advanced cancer, whereas an increase in BRC space induced by remodeling activators like PTH may increase the bone metastatic burden. The BRC has only been characterized in detail in trabecular bone; there is, however, evidence that a similar structure may exist in cortical bone, but further characterization is needed.

  15. Cardiac RNAi therapy using RAGE siRNA/deoxycholic acid-modified polyethylenimine complexes for myocardial infarction.

    PubMed

    Hong, Jueun; Ku, Sook Hee; Lee, Min Sang; Jeong, Ji Hoon; Mok, Hyejung; Choi, Donghoon; Kim, Sun Hwa

    2014-08-01

    Inflammatory response in myocardial ischemia-reperfusion injury plays a critical role in ventricular remodeling. To avoid deleterious effects of overwhelming inflammation, we blocked the expression of receptor for advanced glycation end-products (RAGE), a key mediator of the local and systemic inflammatory responses, via RNAi mechanism. Herein, a facial amphipathic deoxycholic acid-modified low molecular weight polyethylenimine (DA-PEI) was used as a siRNA delivery carrier to myocardium. The DA-PEI conjugate formed a stable complex with siRNA via electrostatic and hydrophobic interactions. The siRAGE/DA-PEI formulation having negligible toxicity could enhance intracellular delivery efficiency and successfully suppress RAGE expression both in vitro and in vivo. Furthermore, the cardiac administration of siRAGE/DA-PEI reduced apoptosis and inflammatory cytokine release, subsequently led to attenuation of left ventricular remodeling in rat myocardial infarction model. The potential therapeutic effects of RAGE gene silencing on myocardial ischemia-reperfusion injury may suggest that the siRAGE/DA-PEI delivery system can be considered as a promising strategy for treating myocardial infarction.

  16. [Ischemia-reperfusion myocardial injury].

    PubMed

    de Micheli, Alfredo; Chávez, Edmundo

    2003-01-01

    In this article, we present some considerations on the myocardial damage due to a deficit of oxygen supply. In fact, this damage properly constitutes a partial diastolic depolarization or injury, i.e., a moderate reduction of the rest transmembrane potential. This phenomenon is characteristic of the acute phase of the myocardial infarction syndrome and is responsible for the main electrical manifestations appearing in this phase: disorders of rhythm and conduction, as well as a reduced contractility of the involved myocardial fibers. All the mentioned phenomena are due to a defect of the myocardial energetic mechanisms, owing to the mitochondrial alterations in myocytes: early reduction of the nicotinamide adenine nucleotides, accumulation of calcium ("calcium overload") into mitochondria, and a drop in oxidative phosphorylation. These changes can present again, more exaggerated, in a following phase of evolution of the myocardial infarction due to myocardial reperfusion. Its severity is related to the duration of the initial ischemia period. Moreover, consequences of the oxidative stress can add producing cellular damage by liberation of reactive oxygen species. Oxidant stress causes also alterations in the mitochondrial DNA, i.e., mutations due to oxidation of nitrogenous bases. During the initial ischemia phase, as well as during reperfusion, metabolic therapy can be very useful as, for example, glucose-insulin-potassium solutions (G-I-K). These could act as scavengers of the free radicals derived from oxygen and avoid or reduce the myocardial damage due to reperfused myocytes. Metabolic drugs, as for example trimetazidine, antioxidants, etc, can also be used in the myocardial reperfusion phase.

  17. Caught in the act: In vivo molecular imaging of the transcription factor NF-{kappa}B after myocardial infarction

    SciTech Connect

    Tillmanns, Jochen; Carlsen, Harald; Blomhoff, Rune; Valen, Guro; Calvillo, Laura; Ertl, Georg; Bauersachs, Johann; Frantz, Stefan . E-mail: frantz_s@medizin.uni-wuerzburg.de

    2006-04-14

    Nuclear factor {kappa}B (NF-{kappa}B) is a ubiquitous transcription factor activated by various stimuli implicated in heart failure progression. However, its activation in heart failure has not been well defined yet. Therefore, we investigated activation of NF-{kappa}B after myocardial infarction. For First time, we performed serial, non-invasive in vivo molecular imaging of transcription factor activation in the heart. We used mice expressing a luciferase reporter whose transcription is dependent upon NF-{kappa}B activation for up to 8 weeks after myocardial infarction. There was a significant increase of NF-{kappa}B activity with a maximum at day 3 after myocardial infarction when compared to sham controls. Thus, in vivo measurement of the activation of NF-{kappa}B is feasible. NF-{kappa}B activity might play an important role for the remodeling process.

  18. Prevalence, consequences, and implications for clinical trials of unrecognized myocardial infarction.

    PubMed

    Pride, Yuri B; Piccirillo, Bryan J; Gibson, C Michael

    2013-03-15

    Patients with myocardial infarction (MI) generally present with chest pain or pressure at rest or minimal exertion and have associated electrocardiographic changes and/or elevation of the biomarkers of myocardial necrosis. A subset of patients, however, experience little chest discomfort or do not present to medical attention despite experiencing symptoms. Unrecognized MI might be detected using electrocardiographic or imaging techniques, such as echocardiography, nuclear imaging, or cardiovascular magnetic resonance imaging. Unrecognized MI is a common clinical entity, with an incidence as great as 35% in high-risk populations. Moreover, the risk of a subsequent major adverse cardiovascular event might be similar to the risk after a clinically apparent MI. In the present review, we examined the incidence of unrecognized MI across broad groups of subjects and the subsequent risk of adverse cardiovascular events. Finally, we explored the potential role of including unrecognized MI as a major adverse outcome in randomized clinical trials of agents aimed at reducing cardiovascular morbidity.

  19. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening.

    PubMed

    Musladin, Sanja; Krietenstein, Nils; Korber, Philipp; Barbaric, Slobodan

    2014-04-01

    Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential for viability, was a controversial candidate for the unrecognized remodeling activity but unassessed in vivo. Now we show that remodels the structure of chromatin (RSC) is crucially involved in PHO5 promoter opening. Further, the isw1 chd1 double deletion also delayed chromatin remodeling. Strikingly, combined absence of RSC and Isw1/Chd1 or Snf2 abolished for the first time promoter opening on otherwise sufficient induction in vivo. Together with previous findings, we recognize now a surprisingly complex network of five remodelers (RSC, SWI/SNF, INO80, Isw1 and Chd1) from four subfamilies (SWI/SNF, INO80, ISWI and CHD) as involved in PHO5 promoter chromatin remodeling. This is likely the first described complete remodeler set for a physiological chromatin transition. RSC was hardly involved at the coregulated PHO8 or PHO84 promoters despite cofactor recruitment by the same transactivator and RSC's presence at all three promoters. Therefore, promoter-specific chromatin rather than transactivators determine remodeler requirements.

  20. THE IMPACT OF CHEMOTHERAPY AND RADIATION ON THE REMODELING OF ACELLULAR DERMAL MATRICES IN STAGED, PROSTHETIC BREAST RECONSTRUCTION

    PubMed Central

    Myckatyn, Terence M.; Cavallo, Jaime A.; Sharma, Ketan; Gangopadhyay, Noopur; Dudas, Jason R.; Roma, Andres A.; Baalman, Sara; Tenenbaum, Marissa M.; Matthews, Brent D.; Deeken, Corey R.

    2015-01-01

    Background An acellular dermal matrix (ADM) used in prosthetic breast reconstruction will typically incorporate, in time, with the overlying mastectomy skin flap. This remodeling process may be adversely impacted in patients that require chemotherapy and radiation therapies that influence neovascularization and cellular proliferation. Methods Multiple biopsies of the submuscular capsule and ADM were procured from 86 women (N=94 breasts) undergoing exchange of a tissue expander for a breast implant. These were divided by biopsy location : submuscular capsule (control) as well as superiorly, centrally and inferiorly along the ADM. Specimens were assessed grossly for incorporation and semi-quantitatively for cellular infiltration, cell type, fibrous encapsulation, scaffold degradation, extracellular matrix deposition, neovascularization, mean composite remodeling score, as well as Type I and III collagen area and ratio. Five oncologic treatment groups were compared : no adjuvant therapy (untreated), neoadjuvant chemotherapy ± radiation ; and chemotherapy ± radiation. Results ADM and submuscular capsule biopsies were procured 45 to 1805 days after ADM insertion and demonstrated a significant reduction in Type I collagen over time. Chemotherapy adversely impacted fibrous encapsulation relative to the untreated group (p=0.03). Chemotherapy with or without radiation adversely impacted Type I collagen area (p=0.02), cellular infiltration (p<0.01), extracellular matrix deposition (p<0.04), and neovascularization (p<0.01). Radiation exacerbated the adverse impact of chemotherapy for gross incorporation as well as several remodeling parameters. Neoadjuvant chemotherapy also caused a reduction in Type I (p=0.01) and III collagen (p=0.05), extracellular matrix deposition (p=0.03), and scaffold degradation (p=0.02). Conclusions Chemotherapy and radiation therapy limit ADM remodeling. PMID:25539350

  1. Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling.

    PubMed

    Grossman, William; Paulus, Walter J

    2013-09-01

    Pressure and volume overload results in concentric and eccentric hypertrophy of cardiac ventricular chambers with, respectively, parallel and series replication of sarcomeres. These divergent patterns of hypertrophy were related 40 years ago to disparate wall stresses in both conditions, with systolic wall stress eliciting parallel replication of sarcomeres and diastolic wall stress, series replication. These observations are relevant to clinical practice, as they relate to the excessive hypertrophy and contractile dysfunction regularly observed in patients with aortic stenosis. Stress-sensing mechanisms in cardiomyocytes and activation of cardiomyocyte death by elevated wall stress continue to intrigue cardiovascular scientists.

  2. Role of Intravascular Ultrasound in Patients with Acute Myocardial Infarction

    PubMed Central

    Hong, Young Joon; Ahn, Youngkeun

    2015-01-01

    Rupture of a vulnerable plaque and subsequent thrombus formation are important mechanisms leading to the development of an acute myocardial infarction (AMI). Typical intravascular ultrasound (IVUS) features of AMI include plaque rupture, thrombus, positive remodeling, attenuated plaque, spotty calcification, and thin-cap fibroatheroma. No-reflow phenomenon was attributable to the embolization of thrombus and plaque debris that results from mechanical fragmentation of the vulnerable plaque by percutaneous coronary intervention (PCI). Several grayscale IVUS features including plaque rupture, thrombus, positive remodeling, greater plaque burden, decreased post-PCI plaque volume, and tissue prolapse, and virtual histology-IVUS features such as large necrotic corecontaining lesion and thin-cap fibroatheroma were the independent predictors of no-reflow phenomenon in AMI patients. Non-culprit lesions associated with recurrent events were more likely than those not associated with recurrent events to be characterized by a plaque burden of ≥70%, a minimal luminal area of ≤4.0 mm2, or to be classified as thin-cap fibroatheromas. PMID:26240578

  3. Reverse Engineering Adverse Outcome Pathways

    SciTech Connect

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  4. Adverse effects of anabolic steroids.

