Science.gov

Sample records for adverse physiological responses

  1. Mechanistic and dose considerations for supporting adverse pulmonary physiology in response to formaldehyde

    SciTech Connect

    Thompson, Chad M. Subramaniam, Ravi P.; Grafstroem, Roland C.

    2008-12-15

    Induction of airway hyperresponsiveness and asthma from formaldehyde inhalation exposure remains a debated and controversial issue. Yet, recent evidences on pulmonary biology and the pharmacokinetics and toxicity of formaldehyde lend support for such adverse effects. Specifically, altered thiol biology from accelerated enzymatic reduction of the endogenous bronchodilator S-nitrosoglutathione and pulmonary inflammation from involvement of Th2-mediated immune responses might serve as key events and cooperate in airway pathophysiology. Understanding what role these mechanisms play in various species and lifestages (e.g., child vs. adult) could be crucial for making more meaningful inter- and intra-species dosimetric extrapolations in human health risk assessment.

  2. Adverse responses to local anaesthetics.

    PubMed

    Fisher, M M; Graham, R

    1984-11-01

    Progressive challenge was used to investigate twenty-seven patients with a history of an adverse response to local anaesthesia. True allergy was detected in only one patient. The method does not exclude reactions to additives and preservatives in local anaesthetics. If preservative-free local anaesthetics are used for subsequent exposure in patients with no response to progressive challenge, subsequent exposure is safe. The possibility that some of these patients may be reacting to preservatives in the solutions cannot be excluded by such testing. Where possible preservative-free local anaesthetic preparations should be used for subsequent anaesthesia.

  3. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH

    PubMed Central

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-01

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification. PMID:26740396

  4. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH

    NASA Astrophysics Data System (ADS)

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-01

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  5. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.

    PubMed

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-07

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  6. Stress response physiology of thermophiles.

    PubMed

    Ranawat, Preeti; Rawat, Seema

    2017-04-01

    Thermo (or hyperthermo) philic microorganisms are ubiquitous having a wide range of habitats from freshly fallen snow to pasteurized milk to geothermal areas like hot springs. The variations in physicochemical conditions, viz., temperature, pH, nutrient availability and light intensity in the habitats always pose stress conditions for the inhabitants leading to slow growth or cell death. The industrial processes used for harvesting secondary metabolites such as enzymes, toxins and organic acids also create stressed environments for thermophiles. The production of DNA-binding proteins, activation of reactive oxygen species detoxification system, compatible solute accumulation, expression of heat shock proteins and alterations in morphology are a few examples of physiological changes demonstrated by these microscopic lifeforms in stress. These microorganisms exhibit complex genetic and physiological changes to minimize, adapt to and repair damage caused by extreme environmental disturbances. These changes are termed as 'stress responses' which enable them to stabilize their homeostasis. The exploration of important thermophilic factors would pave the way in engineering the microbial strains for various biotechnological applications. This review article presents a picture of physiological responses of thermophiles against various stress conditions as their mechanisms to respond to stress make them model organisms to further explore them for basic and applied biology purposes.

  7. Neuronal Responses to Physiological Stress

    PubMed Central

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level. PMID:23112806

  8. Physiological responses to repeated transportation of gestating Brahman cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transportation process acts as a stressor with adverse effects on animal health and performance. The purpose of this study was to examine physiological responses to repeated transportation of gestating Brahman cows, previously classified as mature cows, into temperament groups of calm, moderate,...

  9. Adverse response to neuroleptics in schizophrenia.

    PubMed

    Nevins, D B

    1977-01-01

    Negative therapeutic reactions to neuroleptics in schizophrenic patients are examined from the psychoanalytic perspective through case examples. Intrapsychic changes resulting from this medication, ordinarily considered beneficial, are shown, in some cases, to be disruptive of schizophrenic functioning and organization and potentially to endanger the continuation of medication itself. Changes are described which effect defenses, object relations, psychotic restitution, use of external reality, body image and cognition, and the symbolic significance of medication. Alterations in narcissistic ego states and disruption in preconscious processes, superimposed upon defective ego functioning, are used as explanatory concepts. These interact with transference based responses; in some cases, important psychodynamic issues emerge amenable to transference interpretations. Further study of intrapsychic changes may be useful in delineating a previously inexplicable response, understanding symptom formation, recognizing shifts in the patient-psychotherapist relationship, and forestalling premature cessation of medication.

  10. Physiological responses induced by pleasant stimuli.

    PubMed

    Watanuki, Shigeki; Kim, Yeon-Kyu

    2005-01-01

    The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters.

  11. Explaining the Association between Early Adversity and Young Adults' Diabetes Outcomes: Physiological, Psychological, and Behavioral Mechanisms.

    PubMed

    Wickrama, Kandauda A S; Bae, Dayoung; O'Neal, Catherine Walker

    2017-01-31

    Previous studies have documented that early adversity increases young adults' risk for diabetes resulting in morbidity and comorbidity with adverse health conditions. However, less is known about how inter-related physiological (e.g., body mass index [BMI]), psychological (e.g., depressive symptoms), and behavioral mechanisms (e.g., unhealthy eating and sedentary behavior) link early adversity to young adults' diabetes outcomes, although these mechanisms appear to stem from early stressful experiences. The current study tested the patterning of these longitudinal pathways leading to young adults' diabetes using a nationally representative sample of 13,286 adolescents (54% female) over a period of 13 years. The findings indicated that early adversity contributed to elevated BMI, depressive symptoms, and stress-related health behaviors. The impact of these linking mechanisms on hierarchical diabetes outcomes (i.e., prediabetes and diabetes) remained significant after taking their associations with each other into account, showing that these mechanisms operate concurrently. The findings emphasize the importance of early detection for risk factors of young adults' diabetes in order to minimize their detrimental health effects.

  12. Autonomic Physiological Response Patterns Related to Intelligence

    ERIC Educational Resources Information Center

    Melis, Cor; van Boxtel, Anton

    2007-01-01

    We examined autonomic physiological responses induced by six different cognitive ability tasks, varying in complexity, that were selected on the basis of on Guilford's Structure of Intellect model. In a group of 52 participants, task performance was measured together with nine different autonomic response measures and respiration rate. Weighted…

  13. An upside to adversity?: moderate cumulative lifetime adversity is associated with resilient responses in the face of controlled stressors.

    PubMed

    Seery, Mark D; Leo, Raphael J; Lupien, Shannon P; Kondrak, Cheryl L; Almonte, Jessica L

    2013-07-01

    Despite common findings suggesting that lack of negative life events should be optimal, recent work has revealed a curvilinear pattern, such that some cumulative lifetime adversity is instead associated with optimal well-being. This work, however, is limited in that responses to specific stressors as they occurred were not assessed, thereby precluding investigation of resilience. The current research addressed this critical gap by directly testing the relationship between adversity history and resilience to stressors. Specifically, we used a multimethod approach across two studies to assess responses to controlled laboratory stressors (respectively requiring passive endurance and active instrumental performance). Results revealed hypothesized U-shaped relationships: Relative to a history of either no adversity or nonextreme high adversity, a moderate number of adverse life events was associated with less negative responses to pain and more positive psychophysiological responses while taking a test. These results provide novel evidence in support of adversity-derived propensity for resilience that generalizes across stressors.

  14. [Immune response genes products in human physiology].

    PubMed

    Khaitov, R M; Alekseev, L P

    2012-09-01

    Current data on physiological role of human immune response genes' proteomic products (antigens) are discussed. The antigens are specified by a very high level of diversity that mediates a wide specter ofphysiological functions. They actually provide integrity and biological stability of human as species. These data reveal new ideas on many pathological processes as well as drafts new approaches for prophylaxis and treatment.

  15. Physiologic Responses to Treadmill and Water Running.

    ERIC Educational Resources Information Center

    Bishop, Phillip A.; And Others

    1989-01-01

    Presents results of a study of the physiological responses of uninjured runners to running on a treadmill and in water. Water running may lessen an injured athlete's rate of deconditioning, but indications are that the metabolic cost of water running is not significantly greater than that of treadmill running. (SM)

  16. Physiological responses to daily light exposure

    NASA Astrophysics Data System (ADS)

    Yang, Yefeng; Yu, Yonghua; Yang, Bo; Zhou, Hong; Pan, Jinming

    2016-04-01

    Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth.

  17. Human physiological responses to wooden indoor environment.

    PubMed

    Zhang, Xi; Lian, Zhiwei; Wu, Yong

    2017-03-02

    Previous studies are mainly focused on non-wooden environments, whereas few are concerned with wooden ones. How wooden indoor environments impact the physiology of the occupants is still unclear. The purpose of this study was to explore the distinct physiological responses to wooden and non-wooden indoor environments, assessed by physiological parameters tests including blood pressure, electrocardiogram measurements, electro-dermal activity, oxyhemoglobin saturation, skin temperature, and near distance vision. Twenty healthy adults participated in this experiment, and their physiological responses were evaluated in a 90minute investigation. The results illustrated that; less tension and fatigue were generated in the wooden rooms than in the non-wooden rooms when the participants did their work. In addition, the study also found that the wooden environments benefit the autonomic nervous system, respiratory system, and visual system. Moreover, wooden rooms play a valuable role in physiological regulation and ease function especially after a consecutive period of work. These results provide an experimental basis to support that wooden environment is beneficial to indoor occupants than the non-wooden indoor environment.

  18. Physiological responses to daily light exposure

    PubMed Central

    Yang, Yefeng; Yu, Yonghua; Yang, Bo; Zhou, Hong; Pan, Jinming

    2016-01-01

    Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth. PMID:27098210

  19. Loneliness, eudaimonia, and the human conserved transcriptional response to adversity

    PubMed Central

    Cole, Steven W.; Levine, Morgan E.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Weir, David R.; Crimmins, Eileen M.

    2015-01-01

    Background Chronic social adversity activates a conserved transcriptional response to adversity (CTRA) marked by increased expression of pro-inflammatory genes and decreased expression of antiviral- and antibody-related genes. Recent findings suggest that some psychological resilience factors may help buffer CTRA activation, but the relative impact of resilience and adversity factors remains poorly understood. Here we examined the relative strength of CTRA association for the two best-established psychological correlates of CTRA gene expression – the risk factor of perceived social isolation (loneliness) and the resilience factor of eudaimonic well-being (purpose and meaning in life). Methods Peripheral blood samples and validated measures of loneliness and eudaimonic well-being were analyzed in 108 community-dwelling older adults participating in the longitudinal US Health and Retirement Study (56% female, mean age 73). Mixed effect linear model analyses quantified the strength of association between CTRA gene expression and measures of loneliness and eudaimonic well-being in separate and joint analyses. Results As in previous studies, separate analyses found CTRA gene expression to be up-regulated in association with loneliness and down-regulated in association with eudaimonic well-being. In joint analyses, effects of loneliness were completely abrogated whereas eudaimonic well-being continued to associate with CTRA down-regulation. Similar eudaimonia-dominant effects were observed for positive and negative affect, optimism and pessimism, and anxiety symptoms. All results were independent of demographic and behavioral health risk factors. Conclusions Eudaimonic well-being may have the potential to compensate for the adverse impact of loneliness on CTRA gene expression. Findings suggest a novel approach to targeting the health risks associated with social isolation by promoting purpose and meaning in life. PMID:26246388

  20. Physiological responses associated with cultural attachment.

    PubMed

    Yap, Wei Jie; Christopoulos, George I; Hong, Ying-Yi

    2017-01-18

    Cultural attachment (CA) suggests that cultural symbols can function as attachment figures, in a similar way to prototypical maternal attachment figures. In order to further understand the psychophysiological mechanisms of CA, we examine whether cultural symbols regulate peripheral physiological indicators of arousal in response to symbolic threats. We supraliminally expose participants to neutral or threatening stimuli, followed by the subliminal presentation of CA and control images, while recording their Skin Conductance Responses (SCR). In tandem with previous work, threat increased SCR when the subliminal image was a control. However, the subliminal presence of a cultural symbol reduced this typically high SCR to threat, potentially suggesting that the threat-related arousal was mitigated. Importantly, metrics related to the way an individual is related to the environment, i.e. the need for cognitive closure, affected physiological responses towards threat and cultural images. Overall, the present study sets the basis for potential emotional mechanisms that could explain how cultural symbols can act as extensions of the prototypical attachment figures and confer the sense of security in the face of threat.

  1. Eccentric Exercise: Physiological Characteristics and Acute Responses.

    PubMed

    Douglas, Jamie; Pearson, Simon; Ross, Angus; McGuigan, Mike

    2017-04-01

    An eccentric contraction involves the active lengthening of muscle under an external load. The molecular and neural mechanisms underpinning eccentric contractions differ from those of concentric and isometric contractions and remain less understood. A number of molecular theories have been put forth to explain the unexplained observations during eccentric contractions that deviate from the predictions of the established theories of muscle contraction. Postulated mechanisms include a strain-induced modulation of actin-myosin interactions at the level of the cross-bridge, the activation of the structural protein titin, and the winding of titin on actin. Accordingly, neural strategies controlling eccentric contractions also differ with a greater, and possibly distinct, cortical activation observed despite an apparently lower activation at the level of the motor unit. The characteristics of eccentric contractions are associated with several acute physiological responses to eccentrically-emphasised exercise. Differences in neuromuscular, metabolic, hormonal and anabolic signalling responses during, and following, an eccentric exercise bout have frequently been observed in comparison to concentric exercise. Subsequently, the high levels of muscular strain with such exercise can induce muscle damage which is rarely observed with other contraction types. The net result of these eccentric contraction characteristics and responses appears to be a novel adaptive signal within the neuromuscular system.

  2. Affectivity of Task, Rehearsal Time, and Physiological Response

    ERIC Educational Resources Information Center

    Baker, Walter M.; And Others

    1975-01-01

    The present experiment extended the research on the relation between language and physiology. Among the topics considered was the relation between physiological responses produced by subjects and the number of words they use in an oral presentation. (Author/RK)

  3. Physiological Responses to Thermal Stress and Exercise

    NASA Astrophysics Data System (ADS)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  4. Channel shutdown: a response of hippocampal neurons to adverse environments.

    PubMed

    Somjen, G G; Faas, G C; Vreugdenhil, M; Wadman, W J

    1993-12-31

    Stretch-activated ion channels have been discovered in the membrane of many types of cells, but their presence in neurons is uncertain. We used freshly dissociated rat hippocampal neurons to study the effect of hypotonic swelling but, surprisingly, the isolated neurons did not swell. Voltage-dependent whole-cell membrane currents mediated by K+, Na+ and Ca2+ were rapidly and reversibly suppressed during sudden exposure to strongly hypo-osmotic, hyper-osmotic or glucose deficient solutions. The amplitudes of the sustained components of K+ and Ca2+ currents were more depressed than transient currents, but the rate of decay of transient K+ current greatly accelerated. The voltage dependence of activation and of steady state inactivation of residual K+ and Ca2+ currents were not shifted. The current holding membrane potential at -70 mV and therefore the conductance at that voltage were unchanged or somewhat decreased. Capacitive (charging) membrane current was not affected. Changes in tail current suggested moderate loss of cytosolic K+ in some but not in all cells. We conclude that channel shutdown is a uniform response of neuron somata and proximal dendrites to various adverse environments. Hypothetically we propose that swelling was prevented in anisosmotic conditions because membrane water permeability decreased.

  5. Physiology responses of Rhesus monkeys to vibration

    NASA Astrophysics Data System (ADS)

    Hajebrahimi, Zahra; Ebrahimi, Mohammad; Alidoust, Leila; Arabian Hosseinabadi, Maedeh

    Vibration is one of the important environmental factors in space vehicles that it can induce severe physiological responses in most of the body systems such as cardiovascular, respiratory, skeletal, endocrine, and etc. This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV), electrocardiograms (ECG) and respiratory rate in Rhesus monkeys. Methods: two groups of rhesus monkey (n=16 in each group) was selected as control and intervention groups. Monkeys were held in a sitting position within a specific fixture. The animals of this experiment were vibrated on a table which oscillated right and left with sinusoidal motion. Frequency and acceleration for intervention group were between the range of 1 to 2000 Hz and +0.5 to +3 G during 36 weeks (one per week for 15 min), respectively. All of the animals passed the clinical evaluation (echocardiography, sonography, radiography and blood analysis test) before vibration test and were considered healthy and these tests repeated during and at the end of experiments. Results and discussions: Our results showed that heart and respiratory rates increased significantly in response to increased frequency from 1 to 60 Hz (p <0.05) directly with the +G level reaching a maximum (3G) within a seconds compare to controls. There were no significant differences in heart and respiratory rate from 60 t0 2000 Hz among studied groups. All monkeys passed vibration experiment successfully without any arrhythmic symptoms due to electrocardiography analysis. Conclusion: Our results indicate that vibration in low frequency can effect respiratory and cardiovascular function in rhesus monkey. Keywords: Vibration, rhesus monkey, heart rate, respiratory rate

  6. Programmed Effects in Neurobehavior and Antioxidative Physiology in Zebrafish Embryonically Exposed to Cadmium: Observations and Hypothesized Adverse Outcome Pathway Framework

    PubMed Central

    Ruiter, Sander; Sippel, Josefine; Bouwmeester, Manon C.; Lommelaars, Tobias; Beekhof, Piet; Hodemaekers, Hennie M.; Bakker, Frank; van den Brandhof, Evert-Jan; Pennings, Jeroen L. A.; van der Ven, Leo T. M.

    2016-01-01

    Non-communicable diseases (NCDs) are a major cause of premature mortality. Recent studies show that predispositions for NCDs may arise from early-life exposure to low concentrations of environmental contaminants. This developmental origins of health and disease (DOHaD) paradigm suggests that programming of an embryo can be disrupted, changing the homeostatic set point of biological functions. Epigenetic alterations are a possible underlying mechanism. Here, we investigated the DOHaD paradigm by exposing zebrafish to subtoxic concentrations of the ubiquitous contaminant cadmium during embryogenesis, followed by growth under normal conditions. Prolonged behavioral responses to physical stress and altered antioxidative physiology were observed approximately ten weeks after termination of embryonal exposure, at concentrations that were 50–3200-fold below the direct embryotoxic concentration, and interpreted as altered developmental programming. Literature was explored for possible mechanistic pathways that link embryonic subtoxic cadmium to the observed apical phenotypes, more specifically, the probability of molecular mechanisms induced by cadmium exposure leading to altered DNA methylation and subsequently to the observed apical phenotypes. This was done using the adverse outcome pathway model framework, and assessing key event relationship plausibility by tailored Bradford-Hill analysis. Thus, cadmium interaction with thiols appeared to be the major contributor to late-life effects. Cadmium-thiol interactions may lead to depletion of the methyl donor S-adenosyl-methionine, resulting in methylome alterations, and may, additionally, result in oxidative stress, which may lead to DNA oxidation, and subsequently altered DNA methyltransferase activity. In this way, DNA methylation may be affected at a critical developmental stage, causing the observed apical phenotypes. PMID:27827847

  7. PHYSIOLOGICAL RESPONSES OF MEN DURING SLEEP DEPRIVATION,

    DTIC Science & Technology

    The effects of 84 hours of sleep deprivation were examined in a group of six young men and compared with a group of six controls. Subjects were... sleep deprivation , physiological regulating systems are relatively unaffected by sleep loss. (Author)

  8. Resistance Training: Physiological Responses and Adaptations (Part 3 of 4).

    ERIC Educational Resources Information Center

    Fleck, Steven J.; Kraemer, William J.

    1988-01-01

    The physiological responses and adaptations which occur as a result of resistance training, such as cardiovascular responses, serum lipid count, body composition, and neural adaptations are discussed. Changes in the endocrine system are also described. (JL)

  9. Physiological and behavioral responses of sheep to gaseous ammonia.

    PubMed

    Phillips, C J C; Pines, M K; Latter, M; Muller, T; Petherick, J C; Norman, S T; Gaughan, J B

    2012-05-01

    Ammonia can accumulate in highly stocked sheep accommodation, for example during live export shipments, and could affect sheep health and welfare. Thus, the objective of this experiment was to test the effects of 4 NH(3) concentrations, 4 (control), 12, 21, and 34 mg/m(3), on the physiology and behavior of wether sheep. Sheep were held for 12 d under a micro-climate and stocking density similar to shipboard conditions recorded on voyages from Australia to the Middle East during the northern hemispheric summer. Ammonia increased macrophage activity in transtracheal aspirations, indicating active pulmonary inflammation; however, it had no effect (P > 0.05) on hematological variables. Feed intake decreased (P = 0.002) in proportion to ammonia concentration, and BW gain decreased (P < 0.001) at the 2 greatest concentrations. Exposure to ammonia increased (P = 0.03) the frequency of sneezing, and at the greatest ammonia concentration, sheep were less active, with less locomotion, pawing, and panting. Twenty-eight days after exposure to NH(3), the pulmonary macrophage activity and BW of the sheep returned to that of sheep exposed to only 4 mg/m(3). It was concluded that NH(3) induced a temporary inflammatory response of the respiratory system and reduced BW gain, which together indicated a transitory adverse effect on the welfare of sheep.

  10. Relationship between cardiorespiratory fitness and physiological responses to films.

    PubMed

    Cantor, J R; Zillmann, D; Day, K D

    1978-06-01

    Subject's physiological responses and rated reactions to a medical film and an erotic film were assessed. Later cardiovascular fitness levels were determined by subject's physiological responses to an exercise task. The greater the increase in the subject's systolic blood pressure after exercise and the slower the recovery, the lower the fitness level. A median split on the fitness scores of males and females separately was used to determine levels of relatively low and high fitness. Subjects in low fitness had significantly greater sympathetic-arousal responses to the two films as measured in systolic blood-pressure increases and skin-temperature decreases. Subjects in the two fitness levels did not differ in ratings of their own physiological or emotional responses to the films. Reported interoception of the magnitude of physiological responses was inaccurate, especially for subjects in low fitness.

  11. Comparison of physiological responses to affect eliciting pictures and music.

    PubMed

    Kim, Jongwan; Wedell, Douglas H

    2016-03-01

    Recent investigations of the neural correlates of affect elicited from different modalities have found both modality-general and modality-specific representations (Chikazoe et al., 2014). The implications for how physiological responses to affect differ across stimulus modalities have not been fully investigated. This study examined similarities and differences between physiological signatures of affect derived from two different modes of presentation: visual pictures and auditory music sampled from an affective space defined by valence and arousal. Electromyography recordings for the zygomaticus major (EMGZ) and corrugator supercilii (EMGC) were measured along with heart rate and skin conductance level (SCL). Multidimensional scaling was used to visualize relationships from physiological and behavioral responses, and the observed relationships were statistically evaluated using multivariate and univariate analyses. Results for physiological measures demonstrated that valence was represented in the same general way across modalities, primarily reflected in EMGC responses. Arousal, however, was represented in a modality-specific manner, with SCL and EMGZ sensitive to music-based arousal but not picture-based arousal. Stimulus modality itself was predicted from EMGC. Thus, physiological responses to valence were similar across modalities but physiological responses to arousal differed across modalities. These results support the utility of testing for affective markers across modalities within the same experimental setting to reveal how physiological responses are linked to either affect, stimulus modality or both.

  12. Physiological responses to environmental factors related to space flight

    NASA Technical Reports Server (NTRS)

    Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Mains, R. C.; Rahlmann, D. F.

    1975-01-01

    Physiological procedures and instrumentation developed for the measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are described along with the physiological response of monkeys to weightlessness. Specific areas examined include: cardiovascular studies; thyroid function; blood oxygen transport; growth and reproduction; excreta analysis for metabolic balance studies; and electrophoretic separation of creatine phosphokinase isoenzymes in human blood.

  13. Social Involvement Modulates the Response to Novel and Adverse Life Events in Mice

    PubMed Central

    Colnaghi, Luca; Clemenza, Kelly; Groleau, Sarah E.; Weiss, Shira; Snyder, Anna M.; Lopez-Rosas, Mariana; Levine, Amir A.

    2016-01-01

    Epidemiological findings suggest that social involvement plays a major role in establishing resilience to adversity, however, the neurobiology by which social involvement confers protection is not well understood. Hypothesizing that social involvement confers resilience by changing the way adverse life events are encoded, we designed a series of behavioral tests in mice that utilize the presence or absence of conspecific cage mates in measuring response to novel and adverse events. We found that the presence of cage mates increased movement after exposure to a novel environment, increased time spent in the open arms of the elevated plus maze, and decreased freezing time after a foot shock as well as expedited fear extinction, therefore significantly changing the response to adversity. This is a first description of a mouse model for the effects of social involvement on adverse life events. Understanding how social involvement provides resilience to adversity may contribute to the future treatment and prevention of mental and physical illness. PMID:27632422

  14. Environmental cadmium exposure impacts physiological responses in Manila clams.

    PubMed

    Zhao, Liqiang; Zhang, Yu; Liang, Jian; Xu, Xian; Wang, Hua; Yang, Feng; Yan, Xiwu

    2014-06-01

    The physiological responses of marine bivalves to chronic cadmium (Cd) exposure at sub-lethal concentrations have been well documented. As of now, few studies have examined the effect of Cd exposure and subsequent recovery period at environmentally realistic concentrations. In this study, environmentally, Cd exposures were performed to assess the physiological responses of the Manila clam Ruditapes philippinarum. The clams were exposed to waterborne Cd at two environmentally realistic concentrations (4 and 40 μg L(-1)) for 35 days and then allowed to recover for another 35 days. The accumulation and elimination of Cd in R. philippinarum were tissue-specific and dose- and time-dependent. Cd accumulation increased sharply in the digestive gland, and Cd elimination was rapid in the gill. Major physiological responses, including clearance rate, absorption efficiency, respiration rate, excretion rate, oxygen to nitrogen ratio, and scope for growth, were significantly affected by Cd exposure. Yet, the clams exposed to 4-μg L(-1) Cd were able to quickly recover their normal physiological processes and clearly exhibited catch-up growth once they were transferred to clean seawater. Hence, R. philippinarum can exhibit good physiological plasticity when confronted with moderately environmental Cd exposure. All physiological responses measured exhibited a highly significant and generally predictable correlation with tissue Cd concentration, which in turn, reflected environmentally realistic exposure conditions. Our results further confirm that the measurement of physiological responses is a sensitive method for assessing stress at environmentally realistic metal concentrations.

  15. Increased alpha-amylase response to an acute psychosocial stress challenge in healthy adults with childhood adversity.

    PubMed

    Kuras, Yuliya I; McInnis, Christine M; Thoma, Myriam V; Chen, Xuejie; Hanlin, Luke; Gianferante, Danielle; Rohleder, Nicolas

    2017-01-01

    Childhood adversity is highly prevalent and linked to lasting psychological and physiological consequences. A potential mechanism for negative health outcomes is altered stress reactivity. While previous research has addressed associations of childhood adversity with stress system reactivity, sympathetic nervous system (SNS) stress reactivity is understudied. We therefore set out here to examining salivary alpha-amylase (sAA) reactivity in relation with childhood adversity. Forty-one healthy adult subjects (n = 24 male; n = 17 female) aged 18-34 years underwent the Trier Social Stress Test (TSST) and completed the Childhood Trauma Questionnaire (CTQ). Saliva for measurement of sAA was collected at three time points; before the TSST, immediately after, and 10 min post-TSST. We found that those with childhood trauma had a higher overall sAA response to the TSST, as seen in a repeated measures ANOVA (CTQ by time interaction: F(1.8,71.5) = 6.46, p = .01) and an independent samples t-test indicating higher sAA baseline to peak response (t = 3.22, p = .003). There was also a positive correlation between sAA reactivity and the CTQ subscales of childhood physical abuse (r = .46, p = .005) and emotional abuse (r = .37, p = .024). Healthy adults with low-to-moderate childhood adversity had a heightened sAA response immediately following the stressor. Higher SNS reactivity could be a link to negative health outcomes in adults with early adversity. Future research should address whether altered sAA reactivity is predictive of negative health outcomes in those with childhood adversity.

  16. The Physiological and Evolutionary Background of Maternal Responsiveness.

    ERIC Educational Resources Information Center

    Rosenblatt, Jay S.

    1989-01-01

    Examines the influence of hormonal factors during pregnancy on maternal responsiveness in infrahuman animals and human beings. Argues that it is likely that maternal behavior in humans has a physiological basis. (PCB)

  17. Methyl Donor Supplementation Blocks the Adverse Effects of Maternal High Fat Diet on Offspring Physiology

    PubMed Central

    Reyes, Teresa M.

    2013-01-01

    Maternal consumption of a high fat diet during pregnancy increases the offspring risk for obesity. Using a mouse model, we have previously shown that maternal consumption of a high fat (60%) diet leads to global and gene specific decreases in DNA methylation in the brain of the offspring. The present experiments were designed to attempt to reverse this DNA hypomethylation through supplementation of the maternal diet with methyl donors, and to determine whether methyl donor supplementation could block or attenuate phenotypes associated with maternal consumption of a HF diet. Metabolic and behavioral (fat preference) outcomes were assessed in male and female adult offspring. Expression of the mu-opioid receptor and dopamine transporter mRNA, as well as global DNA methylation were measured in the brain. Supplementation of the maternal diet with methyl donors attenuated the development of some of the adverse effects seen in offspring from dams fed a high fat diet; including weight gain, increased fat preference (males), changes in CNS gene expression and global hypomethylation in the prefrontal cortex. Notable sex differences were observed. These findings identify the importance of balanced methylation status during pregnancy, particularly in the context of a maternal high fat diet, for optimal offspring outcome. PMID:23658839

  18. Molecular and physiological responses to titanium dioxide ...

    EPA Pesticide Factsheets

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes (DEGs) found under nano-titania exposure. Nano-titania induced more DEGs in rosette leaves, whereas roots had more DEGs under nano-ceria exposure. MapMan analyses indicated that while nano-titania up-regulated overall and secondary metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level. This may b

  19. Physiological Response to Physical Activity in Children.

    ERIC Educational Resources Information Center

    Gilliam, Thomas B.

    This is a report on research in the field of physical responses of children to strenuous activity. The paper is divided into three subtopics: (1) peak performance measure in children; (2) training effects on children; and (3) importance of physical activity for children. Measurements used are oxygen consumption, ventilation, heart rate, cardiac…

  20. PHYSIOLOGICAL RESPONSES TO LIVE E. COLI ORGANISMS

    DTIC Science & Technology

    shock and shock produced by injection of live E . coli organisms in dogs. A primary purpose of our research has been to determine the effects of...intravenous injections of living E . coli organisms in dogs and monkeys and compare them with responses produced by endotoxin. Hemodynamic changes...pathologic alterations, and metabolic abnormalities have been evaluated in animals receiving lethal and sublethal injections of live E . coli organisms and comparable dosages of purified endotoxin.

  1. Measuring Physiological Stress Responses in Children: Lessons from a Novice

    ERIC Educational Resources Information Center

    Quas, Jodi A.

    2011-01-01

    In this article the author describes challenges associated with integrating physiological measures of stress into developmental research, especially in the domains of memory and cognition. An initial critical challenge concerns how to define stress, which can refer to one or a series of events, a response, the consequence of that response, an…

  2. Physiological Roles and Adverse Effects of the Two Cystine Importers of Escherichia coli

    PubMed Central

    Chonoles Imlay, Karin R.; Korshunov, Sergey

    2015-01-01

    ABSTRACT When cystine is added to Escherichia coli, the bacterium becomes remarkably sensitive to hydrogen peroxide. This effect is due to enlarged intracellular pools of cysteine, which can drive Fenton chemistry. Genetic analysis linked the sensitivity to YdjN, a secondary transporter that along with the FliY-YecSC ABC system is responsible for cystine uptake. FliY-YecSC has a nanomolar Km and is essential for import of trace cystine, whereas YdjN has a micromolar Km and is the predominant importer when cystine is more abundant. Oddly, both systems are strongly induced by the CysB response to sulfur scarcity. The FliY-YecSC system can import a variety of biomolecules, including diaminopimelate; it is therefore vulnerable to competitive inhibition, presumably warranting YdjN induction under low-sulfur conditions. But the consequence is that if micromolar cystine then becomes available, the abundant YdjN massively overimports it, at >30 times the total sulfur demand of the cell. The imported cystine is rapidly reduced to cysteine in a glutathione-dependent process. This action avoids the hazard of disulfide stress, but it precludes feedback inhibition of YdjN by cystine. We conjecture that YdjN possesses no cysteine allosteric site because the isostructural amino acid serine might inappropriately bind in its place. Instead, the cell partially resolves the overaccumulation of cysteine by immediately excreting it, completing a futile import/reduction/export cycle that consumes a large amount of cellular energy. These unique, wasteful, and dangerous features of cystine metabolism are reproduced by other bacteria. We propose to rename ydjN as tcyP and fliY-yecSC as tcyJLN. IMPORTANCE In general, intracellular metabolite pools are kept at steady, nontoxic levels by a sophisticated combination of transcriptional and allosteric controls. Surprisingly, in E. coli allosteric control is utterly absent from the primary importer of cystine. This flaw allows massive overimport

  3. Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions.

    PubMed

    Misyura, Maksym; Colasanti, Joseph; Rothstein, Steven J

    2013-01-01

    Anthocyanin production is a characteristic response of flowering plants to unfavourable environmental conditions. The potential roles of flavonoids and anthocyanins in plant growth were investigated by growing Arabidopsis thaliana anthocyanin production mutants (transparent testa) under limiting nitrogen and high light conditions. Inability to produce kaempferol or subsequent intermediate compounds by some transparent testa lines was correlated with less biomass accumulation in mature plants compared with wild-type control plants under all growth conditions tested. However, under both limiting nitrogen and high light chronic stress conditions, mutant lines defective in later steps of the anthocyanin production pathway produced the same or more biomass than wild-type plants. No difference in senescence between transparent testa and wild-type plants was found using chlorophyll catabolism and SAG12 expression measurements, and no mutants were impaired in the ability to remobilize nutrients from the vegetative to reproductive tissues. Moreover, the absence of anthocyanin and/or upstream flavonoids does not affect the ability of plants to respond to limiting nitrogen by reducing photosynthetic capacity. These results support a role for kaempferol and quercetin accumulation in normal plant growth and development. Further, the absence of anthocyanins has no effect on plant growth under the chronic stress conditions tested.

  4. Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions

    PubMed Central

    Rothstein, Steven J.

    2013-01-01

    Anthocyanin production is a characteristic response of flowering plants to unfavourable environmental conditions. The potential roles of flavonoids and anthocyanins in plant growth were investigated by growing Arabidopsis thaliana anthocyanin production mutants (transparent testa) under limiting nitrogen and high light conditions. Inability to produce kaempferol or subsequent intermediate compounds by some transparent testa lines was correlated with less biomass accumulation in mature plants compared with wild-type control plants under all growth conditions tested. However, under both limiting nitrogen and high light chronic stress conditions, mutant lines defective in later steps of the anthocyanin production pathway produced the same or more biomass than wild-type plants. No difference in senescence between transparent testa and wild-type plants was found using chlorophyll catabolism and SAG12 expression measurements, and no mutants were impaired in the ability to remobilize nutrients from the vegetative to reproductive tissues. Moreover, the absence of anthocyanin and/or upstream flavonoids does not affect the ability of plants to respond to limiting nitrogen by reducing photosynthetic capacity. These results support a role for kaempferol and quercetin accumulation in normal plant growth and development. Further, the absence of anthocyanins has no effect on plant growth under the chronic stress conditions tested. PMID:23162120

  5. Cystic fibrosis and physiological responses to exercise.

    PubMed

    Williams, Craig A; Saynor, Zoe L; Tomlinson, Owen W; Barker, Alan R

    2014-12-01

    Cardiopulmonary exercise testing is underutilized within the clinical management of patients with cystic fibrosis. But within the last 5 years, there has been considerable interest in its implementation, which has included deliberations by the European Cystic Fibrosis Society about incorporating this method within the clinical assessment of patients. This review examines the current use of cardiopulmonary exercise testing in assessing the extent and cause(s) of exercise limitation from a pediatric perspective. Examples of the measured parameters and their interpretation are provided. Critical synthesis of recent work in the oxygen uptake (VO2) kinetics response to and following exercise is also discussed, and although identified more as a research tool, its utilization advances researchers understanding of the cardiovascular, respiratory and muscular limitations to exercise tolerance. Finally, exercise and its application in therapeutic interventions are highlighted and a number of recommendations made about the utility of exercise prescription.

  6. Physiological responses to prolonged bed rest and fluid immersion in humans

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1984-01-01

    For many centuries, physicians have used prolonged rest in bed and immersion in water in the treatment of ailments and disease. Both treatments have positive remedial effects. However, adverse physiological responses become evident when patients return to their normal daily activities. The present investigation is concerned with an analysis of the physiological changes during bed rest and the effects produced by water immersion. It is found that abrupt changes in body position related to bed rest cause acute changes in fluid compartment volumes. Attention is given to fluid shifts and body composition, renal function and diuresis, calcium and phosphorus metabolism, and orthostatic tolerance. In a discussion of water immersion, fluid shifts are considered along with cardiovascular-respiratory responses, renal function, and natriuretic and diuretic factors.

  7. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  8. Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals.

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin I...

  9. Human Physiological Responses to Acute and Chronic Cold Exposure

    NASA Technical Reports Server (NTRS)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  10. Physiological responses induced by emotion-eliciting films.

    PubMed

    Fernández, Cristina; Pascual, Juan C; Soler, Joaquim; Elices, Matilde; Portella, Maria J; Fernández-Abascal, Enrique

    2012-06-01

    Emotion-eliciting films are commonly used to evoke subjective emotional responses in experimental settings. The main aim of the present study was to investigate whether a set of film clips with discrete emotions were capable to elicit measurable objective physiological responses. The convergence between subjective and objective measures was evaluated. Finally, the effect of gender on emotional responses was investigated. A sample of 123 subjects participated in the study. Individuals were asked to view a set of emotional film clips capable to induce seven emotions: anger, fear, sadness, disgust, amusement, tenderness and neutral state. Skin conductance level (SCL), heart rate (HR) and subjective emotional responses were measured for each film clip. In comparison with neutral films, SCL was significantly increased after viewing fear films, and HR was also significantly incremented for anger and fear films. Physiological variations were associated with arousal measures indicating a convergence between subjective and objective reactions. Women appeared to display significantly greater SCL and HR responses for films inducing sadness. The findings suggest that physiological activation would be more easily induced by emotion-eliciting films that tap into emotions with higher subjective arousal such as anger and fear.

  11. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Tanveer, Mohsin; Ihsan, Muhammad Zahid; Shah, Adnan Noor; Ullah, Abid; Nasrullah; Khan, Fahad; Ullah, Sami; Alharby, Hesham; Nasim, Wajid; Wu, Chao; Huang, Jianliang

    2016-06-01

    Present study examined the influence of high-temperature stress and different biochar and phosphorus (P) fertilization treatments on the growth, grain yield and quality of two rice cultivars (IR-64 and Huanghuazhan). Plants were subjected to high day temperature-HDT (35 °C ± 2), high night temperature-HNT (32 °C ± 2), and control temperature-CT (28 °C ± 2) in controlled growth chambers. The different fertilization treatments were control, biochar alone, phosphorous (P) alone and biochar + P. High-temperature stress severely reduced the photosynthesis, stomatal conductance, water use efficiency, and increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except for number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more destructive for grain yield. High temperature stress also hampered the grain appearance and milling quality traits in both rice cultivars. The Huanghuazhan performed better than IR-64 under high-temperature stress with better growth and higher grain yield. Different soil fertilization treatments were helpful in ameliorating the detrimental effects of high temperature. Addition of biochar alone improved some growth and yield parameters but such positive effects were lower when compared with the combined application of biochar and P. The biochar+P application recorded 7% higher grain yield (plant(-1)) of rice compared with control averaged across different temperature treatments and cultivars. The highest grain production and better grain quality in biochar+P treatments might be due to enhanced photosynthesis, water use efficiency, and grain size, which compensated the adversities of high temperature stress.

  12. Baby on board: do responses to stress in the maternal brain mediate adverse pregnancy outcome?

    PubMed

    Douglas, Alison J

    2010-07-01

    Stress and adverse environmental surroundings result in suboptimal conditions in a pregnant mother such that she may experience poor pregnancy outcome including complete pregnancy failure and preterm labor. Furthermore her developing baby is at risk of adverse programming, which confers susceptibility to long term ill health. While some mechanisms at the feto-maternal interface underlying these conditions are understood, the underlying cause for their adverse adaptation is often not clear. Progesterone plays a key role at many levels, including control of neuroendocrine responses to stress, procuring the required immune balance and controlling placental and decidual function, and lack of progesterone can explain many of the unwanted consequences of stress. How stress that is perceived by the mother inhibits progesterone secretion and action is beginning to be investigated. This overview of maternal neuroendocrine responses to stress throughout pregnancy analyses how they interact to compromise progesterone secretion and precipitate undesirable effects in mother and offspring.

  13. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    EPA Science Inventory

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  14. An interaction between a neuropeptide Y gene polymorphism and early adversity modulates endocrine stress responses.

    PubMed

    Witt, Stephanie H; Buchmann, Arlette F; Blomeyer, Dorothea; Nieratschker, Vanessa; Treutlein, Jens; Esser, Günter; Schmidt, Martin H; Bidlingmaier, Martin; Wiedemann, Klaus; Rietschel, Marcella; Laucht, Manfred; Wüst, Stefan; Zimmermann, Ulrich S

    2011-08-01

    Interindividual variability in the regulation of the human stress system accounts for a part of the individual's liability to stress-related diseases. These differences are influenced by environmental and genetic factors. Early childhood adversity is a well-studied environmental factor affecting an individual's stress response which has been shown to be modulated by gene-environment interaction (GxE). Neuropeptide Y (NPY) plays a role in stress regulation and genetic variation in NPY may influence stress responses. In this study, we analyzed the association of a common variant in the NPY gene promoter, rs16147, with cortisol and ACTH responses to acute psychosocial stress in young adults from the Mannheim Study of Children at Risk (MARS), an ongoing epidemiological cohort study following the outcome of early adversity from birth into adulthood. We found evidence of a GxE interaction between rs16147 and early adversity significantly affecting HPA axis responses to acute psychosocial stress. These findings suggest that the neurobiological mechanisms linking early adverse experience and later neuroendocrine stress regulation are modulated by a gene variant whose functional relevance is documented by increasing convergent evidence from in vitro, animal and human studies.

  15. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    PubMed

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration.

  16. Applications of Flow Cytometry to Characterize Bacterial Physiological Responses

    PubMed Central

    Contreras-Garduño, Jorge A.; Pedraza-Reyes, Mario

    2014-01-01

    Although reports of flow cytometry (FCM) applied to bacterial analysis are increasing, studies of FCM related to human cells still vastly outnumber other reports. However, current advances in FCM combined with a new generation of cellular reporter probes have made this technique suitable for analyzing physiological responses in bacteria. We review how FCM has been applied to characterize distinct physiological conditions in bacteria including responses to antibiotics and other cytotoxic chemicals and physical factors, pathogen-host interactions, cell differentiation during biofilm formation, and the mechanisms governing development pathways such as sporulation. Since FCM is suitable for performing studies at the single-cell level, we describe how this powerful technique has yielded invaluable information about the heterogeneous distribution of differently and even specialized responding cells and how it may help to provide insights about how cell interaction takes place in complex structures, such as those that prevail in bacterial biofilms. PMID:25276788

  17. Bordetella bronchiseptica responses to physiological reactive nitrogen and oxygen stresses

    PubMed Central

    Omsland, Anders; Miranda, Katrina M.; Friedman, Richard L.; Boitano, Scott

    2008-01-01

    Bordetella bronchiseptica can establish prolonged airway infection consistent with a highly developed ability to evade mammalian host immune responses. Upon initial interaction with the host upper respiratory tract mucosa, B. bronchiseptica are subjected to antimicrobial reactive nitrogen species (RNS) and reactive oxygen species (ROS), effector molecules of the innate immune system. However, the responses of B. bronchiseptica to redox species at physiologically relevant concentrations (nM-µM) have not been investigated. Using predicted physiological concentrations of nitric oxide (NO), superoxide (O2.−) and hydrogen peroxide (H2O2) on low numbers of colony forming units (CFU) of B. bronchiseptica, all redox active species displayed dose-dependent antimicrobial activity. Susceptibility to individual redox active species was significantly increased upon introduction of a second species at sub-antimicrobial concentrations. An increased bacteriostatic activity of NO was observed relative to H2O2. The understanding of Bordetella responses to physiologically relevant levels of exogenous RNS and ROS will aid in defining the role of endogenous production of these molecules in host innate immunity against Bordetella and other respiratory pathogens. PMID:18462394

  18. Physiologic responses of pilots flying high-performance aircraft.

    PubMed

    Comens, P; Reed, D; Mette, M

    1987-03-01

    This study deals with the physiologic responses to stress in F-4 fighter pilots and aircrew engaged in surface attack training (SAT) missions. Blood levels of HDL-cholesterol, LDH and LDH isoenzymes, CPK, and myoglobin were determined before and after each mission. Continuous EKG and transcutaneous PO2 recordings were made during briefing, preflight, and inflight. The personal history and habits of each participant were recorded. Each mission consisted of six successive bomb deliveries at 80-s intervals and at increasingly steep dive angles, each terminating in 5.5-6 +Gz during pull-up. Results revealed no apparent effect on HDL, COP isoenzymes, and LDH isoenzymes. Many myoglobin levels dropped as much as 50%. EKG recordings revealed ST elevations, ST depressions, T wave inversions, and marked sinus arrhythmias in some, while others showed increases in cardiac rate. Pilots flying these SAT missions in F-4C aircraft were found not to be significantly physiologically stressed.

  19. Perceptual and Physiological Responses to Jackson Pollock's Fractals.

    PubMed

    Taylor, Richard P; Spehar, Branka; Van Donkelaar, Paul; Hagerhall, Caroline M

    2011-01-01

    Fractals have been very successful in quantifying the visual complexity exhibited by many natural patterns, and have captured the imagination of scientists and artists alike. Our research has shown that the poured patterns of the American abstract painter Jackson Pollock are also fractal. This discovery raises an intriguing possibility - are the visual characteristics of fractals responsible for the long-term appeal of Pollock's work? To address this question, we have conducted 10 years of scientific investigation of human response to fractals and here we present, for the first time, a review of this research that examines the inter-relationship between the various results. The investigations include eye tracking, visual preference, skin conductance, and EEG measurement techniques. We discuss the artistic implications of the positive perceptual and physiological responses to fractal patterns.

  20. Perceptual and Physiological Responses to Jackson Pollock's Fractals

    PubMed Central

    Taylor, Richard P.; Spehar, Branka; Van Donkelaar, Paul; Hagerhall, Caroline M.

    2011-01-01

    Fractals have been very successful in quantifying the visual complexity exhibited by many natural patterns, and have captured the imagination of scientists and artists alike. Our research has shown that the poured patterns of the American abstract painter Jackson Pollock are also fractal. This discovery raises an intriguing possibility – are the visual characteristics of fractals responsible for the long-term appeal of Pollock's work? To address this question, we have conducted 10 years of scientific investigation of human response to fractals and here we present, for the first time, a review of this research that examines the inter-relationship between the various results. The investigations include eye tracking, visual preference, skin conductance, and EEG measurement techniques. We discuss the artistic implications of the positive perceptual and physiological responses to fractal patterns. PMID:21734876

  1. [Physiological ecology responses of Scutellaria baicalensis to drought and rewatering].