    PubMed

    Hickson, R C; Ball, K L; Falduto, M T

    1989-01-01

    Anabolic steroids are used therapeutically for various disorders and as ergogenic aids by athletes to augment strength, muscular development, and to enhance performance. There is a wide range of concomitant temporary and permanent adverse effects with steroid administration. Several well-documented adverse actions of these hormones may develop rapidly within several weeks or less (i.e. altered reproductive function) or require up to several years of steroid intake (i.e. liver carcinoma). More recent studies indicate that glucose intolerance, insulin resistance, increased cardiovascular disease risk profiles, cerebral dangers, musculoskeletal injuries, prostate cancer, psychosis and schizophrenic episodes, among others, accompany anabolic steroid intake. There is, at present, no evidence to support the claim that athletes are less susceptible to adverse effects than those individuals receiving hormone treatment in a clinical setting. Based on the available information which has accumulated primarily from cross-sectional, short term longitudinal, and case studies, there is a need: (a) to develop a comprehensive battery of specific and sensitive markers of adverse effects, particularly those that would be able to detect the onset of adverse actions; and (b) to conduct controlled long term longitudinal studies in order to fully understand the extensiveness and mechanisms involved in the occurrence of adverse effects.

  5. Imidapril inhibits right ventricular remodeling induced by low ambient temperature in broiler chickens.

    PubMed

    Hao, Xue-Qin; Zhang, Shou-Yan; Cheng, Xiang-Chao; Li, Meng; Sun, Tong-Wen; Zhang, Ji-Liang; Guo, Wen; Li, Li

    2013-06-01

    This study explored the effect of imidapril on the right ventricular remodeling induced by low ambient temperature in broiler chickens. Twenty-four broiler chickens were randomly divided into 3 groups (n = 8), including the control group, low temperature group, and imidapril group. Chickens in the control group were raised at normal temperature, whereas chickens in the low temperature group and imidapril group were exposed to low ambient temperature (12 to 18°C) from 14 d of age until 45 d of age. At the same time, chickens in the imidapril group were gavaged with imidapril at 3 mg/kg once daily for 30 d. The thickness of the right ventricular wall was observed with echocardiography. The BW and wet lung weight as well as weight of right and left ventricles and ventricular septum were measured. Both wet lung weight index and right ventricular hypertrophy index were calculated. Pulmonary arterial systolic pressure was assessed according to echocardiography. The expression of ACE and ACE2 mRNA in the right ventricular myocardial tissue was quantified by real-time PCR. Proliferating cell nuclear antigen-positive cells were detected by immunohistostaining. The concentration of angiotensin (Ang) II and Ang (1-7) in the right ventricular myocardial tissue was measured with ELISA. The results showed that right ventricular hypertrophy index, wet lung weight index, pulmonary arterial systolic pressure, expression of ACE mRNA in the right ventricular tissue, Ang II concentration, and the thickness of the right ventricular wall in the low temperature group increased significantly compared with those in the control group and imidapril group. The ACE2 mRNA expression increased 36%, whereas Ang (1-7) concentration decreased significantly in the low temperature group compared with that in the control group and imidapril group. In conclusion, imidapril inhibits right ventricular remodeling induced by low ambient temperature in broiler chickens.

  6. Nrf2 enhances myocardial clearance of toxic ubiquitinated proteins.

    PubMed

    Wang, Wenjuan; Li, Siying; Wang, Hui; Li, Bin; Shao, Lei; Lai, Yimu; Horvath, Gary; Wang, Qian; Yamamoto, Masayuki; Janicki, Joseph S; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-07-01

    Nuclear factor erythroid-2 related factor 2 (Nrf2) is a master transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes. While knockout of Nrf2 exaggerates cardiac pathological remodeling and dysfunction in diverse pathological settings, pharmacological activation of Nrf2 protects against cardiomyocyte injury and cardiac dysfunction. In contrast, there is also a concern that the chronic activation of Nrf2 secondary to oxidative stress is a contributing mechanism for the reductive stress-mediated heart failure. However, a direct link between cardiac specific activation of Nrf2 and cardiac protection or dysfunction in vivo remains to be established. Therefore, we investigated the effect of cardiomyocyte-specific transgenic activation of Nrf2 (Nrf2(ctg)) on cardiac pathological remodeling and dysfunction. We found that the cardiomyocyte-specific activation of Nrf2 suppressed myocardial oxidative stress as well as cardiac apoptosis, fibrosis, hypertrophy, and dysfunction in a setting of sustained pressure overload induced by transverse aortic arch constriction (TAC) in mice. Notably, the constitutive activation of Nrf2 increased the steady level of autophagosomes while decreasing the ubiquitinated protein aggregates in the heart after TAC. Nrf2 gene gain- and loss-of-function approaches revealed that Nrf2 enhances autophagosome formation and autophagic flux in cardiomyocytes. Unexpectedly, while Nrf2 minimally regulated apoptosis, it suppressed significantly the proteotoxic necrosis in cardiomyocytes. In addition, Nrf2 attenuated the proteocytotoxicity presumably via enhancing autophagy-mediated clearance of ubiquitinated protein aggregates in cardiomyocytes. Taken together, we demonstrated for the first time that cardiac specific activation of Nrf2 suppresses cardiac maladaptive remodeling and dysfunction most likely by enhancing autophagic clearance of toxic protein

  7. Nrf2 enhances myocardial clearance of toxic ubiquitinated proteins

    PubMed Central

    Wang, Wenjuan; Li, Siying; Wang, Hui; Li, Bin; Shao, Lei; Lai, Yimu; Horvath, Gary; Wang, Qian; Yamamoto, Masayuki; Janicki, Joseph S.; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2015-01-01

    Nuclear factor erythroid-2 related factor 2 (Nrf2) is a master transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes. While knockout of Nrf2 exaggerates cardiac pathological remodeling and dysfunction in diverse pathological settings, pharmacological activation of Nrf2 protects against cardiomyocyte injury and cardiac dysfunction. In contrast, there is also a concern that the chronic activation of Nrf2 secondary to oxidative stress is a contributing mechanism for the reductive stress-mediated heart failure. However, a direct link between cardiac specific activation of Nrf2 and cardiac protection or dysfunction in vivo remains to be established. Therefore, we investigated the effect of cardiomyocyte-specific transgenic activation of Nrf2 (Nrf2ctg) on cardiac pathological remodeling and dysfunction. We found that the cardiomyocyte-specific activation of Nrf2 suppressed myocardial oxidative stress as well as cardiac apoptosis, fibrosis, hypertrophy, and dysfunction in a setting of sustained pressure overload induced by transverse aortic arch constriction (TAC) in mice. Notably, the constitutive activation of Nrf2 increased the steady level of autophagosomes while decreasing the ubiquitinated protein aggregates in the heart after TAC. Nrf2 gene gain- and loss-of-function approaches revealed that Nrf2 enhances autophagosome formation and autophagic flux in cardiomyocytes. Unexpectedly, while Nrf2 minimally regulated apoptosis, it suppressed significantly the proteotoxic necrosis in cardiomyocytes. In addition, Nrf2 attenuated the proteocytotoxicity presumably via enhancing autophagy-mediated clearance of ubiquitinated protein aggregates in cardiomyocytes. Taken together, we demonstrated for the first time that cardiac specific activation of Nrf2 suppresses cardiac maladaptive remodeling and dysfunction most likely by enhancing autophagic clearance of toxic protein

  8. Using the laws of thermodynamics to understand how matrix metalloproteinases coordinate the myocardial response to injury

    PubMed Central

    Iyer, Rugmani Padmanabhan; Jung, Mira; Lindsey, Merry L

    2016-01-01

    Following myocardial infarction (MI), the left ventricle (LV) undergoes a series of molecular, cellular, and functional alterations that are both part of the wound healing response to form a scar in the infarct region and the consequence of that response. Using the laws of thermodynamics as an analogy, we present here three laws for categorizing the post-MI LV remodeling process. The first law is that the LV will attempt to maintain equilibrium and compensate as a way to maximize function, the second law is that remodeling is progressive and unidirectional, and the third law is that the final goal is (ideally, but not always achievable) a stable, equilibrated scar. This comparison helps to define the boundaries of the system, whether it be the infarct zone, the LV, the heart, or the entire body. This review provides an overview for those not directly in the field and establishes a framework to help prioritize future research directions. PMID:27376092

  9. Myocyte repolarization modulates myocardial function in aging dogs.

    PubMed

    Sorrentino, Andrea; Signore, Sergio; Qanud, Khaled; Borghetti, Giulia; Meo, Marianna; Cannata, Antonio; Zhou, Yu; Wybieralska, Ewa; Luciani, Marco; Kannappan, Ramaswamy; Zhang, Eric; Matsuda, Alex; Webster, Andrew; Cimini, Maria; Kertowidjojo, Elizabeth; D'Alessandro, David A; Wunimenghe, Oriyanhan; Michler, Robert E; Royer, Christopher; Goichberg, Polina; Leri, Annarosa; Barrett, Edward G; Anversa, Piero; Hintze, Thomas H; Rota, Marcello

    2016-04-01

    Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions.

  10. Detection of Myocardial Damage in Patients with Sarcoidosis

    PubMed Central

    Patel, Manesh R.; Cawley, Peter J.; Heitner, John F.; Klem, Igor; Parker, Michele A.; Jaroudi, Wael A.; Meine, Trip J.; White, James B.; Elliott, Michael D.; Kim, Han W.; Judd, Robert M.; Kim, Raymond J.

    2009-01-01

    Background In patients with sarcoidosis, sudden death is a leading cause of mortality, which may represent unrecognized cardiac involvement. Delayed-enhancement cardiovascular magnetic resonance (DE-CMR) can detect minute amounts of myocardial damage. We sought to compare DE-CMR with standard clinical evaluation for the identification of cardiac involvement. Methods and Results Eighty-one consecutive patients with biopsy proven extra-cardiac sarcoidosis were prospectively recruited for a parallel and masked comparison of cardiac involvement between: (1) DE-CMR, and (2) standard clinical evaluation using consensus criteria (modified Japanese Ministry of Health [JMH] guidelines). Standard evaluation included 12-lead electrocardiography and at least one dedicated non-CMR cardiac study (echocardiography, radionuclide scintigraphy, or cardiac catheterization). Patients were followed 21±8 months for major adverse events (death, defibrillator shock, or pacemaker requirement). Patients were predominantly middle-aged (46±11 years), female (62%), African-American (73%), had chronic sarcoidosis (median, 7 years), and preserved LVEF (median, 56%). DE-CMR identified cardiac involvement in 21 patients (26%) and JMH criteria in 10 (12%, 8 overlapping), a more than two-fold higher rate for DE-CMR (p=0.005). All patients with myocardial damage on DE-CMR had coronary disease excluded by x-ray angiography. Pathology evaluation in 15 patients (19%) identified 4 with cardiac sarcoidosis; all 4 were positive by DE-CMR whereas 2 were JMH positive. On follow-up, 8 had adverse events including 5 cardiac deaths. Patients with myocardial damage on DE-CMR had a 9-fold higher rate of adverse events and a 11.5-fold higher rate of cardiac death than patients without damage. Conclusion In patients with sarcoidosis, DE-CMR is more than twice as sensitive for cardiac involvement than current consensus criteria. Myocardial damage detected by DE-CMR appears to be associated with future adverse

  11. [Remodeling of Cardiovascular System: Causes and Consequences].