    PubMed

    Zhang, Yong-Gang; Han, Mei; Jiang, Xue; Zhao, Sheng-Nan; Yang, Li-Min

    2013-11-01

    To study the physiological ecology responses of Scutellaria baicalensis to drought and rewatering of short period, we tested and analyzed photosynthesis and chlorophyll fluorescence parameters of S. baicalensis leaves processed by different ways of water treatment in drought and rewatering period, characteristic indexes of physiology and biochemistry of root SOD, POD, PAL, C4H, etc. and accumulation dynamic change of root baicalin and baicalein. The result showed that along with the worsening drought, P(n), T(r), G(s) and F(v)/F(m) of S. baicalensis declined in different water supply, and F(o) increased. The response of SOD and POD's activity in S. baicalensis root to drought in I and II was earlier than it in III. The response time and increase range of baicalin accumulation existed differences in different water supply, and the indexes regained after rewatering. Therefore, photosynthesis of S. baicalensis changed and it destroyed the antioxidant metabolism balance when soil water content decreased resulting from drought. The synergistic effect of defence mechanism launched by S. baicalensis, SOD, POD, PAL, C4H, baicalin and baicalein reduced active oxygen's damage to the cell.

  2. Physiological imaging of electrical trauma and therapeutic responses

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Tu; Matthews, K.; Aarsvold, John N.; Mintzer, Robert A.; Yasillo, Nicholas J.; Hannig, Jurgen; Capelli-Schellpfefer, M.; Cooper, Malcolm; Lee, Raphael C.

    2000-04-01

    In victims of electrical trauma, electroporation of cell membrane, in which lipid bilayer is permeabilized by thermal and electrical forces, is thought to be a substantial cause of tissue damage. It has been suggested that certain mild surfactant in low concentration could induce sealing of permeabilized lipid bilayers, thus repairing cell membranes that had not been extensively damaged. With an animal model of electrically injured hind limb of rats, we have demonstrated and validated the use of radiotracer imaging technique to assess the physiology of the damaged tissues after electrical shock and of their repairs after applying surfactant as a therapeutic strategy. For example, using Tc-99m labeled pyrophosphate (PYP), which follows calcium in cellular function and is known to accumulate in damaged tissues, we have established a physiological imaging approach for assessment of the extent of tissue injury for diagnosis and surgical planning, as well as for evaluation of responses to therapy. With the use of a small, hand-held, miniature gamma camera, this physiological imaging method can be employed at patient's bedside and even in the field, for example, at accident site or during transfer for emergency care, rapid diagnosis, and prompt treatment in order to maximize the chance for tissue survival.

  3. Circadian rhythms of visual accommodation responses and physiological correlations.

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Williams, B. A.

    1972-01-01

    Use of a recently developed servocontrolled infrared optometer to continuously record the state of monocular focus while subjects viewed a visual target for which the stimulus to focus was systematically varied. Calculated parameters form recorded data - e.g., speeds of accommodation to approaching and receding targets, magnitude of accommodation to step changes in target distance, and amplitude and phase lag of response to sinusoidally varying stimuli were submitted to periodicity analyses. Ear canal temperature (ECT) and heart rate (HR) rhythms were also recorded for physiological correlation with accommodation rhythms. HR demonstrated a 24-hr rhythm, but ECT data did not.

  4. Physiological responses at short distances from a parametric speaker.

    PubMed

    Lee, Soomin; Shimomura, Yoshihiro; Katsuura, Tetsuo

    2012-06-13

    In recent years, parametric speakers have been used in various circumstances. In our previous studies, we verified that the physiological burden of the sound of parametric speaker set at 2.6 m from the subjects was lower than that of the general speaker. However, nothing has yet been demonstrated about the effects of the sound of a parametric speaker at the shorter distance between parametric speakers the human body. Therefore, we studied this effect on physiological functions and task performance. Nine male subjects participated in this study. They completed three consecutive sessions: a 20-minute quiet period as a baseline, a 30-minute mental task period with general speakers or parametric speakers, and a 20-minute recovery period. We measured electrocardiogram (ECG) photoplethysmogram (PTG), electroencephalogram (EEG), systolic and diastolic blood pressure. Four experiments, one with a speaker condition (general speaker and parametric speaker), the other with a distance condition (0.3 m and 1.0 m), were conducted respectively at the same time of day on separate days. To examine the effects of the speaker and distance, three-way repeated measures ANOVA (speaker factor x distance factor x time factor) were conducted. In conclusion, we found that the physiological responses were not significantly different between the speaker condition and the distance condition. Meanwhile, it was shown that the physiological burdens increased with progress in time independently of speaker condition and distance condition. In summary, the effects of the parametric speaker at the 2.6 m distance were not obtained at the distance of 1 m or less.

  5. Physiology

    ERIC Educational Resources Information Center

    Kay, Ian

    2008-01-01

    Underlying recent developments in health care and new treatments for disease are advances in basic medical sciences. This edition of "Webwatch" focuses on sites dealing with basic medical sciences, with particular attention given to physiology. There is a vast amount of information on the web related to physiology. The sites that are included here…

  6. Physiological Response of Orchids to Mealybugs (Hemiptera: Pseudococcidae) Infestation.

    PubMed

    Kmieć, K; Kot, I; Golan, K; Górska-Drabik, E; Łagowska, B; Rubinowska, K; Michałek, W

    2016-10-25

    The harmfulness of mealybugs resulting from sucking plant sap, secreting honeydew, and transmitting plant viruses can give them the status of serious pests. This study documents the influence of Pseudococcus maritimus (Ehrhorn) and Pseudococcus longispinus (Targioni Tozzetti) infestation on alterations in selected physiological parameters of Phalaenopsis x hybridum 'Innocence'. The condition of the cytoplasmic membranes was expressed as the value of thiobarbituric acid reactive substances. We have determined changes in the activities of catalase and guaiacol peroxidase and measured the following chlorophyll fluorescence parameters: maximum quantum yield of photosystem II (Fv/Fm), effective quantum yield (Y), photochemical quenching (qP), and nonphotochemical quenching (qN). The strongest physiological response of orchids was recorded in the initial period of mealybugs infestation. Prolonged insect feeding suppressed lipid peroxidation, peroxidase and catalase activity, as well as photosynthesis photochemistry. The pattern of changes was dependent on mealybug species. This indicated the complexity of the processes responsible for plant tolerance. Data generated in this study have provided a better understanding of the impact of two mealybug species infestation on Phalaenopsis and should be useful in developing pest management strategies.

  7. Evaluating physiological responses of plants to salinity stress

    PubMed Central

    Negrão, S.; Schmöckel, S. M.; Tester, M.

    2017-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments. PMID:27707746

  8. Condition-dependent physiological and behavioural responses to anthropogenic noise.

    PubMed

    Purser, Julia; Bruintjes, Rick; Simpson, Stephen D; Radford, Andrew N

    2016-03-01

    Anthropogenic (man-made) noise, a global pollutant of international concern, is known to affect the physiology and behaviour of a range of organisms. However, experimental studies have tended to focus on trait means; intra-population variation in responses are likely, but have rarely been explored. Here we use established experimental methods to demonstrate a condition-dependent effect of additional noise. We show that juvenile European eels (Anguilla anguilla) in good condition do not respond differently to playbacks of ambient coastal noise and coastal noise with passing ships. By contrast, the additional noise of ship passes caused an increase in ventilation rate and a decrease in startling to a looming predatory stimulus in poor condition eels. Intra-population variation in responses to noise has important implications both for population dynamics and the planning of mitigation measures.

  9. Modeling physiological responses of soil microbes to drought (Invited)

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Katul, G. G.; Porporato, A. M.; Schaeffer, S. M.; Schimel, J.

    2013-12-01

    Biogeochemical models predict soil carbon (C) under varying environmental conditions, aiming to disentangle the effects of predicted changes in temperature and moisture regimes on C storage. While much work focuses on temperature sensitivity of decomposition, relatively less is known about decomposer responses to changes in soil moisture. Heterotrophic respiration is known to decline as soils become drier, but the underlying physiological mechanisms are not clear and rarely accounted for in models. In particular, we ask: what are the effects of different drought response strategies on C storage potential and the shape of the respiration-moisture relation? We have developed a process-based model to address these questions, including the main physiological responses thought to play a role under varying moisture conditions: i) dormancy, ii) patterns of extra-cellular enzyme production, and iii) osmoregulation. We show that these different drought response strategies play a major role in the long-term partitioning of soil C among stable and labile pools. In very dry conditions, microbes shifting to dormant state tend to favor long-term (steady state) accumulation of stable C at the expenses of microbial biomass, while increasing investment in enzymes leads to accumulation of dissolved organic C, which in turn may partly overcome the diffusion limitations imposed by dry soils. In contrast, entering a dormant state early during a dry down allows microbes to save C by respiring less (due to lowered active biomass), avoid C starvation when substrate diffusion breaks down, and use available C for growth and maintenance rather than osmoregulation. Hence, this strategy explains why little osmolytes are found in microbial biomass subjected to experimental drought. We conclude by highlighting how our results can be implemented in Earth System Models without excessively increasing their complexity.

  10. Beneficial physiological and performance responses to a month of restricted energy intake in healthy overweight women.

    PubMed

    Buffenstein, R; Karklin, A; Driver, H S

    2000-02-01

    Changes in mood, performance, cortisol, and physiological variables with a month-long energy restricting diet (3.347 MJ/day) were studied in nine overweight (mean mass 71.2 +/- 8 kg; body mass index 26.1 +/- 2.8 kg/m(2)), healthy premenopausal (age 20-36 years) women. Measurements were taken in the 2 weeks before the diet (baseline) and again in the final 2 weeks of the diet to attenuate menstrual cycle differences. A reduction in energy intake and concomitant weight loss (5.80 +/- 1.65 kg) were accompanied by a significant decline in systolic blood pressure (5.4%), heart rate (7.6%), and cortisol concentration (13.6%). Fatigue and vigour on the Profile of Mood States (POMS) questionnaire were adversely affected; however, subjective assessments of mood, concentration, temperature sensitivity, appetite, and sleep quality using visual analogue scales, were not significantly altered during the month-long period of energy restriction. Motor performance, as assessed by hand-eye coordination, improved with both a reduction in mean reaction time and improved accuracy in response to visual stimuli. The very low-energy diet appeared to be neither physiologically nor psychologically stressful. Beneficial effects were evident with a reduction in BMI, reduced risk of cardiovascular stress, improved motor performance, and a decline in physiological stress with dieting success.

  11. Physiologically-based Pharmacokinetic(PBPK) Models Application to Screen Environmental Hazards Related to Adverse Outcome Pathways(AOPs)

    EPA Science Inventory

    PBPK models are useful in estimating exposure levels based on in vitro to in vivo extrapolation (IVIVE) calculations. Linkage of large sets of chemically screened vitro signature effects to in vivo adverse outcomes using IVIVE is central to the concepts of toxicology in the 21st ...

  12. Somatosensory-evoked blink response: investigation of the physiological mechanisms.

    PubMed

    Miwa, H; Nohara, C; Hotta, M; Shimo, Y; Amemiya, K

    1998-02-01

    The somatosensory-evoked blink response (SBR) is a newly identified blink reflex elicited by electrical stimulation of peripheral nerves. The present study was performed to investigate the physiological mechanism underlying the SBR elicited by median nerve stimulation in normal subjects. The peripheral afferents responsible for the SBR included low-threshold cutaneous fibres. In the SBR-positive subjects, the late (R2) component of the blink reflex elicited by supraorbital nerve stimulation and the SBR facilitated each other when both responses were induced at the same time, but they each caused long-lasting inhibition in the other when one stimulus was given as a conditioning stimulus. The extent of inhibition was correlated with the size of the preceding SBR. In the SBR-negative subjects, simultaneous inhibition of R2 was observed when median nerve stimulation was applied as a conditioning stimulus. Brainstem excitability, as evaluated by blink-reflex recovery studies, did not differ between SBR-positive and SBR-negative subjects. Therefore, based on anatomical and physiological findings, it appears that the reflex pathways of the SBR and R2 converge within the brainstem and compete with each other, presumably by presynaptic inhibition at the premotor level, before entering the common blink-reflex pathway. The influence of median nerve stimulation upon tonic contraction of the orbicularis oculi muscle was studied to detect the latent SBR. There was not only a facilitatory period corresponding to the SBR but also an active inhibitory period (exteroceptive suppression), suggesting that the mechanism generating the SBR is not only influenced by blink-reflex volleys but also by active exteroceptive suppression. Thus, the SBR may appear as a result of integration of facilitatory and inhibitory mechanisms within the brainstem.

  13. Proteomic and Physiological Responses of Kineococcus radiotolerans to Copper

    PubMed Central

    Bagwell, Christopher E.; Hixson, Kim K.; Milliken, Charles E.; Lopez-Ferrer, Daniel; Weitz, Karl K.

    2010-01-01

    Copper is a highly reactive, toxic metal; consequently, transport of this metal within the cell is tightly regulated. Intriguingly, the actinobacterium Kineococcus radiotolerans has been shown to not only accumulate soluble copper to high levels within the cytoplasm, but the phenotype also correlated with enhanced cell growth during chronic exposure to ionizing radiation. This study offers a first glimpse into the physiological and proteomic responses of K. radiotolerans to copper at increasing concentration and distinct growth phases. Aerobic growth rates and biomass yields were similar over a range of Cu(II) concentrations (0–1.5 mM) in complex medium. Copper uptake coincided with active cell growth and intracellular accumulation was positively correlated with Cu(II) concentration in the growth medium (R2 = 0.7). Approximately 40% of protein coding ORFs on the K. radiotolerans genome were differentially expressed in response to the copper treatments imposed. Copper accumulation coincided with increased abundance of proteins involved in oxidative stress and defense, DNA stabilization and repair, and protein turnover. Interestingly, the specific activity of superoxide dismutase was repressed by low to moderate concentrations of copper during exponential growth, and activity was unresponsive to perturbation with paraquot. The biochemical response pathways invoked by sub-lethal copper concentrations are exceptionally complex; though integral cellular functions are preserved, in part, through the coordination of defense enzymes, chaperones, antioxidants and protective osmolytes that likely help maintain cellular redox. This study extends our understanding of the ecology and physiology of this unique actinobacterium that could potentially inspire new biotechnologies in metal recovery and sequestration, and environmental restoration. PMID:20865147

  14. Physiological and Pathological Responses to Head Rotations in Toddler Piglets

    PubMed Central

    Ibrahim, Nicole G.; Ralston, Jill; Smith, Colin

    2010-01-01

    Abstract Closed head injury is the leading cause of death in children less than 4 years of age, and is thought to be caused in part by rotational inertial motion of the brain. Injury patterns associated with inertial rotations are not well understood in the pediatric population. To characterize the physiological and pathological responses of the immature brain to inertial forces and their relationship to neurological development, toddler-age (4-week-old) piglets were subjected to a single non-impact head rotation at either low (31.6 ± 4.7 rad/sec2, n = 4) or moderate (61.0 ± 7.5 rad/sec2, n = 6) angular acceleration in the axial direction. Graded outcomes were observed for both physiological and histopathological responses such that increasing angular acceleration and velocity produced more severe responses. Unlike low-acceleration rotations, moderate-acceleration rotations produced marked EEG amplitude suppression immediately post-injury, which remained suppressed for the 6-h survival period. In addition, significantly more severe subarachnoid hemorrhage, ischemia, and axonal injury by β-amyloid precursor protein (β-APP) were observed in moderate-acceleration animals than low-acceleration animals. When compared to infant-age (5-day-old) animals subjected to similar (54.1 ± 9.6 rad/sec2) acceleration rotations, 4-week-old moderate-acceleration animals sustained similar severities of subarachnoid hemorrhage and axonal injury at 6 h post-injury, despite the larger, softer brain in the older piglets. We conclude that the traditional mechanical engineering approach of scaling by brain mass and stiffness cannot explain the vulnerability of the infant brain to acceleration-deceleration movements, compared with the toddler. PMID:20560753

  15. Physiological Response to Membrane Protein Overexpression in E. coli*

    PubMed Central

    Gubellini, Francesca; Verdon, Grégory; Karpowich, Nathan K.; Luff, Jon D.; Boël, Grégory; Gauthier, Nils; Handelman, Samuel K.; Ades, Sarah E.; Hunt, John F.

    2011-01-01

    Overexpression represents a principal bottleneck in structural and functional studies of integral membrane proteins (IMPs). Although E. coli remains the leading organism for convenient and economical protein overexpression, many IMPs exhibit toxicity on induction in this host and give low yields of properly folded protein. Different mechanisms related to membrane biogenesis and IMP folding have been proposed to contribute to these problems, but there is limited understanding of the physical and physiological constraints on IMP overexpression and folding in vivo. Therefore, we used a variety of genetic, genomic, and microscopy techniques to characterize the physiological responses of Escherichia coli MG1655 cells to overexpression of a set of soluble proteins and IMPs, including constructs exhibiting different levels of toxicity and producing different levels of properly folded versus misfolded product on induction. Genetic marker studies coupled with transcriptomic results indicate only minor perturbations in many of the physiological systems implicated in previous studies of IMP biogenesis. Overexpression of either IMPs or soluble proteins tends to block execution of the standard stationary-phase transcriptional program, although these effects are consistently stronger for the IMPs included in our study. However, these perturbations are not an impediment to successful protein overexpression. We present evidence that, at least for the target proteins included in our study, there is no inherent obstacle to IMP overexpression in E. coli at moderate levels suitable for structural studies and that the biochemical and conformational properties of the proteins themselves are the major obstacles to success. Toxicity associated with target protein activity produces selective pressure leading to preferential growth of cells harboring expression-reducing and inactivating mutations, which can produce chemical heterogeneity in the target protein population, potentially

  16. Molecular and physiological responses of trees to waterlogging stress.

    PubMed

    Kreuzwieser, Jürgen; Rennenberg, Heinz

    2014-10-01

    One major effect of global climate change will be altered precipitation patterns in many regions of the world. This will cause a higher probability of long-term waterlogging in winter/spring and flash floods in summer because of extreme rainfall events. Particularly, trees not adapted at their natural site to such waterlogging stress can be impaired. Despite the enormous economic, ecological and social importance of forest ecosystems, the effect of waterlogging on trees is far less understood than the effect on many crops or the model plant Arabidopsis. There is only a handful of studies available investigating the transcriptome and metabolome of waterlogged trees. Main physiological responses of trees to waterlogging include the stimulation of fermentative pathways and an accelerated glycolytic flux. Many energy-consuming, anabolic processes are slowed down to overcome the energy crisis mediated by waterlogging. A crucial feature of waterlogging tolerance is the steady supply of glycolysis with carbohydrates, particularly in the roots; stress-sensitive trees fail to maintain sufficient carbohydrate availability resulting in the dieback of the stressed tissues. The present review summarizes physiological and molecular features of waterlogging tolerance of trees; the focus is on carbon metabolism in both, leaves and roots of trees.

  17. Physiological and genetic responses of bacteria to osmotic stress.

    PubMed Central

    Csonka, L N

    1989-01-01

    The capacity of organisms to respond to fluctuations in their osmotic environments is an important physiological process that determines their abilities to thrive in a variety of habitats. The primary response of bacteria to exposure to a high osmotic environment is the accumulation of certain solutes, K+, glutamate, trehalose, proline, and glycinebetaine, at concentrations that are proportional to the osmolarity of the medium. The supposed function of these solutes is to maintain the osmolarity of the cytoplasm at a value greater than the osmolarity of the medium and thus provide turgor pressure within the cells. Accumulation of these metabolites is accomplished by de novo synthesis or by uptake from the medium. Production of proteins that mediate accumulation or uptake of these metabolites is under osmotic control. This review is an account of the processes that mediate adaptation of bacteria to changes in their osmotic environment. PMID:2651863

  18. Acute physiological responses of squirrel monkeys exposed to hyperdynamic environments

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1984-01-01

    Physiological and behavioral responses to a hyperdynamic environment were examined in four adult male squirrel monkeys. After baseline monitoring at 1 G, monkeys were exposed to one of three conditions: (1) +2 Gz for 60 minutes, (2) +2.9 Gz max for 8 minutes (simulating Space Shuttle launch), or (3) +1.7 Gz max for 19 minutes (simulating Space Shuttle reentry). During all experimental conditions, heart rate rose, and colonic temperature began to decline within the first ten minutes of centrifugation and decreased by as much as 2 C in some instances. Behaviorally, during centrifugation, the monkeys seemed to exhibit drowsiness and fall asleep, an observation not made during the control period. It is concluded that primates are susceptible to acute hyperdynamic field exposure.

  19. Physiological response to ''pressure-demand'' respirator wear

    SciTech Connect

    Raven, P.B.; Bradley, O.; Rohm-Young, D.; McClure, F.L.; Skaggs, B.

    1982-07-01

    This investigation determined cardiorespiratory responses of subjects with normal lung function and exercise tolerance and compared them with subjects with moderate impairment of lung function and exercise tolerance. The respirator was an air-line full-face mask (MSA-Ultravue) ''pressure-demand'' breathing type equipped with an inspiratory resistance of 85 mmH/sub 2/0 at 85 L/min air flow. This resistance was operable in conjunction with the fixed 25 mmH/sub 2/O inspiratory and expiratory resistance required to pressurize the face piece. Physiologically and subjectively the response of the normal and moderately impaired subjects to respirator wear during rest, 35%, 50% and 80% of their maximal aerobic capacity (VO/sub 2//sub max/) were not different. However, the pressure swings inside the face piece exceeded 24 cm H/sub 2/O and resulted in 50% of the subjects being unable to finish 10 minutes of work at 80% VO/sub 2//sub max/. The greater the ventilatory demand placed upon the respirator due to increasing workload, the more like a ''demand'' system pressure-flow response the ''pressure-demand'' system produced. Hence, the concept of increased protection and reduced inspiratory resistance as a result of pressurizing the facepiece during heavy work is seriously questioned.

  20. Proteomic and Physiological Responses of Kineococcus radiotolerans to Copper

    SciTech Connect

    Bagwell, Christopher E.; Hixson, Kim K.; Milliken, Charles E.; Lopez-Ferrer, Daniel; Weitz, Karl K.

    2010-08-26

    Copper is a highly reactive, toxic metal whose transport into the cell is tightly regulated. Kineococcus radiotolerans was previously shown to specifically accumulate soluble copper in the cytoplasm and cell growth was significantly enhanced by copper during chronic irradiation. This study provides a systematic investigation of copper accumulation, toxicity, and homeostasis in K. radiotolerans through combined physiological experimentation and quantitative shot-gun proteomics. Aerobic growth rates and biomass yields were similar over a range of Cu(II) concentrations, though intracellular metal accumulation was positively correlated with Cu(II) concentration in the growth medium (R2 = 0.7). Global proteomics analysis revealed a significant positive correlation between the total number of response proteins and their abundance with copper concentration and culture age. Approximately 40% of the K. radiotolerans genome was differentially expressed in response to the copper treatments imposed. Copper accumulation coincided with increased abundance of proteins involved in oxidative stress and defense, DNA stabilization and repair, and protein turnover. Concomitant production of antioxidants and protective osmolytes signifies an important adaptation for maintenance of cellular redox; few known metal binding proteins were detected. This study offers a first glimpse into the complexity of coordinated biochemical response pathways in K. radiotolerans invoked by sub-lethal copper concentrations that may be pertinent for new biotechnologies in metal recovery and sequestration, and environmental restoration.

  1. Characterization of the physiological stress response in lingcod

    USGS Publications Warehouse

    Milston, R.H.; Davis, M.W.; Parker, S.J.; Olla, B.L.; Clements, S.; Schreck, C.B.

    2006-01-01

    The goal of this study was to describe the duration and magnitude of the physiological stress response in lingcod Ophiodon elongatus after exposure to brief handling and sublethal air stressors. The response to these stressors was determined during a 24-h recovery period by measuring concentrations of plasma cortisol, lactate, glucose, sodium, and potassium. Lingcod were subjected to brief handling followed by either a 15-min or a 45-min air stressor in the laboratory. After the 15-min stressor, an increase in cortisol or glucose could not be detected until after 5 min of recovery. Peak concentrations were measured after 30 min for cortisol and after 60 min for glucose and lactate. Glucose and lactate had returned to basal levels after 12 h, whereas cortisol did not return to basal levels until after 24 h of recovery. Immediately following a 45-min air stressor, all measured parameters were significantly elevated over levels in prestressor control fish. Cortisol concentrations tended to increase and reached a measured peak after 8 h of recovery, whereas glucose and lactate reached a measured peak after 1 h of recovery. Cortisol and lactate returned to basal levels within 24 h. Glucose, however, remained elevated even after 24 h of recovery. Plasma ions initially increased during the first hour of recovery, and the concentrations then declined to a level below that measured in control fish for the remainder of the 24-h recovery period. In addition, we evaluated the effect of fish size on the stress response. There was no significant difference between the stress response of smaller (41-49-cm [total length] and larger (50-67-cm) lingcod after 45 min air exposure. In general, both the magnitude and duration of the primary and secondary stress responses in lingcod are comparable to those of salmonids. ?? Copyright by the American Fisheries Society 2006.

  2. Cognitive, physical and physiological responses of school boy cricketers to a 30-over batting simulation.

    PubMed

    Goble, David; Christie, Candice Jo-Anne

    2016-07-28

    The purpose of this study was to assess how cognitive and physical performance are affected during a prolonged, fatigue-inducing cricket-batting simulation. Fifteen amateur batters from three Eastern Cape schools in South Africa were recruited (mean ± SD: age 17 ± 0.92 years; stature 1.75 ± 0.07 m; body mass 78.3 ± 13.2 kg). Participants completed a 6-stage, 30-over batting simulation (BATEX(©)). During the protocol, there were five periods of cognitive assessment (CogState brief test battery, Melbourne, Australia). The primary outcome measures from each cognitive task were speed and accuracy/error rates. Physiological (heart rate) and physical (sprint times) responses were also recorded. Sprint times deteriorated (d = 0.84; P < 0.01) while physiological responses increased (d = 0.91; P < 0.01) as batting duration increased, with longest times and highest responses occurring in the final stage. Prolonged batting had a large effect on executive task performance (d = 0.85; P = 0.03), and moderate effects on visual attention and vigilance (d = 0.56; P = 0.21) and attention and working memory (d = 0.61; P = 0.11), reducing task performance after 30 overs. Therefore, prolonged batting with repeated shuttle running fatigues amateur batters and adversely affects higher-order cognitive function. This will affect decision-making, response selection, response execution and other batting-related executive processes. We recommend that training should incorporate greater proportions of centre-wicket batting with repeated, high-intensity shuttle running. This will improve batting-related skills and information processing when fatigued, making practice more representative of competition.

  3. Psycho-physiological response in an automatic parachute jump.

    PubMed

    Clemente-Suárez, Vicente Javier; Robles-Pérez, José Juan; Fernández-Lucas, Jesús

    2016-10-11

    Parachute jump is an extreme activity that elicits an intense stress response that affects jumpers' body systems being able to put them at risk. The present research analysed modifications in blood oxygen saturation (BOS), heart rate (HR), cortisol, glucose, lactate, creatine kinase (CK), muscles strength, cortical arousal, autonomic modulation, pistol magazine reload time (PMRT) and state anxiety before and after an automatic open parachute jump in 38 male Spanish soldiers (25.6 ± 5.9 years). A MANOVA with samples as a fixed factor and Effect Size (ES) were conducted. MANOVA showed (Wilks lambda = .225; F = 5.980; P = .000) a significantly increase in cortisol (6.2 ± 3.2 vs. 8.2 ± 4.3 nmol/l; P = .025; ES = .47), HR (75.0 ± 14.6 vs. 87.4 ± 17.3 bpm; P = .004; ES = .72), lactate (1.8 ± 1.2 vs. 4.4 ± 2.2 mmol · l(-1); P = .002; ES = 1.18), sympathetic nervous system and leg strength manifestation after the parachute jump. By contrary BOS, PMRT (55.6 ± 27.6 vs. 48.0 ± 16.7 s; P = .021; ES = .46) and somatic anxiety (SA), evaluated by CSAI2R questionnaire, decreased. An automatic parachute jump increased physiological and cortical response and decreased SA of participants. This stress response can affect the jumpers' abilities and allow us to have a better understanding of the organism stress response and to improve training for both military and sport parachute jumps.

  4. Ethephon induced abscission in mango: physiological fruitlet responses

    PubMed Central

    Hagemann, Michael H.; Winterhagen, Patrick; Hegele, Martin; Wünsche, Jens N.

    2015-01-01

    Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets. PMID:26442021

  5. Physiological and perceptual responses to Latin partnered social dance.

    PubMed

    Domene, Pablo A; Moir, Hannah J; Pummell, Elizabeth; Easton, Chris

    2014-10-01

    The purpose of this study was to investigate the physiological and perceptual responses to Latin partnered social dance to salsa music when performed as a self-selected activity within an ecologically valid setting. Eighteen non-professional adult Latin dancers undertook a laboratory-based graded exercise test for determination of maximal oxygen uptake and maximal heart rate. The dancers then attended two Latin partnered social dance sessions in established salsa venues in London, UK over a 2 wk period. Physiological data were collected using a wrist-worn ActiGraph wGT3X+ accelerometer with accompanying heart rate monitor. Perceived benefits of dance were assessed via the Exercise Benefits/Barriers Scale, and measurement of state intrinsic motivation during dance was undertaken using the Intrinsic Motivation Inventory. Total step count during 2h of dance was not different (t16 = -.39, p = .71) between females and males (9643 ± 1735 step); however, women expended a significantly lower (t16 = -2.57, p < .05) total energy expenditure when compared to men (479 ± 125 versus 651 ± 159 kcal). Dancers of both genders considered interest-enjoyment to be the motivator of primary importance. The highest rated perceived benefit of dance was psychological outlook. Latin partnered social dance to salsa music demands moderate to vigorous physical activity intensity levels, and further, fosters interest, enjoyment, and a positive psychological outlook among novice to advanced adult Latin dancers taking part primarily for leisure purposes. These findings may be of use for those interested in the efficacy of Latin social dancing as an expressive medium for the promotion of community health.

  6. Evidence Report: Risk of Crew Adverse Health Event Due to Altered Immune Response

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Sams, Clarence F.

    2013-01-01

    The Risk of Crew Adverse Health Event Due to Altered Immune Response is identified by the National Aeronautics and Space Administration (NASA) Human Research Program (HRP) as a recognized risk to human health and performance in space. The HRP Program Requirements Document (PRD) defines these risks. This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. It is known that human immune function is altered in- and post-flight, but it is unclear at present if such alterations lead to increased susceptibility to disease. Reactivation of latent viruses has been documented in crewmembers, although this reactivation has not been directly correlated with immune changes or with observed diseases. As described in this report, further research is required to better characterize the relationships between altered immune response and susceptibility to disease during and after spaceflight. This is particularly important for future deep-space exploration missions.

  7. Physiological responses in potato plants under continuous irradiation

    NASA Technical Reports Server (NTRS)

    Cao, W.; Tibbitts, T. W.

    1991-01-01

    The physiological responses of four potato (Solanum tuberosum L.) cultivars to continuous irradiation were determined in a controlled environment. Under a constant 18C and a constant photoperiod of 470 micromoles s-1 m-2 of photosynthetic photon flux, 'Denali' and 'Haig' grew well and produced large plant and tuber dry weights when harvested 56 days after transplanting. 'Kennebec' and 'Superior' were severely stunted, producing only 10% of the plant dry matter produced by 'Denali' and 'Haig'. The differences in leaf chlorophyll concentration and stomatal conductance were not consistent between these two groups of cultivars. The leaf net CO2 assimilation rates in 'Kennebec' and 'Superior' were lower, and intercellular CO2 partial pressures were higher than in 'Denali' and 'Haig'. These results indicate that inhibition of net CO2 assimilation in 'Kennebec' and 'Superior' was not due to a limiting amount of chlorophyll or to CO2 in the leaf tissues. Concentrations of starch in leaflets of 'Kennebec' and 'Superior' plants were only 10% of those in 'Denali' and 'Haig' plants, although soluble sugar concentrations were similar in the four cultivars. Therefore, the lower net CO2 assimilation rates in stunted 'Kennebec' and 'Superior' plants were not associated with an excess carbohydrate accumulation in the leaves.

  8. L-Theanine reduces psychological and physiological stress responses.

    PubMed

    Kimura, Kenta; Ozeki, Makoto; Juneja, Lekh Raj; Ohira, Hideki

    2007-01-01

    L-Theanine is an amino acid contained in green tea leaves which is known to block the binding of L-glutamic acid to glutamate receptors in the brain. Because the characteristics of L-Theanine suggest that it may influence psychological and physiological states under stress, the present study examined these possible effects in a laboratory setting using a mental arithmetic task as an acute stressor. Twelve participants underwent four separate trials: one in which they took L-Theanine at the start of an experimental procedure, one in which they took L-Theanine midway, and two control trials in which they either took a placebo or nothing. The experimental sessions were performed by double-blind, and the order of them was counterbalanced. The results showed that L-Theanine intake resulted in a reduction in the heart rate (HR) and salivary immunoglobulin A (s-IgA) responses to an acute stress task relative to the placebo control condition. Moreover, analyses of heart rate variability indicated that the reductions in HR and s-IgA were likely attributable to an attenuation of sympathetic nervous activation. Thus, it was suggested that the oral intake of L-Theanine could cause anti-stress effects via the inhibition of cortical neuron excitation.

  9. Physiological response to submaximal isometric contractions of the paravertebral muscles

    NASA Technical Reports Server (NTRS)

    Jensen, B. R.; Jorgensen, K.; Hargens, A. R.; Nielsen, P. K.; Nicolaisen, T.

    1999-01-01

    STUDY DESIGN: Brief (30-second) isometric trunk extensions at 5%, 20%, 40%, 60%, and 80% of maximal voluntary contraction (MVC) and 3 minutes of prolonged trunk extension (20% MVC) in erect position were studied in nine healthy male subjects. OBJECTIVES: To investigate the intercorrelation between intramuscular pressure and tissue oxygenation of the paravertebral muscles during submaximal isometric contractions and further, to evaluate paravertebral electromyogram and intramuscular pressure as indicators of force development. SUMMARY OF BACKGROUND DATA: Local physiologic responses to muscle contraction are incompletely understood. METHODS: Relative oxygenation was monitored with noninvasive near-infrared spectroscopy, intramuscular pressure was measured with a transducer-tipped catheter, and surface electromyogram was monitored at three recording sites. RESULTS: The root mean square amplitudes of the paravertebral electromyogram (L4, left and right; T12, right) and intramuscular pressure measured in the lumbar multifidus muscle at L4 increased with greater force development in a curvilinear manner. A significant decrease in the oxygenation of the lumbar paravertebral muscle in response to muscle contraction was found at an initial contraction level of 20% MVC. This corresponded to a paravertebral intramuscular pressure of 30-40 mm Hg. However, during prolonged trunk extension, no further decrease in tissue oxygenation was found compared with the tissue oxygenation level at the end of the brief contractions, indicating that homeostatic adjustments (mean blood pressure and heart rate) over time were sufficient to maintain paravertebral muscle oxygen levels. CONCLUSION: At a threshold intramuscular pressure of 30-40 mm Hg during muscle contraction, oxygenation in the paravertebral muscles is significantly reduced. The effect of further increase in intramuscular pressure on tissue oxygenation over time may be compensated for by an increase in blood pressure and heart

  10. Human thermal physiological and psychological responses under different heating environments.

    PubMed

    Wang, Zhaojun; Ning, Haoran; Ji, Yuchen; Hou, Juan; He, Yanan

    2015-08-01

    Anecdotal evidence suggests that many residents of severely cold areas of China who use floor heating (FH) systems feel warmer but drier compared to those using radiant heating (RH) systems. However, this phenomenon has not been verified experimentally. In order to validate the empirical hypothesis, and research the differences of human physiological and psychological responses in these two asymmetrical heating environments, an experiment was designed to mimic FH and RH systems. The subjects participating in the experiment were volunteer college-students. During the experiment, the indoor air temperature, air speed, relative humidity, globe temperature, and inner surface temperatures were measured, and subjects' heart rate, blood pressure and skin temperatures were recorded. The subjects were required to fill in questionnaires about their thermal responses during testing. The results showed that the subjects' skin temperatures, heart rate and blood pressure were significantly affected by the type of heating environment. Ankle temperature had greatest impact on overall thermal comfort relative to other body parts, and a slightly cool FH condition was the most pleasurable environment for sedentary subjects. The overall thermal sensation, comfort and acceptability of FH were higher than that of RH. However, the subjects of FH felt drier than that of RH, although the relative humidity in FH environments was higher than that of the RH environment. In future environmental design, the thermal comfort of the ankles should be scrutinized, and a FH cool condition is recommended as the most comfortable thermal environment for office workers. Consequently, large amounts of heating energy could be saved in this area in the winter. The results of this study may lead to more efficient energy use for office or home heating systems.

  11. Physiologic Responses Produced by Active and Passive Personal Cooling Vests

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Luna, Bernadette

    2000-01-01

    Personal thermoregulatory systems which provide chest cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to document and compare the subjects' response to three cooling vests in their recommended configurations. The Life Enhancement Tech (LET) lightweight active cooling vest with cap, the MicroClimate Systems Change of Phase garment (MCS), and the Steele Vest were each used to cool the chest regions of 12 male and 8 female Healthy subjects (21 to 69 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approx. 22 C), were tested for 60 min. with one of the cooling garments. The LET active garment had an initial coolant fluid inlet temperature of 60 F, and was ramped down to 50 F. Oral, right and left ear canal temperatures were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. For men, all three vests had similar, significant cooling effects. Decreases in the average rectal temperature, oral temperature, and ear canal temperatures were approximately 0.2 C, 0.2 C and 0.1 C, respectively. In contrast to the men, the female subjects wearing the MCS and Steel vests had similar cooling responses in which the core temperature remained elevated and oral and ear canal temperatures did not drop. The LET active garment cooled most of the female subjects in this study; rectal, oral and ear temperature decreased about 0.2 C, 0.3 C and 0.3 C, respectively. These results show that the garment configurations tested do not elicit a similar thermal response in all subjects. A gender difference is evident. The LET active garment configuration was most effective in decreasing temperatures of the female subjects; the MCS

  12. Analysis of the Physiological and Molecular Responses of Dunaliella salina to Macronutrient Deprivation

    PubMed Central

    Lv, Hexin; Cui, Xianggan; Wahid, Fazli; Xia, Feng; Zhong, Cheng; Jia, Shiru

    2016-01-01

    The halotolerant chlorophyte Dunaliella salina can accumulate up to 10% of its dry weight as β-carotene in chloroplasts when subjected to adverse conditions, including nutrient deprivation. However, the mechanisms of carotenoid biosynthesis are poorly understood. Here, the physiological and molecular responses to the deprivation of nitrogen (-N), sulfur (-S), phosphorus (-P) and different combinations of those nutrients (-N-P, -N-S, -P-S and -N-P-S) were compared to gain insights into the underlying regulatory mechanisms of carotenoid biosynthesis. The results showed that both the growth and photosynthetic rates of cells were decreased during nutrient deprivation, accompanied by lipid globule accumulation and reduced chlorophyll levels. The SOD and CAT activities of the cells were altered during nutrient deprivation, but their responses were different. The total carotenoid contents of cells subjected to multiple nutrient deprivation were higher than those of cells subjected to single nutrient deprivation and non-stressed cells. The β-carotene contents of cells subjected to -N-P, -N-S and -N-P-S were higher than those of cells subjected to single nutrient deprivation. Cells subjected to sulfur deprivation accumulated more lutein than cells subjected to nitrogen and phosphorous deprivation. In contrast, no cumulative effects of nutrient deprivation on the transcription of genes in the carotenogenic pathway were observed because MEP and carotenogenic pathway genes were up-regulated during single nutrient deprivation but were downregulated during multiple nutrient deprivation. Therefore, we proposed that the carotenoid biosynthesis pathway of D. salina is regulated at both the transcriptional and posttranscriptional levels and that a complex crosstalk occurs at the physiological and molecular levels in response to the deprivation of different nutrients. PMID:27023397

  13. Physiological responses to environmental factors related to space flight

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1972-01-01

    The research is reported for establishing physiological base line data, and for developing procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters. The work in the following areas is discussed: biochemistry, bioinstrumentation, nutrition, physiology, experimental surgery, and animal colony.

  14. Selected human physiological responses during extreme heat: the Badwater Ultramarathon.

    PubMed

    Brown, Jacqueline S; Connolly, Declan A

    2015-06-01

    The purpose of this article was to examine various physiological responses during an ultramarathon held in extreme heat. Our investigation was conducted at The Badwater Ultramarathon, a nonstop 217-km run across Death Valley, CA, USA. This study recruited 4 male athletes, average age of 43 (±SD) (±7.35), (range) 39-54 years. All 4 subjects successfully completed the race with a mean finish time of 36:20:23 hours (±SD) (±3:08:38) (range) 34:05:25-40:51:46 hours, and a mean running speed of 6.03 km·h(-1) (±SD) (±0.05), (range) 5.3-6.4 km·h(-1). The anthropometric variables measured were (mean, ±SD) mass 79.33 kg (±6.43), height 1.80 m (±0.09), body surface area 1.93 m2 (±0.16), body mass index 24.38 kg·m(-2) (±1.25), fat mass 13.88% (±2.29), and body water 62.08% (±1.56). Selected physiological variables measured were core body temperature, skin temperature, heart rate, breathing rate, and blood pressure. Rate of perceived intensity, rate of thermal sensation, and environmental factors were also monitored. Our study found (mean and ±SD) core body temperature 37.49° C (±0.88); skin temperature 31.13° C (±3.06); heart rate 106.79 b·min(-1) (±5.11); breathing rate 36.55 b·min(-1) (±0.60); blood pressure 128/86 mm Hg (±9.24/4.62); rate of perceived intensity 5.49 (±1.26); rate of thermal sensation 4.69 (±0.37); daytime high temperature of 46.6° C, and a mean temperature of 28.35° C. Our fastest finisher demonstrated a lower overall core body temperature (36.91° C) when compared with the group mean (37.49° C). In contrast to previous findings, our data show that the fastest finisher demonstrates a lower overall core body temperature. We conclude that it may be possible that a time threshold exists whereby success in longer duration events requires an ability to maintain a lower core body temperature vs. tolerating a higher core body temperature.

  15. The prevalence of adverse cardiometabolic responses to exercise training with evidence-based practice is low

    PubMed Central

    Dalleck, Lance C; Van Guilder, Gary P; Richardson, Tara B; Vella, Chantal A

    2015-01-01

    Background The purpose of this study was to determine the prevalence of individuals who experienced exercise-induced adverse cardiometabolic response (ACR), following an evidence-based, individualized, community exercise program. Methods Prevalence of ACR was retrospectively analyzed in 332 adults (190 women, 142 men) before and after a 14-week supervised community exercise program. ACR included an exercise training-induced increase in systolic blood pressure of ≥10 mmHg, increase in plasma triglycerides (TG) of >37.0 mg/dL (≥0.42 mmol/L), or decrease in high-density lipoprotein cholesterol (HDL-C) of >4.0 mg/dL (0.12 mmol/L). A second category of ACR was also defined – this was ACR that resulted in a metabolic syndrome component (ACR-risk) as a consequence of the adverse response. Results According to the above criteria, prevalence of ACR between baseline and post-program was systolic blood pressure (6.0%), TG (3.6%), and HDL-C (5.1%). The prevalence of ACR-risk was elevated TG (3.2%), impaired fasting blood glucose (2.7%), low HDL-C (2.2%), elevated waist circumference (1.3%), and elevated blood pressure (0.6%). Conclusion Evidence-based practice exercise programming may attenuate the prevalence of exercise training-induced ACR. Our findings provide important preliminary evidence needed for the vision of exercise prescription as a personalized form of preventative medicine to become a reality. PMID:25678806

  16. Physiological and behavioral responses of horses during police training.

    PubMed

    Munsters, C C B M; Visser, E K; van den Broek, J; Sloet van Oldruitenborgh-Oosterbaan, M M

    2013-05-01

    Mounted police horses have to cope with challenging, unpredictable situations when on duty and it is essential to gain insight into how these horses handle stress to warrant their welfare. The aim of the study was to evaluate physiological and behavioral responses of 12 (six experienced and six inexperienced) police horses during police training. Horses were evaluated during four test settings at three time points over a 7-week period: outdoor track test, street track test, indoor arena test and smoke machine test. Heart rate (HR; beats/min), HR variability (HRV; root means square of successive differences; ms), behavior score (BS; scores 0 to 5) and standard police performance score (PPS; scores 1 to 0) were obtained per test. All data were statistically evaluated using a linear mixed model (Akaike's Information criterium; t > 2.00) or logistic regression (P < 0.05). HR of horses was increased at indoor arena test (98 ± 26) and smoke machine test (107 ± 25) compared with outdoor track (80 ± 12, t = 2.83 and t = 3.91, respectively) and street track tests (81 ± 14, t = 2.48 and t = 3.52, respectively). HRV of horses at the indoor arena test (42.4 ± 50.2) was significantly lower compared with street track test (85.7 ± 94.3 and t = 2.78). BS did not show significant differences between tests and HR of horses was not always correlated with the observed moderate behavioral responses. HR, HRV, PPS and BS did not differ between repetition of tests and there were no significant differences in any of the four tests between experienced and inexperienced horses. No habituation occurred during the test weeks, and experience as a police horse does not seem to be a key factor in how these horses handle stress. All horses showed only modest behavioral responses, and HR may provide complimentary information for individual evaluation and welfare assessment of these horses. Overall, little evidence of stress was observed during these police training tests. As three of these

  17. Phenotypic variation in xenobiotic metabolism and adverse environmental response: focus on sulfur-dependent detoxification pathways.

    PubMed

    McFadden, S A

    1996-07-17

    Proper bodily response to environmental toxicants presumably requires proper function of the xenobiotic (foreign chemical) detoxification pathways. Links between phenotypic variations in xenobiotic metabolism and adverse environmental response have long been sought. Metabolism of the drug S-carboxymethyl-L-cysteine (SCMC) is polymorphous in the population, having a bimodal distribution of metabolites, 2.5% of the general population are thought to be nonmetabolizers. The researchers developing this data feel this implies a polymorphism in sulfoxidation of the amino acid cysteine to sulfate. While this interpretation is somewhat controversial, these metabolic differences reflected may have significant effects. Additionally, a significant number of individuals with environmental intolerance or chronic disease have impaired sulfation of phenolic xenobiotics. This impairment is demonstrated with the probe drug acetaminophen and is presumably due to starvation of the sulfotransferases for sulfate substrate. Reduced metabolism of SCMC has been found with increased frequency in individuals with several degenerative neurological and immunological conditions and drug intolerances, including Alzheimer's disease, Parkinson's disease, motor neuron disease, rheumatoid arthritis, and delayed food sensitivity. Impaired sulfation has been found in many of these conditions, and preliminary data suggests that it may be important in multiple chemical sensitivities and diet responsive autism. In addition, impaired sulfation may be relevant to intolerance of phenol, tyramine, and phenylic food constituents, and it may be a factor in the success of the Feingold diet. These studies indicate the need for the development of genetic and functional tests of xenobiotic metabolism as tools for further research in epidemiology and risk assessment.

  18. Sexually Dimorphic Responses to Early Adversity: Implications for Affective Problems and Autism Spectrum Disorder

    PubMed Central

    Davis, Elysia Poggi; Pfaff, Donald

    2014-01-01

    During gestation, development proceeds at a pace that is unmatched by any other stage of the lifecycle. For these reason the human fetus is particularly susceptible not only to organizing influences, but also to pathogenic disorganizing influences. Growing evidence suggests that exposure to prenatal adversity leads to neurological changes that underlie lifetime risks for mental illness. Beginning early in gestation, males and females show differential developmental trajectories and responses to stress. It is likely that sex-dependent organization of neural circuits during the fetal period influences differential vulnerability to mental health problems. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two developmental disorders: affective problems (greater female prevalence) and autism spectrum disorder (greater male prevalence). Recent prospective studies illustrating the neurodevelopmental consequences of fetal exposure to stress and stress hormones for males and females are considered here. Plausible biological mechanisms including the role of the sexually differentiated placenta are discussed. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two sets of developmental disorders: affective problems (greater female prevalence) and autism spectrum disorders (greater male prevalence). PMID:25038479

  19. High-Flow Nasal Cannula Oxygen Therapy in Adults: Physiological Benefits, Indication, Clinical Benefits, and Adverse Effects.