    PubMed

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension. PMID:27530043

  12. Chromatin Remodeling, DNA Damage Repair and Aging

    PubMed Central

    Liu, Baohua; Yip, Raymond KH; Zhou, Zhongjun

    2012-01-01

    Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging. PMID:23633913

  13. Metabolic remodeling in chronic heart failure.

    PubMed

    Wang, Jing; Guo, Tao

    2013-08-01

    Although the management of chronic heart failure (CHF) has made enormous progress over the past decades, CHF is still a tremendous medical and societal burden. Metabolic remodeling might play a crucial role in the pathophysiology of CHF. The characteristics and mechanisms of metabolic remodeling remained unclear, and the main hypothesis might include the changes in the availability of metabolic substrate and the decline of metabolic capability. In the early phases of the disease, metabolism shifts toward carbohydrate utilization from fatty acids (FAs) oxidation. Along with the progress of the disease, the increasing level of the hyperadrenergic state and insulin resistance cause the changes that shift back to a greater FA uptake and oxidation. In addition, a growing body of experimental and clinical evidence suggests that the improvement in the metabolic capability is likely to be more significant than the selection of the substrate.

  14. [Remodeling of Cardiovascular System: Causes and Consequences].

    PubMed

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension.

  15. Remodeling of Calcium Entry Pathways in Cancer.

    PubMed

    Villalobos, Carlos; Sobradillo, Diego; Hernández-Morales, Miriam; Núñez, Lucía

    2016-01-01

    Ca(2+) entry pathways play important roles in control of many cellular functions, including long-term proliferation, migration and cell death. In recent years, it is becoming increasingly clear that, in some types of tumors, remodeling of Ca(2+) entry pathways could contribute to cancer hallmarks such as excessive proliferation, cell migration and invasion as well as resistance to cell death or survival. In this chapter we briefly review findings related to remodeling of Ca(2+) entry pathways in cancer with emphasis on the mechanisms that contribute to increased store-operated Ca(2+) entry (SOCE) and store-operated currents (SOCs) in colorectal cancer cells. Finally, since SOCE appears critically involved in colon tumorogenesis, the inhibition of SOCE by aspirin and other NSAIDs and its possible contribution to colon cancer chemoprevention is reviewed.

  16. Remodeling of Calcium Entry Pathways in Cancer.

    PubMed

    Villalobos, Carlos; Sobradillo, Diego; Hernández-Morales, Miriam; Núñez, Lucía

    2016-01-01

    Ca(2+) entry pathways play important roles in control of many cellular functions, including long-term proliferation, migration and cell death. In recent years, it is becoming increasingly clear that, in some types of tumors, remodeling of Ca(2+) entry pathways could contribute to cancer hallmarks such as excessive proliferation, cell migration and invasion as well as resistance to cell death or survival. In this chapter we briefly review findings related to remodeling of Ca(2+) entry pathways in cancer with emphasis on the mechanisms that contribute to increased store-operated Ca(2+) entry (SOCE) and store-operated currents (SOCs) in colorectal cancer cells. Finally, since SOCE appears critically involved in colon tumorogenesis, the inhibition of SOCE by aspirin and other NSAIDs and its possible contribution to colon cancer chemoprevention is reviewed. PMID:27161240

  17. Imaging coronary artery disease and the myocardial ischemic cascade: clinical principles and scope.

    PubMed

    Renker, Matthias; Baumann, Stefan; Rier, Jeremy; Ebersberger, Ullrich; Fuller, Stephen R; Batalis, Nicholas I; Schoepf, U Joseph; Chiaramida, Salvatore A

    2015-03-01

    On a subcellular level, atherogenesis is characterized by the translocation of proatherogenic lipoproteins into the arterial wall. An inflammatory response involving complex repair mechanisms subsequently causes maladaptive vascular changes resulting in coronary stenosis or occlusion. The chronology of the underlying processes occurring from atherosclerosis to myocardial ischemia affect the selection and interpretation of diagnostic testing. An understanding of the ischemic cascade, atherosclerosis, coronary remodeling, plaque morphology, and their relationship to clinical syndromes is essential in determining which diagnostic modalities are useful in clinical practice.

  18. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  19. Perspectives on biological growth and remodeling

    PubMed Central

    Ambrosi, D.; Ateshian, G. A.; Arruda, E. M.; Cowin, S. C.; Dumais, J.; Goriely, A.; Holzapfel, G. A.; Humphrey, J. D.; Kemkemer, R.; Kuhl, E.; Olberding, J. E.; Taber, L. A.; Garikipati, K.

    2011-01-01

    The continuum mechanical treatment of biological growth and remodeling has attracted considerable attention over the past fifteen years. Many aspects of these problems are now well-understood, yet there remain areas in need of significant development from the standpoint of experiments, theory, and computation. In this perspective paper we review the state of the field and highlight open questions, challenges, and avenues for further development. PMID:21532929

  20. Rat myocardial protein degradation.

    PubMed

    Steer, J H; Hopkins, B E

    1981-07-01

    1. Myocardial protein degradation rates were determined by following tyrosine release from rat isolated left hemi-atria in vitro. 2. After two 20 min preincubations the rate of tyrosine release from hemi-atria was constant for 4 h. 3. Skeletal muscle protein degradation was determined by following tyrosine release from rat isolated hemi-diaphragm (Fulks, Li & Goldberg, 1975). 4. Insulin (10(-7) M) inhibited tyrosine release from hemi-atria and hemi-diaphragm to a similar extent. A 48 h fast increased tyrosine release rate from hemi-diaphragm and decreased tyrosine release rate from hemi-atria. Hemi-diaphragm tyrosine release was inhibited by 15 mmol/l D-glucose but a variety of concentrations of D-glucose (0, 5, 15 mmol/l) had no effect on tyrosine release from hemi-atria. Five times the normal plasma levels of the branched-chain amino acids leucine, isoleucine and valine had no effect on tyrosine release from either hemi-atria or hemi-diaphragm.

  1. Application of Petri Nets in Bone Remodeling

    PubMed Central

    Li, Lingxi; Yokota, Hiroki

    2009-01-01

    Understanding a mechanism of bone remodeling is a challenging task for both life scientists and model builders, since this highly interactive and nonlinear process can seldom be grasped by simple intuition. A set of ordinary differential equations (ODEs) have been built for simulating bone formation as well as bone resorption. Although solving ODEs numerically can provide useful predictions for dynamical behaviors in a continuous time frame, an actual bone remodeling process in living tissues is driven by discrete events of molecular and cellular interactions. Thus, an event-driven tool such as Petri nets (PNs), which may dynamically and graphically mimic individual molecular collisions or cellular interactions, seems to augment the existing ODE-based systems analysis. Here, we applied PNs to expand the ODE-based approach and examined discrete, dynamical behaviors of key regulatory molecules and bone cells. PNs have been used in many engineering areas, but their application to biological systems needs to be explored. Our PN model was based on 8 ODEs that described an osteoprotegerin linked molecular pathway consisting of 4 types of bone cells. The models allowed us to conduct both qualitative and quantitative evaluations and evaluate homeostatic equilibrium states. The results support that application of PN models assists understanding of an event-driven bone remodeling mechanism using PN-specific procedures such as places, transitions, and firings. PMID:19838338

  2. Stepwise nucleosome translocation by RSC remodeling complexes

    PubMed Central

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-01-01

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1–2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome. DOI: http://dx.doi.org/10.7554/eLife.10051.001 PMID:26895087

  3. Stepwise nucleosome translocation by RSC remodeling complexes.

    PubMed

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-02-19

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome.

  4. Health care costs for prostate cancer patients receiving androgen deprivation therapy: treatment and adverse events

    PubMed Central

    Krahn, M.D.; Bremner, K.E.; Luo, J.; Alibhai, S.M.H.

    2014-01-01

    Background Serious adverse events have been associated with androgen deprivation therapy (adt) for prostate cancer (pca), but few studies address the costs of those events. Methods All pca patients (ICD-9-CM 185) in Ontario who started 90 days or more of adt or had orchiectomy at the age of 66 or older during 1995–2005 (n = 26,809) were identified using the Ontario Cancer Registry and drug and hospital data. Diagnosis dates of adverse events—myocardial infarction, acute coronary syndrome, congestive heart failure, stroke, deep vein thrombosis or pulmonary embolism, any diabetes, and fracture or osteoporosis—before and after adt initiation were determined from administrative data. We excluded patients with the same diagnosis before and after adt, and we allocated each patient’s time from adt initiation to death or December 31, 2007, into health states: adt (no adverse event), adt-ae (specified single adverse event), Multiple (>1 event), and Final (≤180 days before death). We used methods for Canadian health administrative data to estimate annual total health care costs during each state, and we examined monthly trends. Results Approximately 50% of 21,811 patients with no pre-adt adverse event developed 1 or more events after adt. The costliest adverse event state was stroke ($26,432/year). Multiple was the most frequent (n = 2,336) and the second most costly health state ($24,374/year). Costs were highest in the first month after diagnosis (from $1,714 for diabetes to $14,068 for myocardial infarction). Costs declined within 18 months, ranging from $784 per 30 days (diabetes) to $1,852 per 30 days (stroke). Adverse events increased the costs of adt by 100% to 265%. Conclusions The economic burden of adverse events is relevant to programs and policies from clinic to government, and that burden merits consideration in the risks and benefits of adt. PMID:24940106

  5. Internal associations and dynamic expression of c-kit and nanog genes in ventricular remodelling induced by adriamycin

    PubMed Central

    Liu, Zhen; Li, Shuo; Liu, Lingling; Guo, Zhikun; Wang, Pengfei

    2016-01-01

    The present study aimed to investigate the dynamic expression of the c-kit and nanog genes in rats with left ventricular remodelling induced by adriamycin (ADR), and explore its internal association and mechanism of action. Sprague-Dawley male rats were randomly divided into a normal control group and a heart failure model group. Heart failure was induced by a single intraperitoneal injection of ADR (4 mg/kg) weekly for six weeks. The normal control group was given the same amount of saline. At the eighth week, rat cardiac function was examined to demonstrate the formation of heart failure. The rat hearts were harvested frozen and sectioned, and the expression levels of the nanog and c-kit genes in the myocardial tissue samples were detected using immunohistochemistry, immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR). Hematoxylin and eosin staining demonstrated various pathological changes in the myocardial cells in the heart failure model group, whereas myocardial infarction was not observed in the normal control group. Immunohistochemistry and immunofluorescence demonstrated that nanog-positive cells were predominantly expressed in the vascular endothelium, with a few myocardial cells and stem cells in normal myocardium. The expression levels of c-kit and nanog in the myocardium of the rats with heart failure decreased significantly. c-kit-positive cells clustered together in the epicardium and its vicinity, and c-kit expression significantly decreased in the myocardium of rats with heart failure, as compared with normal rats. In both groups, some cells co-expressed both the c-kit and nanog genes. The RT-PCR results demonstrated that the expression levels of the two genes in the heart failure model group were significantly lower compared with those in the normal control group (P<0.05). In conclusion, the c-kit- and nanog-positive stem cells decreased in the myocardium of the rats with left ventricular remodelling induced by ADR

  6. A framework to measure myocardial extracellular volume fraction using dual-phase low dose CT images

    SciTech Connect

    Liu, Yixun; Summers, Ronald M.; Yao, Jianhua; Liu, Songtao; Sibley, Christopher T.; Bluemke, David A.; Nacif, Marcelo S.