    PubMed

    Nishimura, Masaji

    2016-04-01

    High-flow nasal cannula (HFNC) oxygen therapy is carried out using an air/oxygen blender, active humidifier, single heated tube, and nasal cannula. Able to deliver adequately heated and humidified medical gas at flows up to 60 L/min, it is considered to have a number of physiological advantages compared with other standard oxygen therapies, including reduced anatomical dead space, PEEP, constant F(IO2), and good humidification. Although few large randomized clinical trials have been performed, HFNC has been gaining attention as an alternative respiratory support for critically ill patients. Published data are mostly available for neonates. For critically ill adults, however, evidence is uneven because the reports cover various subjects with diverse underlying conditions, such as hypoxemic respiratory failure, exacerbation of COPD, postextubation, preintubation oxygenation, sleep apnea, acute heart failure, and conditions entailing do-not-intubate orders. Even so, across the diversity, many published reports suggest that HFNC decreases breathing frequency and work of breathing and reduces the need for respiratory support escalation. Some important issues remain to be resolved, such as definitive indications for HFNC and criteria for timing the starting and stopping of HFNC and for escalating treatment. Despite these issues, HFNC has emerged as an innovative and effective modality for early treatment of adults with respiratory failure with diverse underlying diseases.

  20. Physiological responses of Matricaria chamomilla to cadmium and copper excess.

    PubMed

    Kovácik, Jozef; Backor, Martin; Kaduková, Jana

    2008-02-01

    Physiological responses of Matricaria chamomilla plants exposed to cadmium (Cd) and copper (Cu) excess (3, 60, and 120 microM for 7 days) with special emphasis on phenolic metabolism were studied. Cu at 120 microM reduced chamomile growth, especially in the roots where it was more abundant than Cd. Notwithstanding the low leaf Cu amount (37.5 microg g(-1) DW) in comparison with Cd (237.8 microg g(-1) DW) at 120 microM, it caused reduction of biomass accumulation, F(v)/F(m) ratio and soluble proteins. In combination with high accumulation of phenolics, strong reduction of proteins and high GPX activity in the roots, this supports severe redox Cu properties. In terms of leaf phenylalanine ammonia-lyase (PAL) activity, it seems that Cd had a stimulatory effect during the course of the experiment, whereas Cu was found to stimulate it after 7-day exposure. The opposite trend was visible in the roots, where Cd had a stimulatory effect at high doses but Cu mainly at the highest dose. This supports the assumption of different PAL time dynamics under Cd and Cu excess. A dose of 60 and 120 microM Cu led to 2- and 3-times higher root lignin accumulation while the same Cd doses increased it by 33 and 68%, respectively. A Cu dose of 120 microM can be considered as limiting for chamomile growth under conditions of present research, while resistance to high Cd doses was confirmed. However, PAL and phenolics seemed to play an important role in detoxification of Cd- and Cu-induced oxidative stress.

  1. Physiological and psychological responses to outdoor vs. laboratory cycling.

    PubMed

    Mieras, Molly E; Heesch, Matthew W S; Slivka, Dustin R

    2014-08-01

    The purpose of this study was to determine the physiological and psychological responses to laboratory vs. outdoor cycling. Twelve recreationally trained male cyclists participated in an initial descriptive testing session and 2 experimental trials consisting of 1 laboratory and 1 outdoor session, in a randomized order. Participants were given a standardized statement instructing them to give the same perceived effort for both the laboratory and outdoor 40-km trials. Variables measured include power output, heart rate (HR), core temperature, skin temperature, body weight, urine specific gravity (USG), Rating of Perceived Exertion (RPE), attentional focus, and environmental conditions. Wind speed was higher in the outdoor trial than in the laboratory trial (2.5 ± 0.6 vs. 0.0 ± 0.0 m·s-1, p = 0.02) whereas all other environmental conditions were similar. Power output (208.1 ± 10.2 vs. 163.4 ± 11.8 W, respectively, p < 0.001) and HR (152 ± 4 and 143 ± 6 b·min-1, respectively, p = 0.04) were higher in the outdoor trial than in the laboratory trial. Core temperature was similar, whereas skin temperature was cooler during the outdoor trial than during the laboratory trial (31.4 ± 0.3 vs. 33.0 ± 0.2° C, respectively, p < 0.001), thus creating a larger thermal gradient between the core and skin outdoors. No significant differences in body weight, USG, RPE, or attentional focus were observed between trials. These data indicate that outdoor cycling allows cyclists to exercise at a higher intensity than in laboratory cycling, despite similar environmental conditions and perceived exertion. In light of this, cyclists may want to ride at a higher perceived exertion in indoor settings to acquire the same benefit as they would from an outdoor ride.

  2. Resistance Training: Physiological Responses and Adaptations (Part 2 of 4).

    ERIC Educational Resources Information Center

    Fleck, Stephen J.; Kraerner, William J.

    1988-01-01

    Resistance training causes a variety of physiological reactions, including changes in muscle size, connective tissue size, and bone mineral content. This article summarizes data from a variety of studies and research. (JL)

  3. Response of a physiological controller for ventricular assist devices during acute patho-physiological events: an in vitro study.

    PubMed

    Petrou, Anastasios; Pergantis, Panagiotis; Ochsner, Gregor; Amacher, Raffael; Krabatsch, Thomas; Falk, Volkmar; Meboldt, Mirko; Daners, Marianne Schmid

    2017-02-09

    The current paper analyzes the performance of a physiological controller for turbodynamic ventricular assist devices (tVADs) during acute patho-physiological events. The numerical model of the human blood circulation implemented on our hybrid mock circulation was extended in order to simulate the Valsalva maneuver (VM) and premature ventricular contractions (PVCs). The performance of an end-diastolic volume (EDV)-based physiological controller for VADs, named preload responsive speed (PRS) controller was evaluated under VM and PVCs. A slow and a fast response of the PRS controller were implemented by using a 3 s moving window, and a beat-to-beat method, respectively, to extract the EDV index. The hemodynamics of a pathological circulation, assisted by a tVAD controlled by the PRS controller were analyzed and compared with a constant speed support case. The results show that the PRS controller prevented suction during the VM with both methods, while with constant speed, this was not the case. On the other hand, the pump flow reduction with the PRS controller led to low aortic pressure, while it remained physiological with the constant speed control. Pump backflow was increased when the moving window was used but it avoided sudden undesirable speed changes, which occurred during PVCs with the beat-to-beat method. In a possible clinical implementation of any physiological controller, the desired performance during frequent clinical acute scenarios should be considered.

  4. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.

    PubMed

    Wang, Yucheng; Gao, Caiqiu; Liang, Yenan; Wang, Chao; Yang, Chuanping; Liu, Guifeng

    2010-02-15

    Basic leucine zipper proteins (bZIPs) are transcription factors that bind abscisic acid (ABA)-responsive elements (ABREs) and enable plants to withstand adverse environmental conditions. In the present study, a novel bZIP gene, ThbZIP1 was cloned from Tamarix hispida. Expression studies in T. hispida showed differential regulation of ThbZIP1 in response to treatment with NaCl, polyethylene glycol (PEG) 6000, NaHCO(3), and CdCl(2), suggesting that ThbZIP1 is involved in abiotic stress responses. To identify the physiological responses mediated by ThbZIP1, transgenic tobacco plants overexpressing exogenous ThbZIP1 were generated. Various physiological parameters related to salt stress were measured and compared between transgenic and wild type (WT) plants. Our results indicate that overexpression of ThbZIP1 can enhance the activity of both peroxidase (POD) and superoxide dismutase (SOD), and increase the content of soluble sugars and soluble proteins under salt stress conditions. These results suggest that ThbZIP1 contributes to salt tolerance by mediating signaling through multiple physiological pathways. Furthermore, ThbZIP1 confers stress tolerance to plants by enhancing reactive oxygen species (ROS) scavenging, facilitating the accumulation of compatible osmolytes, and inducing and/or enhancing the biosynthesis of soluble proteins.

  5. Physiological calf responses to increased chromium supply in summer.

    PubMed

    Yari, M; Nikkhah, A; Alikhani, M; Khorvash, M; Rahmani, H; Ghorbani, G R

    2010-09-01

    The primary objective was to determine pre- and postweaning calf physiological responses to increased Cr supply under high ambient temperatures. In a randomized complete block design, 24 neonate Holstein calves (BW=41.5+/-1.9 kg) were grouped based on sex and randomly assigned to 3 treatments within each group. Treatments included either no supplemental Cr (control), 0.02 mg of supplemental Cr/kg of BW0.75, or 0.04 mg of supplemental Cr/kg of BW0.75. The average temperature-humidity index was 77 during the study. Chromium was provided as a commercial product in whole milk for preweaning calves and in a starter concentrate for postweaning calves. Calves were weaned at 1 kg of daily calf starter intake lasting for 6 consecutive days. A glucose tolerance test was conducted on d 25 postweaning. Treatments had no effects on preweaning dry matter intake, feed conversion ratio, average daily gain, and weaning age. Chromium decreased dry matter intake in postweaning calves; however, it did not affect growth and feed conversion ratio. Chromium lowered respiration rate at wk 5 without affecting fecal score and rectal temperature. Preweaning serum cortisol concentrations were altered by a 3-way interaction of Cr dose with calf sex and age. Preweaning serum glucose showed week-dependent increases by Cr. Serum insulin, urea, albumin, total protein, triiodothyronine, and thyroxin concentrations through weaning were not affected. The increasing Cr doses caused quadratic declines in serum thyroxin on d 21 postweaning, whereas blood triiodothyronine declined only with the higher Cr dose. Serum NEFA remained unchanged, but BHBA decreased by Cr in male calves on d 21 postweaning. The glucose tolerance test revealed linear reductions in area under insulin curve between 0 to 90 and 0 to 120 min after glucose infusion, suggesting improvements in peripheral insulin efficiency. Sex-dependent responses to Cr were observed for serum total protein and albumin concentrations at 21 d

  6. Physiological responses to dyadic interactions are influenced by neurotypical adults' levels of autistic and empathy traits.

    PubMed

    Truzzi, Anna; Setoh, Peipei; Shinohara, Kazuyuki; Esposito, Gianluca

    2016-10-15

    Autistic traits are distributed on a continuum that ranges from non-clinical to clinical condition. Atypical responses to social situations represent a core feature of the Autism Spectrum Disorders phenotype. Here, we hypothesize that atypical physiological responses to social stimuli may predict non-clinical autistic and empathy traits levels. We measured physiological responses (heart rate, facial temperature) of 40 adults (20F) while showing them 24 movies representing dyadic interactions. Autistic traits were assessed through Autism Quotient questionnaire (AQ), while empathy traits were measured using the Empathy Quotient questionnaire (EQ). Opposite correlations between AQ and EQ scores and physiological responses were found. Analysis of physiological responses revealed that individuals with better social abilities, low AQ and high EQ, show opposite activation patterns compared to people with high AQ and low EQ. Findings show that physiological responses could be biomarkers for people's autistic traits and social abilities.

  7. Acute effects of heat on neuropsychological changes and physiological responses under noise condition.

    PubMed

    Bhattacharya, S K; Tripathi, S R; Pradhan, C K; Kashyap, S K

    1990-09-01

    To examine the effects of heat and noise individually and jointly on certain physiological responses and cognitive and neuromotor based functions, 12 male participants were tested under 6 experimental conditions which resulted by combining 3 levels of heat (25 degrees, 30 degrees and 35 degrees C) and 2 levels of white noise (70 and 100 dB). The experiment was carried out in a controlled climatic chamber following two 6 x 6 latin square designs. The results indicated elevations in heart rate, oxygen uptake and body temperature due to the independent effect of heat or the combined effects of heat and noise. The independent action of noise was found to be depressive on the first two responses. On the neuropsychological effects, the heat adversely affected the speed in card sorting (by design configuration) and digit symbol tests, and also the accuracy and error rate in the reasoning ability test. The noise caused performance improvements in critical flicker frequency (simultaneous) and in error rates in card sorting (by design configuration). The combined effects of heat and noise indicated higher error rates in card sorting (by face value), decreased accuracy in reasoning ability and improvements in performance in accuracy scores and error rates in digit symbol test.

  8. Factors influencing adverse skin responses in rats receiving repeated subcutaneous injections and potential impact on neurobehavior

    PubMed Central

    Levoe, S. Nikki; Flannery, Brenna M.; Brignolo, Laurie; Imai, Denise M.; Koehne, Amanda; Austin, Adam T.; Bruun, Donald A.; Tancredi, Daniel J.; Lein, Pamela J.

    2015-01-01

    Repeated subcutaneous (s.c.) injection is a common route of administration in chronic studies of neuroactive compounds. However, in a pilot study we noted a significant incidence of skin abnormalities in adult male Long-Evans rats receiving daily s.c. injections of peanut oil (1.0 ml/kg) in the subscapular region for 21 d. Histopathological analyses of the lesions were consistent with a foreign body reaction. Subsequent studies were conducted to determine factors that influenced the incidence or severity of skin abnormalities, and whether these adverse skin reactions influenced a specific neurobehavioral outcome. Rats injected daily for 21 d with food grade peanut oil had an earlier onset and greater incidence of skin abnormalities relative to rats receiving an equal volume (1.0 ml/kg/d) of reagent grade peanut oil or triglyceride of coconut oil. Skin abnormalities in animals injected daily with peanut oil were increased in animals housed on corncob versus paper bedding. Comparison of animals obtained from different barrier facilities exposed to the same injection paradigm (reagent grade peanut oil, 1.0 ml/kg/d s.c.) revealed significant differences in the severity of skin abnormalities. However, animals from different barrier facilities did not perform differently in a Pavlovian fear conditioning task. Collectively, these data suggest that environmental factors influence the incidence and severity of skin abnormalities following repeated s.c. injections, but that these adverse skin responses do not significantly influence performance in at least one test of learning and memory. PMID:25705100

  9. Physiological and isotopic responses of scleractinian corals to ocean acidification

    NASA Astrophysics Data System (ADS)

    Krief, Shani; Hendy, Erica J.; Fine, Maoz; Yam, Ruth; Meibom, Anders; Foster, Gavin L.; Shemesh, Aldo

    2010-09-01

    Uptake of anthropogenic CO 2 by the oceans is altering seawater chemistry with potentially serious consequences for coral reef ecosystems due to the reduction of seawater pH and aragonite saturation state ( Ωarag). The objectives of this long-term study were to investigate the viability of two ecologically important reef-building coral species, massive Porites sp. and Stylophora pistillata, exposed to high pCO 2 (or low pH) conditions and to observe possible changes in physiologically related parameters as well as skeletal isotopic composition. Fragments of Porites sp. and S. pistillata were kept for 6-14 months under controlled aquarium conditions characterized by normal and elevated pCO 2 conditions, corresponding to pH T values of 8.09, 7.49, and 7.19, respectively. In contrast with shorter, and therefore more transient experiments, the long experimental timescale achieved in this study ensures complete equilibration and steady state with the experimental environment and guarantees that the data provide insights into viable and stably growing corals. During the experiments, all coral fragments survived and added new skeleton, even at seawater Ωarag < 1, implying that the coral skeleton is formed by mechanisms under strong biological control. Measurements of boron (B), carbon (C), and oxygen (O) isotopic composition of skeleton, C isotopic composition of coral tissue and symbiont zooxanthellae, along with physiological data (such as skeletal growth, tissue biomass, zooxanthellae cell density, and chlorophyll concentration) allow for a direct comparison with corals living under normal conditions and sampled simultaneously. Skeletal growth and zooxanthellae density were found to decrease, whereas coral tissue biomass (measured as protein concentration) and zooxanthellae chlorophyll concentrations increased under high pCO 2 (low pH) conditions. Both species showed similar trends of δ 11B depletion and δ 18O enrichment under reduced pH, whereas the δ 13C results

  10. Examining the Attitudes and Physiological Responses Preservice Learners Have towards Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Gouvousis, Aphroditi; Heilmann, John; Golden, Jeanne; Kalinowski, Joseph; Hudson, Suzanne; Hough, Monica Strauss

    2010-01-01

    This study investigated attitudes and physiological responses demonstrated by preservice learners towards young children with autism spectrum disorders (ASD). The Self-Assessment Manikin (SAM) and two physiological measures (skin conductance and heart rate responses) were obtained. Four behaviors (two control and two problematic) depicting…

  11. Behavioral and Physiological Response of Baleen Whales to Ships and Ship Noise

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Behavioral and Physiological Response of Baleen Whales ...LONG-TERM GOALS This study began in late 2013 with the primary goal of examining the behavioral and physiological response of baleen whales to...species including blue and right whales that appear to be particularly susceptible. Initial research demonstrated the feasibility of documenting whale

  12. Protection of palak (Beta vulgaris L. var Allgreen) plants from ozone injury by ethylenediurea (EDU): roles of biochemical and physiological variations in alleviating the adverse impacts.

    PubMed

    Tiwari, Supriya; Agrawal, Madhoolika

    2009-06-01

    Ameliorative effects of ethylenediurea (N-[2-(2-oxo-1-imidazolinidyl) ethyl]-N' phenylurea, abbreviated as EDU) against ozone stress were studied on selected growth, biochemical, physiological and yield characteristics of palak (Beta vulgaris L. var Allgreen) plants grown in field at a suburban site of Varanasi, India. Mean eight hourly ozone concentration varied from 52 to 73 ppb which was found to produce adverse impacts on plant functioning and growth characteristics. The palak plants were treated with 300 ppm EDU at 10 days after germination at 10 days interval up to the plant maturity. Lipid peroxidation in EDU treated plants declined significantly as compared to non-EDU treated ones. Significant increment in F(v)/F(m) ratio in EDU treated plants as compared to non-EDU treated ones was recorded. EDU treated plants showed significant increment in ascorbic acid contents and reduction in peroxidase activity as compared to non-EDU treated ones. As a result of the protection provided by EDU against ozone induced stress on biochemical and physiological characteristics of palak, the morphological parameters also responded positively. Significant increments were recorded in shoot length, number of leaves plant(-1), leaf area and root and shoot biomass of EDU treated plants as compared to non-EDU treated ones. Contents of Na, K, Ca, Mg and Fe were higher in EDU treated plants as compared to non-EDU treated ones. The present investigation proves the usefulness of EDU in partially ameliorating ozone injury in ambient conditions.

  13. Physiological Responses to Two Hypoxic Conditioning Strategies in Healthy Subjects

    PubMed Central

    Chacaroun, Samarmar; Borowik, Anna; Morrison, Shawnda A.; Baillieul, Sébastien; Flore, Patrice; Doutreleau, Stéphane; Verges, Samuel

    2017-01-01

    Objective: Hypoxic exposure can be used as a therapeutic tool by inducing various cardiovascular, neuromuscular, and metabolic adaptations. Hypoxic conditioning strategies have been evaluated in patients with chronic diseases using either sustained (SH) or intermittent (IH) hypoxic sessions. Whether hypoxic conditioning via SH or IH may induce different physiological responses remains to be elucidated. Methods: Fourteen healthy active subjects (7 females, age 25 ± 8 years, body mass index 21.5 ± 2.5 kg·m−2) performed two interventions in a single blind, randomized cross-over design, starting with either 3 x SH (48 h apart), or 3 x IH (48 h apart), separated by a 2 week washout period. SH sessions consisted of breathing a gas mixture with reduced inspiratory oxygen fraction (FiO2), continuously adjusted to reach arterial oxygen saturations (SpO2) of 70–80% for 1 h. IH sessions consisted of 5 min with reduced FiO2 (SpO2 = 70–80%), followed by 3-min normoxia, repeated seven times. During the first (S1) and third (S3) sessions of each hypoxic intervention, cardiorespiratory parameters, and muscle and pre-frontal cortex oxygenation (near infrared spectroscopy) were assessed continuously. Results: Minute ventilation increased significantly during IH sessions (+2 ± 2 L·min−1) while heart rate increased during both SH (+11 ± 4 bpm) and IH (+13 ± 5 bpm) sessions. Arterial blood pressure increased during all hypoxic sessions, although baseline normoxic systolic blood pressure was reduced from S1 to S3 in IH only (−8 ± 11 mmHg). Muscle oxygenation decreased significantly during S3 but not S1, for both hypoxic interventions (S3: SH −6 ± 5%, IH −3 ± 4%); pre-frontal oxygenation decreased in S1 and S3, and to a greater extent in SH vs. IH (−13 ± 3% vs. −6 ± 6%). Heart rate variability indices indicated a significantly larger increase in sympathetic activity in SH vs. IH (lower SDNN, PNN50, and RMSSD values in SH). From S1 to S3, further reduction in

  14. Physiological responses of dwarf coconut seedlings irrigated with saline water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of salt-tolerant plants is an important alternative to cope with the problem of salinity in semi-arid regions. The dwarf coconut palm (Cocos nucifera L.) has emerged as a salt-tolerant crop once established. However, little is known about the physiological mechanisms that may contribute to t...

  15. Physiological genomics of abiotic stress responses in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) accessions from the U.S. mini-core collection were independently evaluated for heat and water-deficit stress tolerance using a battery of physiological assays including leaf-level gas exchange, chlorophyll fluorescence yield, membrane thermostability, leaf sugar content,...

  16. Remote Detection of Plant Physiological Responses to TNT Soil Contamination

    DTIC Science & Technology

    2010-01-01

    were significantly affected by TNT exposure at all treatment levels, and photosynthetic decline likely resulted from metabolic impairment rather than...exposure at all treatment levels, and photosynthetic decline likely resulted from metabolic impairment rather than stomatal closure as the experiment...Physiological measurements were significantly affect- ed by TNT exposure at all treatment levels, and photosynthetic decline likely resulted from

  17. Global responses of Escherichia coli to adverse conditions determined by microarrays and FT-IR spectroscopy.

    PubMed

    Moen, Birgitte; Janbu, Astrid Oust; Langsrud, Solveig; Langsrud, Oyvind; Hobman, Jon L; Constantinidou, Chrystala; Kohler, Achim; Rudi, Knut

    2009-06-01

    The global gene expression and biomolecular composition in an Escherichia coli model strain exposed to 10 adverse conditions (sodium chloride, ethanol, glycerol, hydrochloric and acetic acid, sodium hydroxide, heat (46 degrees C), and cold (15 degrees C), as well as ethidium bromide and the disinfectant benzalkonium chloride) were determined using DNA microarrays and Fourier transform infrared (FT-IR) spectroscopy. In total, approximately 40% of all investigated genes (1682/4279 genes) significantly changed expression, compared with a nonstressed control. There were, however, only 3 genes (ygaW (unknown function), rmf (encoding a ribosomal modification factor), and ghrA (encoding a glyoxylate/hydroxypyruvate reductase)) that significantly changed expression under all conditions (not including benzalkonium chloride). The FT-IR analysis showed an increase in unsaturated fatty acids during ethanol and cold exposure, and a decrease during acid and heat exposure. Cold conditions induced changes in the carbohydrate composition of the cell, possibly related to the upregulation of outer membrane genes (glgAP and rcsA). Although some covariance was observed between the 2 data sets, principle component analysis and regression analyses revealed that the gene expression and the biomolecular responses are not well correlated in stressed populations of E. coli, underlining the importance of multiple strategies to begin to understand the effect on the whole cell.

  18. Evolutionary history underlies plant physiological responses to global change since the last glacial maximum.

    PubMed

    Becklin, Katie M; Medeiros, Juliana S; Sale, Kayla R; Ward, Joy K

    2014-06-01

    Assessing family- and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Here, we used stable carbon isotopes, leaf nitrogen content and stomatal measurements to assess changes in leaf-level physiology in a mixed conifer community that underwent significant changes in composition since the last glacial maximum (LGM) (21 kyr BP). Our results indicate that most plant taxa decreased stomatal conductance and/or maximum photosynthetic capacity in response to changing conditions since the LGM. However, plant families and species differed in the timing and magnitude of these physiological responses, and responses were more similar within families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.

  19. Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario

    PubMed Central

    Colman, Benjamin P.; Arnaout, Christina L.; Anciaux, Sarah; Gunsch, Claudia K.; Hochella, Michael F.; Kim, Bojeong; Lowry, Gregory V.; McGill, Bonnie M.; Reinsch, Brian C.; Richardson, Curtis J.; Unrine, Jason M.; Wright, Justin P.; Yin, Liyan; Bernhardt, Emily S.

    2013-01-01

    A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kg−1 soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles. PMID:23468930

  20. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress

    PubMed Central

    Wu, Jiawen; Guo, Jia; Hu, Yanhong; Gong, Haijun

    2015-01-01

    The alleviative effects of silicon (Si) on cadmium (Cd) toxicity were investigated in cucumber (Cucumis sativus L.) and tomato (Solanum lycopersicum L.) grown hydroponically. The growth of both plant species was inhibited by 100 μM Cd, but Si application counteracted the adverse effects on growth. Si application significantly decreased the Cd concentrations in shoots of both species and roots of cucumber. The root-to-shoot transport of Cd was depressed by added Si in tomato whereas it was increased by added Si in cucumber. The total content of organic acids was decreased in tomato leaves but increased in cucumber roots and leaves by Si application under Cd stress. Si application also increased the cell wall polysaccharide levels in the roots of both species under Cd toxicity. Si-mediated changes in levels of organic acids and cell wall polysaccharides might contribute to the differences in Cd transport in the two species. In addition, Si application also mitigated Cd-induced oxidative damage in both species. The results indicate that there were different mechanisms for Si-mediated decrease in shoot Cd accumulation: in tomato, Si supply decreased root-to-shoot Cd transport; whereas in cucumber, Si supply reduced the Cd uptake by roots. It is suggested that Si-mediated Cd tolerance is associated with different physiological responses in tomato and cucumber plants. PMID:26136764

  1. Adverse cardiometabolic response to aerobic exercise training: Should this be a concern?

    PubMed Central

    Leifer, Eric S.; Church, Timothy S.; Earnest, Conrad P.; Fleg, Jerome L.; Hakkinen, Keijo; Karavirta, Laura; Kraus, William E.; Mikus, Catherine; Resnick, Benjamin

    2016-01-01

    .36) for SBP. Conclusion Compared to control subjects, exercise subjects were not at an increased risk for meeting the AC thresholds for SBP, FI, TG, or HDL-C and significantly fewer exercise subjects met AC thresholds for FI, and HDL. Exercise subjects also had significantly more favorable mean changes in FI, TG, and HDL-C than control subjects. These findings do not support the concept that aerobic exercise training increases the risk of adverse changes in CV risk factors. and that, with respect to group responses PMID:26258860

  2. Physiological responses to rock climbing in young climbers.

    PubMed

    Morrison, Audry Birute; Schöffl, Volker Rainer

    2007-12-01

    Key questions regarding the training and physiological qualities required to produce an elite rock climber remain inadequately defined. Little research has been done on young climbers. The aim of this paper was to review literature on climbing alongside relevant literature characterising physiological adaptations in young athletes. Evidence-based recommendations were sought to inform the training of young climbers. Of 200 studies on climbing, 50 were selected as being appropriate to this review, and were interpreted alongside physiological studies highlighting specific common development growth variables in young climbers. Based on injury data, climbers younger than 16 years should not participate in international bouldering competitions and intensive finger strength training is not recommended. The majority of climbing foot injuries result from wearing too small or unnaturally shaped climbing shoes. Isometric and explosive strength improvements are strongly associated with the latter stages of sexual maturation and specific ontogenetic development, while improvement in motor abilities declines. Somatotyping that might identify common physical attributes in elite climbers of any age is incomplete. Accomplished adolescent climbers can now climb identical grades and compete against elite adult climbers aged up to and >40 years. High-intensity sports training requiring leanness in a youngster can result in altered and delayed pubertal and skeletal development, metabolic and neuroendocrine aberrations and trigger eating disorders. This should be sensitively and regularly monitored. Training should reflect efficacious exercises for a given sex and biological age.

  3. Physiological responses to environmental factors related to space flight. [hemodynamic and metabolic responses to weightlessness

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1973-01-01

    Physiological base line data are established, and physiological procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are developed.

  4. Developing a Gene Biomarker at the Tipping Point of Adaptive and Adverse Responses in Human Bronchial Epithelial Cells

    PubMed Central

    Currier, Jenna M.; Cheng, Wan-Yun; Menendez, Daniel; Conolly, Rory; Chorley, Brian N.

    2016-01-01

    Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Shifting from in vivo, low-throughput toxicity studies to high-throughput screening (HTS) paradigms and risk assessment based on in vitro and in silico testing requires utilizing toxicity pathway information to distinguish adverse outcomes from recoverable adaptive events. Little work has focused on oxidative stresses in human airway for the purposes of predicting adverse responses. We hypothesize that early gene expression-mediated molecular changes could be used to delineate adaptive and adverse responses to environmentally-based perturbations. Here, we examined cellular responses of the tracheobronchial airway to zinc (Zn) exposure, a model oxidant. Airway derived BEAS-2B cells exposed to 2–10 μM Zn2+ elicited concentration- and time-dependent cytotoxicity. Normal, adaptive, and cytotoxic Zn2+ exposure conditions were determined with traditional apical endpoints, and differences in global gene expression around the tipping point of the responses were used to delineate underlying molecular mechanisms. Bioinformatic analyses of differentially expressed genes indicate early enrichment of stress signaling pathways, including those mediated by the transcription factors p53 and NRF2. After 4 h, 154 genes were differentially expressed (p < 0.01) between the adaptive and cytotoxic Zn2+ concentrations. Nearly 40% of the biomarker genes were related to the p53 signaling pathway with 30 genes identified as likely direct targets using a database of p53 ChIP-seq studies. Despite similar p53 activation profiles, these data revealed widespread dampening of p53 and NRF2-related genes as early as 4 h after exposure at higher, unrecoverable Zn2+ exposures. Thus, in our model early increased activation of stress response pathways indicated a recoverable adaptive event. Overall, this study highlights the

  5. Differentiated Ratings of Perceived Exertion and Selected Physiological Responses during Prolonged Upper and Lower Body Exercise,

    DTIC Science & Technology

    1983-10-01

    AC and CY exercise for any of the diff RPE. Local RPE was generally higher than central RPE. Selected physiological responses accounted for more... physiological responses was much higher for arm crank than cycle exercise for W7 T-7 7’v* 7 7. 7 77 7 9 w2 all differentiated RPE contrasts (ABS and REL-AC...total accountable variance from these selected physiological responses was greater for arm crank (median R2 = 0.99) than cycle exercise (median R 2 = 0.75

  6. Automated system for integration and display of physiological response data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The system analysis approach was applied in a study of physiological systems in both 1-g and weightlessness, for short and long term experiments. A whole body, algorithm developed as the first step in the construction of a total body simulation system is described and an advanced biomedical computer system concept including interactive display/command consoles is discussed. The documentation of the design specifications, design and development studies, and user's instructions (which include program listings) for these delivered end-terms; the reports on the results of many research and feasibility studies; and many subcontract reports are cited in the bibliography.

  7. Physiological responses of plant leaves to atmospheric ammonia and ammonium

    NASA Astrophysics Data System (ADS)

    Pearson, J.; Soares, A.

    Misting of leaves of several plant species with 3 mM aqueous NH +4 at pH 5, or fumigation with 3000 μg m -3 gaseous NH 3 for 1 h, elicits similar biochemical and physiological changes in the species tested. The enzyme glutamine synthetase (GS) was shown to increase its activity in all species, while that of nitrate reductase (NR) was inhibited, at least in those species which possessed the ability to induce foliar NR. At the same time there were marked changes in organic anion concentrations, with malate and citrate in particular being reduced in concentration, following either NH +4 or NH 3 application to leaves. The changes in organic anions are also discussed in the light of pH regulation by the cell. A stimulation of photosynthesis was also evident when leaves were treated with either NH 3 or NH +4. It is argued that, because of the differences in solution chemistry of the two ammonia forms, the aqueous form applied at pH 5 and the gaseous form being an alkali in solution, these changes can only have occurred through the ability of the leaves to readily assimilate both forms of the ammonia. The biochemical changes might have potential as markers for the onset of physiological perturbation by atmospheric ammonia pollution, particularly changes in organic acid concentration; their use in an index of pollution stress is briefly discussed.

  8. Behavioral and physiological responses in felids to exhibit construction.

    PubMed

    Chosy, Julia; Wilson, Megan; Santymire, Rachel

    2014-01-01

    Despite the growing body of literature examining the welfare of zoo-housed animals, little standardized work has been published on the effect of construction and environmental disruption on the physiology and behavior of affected animals. When Lincoln Park Zoo (Chicago, IL), embarked on a renovation project for its Kovler Lion House, the opportunity was taken to perform a scientific study of behavioral and physiological markers in the resident felids to determine the effect of construction and environmental disruption. Fecal samples and behavioral observations were collected on four felid species (five individuals) before, during, and after the period of construction. As a group, the average z-score for fecal glucocorticoid metabolite concentration increased during construction relative to baseline. Levels remained elevated after construction, but trended toward baseline. All individuals demonstrated a significant decrease in the frequency of pacing and time spent visible during construction. Overall activity levels also showed a significant decrease relative to baseline measures. As zoological institutions continue to recognize the importance of habitat design, construction and renovation become inevitable. It is important to be aware of the potential consequences this can have on animals in the vicinity and to work toward minimizing negative effects. One recommendation is the availability of ample retreat and hiding space for felids during disruption to their environment.

  9. Physiologic responses of grizzly bears to different methods of capture.

    PubMed

    Cattet, Marc R; Christison, Katina; Caulkett, Nigel A; Stenhouse, Gordon B

    2003-07-01

    The physiologic effects of two methods of capture, chemical immobilization of free-ranging (FR) bears by remote injection from a helicopter and physical restraint (PR) by leg-hold snare prior to chemical immobilization, were compared in 46 grizzly bears (Ursus arctos) handled during 90 captures between 1999 and 2001. Induction dosages and times were greater for FR bears than PR bears, a finding consistent with depletion of, or decreased sensitivity to, catecholamines. Free-ranging bears also had higher rectal temperatures 15 min following immobilization and temperatures throughout handling that correlated positively with induction time. Physically restrained bears had higher white blood cell counts, with more neutrophils and fewer lymphocytes and eosinophils, than did FR bears. This white blood cell profile was consistent with a stress leukogram, possibly affected by elevated levels of serum cortisol. Serum concentrations of alanine aminotransferase, aspartate aminotransferase, and creatine kinase were higher in PR bears that suggested muscle injury. Serum concentrations of sodium and chloride also were higher in PR bears and attributed to reduced body water volume through water deprivation and increased insensible water loss. Overall, different methods of capture resulted in different patterns of physiologic disturbance. Reducing pursuit and drug induction times should help to minimize increase in body temperature and alteration of acid-base balance in bears immobilized by remote injection. Minimizing restraint time and ensuring snare-anchoring cables are short should help to minimize loss of body water and prevent serious muscle injury in bears captured by leg-hold snare.

  10. The effect of conspecific removal on behavioral and physiological responses of dairy cattle.

    PubMed

    Walker, Jessica K; Arney, David R; Waran, Natalie K; Handel, Ian G; Phillips, Clive J C

    2015-12-01

    Adverse social and welfare implications of mixing dairy cows or separating calves from their mothers have been documented previously. Here we investigated the behavioral and physiological responses of individuals remaining after conspecifics were removed. We conducted a series of 4 experiments incorporating a range of types of different dairy cattle groupings [experiment 1 (E1), 126 outdoor lactating dairy cows; experiment 2 (E2), 120 housed lactating dairy cows; experiment 3 (E3), 18 housed dairy calves; and experiment 4 (E4), 22 housed dairy bulls] from which a subset of individuals were permanently removed (E1, n=7; E2, n=5; E3, n=9; E4, n=18). Associations between individuals were established using near-neighbor scores (based upon identities and distances between animals recorded before removal) in E1, E2, and E3. Behavioral recordings were taken for 3 to 5 d, before and after removal on a sample of cattle in all 4 experiments (E1, n=20; E2, n=20; E3, n=9; E4, n=4). In 2 experiments with relatively large groups of dairy cows, E1 and E2, the responses of cows that did and did not associate with the removed cows were compared. An increase in time that both nonassociates and associates spent eating was observed after conspecific removal in E1. In E2, this increase was restricted to cows that had not associated with the removed cows. A reduction in ruminating in remaining cattle was observed in E3 and eating in E4. Immunoglobulin A concentrations increased after separation in both E3 and E4 cattle, but did not differ significantly between associates and nonassociates in E2. Blood and milk cortisol concentrations were not affected by conspecific removal. These findings suggest that some animals had affected feeding behavior and IgA concentrations after removal of conspecifics.

  11. Physiological responses of Daphnia pulex to acid stress

    PubMed Central

    Weber, Anna K; Pirow, Ralph

    2009-01-01

    Background Acidity exerts a determining influence on the composition and diversity of freshwater faunas. While the physiological implications of freshwater acidification have been intensively studied in teleost fish and crayfish, much less is known about the acid-stress physiology of ecologically important groups such as cladoceran zooplankton. This study analyzed the extracellular acid-base state and CO2 partial pressure (PCO2), circulation and ventilation, as well as the respiration rate of Daphnia pulex acclimated to acidic (pH 5.5 and 6.0) and circumneutral (pH 7.8) conditions. Results D. pulex had a remarkably high extracellular pH of 8.33 and extracellular PCO2 of 0.56 kPa under normal ambient conditions (pH 7.8 and normocapnia). The hemolymph had a high bicarbonate concentration of 20.9 mM and a total buffer value of 51.5 meq L-1 pH-1. Bicarbonate covered 93% of the total buffer value. Acidic conditions induced a slight acidosis (ΔpH = 0.16–0.23), a 30–65% bicarbonate loss, and elevated systemic activities (tachycardia, hyperventilation, hypermetabolism). pH 6.0 animals partly compensated the bicarbonate loss by increasing the non-bicarbonate buffer value from 2.0 to 5.1 meq L-1 pH-1. The extracellular PCO2 of pH 5.5 animals was significantly reduced to 0.33 kPa, and these animals showed the highest tolerance to a short-term exposure to severe acid stress. Conclusion Chronic exposure to acidic conditions had a pervasive impact on Daphnia's physiology including acid-base balance, extracellular PCO2, circulation and ventilation, and energy metabolism. Compensatory changes in extracellular non-bicarbonate buffering capacity and the improved tolerance to severe acid stress indicated the activation of defense mechanisms which may result from gene-expression mediated adjustments in hemolymph buffer proteins and in epithelial properties. Mechanistic analyses of the interdependence between extracellular acid-base balance and CO2 transport raised the question of

  12. Physiological responses of Chinese longsnout catfish to water temperature

    NASA Astrophysics Data System (ADS)

    Han, Dong; Xie, Shouqi; Zhu, Xiaoming; Yang, Yunxia

    2011-05-01

    We evaluated the effect of water temperature on the growth and physiology of the Chinese longsnout catfish ( Leiocassis longirostris Günther). The fish were reared at four temperatures (20, 25, 30, and 35°C) and sampled on days 7, 20, and 30. We measured plasma levels of insulin, free thyroxine (FT4), free 3,5,3'-triiodothyronine (FT3), lysozyme and leukocyte phagocytic activity. The optimum water temperature for growth was 27.7°C. The plasma levels of insulin and FT4 declined significantly ( P<0.05) on day 30 at temperatures above 20°C. Lysozyme activity was significantly ( P<0.05) lower at 25°C than at other temperatures. We conclude that final weight, insulin, FT4, and lysozyme were significantly affected by water temperature.

  13. Physiological responses to Tai Chi in stable patients with COPD.

    PubMed

    Qiu, Zhi-Hui; Guo, Hong-Xi; Lu, Gan; Zhang, Ning; He, Bai-Ting; Zhou, Lian; Luo, Y M; Polkey, M I

    2016-01-15

    We compared the physiological work, judged by oxygen uptake, esophageal pressure swing and diaphragm electromyography, elicited by Tai Chi compared with that elicited by constant rate treadmill walking at 60% of maximal load in eleven patients with COPD (Mean FEV1 61% predicted, FEV1/FVC 47%). Dynamic hyperinflation was assessed by inspiratory capacity and twitch quadriceps tension (TwQ) elicited by supramaximal magnetic stimulation of the femoral nerve was also measured before and after both exercises. The EMGdi and esophageal pressure at the end of exercise were similar for both treadmill exercise and Tai Chi (0.109±0.047 mV vs 0.118±0.061 mV for EMGdi and 22.3±7.1 cmH2O vs 21.9±8.1 cmH2O for esophageal pressure). Moreover the mean values of oxygen uptake during Tai Chi and treadmill exercise did not differ significantly: 11.3 ml/kg/min (51.1% of maximal oxygen uptake derived from incremental exercise) and 13.4 ml/kg/min (52.5%) respectively, p>0.05. Respiratory rate during Tai Chi was significantly lower than that during treadmill exercise. Both Tai Chi and treadmill exercise elicited a fall in IC at end exercise, indicating dynamic hyperinflation, but this was statistically significant only after treadmill exercise. TwQ decreased significantly after Tai Chi but not after treadmill. We conclude that Tai Chi constitutes a physiologically similar stimulus to treadmill exercise and may therefore be an acceptable modality for pulmonary rehabilitation which may be culturally more acceptable in some parts of the world.

  14. Personality traits modulate emotional and physiological responses to stress

    PubMed Central

    Childs, Emma; White, Tara L.; de Wit, Harriet

    2014-01-01

    An individual’s susceptibility to psychological and physical disorders associated with chronic stress exposure e.g., cardiovascular and infectious disease, may also be predicted by their reactivity to acute stress. One factor associated with both stress resilience and health outcomes is personality. An understanding of how personality influences responses to acute stress may shed light upon individual differences in susceptibility to chronic stress-linked disease. This study examined relationships between personality and acute responses to stress in 125 healthy adults, using hierarchical linear regression. We assessed personality traits using the Multidimensional Personality Questionnaire (MPQ-BF), and responses to acute stress (cortisol, heart rate, blood pressure, mood) using a standardised laboratory psychosocial stress task, the Trier Social Stress Test (TSST). Individuals with high Negative Emotionality exhibited greater emotional distress and lower blood pressure responses to the TSST. Individuals with high Agentic Positive Emotionality exhibited prolonged heart rate responses to stress, whereas those with high Communal Positive Emotionality exhibited smaller cortisol and blood pressure responses. Separate personality traits differentially predicted emotional, cardiovascular, and cortisol responses to a psychosocial stressor in healthy volunteers. Future research investigating the association of personality with chronic stress-related disease may provide further clues to the relationship between acute stress reactivity and susceptibility to disease. PMID:25036730

  15. Physiological responses in a Concealed Information Test are determined interactively by encoding procedure and questioning format.

    PubMed

    Ambach, Wolfgang; Dummel, Sebastian; Lüer, Theresa; Vaitl, Dieter

    2011-09-01

    Physiological responses in the Concealed Information Test (CIT) are known to depend on the depth of encoding critical items; CIT questions commonly refer to knowledge about critical items. It is unclear to what extent (1) different modes of item handling in a mock-crime, and (2) alternative questioning formats, e.g. asking about participants' particular actions with the critical items, influence the physiological responses. In the presented mock-crime study with fifty-three participants, two questioning formats, i.e. "Did you see …?" (viewing questioning) and "Did you steal …?" (stealing questioning), were compared between subjects. The mode of encoding, stealing vs. merely viewing the critical objects, was varied within subject. Skin conductance, electrocardiogram, respiration, and finger pulse were recorded. For both questioning formats and each physiological measure, physiological responses to stolen as well as merely viewed objects differed from those to irrelevant objects. Considering viewing questioning, responses to stolen and merely viewed objects did not differ, with the exception of greater phasic decreases of heart rate for stolen objects. Considering stealing questioning, responses to stolen objects exceeded those to merely viewed objects with each physiological measure. The statistically proven interaction between mode of encoding a particular object and questioning format sheds light on the factors influencing the physiological responses in a CIT. The level of subjective significance of a particular item might emerge interactively from the mode of item handling and the questioning format.

  16. Affective and physiological responses to stress in girls at elevated risk for depression

    PubMed Central

    WAUGH, CHRISTIAN E.; MUHTADIE, LUMA; THOMPSON, RENEE J.; JOORMANN, JUTTA; GOTLIB, IAN H.

    2015-01-01

    Children of depressed parents are significantly more likely to develop depression and other mental health disorders than are children of never-depressed parents. Investigations of the physiological mechanisms underlying this elevated risk have generally focused on basal functioning. It is important to note, however, that physiological reactivity or responses to stress are also critical determinants of mental and physical health. In the current study, we examined whether children of depressed parents exhibit altered physiological responses to stress. In two studies, never-depressed adolescent daughters of either recurrently depressed mothers (RISK) or never-depressed mothers (CTL) underwent social stressors while their physiological responses were measured (cortisol in Study 1, heart rate in Study 2). In both studies, affective responses to the stressors predicted physiological responses in RISK girls, but not in never-depressed girls. For RISK girls, decreased positive affect in response to stress predicted increased cortisol reactivity; in addition, decreased positive affect and increased negative affect were associated with poorer heart rate recovery and habituation, respectively. Future research is needed to examine explicitly whether this coherence between affect and physiology is a mechanism underlying the increased risk for psychopathology in children of depressed parents. PMID:22559138

  17. Fully optimized discrimination of physiological responses to auditory stimuli

    PubMed Central

    Kruglikov, Stepan Y; Chari, Sharmila; Rapp, Paul E; Weinstein, Steven L; Given, Barbara K; Schiff, Steven J

    2008-01-01

    The use of multivariate measurements to characterize brain activity (electrical, magnetic, optical) is widespread. The most common approaches to reduce the complexity of such observations include principal and independent component analyses (PCA and ICA), which are not well suited for discrimination tasks. We addressed two questions: first, how do the neurophysiological responses to elongated phonemes relate to tone and phoneme responses in normal children, and, second, how discriminable are these responses. We employed fully optimized linear discrimination analysis to maximally separate the multi-electrode responses to tones and phonemes, and classified the response to elongated phonemes. We find that discrimination between tones and phonemes is dependent upon responses from associative regions of the brain apparently distinct from the primary sensory cortices typically emphasized by PCA or ICA, and that the neuronal correlates corresponding to elongated phonemes are highly variable in normal children (about half respond with neural correlates of tones and half as phonemes). Our approach is made feasible by the increase in computational power of ordinary personal computers and has significant advantages for a wide range of neuronal imaging modalities. PMID:18430975

  18. Physiological identification and infralimbic responsiveness of rat intercalated amygdala neurons.

    PubMed

    Amir, Alon; Amano, Taiju; Pare, Denis

    2011-06-01

    Intercalated (ITC) amygdala neurons are thought to play a critical role in the extinction of conditioned fear. However, several factors hinder progress in studying ITC contributions to extinction. First, although extinction is usually studied in rats and mice, most ITC investigations were performed in guinea pigs or cats. Thus it is unclear whether their connectivity is similar across species. Second, we lack criteria to identify ITC cells on the basis of their discharge pattern. As a result, key predictions of ITC extinction models remain untested. Among these, ITC cells were predicted to be strongly excited by infralimbic inputs, explaining why infralimbic inhibition interferes with extinction. To study the connectivity of ITC cells, we labeled them with neurobiotin during patch recordings in slices of the rat amygdala. This revealed that medially located ITC cells project topographically to the central nucleus and to other ITC clusters located more ventrally. To study the infralimbic responsiveness of ITC cells, we performed juxtacellular recording and labeling of amygdala cells with neurobiotin in anesthetized rats. All ITC cells were orthodromically responsive to infralimbic stimuli, and their responses usually consisted of high-frequency (~350 Hz) trains of four to six spikes, a response pattern never seen in neighboring amygdala nuclei. Overall, our results suggest that the connectivity of ITC cells is conserved across species and that ITC cells are strongly responsive to infralimbic stimuli, as predicted by extinction models. The unique response pattern of ITC cells to infralimbic stimuli can now be used to identify them in fear conditioning experiments.