    2013-10-15

    Purpose: Myocardial extracellular volume fraction (ECVF) is a surrogate imaging biomarker of diffuse myocardial fibrosis, a hallmark of pathologic ventricular remodeling. Low dose cardiac CT is emerging as a promising modality to detect diffuse interstitial myocardial fibrosis due to its fast acquisition and low radiation; however, the insufficient contrast in the low dose CT images poses great challenge to measure ECVF from the image. Methods: To deal with this difficulty, the authors present a complete ECVF measurement framework including a point-guided myocardial modeling, a deformable model-based myocardium segmentation, nonrigid registration of pre- and post-CT, and ECVF calculation. Results: The proposed method was evaluated on 20 patients by two observers. Compared to the manually delineated reference segmentations, the accuracy of our segmentation in terms of true positive volume fraction (TPVF), false positive volume fraction (FPVF), and average surface distance (ASD), were 92.18% ± 3.52%, 0.31% ± 0.10%, 0.69 ± 0.14 mm, respectively. The interobserver variability measured by concordance correlation coefficient regarding TPVF, FPVF, and ASD were 0.95, 0.90, 0.94, respectively, demonstrating excellent agreement. Bland-Altman method showed 95% limits of agreement between ECVF at CT and ECVF at MR. Conclusions: The proposed framework demonstrates its efficiency, accuracy, and noninvasiveness in ECVF measurement and dramatically advances the ECVF at cardiac CT toward its clinical use.

  7. Salivary Biomarkers Associated with Myocardial Necrosis: Results from an Alcohol Septal Ablation Model

    PubMed Central

    Foley, Joseph D.; Sneed, J. Darrell; Steinhubl, Steven R.; Kolasa, Justin R.; Ebersole, Jeffrey L.; Lin, Yushun; Kryscio, Richard J.; McDevitt, John T.; Campbell, Charles L.; Miller, Craig S.

    2013-01-01

    Objective To determine if salivary biomarkers demonstrate utility for identifying aspects of myocardial necrosis. Methods Twenty-one patients undergoing alcohol septal ablation (ASA) for treatment of hypertrophic cardiomyopathy provided serum and unstimulated whole saliva at baseline and incremental time points post-ASA. Samples were analyzed for seven biomarkers related to myocardial damage, inflammation and tissue remodeling using immunosorbent assays. Levels were compared to baseline and levels observed in 97 healthy controls. Results Biomarkers of myocardial damage and inflammation (i.e., troponin I, creatine kinase-MB, myoglobin, C-reactive protein) rose in serum 2 to 812-fold after ASA (p<0.01). Significant elevations of 2 to 3.5-fold were observed with C-reactive protein and troponin I in saliva (p<0.02). Significant correlations between levels in serum and saliva were observed for C-reactive protein, matrix metalloproteinase-9, and myeloperoxidase (p < 0.001). Conclusions Select salivary biomarkers reflect changes that occur during, and subsequent to, myocardial necrosis caused by ASA. PMID:23021916

  8. Myocardial perfusion imaging for detection of silent myocardial ischemia

    SciTech Connect

    Beller, G.A.

    1988-04-21

    Despite the widespread use of the exercise stress test in diagnosing asymptomatic myocardial ischemia, exercise radionuclide imaging remains useful for detecting silent ischemia in numerous patient populations, including those who are totally asymptomatic, those who have chronic stable angina, those who have recovered from an episode of unstable angina or an uncomplicated myocardial infarction, and those who have undergone angioplasty or received thrombolytic therapy. Studies show that thallium scintigraphy is more sensitive than exercise electrocardiography in detecting ischemia, i.e., in part, because perfusion defects occur more frequently than ST depression and before angina in the ischemic cascade. Thallium-201 scintigraphy can be performed to differentiate a true- from a false-positive exercise electrocardiographic test in patients with exercise-induced ST depression and no angina. The development of technetium-labeled isonitriles may improve the accuracy of myocardial perfusion imaging. 11 references.

  9. The role of leptin in the ventricular remodeling process and its mechanism

    PubMed Central

    Zuo, Guoxing; Du, Xinping; Zheng, Liuying; Wang, Cuancuan; Wang, Kuan; Li, Ying

    2015-01-01

    Objective: This study aims to explore the role of leptin in the ventricular remodeling process and its mechanism in the diabetic rats’ model. Methods: The diabetic SD rats model induced by streptozotocin was established. The SD rats were randomly divided into 4 groups: control group (20 rats treated with citric acid/sodium citrate buffer); M0 group (10 rats treated with physiological saline); M1 group (10 rats treated with 50 μg/kg LP); M2 group (10 rats treated with 100 μg/kg LP). Ang-II was detected by ELISA. The expression levels of LP and Ob-Rb were detected by RT-PCR. MAPK phosphorylation changes were detected by western blotting. Myocardial morphology was observed. Results: Compared with control group, the blood glucose concentration and Ang-II significantly increased in diabetic model groups (P < 0.01) and body weight decreased (P < 0.05). The expression levels of LP and Ob-Rb increased and heart function decreased in diabetic model groups. Conclusions: LP may be involved in the myocardial cell hypertrophy through the neuroendocrine system and associated with the JAK-STAT, Ras-Raf-MEK-MAPK and PI-3K signaling pathway, which provides a new concept for the pathogenesis of cardiac hypertrophy. PMID:26131137

  10. Remodeling of Glucose Metabolism Precedes Pressure Overload -Induced Left Ventricular Hypertrophy: Review of a Hypothesis

    PubMed Central

    Kundu, Bijoy K.; Zhong, Min; Sen, Shiraj; Davogustto, Giovanni; Keller, Susanna R.; Taegtmeyer, Heinrich

    2015-01-01

    When subjected to pressure overload, the ventricular myocardium shifts from fatty acids to glucose as its main source for energy provision and frequently increases its mass. Here, we review the evidence in support of the concept that metabolic remodeling, measured as increased myocardial glucose uptake using dynamic positron emission tomography (PET) with the glucose analogue 2-deoxy-2-[18F]-fluoro-D-glucose (FDG), precedes the onset of left ventricular hypertrophy (LVH) and heart failure. Consistent with this, early intervention with propranolol, which attenuates glucose uptake, prevents the maladaptive metabolic response and preserves cardiac function in vivo. We also review ex vivo studies suggesting a link between dysregulated myocardial glucose metabolism, intracellular accumulation of glucose 6-phosphate (G6P) and contractile dysfunction of the heart. G6P levels correlate with activation of mTOR (mechanistic target of rapamycin) and endoplasmic reticulum stress. This sequence of events could be prevented by pre-treatment with rapamycin (mTOR inhibition) or metformin (enzyme 5′-AMP-activated protein kinase activation ). In conclusion, we propose that metabolic imaging with FDG PET may provide a novel approach to guide the treatment of patients with hypertension-induced LVH. PMID:25791172

  11. How reliable is myocardial imaging in the diagnosis of acute myocardial infarction

    SciTech Connect

    Willerson, J.T.

    1983-01-01

    Myocardial scintigraphic techniques available presently allow a sensitive and relatively specific diagnosis of acute myocardial infarction when they are used correctly, although every technique has definite limitations. Small myocardial infarcts (less than 3 gm.) may be missed, and there are temporal limitations in the usefulness of the scintigraphic techniques. The development of tomographic methodology that may be used with single-photon radionuclide emitters (including technetium and /sup 201/Tl will allow the detection of relatively small abnormalities in myocardial perfusion and regions of myocardial infarction and will help to provide a more objective interpretation of the myocardial scintigrams. The use of overlay techniques allowing simultaneous assessment of myocardial perfusion, infarct-avid imaging, and radionuclide ventriculograms will provide insight into the relevant aspects of the extent of myocardial damage, the relationship of damage to myocardial perfusion, and the functional impact of myocardial infarction on ventricular performance.

  12. Incidence and prognostic significance of atrial fibrillation in acute myocardial infarction: the GISSI-3 data

    PubMed Central

    Pizzetti, F; Turazza, F; Franzosi, M; Barlera, S; Ledda, A; Maggioni, A; Santoro, L; Tognoni, G

    2001-01-01

    BACKGROUND—Atrial fibrillation is the most common supraventricular arrhythmia in patients with acute myocardial infarction. Recent advances in pharmacological treatment of myocardial infarction may have changed the impact of this arrhythmia.
OBJECTIVE—To assess the incidence and prognosis of atrial fibrillation complicating myocardial infarction in a large population of patients receiving optimal treatment, including angiotensin converting enzyme (ACE) inhibitors.
METHODS—Data were derived from the GISSI-3 trial, which included 17 944 patients within the first 24 hours after acute myocardial infarction. Atrial fibrillation was recorded during the hospital stay, and follow up visits were planned at six weeks and six months. Survival of the patients at four years was assessed through census offices.
RESULTS—The incidence of in-hospital atrial fibrillation or flutter was 7.8%. Atrial fibrillation was associated with indicators of a worse prognosis (age > 70 years, female sex, higher Killip class, previous myocardial infarction, treated hypertension, high systolic blood pressure at entry, insulin dependent diabetes, signs or symptoms of heart failure) and with some adverse clinical events (reinfarction, sustained ventricular tachycardia, ventricular fibrillation). After adjustment for other prognostic factors, atrial fibrillation remained an independent predictor of increased in-hospital mortality: 12.6% v 5%, adjusted relative risk (RR) 1.98, 95% confidence interval (CI) 1.67 to 2.34. Data on long term mortality (four years after acute myocardial infarction) confirmed the persistent negative influence of atrial fibrillation (RR 1.78, 95% CI 1.60 to 1.99).
CONCLUSIONS—Atrial fibrillation is an indicator of worse prognosis after acute myocardial infarction, both in the short term and in the long term, even in an unselected population.


Keywords: atrial fibrillation; acute myocardial infarction; prognosis PMID:11602545

  13. Ramipril attenuates left ventricular remodeling by regulating the expression of activin A-follistatin in a rat model of heart failure

    PubMed Central

    Wei, Qun; Liu, Haiyan; Liu, Miao; Yang, Chunyan; Yang, Jie; Liu, Zhonghui; Yang, Ping

    2016-01-01

    Prior studies have shown that overexpression of ACT A can lead to ventricular remodeling in rat models of heart failure. Furthermore, recently work studying demonstrated that stimulation of activin An expression in rat aortic smooth muscle (RASM) cells by angiotensin II (Ang II). Ramipril is a recently developed angiotensin converting enzyme (ACE) inhibitor. To investigate the effects of Ramipril on expression of ACT A-FS, we established the rat model of heart failure after myocardial infarction (MI), and divided into either a sham operation (SO), MI, or MI-Ramipril group. We found that Ramipril significantly attenuates collagen-I and III deposition (col-I and III). Notably, we determined that expression of ACT A and II activin receptor (ActRII) were significantly down-regulated in the non-infarcted area of the left ventricle in the Ramipril group, whereas the mRNA and protein levels of FS were markedly up-regulated. Our data suggested that Ramipril benefited left ventricular remodeling by reducing fibrosis and collagen accumulation in the left ventricle of rats after myocardial infarction. This observation was also associated with down-regulation of ACT A expression. This study elucidated a new protective mechanism of Ramipril and suggests a novel strategy for treatment of post-infarct remodeling and subsequent heart failure. PMID:27642098

  14. Ramipril attenuates left ventricular remodeling by regulating the expression of activin A-follistatin in a rat model of heart failure.