  19. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies.

    PubMed

    Ruiz-Lozano, Juan Manuel; Porcel, Rosa; Azcón, Charo; Aroca, Ricardo

    2012-06-01

    Excessive salt accumulation in soils is a major ecological and agronomical problem, in particular in arid and semi-arid areas. Excessive soil salinity affects the establishment, development, and growth of plants, resulting in important losses in productivity. Plants have evolved biochemical and molecular mechanisms that may act in a concerted manner and constitute the integrated physiological response to soil salinity. These include the synthesis and accumulation of compatible solutes to avoid cell dehydration and maintain root water uptake, the regulation of ion homeostasis to control ion uptake by roots, compartmentation and transport into shoots, the fine regulation of water uptake and distribution to plant tissues by the action of aquaporins, the reduction of oxidative damage through improved antioxidant capacity and the maintenance of photosynthesis at values adequate for plant growth. Arbuscular mycorrhizal (AM) symbiosis can help the host plants to cope with the detrimental effects of high soil salinity. There is evidence that AM symbiosis affects and regulates several of the above mentioned mechanisms, but the molecular bases of such effects are almost completely unknown. This review summarizes current knowledge about the effects of AM symbiosis on these physiological mechanisms, emphasizing new perspectives and challenges in physiological and molecular studies on salt-stress alleviation by AM symbiosis.

  20. Cooling cows efficiently with sprinklers: Physiological responses to water spray.

    PubMed

    Chen, Jennifer M; Schütz, Karin E; Tucker, Cassandra B

    2015-10-01

    Dairies in the United States commonly cool cattle with sprinklers mounted over the feed bunk that intermittently spray the cows' backs. These systems use potable water-an increasingly scarce resource--but there is little experimental evidence about how much is needed to cool cows or about droplet size, which is thought to affect hair coat penetration. Our objectives were to determine how sprinkler flow rate and droplet size affect physiological measures of heat load in a hot, dry climate, and to evaluate cooling effectiveness against water use. The treatments were an unsprayed control and 6 soaker nozzles that delivered four 3-min spray applications of 0.4, 1.3, or ≥ 4.5 L/min (with 2 droplet sizes within each flow rate) and resulting in 30 to 47% of spray directly wetting each cow. Data were collected from high-producing lactating Holsteins (n = 19) tested individually in ambient conditions (air temperature = 31.2 ± 3.8°C, mean ± standard deviation). Cows were restrained in headlocks for 1h and received 1 treatment/d for 3d each, with order of exposure balanced in a crossover design. When cows were not sprayed, physiological measures of heat load increased during the 1-h treatment. All measures responded rapidly to spray: skin temperature decreased during the first water application, and respiration rate and body temperature did so before the second. Droplet size had no effect on cooling, but flow rate affected several measures. At the end of 1h, 0.4 L/min resulted in lower respiration rate and skin temperature on directly sprayed body parts relative to the control but not baseline values, and body temperature increased to 0.2°C above baseline. When 1.3 or ≥ 4.5 L/min was applied, respiration rate was lower than the control and decreased relative to baseline, and body temperature stayed below baseline for at least 30 min after treatment ended. The treatment that best balanced cooling effectiveness against water usage was 1.3 L/min: although ≥ 4.5 L

  1. Assessing physiological tipping points in response to ocean acidification

    NASA Astrophysics Data System (ADS)

    Dupont, S. T.; Dorey, N.; Lançon, P.; Thorndyke, M. S.

    2011-12-01

    Impact of near-future ocean acidification on marine invertebrates was mostly assessed in single-species perturbation experiment. Moreover, most of these experiments are short-term, only consider one life-history stage and one or few parameters. They do not take into account important processes such as natural variability and acclimation and evolutionary processes. In many studies published so far, there is a clear lack between the observed effects and individual fitness, most of the deviation from the control being considered as potentially negative for the tested species. However, individuals are living in a fluctuating world and changes can also be interpreted as phenotypic plasticity and may not translate into negative impact on fitness. For example, a vent mussel can survive for decades in very acidic waters despite a significantly reduced calcification compare to control (Tunnicliffe et al. 2009). This is possible thanks to the absence of predatory crabs as a result of acidic conditions that may also inhibit carapace formation. This illustrates the importance to take into account ecological interactions when interpreting single-species experiments and to consider the relative fitness between interacting species. To understand the potential consequence of ocean acidification on any given ecosystem, it is then critical to consider the relative impact on fitness for every interactive species and taking into account the natural fluctuation in environment (e.g. pH, temperature, food concentration, abundance) and discriminate between plasticity with no direct impact on fitness and teratology with direct consequence on survival. In this presentation, we will introduce the concept of "physiological tipping point" in the context of ocean acidification. This will be illustrated by some work done on sea urchin development. Embryos and larvae of the sea urchin Strongylocentrotus droebachiensis were exposed to a range of pH from 8.1 to 6.5. When exposed to low pH, growth

  2. Physiological responses of two soybean cultivars to cadmium

    SciTech Connect

    Marchiol, L.; Leita, L.; Martin, M.; Peressotti, A.

    1996-05-01

    Anthropogenic activities are increasing cadmium (Cd) concentrations in soils. Cadmium can be absorbed by plant roots and modify the physiology of the plant. Carbon exchange rate (CER) and leaf of two soybean (Glycine max [L.]Merr.) cultivars (Illini insensitive and Richland sensitive) for 6 consecutive days; Cd(NO{sub 3}){sub 2} was added to the hydroponic solution to achieve a final concentration of 50 {mu}mol. At the end of the experiment, stomata length and width, mesophyll limitation to photosynthesis, root hydraulic conductance, relative water content (RWC), and Cd concentration in leaves, stems, and roots were measured on treated and control plants. Cadmium progressively reduced CER and g{sub s} to about 50% after 6 d of treatment. This was more evident in Richland than in Illini and was not linked with leaf RWC and mesophyll limitation to photosynthesis. After 6 d, the apparent root hydraulic water conductivity was 67% lower in the Cd-treated plants than in controls. The primary mechanism affected by Cd-induced stress in soybean is root water uptake, and this reduction is consistent with the decrease in stomatal opening and conductance, and therefore, in photosynthesis. 20 refs., 3 figs., 2 tabs.

  3. Physiological responses to kayaking with a swivel seat.

    PubMed

    Michael, J S; Smith, R; Rooney, K

    2010-08-01

    The present study compared the physiological characteristics of flat-water kayaking utilising two seat conditions, the traditional fixed seat and novel swivel seat on an air-braked kayak simulator. The testing protocol included a submaximal warm up and one maximal ergometer paddling test. Ten elite kayakers (age 25+/-6 years, body mass 84.9+/-5.8 kg) were randomised to perform the testing protocol twice, once on each seat. During the testing protocol, expired air, heart rate (HR) and power output (PO) were continuously measured and gross efficiency (GE (kayak)) was calculated. Lactate (La) was recorded at the conclusion of each test. Repeated measures ANOVA indicated that paddling with the swivel seat generated significantly greater mean PO over the two-minute race duration compared to the fixed seat (299.1+/-24.9W and 279.8+/-19.2W respectively; p<0.05). This equated to a 6.5% increase in PO. A similar (6.9%) but non-significant difference in efficiency was generated as there was no significant difference recorded in the metabolic load over the two-minute ergometer test. No significant differences were present in any other variable measured. This greater PO generated with a swivel seat may be a significant advantage during on-water competition if the results from present ergometer test transfer.

  4. Physiological responses and energy expenditure during competitive fencing.

    PubMed

    Milia, Raffaele; Roberto, Silvana; Pinna, Marco; Palazzolo, Girolamo; Sanna, Irene; Omeri, Massimo; Piredda, Simone; Migliaccio, Gianmario; Concu, Alberto; Crisafulli, Antonio

    2014-03-01

    Fencing is an Olympic sport in which athletes fight one against one using bladed weapons. Contests consist of three 3-min bouts, with rest intervals of 1 min between them. No studies investigating oxygen uptake and energetic demand during fencing competitions exist, thus energetic expenditure and demand in this sport remain speculative. The aim of this study was to understand the physiological capacities underlying fencing performance. Aerobic energy expenditure and the recruitment of lactic anaerobic metabolism were determined in 15 athletes (2 females and 13 males) during a simulation of fencing by using a portable gas analyzer (MedGraphics VO2000), which was able to provide data on oxygen uptake, carbon dioxide production and heart rate. Blood lactate was assessed by means of a portable lactate analyzer. Average group energetic expenditure during the simulation was (mean ± SD) 10.24 ± 0.65 kcal·min(-1), corresponding to 8.6 ± 0.54 METs. Oxygen uptakeand heart rate were always below the level of anaerobic threshold previously assessed during the preliminary incremental test, while blood lactate reached its maximum value of 6.9 ± 2.1 mmol·L(-1) during the final recovery minute between rounds. Present data suggest that physical demand in fencing is moderate for skilled fencers and that both aerobic energy metabolism and anaerobic lactic energy sources are moderately recruited. This should be considered by coaches when preparing training programs for athletes.

  5. Physiological responses of Kosteletzkya virginica to coastal wetland soil.

    PubMed

    Wang, Hongyan; Tang, Xiaoli; Wang, Honglei; Shao, Hongbo

    2015-01-01

    Effects of salinity on growth and physiological indices of Kosteletzkya virginica seedlings were studied. Plant height, fresh weight (FW), dry weight (DW), and net photosynthetic rate (Pn) increased at 100 mM NaCl and slightly declined at 200 mM, but higher salinity induced a significant reduction. Chlorophyll content, stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (E) were not affected under moderate salinities, while markedly decreased at severe salinities except for the increased Ci at 400 mM NaCl. Furthermore, no significant differences of Fv/Fm and ΦPSII were found at lower than 200 mM NaCl, whereas higher salinity caused the declines of Fv/Fm, ΦPSII, and qP similar to Pn, accompanied with higher NPQ. Besides, salt stress reduced the leaf RWC, but caused the accumulation of proline to alleviate osmotic pressure. The increased activities of antioxidant enzymes maintained the normal levels of MDA and relative membrane permeability. To sum up, Kosteletzkya virginica seedlings have good salt tolerance and this may be partly attributed to its osmotic regulation and antioxidant capacity which help to maintain water balance and normal ROS level to ensure the efficient photosynthesis. These results provided important implications for Kosteletzkya virginica acting as a promising multiuse species for reclaiming coastal soil.

  6. Physiological responses of Yellowstone bison to winter nutritional deprivation

    USGS Publications Warehouse

    DelGiudice, Glenn D.; Singer, Francis J.; Seal, Ulysses S.; Bowser, Gillian

    1994-01-01

    Because nutrition is critically related to other aspects of bison (Bison bison) ecology, and the winter ranges inhabited by bison in Yellowstone National Park (YNP) are ecologically diverse, it was important to determine if nutritional deprivation differences occurred among winter ranges. We used chemistry profiles of urine suspended in snow to compare nutritional deprivation of bison from January to April 1988 on 4 sampling areas of 3 winter ranges in YNP. Declining (P < 0.001) trends of urinary potassium: creatinine ratios in bison on all 4 sampling areas indicated progressive nutritional deprivation through late March. Concurrent increases (P ≤ 0.001) in mean urea nitrogen: creatinine ratios from late February through late march in 3 of 4 areas suggested that increased net catabolism was occurring. Diminished creatinine ratios of sodium and phosphorus reflected low dietary intake of these minerals throughout winter. Mean values and trends of urinary characteristics indicated nutritional deprivation varied among 3 winter ranges in YNP. Continued physiological monitoring of nutritional deprivation, along with detailed examination of other aspects of the bison's ecology, will provide greater insight into the role of ungulate nutrition in the dynamics of such a complex system and improve management.

  7. Physiological Responses of Kosteletzkya virginica to Coastal Wetland Soil

    PubMed Central

    Wang, Hongyan; Tang, Xiaoli; Wang, Honglei; Shao, Hongbo

    2015-01-01

    Effects of salinity on growth and physiological indices of Kosteletzkya virginica seedlings were studied. Plant height, fresh weight (FW), dry weight (DW), and net photosynthetic rate (Pn) increased at 100 mM NaCl and slightly declined at 200 mM, but higher salinity induced a significant reduction. Chlorophyll content, stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (E) were not affected under moderate salinities, while markedly decreased at severe salinities except for the increased Ci at 400 mM NaCl. Furthermore, no significant differences of Fv/Fm and ΦPSII were found at lower than 200 mM NaCl, whereas higher salinity caused the declines of Fv/Fm, ΦPSII, and qP similar to Pn, accompanied with higher NPQ. Besides, salt stress reduced the leaf RWC, but caused the accumulation of proline to alleviate osmotic pressure. The increased activities of antioxidant enzymes maintained the normal levels of MDA and relative membrane permeability. To sum up, Kosteletzkya virginica seedlings have good salt tolerance and this may be partly attributed to its osmotic regulation and antioxidant capacity which help to maintain water balance and normal ROS level to ensure the efficient photosynthesis. These results provided important implications for Kosteletzkya virginica acting as a promising multiuse species for reclaiming coastal soil. PMID:25853144

  8. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  9. Emotional Responses to Music: Experience, Expression, and Physiology

    ERIC Educational Resources Information Center

    Lundqvist, Lars-Olov; Carlsson, Fredrik; Hilmersson, Per; Juslin, Patrik N.

    2009-01-01

    A crucial issue in research on music and emotion is whether music evokes genuine emotional responses in listeners (the emotivist position) or whether listeners merely perceive emotions expressed by the music (the cognitivist position). To investigate this issue, we measured self-reported emotion, facial muscle activity, and autonomic activity in…

  10. Physiological Environment Induces Quick Response – Slow Exhaustion Reactions

    PubMed Central

    Hiroi, Noriko; Lu, James; Iba, Keisuke; Tabira, Akito; Yamashita, Shuji; Okada, Yasunori; Flamm, Christoph; Oka, Kotaro; Köhler, Gottfried; Funahashi, Akira

    2011-01-01

    In vivo environments are highly crowded and inhomogeneous, which may affect reaction processes in cells. In this study we examined the effects of intracellular crowding and an inhomogeneity on the behavior of in vivo reactions by calculating the spectral dimension (ds), which can be translated into the reaction rate function. We compared estimates of anomaly parameters obtained from fluorescence correlation spectroscopy (FCS) data with fractal dimensions derived from transmission electron microscopy (TEM) image analysis. FCS analysis indicated that the anomalous property was linked to physiological structure. Subsequent TEM analysis provided an in vivo illustration; soluble molecules likely percolate between intracellular clusters, which are constructed in a self-organizing manner. We estimated a cytoplasmic spectral dimension ds to be 1.39 ± 0.084. This result suggests that in vivo reactions initially run faster than the same reactions in a homogeneous space; this conclusion is consistent with the anomalous character indicated by FCS analysis. We further showed that these results were compatible with our Monte-Carlo simulation in which the anomalous behavior of mobile molecules correlates with the intracellular environment, leading to description as a percolation cluster, as demonstrated using TEM analysis. We confirmed by the simulation that the above-mentioned in vivo like properties are different from those of homogeneously concentrated environments. Additionally, simulation results indicated that crowding level of an environment might affect diffusion rate of reactant. Such knowledge of the spatial information enables us to construct realistic models for in vivo diffusion and reaction systems. PMID:21960972

  11. Physiological response of largemouth bass to angling stress

    USGS Publications Warehouse

    Gustaveson, A. Wayne; Wydoski, Richard S.; Wedemeyer, Gary A.

    1991-01-01

    The physiological effects of catch-and-release fishing on largemouth bass Micropterus salmoides from Lake Powell and Mantua Reservoir, Utah, were evaluated, and an estimate of the time needed for recovery from hooking stress was obtained. Fatigue in Lake Powell fish, as indicated by elevated blood lactate, was directly proportional to hooking time (1–5 min) and water temperature, but recovery from the hyperlacticemia was relatively rapid (about 24 h). Hyperglycemia, an indicator of stress hormone production, did not occur in largemouth bass hooked and played for 1–5 min in the coldest water (11–13°C), was moderate in fish hooked and played at l6–20°C, and was severe in fish played for 5 min at 28–30°C. Fish held for recovery in live cages suffered further hyperglycemia, presumably because of the stress of confinement. Ionoregulation, as indicated by relatively stable plasma chloride values, was not immediately affected in largemouth bass caught at water temperatures of 11–13°C or 28–30°C, but an unusual hyperchloremia developed in fish hooked and played at 16–20°C. During recovery, the expected progressive hypochloremia developed. Plasma osmolality was somewhat affected by hooking at all water temperatures tested, but recovery was almost complete within about 8 h. Mantua Reservoir fish were hooked and played only at water temperatures of 23–26°C. The hyperlacticemia and hyperglycemia that occurred were generally more severe than in the Lake Powell fish hooked and played at either 16–20°C or 28–30°C. However, effects on plasma chloride and osmolality were similar to those occurring in Lake Powell fish.

  12. Genetic Influences on Physiological and Subjective Responses to an Aerobic Exercise Session among Sedentary Adults

    PubMed Central

    Karoly, Hollis C.; Stevens, Courtney J.; Magnan, Renee E.; Harlaar, Nicole; Hutchison, Kent E.; Bryan, Angela D.

    2012-01-01

    Objective. To determine whether genetic variants suggested by the literature to be associated with physiology and fitness phenotypes predicted differential physiological and subjective responses to a bout of aerobic exercise among inactive but otherwise healthy adults. Method. Participants completed a 30-minute submaximal aerobic exercise session. Measures of physiological and subjective responding were taken before, during, and after exercise. 14 single nucleotide polymorphisms (SNPs) that have been previously associated with various exercise phenotypes were tested for associations with physiological and subjective response to exercise phenotypes. Results. We found that two SNPs in the FTO gene (rs8044769 and rs3751812) were related to positive affect change during exercise. Two SNPs in the CREB1 gene (rs2253206 and 2360969) were related to change in temperature during exercise and with maximal oxygen capacity (VO2 max). The SLIT2 SNP rs1379659 and the FAM5C SNP rs1935881 were associated with norepinephrine change during exercise. Finally, the OPRM1 SNP rs1799971 was related to changes in norepinephrine, lactate, and rate of perceived exertion (RPE) during exercise. Conclusion. Genetic factors influence both physiological and subjective responses to exercise. A better understanding of genetic factors underlying physiological and subjective responses to aerobic exercise has implications for development and potential tailoring of exercise interventions. PMID:22899923

  13. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology.

    PubMed

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.

  14. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology

    PubMed Central

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology. PMID:27227066

  15. Physiological response of BSC phototrophic community to EPS removal

    NASA Astrophysics Data System (ADS)

    Adessi, Alessandra; Cruz de Carvalho, Ricardo; Silvestre, Susana; Rossi, Federico; Mugnai, Gianmarco; Marques da Silva, Jorge; Branquinho, Cristina; De Philippis, Roberto

    2015-04-01

    Biological Soil Crusts (BSCs) are associations between soil particles and varying proportions of cyanobacteria, heterotrophic bacteria, algae, fungi, lichens and mosses. BSCs play a major role in soil stabilization, and in drylands have been well acknowledged for mitigating desertification effects. Amongst the wide diversity of organisms that compose BSCs, cyanobacteria are the first primary producers: they colonize nutrient-limited soils, modifying the micro-environment through the excretion of large amounts of extracellular polymeric substances (EPSs). EPSs represent a huge carbon and nitrogen source for other inhabitants of the crust, are three-dimensionally spread through the first millimeters of the soil, and have a recognized role in influencing the hydrological behavior of the crust. The aim of this study was to investigate the possible role that EPSs play in the physiology of the phototrophic community residing on a light crust (without mosses or lichens, thus mainly inhabited by cyanobacteria and algae). In particular it was investigated whether the three-dimensional matrix in which EPSs are organized allowed light distribution and diffusion inside the crust, thus influencing photosynthesis. Non-invasive techniques were used to extract the polymeric matrix and to analyze photosynthetic performances in native and extracted BSC samples. Preliminary results suggested that the mild extraction protocol allowed to remove a portion of the matrix, and that this treatment revealed highly significant differences in the optical properties of the crusts comparing native and extracted samples. The extraction did not affect cell viability, as samples after the extraction were still photosynthetically active. However, chlorophyll variable fluorescence was significantly lower in the extracted samples than in native ones, and susceptibility to photoinhibition was significantly modified. Evaluating the role of the EPSs in the community is essential to further understand the

  16. Tail docking in pigs: acute physiological and behavioural responses.

    PubMed

    Sutherland, M A; Bryer, P J; Krebs, N; McGlone, J J

    2008-02-01

    Tail docking of piglets is a routine procedure on farms to control tail-biting behaviour; however, docking can cause an acute stress response. The objectives of this research were to determine the stress responses to tail docking in piglets and to compare two methods of tail docking; cautery iron (CAUT) and the more commonly used blunt trauma cutters (BT). At approximately 6 days of age, piglets were tail docked using CAUT (n = 20), BT (n = 20) or sham tail docked with their tails remaining intact (CON; n = 40). Blood samples were taken prior to tail docking and at 30, 60 and 90 min after tail docking to evaluate the effect of tail docking on white blood cell (WBC) measures and cortisol concentrations. The above experiment was repeated to observe behaviour without the periodic blood sampling, so as not to confound the effects of blood sampling on piglet behaviour. Piglet behaviour was recorded in the farrowing crate using 1 min scan-samples via live observations for 60 min prior to and 90 min after tail docking. Total WBC counts were reduced (P > 0.05) among BT and CAUT compared with CON piglets 30 min after tail docking. Cortisol concentrations were higher (P < 0.01) among BT compared with CON and CAUT piglets 60 min after tail docking. Cautery and BT-docked piglets spent more (P < 0.05) time posterior scooting compared with CON piglets between 0 and 15 min, and 31 and 45 min after tail docking. Piglets tail docked using CAUT and BT tended to spend more (P < 0.07) time sitting than CON piglets between 0 and 15 min post tail docking. Elevated blood cortisol can be reduced by the use of the CAUT rather than the BT method of tail docking. Although the tail docking-induced rise in cortisol was prevented by using CAUT, the behavioural response to BT and CAUT docking methods was similar.

  17. Physiological responses to feeding, fasting and estivation for anurans.

    PubMed

    Secor, Stephen M

    2005-07-01

    Anuran estivation is characterized by long episodes of aphagia. To investigate whether estivating anurans downregulate intestinal performance as an adaptive mechanism to reduce energy expenditure, I compared the metabolic and intestinal responses to feeding, fasting and estivation among non-estivating and estivating species of the anuran families Bufonidae, Leptodactylidae and Ranidae. Standard metabolic rates of the estivating Bufo alvarius, Ceratophrys ornata and Pyxicephalus adspersus were significantly less than those of the non-estivating Bufo marinus, Leptodactylus pentadactylus and Rana catesbeiana. Whereas the digestion of rodent meals equaling 15% of anuran body mass generated significant metabolic responses for all species, specific dynamic action was significantly greater for the estivating species. For estivating species, feeding triggered more than a doubling of small intestinal mass and significant upregulation of intestinal nutrient transport rates, resulting in six- to tenfold increases in total intestinal nutrient uptake capacity. The postprandial intestinal responses of the non-estivating species were much more modest, averaging a 50% increase in small intestinal mass and 69% increase in uptake capacities. Following 1 month of laboratory-induced estivation, C. ornata and P. adspersus had further depressed metabolic rates by 20%, intestinal masses by 44%, and total intestinal uptake capacities by 60%. In a fashion similar to infrequently feeding, sit-and-wait foraging snakes, estivating anurans possess the capacity to severely downregulate intestinal performance with fasting and estivation, and subsequently upregulate the gut with feeding. The depression in gut performance during estivation aids in reducing energy expenditure, thereby increasing the duration that the animal can remain dormant while relying solely upon stored energy.

  18. Cardiovascular responses to glucagon - Physiologic measurement by external recordings.

    NASA Technical Reports Server (NTRS)

    Byrne, M. J.; Pigott, V.; Spodick, D. H.

    1972-01-01

    Assessment by noninvasive polygraphic techniques of the cardiovascular responses of normal subjects to intravenous injections of glucagon and glucagon diluent. A blinding procedure which eliminated observer bias was used during the reading of tracings. Analysis of group results showed that glucagon provoked uniformly significant changes, including increase in heart rate, blood pressure, pressure-rate product, and ejection time index, and decrease in prejection period, mechanical and electromechanical systole, left ventricular ejection time, and the ratio PEP/LVET. The principal results correlated well with those of previous studies of the hemodynamic effects of glucagon.

  19. Aviator Psychological and Physiological Responses to Replacement Air Group Training.

    DTIC Science & Technology

    1979-01-01

    Pro.rm The [RAG syllabus for F-4 jet aircraft at the Niar ar aval Air StAtion, San Diego, California, is divided into several phases. A co-,trol day...sunming the various responses to the adjectives in the scale. Perceived Stress Measure Following completion of the RAG syllabus , each trainee... the Naval Medical Research and Development Comn;and, Department of the Navy, under research work unit ZF5!..524.002,5OO. The views presented in this

  20. Excluded and behaving unethically: social exclusion, physiological responses, and unethical behavior.

    PubMed

    Kouchaki, Maryam; Wareham, Justin

    2015-03-01

    Across 2 studies, we investigated the ethical consequences of physiological responses to social exclusion. In Study 1, participants who were socially excluded were more likely to engage in unethical behavior to make money and the level of physiological arousal experienced during exclusion--measured using galvanic skin response--mediated the effects of exclusion on unethical behavior. Likewise, in Study 2, results from a sample of supervisor-subordinate dyads revealed a positive relationship between experience of workplace ostracism and unethical behaviors as rated by the immediate supervisors. This relationship was mediated by employees' reports of experienced physiological arousal. Together, the results of these studies demonstrate that physiological arousal accompanies social exclusion and provides an explanatory mechanism for the increased unethical behavior in both samples. Theoretical implications of these findings for research on ethical behavior and social exclusion in the workplace are discussed.

  1. Student Response (Clicker) Systems: Preferences of Biomedical Physiology Students in Asian Classes

    ERIC Educational Resources Information Center

    Hwang, Isabel; Wong, Kevin; Lam, Shun Leung; Lam, Paul

    2015-01-01

    Student response systems (commonly called "clickers") are valuable tools for engaging students in classroom interactions. In this study, we investigated the use of two types of response systems (a traditional clicker and a mobile device) by students in human physiology courses. Our results showed high student satisfaction with the use of…

  2. Physiological-Cognitive-Emotional Responses to Defense-Arousing Communication: Overview and Sex Differences.

    ERIC Educational Resources Information Center

    Gordon, Ronald D.

    A 328-item checklist, suitable for the self-reporting of responses to any stimulus event, was administered to 107 upper division college students in an attempt to investigate the physiological-cognitive-emotional responses to defense arousing communication and to discover a greater range of the key features of the phenomena of…

  3. "A Frog in My Kneecap": Children's Perceived Physiological Responses to Stresses.

    ERIC Educational Resources Information Center

    Shields, Stephanie A.

    This paper describes a study designed to provide information regarding children's perceptions of their own physiological responses associated with feelings of apprehension. A second goal was to compare children's self reports with their reports on parent emotional responses and also with parents' reports on their own stress-related physiological…

  4. Study of physiological and behavioral response to transitions between rotating and nonrotating environments

    NASA Technical Reports Server (NTRS)

    Brady, J. F.

    1972-01-01

    Future manned space missions may require transition between artificial gravity and weightlessness environments. The frequency and rate of such transition will influence the psychophysiological responses of man. Abrupt transfers are examined between such rotating and nonrotating environments to determine the physiological and behavioral responses of man. Five subjects were tested using rates of rotation up to 5 rpm.

  5. Physiological Response of Plants to Temporary Changes in Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Pandolfi, Camilla; Mugnai, Sergio; Masi, Elisa; Azzarello, Elisa; Voigt, Boris; Baluska, Frantisek; Volkmann, Dieter; Mancuso, Stefano

    Gravity is the main factor that influences the direction of growth of plant organs, and has also a direct effect on the plant metabolism. When an organ, mainly roots, is turned by between 0 (vertical) and 90 (horizontal), the change of orientation is perceived by its organs producing the so-called gravitropic reaction, which involves a strong metabolic response. In order to study these reaction in real microgravity conditions, some experiments have been set up during six ESA parabolic flight campaign. Oxygen concentration in the solution, in which roots of Zea mays were placed, have been constantly monitored during normal, hyper-and microgravity conditions. An evident burst in oxygen fluxes started just 2.0 0.5 s after the imposition of microgravity conditions. No significant changes were noticed neither in normal nor in hyper-gravity conditions. These measurements were done using oxymeters, that revealed the onset of long lasting oxygen bursts appearing only during microgravity. Although the chemical nature of these oxygen bursts is still unknown, they may implicate a strong generation of reactive oxygen species as they exactly match the microgravity situation. Thus, our data strongly sug-gest that the sensing mechanism is not related to a general mechano-stress, which was imposed also during hypergravity, but is very specific of the microgravity situation. Moreover, it is well-known that stress rapidly induces reactive oxygen bursts which are associated with oxygen influx and reactive oxygen efflux from stressed plant tissues. Accordingly, our data indicate that microgravity represents a stress situation for plants, especially for root apices, and these bursts, probably ROS, are initiating and integrating adaptive responses of plant roots which resemble other unrelated stress situations. To validate this hypothesis we added to our ex-perimental set-up two very sensitive selective microelectrodes for H2 O2 and NO, and, even if the parabolic flights are not

  6. Risk of Crew Adverse Health Event Due to Altered Immune Response

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Kunz, Hawley; Sams, Clarence F.

    2015-01-01

    Determining the effect of space travel on the human immune system has proven to be extremely challenging. Limited opportunities for in-flight studies, varying mission durations, technical and logistical obstacles, small subject numbers, and a broad range of potential assays have contributed to this problem. Additionally, the inherent complexity of the immune system, with its vast array of cell populations, sub-populations, diverse regulatory molecules, and broad interactions with other physiological systems, makes determining precise variables to measure very difficult. There is also the challenge of determining the clinical significance of any observed immune alterations. Will such a change lead to disease, or is it a transient subclinical observation related to short-term stress? The effect of this problem may be observed by scanning publications associated with immunity and spaceflight, which began to appear during the 1970s. Although individually they are each valid studies, the comprehensive literature to date suffers from widely varying sampling methods and assay techniques, low subject counts, and sometimes a disparate focus on narrow aspects of immunity. The most clinically relevant data are derived from in-flight human studies, which have demonstrated altered cell-mediated immunity and reactivation of latent herpes viruses. Much more data are available from post-flight testing of humans, with clear evidence of altered cytokine production patterns, altered leukocyte distribution, continued latent viral reactivation, and evidence of dramatically altered virus-specific immunity. It is unknown if post-flight assessments relate to the in-flight condition or are a response to landing stress and readaptation. In-flight culture of cells has clearly demonstrated that immune cells are gravity-sensitive and display altered functional characteristics. It is unknown if these data are related to in vivo immune cell function or are an artifact of microgravity culture

  7. Molecular Structure of Physiologically-Responsive Hydrogels Controls Diffusive Behavior

    PubMed Central

    Carr, Daniel A.; Peppas, Nicholas A.

    2011-01-01

    Summary Polymeric networks and the ensuing hydrogels of methacrylic acid and N-vinyl pyrrolidone were successfully synthesized using a UV-initiated free radical polymerization and characterized to assess their applicability as carriers for directed drug delivery. FT-IR spectroscopy revealed shifts in peak absorbances that indicated the presence of hydrogen bonding complexes between functional groups, while SEM imaging showed that the different comonomers affect the surface morphology of the microparticles. Dynamic pH swelling studies demonstrated the pH responsiveness of the carriers in gastric and intestinal conditions and revealed that systems containing higher concentrations of methacrylic acid experienced the highest degree of hydrogen bonding complexation in gastric conditions. The presence of NVP in the systems enhanced swelling. Equilibrium swelling studies revealed that the mesh size was sufficiently large to allow drug diffusion across the networks. PMID:19016502

  8. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

    PubMed Central

    Scalco, Renata S; Snoeck, Marc; Quinlivan, Ros; Treves, Susan; Laforét, Pascal; Jungbluth, Heinz; Voermans, Nicol C

    2016-01-01

    Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild cases may remain unnoticed or undiagnosed. Exertional rhabdomyolysis is well described among athletes and military personnel, but may occur in anybody exposed to unaccustomed exercise. In contrast, exertional rhabdomyolysis may be the first manifestation of a genetic muscle disease that lowers the exercise threshold for developing muscle breakdown. Repeated episodes of exertional rhabdomyolysis should raise the suspicion of such an underlying disorder, in particular in individuals in whom the severity of the rhabdomyolysis episodes exceeds the expected response to the exercise performed. The present review aims to provide a practical guideline for the acute management and postepisode counselling of patients with exertional rhabdomyolysis, with a particular emphasis on when to suspect an underlying genetic disorder. The pathophysiology and its clinical features are reviewed, emphasising four main stepwise approaches: (1) the clinical significance of an acute episode, (2) risks of renal impairment, (3) clinical indicators of an underlying genetic disorders and (4) when and how to recommence sport activity following an acute episode of rhabdomyolysis. Genetic backgrounds that appear to be associated with both enhanced athletic performance and increased rhabdomyolysis risk are briefly reviewed. PMID:27900193

  9. Physiological Responses to Exergaming After Spinal Cord Injury

    PubMed Central

    Burns, Patricia; Kressler, Jochen; Nash, Mark S.

    2012-01-01

    Purpose: To investigate whether exergaming satisfies guideline-based intensity standards for exercise conditioning (40%/50% oxygen uptake reserve [VO2R] or heart rate reserve (HRR), or 64%/70% of peak heart rate [HRpeak]) in persons with paraplegia. Methods: Nine men and women (18-65 years old) with chronic paraplegia (T1-L1, AIS A-C) underwent intensity-graded arm cycle exercise (AE) to evaluate VO2peak and HRpeak. On 2 randomized nonconsecutive days, participants underwent graded exercise using a custom arm cycle ergometer that controls the video display of a Nintendo Gamecube (GameCycle; Three Rivers Holdings LLC, Mesa, AZ) or 15 minutes of incrementally wrist-weighted tennis gameplay against a televised opponent (XaviX Tennis System; SSD Co Ltd, Kusatsu, Japan). Results: GameCycle exergaming (GCE) resistance settings ≥0.88 Nm evoked on average ≥50% VO2R. During XaviX Tennis System exergaming (XTSE) with wrist weights ≥2 lbs, average VO2 reached a plateau of ~40% VO2R. Measurements of HR were highly variable and reached average values ≥50% HRR during GCE at resistance settings ≥0.88 Nm. During XTSE, average HR did not reach threshold levels based on HRR for any wrist weight (20%-35% HRR). Conclusions: On average, intensity responses to GCE at resistance setting ≥0.88 Nm were sufficient to elicit exercise intensities needed to promote cardiorespiratory fitness in individuals with SCI. The ability of XTSE to elicit cardiorespiratory fitness benefits is most likely limited to individuals with very low fitness levels and may become subminimal with time if used as a conditioning stimulus. PMID:23459619

  10. Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1

    PubMed Central

    2010-01-01

    Background Using a functional genomics approach we addressed the impact of folate overproduction on metabolite formation and gene expression in Lactobacillus plantarum WCFS1. We focused specifically on the mechanism that reduces growth rates in folate-overproducing cells. Results Metabolite formation and gene expression were determined in a folate-overproducing- and wild-type strain. Differential metabolomics analysis of intracellular metabolite pools indicated that the pool sizes of 18 metabolites differed significantly between these strains. The gene expression profile was determined for both strains in pH-regulated chemostat culture and batch culture. Apart from the expected overexpression of the 6 genes of the folate gene cluster, no other genes were found to be differentially expressed both in continuous and batch cultures. The discrepancy between the low transcriptome and metabolome response and the 25% growth rate reduction of the folate overproducing strain was further investigated. Folate production per se could be ruled out as a contributing factor, since in the absence of folate production the growth rate of the overproducer was also reduced by 25%. The higher metabolic costs for DNA and RNA biosynthesis in the folate overproducing strain were also ruled out. However, it was demonstrated that folate-specific mRNAs and proteins constitute 8% and 4% of the total mRNA and protein pool, respectively. Conclusion Folate overproduction leads to very little change in metabolite levels or overall transcript profile, while at the same time the growth rate is reduced drastically. This shows that Lactobacillus plantarum WCFS1 is unable to respond to this growth rate reduction, most likely because the growth-related transcripts and proteins are diluted by the enormous amount of gratuitous folate-related transcripts and proteins. PMID:21167023

  11. Growth, physiological and biochemical response of ponderosa pine pinus ponderosa' to ozone. Final report

    SciTech Connect

    Temple, P.J.; Bytnerowicz, A.

    1993-11-01

    In 1989 and 1990, the effects of multi-year ozone exposures on growth, foliar injury and physiological responses in ponderosa pine were examined. Two-year old seedlings were exposed to four ozone treatments in open-top chambers: clean air (subambient levels of oxidants and particles); ambient ozone; twice-ambient ozone; or ambient air. The study was performed at Shirley Meadow in the southern Sierra Nevada. In both years, ambient ozone levels were representative of other forests in the region. While ozone is the most phytotoxic air pollutant, seedlings also experienced elevated concentrations of nitric acid and ammonia. In 1990, ambient ozone significantly increased injury to previous year needles. Premature senescence and alterations in physiological responses were also noted. Exposure to twice-ambient ozone reduced seedling biomass, increased injury and caused decreases in a variety of physiological responses.

  12. Physiological and biochemical response to high temperature stress in Okra (Abelmoschus esculentus L. Moench)

    NASA Astrophysics Data System (ADS)

    Hayamanesh, Shahnoosh; Keitel, Claudia; Ahmad, Nabil; Trethowan, Richard

    2016-04-01

    High temperature has been shown to lower the growth and yield of Okra, an important summer vegetable crop grown in Asia, Africa, the Middle East and Australia. We aimed to characterise the physiological and biochemical response of Okra to heat stress. 150 genotypes from Pakistan and the AVRDC (The World Vegetable Centre) were screened for their physiological response (fluorescence, electrolyte leakage and yield) to heat in a greenhouse. Four genotypes (including heat tolerant and sensitive) were selected and subsequently grown in control and hot greenhouses. Daytime temperatures were on average 10°C warmer in the hot greenhouse, whereas nighttime temperatures were similar between the two temperature treatments. During a 12 week period, the physiological (assimilation rate, transpiration rate, stomatal conductance, fluorescence, electrolyte leakage, water potential) and biochemical (carbohydrates, sugar alcohols, C content) response of the four genotypes to heat stress was assessed. The effect of heat stress on the C allocation patterns and yield in Okra will be discussed.

  13. Physiological responses to swimming while wearing a wet suit.

    PubMed

    Trappe, T A; Pease, D L; Trappe, S W; Troup, J P; Burke, E R

    1996-02-01

    The purpose of this study was to examine the influence of three different wet suits on the oxygen uptake (VO(2)), minute ventilation (VE). and heart rate responses to front crawl swimming. Five male subjects swam at four velocities (0.90, 1.05, 1.18 +/- 0.01, 1.31 +/- 0.02 m.sec(-1)) in each of four swimming suit conditions in a swimming flume. Conditions were completed in random order using a conventional swimming suit (SS), a wet suit that covered the full body (FULL), a wet suit that left the arms exposed (LONG), and a wet suit that left the arms and lower legs exposed (SHORT). Water temperature was 26.5 +/- 1.0 degrees C for all trials. VO(2) and V(E) were decreased (p < 0.05) while swimming in the three wet suits as compared to the SS at all four velocities. VO(2) and V(E) were also lower (p < 0.05) in the FULL as compared to the SHORT at all four velocities; however, there were no differences between the SHORT and LONG or LONG and FULL at any of the velocities. Decreases in VO(2) from SS averaged 16.2 +/- 1.9 (SHORT), 22.8 +/- 2.4 (LONG), and 33.6 +/- 2.9% (FULL) over all four velocities. Similarly, reductions in V(E) from SS averaged 14.6+/- 1.5, 19.6 +/- 1.6, 24.2 +/- 1.5%, in the SHORT, LONG, and FULL, respectively. Heart rate and rating of perceived exertion were higher (p < 0.05) in the SS as compared to the three wet suits at 1.31 m.sec(-1) only. In conclusion, oxygen uptake and minute ventilation during swimming at a given velocity were decreased when wearing a wet suit as compared to a conventional swimming suit. Further, these decreases were related to the amount of wet suit covering the body.

  14. Summer and fall ants have different physiological responses to food macronutrient content.

    PubMed

    Cook, Steven C; Eubanks, Micky D; Gold, Roger E; Behmer, Spencer T

    2016-04-01

    Seasonally, long-lived animals exhibit changes in behavior and physiology in response to shifts in environmental conditions, including food abundance and nutritional quality. Ants are long-lived arthropods that, at the colony level, experience such seasonal shifts in their food resources. Previously we reported summer- and fall-collected ants practiced distinct food collection behavior and nutrient intake regulation strategies in response to variable food protein and carbohydrate content, despite being reared in the lab under identical environmental conditions and dietary regimes. Seasonally distinct responses were observed for both no-choice and choice dietary experiments. Using data from these same experiments, our objective here is to examine colony and individual-level physiological traits, colony mortality and growth, food processing, and worker lipid mass, and how these traits change in response to variable food protein-carbohydrate content. For both experiments we found that seasonality per se exerted strong effects on colony and individual level traits. Colonies collected in the summer maintained total worker mass despite high mortality. In contrast, colonies collected in the fall lived longer, and accumulated lipids, including when reared on protein-biased diets. Food macronutrient content had mainly transient effects on physiological responses. Extremes in food carbohydrate content however, elicited a compensatory response in summer worker ants, which processed more protein-biased foods and contained elevated lipid levels. Our study, combined with our previously published work, strongly suggests that underlying physiological phenotypes driving behaviors of summer and fall ants are likely fixed seasonally, and change circannually.

  15. Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit.

    PubMed

    Lauxmann, Martin A; Borsani, Julia; Osorio, Sonia; Lombardo, Verónica A; Budde, Claudio O; Bustamante, Claudia A; Monti, Laura L; Andreo, Carlos S; Fernie, Alisdair R; Drincovich, María F; Lara, María V

    2014-03-01

    Peaches are highly perishable and deteriorate quickly at ambient temperature. Cold storage is commonly used to prevent fruit decay; however, it affects fruit quality causing physiological disorders collectively termed 'chilling injury' (CI). To prevent or ameliorate CI, heat treatment is often applied prior to cold storage. In the present work, metabolic profiling was performed to determine the metabolic dynamics associated with the induction of acquired CI tolerance in response to heat shock. 'Dixiland' peach fruits exposed to 39 °C, cold stored, or after a combined treatment of heat and cold, were compared with fruits ripening at 20 °C. Dramatic changes in the levels of compatible solutes such as galactinol and raffinose were observed, while amino acid precursors of the phenylpropanoid pathway were also modified due to the stress treatments, as was the polyamine putrescine. The observed responses towards temperature stress in peaches are composed of both common and specific response mechanisms to heat and cold, but also of more general adaptive responses that confer strategic advantages in adverse conditions such as biotic stresses. The identification of such key metabolites, which prime the fruit to cope with different stress situations, will likely greatly accelerate the design and the improvement of plant breeding programs.

  16. What can an ecophysiological approach tell us about the physiological responses of marine invertebrates to hypoxia?

    PubMed

    Spicer, John I

    2014-01-01

    Hypoxia (low O2) is a common and natural feature of many marine environments. However, human-induced hypoxia has been on the rise over the past half century and is now recognised as a major problem in the world's seas and oceans. Whilst we have information on how marine invertebrates respond physiologically to hypoxia in the laboratory, we still lack understanding of how they respond to such stress in the wild (now and in the future). Consequently, here the question 'what can an ecophysiological approach tell us about physiological responses of marine invertebrates to hypoxia' is addressed. How marine invertebrates work in the wild when challenged with hypoxia is explored using four case studies centred on different hypoxic environments. The recent integration of the various -omics into ecophysiology is discussed, and a number of advantages of, and challenges to, successful integration are suggested. The case studies and -omic/physiology integration data are used to inform the concluding part of the review, where it is suggested that physiological responses to hypoxia in the wild are not always the same as those predicted from laboratory experiments. This is due to behaviour in the wild modifying responses, and therefore more than one type of 'experimental' approach is essential to reliably determine the actual response. It is also suggested that assuming it is known what a measured response is 'for' can be misleading and that taking parodies of ecophysiology seriously may impede research progress. This review finishes with the suggestion that an -omics approach is, and is becoming, a powerful method of understanding the response of marine invertebrates to environmental hypoxia and may be an ideal way of studying hypoxic responses in the wild. Despite centring on physiological responses to hypoxia, the review hopefully serves as a contribution to the discussion of what (animal) ecophysiology looks like (or should look like) in the 21st century.

  17. Adverse reactions to sunscreen agents: epidemiology, responsible irritants and allergens, clinical characteristics, and management.

    PubMed

    Heurung, Ashley R; Raju, Srihari I; Warshaw, Erin M

    2014-01-01

    Sunscreen is a key component in the preventive measures recommended by dermatologists and public health campaigns aimed at reducing sunburn, early skin aging, and skin cancer. To maximize compliance, adverse reactions to sunscreens should be minimized. Although inactive ingredients cause many of these reactions, it is important for dermatologists to be aware of reactions to active ultraviolet filters. There are approximately 120 chemicals that can function as ultraviolet (UV) filters. This review focuses on the 36 most common filters in commercial and historical use. Of these, 16 are approved for use by the US Food and Drug Administration. The benzophenones and dibenzoylmethanes are the most commonly implicated UV filters causing allergic and photoallergic contact dermatitis (PACD) reactions; benzophenone-3 is the leading allergen and photoallergen within this class. When clinically indicated, patch and photopatch testing should be performed to common UV filters.

  18. Adverse events in medical management--vigabatrin as a paradigm of forensic responsibility with novel therapy.

    PubMed

    Beran, R G

    2001-01-01

    The ethics of medical management are not always straightforward. There are many contributing factors: the condition treated; its effects on the patient; the required treatment; the effects of that treatment; and a cost/benefit ratio. Treatment of epilepsy with vigabatrin (VGB) exemplifies these problems. VGB has recently been reported to cause constricted visual fields. Formal testing of visual fields of patients attending an outpatient epilepsy service showed constriction with tunnel vision, even in patients who are asymptomatic. The ethical questions include: Should all reports of adverse events be subjected to tests of validity and subsequent quality assurance? Should treatment with VGB be stopped, risking recurrence of seizures? What are the legal consequences of continuing VGB? Does informed consent protect the doctor? After stopping VGB can the patient drive?

  19. Physiological Responses to Salinity Vary with Proximity to the Ocean in a Coastal Amphibian.

    PubMed

    Hopkins, Gareth R; Brodie, Edmund D; Neuman-Lee, Lorin A; Mohammadi, Shabnam; Brusch, George A; Hopkins, Zoë M; French, Susannah S

    2016-01-01

    Freshwater organisms are increasingly exposed to elevated salinity in their habitats, presenting physiological challenges to homeostasis. Amphibians are particularly vulnerable to osmotic stress and yet are often subject to high salinity in a variety of inland and coastal environments around the world. Here, we examine the physiological responses to elevated salinity of rough-skinned newts (Taricha granulosa) inhabiting a coastal stream on the Pacific coast of North America and compare the physiological responses to salinity stress of newts living in close proximity to the ocean with those of newts living farther upstream. Although elevated salinity significantly affected the osmotic (body weight, plasma osmolality), stress (corticosterone), and immune (bactericidal ability) responses of newts, animals found closer to the ocean were generally less reactive to salt stress than those found farther upstream. Our results provide possible evidence for some physiological tolerance in this species to elevated salinity in coastal environments. As freshwater environments become increasingly saline and more stressful, understanding the physiological tolerances of vulnerable groups such as amphibians will become increasingly important to our understanding of their abilities to respond, to adapt, and, ultimately, to survive.

  20. The role of the monoamine oxidase A gene in moderating the response to adversity and associated antisocial behavior: a review

    PubMed Central

    Buades-Rotger, Macià; Gallardo-Pujol, David

    2014-01-01

    Hereditary factors are increasingly attracting the interest of behavioral scientists and practitioners. Our aim in the present article is to introduce some state-of-the-art topics in behavioral genetics, as well as selected findings in the field, in order to illustrate how genetic makeup can modulate the impact of environmental factors. We focus on the most-studied polymorphism to date for antisocial responses to adversity: the monoamine oxidase A gene. Advances, caveats, and promises of current research are reviewed. We also discuss implications for the use of genetic information in applied settings. PMID:25114607

  1. Sublethal effects of cadmium on physiological responses in the pocketbook mussel, Lampsilis ventricosa

    USGS Publications Warehouse

    Naimo, T.J.; Atchison, G.J.; Holland Bartels, L. E.

    1992-01-01

    Several physiological responses have been used to evaluate the effects of contaminants on marine bivalves. Respiration rate, food clearance rate, ammonia excretion rate, and food assimilation efficiency can be quantified and incorporated into a bioenergetics model known as scope for growth. This model estimates an organism's instantaneous energy budget and quantifies the available energy for growth and reproduction. We applied some of these physiological techniques to freshwater mussels to determine the sublethal effects of cadmium. The objective of our study was to quantify the physiological responses of adult pocketbook mussels, Lampsilis ventricosa , exposed to sublethal concentrations of cadmium. We selected L. ventricosa for study because it is abundant in the upper Mississippi River and its life history has been partially documented.

  2. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  3. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply

    PubMed Central

    Lyu, Yang; Tang, Hongliang; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R.; Shen, Jianbo

    2016-01-01

    The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. PMID:28066491

  4. Maternal separation modulates short-term behavioral and physiological indices of the stress response.

    PubMed

    Litvin, Yoav; Tovote, Philip; Pentkowski, Nathan S; Zeyda, Thomas; King, Lanikea B; Vasconcellos, Amy J; Dunlap, Christopher; Spiess, Joachim; Blanchard, D Caroline; Blanchard, Robert J

    2010-07-01

    Early-life stress produces an anxiogenic profile in adulthood, presumably by activating the otherwise quiescent hypothalamic-pituitary-adrenal (HPA) axis during the vulnerable 'stress hyporesponsive period'. While the long-term effects of such early-life manipulations have been extensively characterized, little is known of the short-term effects. Here, we compared the short-term effects of two durations of maternal separation stress and one unseparated group (US) on behavioral and physiological indices of the stress response in rat pups. Separations included 3h on each of 12days, from postnatal day (PND) 2 to 13 (MS2-13) and 3days of daily, 6-h separation from PND11-13 (MS11-13). On PND14 (Experiment 1), both MS2-13 and MS11-13 produced marked reductions in freezing toward an adult male conspecific along with reduced levels of glucocorticoid type 2 (GR) and CRF type-1 (CRF(1)) receptor mRNA in the hippocampus. Group MS2-13 but not MS11-13 produced deficits in stressor-induced corticosterone secretion, accompanied by reductions in body weight. Our results suggest that GR and/or CRF(1) levels, not solely the magnitude of corticosterone secretion, may be involved in the modulation of freezing. In a second experiment, we aimed to extend these findings by testing male and female separated and unseparated pups' unconditioned defensive behaviors to cat odor on PND26, and subsequent cue+context conditioning and extinction throughout postnatal days 27-32. Our results show that maternal separation produced reductions in unconditioned freezing on PND26, with MS2-13 showing stronger deficits than MS11-13. However, separation did not affect any other defensive behaviors. Furthermore, separated rats failed to show conditioned freezing, although they did avoid the no-odor block conditioned cue. There were no sex differences other than weight. We suggest that maternal separation may have produced these changes by disrupting normal development of hippocampal regions involved in

  5. Inflammatory Cytokines as Preclinical Markers of Adverse Responses to Chemical Stressors

    EPA Science Inventory

    Abstract: The in vivo cytokine response to chemical stressors is a promising mainstream tool used to assess potential systemic inflammation and immune function changes. Notably, new instrumentation and statistical analysis provide the selectivity and sensitivity to rapidly diff...

  6. The Physiologic Response to Stress and its Effects on Swine Reproduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When exposed to a stressor, swine invoke behavioral and physiologic responses which are designed to enable the individual to cope with the negative effects of the stressor. The activity of the hypothalamic-pituitary-adrenal axis is increased resulting in elevated corticotropic releasing factor (CRF)...

  7. Physiological and metabolic responses of gestating Brahaman cows to repeated transportation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to examine physiological and metabolic responses to repeated transportation of gestating Brahman cows, previously classified as mature cows into temperament groups of Calm, Intermediate, or Temperamental. Brahman cows (n = 48) were subjected to 2 hours of transport (TRA...

  8. Physiological responses during the practice of synchronized swimming: a systematic review.

    PubMed

    Ponciano, Kátia; Miranda, Maria Luiza de Jesus; Homma, Miwako; Miranda, João Marcelo Queiroz; Figueira Júnior, Aylton J; Meira Júnior, Cássio De Miranda; Bocalini, Danilo Sales

    2017-02-06

    This study is aimed at analysing the scientific literature related to physiological responses in synchronized swimmers, produced from 2006 to 2016. A systematic review was conducted using electronic databases (Google Scholar, PubMed, SportDiscus, Web Science, Scielo and Scopus) in national and international journals. The articles were selected using the following inclusion criteria: composed samples of synchronized swimmers of both sexes, articles in English, Spanish and Portuguese, published from 2006 to 2016. Ten studies were included. The concentration of the articles and their publication was as follows: Europe (77%) and North America (23%). The protocols used analyse physiological responses in synchronized swimmers athletes during competitions or laboratory tests, lactate measurements, heart rate, rates of perceived exertion, VO2 and lung volume. The subjects of 100% of the studies included in this review were athletes of junior and senior categories who volunteered. Only 03 of the 10 studies have compared the physiological responses in volunteers who were not synchronized swimmers to synchronized swimmer athletes. The studies were conducted using different methodologies, which makes it difficult to compare them, so the standardization of instruments and definitions is essential for the scientific advancement in this field. In addition, it would be interesting to expand the research of these physiological responses in synchronized swimmers using base level or beginners as sample.

  9. Plant physiological response of strawberry fruit to chlorine dioxide gas treatment during postharvest storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine dioxide, a strong oxidizing and sanitizing agent, is used as a postharvest sanitizer for fruits and vegetables and generally applied on a packing line using a chlorine dioxide generator. The objective of this research was to study the physiological responses of strawberries to ClO2 when app...

  10. Testing the threat-sensitive predator avoidance hypothesis: physiological responses and predator pressure in wild rabbits.

    PubMed

    Monclús, Raquel; Palomares, Francisco; Tablado, Zulima; Martínez-Fontúrbel, Ana; Palme, Rupert

    2009-01-01

    Predation is a strong selective force with both direct and indirect effects on an animal's fitness. In order to increase the chances of survival, animals have developed different antipredator strategies. However, these strategies have associated costs, so animals should assess their actual risk of predation and shape their antipredator effort accordingly. Under a stressful situation, such as the presence of predators, animals display a physiological stress response that might be proportional to the risk perceived. We tested this hypothesis in wild European rabbits (Oryctolagus cuniculus), subjected to different predator pressures, in Doñana National Park (Spain). We measured the concentrations of fecal corticosterone metabolites (FCM) in 20 rabbit populations. By means of track censuses we obtained indexes of mammalian predator presence for each rabbit population. Other factors that could modify the physiological stress response, such as breeding status, food availability and rabbit density, were also considered. Model selection based on information theory showed that predator pressure was the main factor triggering the glucocorticoid release and that the physiological stress response was positively correlated with the indexes of the presence of mammalian carnivore predators. Other factors, such as food availability and density of rabbits, were considerably less important. We conclude that rabbits are able to assess their actual risk of predation and show a threat-sensitive physiological response.

  11. Molecular and physiological responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the underlying physiological and molecular responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar) parr. Previous studies have pre- dominately focused on mechanisms during acute, short-term exposure. For that purpose Atlantic s...

  12. Renal Response to Volume Expansion: Learning the Experimental Approach in the Context of Integrative Physiology.

    ERIC Educational Resources Information Center

    Kline, Robert L.; Dukacz, Stephen A. W.; Stavraky, Thomas

    2000-01-01

    Describes a laboratory experience for upper-level science students that provides a hands-on approach to understanding the basics of experimental physiology. Students design an experiment to determine the relative importance of dilution of plasma proteins in the overall renal excretory response following volume expansion with intravenous saline.…

  13. Physiological responses of hard red winter wheat to infection by wheat streak mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect o...

  14. Different Behavioral and Physiological Response in two Genetic Lines of Laying Hens Following Transportation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological and behavioral response to transportation stress were examined in chickens selected for high group productivity and survivability (HGPS) resulting from reduced cannibalism and flightiness in colony cages and in chickens from Dekalb XL (DXL) commercial strain. At 13 wks of age, 96 pulle...

  15. Physiologic Responses of Able-Bodied and Paraplegic Males to Maximal Arm Ergometry.

    ERIC Educational Resources Information Center

    Israel, Richard G.; And Others

    A study compared physiologic responses of healthy paraplegic males to those of healthy, able-bodied males during maximal arm ergometry. Fifteen able-bodied, healthy adult males and 13 healthy adult male paraplegics followed an exercise program involving heart rate, increased exercise loads, and oxygen uptake. Results from an analysis of the data…

  16. Physiological Response and Childhood Anxiety: Association With Symptoms of Anxiety Disorders and Cognitive Bias

    ERIC Educational Resources Information Center

    Weems, Carl F.; Zakem, Alan H.; Costa, Natalie M.; Cannon, Melinda F.; Watts, Sarah E.

    2005-01-01

    This study examined the physiological response (skin conductance and heart rate [HR]) of youth exposed to a mildly phobic stimulus (video of a large dog) and its relation to child- and parent-reported anxiety symptoms and cognitive bias in a community-recruited sample of youth (n = 49). The results of this study indicated that HR and…

  17. Body Composition and Physiological Responses of Masters Female Swimmers 20 to 70 Years of Age.

    ERIC Educational Resources Information Center

    Vaccaro, Paul; And Others

    1984-01-01

    Female masters swimmers ranging in age from 20 to 69 were chosen for a study of their body composition and physiological responses at rest and during exercise. Two training groups were formed that differed on the basis of frequency, duration, and intensity of swimming workouts. Results are discussed. (Author/DF)

  18. The effects of autism and alexithymia on physiological and verbal responsiveness to music.

    PubMed

    Allen, Rory; Davis, Rob; Hill, Elisabeth

    2013-02-01

    It has been suggested that individuals with autism will be less responsive to the emotional content of music than typical individuals. With the aim of testing this hypothesis, a group of high-functioning adults on the autism spectrum was compared with a group of matched controls on two measures of emotional responsiveness to music, comprising physiological and verbal measures. Impairment in participants ability to verbalize their emotions (type-II alexithymia) was also assessed. The groups did not differ significantly on physiological responsiveness, but the autism group was significantly lower on the verbal measure. However, inclusion of the alexithymia score as a mediator variable nullified this group difference, suggesting that the difference was due not to absence of underlying emotional responsiveness to music in autism, but to a reduced ability to articulate it.

  19. Electric shock causes physiological stress responses in shore crabs, consistent with prediction of pain.

    PubMed

    Elwood, Robert W; Adams, Laura

    2015-11-01

    Animal pain is defined by a series of expectations or criteria, one of which is that there should be a physiological stress response associated with noxious stimuli. While crustacean stress responses have been demonstrated they are typically preceded by escape behaviour and thus the physiological change might be attributed to the behaviour rather than a pain experience. We found higher levels of stress as measured by lactate in shore crabs exposed to brief electric shock than non-shocked controls. However, shocked crabs showed more vigorous behaviour than controls. We then matched crabs with the same level of behaviour and still found that shocked crabs had stronger stress response compared with controls. The finding of the stress response, coupled with previous findings of long-term motivational change and avoidance learning, fulfils the criteria expected of a pain experience.

  20. FDG-PET imaging for the assessment of physiologic volume response during radiotherapy in cervix cancer

    SciTech Connect

    Lin, Lilie L.; Yang Zhiyun; Mutic, Sasa; Miller, Tom R.; Grigsby, Perry W. . E-mail: pgrigsby@wustl.edu

    2006-05-01

    Purpose: To evaluate the physiologic tumor volume response during treatment in cervical cancer using 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). Patients and Methods: This was a prospective study of 32 patients. Physiologic tumor volume in cubic centimeters was determined from the FDG-PET images using the 40% threshold method. Results: The mean pretreatment tumor volume was 102 cm{sup 3}. The mean volume by clinical Stages I, II, and III were 54, 79, and 176 cm{sup 3}, respectively. After 19.8 Gy external irradiation to the pelvis, the reduction in tumor volume was 29% (72 cm{sup 3}). An additional 13 Gy from high-dose-rate (HDR) brachytherapy reduced the mean volume to 15.4 cm{sup 3}, and this was subsequently reduced to 8.6 cm{sup 3} with 13 Gy additional HDR brachytherapy (26 Gy, HDR). Four patients had physiologic FDG uptake in the cervix at 3 months after the completion of therapy. The mean time to the 50% reduction in physiologic tumor volume was 19.9 days and after combined external irradiation and HDR to 24.9 Gy. Conclusion: These results indicate that physiologic tumor volume determination by FDG-PET is feasible and that a 50% physiologic tumor volume reduction occurs within 20 days of starting therapy.

  1. Effect of an on-sight lead on the physiological and psychological responses to rock climbing.

    PubMed

    Draper, Nick; Jones, Glenys A; Fryer, Simon; Hodgson, Chris; Blackwell, Gavin

    2008-01-01

    Rock climbing is a multi-discipline activity that encompasses forms such as bouldering, top roping and lead climbing on natural and artificial climbing surfaces. A major focus of research has been explanation of physiological functioning. More recent research indicates that anxiety levels are elevated for less experienced climbers and in response to lead climbing ascents. Research regarding the demands of rock climbing has placed a lesser focus on the interaction of psychological and physiological factors. The objective of this study was to examine the effects of an on-sight lead climb on the physiological and psychological demands of the climb in comparison with a subsequent lead climb. Ten intermediate level climbers volunteered to complete the two climbing trials, on-sight lead climb (OSLC) and second lead climb (LC2). Climb time, lactate concentrations (baseline, pre climb, post climb and 15 min post climb), heart rate (1 min pre climb, peak HR, 1 min post climb and average climb across the duration of the climb), oxygen consumption, pre climb anxiety (CSAI-2R) were assessed for each climber for both trials. Results indicated that there were significant differences in self reported pre climb somatic and cognitive anxiety (t(9) = 2.79, p = 0.01, t(9) = 1.94, p = 0.043), climb time (t(9) = 3.07, p = 0.0052) and post climb lactate concentrations between the climbs (t(9) = 2.58, p = 0.015). These results indicate that psychological as well as physiological stress impact upon the response to rock climbing. The higher anxiety levels associated with an OSLC are likely to have influenced the physiological responses for the intermediate climbers in this study. Future studies should take into account the type of climbing, experience of climbers and the number of ascents as well as taking into account the interaction between physiological and psychological factors in response to rock climbing. Key pointsFor intermediate climbers, there are significant differences in

  2. Stunning fish with CO2 or electricity: contradictory results on behavioural and physiological stress responses.

    PubMed

    Gräns, A; Niklasson, L; Sandblom, E; Sundell, K; Algers, B; Berg, C; Lundh, T; Axelsson, M; Sundh, H; Kiessling, A

    2016-02-01

    Studies that address fish welfare before slaughter have concluded that many of the traditional systems used to stun fish including CO2 narcosis are unacceptable as they cause avoidable stress before death. One system recommended as a better alternative is electrical stunning, however, the welfare aspects of this method are not yet fully understood. To assess welfare in aquaculture both behavioural and physiological measurements have been used, but few studies have examined the relationship between these variables. In an on-site study aversive behaviours and several physiological stress indicators, including plasma levels of cortisol and ions as well as blood physiological variables, were compared in Arctic char (Salvelinus alpinus) stunned with CO2 or electricity. Exposure to water saturated with CO2 triggered aversive struggling and escape responses for several minutes before immobilization, whereas in fish exposed to an electric current immobilization was close to instant. On average, it took 5 min for the fish to recover from electrical stunning, whereas fish stunned with CO2 did not recover. Despite this, the electrically stunned fish had more than double the plasma levels of cortisol compared with fish stunned with CO2. This result is surprising considering that the behavioural reactions were much more pronounced following CO2 exposure. These contradictory results are discussed with regard to animal welfare and stress physiological responses. The present results emphasise the importance of using an integrative and interdisciplinary approach and to include both behavioural and physiological stress indicators in order to make accurate welfare assessments of fish in aquaculture.

  3. Physiological responses to error amplification in a robotic reaching adaptation task.

    PubMed

    Shirzad, Navid; Van der Loos, H F Machiel

    2014-01-01

    Analysis of physiological responses provides an objective measure of a person's affective state and has been proposed as a way to evaluate motivation and engagement of therapy clients during robot-assisted therapy regimens. This paper presents the analysis of three physiological responses to different levels of error amplification in a robotic reaching task to understand the feasibility of using physiological signals in order to modify therapy exercises to achieve higher participant attentiveness. In a pilot study with 22 healthy participants, we analyzed skin conductance, skin temperature, and respiration signals, with two main goals: 1) to compare physiological parameters between baseline (rest) and error-amplified reaching motion periods; and 2) to compare physiological parameters between reaching motion periods with different levels of error amplification. Results show that features extracted from skin conductance and respiration signals show significant differences between different error amplification levels. Features extracted from the skin temperature signal are not as reliable as measures of skin conductance and respiration, however they can provide supplementary information.

  4. Determinants and short-term physiological consequences of PHA immune response in lesser kestrel nestlings.

    PubMed

    Rodríguez, Airam; Broggi, Juli; Alcaide, Miguel; Negro, Juan José; Figuerola, Jordi

    2014-08-01

    Individual immune responses are likely affected by genetic, physiological, and environmental determinants. We studied the determinants and short-term consequences of Phytohaemagglutinin (PHA) induced immune response, a commonly used immune challenge eliciting both innate and acquired immunity, on lesser kestrel (Falco naumanni) nestlings in semi-captivity conditions and with a homogeneous diet composition. We conducted a repeated measures analyses of a set of blood parameters (carotenoids, triglycerides, β-hydroxybutyrate, cholesterol, uric acid, urea, total proteins, and total antioxidant capacity), metabolic (resting metabolic rate), genotypic (MHC class II B heterozygosity), and biometric (body mass) variables. PHA challenge did not affect the studied physiological parameters on a short-term basis (<12 hr), except plasma concentrations of triglycerides and carotenoids, which decreased and increased, respectively. Uric acid was the only physiological parameter correlated with the PHA induced immune response (skin swelling), but the change of body mass, cholesterol, total antioxidant capacity, and triglycerides between sessions (i.e., post-pre treatment) were also positively correlated to PHA response. No relationships were detected between MHC gene heterozygosity or resting metabolic rate and PHA response. Our results indicate that PHA response in lesser kestrel nestlings growing in optimal conditions does not imply a severe energetic cost 12 hr after challenge, but is condition-dependent as a rapid mobilization of carotenoids and decrease of triglycerides is elicited on a short-term basis.

  5. Mechanosignaling in the vasculature: emerging concepts in sensing, transduction and physiological responses

    PubMed Central

    Fujiwara, Keigi; Pérez, Néstor Gustavo; Ushio-Fukai, Masuko; Fisher, Aron B.

    2015-01-01

    Cells are constantly exposed to mechanical forces that play a role in modulating cellular structure and function. The cardiovascular system experiences physical forces in the form of shear stress and stretch associated with blood flow and contraction, respectively. These forces are sensed by endothelial cells and cardiomyocytes and lead to responses that control vascular and cardiac homeostasis. This was highlighted at the Pan American Physiological Society meeting at Iguassu Falls, Brazil, in a symposium titled “Mechanosignaling in the Vasculature.” This symposium presented recent research that showed the existence of a vital link between mechanosensing and downstream redox sensitive signaling cascades. This link helps to transduce and transmit the physical force into an observable physiological response. The speakers showcased how mechanosensors such as ion channels, membrane receptor kinases, adhesion molecules, and other cellular components transduce the force via redox signals (such as reactive oxygen species and nitric oxide) to receptors (transcription factors, growth factors, etc.). Receptor activated pathways then lead to cellular responses including cellular proliferation, contraction, and remodeling. These responses have major relevance to the physiology and pathophysiology of various cardiovascular diseases. Thus an understanding of the complex series of events, from the initial sensing through the final response, is essential for progress in this field. Overall, this symposium addressed some important emerging concepts in the field of mechanosignaling and the eventual pathophysiological responses. PMID:25862828

  6. Natural variation in germination responses of Arabidopsis to seasonal cues and their associated physiological mechanisms

    PubMed Central

    Barua, Deepak; Butler, Colleen; Tisdale, Tracy E.; Donohue, Kathleen

    2012-01-01

    Background and Aims Despite the intense interest in phenological adaptation to environmental change, the fundamental character of natural variation in germination is almost entirely unknown. Specifically, it is not known whether different genotypes within a species are germination specialists to particular conditions, nor is it known what physiological mechanisms of germination regulation vary in natural populations and how they are associated with responses to particular environmental factors. Methods We used a set of recombinant inbred genotypes of Arabidopsis thaliana, in which linkage disequilibrium has been disrupted over seven generations, to test for genetic variation and covariation in germination responses to distinct environmental factors. We then examined physiological mechanisms associated with those responses, including seed-coat permeability and sensitivity to the phytohormones gibberellic acid (GA) and abscisic acid (ABA). Key Results Genetic variation for germination was environment-dependent, but no evidence for specialization of germination to different conditions was found. Hormonal sensitivities also exhibited significant genetic variation, but seed-coat properties did not. GA sensitivity was associated with germination responses to multiple environmental factors, but seed-coat permeability and ABA sensitivity were associated with specific germination responses, suggesting that an evolutionary change in GA sensitivity could affect germination in multiple environments, but that of ABA sensitivity may affect germination under more restricted conditions. Conclusions The physiological mechanisms of germination responses to specific environmental factors therefore can influence the ability to adapt to diverse seasonal environments encountered during colonization of new habitats or with future predicted climate change. PMID:22012958

  7. Is prenatal childbirth preparation effective in decreasing adverse maternal and neonatal response to labor? A nested case-control study.

    PubMed

    Kim, Hyun Hee; Nava-Ocampo, Alejandro A; Kim, Sun Kyung; Kim, Seo Hui; Kim, Yun Ju; Han, Jung Yeol; Ahn, Hyun Kyong; Ryu, Hyun Mee; Yang, Jae Hyug; Kim, Moon Young

    2008-04-01

    Sophrology, based on a combination of Western relaxation therapy and Eastern yoga and meditation might decrease maternal stress during labor. This study aimed to evaluate whether prenatal sophrologic childbirth preparation may decrease maternal and neonatal adverse response associated with delivery. In a nested case-control study, 69 nulliparous, singleton pregnant women who underwent an educational course of sophrologic childbirth preparation were compared to 69 nulliparous, singleton, age- and gestational age-matched pregnant women who did not receive any childbirth preparation. All babies were vaginally delivered. Groups were not different (P > 0.05) in the number of neonates born with meconium-stained amniotic fluid as well as in the number of babies with Apgar score < or = 7 at 1 and 5 minutes after birth. Duration of labor was not different between groups. The number of women requiring oxytocin and delivering babies with low pH blood levels tended to be lower in the group undergoing sophrologic childbirth preparation, i.e. 58.0% vs 72.5% (P = 0.07) and 1.4% vs 10.9% (P = 0.06), respectively. In conclusion, we were unable to confirm that prenatal sophrologic childbirth preparation has a definitive role in decreasing adverse maternal and fetal response to pain or in shortening labor. Prospective cohort studies with a larger sample size or randomized trials may help to clarify this gap.

  8. Ancestry trumps experience: Transgenerational but not early life stress affects the adult physiological stress response.

    PubMed

    McCormick, Gail L; Robbins, Travis R; Cavigelli, Sonia A; Langkilde, Tracy

    2017-01-01

    Exposure to stressors can affect an organism's physiology and behavior as well as that of its descendants (e.g. through maternal effects, epigenetics, and/or selection). We examined the relative influence of early life vs. transgenerational stress exposure on adult stress physiology in a species that has populations with and without ancestral exposure to an invasive predator. We raised offspring of eastern fence lizards (Sceloporus undulatus) from sites historically invaded (high stress) or uninvaded (low stress) by predatory fire ants (Solenopsis invicta) and determined how this different transgenerational exposure to stress interacted with the effects of early life stress exposure to influence the physiological stress response in adulthood. Offspring from these high- and low-stress populations were exposed weekly to either sub-lethal attack by fire ants (an ecologically relevant stressor), topical treatment with a physiologically-appropriate dose of the stress-relevant hormone, corticosterone (CORT), or a control treatment from 2 to 43weeks of age. Several months after treatments ended, we quantified plasma CORT concentrations at baseline and following restraint, exposure to fire ants, and adrenocorticotropic hormone (ACTH) injection. Exposure to fire ants or CORT during early life did not affect lizard stress physiology in adulthood. However, offspring of lizards from populations that had experienced multiple generations of fire ant-invasion exhibited more robust adult CORT responses to restraint and ACTH-injection compared to offspring from uninvaded populations. Together, these results indicate that transgenerational stress history may be at least as important, if not more important, than early life stress in affecting adult physiological stress responses.

  9. The Confluence of Adverse Early Experience and Puberty on the Cortisol Awakening Response

    ERIC Educational Resources Information Center

    Quevedo, Karina; Johnson, Anna E.; Loman, Michelle L.; LaFavor, Theresa L.; Gunnar, Megan

    2012-01-01

    Associations between early deprivation/neglect in the form of institutional care with the cortisol awakening response (CAR) were examined as a function of pubertal status among 12- and 13-year-old postinstitutionalized youth. CARs indexed hypothalamic-pituitary-adrenocortical reactivity. Postinstitutionalized youth were compared to youth adopted…

  10. Metabolomics of Ramadan fasting: an opportunity for the controlled study of physiological responses to food intake

    PubMed Central

    2014-01-01

    High-throughput screening techniques that analyze the metabolic endpoints of biological processes can identify the contributions of genetic predisposition and environmental factors to the development of common diseases. Studies applying controlled physiological challenges can reveal dysregulation in metabolic responses that may be predictive for or associated with these diseases. However, large-scale epidemiological studies with well controlled physiological challenge conditions, such as extended fasting periods and defined food intake, pose logistic challenges. Culturally and religiously motivated behavioral patterns of life style changes provide a natural setting that can be used to enroll a large number of study volunteers. Here we report a proof of principle study conducted within a Muslim community, showing that a metabolomics study during the Holy Month of Ramadan can provide a unique opportunity to explore the pre-prandial and postprandial response of human metabolism to nutritional challenges. Up to five blood samples were obtained from eleven healthy male volunteers, taken directly before and two hours after consumption of a controlled meal in the evening on days 7 and 26 of Ramadan, and after an over-night fast several weeks after Ramadan. The observed increases in glucose, insulin and lactate levels at the postprandial time point confirm the expected physiological response to food intake. Targeted metabolomics further revealed significant and physiologically plausible responses to food intake by an increase in bile acid and amino acid levels and a decrease in long-chain acyl-carnitine and polyamine levels. A decrease in the concentrations of a number of phospholipids between samples taken on days 7 and 26 of Ramadan shows that the long-term response to extended fasting may differ from the response to short-term fasting. The present study design is scalable to larger populations and may be extended to the study of the metabolic response in defined patient

  11. Metabolomics of Ramadan fasting: an opportunity for the controlled study of physiological responses to food intake.

    PubMed

    Mathew, Sweety; Krug, Susanne; Skurk, Thomas; Halama, Anna; Stank, Antonia; Artati, Anna; Prehn, Cornelia; Malek, Joel A; Kastenmüller, Gabi; Römisch-Margl, Werner; Adamski, Jerzy; Hauner, Hans; Suhre, Karsten

    2014-06-06

    High-throughput screening techniques that analyze the metabolic endpoints of biological processes can identify the contributions of genetic predisposition and environmental factors to the development of common diseases. Studies applying controlled physiological challenges can reveal dysregulation in metabolic responses that may be predictive for or associated with these diseases. However, large-scale epidemiological studies with well controlled physiological challenge conditions, such as extended fasting periods and defined food intake, pose logistic challenges. Culturally and religiously motivated behavioral patterns of life style changes provide a natural setting that can be used to enroll a large number of study volunteers. Here we report a proof of principle study conducted within a Muslim community, showing that a metabolomics study during the Holy Month of Ramadan can provide a unique opportunity to explore the pre-prandial and postprandial response of human metabolism to nutritional challenges. Up to five blood samples were obtained from eleven healthy male volunteers, taken directly before and two hours after consumption of a controlled meal in the evening on days 7 and 26 of Ramadan, and after an over-night fast several weeks after Ramadan. The observed increases in glucose, insulin and lactate levels at the postprandial time point confirm the expected physiological response to food intake. Targeted metabolomics further revealed significant and physiologically plausible responses to food intake by an increase in bile acid and amino acid levels and a decrease in long-chain acyl-carnitine and polyamine levels. A decrease in the concentrations of a number of phospholipids between samples taken on days 7 and 26 of Ramadan shows that the long-term response to extended fasting may differ from the response to short-term fasting. The present study design is scalable to larger populations and may be extended to the study of the metabolic response in defined patient

  12. The Effect of Prophylactic Antipyretic Administration on Post-Vaccination Adverse Reactions and Antibody Response in Children: A Systematic Review

    PubMed Central

    Das, Rashmi Ranjan; Panigrahi, Inusha; Naik, Sushree Samiksha

    2014-01-01

    Background Prophylactic antipyretic administration decreases the post-vaccination adverse reactions. Recent study finds that they may also decrease the antibody responses to several vaccine antigens. This systematic review aimed to assess the evidence for a relationship between prophylactic antipyretic administration, post-vaccination adverse events, and antibody response in children. Methods A systematic search of major databases including MEDLINE and EMBASE was carried out till March 2014. Randomized controlled trials (RCTs) comparing prophylactic antipyretic treatment versus placebo post-vaccination in children ≤6 years of age were included. Two reviewers independently applied eligibility criteria, assessed the studies for methodological quality, and extracted data [PROSPERO registration: CRD42014009717]. Results Of 2579 citations retrieved, a total of 13 RCTs including 5077 children were included in the review. Prophylactic antipyretic administration significantly reduced the febrile reactions (≥38.0°C) after primary and booster vaccinations. Though there were statistically significant differences in the antibody responses between the two groups, the prophylactic PCM group had what would be considered protective levels of antibodies to all of the antigens given after the primary and booster vaccinations. No significant difference in the nasopharyngeal carriage rates (short-term and long-term) of H. influenzae or S. pneumoniae serotypes was found between the prophylactic and no prophylactic PCM group. There was a significant reduction in the local and systemic symptoms after primary, but not booster vaccinations. Conclusions Though prophylactic antipyretic administration leads to relief of the local and systemic symptoms after primary vaccinations, there is a reduction in antibody responses to some vaccine antigens without any effect on the nasopharyngeal carriage rates of S. pneumoniae & H. influenza serotypes. Future trials and surveillance programs

  13. Transforming Water: Social Influence Moderates Psychological, Physiological, and Functional Response to a Placebo Product

    PubMed Central

    Crum, Alia J.; Phillips, Damon J.; Goyer, J. Parker; Akinola, Modupe; Higgins, E. Tory

    2016-01-01

    This paper investigates how social influence can alter physiological, psychological, and functional responses to a placebo product and how such responses influence the ultimate endorsement of the product. Participants consumed a product, “AquaCharge Energy Water,” falsely-labeled as containing 200 mg of caffeine but which was actually plain spring water, in one of three conditions: a no social influence condition, a disconfirming social influence condition, and a confirming social influence condition. Results demonstrated that the effect of the product labeling on physiological alertness (systolic blood pressure), psychological alertness (self-reported alertness), functional alertness (cognitive interference), and product endorsement was moderated by social influence: participants experienced more subjective, physiological and functional alertness and stronger product endorsement when they consumed the product in the confirming social influence condition than when they consumed the product in the disconfirming social influence condition. These results suggest that social influence can alter subjective, physiological, and functional responses to a faux product, in this case transforming the effects of plain water. PMID:27875567

  14. Comparison of physiological responses to graded exercise test performance in outrigger canoeing.

    PubMed

    Kerr, Rebecca M; Spinks, Warwick; Leicht, Anthony S; Sinclair, Wade; Woodside, Louise

    2008-05-01

    The aim of this study was to establish a graded exercise test protocol for determining the peak physiological responses of female outrigger canoeists. Seventeen trained female outrigger canoeists completed two outrigger ergometer graded exercise test protocols in random order: (1) 25 W power output for 2 min increasing by 7.5 W every minute until exhaustion; and (2) 25 W power output for 2 min increasing by 15 W every 2 min to exhaustion. Heart rate and power output were recorded every 15 s. Expired air was collected continuously and sampled for analysis at 15-s intervals, while blood lactate concentration was measured immediately after and 3, 5, and 7 min after exercise. The peak physiological and performance variables examined included peak oxygen uptake (VO2peak), minute ventilation, tidal volume, ventilatory thresholds 1 and 2, respiratory rate, respiratory exchange ratio, heart rate, blood lactate concentration, power output, performance time, and time to VO2peak. There were no significant differences in peak physiological responses, ventilatory thresholds or performance variables between the two graded exercise test protocols. Despite no significant differences between protocols, due to the large limits of agreement evident between protocols for the peak physiological responses, it is recommended that the same protocol be used for all comparison testing to minimize intra-individual variability of results.

  15. Physiological responses to increased brood size and ectoparasite infestation: Adult great tits favour self-maintenance.

    PubMed

    Wegmann, Michele; Voegeli, Beatrice; Richner, Heinz

    2015-03-15

    Different types of stressors trigger responses of different physiological systems, and these responses may contribute differentially to the maintenance of homeostasis, to trade-offs and the evolution of life-history traits. To manipulate two common stressors during reproduction, we infested half of the nests in a naturally breeding great tit population with ectoparasites and simultaneously manipulated brood size, using a 2×2 experimental design. Parents in this model species commonly compensate for ectoparasites by an increase in food provisioning. We assessed parental responses to these concurrent stressors by measuring several physiological stress parameters such as changes in metabolic rate, oxidative stress and expression of heat-shock proteins (Hsp), and explored how these stressors affect the trade-off between self-maintenance and reproduction. Neither flea infestation nor brood size manipulation affected adult metabolic rate, oxidative damage or Hsp levels. Furthermore, we found no interactive effect of the two treatments on adults. However, nestlings in infested nests had lower body mass and lower survival. Nestlings in enlarged broods were lighter and had lower survival, although parents of enlarged broods increased food provisioning rate. The findings suggest that adults favour maintenance of cellular homeostasis, and physiological equilibrium over current reproduction, and that the costs induced by both stressors, flea infestation and increased brood size, are carried by the offspring. It emphasizes the importance of self-maintenance over reproduction in life-history decisions, and more generally the need of including physiological traits for understanding the evolution of life-histories.

  16. Physiological responses of the European cockle Cerastoderma edule (Bivalvia: Cardidae) as indicators of coastal lagoon pollution.

    PubMed

    Nilin, Jeamylle; Pestana, João Luís Teixeira; Ferreira, Nuno Gonçalo; Loureiro, Susana; Costa-Lotufo, Letícia Veras; Soares, Amadeu M V M

    2012-10-01

    Physiological responses can be used as effective parameters to identify environmentally stressful conditions. In this study, physiology changes such as oxygen consumption, clearance rate, survival in air, condition index and energy reserves were measured on natural populations of cockles collected from different sites at Ria de Aveiro, Portugal. At those sites, sediment samples were collected for Hg concentration analysis. Cockles were used for the evaluation of both the Hg concentration and physiological response. Mercury was detected in the cockle tissue and in the sediment collected from the sampling points both nearby and distant from the main mercury contamination source. The energy content was negatively correlated with both Hg concentration in cockle tissues and survival in air. Nonetheless, the energy content was positively correlated with the condition index, and there was a positive correlation between the survival in air test and the tissue mercury concentration. A PCA-factor analysis explained 86.8% of the total variance. The principal factor (62.7%) consisted of the air survival, the Hg in soft tissues (positive) and the condition index (negative). The second factor (24.1%) consisted of a negative correlation between the oxygen consumption and the clearance rate. Due to their sensitivity to environmental conditions, the physiological responses of cockles can be used to assess the ecological status of aquatic environments. More effort should be invested in investigating the effects of environmental perturbations on cockle health once they are a good reporter organism.

  17. UVB and caffeine: inhibiting the DNA damage response to protect against the adverse effects of UVB.

    PubMed

    Kerzendorfer, Claudia; O'Driscoll, Mark

    2009-07-01

    The incidence of sunlight-induced skin cancer is increasing. Mouse studies indicate that caffeine, administered orally or topically, promotes apoptosis of UVB-irradiated keratinocytes. In this issue, Heffernan and colleagues identify the pathway targeted by caffeine and suggest that inhibition of this DNA damage response may offer a viable therapeutic option for nonmelanoma skin cancer. This potentially represents an important protective or therapeutic option from the most unlikely of sources: your daily coffee.

  18. Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand.

    PubMed

    Rizzoti, Karine; Akiyama, Haruhiko; Lovell-Badge, Robin

    2013-10-03

    Pituitary hormone deficiencies, with Growth Hormone deficiency being most frequent (1 in 3,500-10,000 births), cause significant morbidity. Regeneration of missing endocrine cells would be a significant improvement over hormone replacement therapies, which incur side effects and do not mimic physiological secretion patterns. Recent in vitro studies have identified a population of adult pituitary progenitors that express the HMG box transcription factors SOX2 and SOX9. Here, we apply cell-lineage tracing analysis to demonstrate that SOX2- and SOX9-expressing progenitors can self-renew and give rise to endocrine cells in vivo, suggesting that they are tissue stem cells. Moreover, we show that they can become mobilized and differentiate into the appropriate endocrine cell types in response to physiological stress. Our results highlight the pituitary as a model for exploring how physiological changes influence stem cell behavior and suggest that manipulation of endogenous pituitary stem cells is a potential therapeutic strategy for pituitary deficiencies.

  19. Detecting variable responses in time-series using repeated measures ANOVA: Application to physiologic challenges

    PubMed Central

    Macey, Paul M.; Schluter, Philip J.; Macey, Katherine E.; Harper, Ronald M.

    2016-01-01

    We present an approach to analyzing physiologic timetrends recorded during a stimulus by comparing means at each time point using repeated measures analysis of variance (RMANOVA). The approach allows temporal patterns to be examined without an a priori model of expected timing or pattern of response. The approach was originally applied to signals recorded from functional magnetic resonance imaging (fMRI) volumes-of-interest (VOI) during a physiologic challenge, but we have used the same technique to analyze continuous recordings of other physiological signals such as heart rate, breathing rate, and pulse oximetry. For fMRI, the method serves as a complement to whole-brain voxel-based analyses, and is useful for detecting complex responses within pre-determined brain regions, or as a post-hoc analysis of regions of interest identified by whole-brain assessments. We illustrate an implementation of the technique in the statistical software packages R and SAS. VOI timetrends are extracted from conventionally preprocessed fMRI images. A timetrend of average signal intensity across the VOI during the scanning period is calculated for each subject. The values are scaled relative to baseline periods, and time points are binned. In SAS, the procedure PROC MIXED implements the RMANOVA in a single step. In R, we present one option for implementing RMANOVA with the mixed model function “lme”. Model diagnostics, and predicted means and differences are best performed with additional libraries and commands in R; we present one example. The ensuing results allow determination of significant overall effects, and time-point specific within- and between-group responses relative to baseline. We illustrate the technique using fMRI data from two groups of subjects who underwent a respiratory challenge. RMANOVA allows insight into the timing of responses and response differences between groups, and so is suited to physiologic testing paradigms eliciting complex response patterns

  20. Physiological and behavioral responses in Drosophila melanogaster to odorants present at different plant maturation stages.

    PubMed

    Versace, Elisabetta; Eriksson, Anna; Rocchi, Federico; Castellan, Irene; Sgadò, Paola; Haase, Albrecht

    2016-09-01

    The fruit fly Drosophila melanogaster feeds and oviposits on fermented fruit, hence its physiological and behavioral responses are expected to be tuned to odorants abundant during later stages of fruit maturation. We used a population of about two-hundred isogenic lines of D. melanogaster to assay physiological responses (electroantennograms (EAG)) and behavioral correlates (preferences and choice ratio) to odorants found at different stages of fruit maturation. We quantified electrophysiological and behavioral responses of D. melanogaster for the leaf compound β-cyclocitral, as well as responses to odorants mainly associated with later fruit maturation stages. Electrophysiological and behavioral responses were modulated by the odorant dose. For the leaf compound we observed a steep dose-response curve in both EAG and behavioral data and shallower curves for odorants associated with later stages of maturation. Our data show the connection between sensory and behavioral responses and are consistent with the specialization of D. melanogaster on fermented fruit and avoidance of high doses of compounds associated with earlier stages of maturation. Odor preferences were modulated in a non-additive way when flies were presented with two alternative odorants, and combinations of odorants elicited higher responses than single compounds.

  1. What Constitutes Effective Coping and Efficient Physiologic Regulation following Psychosocial Stress Depends on Involuntary Stress Responses

    PubMed Central

    Bendezú, Jason J.; Perzow, Sarah E. D.; Wadsworth, Martha E.

    2017-01-01

    This study utilized a random-assignment experimental design to examine the interactive contributions of youth-reported trait involuntary stress responses (ISRs) and effortful coping on physiologic reactivity and recovery patterns in preadolescent boys and girls. Fourth- and fifth-grade child-parent dyads (N=126) participated in this study. Children were exposed to the Trier Social Stress Test (TSST-C) and then to one of two randomly-assigned experimental coping conditions: behavioral distraction and cognitive avoidance. Children’s ISRs were examined as predictors of salivary cortisol and alpha-amylase (sAA) reactivity as well as moderators of the effect of coping condition on cortisol and sAA recovery trajectories. Multi-level modeling analyses did not link ISRs to physiologic reactivity patterning. ISRs and coping condition interacted to predict differential physiologic recovery trajectories. In the distraction condition, children reporting high ISR levels displayed less efficient cortisol and sAA recovery than children reporting low ISR levels. Surprisingly, the opposite was found for children reporting high ISR levels in the avoidance condition. These children displayed more efficient physiologic recovery relative to their high ISR level peers in the distraction condition. Findings suggest that the efficiency of preadolescents’ physiologic recovery following stress may depend on regulatory fit between children’s ISR levels and cues from their coping environment. PMID:27448527

  2. Physiological responses of the seagrass Posidonia oceanica as indicators of fish farm impact.

    PubMed

    Pérez, Marta; García, Tania; Invers, Olga; Ruiz, Juan Manuel

    2008-05-01

    The development of aquaculture along the Mediterranean coastline degrades the marine environment, in particular Posidonia oceanica meadows, which, in extreme cases, show high mortality. Here we studied the effects of organic matter and nutrient input from the effluents of three fish farms, located along the Mediterranean coast, on P. oceanica physiology. For this purpose, we measured physiological variables such as total nitrogen (N) content, free amino acid (FAA) concentration and composition, N stable isotope ratio (delta 15N), total phosphorus (P) content and total non-structural carbohydrate (TNC) content in plant tissues and epiphytes affected by organic discharges (highly impacted stations: HI, and less impacted stations: LI) and compared these results with those obtained in references sites (control stations: C). For all the descriptors analyzed in P. oceanica epiphytes, the values recorded in the vicinity of cages were, in general, much higher than those in C. Leaves did not respond consistently in any case. Total N content and delta 15N in epiphytes together with the total P content in rhizomes and epiphytes were the physiological descriptors that showed the most consistent responses to fish farm effluents. On the basis of these observations, we conclude that fish farm activities strongly affect the physiological parameters of nearby P. oceanica meadows. We propose that changes in these physiological parameters may be useful indicators of marine environmental degradation in studies that monitor the effects of fish farming.

  3. Delayed system response times affect immediate physiology and the dynamics of subsequent button press behavior.

    PubMed

    Kohrs, Christin; Hrabal, David; Angenstein, Nicole; Brechmann, André

    2014-11-01

    System response time research is an important issue in human-computer interactions. Experience with technical devices and general rules of human-human interactions determine the user's expectation, and any delay in system response time may lead to immediate physiological, emotional, and behavioral consequences. We investigated such effects on a trial-by-trial basis during a human-computer interaction by measuring changes in skin conductance (SC), heart rate (HR), and the dynamics of button press responses. We found an increase in SC and a deceleration of HR for all three delayed system response times (0.5, 1, 2 s). Moreover, the data on button press dynamics was highly informative since subjects repeated a button press with more force in response to delayed system response times. Furthermore, the button press dynamics could distinguish between correct and incorrect decisions and may thus even be used to infer the uncertainty of a user's decision.

  4. Biomechanical and Physiological Response to a Contemporary Soccer Match-Play Simulation.

    PubMed

    Page, Richard M; Marrin, Kelly; Brogden, Chris M; Greig, Matt

    2015-10-01

    The intermittent activity profile of soccer match play increases the complexity of the physical demands. Laboratory models of soccer match play have value in controlled intervention studies, developed around manipulations of the activity profile to elicit a desired physiological or biomechanical response. Contemporary notational analyses suggest a profile comprising clusters of repeat sprint efforts, with implications for both biomechanical and physiological load. Eighteen male soccer players completed a 90-minute treadmill protocol based on clusters of repeat sprint efforts. Each 15-minute bout of exercise was quantified for uniaxial (medial-lateral [PLML], anterior-posterior [PLAP], and vertical [PLV]) and triaxial PlayerLoad (PLTotal). The relative contributions of the uniaxial PlayerLoad vectors (PLML%, PLAP%, and PLV%) were also examined. In addition to rating of perceived exertion, the physiological response comprised heart rate, blood lactate concentration, and both peak and average oxygen consumption. Triaxial PlayerLoad increased (p = 0.02) with exercise duration (T0-15 = 206.26 ± 14.37 a.u. and T45-60 = 214.51 ± 14.97 a.u.) and remained elevated throughout the second half. This fatigue effect was evident in both the PLML and PLAP movement planes. The mean relative contributions of PLV%:PLAP%:PLML% were consistent at ∼48:28:23. The physiological response was comparable with match play, and a similar magnitude of increase at ∼5% was observed in physiological parameters. Changes in PlayerLoad might reflect a change in movement quality with fatigue, with implications for both performance and injury risk, reflecting observations of match play. The high frequency of speed change elicits a 23% contribution from mediolateral load, negating the criticism of treadmill protocols as "linear."