    PubMed

    Wei, Qun; Liu, Haiyan; Liu, Miao; Yang, Chunyan; Yang, Jie; Liu, Zhonghui; Yang, Ping

    2016-01-01

    Prior studies have shown that overexpression of ACT A can lead to ventricular remodeling in rat models of heart failure. Furthermore, recently work studying demonstrated that stimulation of activin An expression in rat aortic smooth muscle (RASM) cells by angiotensin II (Ang II). Ramipril is a recently developed angiotensin converting enzyme (ACE) inhibitor. To investigate the effects of Ramipril on expression of ACT A-FS, we established the rat model of heart failure after myocardial infarction (MI), and divided into either a sham operation (SO), MI, or MI-Ramipril group. We found that Ramipril significantly attenuates collagen-I and III deposition (col-I and III). Notably, we determined that expression of ACT A and II activin receptor (ActRII) were significantly down-regulated in the non-infarcted area of the left ventricle in the Ramipril group, whereas the mRNA and protein levels of FS were markedly up-regulated. Our data suggested that Ramipril benefited left ventricular remodeling by reducing fibrosis and collagen accumulation in the left ventricle of rats after myocardial infarction. This observation was also associated with down-regulation of ACT A expression. This study elucidated a new protective mechanism of Ramipril and suggests a novel strategy for treatment of post-infarct remodeling and subsequent heart failure. PMID:27642098

  15. HMGB1-RAGE Axis Makes No Contribution to Cardiac Remodeling Induced by Pressure-Overload

    PubMed Central

    Xie, Jiahe; Hao, Huixin; Zhang, Yingxue; Chen, Zhenhuan; Yamamoto, Hiroshi; Liao, Wangjun; Bin, Jianping; Cao, Shiping; Huang, Xiaobo

    2016-01-01

    High-mobility group box1 (HMGB1) exerts effects on inflammation by binding to receptor for advanced glycation end products (RAGE) or Toll-like receptor 4. Considering that inflammation is involved in pressure overload-induced cardiac hypertrophy, we herein attempted to investigate whether HMGB1 plays a role in myocardial hypertrophy in RAGE knockout mice as well as in the growth and apoptosis of cardiomyocytes. The myocardial expression of RAGE was not significantly changed while TLR4 mRNA was upregulated in response to transverse aortic constriction (TAC) for 1 week. The myocardial expression of HMGB1 protein was markedly increased in TAC group when compared to the sham group. Heart weight to body weight ratio (HW/BW) and lung weight to body weight ratio (LW/BW) were evaluated in RAGE knockout (KO) and wild-type (WT) mice 1 week after TAC. Significant larger HW/BW and LW/BW ratios were found in TAC groups than the corresponding sham groups, but no significant difference was found between KO and WT TAC mice. Similar results were also found when TAC duration was extended to 4 weeks. Cultured neonatal rat cardiomyocytes were treated with different concentrations of recombinant HMGB1, then cell viability was determined using MTT and CCK8 assays and cell apoptosis was determined by Hoechst staining and TUNEL assay. The results came out that HMGB1 exerted no influence on viability or apoptosis of cardiomyocytes. Besides, the protein expression levels of Bax and Bcl2 in response to different concentrations of HMGB1 were similar. These findings indicate that HMGB1 neither exerts influence on cardiac remodeling by binding to RAGE nor induces apoptosis of cardiomyocytes under physiological condition. PMID:27355349

  16. Myocardial contusion caused by a baseball.

    PubMed

    Morikawa, M; Hirose, K; Mori, T; Kusukawa, J; Tomioka, N; Watanabe, Y

    1996-10-01

    Myocardial contusion is a rare type of sports injury. We report a case of myocardial contusion caused by a baseball. In this patient, arrhythmias were induced by an exercise test 1 week after injury. That patients with myocardial contusion but without arrhythmias at rest need to be treated carefully is emphasized.

  17. [Discordant pattern, visual identification of myocardial viability with PET].

    PubMed

    Alexánderson, E; Ricalde, A; Zerón, J; Talayero, J A; Cruz, P; Adame, G; Mendoza, G; Meave, A

    2006-01-01

    PET (positron emission tomography) as a non-invasive imaging method for studying cardiac perfusion and metabolism has turned into the gold standard for detecting myocardial viability. The utilization of 18 FDG as a tracer for its identification permits to spot the use of exogenous glucose by the myocardium segments. By studying and comparing viability and perfusion results, for which the latter uses tracers such as 13N-ammonia, three different patterns for myocardial viability evaluation arise:. transmural concordant pattern, non-transmural concordant pattern, and the discordant pattern; the last one exemplifies the hibernating myocardium and proves the presence of myocardial viability. The importance of its detection is fundamental for the study of an ischemic patient, since it permits the establishment of and exact diagnosis, prognosis, and the best treatment option. It also allows foreseeing functional recovery of the affected region as well as the ejection fraction rate after revascularization treatment if this is determined as necessary. All these elements regarding viability are determinant in order to reduce adverse events and help improving patients' prognosis. PMID:17315610

  18. Connective tissue growth factor regulates cardiac function and tissue remodeling in a mouse model of dilated cardiomyopathy.

    PubMed

    Koshman, Yevgeniya E; Sternlicht, Mark D; Kim, Taehoon; O'Hara, Christopher P; Koczor, Christopher A; Lewis, William; Seeley, Todd W; Lipson, Kenneth E; Samarel, Allen M

    2015-12-01

    Cardiac structural changes associated with dilated cardiomyopathy (DCM) include cardiomyocyte hypertrophy and myocardial fibrosis. Connective tissue growth factor (CTGF) has been associated with tissue remodeling and is highly expressed in failing hearts. Our aim was to test if inhibition of CTGF would alter the course of cardiac remodeling and preserve cardiac function in the protein kinase Cε (PKCε) mouse model of DCM. Transgenic mice expressing constitutively active PKCε in cardiomyocytes develop cardiac dysfunction that was evident by 3 months of age, and that progressed to cardiac fibrosis, heart failure, and increased mortality. Beginning at 3 months of age, PKCε mice were treated with a neutralizing monoclonal antibody to CTGF (FG-3149) for an additional 3 months. CTGF inhibition significantly improved left ventricular (LV) systolic and diastolic functions in PKCε mice, and slowed the progression of LV dilatation. Using gene arrays and quantitative PCR, the expression of many genes associated with tissue remodeling was elevated in PKCε mice, but significantly decreased by CTGF inhibition. However total collagen deposition was not attenuated. The observation of significantly improved LV function by CTGF inhibition in PKCε mice suggests that CTGF inhibition may benefit patients with DCM. Additional studies to explore this potential are warranted.

  19. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules

    PubMed Central

    Nagata, Takanobu; Yasukawa, Hideo; Kyogoku, Sachiko; Oba, Toyoharu; Takahashi, Jinya; Nohara, Shoichiro; Minami, Tomoko; Mawatari, Kazutoshi; Sugi, Yusuke; Shimozono, Koutatsu; Pradervand, Sylvain; Hoshijima, Masahiko; Aoki, Hiroki; Fukumoto, Yoshihiro; Imaizumi, Tsutomu

    2015-01-01

    Myocardial ischemia reperfusion injury (IRI) adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT) 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS)-3, an intrinsic negative feedback regulator of the Janus kinase (JAK)-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT–activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO). The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI. PMID:26010537

  20. Metabolic Remodeling in Moderate Synchronous versus Dyssynchronous Pacing-Induced Heart Failure: Integrated Metabolomics and Proteomics Study

    PubMed Central

    Shibayama, Junko; Yuzyuk, Tatiana N.; Cox, James; Makaju, Aman; Miller, Mickey; Lichter, Justin; Li, Hui; Leavy, Jane D.; Franklin, Sarah; Zaitsev, Alexey V.

    2015-01-01

    Heart failure (HF) is accompanied by complex alterations in myocardial energy metabolism. Up to 40% of HF patients have dyssynchronous ventricular contraction, which is an independent indicator of mortality. We hypothesized that electromechanical dyssynchrony significantly affects metabolic remodeling in the course of HF. We used a canine model of tachypacing-induced HF. Animals were paced at 200 bpm for 6 weeks either in the right atrium (synchronous HF, SHF) or in the right ventricle (dyssynchronous HF, DHF). We collected biopsies from left ventricular apex and performed comprehensive metabolic pathway analysis using multi-platform metabolomics (GC/MS; MS/MS; HPLC) and LC-MS/MS label-free proteomics. We found important differences in metabolic remodeling between SHF and DHF. As compared to Control, ATP, phosphocreatine (PCr), creatine, and PCr/ATP (prognostic indicator of mortality in HF patients) were all significantly reduced in DHF, but not SHF. In addition, the myocardial levels of carnitine (mitochondrial fatty acid carrier) and fatty acids (12:0, 14:0) were significantly reduced in DHF, but not SHF. Carnitine parmitoyltransferase I, a key regulatory enzyme of fatty acid ß-oxidation, was significantly upregulated in SHF but was not different in DHF, as compared to Control. Both SHF and DHF exhibited a reduction, but to a different degree, in creatine and the intermediates of glycolysis and the TCA cycle. In contrast to this, the enzymes of creatine kinase shuttle were upregulated, and the enzymes of glycolysis and the TCA cycle were predominantly upregulated or unchanged in both SHF and DHF. These data suggest a systemic mismatch between substrate supply and demand in pacing-induced HF. The energy deficit observed in DHF, but not in SHF, may be associated with a critical decrease in fatty acid delivery to the ß-oxidation pipeline, primarily due to a reduction in myocardial carnitine content. PMID:25790351

  1. Morphological aspects of myocardial bridges.

    PubMed

    Lujinović, Almira; Kulenović, Amela; Kapur, Eldan; Gojak, Refet

    2013-11-01

    Although some myocardial bridges can be asymptomatic, their presence often causes coronary disease either through direct compression of the "tunnel" segment or through stimulation and accelerated development of atherosclerosis in the segment proximally to the myocardial bridge. The studied material contained 30 human hearts received from the Department of Anatomy. The hearts were preserved 3 to 5 days in 10% formalin solution. Thereafter, the fatty tissue was removed and arterial blood vessels prepared by careful dissection with special reference to the presence of the myocardial bridges. Length and thickness of the bridges were measured by the precise electronic caliper. The angle between the myocardial bridge fibre axis and other axis of the crossed blood vessel was measured by a goniometer. The presence of the bridges was confirmed in 53.33% of the researched material, most frequently (43.33%) above the anterior interventricular branch. The mean length of the bridges was 14.64 ± 9.03 mm and the mean thickness was 1.23 ± 1.32 mm. Myocardial bridge fibres pass over the descending blood vessel at the angle of 10-90 degrees. The results obtained on a limited sample suggest that the muscular index of myocardial bridge is the highest for bridges located on RIA, but that the difference is not significant in relation to bridges located on other branches. The results obtained suggest that bridges located on other branches, not only those on RIA, could have a great contractive power and, consequently, a great compressive force, which would be exerted on the wall of a crossed blood vessel.

  2. Targeted disruption of the heat shock protein 20–phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy

    PubMed Central

    Martin, Tamara P.; Hortigon-Vinagre, Maria P.; Findlay, Jane E.; Elliott, Christina; Currie, Susan; Baillie, George S.