  5. Physiological responses of freeze-tolerant and -intolerant frogs: clues to evolution of anuran freeze tolerance.

    PubMed

    Costanzo, J P; Lee, R E; Lortz, P H

    1993-10-01

    Freeze tolerance in the wood frog, Rana sylvatica, is promoted by multiple, integrated physiological responses to ice forming within body tissues. By analyzing the freezing responses of the sympatric, but freeze intolerant, leopard frog (R. pipiens), we sought clues to the evolution of anuran freeze tolerance. Physiological responses critical to R. sylvatica's freeze tolerance, such as the synthesis and distribution of the cryoprotectant glucose, protective dehydration of organs, and deferred cardiac failure, were present, but comparatively less pronounced, in R. pipiens. Both species were innately tolerant of hyperglycemia. Glucose supplements did not enhance the freezing viability of R. pipiens, although in vitro tests of cryoprotectant efficacy revealed that glucose and glycerol provided comparable protection to erythrocytes of both species. We conclude that the evolution of freeze tolerance in R. sylvatica is not only promoted by its desiccation tolerance and the fortuitous biophysical consequences of freezing (e.g., exothermic induction of cardioacceleration and moderation of cooling rate) but also involves a progressive enhancement of fundamental physiological stress responses.

  6. Activation of physiological stress responses by a natural reward: Novel vs. repeated sucrose intake.

    PubMed

    Egan, Ann E; Ulrich-Lai, Yvonne M

    2015-10-15

    Pharmacological rewards, such as drugs of abuse, evoke physiological stress responses, including increased heart rate and blood pressure, and activation of the hypothalamic-pituitary-adrenal (HPA) axis. It is not clear to what extent the natural reward of palatable foods elicits similar physiological responses. In order to address this question, HPA axis hormones, heart rate, blood pressure and brain pCREB immunolabeling were assessed following novel and repeated sucrose exposure. Briefly, adult, male rats with ad libitum food and water were given either a single (day 1) or repeated (twice-daily for 14 days) brief (up to 30 min) exposure to a second drink bottle containing 4 ml of 30% sucrose drink vs. water (as a control for bottle presentation). Sucrose-fed rats drank more than water-fed on all days of exposure, as expected. On day 1 of exposure, heart rate, blood pressure, plasma corticosterone, and locomotion were markedly increased by presentation of the second drink bottle regardless of drink type. After repeated exposure (day 14), these responses habituated to similar extents regardless of drink type and pCREB immunolabeling in the hypothalamic paraventricular nucleus (PVN) also did not vary with drink type, whereas basolateral amygdala pCREB was increased by sucrose intake. Taken together, these data suggest that while sucrose is highly palatable, physiological stress responses were evoked principally by the drink presentation itself (e.g., an unfamiliar intervention by the investigators), as opposed to the palatability of the offered drink.

  7. Physiological responses during matches and profile of elite pencak silat exponents.

    PubMed

    Aziz, Abdul Rashid; Tan, Benedict; Teh, Kong Chuan

    2002-12-01

    This is a descriptive, cross-sectional study describing the physiological responses during competitive matches and profile of elite exponents of an emerging martial art sport, pencak silat. Thirty exponents (21 males and 9 females) were involved in the study. Match responses (i.e. heart rate (HR) throughout match and capillary blood lactate concentration, [La], at pre-match and at the end of every round) were obtained during actual competitive duels. Elite silat exponents' physiological attributes were assessed via anthropometry, vertical jump, isometric grip strength, maximal oxygen uptake, and the Wingate 30 s anaerobic test of the upper and lower body, in the laboratory. The match response data showed that silat competitors' mean HR was > 84% of estimated HR maximum and levels of [La] ranged from 6.7 - 18.7 mMol(-1) during matches. This suggests that competitive silat matches are characterised by high aerobic and anaerobic responses. In comparison to elite taekwondo and judo athletes' physiological characteristics, elite silat exponents have lower aerobic fitness and grip strength, but greater explosive leg power (vertical jump). Generally, they also possessed a similar anaerobic capability in the lower but markedly inferior anaerobic capability in the upper body.

  8. Effect of coffee ingestion on physiological responses and ratings of perceived exertion during submaximal endurance exercise.

    PubMed

    Demura, Shinichi; Yamada, Takayoshi; Terasawa, Naoko

    2007-12-01

    This study examined the effect of coffee ingestion on physiological responses and ratings of perceived exertion (RPE) during submaximal endurance exercises by 10 healthy young adults. Participants performed a submaximal endurance cycling exercise corresponding to 60% of maximum oxygen uptake capacity for 60 min. They drank either caffeinated coffee with a caffeine content of 6 mg/kg body-mass of each participant (Caf) or a decaffeinated coffee (Dec) 60 min. before starting exercise. Participants participated in the blind design experiment under both conditions at a one-week interval. Oxygen uptake, respiratory exchange ratio, heart rate, RPE, and plasma lactate concentration were measured during the endurance exercise. The RPE under the Caffeinated coffee condition during the last 60 min. of endurance exercise was significantly lower than that in the Decaffeinated coffee condition. However, no significant differences in any physiological response were observed between conditions. Thus, caffeine ingestion 60 min. before starting exercise had an insignificant effect on the physiological responses, except for RPE during submaximal endurance exercises for 60 min. Caffeine ingestion before endurance exercise of relatively low intensity may have a beneficial effect on psychological responses.

  9. Physiological Responses During Matches and Profile of Elite Pencak Silat Exponents

    PubMed Central

    Aziz, Abdul Rashid; Tan, Benedict; Teh, Kong Chuan

    2002-01-01

    This is a descriptive, cross-sectional study describing the physiological responses during competitive matches and profile of elite exponents of an emerging martial art sport, pencak silat. Thirty exponents (21 males and 9 females) were involved in the study. Match responses (i.e. heart rate (HR) throughout match and capillary blood lactate concentration, [La], at pre-match and at the end of every round) were obtained during actual competitive duels. Elite silat exponents’ physiological attributes were assessed via anthropometry, vertical jump, isometric grip strength, maximal oxygen uptake, and the Wingate 30 s anaerobic test of the upper and lower body, in the laboratory. The match response data showed that silat competitors’ mean HR was > 84% of estimated HR maximum and levels of [La] ranged from 6.7 - 18.7 mMol-1 during matches. This suggests that competitive silat matches are characterised by high aerobic and anaerobic responses. In comparison to elite taekwondo and judo athletes’ physiological characteristics, elite silat exponents have lower aerobic fitness and grip strength, but greater explosive leg power (vertical jump). Generally, they also possessed a similar anaerobic capability in the lower but markedly inferior anaerobic capability in the upper body. PMID:24748847

  10. Affective and physiological sexual response patterns: the effects of instructions on sexually functional and dysfunctional men.

    PubMed

    Heiman, J R; Rowland, D L

    1983-01-01

    To more clearly characterize the patterns of cognitive-affective and physiological responses concomitant with male sexual dysfunction, the present study compared 14 sexually dysfunctional and 16 sexually functional men. All individuals listened to two sexually explicit tapes and engaged in a self-generated fantasy, while genital, heart rate and scaled cognitive affective responses were recorded. Two types of instructions, a performance demand set and a non-demand sensate focus set, preceded the erotic tapes in counterbalanced order. As predicted, dysfunctional men showed less genital tumescence to tapes preceded by the demand than the non-demand instructions. Contrary to expectation, functional men showed greater penile tumescence to the tapes preceded by demand instructions. Self-reported sexual arousal did not follow the penile tumescence pattern but instead indicated that the dysfunctional sample was significantly less subjectively aroused to the tapes and fantasy. There were other significant differences between the groups. Dysfunctional men showed greater general psychological distress, as measured by the SCL-90, including elevated somaticism, anxiety and depression scores. During the experimental session, dysfunctional men also evidenced greater awareness of a variety of physiological responses, as well as more negative and fewer positive cognitive-affective states. These data are discussed in terms of the interaction of affective and physiological responses, differences in contextual meanings of instructional sets given the presence of a dysfunction, and theoretical and clinical conceptualizations of male sexual functioning.

  11. Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement.

    PubMed

    Aguado, Ana; Capote, Nieves; Romero, Fernando; Dodd, Ian C; Colmenero-Flores, José M

    2014-10-01

    To investigate effects of soil moisture heterogeneity on plant physiology and gene expression in roots and leaves, three treatments were implemented in sunflower plants growing with roots split between two compartments: a control (C) treatment supplying 100% of plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, either evenly distributed to both compartments (deficit irrigation - DI) or unevenly distributed to ensure distinct wet and dry compartments (partial rootzone drying - PRD). Plants receiving the same amount of water responded differently under the two irrigation systems. After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, concomitant with decreased leaf water potential (Ψleaf) and increased leaf xylem ABA concentration. Six water-stress responsive genes were highly induced in roots growing in the drying soil compartment of PRD plants, and their expression was best correlated with local soil water content. On the other hand, foliar gene expression differed significantly from that of the root and correlated better with xylem ABA concentration and Ψleaf. While the PRD irrigation strategy triggered stronger physiological and molecular responses, suggesting a more intense and systemic stress reaction due to local dehydration of the dry compartment of PRD plants, the DI strategy resulted in similar water savings without strongly inducing these responses. Correlating physiological and molecular responses in PRD/DI plants may provide insights into the severity and location of water deficits and may enable a better understanding of long-distance signalling mechanisms.

  12. Vulnerability to predation and physiological stress responses of experimentally descaled juvenile Chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Gadomski, Dena M.; Mesa, Matthew G.; Olson, Todd M.

    1994-01-01

    Juvenile salmonids,Oncorhynchus spp., commonly encounter conditions (e.g., during hatchery release and dam passage) that result in damage to the skin, scale, and slime complex. We conducted laboratory experiments to determine if descaling of juvenile chinook salmon,O. tshawytscha, increased their vulnerability to predation, and to assess the physiological stress responses elicited by descaling. Salmon were experimentally descaled on either 10% or 20% of their total body area. When offered equal numbers of control and descaled juvenile chinook salmon, northern squawfish,Ptychocheilus oregonensis, did not consume significantly more of either prey type (48–60% of consumed prey were descaled). Juvenile chinook salmon descaled on 10% of their body area did show significant physiological stress responses, however. Mean concentrations of plasma cortisol peaked 1 h after descaling, and returned to control levels by 12 h. Plasma glucose peaked 3 h post-treatment and remained elevated for 24 h. Plasma lactate increased immediately following treatment and returned to undisturbed control levels by 3 h. The osmoregulatory response of plasma potassium was highly variable, but plasma sodium decreased immediately and remained low for 24 h. The observed physiological responses suggest that descaling of juvenile chinook salmon could result in decreased resistance to disease and other stressors encountered in the field, possibly leading to reduced performance capacity and lowered survival.

  13. Physiological and cognitive responses when riding an electrically assisted bicycle versus a classical bicycle.

    PubMed

    Theurel, J; Theurel, A; Lepers, R

    2012-01-01

    The present study compared the physiological responses and the subsequent cognitive performance when riding an electrically assisted (EB) versus a classical (CB) bicycle. Oxygen uptake, heart rate and leg extensor muscles electromyographic (EMG) activity were recorded in 10 subjects during a 30-min intermittent cycling exercise performed with EB versus CB. Cognitive performance was evaluated by a mail sorting test, performed at rest and after each cycling session. Averaged oxygen uptake and heat rate were significantly (P < 0.05) lower during EB cycling than during CB cycling. The EMG activities of the vastus lateralis, rectus femoris and gastrocnemius medialis muscles were significantly (P < 0.001) greater during CB cycling than during EB cycling. The time to complete the mail sorting test was significantly (P < 0.05) shorter after EB cycling than after CB cycling. Because EB cycling reduced muscle strains and physiological stress, it might offer benefits for those using bicycles in their work, such as postal workers and police officers. STATEMENT OF RELEVANCE: This study compared physiological and cognitive responses when riding an electrically assisted versus a classical bicycle. The results showed that the electrically assisted bicycle led to reduced muscle strains and physiological stress and, therefore, might offer benefits for those using bicycles in their work, such as postal workers and police officers.

  14. Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes.

    PubMed

    Yang, Fan; Wang, Yong; Miao, Ling-Feng

    2010-08-01

    Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehder were examined during a single growing season in a greenhouse for comparative analysis of their physiological and proteomic responses to drought stress. The said species originate from high and low altitudes, respectively, of the eastern Himalaya. Results revealed that the adaptive responses to drought stress vary between the two poplar species. As a consequence of drought stress, the stem height increment and leaf number increment are more significantly inhibited in P. cathayana compared with P. kangdingensis. On the other hand, in response to drought stress, more significant cellular damages such as reduction in leaf relative water content and CO(2) assimilation rate, increments in the contents of malondialdehyde and hydrogen peroxide and downregulation or degradation of proteins related to photosynthesis occur in P. cathayana compared with P. kangdingensis. On the other hand, P. kangdingensis can cope better with the negative impact on the entire regulatory network. This includes more efficient increases in content of solute sugar, soluble protein and free proline and activities of antioxidant enzymes, as well as specific expressions of certain proteins related to protein processing, redox homeostasis and sugar metabolism. Morphological consequences as well as physiological and proteomic responses to drought stress between species revealed that P. kangdingensis originating from a high altitude manifest stronger drought adaptation than did P. cathayana originating from a low altitude. Functions of various proteins identified by proteomic experiment are related with physiological phenomena. Physiological and proteomic responses to drought stress in poplar may work cooperatively to establish a new cellular homeostasis, allowing poplar to develop a certain level of drought tolerance.

  15. Response of Two Mytilids to a Heatwave: The Complex Interplay of Physiology, Behaviour and Ecological Interactions

    PubMed Central

    Gestoso, Ignacio; Lima, Fernando P.; Vázquez, Elsa; Comeau, Luc A.; Gomes, Filipa; Seabra, Rui

    2016-01-01

    Different combinations of behavioural and physiological responses may play a crucial role in the ecological success of species, notably in the context of biological invasions. The invasive mussel Xenostrobus securis has successfully colonised the inner part of the Galician Rias Baixas (NW Spain), where it co-occurs with the commercially-important mussel Mytilus galloprovincialis. This study investigated the effect of a heatwave on the physiological and behavioural responses in monospecific or mixed aggregations of these species. In a mesocosm experiment, mussels were exposed to simulated tidal cycles and similar temperature conditions to those experienced in the field during a heat-wave that occurred in the summer of 2013, when field robo-mussels registered temperatures up to 44.5°C at low tide. The overall responses to stress differed markedly between the two species. In monospecific aggregations M. galloprovincialis was more vulnerable than X. securis to heat exposure during emersion. However, in mixed aggregations, the presence of the invader was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. galloprovincialis to heat exposure was reflected in a higher mortality level, greater induction of Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied by a lower heart rate (bradycardia). The findings show that the invader enhanced the physiological performance of M. galloprovincialis, highlighting the importance of species interactions in regulating responses to environmental stress. Understanding the complex interactions between ecological factors and physiological and behavioural responses of closely-related species is essential for predicting the impacts of invasions in the context of future climate change. PMID:27736896

  16. Response of Two Mytilids to a Heatwave: The Complex Interplay of Physiology, Behaviour and Ecological Interactions.

    PubMed

    Olabarria, Celia; Gestoso, Ignacio; Lima, Fernando P; Vázquez, Elsa; Comeau, Luc A; Gomes, Filipa; Seabra, Rui; Babarro, José M F

    2016-01-01

    Different combinations of behavioural and physiological responses may play a crucial role in the ecological success of species, notably in the context of biological invasions. The invasive mussel Xenostrobus securis has successfully colonised the inner part of the Galician Rias Baixas (NW Spain), where it co-occurs with the commercially-important mussel Mytilus galloprovincialis. This study investigated the effect of a heatwave on the physiological and behavioural responses in monospecific or mixed aggregations of these species. In a mesocosm experiment, mussels were exposed to simulated tidal cycles and similar temperature conditions to those experienced in the field during a heat-wave that occurred in the summer of 2013, when field robo-mussels registered temperatures up to 44.5°C at low tide. The overall responses to stress differed markedly between the two species. In monospecific aggregations M. galloprovincialis was more vulnerable than X. securis to heat exposure during emersion. However, in mixed aggregations, the presence of the invader was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. galloprovincialis to heat exposure was reflected in a higher mortality level, greater induction of Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied by a lower heart rate (bradycardia). The findings show that the invader enhanced the physiological performance of M. galloprovincialis, highlighting the importance of species interactions in regulating responses to environmental stress. Understanding the complex interactions between ecological factors and physiological and behavioural responses of closely-related species is essential for predicting the impacts of invasions in the context of future climate change.

  17. First Outbreak Response Using an Oral Cholera Vaccine in Africa: Vaccine Coverage, Acceptability and Surveillance of Adverse Events, Guinea, 2012

    PubMed Central

    Luquero, Francisco J.; Grout, Lise; Ciglenecki, Iza; Sakoba, Keita; Traore, Bala; Heile, Melat; Dialo, Alpha Amadou; Itama, Christian; Serafini, Micaela; Legros, Dominique; Grais, Rebecca F.

    2013-01-01

    Background Despite World Health Organization (WHO) prequalification of two safe and effective oral cholera vaccines (OCV), concerns about the acceptability, potential diversion of resources, cost and feasibility of implementing timely campaigns has discouraged their use. In 2012, the Ministry of Health of Guinea, with the support of Médecins Sans Frontières organized the first mass vaccination campaign using a two-dose OCV (Shanchol) as an additional control measure to respond to the on-going nationwide epidemic. Overall, 316,250 vaccines were delivered. Here, we present the results of vaccination coverage, acceptability and surveillance of adverse events. Methodology/Principal Findings We performed a cross-sectional cluster survey and implemented adverse event surveillance. The study population included individuals older than 12 months, eligible for vaccination, and residing in the areas targeted for vaccination (Forécariah and Boffa, Guinea). Data sources were household interviews with verification by vaccination card and notifications of adverse events from surveillance at vaccination posts and health centres. In total 5,248 people were included in the survey, 3,993 in Boffa and 1,255 in Forécariah. Overall, 89.4% [95%CI:86.4–91.8%] and 87.7% [95%CI:84.2–90.6%] were vaccinated during the first round and 79.8% [95%CI:75.6–83.4%] and 82.9% [95%CI:76.6–87.7%] during the second round in Boffa and Forécariah respectively. The two dose vaccine coverage (including card and oral reporting) was 75.8% [95%CI: 71.2–75.9%] in Boffa and 75.9% [95%CI: 69.8–80.9%] in Forécariah respectively. Vaccination coverage was higher in children. The main reason for non-vaccination was absence. No severe adverse events were notified. Conclusions/Significance The well-accepted mass vaccination campaign reached high coverage in a remote area with a mobile population. Although OCV should not be foreseen as the long-term solution for global cholera control, they should be

  18. Behavioral Avoidance - Will Physiological Insecticide Resistance Level of Insect Strains Affect Their Oviposition and Movement Responses?

    PubMed

    Nansen, Christian; Baissac, Olivier; Nansen, Maria; Powis, Kevin; Baker, Greg

    2016-01-01

    Agricultural organisms, such as insect herbivores, provide unique opportunities for studies of adaptive evolutionary processes, including effects of insecticides on movement and oviposition behavior. In this study, Brassica leaves were treated with one of two non-systemic insecticides and exposed to two individual strains (referred to as single or double resistance) of diamondback moth (Plutella xylostella) (DBM) exhibiting physiological resistance. Behavioral responses by these two strains were compared as part of characterizing the relative effect of levels of physiological resistance on the likelihood of insects showing signs of behavioral avoidance. For each DBM strain, we used choice bioassays to quantify two possible types of behavioral avoidance: 1) females ovipositing predominantly on leaf surfaces without insecticides, and 2) larvae avoiding insecticide-treated leaf surfaces. In three-choice bioassays (leaves with no pesticide, 50% coverage with pesticide, or 100% coverage with pesticide), females from the single resistance DBM strain laid significantly more eggs on water treated leaves compared to leaves with 100% insecticide coverage (both gamma-cyhalothrin and spinetoram). Females from the double resistance DBM strain also laid significantly more eggs on water treated leaves compared to leaves with 100% gamma-cyhalothrin, while moths did not adjust their oviposition behavior in response to spinetoram. Larvae from the single resistance DBM strain showed a significant increase in mobility in response to both insecticides and avoided insecticide-treated portions of leaves when given a choice. On the other hand, DBM larvae from the double resistance strain showed a significant decrease in mobility in response to insecticides, and they did not avoid insecticide-treated portions of leaves when given a choice. Our results suggest that pest populations with physiological resistance may show behavioral avoidance, as resistant females avoided oviposition on

  19. Behavioral Avoidance - Will Physiological Insecticide Resistance Level of Insect Strains Affect Their Oviposition and Movement Responses?

    PubMed Central

    Nansen, Christian; Baissac, Olivier; Nansen, Maria; Powis, Kevin; Baker, Greg

    2016-01-01

    Agricultural organisms, such as insect herbivores, provide unique opportunities for studies of adaptive evolutionary processes, including effects of insecticides on movement and oviposition behavior. In this study, Brassica leaves were treated with one of two non-systemic insecticides and exposed to two individual strains (referred to as single or double resistance) of diamondback moth (Plutella xylostella) (DBM) exhibiting physiological resistance. Behavioral responses by these two strains were compared as part of characterizing the relative effect of levels of physiological resistance on the likelihood of insects showing signs of behavioral avoidance. For each DBM strain, we used choice bioassays to quantify two possible types of behavioral avoidance: 1) females ovipositing predominantly on leaf surfaces without insecticides, and 2) larvae avoiding insecticide-treated leaf surfaces. In three-choice bioassays (leaves with no pesticide, 50% coverage with pesticide, or 100% coverage with pesticide), females from the single resistance DBM strain laid significantly more eggs on water treated leaves compared to leaves with 100% insecticide coverage (both gamma-cyhalothrin and spinetoram). Females from the double resistance DBM strain also laid significantly more eggs on water treated leaves compared to leaves with 100% gamma-cyhalothrin, while moths did not adjust their oviposition behavior in response to spinetoram. Larvae from the single resistance DBM strain showed a significant increase in mobility in response to both insecticides and avoided insecticide-treated portions of leaves when given a choice. On the other hand, DBM larvae from the double resistance strain showed a significant decrease in mobility in response to insecticides, and they did not avoid insecticide-treated portions of leaves when given a choice. Our results suggest that pest populations with physiological resistance may show behavioral avoidance, as resistant females avoided oviposition on

  20. Moderation of physiological stress responses by personality traits and daily hassles: less flexibility of immune system responses.

    PubMed

    Peters, Madelon L; Godaert, Guido L R; Ballieux, Rudy E; Heijnen, Coby J

    2003-12-01

    Previously we demonstrated that stressors varying on the dimension of mental effort and controllability have distinctive effects on cardiovascular, endocrine and immune system responses. The purpose of the present study was to relate individual differences in physiological stress responsivity to task appraisal and stress-induced mood changes (issue 1), trait characteristics (issue 2) and daily hassles (issue 3). Appraisal and mood changes did not mediate the differential effects of the stressors. The trait characteristics, aggression and external locus of control and daily hassles moderated the effect of the stressor on physiological parameters, especially immune parameters. Moreover, the moderation effect was different in the high versus the low effort stress task. High aggression, high external locus of control and more daily hassles were associated with increased reactivity in the low effort condition and decreased reactivity in the high effort condition, which is suggested to reflect less differentiated responding to changing task demands and hence, less flexibility in the immune system.

  1. Adverse Effects of Pseudomonas aeruginosa on CFTR Chloride Secretion and the Host Immune Response.

    PubMed

    Stanton, Bruce A

    2017-01-25

    In the healthy lung the opportunistic pathogen, P. aeruginosa, is rapidly eliminated by mucociliary clearance, a process that is dependent on the activity of the CFTR anion channel that, in concert with a number of other transport proteins, regulates the volume and composition of the periciliary surface liquid. This fluid layer is essential to enable cilia to clear pathogens from the lungs. However, in cystic fibrosis (CF), mutations in the CFTR gene reduce Cl- and HCO3- secretion, thereby decreasing periciliary surface liquid volume and mucociliary clearance of bacteria. In CF this leads to persistent infection with the opportunistic pathogen, P. aeruginosa, which is the cause of reduced lung function and death in ~95% of CF patients. Others and we have conducted studies to elucidate the effects of P. aeruginosa on wild type and Phe508del-CFTR Cl- secretion as well as on the host immune response. These studies have demonstrated that Cif (CFTR Inhibitory Factor), a virulence factor secreted by P. aeruginosa, is associated with reduced lung function in CF, induces the ubiquitination and degradation of wt-CFTR as well as TAP1, which plays a key role in viral and bacterial antigen presentation, and inhibits the generation of host proresolving lipids. Cif also enhances the degradation of Phe508del-CFTR that has been rescued by ORKAMBI, a drug approved for CF patients homozygous for the PheF508del-CFTR mutation, thereby reducing drug efficacy. This review is based on the Hans Ussing Distinguished Lecture at the 2016 Experimental Biology Meeting given by the author.

  2. Physiologic responses to water immersion in man: A compendium of research

    NASA Technical Reports Server (NTRS)

    Kollias, J.; Vanderveer, D.; Dorchak, K. J.; Greenleaf, J. E.

    1976-01-01

    A total of 221 reports published through December 1973 in the area of physiologic responses to water immersion in man were summarized. The author's abstract or summary was used whenever possible. Otherwise, a detailed annotation was provided under the subheadings: (1) purpose, (2) procedures and methods, (3) results, and (4) conclusions. The annotations are in alphabetical order by first author; author and subject indexes are included. Additional references are provided in the selected bibliography.

  3. The effect of melody on the physiological responses of heel sticks pain in neonates

    PubMed Central

    Marofi, Maryam; Nikobakht, Farzaneh; Badiee, Zohreh; Golchin, Mehri

    2015-01-01

    Background: During health care in the neonatal intensive care unit (NICU), infants undergo extremely painful procedures, which may cause problems, if not controlled, such as changes in the pattern of respiratory rate, heart rate, and blood oxygen saturation. The present study aimed to find the effect of melody on the physiological responses of neonates’ heel stick pain. Materials and Methods: This quasi-experimental study was conducted in Alzahra Hospital (Isfahan, Iran) for 5 months. Fifty infants were selected through convenient sampling method and were randomly assigned in equal numbers to two groups (n = 25). In the melody group (intervention), a selected melody was played for the infants at a distance of 1 m from them, with a sound intensity of 65 dB, from 3 minutes before, during, and after the heel stick procedure, respectively, and their physiological responses were observed with a monitoring system and recorded at the afore-mentioned time periods. Physiological responses were also recorded in the control group (no intervention) 3 min before, during, and after the heel stick procedure, respectively. Results: Means of respiratory and pulse rates in the melody and control groups showed a significant difference at different time points. But the mean blood oxygen saturation in the melody group showed no significant difference at different time points, although the difference was significant in the control group. Conclusions: The results showed that melody could maintain more balance in some physiological responses of infants, such as the respiratory rate and pulse rate during the Guthrie test. Therefore, melody is recommended to be used to prevent the destructive effects of pain in infants during painful procedures. PMID:26120343

  4. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus.

    PubMed

    Ings, Jennifer; Mur, Luis A J; Robson, Paul R H; Bosch, Maurice

    2013-01-01

    High yielding perennial biomass crops of the species Miscanthus are widely recognized as one of the most promising lignocellulosic feedstocks for the production of bioenergy and bioproducts. Miscanthus is a C4 grass and thus has relatively high water use efficiency. Cultivated Miscanthus comprises primarily of a single clone, Miscanthus x giganteus, a sterile hybrid between M. sacchariflorus and M. sinensis. M. x giganteus is high yielding and expresses desirable combinations of many traits present in the two parental species types; however, it responds poorly to low water availability. To identify the physiological basis of the response to water stress in M. x giganteus and to identify potential targets for breeding improvements we characterized the physiological responses to water-deficit stress in a pot experiment. The experiment has provided valuable insights into the temporal aspects of drought-induced responses of M. x giganteus. Withholding water resulted in marked changes in plant physiology with growth-associated traits among the first affected, the most rapid response being a decline in the rate of stem elongation. A reduction in photosynthetic performance was among the second set of changes observed; indicated by a decrease in stomatal conductance followed by decreases in chlorophyll fluorescence and chlorophyll content. Measures reflecting the plant water status were among the last affected by the drought treatment. Metabolite analysis indicated that proline was a drought stress marker in M. x giganteus, metabolites in the proline synthesis pathway were more abundant when stomatal conductance decreased and dry weight accumulation ceased. The outcomes of this study in terms of drought-induced physiological changes, accompanied by a proof-of-concept metabolomics investigation, provide a platform for identifying targets for improved drought-tolerance of the Miscanthus bioenergy crop.

  5. Integration of Life-Stage Physiologically Based Pharmacokinetic Models with Adverse Outcome Pathways and Environmental Exposure Models to Screen for Environmental Hazards

    EPA Science Inventory

    A Life-stage Physiologically-Based Pharmacokinetic (PBPK) model was developed to include descriptions of several life-stage events such as pregnancy, fetal development, the neonate and child growth. The overall modeling strategy was used for in vitro to in vivo (IVIVE) extrapolat...

  6. Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays L.) by seed electromagnetic treatment.

    PubMed

    Javed, Namra; Ashraf, Muhammad; Akram, Nudrat Aisha; Al-Qurainy, Fahad

    2011-01-01

    Effects of varying preseed magnetic treatments on growth, chlorophyll pigments, photosynthesis, water relation attributes, fluorescence and levels of osmoprotectants in maize plants were tested under normal and drought stress conditions. Seeds of two maize cultivars were treated with different (T0 [0 mT], T1 [100 mT for 5 min], T2 [100 mT for 10 min], T3 [150 mT for 5 min] and T4 [150 mT for 10 min]) electromagnetic treatments. Drought stress considerably suppressed growth, chlorophyll a and b pigments, leaf water potential, photosynthetic rate (A), stomatal conductance (g(s)) and substomatal CO(2) concentration (C(i)), while it increased leaf glycinebetaine and proline accumulation in both maize cultivars. However, pretreated seeds with different magnetic treatments significantly alleviated the drought-induced adverse effects on growth by improving chlorophyll a, A, E, g(s), C(i) and photochemical quenching and nonphotochemical quenching, while it had no significant effect on other attributes. However, different magnetic treatments negatively affected the g(s) and C(i) particularly in cv. Agaiti-2002 under drought stress conditions. Of all magnetic treatments, 100 and 150 mT for 10 min were most effective in alleviating the drought-induced adverse effects. Overall, preseed electromagnetic treatments could be used to minimize the drought-induced adverse effects on different crop plants.

  7. Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies.

    PubMed

    García, María José; Romera, Francisco Javier; Lucena, Carlos; Alcántara, Esteban; Pérez-Vicente, Rafael

    2015-09-01

    To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones and signaling substances have been implicated. It was suggested several years ago that ethylene participates in the regulation of responses to iron and phosphorous deficiency. More recently, its role has been extended to other deficiencies, such as potassium, sulfur, and others. The role of ethylene in so many deficiencies suggests that, to confer specificity to the different responses, it should act through different transduction pathways and/or in conjunction with other signals. In this update, the data supporting a role for ethylene in the regulation of responses to different nutrient deficiencies will be reviewed. In addition, the results suggesting the action of ethylene through different transduction pathways and its interaction with other hormones and signaling substances will be discussed.

  8. Ethylene and the Regulation of Physiological and Morphological Responses to Nutrient Deficiencies

    PubMed Central

    García, María José; Romera, Francisco Javier; Lucena, Carlos; Alcántara, Esteban; Pérez-Vicente, Rafael

    2015-01-01

    To cope with nutrient deficiencies, plants develop both morphological and physiological responses. The regulation of these responses is not totally understood, but some hormones and signaling substances have been implicated. It was suggested several years ago that ethylene participates in the regulation of responses to iron and phosphorous deficiency. More recently, its role has been extended to other deficiencies, such as potassium, sulfur, and others. The role of ethylene in so many deficiencies suggests that, to confer specificity to the different responses, it should act through different transduction pathways and/or in conjunction with other signals. In this update, the data supporting a role for ethylene in the regulation of responses to different nutrient deficiencies will be reviewed. In addition, the results suggesting the action of ethylene through different transduction pathways and its interaction with other hormones and signaling substances will be discussed. PMID:26175512

  9. Rain influences the physiological and metabolic responses to exercise in hot conditions.

    PubMed

    Ito, Ryo; Yamashita, Naoyuki; Suzuki, Eiko; Matsumoto, Takaaki

    2015-01-01

    Outdoor exercise often proceeds in rainy conditions. However, the cooling effects of rain on human physiological responses have not been systematically studied in hot conditions. The present study determined physiological and metabolic responses using a climatic chamber that can precisely simulate hot, rainy conditions. Eleven healthy men ran on a treadmill at an intensity of 70% VO2max for 30 min in the climatic chamber at an ambient temperature of 33°C in the presence (RAIN) or absence (CON) of 30 mm · h(-1) of precipitation and a headwind equal to the running velocity of 3.15 ± 0.19 m · s(-1). Oesophageal temperature, mean skin temperature, heart rate, rating of perceived exertion, blood parameters, volume of expired air and sweat loss were measured. Oesophageal and mean skin temperatures were significantly lower from 5 to 30 min, and heart rate was significantly lower from 20 to 30 min in RAIN than in CON (P < 0.05 for all). Plasma lactate and epinephrine concentrations (30 min) and sweat loss were significantly lower (P < 0.05) in RAIN compared with CON. Rain appears to influence physiological and metabolic responses to exercise in heat such that heat-induced strain might be reduced.

  10. Impacts of mixtures of herbicides on molecular and physiological responses of the European flounder Platichthys flesus.

    PubMed

    Evrard, Estérine; Marchand, Justine; Theron, Michaël; Pichavant-Rafini, Karine; Durand, Gaël; Quiniou, Louis; Laroche, Jean

    2010-09-01

    The widespread use of pesticides results in a growing contamination of the aquatic environment. The effects of (1) a simple mixture of a glyphosate-based formulation and AMPA (Aminomethylphosphonic acid--a primary metabolite of glyphosate) and of (2) a more complex mixture of herbicides (glyphosate/AMPA/mecoprop/acetochlor/2,4D) were explored on the molecular and physiological responses of the European flounder Platichthys flesus, considering a long-term and environmentally realistic contamination. Molecular responses were identified using suppression subtractive hybridization on liver samples: the level of gene transcription was significantly different between contaminated fishes vs control ones for 532 sequences, after a 62-day contamination. Among them, 222 sequences were identified by homology with data-based sequences; they encoded several metabolic pathways including: methionine and lipid metabolism, immunity, protein regulation, coagulation and energetic metabolism. Expression pattern of nine transcripts in the liver was confirmed by real-time PCR. The molecular study underlined that potential markers of liver injury were expressed for both mixtures, in particular betaine homocysteine methyl transferase and chemotaxin. Physiological responses were analysed considering blood parameters and condition factor; after the two months contamination period; no significant physiological difference was detected between contaminated and control fish.

  11. Physiological, biochemical, and psychological responses to environmental survival training in the Royal Australian Air Force.

    PubMed

    Chester, Annalise L; Edwards, Andrew M; Crowe, Melissa; Quirk, Frances

    2013-07-01

    Military environmental survival training (EST) is designed and considered to evoke significant stressors to military personnel in preparation for combat-like scenarios. The aim of this study was to observe and report selected physiological, biochemical, psychological, and performance responses to this intense 15-day program of Royal Australian Air Force (RAAF) EST. Fourteen RAAF participants undertook the EST course. Physiological and psychological responses were collected across the 15 days across outcomes: (1) biochemical markers (blood lactate, interlukin-6, and creatine kinase), (2) performance and anthropometric indices (vertical jump, body mass), and (3) psychological questionnaires profile of mood states, depression anxiety stress scale, Kessler-10 etc.). Creatine kinase concentration increased significantly from baseline to day 5 (p < 0.05) and thereafter remained elevated for the remaining 10 days of EST (128%; p < 0.01). Vertical jump (-10%; p < 0.01) and body mass (-8%; p < 0.01) both decreased across 15 days of EST, while there were no significant change in interlukin-6. Negative psychological responses were observed for mood (p < 0.01), depression (p < 0.05), anxiety (p < 0.01), and stress (p < 0.01) following the EST course. This case study showed the RAAF EST course imposed significant physiological and psychological stress as observed from markers of muscle damage, deterioration in physical performance, substantial weight loss, negative mood, and psychological distress.

  12. Serum Response Factor Mediated Gene Activity in Physiological and Pathological Processes of Neuronal Motility

    PubMed Central

    Knöll, Bernd

    2011-01-01

    In recent years, the transcription factor serum response factor (SRF) was shown to contribute to various physiological processes linked to neuronal motility. The latter include cell migration, axon guidance, and, e.g., synapse function relying on cytoskeletal dynamics, neurite outgrowth, axonal and dendritic differentiation, growth cone motility, and neurite branching. SRF teams up with myocardin related transcription factors (MRTFs) and ternary complex factors (TCFs) to mediate cellular actin cytoskeletal dynamics and the immediate-early gene (IEG) response, a bona fide indicator of neuronal activation. Herein, I will discuss how SRF and cofactors might modulate physiological processes of neuronal motility. Further, potential mechanisms engaged by neurite growth promoting molecules and axon guidance cues to target SRF’s transcriptional machinery in physiological neuronal motility will be presented. Of note, altered cytoskeletal dynamics and rapid initiation of an IEG response are a hallmark of injured neurons in various neurological disorders. Thus, SRF and its MRTF and TCF cofactors might emerge as a novel trio modulating peripheral and central axon regeneration. PMID:22164132

  13. Adverse Husbandry of Maraena Whitefish Directs the Immune System to Increase Mobilization of Myeloid Cells and Proinflammatory Responses

    PubMed Central

    Korytář, Tomáš; Nipkow, Mareen; Altmann, Simone; Goldammer, Tom; Köllner, Bernd; Rebl, Alexander

    2016-01-01

    Adverse life circumstances evoke a common “conserved transcriptional response to adversity” (CTRA) in mammalian leukocytes. To investigate whether this pattern is preserved in lower vertebrates, maraena whitefish (Coregonus maraena) were exposed for 9 days to different stocking densities: ~10 kg/m3 (low density), ~33 kg/m3 (moderate), ~60 kg/m3 (elevated), and ~100 kg/m3 (high). Transcriptome profiling in the liver and kidney of individuals from each group suggested that crowding conditions activate stress-related signaling and effector pathways. Remarkably, about one-quarter of the genes differentially expressed under crowding conditions were involved in the activation of immune pathways such as acute-phase response and interleukin/TNF signaling attended by the simultaneous reduction of antiviral potency. Network analysis confirmed the complex interdigitation of immune- and stress-relevant pathways with interleukin-1 playing a central role. Antibody-based techniques revealed remarkable changes in the blood composition of whitefish and demonstrated the correlation between increasing stocking densities and elevated number of myeloid cells together with the increased phagocytic activity of peripheral blood leukocytes. In line with current studies in mammals, we conclude that crowding stress triggers in whitefish hallmarks of a CTRA, indicating that the stress-induced molecular mechanisms regulating the immune responses not only are conserved within mammals but were established earlier in evolution. PMID:28066440

  14. Physiological Imaging-Defined, Response-Driven Subvolumes of a Tumor

    SciTech Connect

    Farjam, Reza; Tsien, Christina I.; Feng, Felix Y.; Gomez-Hassan, Diana; Hayman, James A.; Lawrence, Theodore S.; Cao, Yue

    2013-04-01

    Purpose: To develop an image analysis framework to delineate the physiological imaging-defined subvolumes of a tumor in relating to treatment response and outcome. Methods and Materials: Our proposed approach delineates the subvolumes of a tumor based on its heterogeneous distributions of physiological imaging parameters. The method assigns each voxel a probabilistic membership function belonging to the physiological parameter classes defined in a sample of tumors, and then calculates the related subvolumes in each tumor. We applied our approach to regional cerebral blood volume (rCBV) and Gd-DTPA transfer constant (K{sup trans}) images of patients who had brain metastases and were treated by whole-brain radiation therapy (WBRT). A total of 45 lesions were included in the analysis. Changes in the rCBV (or K{sup trans})–defined subvolumes of the tumors from pre-RT to 2 weeks after the start of WBRT (2W) were evaluated for differentiation of responsive, stable, and progressive tumors using the Mann-Whitney U test. Performance of the newly developed metrics for predicting tumor response to WBRT was evaluated by receiver operating characteristic (ROC) curve analysis. Results: The percentage decrease in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was significantly greater in the group of responsive tumors than in the group of stable and progressive tumors (P<.007). The change in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was a predictor for post-RT response significantly better than change in the gross tumor volume observed during the same time interval (P=.012), suggesting that the physiological change occurs before the volumetric change. Also, K{sup trans} did not add significant discriminatory information for assessing response with respect to rCBV. Conclusion: The physiological imaging-defined subvolumes of the tumors delineated by our method could be candidates for boost target, for which further development and evaluation

  15. Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates.

    PubMed

    Ercan, Onur; Bisschops, Markus M M; Overkamp, Wout; Jørgensen, Thomas R; Ram, Arthur F; Smid, Eddy J; Pronk, Jack T; Kuipers, Oscar P; Daran-Lapujade, Pascale; Kleerebezem, Michiel

    2015-09-01

    The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow and even approach zero. Furthermore, uncoupling microbial growth from product formation, while cellular integrity and activity are maintained, offers perspectives that are economically highly interesting. Retentostat cultures have been employed to investigate microbial physiology at (near-)zero growth rates. This minireview compares information from recent physiological and gene expression studies on retentostat cultures of the industrially relevant microorganisms Lactobacillus plantarum, Lactococcus lactis, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus niger. Shared responses of these organisms to (near-)zero growth rates include increased stress tolerance and a downregulation of genes involved in protein synthesis. Other adaptations, such as changes in morphology and (secondary) metabolite production, were species specific. This comparison underlines the industrial and scientific significance of further research on microbial (near-)zero growth physiology.

  16. Physiological responses to repeated stress in individuals with high and low trait resilience.

    PubMed

    Lü, Wei; Wang, Zhenhong; You, Xuqun

    2016-10-01

    This study examined individual differences in trait resilience in physiological recovery from, and physiological habituation to, repeated stress (i.e. public speaking). Eighty-two college students were categorized as either high (n=40) or low (n=42) on trait resilience, based on the scores of the Connor-Davidson Resilience Scale (CD-RISC). Subjective and physiological data were collected from participants across seven laboratory stages: baseline, stress anticipation 1, stress 1, post-stress 1, stress anticipation 2, stress 2, and post-stress 2. Results indicated that high-trait-resilient participants exhibited more complete heart rate (HR), systolic and diastolic blood pressure (SBP, DBP) recovery from the first and second stress anticipation exposures as compared to low-trait-resilient participants. High-trait-resilient participants demonstrated higher resting respiratory sinus arrhythmia (RSA) coupled with more complete RSA recovery from the first and second stress anticipation exposures as compared to their low-trait-resilient counterparts. Moreover, high-trait-resilient participants exhibited pronounced SBP and DBP habituation across two successive stress anticipation exposures, with greater decreases in SBP and DBP reactivity to recurrent stress anticipation as compared to the low-trait-resilient participants. These findings suggest an adaptive physiological response pattern to recurrent stress in high-trait-resilient individuals.

  17. Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates

    PubMed Central

    Ercan, Onur; Bisschops, Markus M. M.; Overkamp, Wout; Jørgensen, Thomas R.; Ram, Arthur F.; Smid, Eddy J.; Pronk, Jack T.; Kuipers, Oscar P.

    2015-01-01

    The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow and even approach zero. Furthermore, uncoupling microbial growth from product formation, while cellular integrity and activity are maintained, offers perspectives that are economically highly interesting. Retentostat cultures have been employed to investigate microbial physiology at (near-)zero growth rates. This minireview compares information from recent physiological and gene expression studies on retentostat cultures of the industrially relevant microorganisms Lactobacillus plantarum, Lactococcus lactis, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus niger. Shared responses of these organisms to (near-)zero growth rates include increased stress tolerance and a downregulation of genes involved in protein synthesis. Other adaptations, such as changes in morphology and (secondary) metabolite production, were species specific. This comparison underlines the industrial and scientific significance of further research on microbial (near-)zero growth physiology. PMID:26048933

  18. Ocean warming and acidification: Unifying physiological principles linking organism response to ecosystem change?

    NASA Astrophysics Data System (ADS)

    Pörtner, H. O.; Bock, C.; Lannig, G.; Lucassen, M.; Mark, F. C.; Stark, A.; Walther, K.; Wittmann, A.

    2011-12-01

    The effects of ocean warming and acidification on individual species of marine ectothermic animals may be based on some common denominators, i.e. physiological responses that can be assumed to reflect unifying principles, common to all marine animal phyla. Identification of these principles requires studies, which reach beyond the species-specific response, and consider multiple stressors, for example temperature, CO2 or extreme hypoxia. Analyses of response and acclimation include functional traits of physiological performance on various levels of biological organisation, from changes in the transcriptome to patterns of acid-base regulation and whole animal thermal tolerance. Conclusions are substantiated by comparisons of species and phyla from temperate, Arctic and Antarctic ecosystems and also benefit from the interpretation of paleo-patterns based on the use of a unifying physiological concept, suitable to integrate relevant environmental factors into a more comprehensive picture. Studying the differential specialization of animals on climate regimes and their sensitivity to climate leads to improved understanding of ongoing and past ecosystem change and should then support more reliable projections of future scenarios. For example, accumulating CO2 causes disturbances in acid-base status. Resilience to ocean acidification may be reflected in the capacity to compensate for these disturbances or their secondary effects. Ion and pH regulation comprise thermally sensitive active and passive transfer processes across membranes. Specific responses of ion transporter genes and their products to temperature and CO2 were found in fish, crustaceans and bivalves. However, compensation may cause unfavourable shifts in energy budget and beyond that hamper cellular and mitochondrial metabolism, which are directly linked to the animal's aerobic performance window. In crabs, oysters and, possibly, fishes, a narrowing of the thermal window is caused by moderate increases in

  19. Differential physiological and molecular response of barley genotypes to water deficit.

    PubMed

    de Mezer, Mateusz; Turska-Taraska, Anna; Kaczmarek, Zygmunt; Glowacka, Katarzyna; Swarcewicz, Barbara; Rorat, Tadeusz

    2014-07-01

    Changes in physiological parameters (relative water content (RWC), biomass, water use efficiency (WUE), net photosynthetic yield (PN) and quantum yield of PSII (Fv/Fm)), in proline and sugar content, and expression profile of genes reported to be associated with the barley response to water deficit, including LEA genes, NHX1, Hsdr4, BLT101 and genes encoding transcription factors (HvDREB1, HvABF1, HvABI5 and HvZIP1), were analyzed in seedlings of nine barley genotypes subjected to a progressive increase in water deficit. Seedlings of all genotypes wilted when the soil water content (SWC) declined from 65% (control conditions) to 10% (severe drought conditions), but recovered turgor within a few hours of re-watering. However, when severe drought conditions were prolonged for a week, large differences in survival characteristics were observed between genotypes after re-watering. Multivariate analysis of the changes in physiological and molecular characteristics allowed several different homogenous groups within the genotypes to be distinguished, depending on stress intensity. Furthermore, integration between the stress-response traits was found and was shown to vary depending on the genotype and the stress level. Based on analysis of physiological traits and survival characteristics, two barley genotypes with high adaptability to the stress conditions (cv. Saida and breeding line Cam/B1), and two with low adaptability (cv. Express and breeding line Harmal), were identified. In addition, only changes in expression of the genes HvZIP1, encoding a b-ZIP-type transcription factor, and Hsdr4, encoding a protein of unknown function, were shown to be linked with adaptability of barley to water deficit. In summary, physiological and molecular data revealed large, stress-level-dependent differences between the barley cultivars and breeding lines tested in their response to water deficit.