    2014-01-01

    Phosphorylated heat shock protein 20 (HSP20) is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20–phosphodiesterase 4D (PDE4D) complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20–PDE4D interaction leads to attenuation of pathological cardiac remodelling. PMID:25426411

  3. Adverse ocular reactions to drugs.

    PubMed Central

    Spiteri, M. A.; James, D. G.

    1983-01-01

    Drugs acting on various parts of the body may also affect the eye insidiously. Increased awareness of such drug toxicity by the prescribing doctor should encourage him to consider effects on the cornea, lens, retina, optic nerve and elsewhere when checking the patient's progress. The following review concerns adverse ocular effects of systemic drug administration. PMID:6356101

  4. Urbanicity, social adversity and psychosis

    PubMed Central

    Heinz, Andreas; Deserno, Lorenz; Reininghaus, Ulrich

    2013-01-01

    In recent years, there has been increasing interest in research on geographical variation in the incidence of schizophrenia and other psychoses. In this paper, we review the evidence on variation in incidence of schizophrenia and other psychoses in terms of place, as well as the individual- and area-level factors that account for this variation. We further review findings on potential mechanisms that link adverse urban environment and psychosis. There is evidence from earlier and more recent studies that urbanicity is associated with an increased incidence of schizophrenia and non-affective psychosis. In addition, considerable variation in incidence across neighbourhoods has been observed for these disorders. Findings suggest it is unlikely that social drift alone can fully account for geographical variation in incidence. Evidence further suggests that the impact of adverse social contexts – indexed by area-level exposures such as population density, social fragmentation and deprivation – on risk of psychosis is explained (confounding) or modified (interaction) by environmental exposures at the individual level (i.e., cannabis use, social adversity, exclusion and discrimination). On a neurobiological level, several studies suggest a close link between social adversity, isolation and stress on the one hand, and monoamine dysfunction on the other, which resembles findings in schizophrenia patients. However, studies directly assessing correlations between urban stress or discrimination and neurobiological alterations in schizophrenia are lacking to date. PMID:24096775

  5. Adverse Childhood Experiences and Hallucinations

    ERIC Educational Resources Information Center

    Whitfield, C.L.; Dube, S.R.; Felitti, V.J.; Anda, R.F.

    2005-01-01

    Objective:: Little information is available about the contribution of multiple adverse childhood experiences (ACEs) to the likelihood of reporting hallucinations. We used data from the ACE study to assess this relationship. Methods:: We conducted a survey about childhood abuse and household dysfunction while growing up, with questions about health…

  6. Maladaptive matrix remodeling and regional biomechanical dysfunction in a mouse model of aortic valve disease.

    PubMed

    Krishnamurthy, Varun K; Opoka, Amy M; Kern, Christine B; Guilak, Farshid; Narmoneva, Daria A; Hinton, Robert B

    2012-04-01

    Aortic valve disease (AVD) occurs in 2.5% of the general population and often requires surgical intervention. Aortic valve malformation (AVM) underlies the majority of cases, suggesting a developmental etiology. Elastin haploinsufficiency results in complex cardiovascular problems, and 20-45% of patients have AVM and/or AVD. Elastin insufficient (Eln+/-) mice demonstrate AVM and latent AVD due to abnormalities in the valve annulus region. The objective of this study was to examine extracellular matrix (ECM) remodeling and biomechanical properties in regional aortic valve tissue and determine the impact of early AVM on late AVD in the Eln+/- mouse model. Aortic valve ECM composition and remodeling from juvenile, adult, and aged stages were evaluated in Eln+/- mice using histology, ELISA, immunohistochemistry and gelatin zymography. Aortic valve tissue biomechanical properties were determined using micropipette aspiration. Cartilage-like nodules were demonstrated within the valve annulus region at all stages identifying a developmental abnormality preceding AVD. Interestingly, maladaptive ECM remodeling was observed in early AVM without AVD and worsened with late AVD, as evidenced by increased MMP-2 and MMP-9 expression and activity, as well as abnormalities in ADAMTS-mediated versican processing. Cleaved versican was increased in the valve annulus region of aged Eln+/- mice, and this abnormality correlated temporally with adverse alterations in valve tissue biomechanical properties and the manifestation of AVD. These findings identify maladaptive ECM remodeling in functional AVM as an early disease process with a progressive natural history, similar to that seen in human AVD, emphasizing the importance of the annulus region in pathogenesis. Combining molecular and engineering approaches provides complementary mechanistic insights that may be informative in the search for new therapeutic targets and durable valve bioprostheses.

  7. Thallium-201 myocardial scintigraphy in acute myocardial infarction and ischemia

    SciTech Connect

    Wackers, F.J.

    1982-04-01

    Thallium-201 scintigraphy provides a sensitive and reliable method of detecting acute myocardial infarction and ischemia when imaging is performed with understanding of the temporal characteristics and accuracy of the technique. The results of scintigraphy are related to the time interval between onset of symptoms and time of imaging. During the first 6 hr after chest pain almost all patients with acute myocardial infarction and approximately 50% of the patients with unstable angina will demonstrate /sup 201/TI pefusion defects. Delayed imaging at 2-4 hr will permit distinction between ischemia and infarction. In patients with acute myocardial infarction, the size of the perfusion defect accurately reflects the extent of the infarcted and/or jeopardized myocardium, which may be used for prognostic stratification. In view of the characteristics of /sup 201/TI scintigraphy, the most practical application of this technique is in patients in whom myocardial infarction has to be ruled out, and for early recognition of patients at high risk for complications.

  8. Control of bone remodelling by applied dynamic loads

    NASA Technical Reports Server (NTRS)

    Lanyon, L. E.; Rubin, C. T.

    1984-01-01

    The data showing the relationship between bone mass and peak strain magnitude prepared and submitted for publication. The data from experiments relating remodelling activity with static or dynamic loads were prepared and submitted for publication. Development of programs to relate the location of remodelling activity with he natural and artificial dynamic strain distributions continued. Experiments on the effect of different strain rates on the remodelling response continued.

  9. Association between Anger and Mental Stress-Induced Myocardial Ischemia

    PubMed Central

    Pimple, Pratik; Shah, Amit; Rooks, Cherie; Bremner, J. Douglas; Nye, Jonathon; Ibeanu, Ijeoma; Murrah, Nancy; Shallenberger, Lucy; Kelley, Mary; Raggi, Paolo; Vaccarino, Viola

    2014-01-01

    Background Mental stress-induced myocardial ischemia is associated with adverse prognosis in coronary artery disease patients. Anger is thought to be a trigger of acute coronary syndromes and is associated with increased cardiovascular risk; however, little direct evidence exists for a link between anger and myocardial ischemia. Methods [99mTc]sestamibi single-photon emission tomography was performed at rest, after mental stress (a social stressor with a speech task), and after exercise/pharmacological stress. Summed scores of perfusion abnormalities were obtained by observer-independent software. A summed difference score, the difference between stress and rest scores, was used to quantify myocardial ischemia under both stress conditions. The Spielberger's State-Trait Anger Expression Inventory was used to assess different anger dimensions. Results The mean age was 50 years, 50% were female and 60% were non-white. After adjusting for demographic factors, smoking, coronary artery disease severity, depressive and anxiety symptoms, each interquartile range increment in state-anger score was associated with 0.36 units adjusted increase in ischemia as measured by the summed difference score (95% CI: 0.14-0.59); the corresponding association for trait-anger was 0.95 (95% CI: 0.21-1.69). Anger expression scales were not associated ischemia. None of the anger dimensions were related to ischemia during exercise/pharmacological stress. Conclusion Anger, both as an emotional state and as a personality trait, is significantly associated with propensity to develop myocardial ischemia during mental stress, but not during exercise/pharmacological stress. Patients with this psychological profile may be at increased risk for silent ischemia induced by emotional stress and this may translate into worse prognosis. PMID:25497256

  10. Pregnancy-induced remodeling of heart valves.

    PubMed

    Pierlot, Caitlin M; Moeller, Andrew D; Lee, J Michael; Wells, Sarah M

    2015-11-01

    Recent studies have demonstrated remodeling of aortic and mitral valves leaflets under the volume loading and cardiac expansion of pregnancy. Those valves' leaflets enlarge with altered collagen fiber architecture, content, and cross-linking and biphasic changes (decreases, then increases) in extensibility during gestation. This study extends our analyses to right-sided valves, with additional compositional measurements for all valves. Valve leaflets were harvested from nonpregnant heifers and pregnant cows. Leaflet structure was characterized by leaflet dimensions, and ECM composition was determined using standard biochemical assays. Histological studies assessed changes in cellular and ECM components. Leaflet mechanical properties were assessed using equibiaxial mechanical testing. Collagen thermal stability and cross-linking were assessed using denaturation and hydrothermal isometric tension tests. Pulmonary and tricuspid leaflet areas increased during pregnancy by 35 and 55%, respectively. Leaflet thickness increased by 20% only in the pulmonary valve and largely in the fibrosa (30% thickening). Collagen crimp length was reduced in both the tricuspid (61%) and pulmonary (42%) valves, with loss of crimped area in the pulmonary valve. Thermomechanics showed decreased collagen thermal stability with surprisingly maintained cross-link maturity. The pulmonary leaflet exhibited the biphasic change in extensibility seen in left side valves, whereas the tricuspid leaflet mechanics remained largely unchanged throughout pregnancy. The tricuspid valve exhibits a remodeling response during pregnancy that is significantly diminished from the other three valves. All valves of the heart remodel in pregnancy in a manner distinct from cardiac pathology, with much similarity valve to valve, but with interesting valve-specific responses in the aortic and tricuspid valves.

  11. Chromatin remodelling: the industrial revolution of DNA around histones.

    PubMed

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  12. CHD chromatin remodelers and the transcription cycle.

    PubMed

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  13. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes. PMID:25790500

  14. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes.

  15. Myocardial contusion following nonfatal blunt chest trauma

    SciTech Connect

    Kumar, S.A.; Puri, V.K.; Mittal, V.K.; Cortez, J.

    1983-04-01

    Currently available diagnostic techniques for myocardial contusion following blunt chest trauma were evaluated. We investigated 30 patients prospectively over a period of 1 year for the presence of myocardial contusion. Among the 30 patients, eight were found to have myocardial contusion on the basis of abnormal electrocardiograms, elevated creatine phosphokinase MB fraction (CPK-MB), and positive myocardial scan. Myocardial scan was positive in seven of eight patients (87.5%). CPK-MB fraction was elevated in four of eight patients (50%). Definitive electrocardiographic changes were seen in only two of eight patients (25%). It appears that myocardial scan using technetium pyrophosphate and CPK-MB fraction determinations are the most reliable aids in diagnosis of myocardial contusion following blunt chest trauma.

  16. The Effect of Rosuvastatin on Inflammation, Matrix Turnover and Left Ventricular Remodeling in Dilated Cardiomyopathy: A Randomized, Controlled Trial

    PubMed Central

    Gjertsen, Erik; Ueland, Thor; Yndestad, Arne; Godang, Kristin; Stueflotten, Wenche; Andreassen, Johanna; Svendsmark, Rolf; Smith, Hans-Jørgen; Aakhus, Svend; Aukrust, Pål; Gullestad, Lars

    2014-01-01

    Background Dilated cardiomyopathy is characterized by left ventricular dilatation and dysfunction. Inflammation and adverse remodeling of the extracellular matrix may be involved in the pathogenesis. Statins reduce levels of low density lipoprotein cholesterol, but may also attenuate inflammation and affect matrix remodeling. We hypothesized that treatment with rosuvastatin would reduce or even reverse left ventricular remodeling in dilated cardiomyopathy. Materials and Methods In this multicenter, randomized, double blind, placebo-controlled study, 71 patients were randomized to 10 mg of rosuvastatin or matching placebo. Physical examination, blood sampling, echocardiography and cardiac magnetic resonance imaging were performed at baseline and at six months’ follow-up. The pre-specified primary end point was the change in left ventricular ejection fraction from baseline to six months. Results Over all, left ventricular ejection fraction improved 5 percentage points over the duration of the study, but there was no difference in the change in left ventricular ejection fraction between patients allocated to rosuvastatin and those allocated to placebo. Whereas serum low density lipoprotein cholesterol concentration fell significantly in the treatment arm, rosuvastatin did not affect plasma or serum levels of a wide range of inflammatory variables, including C-reactive protein. The effect on markers of extracellular matrix remodeling was modest. Conclusion Treatment with rosuvastatin does not improve left ventricular ejection fraction in patients with dilated cardiomyopathy. Trial Registration ClinicalTrials.gov NCT00505154 PMID:24586994

  17. Myocardial revascularization in Jehovah Witnesses.

    PubMed

    Seifert, P E; Auer, J E; Hohensee, P

    1989-04-01

    The refusal of certain patients to accept blood transfusions need not be a deterrent to surgery. We report on nine Jehovah's Witnesses who over a one-year period underwent myocardial revascularization without significant blood loss or decrease in hematocrit values. PMID:2786287

  18. [Myocardial infarction in young population].

    PubMed

    Shklovskii, B L; Prokhorchik, A A; Koltunov, A N; Lishchuk, A N; Ryzhman, N N; Ivanov, A V; Navaznov, V V; Baksheev, V I

    2015-03-01

    Description of clinical observation and literature review. Myocardial infarction in patients younger than 45 years is rare, but it is an important clinical, organizational and psychological problem. A case of myocardial infarction in 19-years old patient, who suffered since 6 years from kidney disease, is described. Transmural left-ventricular myocardial infarction has developed on the background of chronic glomerulonephritis, excessive exercise, and traditional risk factors for cardiovascular disease. Coronary venous bypass with the benefit-pleasing outcome is performed. When analysing the literature, the authors emphasize that in comparison with elderly patients, young people have different profiles of risk factors, clinical manfestations and prognosis of myocardial infarction. It is emphasized that kidney chronic disease, regardless the stage, worsen short-term and long-term outcomes of cardiovascular disease. Early stabilization is possible under the condition of risk stratification and-early revascularization, which leads to better clinical outcomes. Particular attention should be given to a comprehensive assessment, it prognostic criteria, risk factor modification, secondary prevention of major and associated diseases, clinical- and -dynamic observation, including patients with asymptomatic course of the disease.

  19. Spousal Adjustment to Myocardial Infarction.

    ERIC Educational Resources Information Center

    Ziglar, Elisa J.

    This paper reviews the literature on the stresses and coping strategies of spouses of patients with myocardial infarction (MI). It attempts to identify specific problem areas of adjustment for the spouse and to explore the effects of spousal adjustment on patient recovery. Chapter one provides an overview of the importance in examining the…

  20. Myocardial infarction following sternal surgery.

    PubMed Central

    Aggarwal, R. K.; Morrison, W. L.

    1996-01-01

    We report a case of myocardial infarction in a 32-year-old man undergoing sternal surgery. Thrombotic occlusion of the right coronary artery with no underlying atheromatous disease was demonstrated angiographically and successfully treated with intracoronary thrombolysis. Images Figure 1 Figure 2 PMID:8796219

  1. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  2. Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome

    PubMed Central

    Katz, Paige S.; Kelly, Amy P.; Galantowicz, Maarten L.; Cismowski, Mary J.; West, T. Aaron; Neeb, Zachary P.; Berwick, Zachary C.; Goodwill, Adam G.; Alloosh, Mouhamad; Tune, Johnathan D.; Sturek, Michael; Lucchesi, Pamela A.

    2012-01-01

    Previous studies from our laboratory showed that coronary arterioles from type 2 diabetic mice undergo inward hypertrophic remodeling and reduced stiffness. The aim of the current study was to determine if coronary resistance microvessels (CRMs) in Ossabaw swine with metabolic syndrome (MetS) undergo remodeling distinct from coronary conduit arteries. Male Ossabaw swine were fed normal (n = 7, Lean) or hypercaloric high-fat (n = 7, MetS) diets for 6 mo, and then CRMs were isolated and mounted on a pressure myograph. CRMs isolated from MetS swine exhibited decreased luminal diameters (126 ± 5 and 105 ± 9 μm in Lean and MetS, respectively, P < 0.05) with thicker walls (18 ± 3 and 31 ± 3 μm in Lean and MetS, respectively, P < 0.05), which doubled the wall-to-lumen ratio (14 ± 2 and 30 ± 2 in Lean and MetS, respectively, P < 0.01). Incremental modulus of elasticity (IME) and beta stiffness index (BSI) were reduced in CRMs isolated from MetS pigs (IME: 3.6 × 106 ± 0.7 × 106 and 1.1 × 106 ± 0.2 × 106 dyn/cm2 in Lean and MetS, respectively, P < 0.001; BSI: 10.3 ± 0.4 and 7.3 ± 1.8 in Lean and MetS, respectively, P < 0.001). BSI in the left anterior descending coronary artery was augmented in pigs with MetS. Structural changes were associated with capillary rarefaction, decreased hyperemic-to-basal coronary flow velocity ratio, and augmented myogenic tone. MetS CRMs showed a reduced collagen-to-elastin ratio, while immunostaining for the receptor for advanced glycation end products was selectively increased in the left anterior descending coronary artery. These data suggest that MetS causes hypertrophic inward remodeling of CRMs and capillary rarefaction, which contribute to decreased coronary flow and myocardial ischemia. Moreover, our data demonstrate novel differential remodeling between coronary micro- and macrovessels in a clinically relevant model of MetS. PMID:22837170

  3. Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-β1.

    PubMed

    Mewhort, Holly E M; Lipon, Brodie D; Svystonyuk, Daniyil A; Teng, Guoqi; Guzzardi, David G; Silva, Claudia; Yong, V Wee; Fedak, Paul W M

    2016-03-15

    Following myocardial infarction (MI), cardiac myofibroblasts remodel the extracellular matrix (ECM), preventing mechanical complications. However, prolonged myofibroblast activity leads to dysregulation of the ECM, maladaptive remodeling, fibrosis, and heart failure (HF). Chronic inflammation is believed to drive persistent myofibroblast activity; however, the mechanisms are unclear. We assessed the influence of peripheral blood monocytes on human cardiac myofibroblast activity in a three-dimensional (3D) ECM microenvironment. Human cardiac myofibroblasts isolated from surgical biopsies of the right atrium and left ventricle were seeded into 3D collagen matrices. Peripheral blood monocytes were isolated from healthy human donors and cocultured with myofibroblasts. Monocytes increased myofibroblast activity measured by collagen gel contraction (baseline: 57.6 ± 5.9% vs. coculture: 65.2 ± 7.1% contraction; P < 0.01) and increased local ECM remodeling quantified by confocal microscopy. Under coculture conditions that allow indirect cellular interaction via paracrine factors but prevent direct cell-cell contact, monocytes had minimal effects on myofibroblast activity (17.9 ± 11.1% vs. 6.4 ± 7.0% increase, respectively; P < 0.01). When cells were cultured under direct contact conditions, multiplex analysis of the coculture media revealed an increase in the paracrine factors TGF-β1 and matrix metalloproteinase 9 compared with baseline (122.9 ± 10.1 pg/ml and 3,496.0 ± 190.4 pg/ml, respectively, vs. 21.5 ± 16.3 pg/ml and 183.3 ± 43.9 pg/ml; P < 0.001). TGF-β blockade abolished the monocyte-induced increase in cardiac myofibroblast activity. These data suggest that direct cell-cell interaction between monocytes and cardiac myofibroblasts stimulates TGF-β-mediated myofibroblast activity and increases remodeling of local matrix. Peripheral blood monocyte interaction with human cardiac myofibroblasts stimulates myofibroblast activity through release of TGF-β1

  4. Toll-like receptor-6 (TLR6) deficient mice are protected from myocardial fibrosis induced by high fructose feeding through anti-oxidant and inflammatory signaling pathway.

    PubMed

    Zhang, Yuan; Zhang, Yi

    2016-04-29

    Diabetic cardiomyopathy is an essential complication of diabetes and characterized by persistent diastolic dysfunction, leading to myocardial fibrosis. Oxidative stress and inflammation lead to cell damage and are implicated in many disease states. In our study, we evaluated the effects of toll-like receptor 6 (TLR6) in cardiac remodeling. We established a mouse model of myocardial fibrosis with diabetes using 30% fructose. In comparison to HF-feeding control mice, TLR6 deficient mice developed less myocardial fibrosis with lower myocardial injury marker enzymes and AngII and aldosterone (ALD). In addition, Collagen type I/III, alpha smooth muscle-actin (α-SMA) and FSP-1, as typical markers of myocardial fibrosis formation, were found to be reduced due to TLR6 knockout in HF-induced mice. HF-feeding mice developed myocardial fibrosis with lower SOD activity, high level of MDA, O2(-) and H2O2 and increased serum pro-inflammatory cytokines, whereas TLR6 deficient mice after HF-administration were protected from myocardial fibrosis progression significantly. HF-feeding mice also displayed lower Nrf2 and higher XO levels, which was not observed in TLR6 deficient mice after HF-feeding. Furthermore, NF-κB pathway was inactivated for TLR6 knockout compared with HF-feeding mice. In vitro, fructose directly up-regulated α-SMA, TGF-β1, Collagen type I/III and FSP-1 via ROS production and NF-κB phosphorylation as well as pro-inflammatory cytokines releasing, which were inhibited for TLR6 deficiency. Taken together, TLR6 contributed to myocardial fibrosis progression, at least partly, through oxidative stress and inflammatory response, providing a potential therapeutic strategy for myocardial fibrosis treatment.

  5. Mitochondrial Remodeling in Mice with Cardiomyocyte-Specific Lipid Overload

    PubMed Central

    Elezaby, Aly; Sverdlov, Aaron L.; Tu, Vivian H.; Soni, Kanupriya; Luptak, Ivan; Qin, Fuzhong; Liesa, Marc; Shirihai, Orian S.; Rimer, Jamie; Schaffer, Jean E.; Colucci, Wilson S.; Miller, Edward J.