  20. Morpho-Physiological and Proteome Level Responses to Cadmium Stress in Sorghum

    PubMed Central

    Kamal, Abu Hena Mostafa; Kim, Sang-Woo; Oh, Myeong-Won; Lee, Moon-Soon; Chung, Keun-Yook; Xin, Zhanguo; Woo, Sun-Hee

    2016-01-01

    Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potential associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and 150 μM) of CdCl2, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied concentration of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Major changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. Our study provides insights into the integrated molecular mechanisms involved in responses to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. We have aimed to provide a reference describing the mechanisms involved in heavy metal damage to plants. PMID:26919231

  1. Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses

    PubMed Central

    Singh, Alka; Kumar, Pramod; Gautam, Vibhav; Rengasamy, Balakrishnan; Adhikari, Bijan; Udayakumar, Makarla; Sarkar, Ananda K.

    2016-01-01

    The huge variation in root system architecture (RSA) among different rice (Oryza sativa) cultivars is conferred by their genetic makeup and different growth or climatic conditions. Unlike model plant Arabidopsis, the molecular basis of such variation in RSA is very poorly understood in rice. Cultivars with stable variation are valuable resources for identification of genes involved in RSA and related physiological traits. We have screened for RSA and identified two such indica rice cultivars, IR-64 (OsAS83) and IET-16348 (OsAS84), with stable contrasting RSA. OsAS84 produces robust RSA with more crown roots, lateral roots and root hairs than OsAS83. Using comparative root transcriptome analysis of these cultivars, we identified genes related to root development and different physiological responses like abiotic stress responses, hormone signaling, and nutrient acquisition or transport. The two cultivars differ in their response to salinity/dehydration stresses, phosphate/nitrogen deficiency, and different phytohormones. Differential expression of genes involved in salinity or dehydration response, nitrogen (N) transport, phosphate (Pi) starvation signaling, hormone signaling and root development underlies more resistance of OsAS84 towards abiotic stresses, Pi or N deficiency and its robust RSA. Thus our study uncovers gene-network involved in root development and abiotic stress responses in rice. PMID:28000793

  2. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles.

    PubMed

    Ditmer, Mark A; Vincent, John B; Werden, Leland K; Tanner, Jessie C; Laske, Timothy G; Iaizzo, Paul A; Garshelis, David L; Fieberg, John R

    2015-08-31

    Unmanned aerial vehicles (UAVs) have the potential to revolutionize the way research is conducted in many scientific fields. UAVs can access remote or difficult terrain, collect large amounts of data for lower cost than traditional aerial methods, and facilitate observations of species that are wary of human presence. Currently, despite large regulatory hurdles, UAVs are being deployed by researchers and conservationists to monitor threats to biodiversity, collect frequent aerial imagery, estimate population abundance, and deter poaching. Studies have examined the behavioral responses of wildlife to aircraft (including UAVs), but with the widespread increase in UAV flights, it is critical to understand whether UAVs act as stressors to wildlife and to quantify that impact. Biologger technology allows for the remote monitoring of stress responses in free-roaming individuals, and when linked to locational information, it can be used to determine events or components of an animal's environment that elicit a physiological response not apparent based on behavior alone. We assessed effects of UAV flights on movements and heart rate responses of free-roaming American black bears. We observed consistently strong physiological responses but infrequent behavioral changes. All bears, including an individual denned for hibernation, responded to UAV flights with elevated heart rates, rising as much as 123 beats per minute above the pre-flight baseline. It is important to consider the additional stress on wildlife from UAV flights when developing regulations and best scientific practices.

  3. Combined effects of toxic cyanobacteria Microcystis aeruginosa and hypoxia on the physiological responses of triangle sail mussel Hyriopsis cumingii.

    PubMed

    Hu, Menghong; Wu, Fangli; Yuan, Mingzhe; Liu, Qigen; Wang, Youji

    2016-04-05

    The single and combined effects of toxic cyanobacteria Microcystis aeruginosa and hypoxia on the energy budget of triangle sail mussel Hyriopsis cumingii were determined in terms of scope for growth (SfG). Mussels were exposed to different combinations of toxic M. aeruginosa (0%, 50%, and 100% of total dietary dry weight) and dissolved oxygen concentrations (1, 3, and 6.0mg O2l(-1)) with a 3×3 factorial design for 14 days, followed by a recovery period with normal conditions for 7 days. Microcystin contents in mussel tissues increased with the increase in the exposed M. aeruginosa concentration at each sampling time. Adverse physiological responses of H. cumingii under toxic M. aeruginosa and hypoxic exposure were found in terms of clearance rate, absorption efficiency, respiration rate, excretion rate, and SfG. Results emphasized the importance of combined effects of hypoxia and toxic cyanobacteria on H. cumingii bioenergetic parameters, highlighted the interactive effects of toxic algae and hypoxia, and implied that the two stressors affected H. cumingii during the exposure period and showed carryover effects later. Thus, if H. cumingii is used as a bioremediation tool to eliminate M. aeruginosa, the waters should be oxygenated.

  4. [Physiological responses of cotton plant to fertlizer nitrogen at flowering and boll-forming stages under soil drought].

    PubMed

    Liu, Rui-Xian; Guo, Wen-Qi; Chen, Bing-Lin; Zhou, Zhi-Guo

    2008-07-01

    With pot culture, the physiological responses of cotton plant to fertilizer nitrogen at flowering and boll-forming stages were studied under soil drought and after re-watering. The results showed that under soil drought, the net photosynthetic rate (Pn) and transpiration rate (Tr) declined rapidly with decreasing soil relative water content (SRWC). At the early stage of soil drought, owing to the declining degree of Tr was greater than that of Pn, the WUE had an increasing trend; but after then, the WUE decreased with declining SRWC and Pn. Soil drought altered the diurnal patters of Pn and Tr, i.e., decreased continuously from 8:00 to 16:00, while in CK, their peak values appeared at 10:00-11:00 and 12:00, respectively. The diurnal patterns of WUE in drought treatment and CK were the same, i.e., decreased first and increased then, with the bottom appeared at 12:00. Under soil drought, the Pn and Tr decreased with increasing fertilizer nitrogen level, while WUE was in adverse. After re-watering, the diurnal patterns of Pn, Tr and WUE were similar to CK, but their values were smaller than CK, especially under nitrogen application. It was suggested that under soil drought, nitrogen fertilization could be helpful to the increase of water use efficiency, but decreased the photosynthesis of cotton plant at its flowering and boll-forming stages.

  5. Genotypic differences in architectural and physiological responses to water restriction in rose bush

    PubMed Central

    Li-Marchetti, Camille; Le Bras, Camille; Relion, Daniel; Citerne, Sylvie; Huché-Thélier, Lydie; Sakr, Soulaiman; Morel, Philippe; Crespel, Laurent

    2015-01-01

    The shape and, therefore, the architecture of the plant are dependent on genetic and environmental factors such as water supply. The architecture determines the visual quality, a key criterion underlying the decision to purchase an ornamental potted plant. The aim of this study was to analyze genotypic responses of eight rose bush cultivars to alternation of water restriction and re-watering periods, with soil water potential of -20 and -10 kPa respectively. Responses were evaluated at the architectural level through 3D digitalization using six architectural variables and at the physiological level by measuring stomatal conductance, water content, hormones [abscisic acid (ABA), auxin, cytokinins, jasmonic acid, and salicylic acid (SA)], sugars (sucrose, fructose, and glucose), and proline. Highly significant genotype and watering effects were revealed for all the architectural variables measured, as well as genotype × watering interaction, with three distinct genotypic architectural responses to water restriction – weak, moderate and strong – represented by Hw336, ‘Baipome’ and ‘The Fairy,’ respectively. The physiological analysis explained, at least in part, the more moderate architectural response of ‘Baipome’ compared to ‘The Fairy,’ but not that of Hw336 which is an interspecific hybrid. Such physiological responses in ‘Baipome’ could be related to: (i) the maintenance of the stimulation of budbreak and photosynthetic activity during water restriction periods due to a higher concentration in conjugated cytokinins (cCK) and to a lower concentration in SA; (ii) a better resumption of budbreak during the re-watering periods due to a lower concentration in ABA during this period. When associated with the six architectural descriptors, cCK, SA and ABA, which explained the genotypic differences in this study, could be used as selection criteria for breeding programs aimed at improving plant shape and tolerance to water restriction. PMID

  6. Genotypic differences in architectural and physiological responses to water restriction in rose bush.

    PubMed

    Li-Marchetti, Camille; Le Bras, Camille; Relion, Daniel; Citerne, Sylvie; Huché-Thélier, Lydie; Sakr, Soulaiman; Morel, Philippe; Crespel, Laurent

    2015-01-01

    The shape and, therefore, the architecture of the plant are dependent on genetic and environmental factors such as water supply. The architecture determines the visual quality, a key criterion underlying the decision to purchase an ornamental potted plant. The aim of this study was to analyze genotypic responses of eight rose bush cultivars to alternation of water restriction and re-watering periods, with soil water potential of -20 and -10 kPa respectively. Responses were evaluated at the architectural level through 3D digitalization using six architectural variables and at the physiological level by measuring stomatal conductance, water content, hormones [abscisic acid (ABA), auxin, cytokinins, jasmonic acid, and salicylic acid (SA)], sugars (sucrose, fructose, and glucose), and proline. Highly significant genotype and watering effects were revealed for all the architectural variables measured, as well as genotype × watering interaction, with three distinct genotypic architectural responses to water restriction - weak, moderate and strong - represented by Hw336, 'Baipome' and 'The Fairy,' respectively. The physiological analysis explained, at least in part, the more moderate architectural response of 'Baipome' compared to 'The Fairy,' but not that of Hw336 which is an interspecific hybrid. Such physiological responses in 'Baipome' could be related to: (i) the maintenance of the stimulation of budbreak and photosynthetic activity during water restriction periods due to a higher concentration in conjugated cytokinins (cCK) and to a lower concentration in SA; (ii) a better resumption of budbreak during the re-watering periods due to a lower concentration in ABA during this period. When associated with the six architectural descriptors, cCK, SA and ABA, which explained the genotypic differences in this study, could be used as selection criteria for breeding programs aimed at improving plant shape and tolerance to water restriction.

  7. Responses to mineral nutrient availability and heterogeneity in physiologically integrated sedges from contrasting habitats.

    PubMed

    D'Hertefeldt, T; Falkengren-Grerup, U; Jónsdóttir, I S

    2011-05-01

    Clonal plants from poor habitats benefit less from morphologically plastic responses to heterogeneity than plants from more productive sites. In addition, physiological integration has been suggested to either increase or decrease the foraging efficiency of clonal plants. We tested the capacity for biomass production and morphological response in two closely related, rhizomatous species from habitats that differ in resource availability, Carex arenaria (from poor sand dunes) and C. disticha (from nutrient-richer, moister habitats). We expected lower total biomass production and reduced morphological plasticity in C. arenaria, and that both species would produce more ramets in high nutrient patches, either in response to signals transported through physiological integration, or by locally determined responses to nutrient availability. To investigate mineral nutrient heterogeneity, plants were grown in boxes divided into two compartments with homogeneous or heterogeneous supply of high (H) or low (L) nutrient levels, resulting in four treatments, H-H, H-L, L-H and L-L. Both C. arenaria and C. disticha produced similar biomass in high nutrient treatments. C. disticha responded to high nutrients by increased biomass production and branching of the young parts and by altering root:shoot ratio and rhizome lengths, while C. arenaria showed localised responses to high nutrients in terms of local biomass and branch production in high nutrient patches. The results demonstrated that although it has a conservative morphology, C. arenaria responded to nutrient heterogeneity through morphological plasticity. An analysis of costs and benefits of integration on biomass production showed that young ramets of both species benefited significantly from physiological integration, but no corresponding costs were found. This suggests that plants from resource-poor but dynamic habitats like sand dunes respond morphologically to high nutrient patches. The two species responded to nutrient

  8. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety.

    PubMed

    Haase, Lori; Cerf-Ducastel, Barbara; Murphy, Claire

    2009-02-01

    This event-related functional magnetic resonance imaging (er-fMRI) study investigated BOLD signal change in response to a series of pure gustatory stimuli that varied in stimulus quality when subjects were hungry and sated with a nutritional pre-load. Group analyses showed significant differences in activation in the hunger minus satiety condition in response to sucrose, caffeine, saccharin, and citric acid within the thalamus, hippocampus, and parahippocampus. When examining the hunger and satiety conditions, activation varied as a function of stimulus, with the majority of the stimuli exhibiting significantly greater activation in the hunger state within the insula, thalamus, and substantia nigra, in contrast to decreased activation in the satiated state within the parahippocampus, hippocampus, amygdala, and anterior cingulate. Region of interest (ROI) analysis revealed two significant interactions, ROI by physiology and ROI by physiology by stimulus. In the satiety condition, the primary (inferior and superior insulae) and secondary (OFC 11 and OFC 47) taste regions exhibited significantly greater brain activation in response to all stimuli than regions involved in processing eating behavior (hypothalamus), affect (amygdala), and memory (hippocampus, parahippocampus and entorhinal cortex). These same regions demonstrated significantly greater activation within the hunger condition than the satiety condition, with the exception of the superior insula. Furthermore, the patterns of activation differed as a function taste stimulus, with greater activation in response to sucrose than to the other stimuli. These differential patterns of activation suggest that the physiological states of hunger and satiety produce divergent activation in multiple brain areas in response to different pure gustatory stimuli.

  9. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs

    PubMed Central

    Pschernig, Elisabeth; Wallner, Bernard; Millesi, Eva

    2016-01-01

    Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals’ natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating

  10. Influence of growth rate on the physiological response of marine Synechococcus to phosphate limitation

    PubMed Central

    Kretz, Cécilia B.; Bell, Doug W.; Lomas, Debra A.; Lomas, Michael W.; Martiny, Adam C.

    2015-01-01

    Phosphate (P) is an important nutrient potentially limiting for primary productivity, yet, we currently know little about the relationship between growth rate and physiological response to P limitation in abundant marine Cyanobacteria. Thus, the aim of this research was to determine how variation in growth rate affected the physiology of marine Synechococcus WH8102 and CC9311 when growing under high N:P conditions. Experiments were carried out in chemostats with a media input N:P of 441 and we estimated the half saturation concentration for growth under P limiting conditions (Ks,p) and cellular C:N:P ratios. The Ks,p values were the lowest measured for any phytoplankton and on par with ambient P concentrations in oligotrophic regions. We also observed that both strains were able draw down P below 3 nM. Both Ks,p and drawdown concentration were lower for the open ocean vs. coastal Synechococcus strain, which may be linked to differences in P acquisition genes in these strains. Cellular C:P and N:P ratios were significantly higher in relation to the Redfield ratio for both Synechococcus strains but we saw no difference in these ratios among growth rates or strains. These results demonstrate that Synechococcus can proliferate under very low P conditions and also that genetically different strains have unique physiological responses to P limitation. PMID:25717321

  11. Physiological response of a spinosad-producing strain saccharopolyspora spinosa to space flight

    NASA Astrophysics Data System (ADS)

    Liu, Zhiheng

    This study explored the physiological response of spinosad-producing strain Saccharopolyspora spinosa to space flight environment. The production strain was carried into space by a manned spaceship, `Shenzhou VII' (Divine Vessel VII) and compared with identical ground control strains. The results showed that space flight could induce a significant response in the phys-iological characteristics of S. spinosa, including change of productivity and morphology. The spinosad yield of the mutants increased more than 95% comparing to the original strains. And in the mutant library, a peculiar morphologic strain, F-200, was found. F-200 produced no spinosad, and was much larger than normal ones and spores were lilac, while the others remain white. During fermentation, the color of the entire broth of F-200 had completely changed to purple, whereas the broth of the ground control Zu8 remained yellow. The results demonstrated that the space flight can induce physiological changes of S. spinosa and could potentially serve as mutagenesis tools to improve commercial-significant microbial metabolites.

  12. Physiological responses to 1000-m ergometer time-trial performance in outrigger canoeing.

    PubMed

    Kerr, Rebecca; Spinks, Warwick; Leicht, Anthony; Sinclair, Wade; Woodside, Louise

    2008-09-01

    Graded exercise tests are commonly used to assess peak physiological capacities of athletes. However, unlike time trials, these tests do not provide performance information. The aim of this study was to examine the peak physiological responses of female outrigger canoeists to a 1000-m ergometer time trial and compare the time-trial performance to two graded exercise tests performed at increments of 7.5 W each minute and 15 W each two minutes respectively. 17 trained female outrigger canoeists completed the time trial on an outrigger canoe ergometer with heart rate (HR), stroke rate, power output, and oxygen consumption (VO2) determined every 15 s. The mean (+/- s) time-trial time was 359 +/- 33 s, with a mean power output of 65 +/- 16 W and mean stroke rate of 56 +/- 4 strokes min(-1). Mean values for peak VO2, peak heart rate, and mean heart rate were 3.17 +/- 0.67 litres min(-1), 177 +/- 11 beats min(-1), and 164 +/- 12 beats min(-1) respectively. Compared with the graded exercise tests, the time-trial elicited similar values for peak heart rate, peak power output, peak blood lactate concentration, and peak VO2. As a time trial is sport-specific and can simultaneously quantify sprint performance and peak physiological responses in outrigger canoeing, it is suggested that a time trial be used by coaches for crew selection as it doubles as a reliable performance measure and a protocol for monitoring peak aerobic capacity of female outrigger canoeists.

  13. Growth and Physiological Responses to Water Depths in Carex schmidtii Meinsh.

    PubMed

    Yan, Hong; Liu, Ruiquan; Liu, Zinan; Wang, Xue; Luo, Wenbo; Sheng, Lianxi

    2015-01-01

    A greenhouse experiment was performed to investigate growth and physiological responses to water depth in completely submerged condition of a wetland plant Carex schmidtii Meinsh., one of the dominant species in the Longwan Crater Lake wetlands (China). Growth and physiological responses of C. schmidtii were investigated by growing under control (non-submerged) and three submerged conditions (5 cm, 15 cm and 25 cm water level). Total biomass was highest in control, intermediate in 5 cm treatment and lowest in the other two submerged treatments. Water depth prominently affected the first-order lateral root to main root mass ratio. Alcohol dehydrogenase (ADH) activity decreased but malondialdehyde (MDA) content increased as water depth increased. The starch contents showed no differences among the various treatments at the end of the experiment. However, soluble sugar contents were highest in control, intermediate in 5 cm and 15 cm treatments and lowest in 25 cm treatment. Our data suggest that submergence depth affected some aspects of growth and physiology of C. schmidtii, which can reduce anoxia damage not only through maintaining the non-elongation strategy in shoot part but also by adjusting biomass allocation to different root orders rather than adjusting root-shoot biomass allocation.

  14. Melatonin entrains free-running blind people according to a physiological dose-response curve.

    PubMed

    Lewy, Alfred J; Emens, Jonathan S; Lefler, Bryan J; Yuhas, Krista; Jackman, Angela R

    2005-01-01

    The specific circadian role proposed for endogenous melatonin production was based on a study of sighted people who took low pharmacological doses (500 microg) of this chemical signal for the "biological night": the magnitude and direction of the induced phase shifts were dependent on what time of day exogenous melatonin was administered and were described by a phase-response curve that turned out to be the opposite of that for light. We now report that lower (physiological) doses of up to 300 microg can entrain (synchronize) free-running circadian rhythms of 10 totally blind subjects that would otherwise drift later each day. The resulting log-linear dose-response curve in the physiological range adds support for a circadian function of endogenous melatonin in humans. Efficacy of exogenous doses in the physiological range are of clinical significance for totally blind people who will need to take melatonin daily over their entire lifetimes in order to remain entrained to the 24 h day. Left untreated, their free-running endocrine, metabolic, behavioral, and sleep/wake cycles can be almost as burdensome as not having vision.

  15. Psycho-Physiological Responses by Listening to Some Sounds from Our Daily Life

    NASA Astrophysics Data System (ADS)

    Sakamoto, H.; Hayashi, F.; Tsujikawa, M.; Sugiura, S.

    1997-08-01

    This study was made to clarify the relationship between mode of identification, mode of emotion and physiological response to noise. Twenty-six subjects, young females, listened to six different daily sounds for 150 s through head phones. The level of sound was 60-61LAcq. The pulse wave and blood pressure were observed, and pulse wave interval, wave height and maximum and minimum blood pressures were measured. Measurements were taken twice once 30 s before listening and again during the final 30 s of listening. The ratio of the latter value to the former value was used as the index for the evaluation of change. Immediately after the listening session, identification of the sound source and emotional response were surveyed via a questionnaire and the sounds were judged as related to comfort or discomfort. In the case of incorrect identification, physiological functions were not seen to change significantly. However, in the case of correct identification, maximum and minimum blood pressures were significantly increased form the pre-listening values. The physiological functions of the discomfort group did not change significantly. In the comfort group, wave height was decreased and blood pressure was significantly elevated.

  16. Meta-analysis of digital game and study characteristics eliciting physiological stress responses.

    PubMed

    van der Vijgh, Benny; Beun, Robbert-Jan; Van Rood, Maarten; Werkhoven, Peter

    2015-08-01

    Digital games have been used as stressors in a range of disciplines for decades. Nonetheless, the underlying characteristics of these stressors and the study in which the stressor was applied are generally not recognized for their moderating effect on the measured physiological stress responses. We have therefore conducted a meta-analysis that analyzes the effects of characteristics of digital game stressors and study design on heart rate, systolic and diastolic blood pressure, in studies carried out from 1976 to 2012. In order to assess the differing quality between study designs, a new scale is developed and presented, coined reliability of effect size. The results show specific and consistent moderating functions of both game and study characteristics, on average accounting for around 43%, and in certain cases up to 57% of the variance found in physiological stress responses. Possible cognitive and physiological processes underlying these moderating functions are discussed, and a new model integrating these processes with the moderating functions is presented. These findings indicate that a digital game stressor does not act as a stressor by virtue of being a game, but rather derives its stressor function from its characteristics and the methodology in which it is used. This finding, together with the size of the associated moderations, indicates the need for a standardization of digital game stressors.

  17. Detecting plant metabolic responses induced by ground shock using hyperspectral remote sensing and physiological contact measurements

    SciTech Connect

    Pickles, W.L.; Cater, G.A.

    1996-12-03

    A series of field experiments were done to determine if ground shock could have induced physiological responses in plants and if the level of the response could be observed. The observation techniques were remote sensing techniques and direct contact physiological measurements developed by Carter for detecting pre-visual plant stress. The remote sensing technique was similar to that used by Pickles to detect what appeared to be ground shock induced plant stress above the 1993 Non Proliferation Experiment`s underground chemical explosion. The experiment was designed to provide direct plant physiological measurements and remote sensing ratio images and from the same plants at the same time. The simultaneous direct and remote sensing measurements were done to establish a ground truth dataset to compare to the results of the hyperspectral remote sensing measurements. In addition, the experiment was designed to include data on what was thought to be the most probable interfering effect, dehydration. The experimental design included investigating the relative magnitude of the shock induced stress effects compared to dehydration effects.

  18. Physiological stress response to loss of social influence and threats to masculinity.

    PubMed

    Taylor, Catherine J

    2014-02-01

    Social influence is an important component of contemporary conceptualizations of masculinity in the U.S. Men who fail to achieve masculinity by maintaining social influence in the presence of other men may be at risk of stigmatization. As such, men should be especially likely to exhibit a stress response to loss of social influence in the presence of other men. This study assesses whether men who lose social influence exhibit more of a stress response than men who gain social influence, using data collected in a laboratory setting where participants were randomly assigned into four-person groups of varying sex compositions. The groups were videotaped working on two problem-solving tasks. Independent raters assessed change in social influence using a well-validated measure borrowed from experimental work in the Status Characteristics Theory tradition. Cortisol is used as a measure of stress response because it is known to increase in response to loss of social esteem. Results show that young men who lose social influence while working with other young men exhibit cortisol response. In contrast women do not exhibit cortisol response to loss of social influence, nor do men working with women. Results are consistent with the hypothesis that loss of social influence in men may be associated with a physiological stress response because maintaining social influence is very important to men while in the presence of other men. This physiological response to loss of social influence underscores the importance to men of achieving masculinity through gaining and maintaining social influence, and avoiding the stigma associated with the failure to do so.

  19. Physiological responses of elite junior Australian rules footballers during match-play.

    PubMed

    Veale, James P; Pearce, Alan J

    2009-01-01

    Australian Football (AF) is Australia's major football code. Despite research in other football codes, to date, no data has been published on the physiological responses of AF players during match play. Fifteen athletes (17.28 ± 0.76 yrs) participated in four pre-season matches, sanctioned by Australian Football League (AFL) Victoria, investigating Heart Rate (HR), Blood Lactate (BLa), Core Temperature (Tcore), and Hydration status. Match HR was measured continuously using HR monitors. BLa was measured via finger prick lancet at the end of each quarter of play. Tcore was measured by use of ingestible temperature sensor and measured wirelessly at the end of each quarter of play. Hydration status was measured using refractometry, measuring urine specific gravity, and body weight pre and post-match. Environmental conditions were measured continuously during matches. Results of HR responses showed a high exertion of players in the 85-95% maximum HR range. Elevated mean BLa levels, compared to rest, were observed in all players over the duration of the matches (p = 0.007). Mean Tcore rose 0.68 °C between start and end of matches. Mean USG increased between 0.008 g/ml (p = 0.001) with mean body weight decreasing 1.88 kg (p = 0.001). This study illustrates physiological responses in junior AF players playing in the heat as well as providing physiological data for consideration by AF coaching staff when developing specific training programs. Continued research should consider physiological measurements under varying environments, and at all playing levels of AF, to ascertain full physiological responses during AF matches. Key pointsSpecific conditioning sessions for junior athletes should include high intensity bouts; greater than 85% of heart rate maximum zone.Football anaerobic conditioning activities (e.g. sprint training) should be randomised throughout training sessions to replicate demands of the game (e.g. training in a fatigued state).Coaches and fitness staff

  20. Traces of unconscious mental processes in introspective reports and physiological responses.

    PubMed

    Ivonin, Leonid; Chang, Huang-Ming; Diaz, Marta; Catala, Andreu; Chen, Wei; Rauterberg, Matthias

    2015-01-01

    Unconscious mental processes have recently started gaining attention in a number of scientific disciplines. One of the theoretical frameworks for describing unconscious processes was introduced by Jung as a part of his model of the psyche. This framework uses the concept of archetypes that represent prototypical experiences associated with objects, people, and situations. Although the validity of Jungian model remains an open question, this framework is convenient from the practical point of view. Moreover, archetypes found numerous applications in the areas of psychology and marketing. Therefore, observation of both conscious and unconscious traces related to archetypal experiences seems to be an interesting research endeavor. In a study with 36 subjects, we examined the effects of experiencing conglomerations of unconscious emotions associated with various archetypes on the participants' introspective reports and patterns of physiological activations. Our hypothesis for this experiment was that physiological data may predict archetypes more precisely than introspective reports due to the implicit nature of archetypal experiences. Introspective reports were collected using the Self-Assessment Manikin (SAM) technique. Physiological measures included cardiovascular, electrodermal, respiratory responses and skin temperature of the subjects. The subjects were stimulated to feel four archetypal experiences and four explicit emotions by means of film clips. The data related to the explicit emotions served as a reference in analysis of archetypal experiences. Our findings indicated that while prediction models trained on the collected physiological data could recognize the archetypal experiences with accuracy of 55 percent, similar models built based on the SAM data demonstrated performance of only 33 percent. Statistical tests enabled us to confirm that physiological observations are better suited for observation of implicit psychological constructs like archetypes than

  1. Traces of Unconscious Mental Processes in Introspective Reports and Physiological Responses

    PubMed Central

    Ivonin, Leonid; Chang, Huang-Ming; Diaz, Marta; Catala, Andreu; Chen, Wei; Rauterberg, Matthias

    2015-01-01

    Unconscious mental processes have recently started gaining attention in a number of scientific disciplines. One of the theoretical frameworks for describing unconscious processes was introduced by Jung as a part of his model of the psyche. This framework uses the concept of archetypes that represent prototypical experiences associated with objects, people, and situations. Although the validity of Jungian model remains an open question, this framework is convenient from the practical point of view. Moreover, archetypes found numerous applications in the areas of psychology and marketing. Therefore, observation of both conscious and unconscious traces related to archetypal experiences seems to be an interesting research endeavor. In a study with 36 subjects, we examined the effects of experiencing conglomerations of unconscious emotions associated with various archetypes on the participants’ introspective reports and patterns of physiological activations. Our hypothesis for this experiment was that physiological data may predict archetypes more precisely than introspective reports due to the implicit nature of archetypal experiences. Introspective reports were collected using the Self-Assessment Manikin (SAM) technique. Physiological measures included cardiovascular, electrodermal, respiratory responses and skin temperature of the subjects. The subjects were stimulated to feel four archetypal experiences and four explicit emotions by means of film clips. The data related to the explicit emotions served as a reference in analysis of archetypal experiences. Our findings indicated that while prediction models trained on the collected physiological data could recognize the archetypal experiences with accuracy of 55 percent, similar models built based on the SAM data demonstrated performance of only 33 percent. Statistical tests enabled us to confirm that physiological observations are better suited for observation of implicit psychological constructs like archetypes

  2. Mitigating Physiological Responses to Layoff Threat: An Experimental Test of the Efficacy of Two Coping Interventions

    PubMed Central

    Probst, Tahira M.; Jiang, Lixin

    2016-01-01

    The purpose of the current study was to assess real-time physiological reactions to the threat of layoffs and to determine whether the use of an emotion-focused vs. problem-focused coping intervention would be more efficacious in attenuating these physiological reactions. A 2 (coping intervention) × 4 (within-subjects time points) mixed experimental design was used to test the hypotheses. Eighty-four undergraduates participated in this laboratory experiment during which their galvanic skin response (GSR) and heart rate (HR) were continuously monitored. Analyses indicate that individuals instructed to utilize an emotion-focused coping strategy experienced a significantly greater decline in their GSR compared to those utilizing the problem-focused coping method. Results suggest organizations conducting layoffs might focus first on dealing with the emotional aftermath of downsizing before focusing on problem-solving tasks, such as resume writing and other traditional outplacement activities. PMID:26999186

  3. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.

    PubMed

    Rivera-Brown, Anita M; Frontera, Walter R

    2012-11-01

    Physical activity and fitness are associated with a lower prevalence of chronic diseases, such as heart disease, cancer, high blood pressure, and diabetes. This review discusses the body's response to an acute bout of exercise and long-term physiological adaptations to exercise training with an emphasis on endurance exercise. An overview is provided of skeletal muscle actions, muscle fiber types, and the major metabolic pathways involved in energy production. The importance of adequate fluid intake during exercise sessions to prevent impairments induced by dehydration on endurance exercise, muscular power, and strength is discussed. Physiological adaptations that result from regular exercise training such as increases in cardiorespiratory capacity and strength are mentioned. The review emphasizes the cardiovascular and metabolic adaptations that lead to improvements in maximal oxygen capacity.

  4. Mitigating Physiological Responses to Layoff Threat: An Experimental Test of the Efficacy of Two Coping Interventions.

    PubMed

    Probst, Tahira M; Jiang, Lixin

    2016-03-18

    The purpose of the current study was to assess real-time physiological reactions to the threat of layoffs and to determine whether the use of an emotion-focused vs. problem-focused coping intervention would be more efficacious in attenuating these physiological reactions. A 2 (coping intervention) × 4 (within-subjects time points) mixed experimental design was used to test the hypotheses. Eighty-four undergraduates participated in this laboratory experiment during which their galvanic skin response (GSR) and heart rate (HR) were continuously monitored. Analyses indicate that individuals instructed to utilize an emotion-focused coping strategy experienced a significantly greater decline in their GSR compared to those utilizing the problem-focused coping method. Results suggest organizations conducting layoffs might focus first on dealing with the emotional aftermath of downsizing before focusing on problem-solving tasks, such as resume writing and other traditional outplacement activities.

  5. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    PubMed

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  6. Degree of extraversion and physiological responses to physical pain and sadness.

    PubMed

    Park, Mi-Sook; Lee, Kyung Hwa; Sohn, Sunju; Eom, Jin-Sup; Sohn, Jin-Hun

    2014-10-01

    Extraversion is a personality frequently discussed as one of the strongest and most consistent factors that relates to individual subjective wellbeing. The goal of this study was to better understand how people with varying degrees of extraversion psychologically and physiologically respond differently to unpleasant circumstances. Emotional responses (e.g., levels of intensity, valence, and arousal) were assessed in determining the sensitivity level to negative stimuli that were specifically designed to provoke physical pain and sadness emotion. Physiological changes (e.g., heart rate (HR), blood volume pulse (BVP), and respiratory sinus arrhythmia (RSA)) were also measured during pain and sadness to observe sympathetic and parasympathetic activities. Our results showed that the degree of extraversion was associated with less unpleasant responses to sadness, less HR responses to both pain and sadness, and greater RSA responses to sadness. The findings suggest that the lower HR reactivity to painful and sad situations and greater RSA reactivity to sad situations in extraversion could be possibly due to increased parasympathetic activity. Additionally, enhanced parasympathetic activity to negative situations may explain an important mechanism underlying the positive connection between extraversion and subjective wellbeing.

  7. Physiological Genomics of Response to Soil Drying in Diverse Arabidopsis Accessions[W][OA

    PubMed Central

    Des Marais, David L.; McKay, John K.; Richards, James H.; Sen, Saunak; Wayne, Tierney; Juenger, Thomas E.

    2012-01-01

    Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species. PMID:22408074

  8. F response and H reflex analysis of physiological unity of gravity and antigravity muscles in man.

    PubMed

    García, H A; Fisher, M A

    1977-01-01

    Observational differences between reflex (H reflex) and antidromic (F response) activation of segmental motoneurons by a peripheral electrical stimulus are described. In contrast to H reflexes, the percentage of F responses found after a series of stimuli is directly related to the pick-up field of the recording electrode consistent with this response being due to the variable activation of a small fraction of the available motoneuron pool. Despite the differing physiological mechanisms, both F responses and H reflexes can be used to demonstrate similar relative "central excitatory states" for antigravity muscles (i.e. extensors in the lower extremity and flexors in the upper extremity) and their antagonist gravity muscles. H reflexes were elicited not only in their usual location in certain antigravity muscles but also in unusual locations by length/tension changes in agonist and antagonist groups as well as by passive stretch. The data argue for the physiological unity of similarly acting gravity and antigravity muscles as well as supporting a meaningful role of group II afferents in normal segmental motoneuron pool excitability.

  9. Size-dependent physiological responses of shore crabs to single and repeated playback of ship noise.

    PubMed

    Wale, Matthew A; Simpson, Stephen D; Radford, Andrew N

    2013-04-23

    Anthropogenic noise has fundamentally changed the acoustics of terrestrial and aquatic environments, and there is growing empirical evidence that even a single noise exposure can affect behaviour in a variety of vertebrate organisms. Here, we use controlled experiments to investigate how the physiology of a marine invertebrate, the shore crab (Carcinus maenas), is affected by both single and repeated exposure to ship-noise playback. Crabs experiencing ship-noise playback consumed more oxygen, indicating a higher metabolic rate and potentially greater stress, than those exposed to ambient-noise playback. The response to single ship-noise playback was size-dependent, with heavier crabs showing a stronger response than lighter individuals. Repeated exposure to ambient-noise playback led to increased oxygen consumption (probably due to handling stress), whereas repeated exposure to ship-noise playback produced no change in physiological response; explanations include the possibility that crabs exhibited a maximal response on first exposure to ship-noise playback, or that they habituated or become tolerant to it. These results highlight that invertebrates, like vertebrates, may also be susceptible to the detrimental impacts of anthropogenic noise and demonstrate the tractability for more detailed investigations into the effects of this pervasive global pollutant.

  10. Physiological and psychological responses to expressions of emotion and empathy in post-stress communication.

    PubMed

    Ono, Makiko; Fujita, Mizuho; Yamada, Shigeyuki

    2009-01-01

    The effects of communicating during and after expressing emotions and receiving empathy after exposure to stress were investigated for 18 female students (9 pairs). After mental and physical tasks, a subject spoke to a listener about the stress task. In Experiment 1, responses to speaking about negative emotions aroused by the task (the "with emotion" condition) were compared to speaking about only objective facts about the task (the control). In Experiment 2, responses to empathetic reactions from the listener (the "with empathy" condition) were compared to no reaction (the control). Electroencephalograms were recorded, and heart rate variability (HRV) was calculated from electrocardiogram data. Subjective stress was estimated by a visual analog scale. Experiment 1 demonstrated that expressing emotions activated the left temporal region (T3) in the "with emotion" condition. In Experiment 2, physiological responses depended on cognition of different elements of empathy. During communication, feeling that the listener had the same emotion decreased the subject's T3 activity and sympathetic activity balance indicated by HRV. After communication, feeling that the listener understood her emotions decreased bilateral frontal and temporal activity. On the other hand, subjective stress did not differ between conditions in both experiments. These findings indicate that the comfort of having shared a message reduced physiological activity, especially in the "with empathy" condition. Conversely, even in the "with empathy" condition, not sharing a message can result in more discomfort or stress than the control. Sharing might be associated with cognition of the degree of success of communication, which reflected in the physiological responses. In communication, therefore, expressing emotions and receiving empathy did not in themselves reduce stress, and the level of cognition of having shared a message is a key factor in reducing stress.

  11. Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts

    NASA Astrophysics Data System (ADS)

    Hoadley, Kenneth D.; Pettay, Daniel. T.; Dodge, Danielle; Warner, Mark E.

    2016-06-01

    Given concerns surrounding coral bleaching and ocean acidification, there is renewed interest in characterizing the physiological differences across the multiple host-algal symbiont combinations commonly found on coral reefs. Elevated temperature and CO2 were used to compare physiological responses within the scleractinian corals Montipora hirsuta ( Symbiodinium C15) and Pocillopora damicornis ( Symbiodinium D1), as well as the corallimorph (a non-calcifying anthozoan closely related to scleractinians) Discosoma nummiforme ( Symbiodinium C3). Several physiological proxies were affected more by temperature than CO2, including photochemistry, algal number and cellular chlorophyll a. Marked differences in symbiont number, chlorophyll and volume contributed to distinctive patterns of chlorophyll absorption among these animals. In contrast, carbon fixation either did not change or increased under elevated temperature. Also, the rate of photosynthetically fixed carbon translocated to each host did not change, and the percent of carbon translocated to the host increased in the corallimorph. Comparing all data revealed a significant negative correlation between photosynthetic rate and symbiont density that corroborates previous hypotheses about carbon limitation in these symbioses. The ratio of symbiont-normalized photosynthetic rate relative to the rate of symbiont-normalized carbon translocation (P:T) was compared in these organisms as well as the anemone, Exaiptasia pallida hosting Symbiodinium minutum, and revealed a P:T close to unity ( D. nummiforme) to a range of 2.0-4.5, with the lowest carbon translocation in the sea anemone. Major differences in the thermal responses across these organisms provide further evidence of a range of acclimation potential and physiological plasticity that highlights the need for continued study of these symbioses across a larger group of host taxa.

  12. Physiological and psychological responses of young males during spring-time walks in urban parks

    PubMed Central

    2014-01-01

    Background It is widely believed that contact with the natural environment can improve physical and mental health. Urban green spaces may provide city residents with these benefits; however, there is a lack of empirical field research on the health benefits of urban parks. Methods This field experiment was performed in May. Seventeen males aged 21.2 ± 1.7 years (mean ± standard deviation) were instructed to walk predetermined 15-minute courses in an urban park and a nearby city area (control). Heart rate and heart rate variability (HRV) were measured to assess physiological responses. The semantic differential (SD) method, Profile of Mood States (POMS), and State-Trait Anxiety Inventory (STAI) were used to measure psychological responses. Results Heart rate was significantly lower while walking in the urban park than while walking in the city street. Furthermore, the urban park walk led to higher parasympathetic nervous activity and lower sympathetic nervous activity compared with the walk through the city street. Subjective evaluations were generally in accordance with physiological reactions, and significantly higher scores were observed for the ‘comfortable’, ‘natural’, and ‘relaxed’ parameters following the urban park walk. After the urban park walk, the score for the ‘vigor’ subscale of the POMS was significantly higher, whereas that for negative feelings such as ‘tension-anxiety’ and ‘fatigue’ was significantly lower. The score for the anxiety dimension of the STAI was also significantly lower after the urban park walk. Conclusions Physiological and psychological results from this field experiment provide evidence for the physiological and psychological benefits of urban green spaces. A brief spring-time walk in an urban park shifted sympathetic/parasympathetic balance and improved mood state. PMID:24887352

  13. Swimming performance and physiological responses to exhaustive exercise in radio-tagged and untagged Pacific lampreys

    USGS Publications Warehouse

    Mesa, M.G.; Bayer, J.M.; Seelye, J.G.

    2003-01-01

    Populations of Pacific lamprey Lampetra tridentata have declined in the Columbia River basin. One factor that may have contributed to this reduction in population size is an excessive use of energy by adult lampreys as they negotiate fishways at dams during spawning migrations. To gain an understanding of the performance capacity of Pacific lampreys, we estimated the critical swimming speed (Ucrit) and documented physiological responses of radio-tagged and untagged adult lampreys exercised to exhaustion. The mean (??SD) Ucrit of untagged lampreys was 86.2 ?? 7.5 cm/s at 15??C, whereas the Ucrit for radio-tagged lampreys was 81.5 ?? 7.0 cm/s, a speed that was significantly lower than that of untagged fish. The physiological responses of tagged and untagged lampreys subjected to exhaustive exercise included decreases in blood pH of 0.3-0.5 units, a 40% decrease in muscle glycogen levels, a 22% increase in hematocrit for untagged fish only, and a 4- to 5-fold increase in muscle and a 40- to 100-fold increase in plasma lactate concentrations. These physiological changes were significant compared with resting control fish and usually returned to resting levels by 1-4 h after fatigue. Our estimates of Ucrit for Pacific lampreys are the first quantitative measures of their swimming performance and suggest that these fish may have difficulty negotiating fishways at dams on the Columbia River, which can have water velocities approaching 2 m/s. Our physiological results indicate that tagged and untagged Pacific lampreys show similar metabolic dysfunction after exhaustive exercise but recover quickly from a single exposure to such a stressor.

  14. Effects of Posture and Stimulus Spectral Composition on Peripheral Physiological Responses to Loud Sounds.

    PubMed

    Koch, Jennifer; Flemming, Jan; Zeffiro, Thomas; Rufer, Michael; Orr, Scott P; Mueller-Pfeiffer, Christoph

    2016-01-01

    In the "loud-tone" procedure, a series of brief, loud, pure-tone stimuli are presented in a task-free situation. It is an established paradigm for measuring autonomic sensitization in posttraumatic stress disorder (PTSD). Successful use of this procedure during fMRI requires elicitation of brain responses that have sufficient signal-noise ratios when recorded in a supine, rather than sitting, position. We investigated the modulating effects of posture and stimulus spectral composition on peripheral psychophysiological responses to loud sounds. Healthy subjects (N = 24) weekly engaged in a loud-tone-like procedure that presented 500 msec, 95 dB sound pressure level, pure-tone or white-noise stimuli, either while sitting or supine and while peripheral physiological responses were recorded. Heart rate, skin conductance, and eye blink electromyographic responses were larger to white-noise than pure-tone stimuli (p's < 0.001, generalized eta squared 0.073-0.076). Psychophysiological responses to the stimuli were similar in the sitting and supine position (p's ≥ 0.082). Presenting white noise, rather than pure-tone, stimuli may improve the detection sensitivity of the neural concomitants of heightened autonomic responses by generating larger responses. Recording in the supine position appears to have little or no impact on psychophysiological response magnitudes to the auditory stimuli.

  15. Effects of Posture and Stimulus Spectral Composition on Peripheral Physiological Responses to Loud Sounds

    PubMed Central

    Koch, Jennifer; Flemming, Jan; Zeffiro, Thomas; Rufer, Michael; Orr, Scott P.; Mueller-Pfeiffer, Christoph

    2016-01-01

    In the “loud-tone” procedure, a series of brief, loud, pure-tone stimuli are presented in a task-free situation. It is an established paradigm for measuring autonomic sensitization in posttraumatic stress disorder (PTSD). Successful use of this procedure during fMRI requires elicitation of brain responses that have sufficient signal-noise ratios when recorded in a supine, rather than sitting, position. We investigated the modulating effects of posture and stimulus spectral composition on peripheral psychophysiological responses to loud sounds. Healthy subjects (N = 24) weekly engaged in a loud-tone-like procedure that presented 500 msec, 95 dB sound pressure level, pure-tone or white-noise stimuli, either while sitting or supine and while peripheral physiological responses were recorded. Heart rate, skin conductance, and eye blink electromyographic responses were larger to white-noise than pure-tone stimuli (p’s < 0.001, generalized eta squared 0.073–0.076). Psychophysiological responses to the stimuli were similar in the sitting and supine position (p’s ≥ 0.082). Presenting white noise, rather than pure-tone, stimuli may improve the detection sensitivity of the neural concomitants of heightened autonomic responses by generating larger responses. Recording in the supine position appears to have little or no impact on psychophysiological response magnitudes to the auditory stimuli. PMID:27583659

  16. The physiological responses of Vallisneria natans to epiphytic algae with the increase of N and P concentrations in water bodies.

    PubMed

    Song, Yu-Zhi; Wang, Jin-Qi; Gao, Yong-Xia; Xie, Xue-Jian

    2015-06-01

    To reveal the mechanism of submerged plants decline in progressively eutrophicated freshwaters, physiological responses of Vallisneria natans to epiphytic algae were studied in simulation lab by measuring plant physiological indexes of chlorophyll content, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity based on a 2 × 4 factorial design with two epiphytic conditions (with epiphytic algae and without) and four levels of N and P concentrations in water (N-P[mg.L(-1)]: 0.5, 0.05; 2.5, 0.25; 4.5, 0.45; 12.5, 1.25). Compared with control (non-presence of epiphytic algae), chlorophyll contents of V. natans were significantly decreased (p < 0.01) for the presence of epiphytic algae under any concentrations of N and P in water bodies. While the presence of epiphytic algae induced peroxidation of membrane lipids, MDA contents of V. natans had significantly increased (p < 0.05) by comparing with control. SOD activity significantly enhanced (p < 0.05) with the presence of epiphytic algae in the treatments of T2 and T3 in the whole culture process by comparing with control, sometimes reaching an extremely significant level (p < 0.01). However, in the treatments of T1 and T4, SOD activity had no obvious change with the presence of epiphytic algae (p < 0.05) by comparing with control. At the end of the experiment, the effects of epiphytic algae on chlorophyll content and SOD activity in the leaves of V. natans were increased at first and then decreased with the concentrations of N and P in water, and MDA content became higher with the increase of N and P. concentrations. Repeated measurement data testing showed that the effects of epiphytic algae on the chlorophyll content and MDA content and SOD activity were significant, respectively (p < 0.001), the effects of epiphytic algae were combining with effects of concentrations of N and P (p < 0.001), respectively, and their interaction (p < 0.001). Our observations

  17. Young children's affective responses to another's distress: dynamic and physiological features.

    PubMed

    Fink, Elian; Heathers, James A J; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children's affective responses (sadness and interest-worry) to another's distress. In two samples (N(study1) = 75; N(study2) = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy.