    2014-01-01

    Background Obesity leads to metabolic heart disease (MHD) that is associated with a pathologic increase in myocardial fatty acid (FA) uptake and impairment of mitochondrial function. The mechanism of mitochondrial dysfunction in MHD, which results in oxidant production and decreased energetics, is poorly understood but may be related to excess FAs. Determining the effects of cardiac FA excess on mitochondria can be hindered by the systemic sequelae of obesity. Mice with cardiomyocyte-specific overexpression of the fatty acid transport protein FATP1 have increased cardiomyocyte FA uptake and develop MHD in the absence of systemic lipotoxicity, obesity or diabetes. We utilized this model to assess 1) the effect of cardiomyocyte lipid accumulation on mitochondrial structure and energetic function and 2) the role of lipid-driven transcriptional regulation, signaling, toxic metabolite accumulation, and mitochondrial oxidative stress in lipid-induced MHD. Methods Cardiac lipid species, lipid-dependent signaling, and mitochondrial structure / function were examined from FATP1 mice. Cardiac structure and function were assessed in mice overexpressing both FATP1 and mitochondrial-targeted catalase. Results FATP1 hearts exhibited a net increase (+12%) in diacylglycerol, with increases in several very long-chain diacylglycerol species (+160-212%, p<0.001) and no change in ceramide, sphingomyelin, or acylcarnitine content. This was associated with an increase in phosphorylation of PKCα and PKCδ, and a decrease in phosphorylation of AKT and expression of CREB, PGC1α, PPARα and the mitochondrial fusion genes MFN1, MFN2 and OPA1. FATP1 overexpression also led to marked decreases in mitochondrial size (-49%, p<0.01), complex II-driven respiration (-28.6%, p<0.05), activity of isolated complex II (-62%, p=0.05), and expression of complex II subunit B (SDHB) (-60% and -31%, p<0.01) in the absence of change in ATP synthesis. Hydrogen peroxide production was not increased in FATP1

  6. Salvianolic acid B functioned as a competitive inhibitor of matrix metalloproteinase-9 and efficiently prevented cardiac remodeling

    PubMed Central

    2010-01-01

    Background Infarct-induced left ventricular (LV) remodeling is a deleterious consequence after acute myocardial infarction (MI) which may further advance to congestive heart failure. Therefore, new therapeutic strategies to attenuate the effects of LV remodeling are urgently needed. Salvianolic acid B (SalB) from Salviae mitiorrhizae, which has been widely used in China for the treatment of cardiovascular diseases, is a potential candidate for therapeutic intervention of LV remodeling targeting matrix metalloproteinase-9 (MMP-9). Results Molecular modeling and LIGPLOT analysis revealed in silico docking of SalB at the catalytic site of MMP-9. Following this lead, we expressed truncated MMP-9 which contains only the catalytic domain, and used this active protein for in-gel gelatin zymography, enzymatic analysis, and SalB binding by Biacore. Data generated from these assays indicated that SalB functioned as a competitive inhibitor of MMP-9. In our rat model for cardiac remodeling, western blot, echocardiography, hemodynamic measurement and histopathological detection were used to detect the effects and mechanism of SalB on cardio-protection. Our results showed that in MI rat, SalB selectively inhibited MMP-9 activities without affecting MMP-9 expression while no effect of SalB was seen on MMP-2. Moreover, SalB treatment in MI rat could efficiently increase left ventricle wall thickness, improve heart contractility, and decrease heart fibrosis. Conclusions As a competitive inhibitor of MMP-9, SalB presents significant effects on preventing LV structural damage and preserving cardiac function. Further studies to develop SalB and its analogues for their potential for cardioprotection in clinic are warranted. PMID:20735854

  7. Sodium hydrosulfide prevents myocardial dysfunction through modulation of extracellular matrix accumulation and vascular density.

    PubMed

    Pan, Li-Long; Wang, Xian-Li; Wang, Xi-Ling; Zhu, Yi-Zhun

    2014-12-12

    The aim was to examine the role of exogenous hydrogen sulfide (H2S) on cardiac remodeling in post-myocardial infarction (MI) rats. MI was induced in rats by ligation of coronary artery. After treatment with sodium hydrosulfide (NaHS, an exogenous H2S donor, 56 μM/kg·day) for 42 days, the effects of NaHS on left ventricular morphometric features, echocardiographic parameters, heme oxygenase-1 (HO-1), matrix metalloproteinases-9 (MMP-9), type I and type III collagen, vascular endothelial growth factor (VEGF), CD34, and α-smooth muscle actin (α-SMA) in the border zone of infarct area were analyzed to elucidate the protective mechanisms of exogenous H2S on cardiac function and fibrosis. Forty-two days post MI, NaHS-treatment resulted in a decrease in myocardial fibrotic area in association with decreased levels of type I, type III collagen and MMP-9 and improved cardiac function. Meanwhile, NaHS administration significantly increased cystathionine γ-lyase (CSE), HO-1, α-SMA, and VEGF expression. This effect was accompanied by an increase in vascular density in the border zone of infarcted myocardium. Our results provided the strong evidences that exogenous H2S prevented cardiac remodeling, at least in part, through inhibition of extracellular matrix accumulation and increase in vascular density.

  8. Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations.

    PubMed

    Wang, Bo; Wang, Guangjun; To, Filip; Butler, J Ryan; Claude, Andrew; McLaughlin, Ronald M; Williams, Lakiesha N; de Jongh Curry, Amy L; Liao, Jun

    2013-09-01

    Recently, we developed an optimal decellularization protocol to generate 3D porcine myocardial scaffolds, which preserve the natural extracellular matrix structure, mechanical anisotropy, and vasculature templates and also show good cell recellularization and differentiation potential. In this study, a multistimulation bioreactor was built to provide coordinated mechanical and electrical stimulation for facilitating stem cell differentiation and cardiac construct development. The acellular myocardial scaffolds were seeded with mesenchymal stem cells (10(6) cells/mL) by needle injection and subjected to 5-azacytidine treatment (3 μmol/L, 24 h) and various bioreactor conditioning protocols. We found that after 2 days of culturing with mechanical (20% strain) and electrical stimulation (5 V, 1 Hz), high cell density and good cell viability were observed in the reseeded scaffold. Immunofluorescence staining demonstrated that the differentiated cells showed a cardiomyocyte-like phenotype by expressing sarcomeric α-actinin, myosin heavy chain, cardiac troponin T, connexin-43, and N-cadherin. Biaxial mechanical testing demonstrated that positive tissue remodeling took place after 2 days of bioreactor conditioning (20% strain + 5 V, 1 Hz); passive mechanical properties of the 2 day and 4 day tissue constructs were comparable to those of the tissue constructs produced by stirring reseeding followed by 2 weeks of static culturing, implying the effectiveness and efficiency of the coordinated simulations in promoting tissue remodeling. In short, the synergistic stimulations might be beneficial not only for the quality of cardiac construct development but also for patients by reducing the waiting time in future clinical scenarios.

  9. Myocardial Scaffold-based Cardiac Tissue Engineering: Application of Coordinated Mechanical and Electrical Stimulations

    PubMed Central

    Wang, Bo; Wang, Guangjun; To, Filip; Butler, J. Ryan; Claude, Andrew; McLaughlin, Ronald M.; Williams, Lakiesha N.; de Jongh Curry, Amy L.; Liao, Jun

    2013-01-01

    Recently, we have developed an optimal decellularization protocol to generate 3D porcine myocardial scaffolds, which preserved natural extracellular matrix structure, mechanical anisotropy, and vasculature templates, and also showed good cell recellularization and differentiation potential. In this study, a multi-stimulation bioreactor was built to provide coordinated mechanical and electrical stimulations for facilitating stem cell differentiation and cardiac construct development. The acellular myocardial scaffolds were seeded with mesenchymal stem cells (106 cells/ml) by needle injection and subjected to 5-azacytidine treatment (3 μmol/L, 24 h) and various bioreactor conditioning protocols. We found that, after 2-day culture with mechanical (20% strain) and electrical stimulation (5 V, 1 Hz), high cell density and good cell viability were observed in the reseeded scaffold. Immunofluorescence staining demonstrated that the differentiated cells showed cardiomyocyte-like phenotype, by expressing sarcomeric α-actinin, myosin heavy chain, cardiac troponin T, connexin-43, and N-cadherin. Biaxial mechanical testing demonstrated that positive tissue remodeling took place after 2-day bioreactor conditioning (20% strain + 5 V, 1 Hz); passive mechanical properties of the 2-day and 4-day tissue constructs were comparable to the tissue constructs produced by stirring reseeding followed by 2-week static culture, implying the effectiveness and efficiency of the coordinated simulations in promoting tissue remodeling. In short, the synergistic stimulations might be beneficial not only for the quality of cardiac construct development, but also for patients by reducing the waiting time in future clinical scenarios. PMID:23923967

  10. Biochemical Markers of Myocardial Damage

    PubMed Central

    2016-01-01

    Heart diseases, especially coronary artery diseases (CAD), are the leading causes of morbidity and mortality in developed countries. Effective therapy is available to ensure patient survival and to prevent long term sequelae after an acute ischemic event caused by CAD, but appropriate therapy requires rapid and accurate diagnosis. Research into the pathology of CAD have demonstrated the usefulness of measuring concentrations of chemicals released from the injured cardiac muscle can aid the diagnosis of diseases caused by myocardial ischemia. Since the mid-1950s successively better biochemical markers have been described in research publications and applied for the clinical diagnosis of acute ischemic myocardial injury. Aspartate aminotransferase of the 1950s was replaced by other cytosolic enzymes such as lactate dehydrogenase, creatine kinase and their isoenzymes that exhibited better cardiac specificity. With the availability of immunoassays, other muscle proteins, that had no enzymatic activity, were also added to the diagnostic arsenal but their limited tissue specificity and sensitivity lead to suboptimal diagnostic performance. After the discovery that cardiac troponins I and T have the desired specificity, they have replaced the cytosolic enzymes in the role of diagnosing myocardial ischemia and infarction. The use of the troponins provided new knowledge that led to revision and redefinition of ischemic myocardial injury as well as the introduction of biochemicals for estimation of the probability of future ischemic myocardial events. These markers, known as cardiac risk markers, evolved from the diagnostic markers such as CK-MB or troponins, but markers of inflammation also belong to these groups of diagnostic chemicals. This review article presents a brief summary of the most significant developments in the field of biochemical markers of cardiac injury and summarizes the most recent significant recommendations regarding the use of the cardiac markers in

  11. Myocardial disarray. A critical review.

    PubMed Central

    Becker, A E; Caruso, G

    1982-01-01

    Myocardial disarray or disorganisation is at present a contentious topic, not least because its value as a clinical marker for hypertrophic cardiomyopathy has changed considerably over the years. Initially observed as one of the features of asymmetric septal hypertrophy, disarray has since been promoted as its pathognomonic histological feature, regarded by some observers as the morphological manifestation of a genetically transmitted myocardial defect. Recently, however, it has become evident that myocardial disarray is not limited to hypertrophic cardiomyopathy, but is encountered in hearts with both congenital and acquired conditions, and is also observed in normal hearts. The specificity of disarray for hypertrophic cardiomyopathy is thus seriously questioned. Latterly, it has been suggested that disarray, judged from through-and-through sections of the ventricular midseptum is a highly specific and sensitive marker of hypertrophic cardiomyopathy when considered in quantitative rather than qualitative fashion. The present study sets out to answer the question whether disarray could be the histological expression of the normal but intricate fibre architecture of the heart, a consideration also initiated by debatable definitions of normality and abnormality of myocardial histology. Gross fibre dissections in five normal hearts showed that many sites occurred in which disarray was a natural phenomenon. In five more hearts it was found that the plane of section of a tissue block might profoundly influence the histology. In fact, tissue cubicles sampled from different faces showed a change in histology in the vast majority. Thus the diagnostic significance of myocardial disarray as a marker of hypertrophic cardiomyopathy in the clinical setting almost vanishes; a change in orientation of a tissue section may actually turn "normality" into "disarray". Images PMID:7044398