  18. Young Children’s Affective Responses to Another’s Distress: Dynamic and Physiological Features

    PubMed Central

    Fink, Elian; Heathers, James A. J.; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children’s affective responses (sadness and interest-worry) to another’s distress. In two samples (Nstudy1 = 75; Nstudy2 = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952

  19. Neural and Physiological Responses to a Cold Pressor Challenge in Healthy Adolescents

    PubMed Central

    Richardson, Heidi L.; Macey, Paul M.; Kumar, Rajesh; Valladares, Edwin M.; Woo, Mary A.; Harper, Ronald M.

    2014-01-01

    Abnormal autonomic function is common in pediatric diseases. Assessment of central mechanisms underlying autonomic challenges may reveal vulnerabilities antecedent to system failure. Our objective was to characterize central markers and physiological responses to a cold pressor challenge in normal children as a critical step for establishing such screening. We performed functional magnetic resonance imaging (fMRI), and collected physiological measures during cold application to the foot in 24 healthy adolescents (15.5±0.4 years; 13 male). The protocol included a 120s baseline, 120s right-foot cold water immersion (4°C), and 120s recovery. Analyses included heart rate (HR) cross-correlations with fMRI signals. Cold application increased HR 13% 5-7s after onset, which remained elevated throughout the challenge. Respiratory rate transiently increased (peak 22%), then declined (nadir 12% below baseline), before normalizing at 75s. Cold onset rapidly increased somatosensory cortex and medullary signals, which fell after 25s. Right anterior insular cortex signals increased early, followed after 20s by the left anterior insula, with HR declining 8s later. Amygdalae signals also rose, but signals declined in the posterior cingulate cortex, caudate nucleus, hippocampus, and hypothalamus. Declining signals appeared late in the cerebellar fastigial nuclei (60-120s), and in the pons and thalamus. Somatosensory cortex, fastigial nuclei, and hypothalamic responses were principally left-sided, with bilateral responses elsewhere. Late left anterior insula responses likely underlie the HR decline; the late cerebellar pattern may modulate recovery. The laterality, timing and amplitude of normative responses, and rostral response differentiation indicate the complex integration of adolescent autonomic processing, and provide indices for pathological comparisons. PMID:24105663

  20. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1.

    PubMed

    Li, Xiaojie; Han, Bing; Xu, Manyu; Han, Liping; Zhao, Yanying; Liu, Zhilan; Dong, Hansong; Zhang, Chunling

    2014-04-01

    The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice. And growth-promoting responses were determined mainly as an increase of chlorophyll a/b ratio, which indicates a potential elevation of photosynthesis rates, and enhancements of photosynthesis and EXP expression in the three plant species. In Arabidopsis, Hpa1-induced growth-promoting responses were partially compromised by a defect in ethylene perception or gibberellin biosynthesis. In tomato and rice, compromises of Hpa1-induced growth-promoting responses were caused by a pharmacological treatment with an ethylene perception inhibitor or a gibberellin biosynthesis inhibitor. In the three plant species, moreover, Hpa1-induced growth-promoting responses were significantly impaired, but not totally eliminated, by abolishing ethylene perception or gibberellin synthesis. However, simultaneous nullifications in both ethylene perception and gibberellin biosynthesis almost canceled the full effects of Hpa1 on plant growth, photosynthesis, and EXP2 expression. Theses results suggest that ethylene and gibberellin coregulate Hpa1-induced plant growth enhancement and associated physiological and molecular responses.

  1. Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress

    PubMed Central

    Muneer, Sowbiya; Ko, Chung Ho; Wei, Hao; Chen, Yuze; Jeong, Byoung Ryong

    2016-01-01

    Background Grafting is an established practice for asexual propagation in horticultural and agricultural crops. The study on graft unions has become of interest for horticulturists using proteomic and genomic techniques to observe transfer of genetic material and signal transduction pathways from root to shoot and shoot to root. Another reason to study the graft unions was potentially to observe resistance against abiotic stresses. Using physiological and proteomic analyses, we investigated graft unions (rootstock and scions) of tomato genotypes exposed to standard-normal (23/23 and 25/18°C day/night) and high-low temperatures (30/15°C day/night). Results Graft unions had varied responses to the diverse temperatures. High-low temperature, but not standard-normal temperature, induced the production of reactive oxygen species (ROS) in the form of H2O2 and O2-1 in rootstock and scions. However, the expression of many cell protection molecules was also induced, including antioxidant enzymes and their immunoblots, which also show an increase in their activities such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The graft interfaces thus actively defend against stress by modifying their physiological and proteomic responses to establish a new cellular homeostasis. As a result, many proteins for cellular defense were regulated in graft unions under diverse temperature, in addition to the regulation of photosynthetic proteins, ion binding/transport proteins, and protein synthesis. Moreover, biomass, hardness, and vascular transport activity were evaluated to investigate the basic connectivity between rootstock and scions. Conclusions Our study provides physiological evidence of the grafted plants’ response to diverse temperature. Most notably, our study provides novel insight into the mechanisms used to adapt the diverse temperature in graft unions (rootstock/scion). PMID:27310261

  2. Comparison of physiological response to cardiopulmonary exercise testing among cancer survivors and healthy controls.

    PubMed

    Klika, Riggs J; Golik, Katharina S; Drum, Scott N; Callahan, Kathleen E; Thorland, William G

    2011-06-01

    Selected physiological responses, including lactate kinetics, to cardiopulmonary exercise testing (CPET) were evaluated among a group of cancer survivors (CS, n = 55) and healthy controls (HC, n = 213). It was uncertain if lactate testing in a group of cancer survivors could provide useful information about training intensity. It was hypothesized that chemotherapy, radiation, surgery, physical inactivity or some combination thereof would alter the normal lactate kinetics (curvilinearity) in the relationship of lactate concentration versus power. Physiologic responses of CS (heart rate, blood pressure, O(2) saturation, RPE, lactate, VO(2peak), and peak power) during cycle ergometry were compared to HC. Comparisons (t tests and Chi-square) were made between the groups and shape of lactate plots were analyzed for determination of a breakpoint. Multiple logistical regressions were then utilized to identify factors related to the inability to determine lactate breakpoints. Lactate breakpoints were common to all but one HC whereas among the CS there was a small subset of subjects (n = 5) who did not show a lactate breakpoint. Group differences indicated that female CS were significantly older, had greater BMI's, and lower work capacity than HC. Males CS had significantly lower work capacity than HC. Multiple logistical regression analyses, in all instances, yielded no statistically significant models predictive of the inability to determine a lactate breakpoint. In this sample of CS and HC, physiological responses and lactate kinetics during CPET were similar while work capacity among the CS was lower. Because lactate breakpoints were found, lactate threshold could be determined for all but a few individuals. For those working with CS, CPET with ECG monitoring and lactate threshold measures should be considered for those wishing for precise and safe training intensities.

  3. Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato

    PubMed Central

    Iovieno, Paolo; Punzo, Paola; Guida, Gianpiero; Mistretta, Carmela; Van Oosten, Michael J.; Nurcato, Roberta; Bostan, Hamed; Colantuono, Chiara; Costa, Antonello; Bagnaresi, Paolo; Chiusano, Maria L.; Albrizio, Rossella; Giorio, Pasquale; Batelli, Giorgia; Grillo, Stefania

    2016-01-01

    Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts

  4. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress.

    PubMed

    Huang, Renhui; Pan, Mingfang; Wan, Cuixiang; Shah, Nagendra P; Tao, Xueying; Wei, Hua

    2016-02-01

    Acid tolerance responses (ATR) in Lactobacillus plantarum ZDY2013 were investigated at physiological and molecular levels. A comparison of composition of cell membrane fatty acids (CMFA) between acid-challenged and unchallenged cells showed that acid adaptation evoked a significantly higher percentage of saturated fatty acids and cyclopropane fatty acids in acid-challenged than in unchallenged cells. In addition, reverse transcription-quantitative PCR analysis in acid-adapted cells at different pH values (ranging from 3.0 to 4.0) indicated that several genes were differently regulated, including those related to proton pumps, amino acid metabolism, sugar metabolism, and class I and class III stress response pathways. Expression of genes involved in fatty acid synthesis and production of alkali was significantly upregulated. Upon exposure to pH 4.5 for 2 h, a higher survival rate (higher viable cell count) of Lactobacillus plantarum ZDY2013 was achieved following an additional challenge to 40 mM hydrogen peroxide for 60 min, but no difference in survival rate of cells was found with further challenge to heat, ethanol, or salt. Therefore, we concluded that the physiological and metabolic changes of acid-treated cells of Lactobacillus plantarum ZDY2013 help the cells resist damage caused by acid, and further initiated global response signals to bring the whole cell into a state of defense to other stress factors, especially hydrogen peroxide.

  5. Profiling the physiological and molecular response to sulfonamidic drug in Procambarus clarkii.

    PubMed

    Nicosia, Aldo; Celi, Monica; Vazzana, Mirella; Damiano, Maria Alessandra; Parrinello, Nicolò; D'Agostino, Fabio; Avellone, Giuseppe; Indelicato, Serena; Mazzola, Salvatore; Cuttitta, Angela

    2014-11-01

    Sulfamethoxazole (SMZ) is one of the most widely employed sulfonamides. Because of the widespread use of SMZ, a considerable amount is indeed expected to be introduced into the environment. The cytotoxicity of SMZ relies mainly on arylhydroxylamine metabolites (S-NOH) of SMZ and it is associated with the production of reactive oxygen species (ROS). There is limited information about the toxic potential of SMZ at the cellular and molecular levels, especially in aquatic and/or non-target organisms. In the present study, the red swamp crayfish (Procambarus clarkii), being tolerant to extreme environmental conditions and resistant to disease, was used as a model organism to profile the molecular and physiological response to SMZ. Haemolymphatic-immunological parameters such as glucose serum levels and total haemocyte counts were altered; moreover, a significant increase in Hsp70 plasma levels was detected for the first time. Variations at the transcriptional level of proinflammatory genes (cyclooxygenase-1, COX 1, and cyclooxygenase-2, COX 2), antioxidant enzymes (glutathione-S-transferase, GST and manganese superoxide dismutase MnSOD), stress response and Fenton reaction inhibitor genes (heat-shock protein 70 HSP70, metallothionein, MT and ferritin, FT) were evaluated, and alterations in the canonical gene expression patterns emerged. Considering these results, specific mechanisms involved in maintaining physiological homeostasis and adaptation in response to perturbations are suggested.

  6. Physiological and behavioural responses of young horses to hot iron branding and microchip implantation.

    PubMed

    Erber, R; Wulf, M; Becker-Birck, M; Kaps, S; Aurich, J E; Möstl, E; Aurich, C

    2012-02-01

    Branding is the traditional and well-established method used to mark horses, but recently microchip transponders for implantation have become available. In this study, behaviour, physiological stress variables and skin temperature in foals were determined in response to hot-iron branding (n=7) and microchip implantation (n=7). Salivary cortisol concentrations increased in response to branding (1.8 ± 0.2 ng/mL) and microchip implantation (1.4 ± 0.1ng/mL), but cortisol release over time did not differ. In response to both manipulations there was a transient increase in heart rate (P<0.001) and heart rate variability (P<0.01). Branding and microchip implantation induced a comparable aversive behaviour (branding, score 3.86 ± 0.85; microchip, score 4.00 ± 0.82). Both techniques thus caused similar physiological and behavioural changes indicative of stress. Acutely, implantation of a microchip was as stressful as branding in foals. Branding caused a necrotising skin burn lasting at least 7 days. Moreover branding, but not microchip implantation (P<0.001), was accompanied by a generalized increase in skin temperature which was comparable to low degree post-burn hypermetabolism in humans.

  7. Do infants find snakes aversive? Infants' physiological responses to "fear-relevant" stimuli.

    PubMed

    Thrasher, Cat; LoBue, Vanessa

    2016-02-01

    In the current research, we sought to measure infants' physiological responses to snakes-one of the world's most widely feared stimuli-to examine whether they find snakes aversive or merely attention grabbing. Using a similar method to DeLoache and LoBue (Developmental Science, 2009, Vol. 12, pp. 201-207), 6- to 9-month-olds watched a series of multimodal (both auditory and visual) stimuli: a video of a snake (fear-relevant) or an elephant (non-fear-relevant) paired with either a fearful or happy auditory track. We measured physiological responses to the pairs of stimuli, including startle magnitude, latency to startle, and heart rate. Results suggest that snakes capture infants' attention; infants showed the fastest startle responses and lowest average heart rate to the snakes, especially when paired with a fearful voice. Unexpectedly, they also showed significantly reduced startle magnitude during this same snake video plus fearful voice combination. The results are discussed with respect to theoretical perspectives on fear acquisition.

  8. Physiological and behavioural responses to weaning conflict in free-ranging primate infants

    PubMed Central

    Mandalaywala, Tara M.; Higham, James P.; Heistermann, Michael; Parker, Karen J.; Maestripieri, Dario

    2014-01-01

    Weaning, characterized by maternal reduction of resources, is both psychologically and energetically stressful to mammalian offspring. Despite the importance of physiology in this process, previous studies have reported only indirect measures of weaning stress from infants, because of the difficulties of collecting physiological measures from free-ranging mammalian infants. Here we present some of the first data on the relationship between weaning and energetic and psychological stress in infant mammals. We collected data on 47 free-ranging rhesus macaque infants on Cayo Santiago, Puerto Rico, showing that faecal glucocorticoid metabolite (fGCM) concentrations were directly related to the frequency of maternal rejection, with fGCM concentrations increasing as rates of rejection increased. Infants with higher fGCM concentrations also engaged in higher rates of mother following, and mother following was associated with increased time on the nipple, suggesting that infants that experienced greater weaning-related stress increased their efforts to maintain proximity and contact with their mothers. Infants experiencing more frequent rejection uttered more distress vocalizations when being rejected; however, there was no relationship between rates of distress vocalizations and fGCM concentrations, suggesting a disassociation between behavioural and physiological stress responses to weaning. Elevated glucocorticoid concentrations during weaning may function to mobilize energy reserves and prepare the infant for continued maternal rejection and shortage of energetic resources. PMID:25431499

  9. Physiological and Molecular Responses of Lactuca sativa to Colonization by Salmonella enterica Serovar Dublin▿

    PubMed Central

    Klerks, M. M.; van Gent-Pelzer, M.; Franz, E.; Zijlstra, C.; van Bruggen, A. H. C.

    2007-01-01

    This paper describes the physiological and molecular interactions between the human-pathogenic organism Salmonella enterica serovar Dublin and the commercially available mini Roman lettuce cv. Tamburo. The association of S. enterica serovar Dublin with lettuce plants was first determined, which indicated the presence of significant populations outside and inside the plants. The latter was evidenced from significant residual concentrations after highly efficient surface disinfection (99.81%) and fluorescence microscopy of S. enterica serovar Dublin in cross sections of lettuce at the root-shoot transition region. The plant biomass was reduced significantly compared to that of noncolonized plants upon colonization with S. enterica serovar Dublin. In addition to the physiological response, transcriptome analysis by cDNA amplified fragment length polymorphism analysis also provided clear differential gene expression profiles between noncolonized and colonized lettuce plants. From these, generally and differentially expressed genes were selected and identified by sequence analysis, followed by reverse transcription-PCR displaying the specific gene expression profiles in time. Functional grouping of the expressed genes indicated a correlation between colonization of the plants and an increase in expressed pathogenicity-related genes. This study indicates that lettuce plants respond to the presence of S. enterica serovar Dublin at physiological and molecular levels, as shown by the reduction in growth and the concurrent expression of pathogenicity-related genes. In addition, it was confirmed that Salmonella spp. can colonize the interior of lettuce plants, thus potentially imposing a human health risk when processed and consumed. PMID:17513585

  10. Ambient temperature: a factor affecting performance and physiological response of broiler chickens

    NASA Astrophysics Data System (ADS)

    Donkoh, A.

    1989-12-01

    An experiment was conducted to elucidate the influence of four constant ambient temperatures (20°, 25°, 30° and 35°C) on the performance and physiological reactions of male commercial broiler chicks from 3 to 7 weeks of age. A 12 h light-dark cycle was operated, while relative humidity and air circulation were not controlled. Exposure of broiler chickens to the 20°, 25°, 30° and 35°C treatments showed highly significant ( P<0.0001) depression in growth rate, food intake and efficiency of food utilization, and a significant increase in water consumption for the 30° and 35°C groups. Mortality was, however, not affected by the temperature treatments. Changes in physiological status, such as increased rectal temperatures, decreased concentration of red blood cells, haemoglobin, haematocrit, and total plasma protein were observed in birds housed in the higher temperature (30° and 35°C) environments. Moreover, in these broiler chickens, there was an increased blood glucose concentration and a decreased thyroid gland weight. These results indicate that continuous exposure of broiler chickens to high ambient temperatures markedly affects their performance and physiological response.

  11. Physiological stress responses, fecal marking behavior, and reproduction in wild European pine martens (Martes martes).

    PubMed

    Barja, Isabel; Silván, Gema; Martínez-Fernández, Leticia; Illera, Juan Carlos

    2011-03-01

    The relationship among physiological stress responses, fecal marking behavior, and reproduction in male and female European pine martens was investigated. Between July 2004 and June 2007, 145 fresh fecal samples were collected in a protected area of northwest Spain. Fecal DNA was used for specific identification by using the polymerase chain reaction-restriction fragment length polymorphism technique. Glucocorticoids (cortisol) and sex steroid hormones (P, progesterone; E, estradiol; T, testosterone) were quantified by enzyme immunoassays. Sex was assigned according to concentrations of T+P+E and the T/P ratio. Fecal cortisol concentrations were higher in males than in females. Feces with a presumptive marking function (on conspicuous substrates, above ground level, and/or in latrines) had higher mean levels of cortisol than those that were on inconspicuous substrates and/or at ground level, for both males and females. Fecal mark density was highest in spring, when mean levels of fecal cortisol were more elevated. Therefore, the higher physiological stress levels in females could be due to female physiological state (late-term pregnancy and lactation), competition for resources connected to birth, or food resources for offspring rearing. In males, the increase could be due to higher male competition for access to females during pro-estrus and estrus. Our results suggest that scent marking in European pine martens is related to reproduction and is involved in intersexual and intrasexual communication.

  12. Responses of corn physiology and yield to six agricultural practices over three years in middle Tennessee

    PubMed Central

    Yu, Chih-Li; Hui, Dafeng; Deng, Qi; Wang, Junming; Reddy, K. Chandra; Dennis, Sam

    2016-01-01

    Different agricultural practices may have substantial impacts on crop physiology and yield. However, it is still not entirely clear how multiple agricultural practices such as tillage, biochar and different nutrient applications could influence corn physiology and yield. We conducted a three-year field experiment to study the responses of corn physiology, yield, and soil respiration to six different agricultural practices. The six treatments included conventional tillage (CT) or no tillage (NT), in combination with nitrogen type (URAN or chicken litter) and application method, biochar, or denitrification inhibitor. A randomized complete block design was applied with six replications. Leaf photosynthetic rate, transpiration, plant height, leaf area index (LAI), biomass, and yield were measured. Results showed that different agricultural practices had significant effects on plant leaf photosynthesis, transpiration, soil respiration, height, and yield, but not on LAI and biomass. The average corn yield in the NT-URAN was 10.03 ton/ha, 28.9% more than in the CT-URAN. Compared to the NT-URAN, the NT-biochar had lower soil respiration and similar yield. All variables measured showed remarkable variations among the three years. Our results indicated that no tillage treatment substantially increased corn yield, probably due to the preservation of soil moisture during drought periods. PMID:27272142

  13. NMR-Based Metabonomic Analysis of Physiological Responses to Starvation and Refeeding in the Rat.

    PubMed

    Serrano-Contreras, José I; García-Pérez, Isabel; Meléndez-Camargo, María E; Zepeda, L Gerardo

    2016-09-02

    Starvation is a postabsorptive condition derived from a limitation on food resources by external factors. Energy homeostasis is maintained under this condition by using sources other than glucose via adaptive mechanisms. After refeeding, when food is available, other adaptive processes are linked to energy balance. However, less has been reported about the physiological mechanisms present as a result of these conditions, considering the rat as a supraorganism. Metabolic profiling using (1)H nuclear magnetic resonance spectroscopy was used to characterize the physiological metabolic differences in urine specimens collected under starved, refed, and recovered conditions. In addition, because starvation induced lack of faecal production and not all animals produced faeces during refeeding, 24 h pooled faecal water samples were also analyzed. Urinary metabolites upregulated by starvation included 2-butanamidoacetate, 3-hydroxyisovalerate, ketoleucine, methylmalonate, p-cresyl glucuronide, p-cresyl sulfate, phenylacetylglycine, pseudouridine, creatinine, taurine, and N-acetyl glycoprotein, which were related to renal and skeletal muscle function, β-oxidation, turnover of proteins and RNA, and host-microbial interactions. Food-derived metabolites, including gut microbial cometabolites, and tricarboxylic acid cycle intermediates were upregulated under refed and recovered conditions, which characterized anabolic urinary metabotypes. The upregulation of creatine and pantothenate indicated an absorptive state after refeeding. Fecal short chain fatty acids, 3-(3-hydroxyphenyl)propionate, lactate, and acetoin provided additional information about the combinatorial metabolism between the host and gut microbiota. This investigation contributes to allow a deeper understanding of physiological responses associated with starvation and refeeding.

  14. Physiological and emotional responses of disabled children to therapeutic clowns: a pilot study.

    PubMed

    Kingsnorth, Shauna; Blain, Stefanie; McKeever, Patricia

    2011-01-01

    This pilot study examined the effects of Therapeutic Clowning on inpatients in a pediatric rehabilitation hospital. Ten disabled children with varied physical and verbal expressive abilities participated in all or portions of the data collection protocol. Employing a mixed-method, single-subject ABAB study design, measures of physiological arousal, emotion and behavior were obtained from eight children under two conditions-television exposure and therapeutic clown interventions. Four peripheral autonomic nervous system (ANS) signals were recorded as measures of physiological arousal; these signals were analyzed with respect to measures of emotion (verbal self reports of mood) and behavior (facial expressions and vocalizations). Semistructured interviews were completed with verbally expressive children (n = 7) and nurses of participating children (n = 13). Significant differences among children were found in response to the clown intervention relative to television exposure. Physiologically, changes in ANS signals occurred either more frequently or in different patterns. Emotionally, children's (self) and nurses' (observed) reports of mood were elevated positively. Behaviorally, children exhibited more positive and fewer negative facial expressions and vocalizations of emotion during the clown intervention. Content and themes extracted from the interviews corroborated these findings. The results suggest that this popular psychosocial intervention has a direct and positive impact on hospitalized children. This pilot study contributes to the current understanding of the importance of alternative approaches in promoting well-being within healthcare settings.

  15. Physiological and Emotional Responses of Disabled Children to Therapeutic Clowns: A Pilot Study

    PubMed Central

    Kingsnorth, Shauna; Blain, Stefanie; McKeever, Patricia

    2011-01-01

    This pilot study examined the effects of Therapeutic Clowning on inpatients in a pediatric rehabilitation hospital. Ten disabled children with varied physical and verbal expressive abilities participated in all or portions of the data collection protocol. Employing a mixed-method, single-subject ABAB study design, measures of physiological arousal, emotion and behavior were obtained from eight children under two conditions—television exposure and therapeutic clown interventions. Four peripheral autonomic nervous system (ANS) signals were recorded as measures of physiological arousal; these signals were analyzed with respect to measures of emotion (verbal self reports of mood) and behavior (facial expressions and vocalizations). Semistructured interviews were completed with verbally expressive children (n = 7) and nurses of participating children (n = 13). Significant differences among children were found in response to the clown intervention relative to television exposure. Physiologically, changes in ANS signals occurred either more frequently or in different patterns. Emotionally, children's (self) and nurses' (observed) reports of mood were elevated positively. Behaviorally, children exhibited more positive and fewer negative facial expressions and vocalizations of emotion during the clown intervention. Content and themes extracted from the interviews corroborated these findings. The results suggest that this popular psychosocial intervention has a direct and positive impact on hospitalized children. This pilot study contributes to the current understanding of the importance of alternative approaches in promoting well-being within healthcare settings. PMID:21799690

  16. Physiological responses and tolerance threshold to cadmium contamination in Eremochloa ophiuroides.

    PubMed

    Liu, Yiming; Wang, Kai; Xu, Peixian; Wang, Zhaolong

    2012-01-01

    Plant tolerance is one of the preconditions in soil phytoremediation. The physiological responses and tolerance threshold of centipedegrass (Eremochloa ophiuroides) were investigated under eight different Cd concentrations (0, 60, 120, 180, 240, 300, 360, and 420 mg Cd kg(-1)) in a sand culture system. The results showed that turf quality, leaf relative water content (RWC), leaf electrolyte leakage (EL), leaf osmotic potential did not show significant changes under 180 mg Cd kg(-1) compared with the control, and relative growth rate (RGR), turf density, leaf chlorophyll content, photochemical efficiency (Fv/Fm) did not show significant changes under 240 mg Cd kg(-1) compared with the control throughout the whole experiment. Regression analysis was used to determine the threshold Cd concentrations for each physiological parameter and the most sensitive parameter occurred by RWC of 197 mg Cd kg(-1) which was chose as Cd tolerance threshold in centipedegrass because under this concentration the plant did not show any significant difference with the control in all growth and physiological parameters measured in this experiment. The phytoextration rate of centipedegrass reached 0.87% in 36 d under 180 mg Cd kg(-10 treatment.

  17. Responses of corn physiology and yield to six agricultural practices over three years in middle Tennessee.

    PubMed

    Yu, Chih-Li; Hui, Dafeng; Deng, Qi; Wang, Junming; Reddy, K Chandra; Dennis, Sam

    2016-06-07

    Different agricultural practices may have substantial impacts on crop physiology and yield. However, it is still not entirely clear how multiple agricultural practices such as tillage, biochar and different nutrient applications could influence corn physiology and yield. We conducted a three-year field experiment to study the responses of corn physiology, yield, and soil respiration to six different agricultural practices. The six treatments included conventional tillage (CT) or no tillage (NT), in combination with nitrogen type (URAN or chicken litter) and application method, biochar, or denitrification inhibitor. A randomized complete block design was applied with six replications. Leaf photosynthetic rate, transpiration, plant height, leaf area index (LAI), biomass, and yield were measured. Results showed that different agricultural practices had significant effects on plant leaf photosynthesis, transpiration, soil respiration, height, and yield, but not on LAI and biomass. The average corn yield in the NT-URAN was 10.03 ton/ha, 28.9% more than in the CT-URAN. Compared to the NT-URAN, the NT-biochar had lower soil respiration and similar yield. All variables measured showed remarkable variations among the three years. Our results indicated that no tillage treatment substantially increased corn yield, probably due to the preservation of soil moisture during drought periods.

  18. Near-UV radiation acts as a beneficial factor for physiological responses in cucumber plants.

    PubMed

    Mitani-Sano, Makiko; Tezuka, Takafumi

    2013-11-05

    Effects of near-UV radiation on the growth and physiological activity of cucumber plants were investigated morphologically, physiologically and biochemically using 3-week-old seedlings grown under polyvinyl chloride films featuring transmission either above 290 nm or above 400 nm in growth chambers. The hypocotyl length and leaf area of cucumber seedlings were reduced but the thickness of leaves was enhanced by near-UV radiation, due to increased upper/lower epidermis thickness, palisade parenchyma thickness and volume of palisade parenchyma cells. Photosynthetic and respiratory activities were also promoted by near-UV radiation, associated with general enhancement of physiological/biochemical responses. Particularly, metabolic activities in the photosynthetic system of chloroplasts and the respiratory system of mitochondria were analyzed under the conditions of visible light with and without near-UV radiation. For example, the activities of NAD(P)-dependent enzymes such as glyceraldehyde-3-phosphate dehydrogenase (G3PDH) in chloroplasts and isocitrate dehydrogenase (ICDH) in mitochondria were elevated, along with levels of pyridine nucleotides (nicotinamide coenzymes) [NAD(H) and NADP(H)] and activity of NAD kinase (NADP forming enzyme). Taken together, these data suggest that promotion of cucumber plant growth by near-UV radiation involves activation of carbon and nitrogen metabolism in plants. The findings of this research showed that near-UV radiation reaching the Earth's surface is a beneficial factor for plant growth.

  19. The Effects of Caffeine Supplementation on Physiological Responses to Submaximal Exercise in Endurance-Trained Men

    PubMed Central

    2016-01-01

    Objectives The aim of this study was to evaluate the effects of caffeine on physiological responses to submaximal exercise, with a focus on blood lactate concentration ([BLa]). Methods Using a randomised, single-blind, crossover design; 16 endurance-trained, male cyclists (age: 38 ± 8 years; height: 1.80 ± 0.05 m; body mass: 76.6 ± 7.8 kg; V˙O2max: 4.3 ± 0.6 L∙min-1) completed four trials on an electromagnetically-braked cycle ergometer. Each trial consisted of a six-stage incremental test (3 minute stages) followed by 30 minutes of passive recovery. One hour before trials 2–4, participants ingested a capsule containing 5 mg∙kg-1 of either caffeine or placebo (maltodextrin). Trials 2 and 3 were designed to evaluate the effects of caffeine on various physiological responses during exercise and recovery. In contrast, Trial 4 was designed to evaluate the effects of caffeine on [BLa] during passive recovery from an end-exercise concentration of 4 mmol∙L-1. Results Relative to placebo, caffeine increased [BLa] during exercise, independent of exercise intensity (mean difference: 0.33 ± 0.41 mmol∙L-1; 95% likely range: 0.11 to 0.55 mmol∙L-1), but did not affect the time-course of [BLa] during recovery (p = 0.604). Caffeine reduced ratings of perceived exertion (mean difference: 0.5 ± 0.7; 95% likely range: 0.1 to 0.9) and heart rate (mean difference: 3.6 ± 4.2 b∙min-1; 95% likely range: 1.3 to 5.8 b∙min-1) during exercise, with the effect on the latter dissipating as exercise intensity increased. Supplement × exercise intensity interactions were observed for respiratory exchange ratio (p = 0.004) and minute ventilation (p = 0.034). Conclusions The results of the present study illustrate the clear, though often subtle, effects of caffeine on physiological responses to submaximal exercise. Researchers should be aware of these responses, particularly when evaluating the physiological effects of various experimental interventions. PMID:27532605

  20. Short-term physiological responses of wild and hatchery-produced red drum during angling

    USGS Publications Warehouse

    Gallman, E.A.; Isely, J.J.; Tomasso, J.R.; Smith, T.I.J.

    1999-01-01

    Serum cortisol concentrations, plasma glucose concentrations, plasma lactate concentrations, and plasma osmolalities increased in red drum Sciaenops ocellatus (26.0-65.5 cm total length) during angling in estuarine waters (17-33 g/L salinity, 21-31??C). Angling time varied from as fast as possible (10 s) to the point when fish ceased resisting (up to 350 s). The increases in the physiological characteristics were similar in wild and hatchery-produced fish. This study indicates that hatchery-produced red drum may be used in catch-and-release studies to simulate the responses of wild fish.

  1. Human Physiological Responses to Cycle Ergometer Leg Exercise During +Gz Acceleration

    NASA Technical Reports Server (NTRS)

    Chou, J. L.; Stad, N. J.; Barnes, P. R.; Leftheriotis, G. P. N.; Arndt, N. F.; Simonson, S.; Greenleaf, J. E.

    1998-01-01

    Spaceflight and bed-rest deconditioning decrease maximal oxygen uptake (aerobic power), strength, endurance capacity, and orthostatic tolerance. In addition to extensive use of muscular exercise conditioning as a countermeasure for the reduction in aerobic power (VO(sub 2max)), stimuli from some form of +Gz acceleration conditioning may be necessary to attenuate the orthostatic intolerance component of this deconditioning. Hypothesis: There will be no significant difference in the physiological responses (oxygen uptake, heart rate, ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.

  2. Emotional Responses during Reading: Physiological Responses Predict Real-Time Reading Comprehension

    ERIC Educational Resources Information Center

    Daley, Samantha G.; Willett, John B.; Fischer, Kurt W.

    2014-01-01

    This study investigated the relationship between emotional responses and reading performance in middle-school students. Although a large number of prior studies have investigated the relationship between emotion and reading, those studies have concentrated primarily on relatively static and distal measures of emotion. In this research, we measured…

  3. VNN1 overexpression is associated with poor response to preoperative chemoradiotherapy and adverse prognosis in patients with rectal cancers

    PubMed Central

    Chai, Chi-Yung; Zhang, Yimin; Song, Junlong; Lin, Shih-Chun; Sun, Shengrong; Chang, I-Wei

    2016-01-01

    Background: Colorectal cancer is prevalent worldwide and it is also the fourth most common cause of cancer mortality. For rectal cancer, neoadjuvant concurrent chemoradiotherapy (CCRT) followed by radical proctectomy is gold standard treatment for patients with stage II/III rectal cancer. By data mining a public dataset of rectal cancer transcriptome (GSE35452) from Gene Expression Omnibus, National Center of Biotechnology Information (GEO, NCBI), we identified that VNN1 was the most significantly upregulated gene among those related to nitrogen compound metabolic process (GO:0006807). Therefore, we analyzed the clinicopathological correlation and prognostic impact of VNN1 protein (pantetheinase), which encoded by VNN1 gene. Methods: VNN1 immunostaining was performed in 172 rectal adenocarcinomas treated with preoperative CCRT followed by surgery, which were bisected into high- and low-expression subgroups. Furthermore, statistical analyses were performed to correlate the relationship between VNN1 immunoreactivity and clinicopathological features, as well as three survival indices: disease-specific survival (DSS), local recurrence-free survival (LRFS) and metastasis-free survival (MeFS). Results: High VNN1 immunoexpression was significantly associated with advanced pre-treatment and post-treatment disease and poor response to CCRT (all P ≤ .026). In addition, VNN1 overexpression was linked to adverse DSS, LRFS and MeFS in univariate analysis and served as an independent prognosticator indicating worse DSS and LRFS in multivariate analysis (all P ≤ .019). Conclusion: VNN1 may play a crucial role in rectal cancer progression and responsiveness to CCRT, and serve as a novel prognostic biomarker. Additional studies to clarify the molecular pathway are essential for developing potential VNN1-targeted therapies for rectal cancer. PMID:27830030

  4. Physiological and molecular responses of springtails exposed to phenanthrene and drought.

    PubMed

    Holmstrup, Martin; Slotsbo, Stine; Schmidt, Stine N; Mayer, Philipp; Damgaard, Christian; Sørensen, Jesper G

    2014-01-01

    Interaction between effects of hazardous chemicals in the environment and adverse climatic conditions is a problem that receives increased attention in the light of climate change. We studied interactive effects of phenanthrene and drought using a test system in which springtails (Folsomia candida Willem) were concurrently exposed to a sublethal phenanthrene level via passive dosing from silicone (chemical activity of 0.010), and sublethal drought from aqueous NaCl solutions (water activity of 0.988). Previous studies have shown that the combined effects of high levels of phenanthrene and drought, respectively, interact synergistically when using lethality as an end-point. Here, we hypothesized that phenanthrene interferes with physiological mechanisms involved in drought tolerance, and that drought influences detoxification of phenanthrene. However, this hypothesis was not supported by data since phenanthrene had no effect on drought-protective accumulation of myo-inositol, and normal water conserving mechanisms of F. candida were functioning despite the near-lethal concentrations of the toxicant. Further, detoxifying induction of cytochrome P450 and glutathione-S-transferase was not impeded by drought. Both phenanthrene and drought induced transcription of heat shock protein (hsp70) and the combined effect of the two stressors on hsp70 transcription was additive, suggesting that the cellular stress and lethality imposed by these levels of phenanthrene and drought were also additive.

  5. Physiological response of glandular-haired alfalfa to potato leafhopper (Hemiptera: Cicadellidae) injury.

    PubMed

    Lamp, W O; Alexander, L C; Nguyen, M

    2007-02-01

    Plant tolerance to herbivory is a key approach for managing pests. In alfalfa, Medicago sativa, the potato leafhopper, Empoasca fabae, is a major pest as a result of the cascade of plant responses to piercing-sucking injury. To identify tolerance to its injury based on alfalfa physiology, experiments were conducted in the field and greenhouse. In our comparison of the response of field-grown alfalfa cultivars to standardized leafhopper densities, net photosynthesis and transpiration rates of 'Geneva' leaves were reduced by 18 and 21%, respectively, by leafhopper presence compared with a rate change of <1% of resistant 'EverGreen' leaves. Under greenhouse conditions, alfalfa clones varied in their level of gas exchange (net photosynthesis and transpiration) and stem elongation responses to leafhopper injury. For example, in the comparison of seven clones, net photosynthesis declined an average of 40.7% with leafhopper injury, although individual clones varied from 26.6 to 74.3% reduction. Internode elongation after 2 d was 60.3% less on injured stems compared with healthy stems, but again, the individual clones varied from 17.3 to 91.9%. In a time-course study of selected clones, clones varied in their level of injury just after and 3 d after insect removal. Gas exchange responses of all clones recovered by 7 d after cessation of injury. In a choice test, leafhoppers spent similar amounts of time on the susceptible clone and the most tolerant clone; however, their precise feeding behaviors were not measured. Thus, the variable response of clones to injury may be either true physiological tolerance or antixenosis from a change in feeding behavior. This study showed putative tolerance to leafhopper injury among alfalfa genotypes, suggesting that tolerance could be the basis for crop protection in alfalfa from potato leafhopper injury.

  6. Physiological and transcriptional responses to high temperature in Arthrospira (Spirulina) platensis C1.

    PubMed

    Panyakampol, Jaruta; Cheevadhanarak, Supapon; Sutheeworapong, Sawannee; Chaijaruwanich, Jeerayut; Senachak, Jittisak; Siangdung, Wipawan; Jeamton, Wattana; Tanticharoen, Morakot; Paithoonrangsarid, Kalyanee

    2015-03-01

    Arthrospira (Spirulina) platensis is a well-known commercial cyanobacterium that is used as a food and in feed supplements. In this study, we examined the physiological changes and whole-genome expression in A. platensis C1 exposed to high temperature. We found that photosynthetic activity was significantly decreased after the temperature was shifted from 35°C to 42°C for 2 h. A reduction in biomass production and protein content, concomitant with the accumulation of carbohydrate content, was observed after prolonged exposure to high temperatures for 24 h. Moreover, the results of the expression profiling in response to high temperature at the designated time points (8 h) revealed two distinct phases of the responses. The first was the immediate response phase, in which the transcript levels of genes involved in different mechanisms, including genes for heat shock proteins; genes involved in signal transduction and carbon and nitrogen metabolism; and genes encoding inorganic ion transporters for magnesium, nitrite and nitrate, were either transiently induced or repressed by the high temperature. In the second phase, the long-term response phase, both the induction and repression of the expression of genes with important roles in translation and photosynthesis were observed. Taken together, the results of our physiological and transcriptional studies suggest that dynamic changes in the transcriptional profiles of these thermal-responsive genes might play a role in maintaining cell homeostasis under high temperatures, as reflected in the growth and biochemical composition, particularly the protein and carbohydrate content, of A. platensis C1.

  7. Individual differences in behavioral and physiological responsiveness of primiparous dairy cows to machine milking.

    PubMed

    Van Reenen, C G; Van der Werf, J T N; Bruckmaier, R M; Hopster, H; Engel, B; Noordhuizen, J P T M; Blokhuis, H J

    2002-10-01

    An experiment was performed in primiparous dairy cows (n = 23) to examine consistency of individual differences in reactivity to milking, and correlations between measures of behavior, physiology, and milk ejection. Responsiveness to milking was monitored during the first machine milking, on d 2 of lactation, and during milkings on d 4 and 130 of lactation. Measurements included kicking and stepping behavior, plasma cortisol and plasma oxytocin, heart rate, milk yield, milking time, milk flow rate, and residual milk obtained after administration of exogenous oxytocin. With repeated early lactation milkings, residual milk and the incidence of abnormal milk flow curves decreased. On d 130 of lactation all heifers exhibited normal milk ejection. Except for higher plasma cortisol concentrations on d 2, all measures were consistent over time between d 2 and 4 of lactation as indicated by significant rank correlations. Individual differences in the behavioral response to udder preparation were consistent over time between early lactation milkings and d 130 of lactation. Residual milk, milk yield, maximum milk flow rate, plasma oxytocin and heart rate during udder preparation were similarly interrelated on d 2 and 4 of lactation. High heart rate responses on d 2 and 4 were associated with enhanced inhibition of milk ejection. In contrast, behavior recorded during the milking process was unrelated to ease of milk removal. Our results indicate that milking at the beginning of lactation may be stressful to some heifers, to the extent that milk ejection is inhibited, but less disturbing to others. The existence of consistent behavioral and physiological responses in the present study suggests that responsiveness of dairy heifers to milking is mediated by stable animal characteristics.

  8. Fight-flight or freeze-hide? Personality and metabolic phenotype mediate physiological defence responses in flatfish.

    PubMed

    Rupia, Emmanuel J; Binning, Sandra A; Roche, Dominique G; Lu, Weiqun

    2016-07-01

    Survival depends on appropriate behavioural and physiological responses to danger. In addition to active 'fight-flight' defence responses, a passive 'freeze-hide' response is adaptive in some contexts. However, the physiological mechanisms determining which individuals choose a given defence response remain poorly understood. We examined the relationships among personality, metabolic performance and physiological stress responses across an environmental gradient in the olive flounder, Paralichthys olivaceus. We employed four behavioural assays to document the existence of two distinct behavioural types ('bold' and 'shy') in this species. We found consistent metabolic differences between individuals of a given behavioural type across an environmental gradient: shy individuals had overall lower aerobic scope, maximum metabolic rate and standard metabolic rate than bold individuals in both high (25 ppt) and low (3 ppt) salinity. These behavioural and metabolic differences translated into divergent physiological responses during acute stress: shy individuals adopted a passive 'freeze-hide' response by reducing their oxygen consumption rates (akin to shallow breathing) whereas bold individuals adopted an active 'fight-flight' response by increasing their rates of respiration. These distinct defence strategies were repeatable within individuals between salinity treatments. Although it has been suggested theoretically, this is the first empirical evidence that the metabolic response to stressful situations differs between bold and shy individuals. Our results emphasize the importance of incorporating physiological measures to understand the mechanisms driving persistent inter-individual differences in animals.

  9. Divergent Transcriptional Responses to Physiological and Xenobiotic Stress in Giardia duodenalis

    PubMed Central

    McConville, Malcolm J.; Baker, Louise; Korhonen, Pasi K.; Emery, Samantha J.; Svärd, Staffan G.; Gasser, Robin B.; Jex, Aaron R.

    2016-01-01

    Understanding how parasites respond to stress can help to identify essential biological processes. Giardia duodenalis is a parasitic protist that infects the human gastrointestinal tract and causes 200 to 300 million cases of diarrhea annually. Metronidazole, a major antigiardial drug, is thought to cause oxidative damage within the infective trophozoite form. However, treatment efficacy is suboptimal, due partly to metronidazole-resistant infections. To elucidate conserved and stress-specific responses, we calibrated sublethal metronidazole, hydrogen peroxide, and thermal stresses to exert approximately equal pressure on trophozoite growth and compared transcriptional responses after 24 h of exposure. We identified 252 genes that were differentially transcribed in response to all three stressors, including glycolytic and DNA repair enzymes, a mitogen-activated protein (MAP) kinase, high-cysteine membrane proteins, flavin adenine dinucleotide (FAD) synthetase, and histone modification enzymes. Transcriptional responses appeared to diverge according to physiological or xenobiotic stress. Downregulation of the antioxidant system and α-giardins was observed only under metronidazole-induced stress, whereas upregulation of GARP-like transcription factors and their subordinate genes was observed in response to hydrogen peroxide and thermal stressors. Limited evidence was found in support of stress-specific response elements upstream of differentially transcribed genes; however, antisense derepression and differential regulation of RNA interference machinery suggest multiple epigenetic mechanisms of transcriptional control. PMID:27458219

  10. A Review of Cardiac Autonomic Measures: Considerations for Examination of Physiological Response in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Benevides, Teal W.; Lane, Shelly J.

    2015-01-01

    The autonomic nervous system (ANS) is responsible for multiple physiological responses, and dysfunction of this system is often hypothesized as contributing to cognitive, affective, and behavioral responses in children. Research suggests that examination of ANS activity may provide insight into behavioral dysregulation in children with autism…

  11. Physiological Responses During Multiplay Exergaming in Young Adult Males are Game-Dependent

    PubMed Central

    McGuire, Stephen; Willems, Mark ET

    2015-01-01

    Regular moderate-intensity exercise provides health benefits. The aim of this study was to examine whether the selected exercise intensity and physiological responses during exergaming in a single and multiplayer mode in the same physical space were game-dependent. Ten males (mean ±SD, age: 23 ±5 years, body mass: 84.2 ±15.6 kg, body height: 180 ±7 cm, body mass index: 26.0 ±4.0 kg·m−2) played the games Kinect football, boxing and track & field (3 × ∼10 min, ∼ 2 min rest periods) in similar time sequence in two sessions. Physiological responses were measured with the portable Cosmed K4b2 pulmonary gas exchange system. Single play demands were used to match with a competitive opponent in a multiplay mode. A within-subjects crossover design was used with one-way ANOVA and a post-hoc t-test for analysis (p<0.05). Minute ventilation, oxygen uptake and the heart rate were at least 18% higher during a multiplayer mode for Kinect football and boxing but not for track & field. Energy expenditure was 21% higher during multiplay football. Single play track & field had higher metabolic equivalent than single play football (5.7 ±1.6, range: 3.2–8.6 vs 4.1 ±1.0, range: 3.0–6.1, p<0.05). Exergaming in a multiplayer mode can provide higher physiological demands but the effects are game-dependent. It seems that exergaming with low intensity in a multiplayer mode may provide a greater physical challenge for participants than in a single play mode but may not consistently provide sufficient intensity to acquire health benefits when played regularly as part of a programme to promote and maintain health in young adults. PMID:26240669

  12. Complexity of physiological responses decreases in high-stress musical performance.

    PubMed

    Williamon, Aaron; Aufegger, Lisa; Wasley, David; Looney, David; Mandic, Danilo P

    2013-12-06

    For musicians, performing in front of an audience can cause considerable apprehension; indeed, performance anxiety is felt throughout the profession, with wide ranging symptoms arising irrespective of age, skill level and amount of practice. A key indicator of stress is frequency-specific fluctuations in the dynamics of heart rate known as heart rate variability (HRV). Recent developments in sensor technology have made possible the measurement of physiological parameters reflecting HRV non-invasively and outside of the laboratory, opening research avenues for real-time performer feedback to help improve stress management. However, the study of stress using standard algorithms has led to conflicting and inconsistent results. Here, we present an innovative and rigorous approach which combines: (i) a controlled and repeatable experiment in which the physiological response of an expert musician was evaluated in a low-stress performance and a high-stress recital for an audience of 400 people, (ii) a piece of music with varying physical and cognitive demands, and (iii) dynamic stress level assessment with standard and state-of-the-art HRV analysis algorithms such as those within the domain of complexity science which account for higher order stress signatures. We show that this offers new scope for interpreting the autonomic nervous system response to stress in real-world scenarios, with the evolution of stress levels being consistent with the difficulty of the music being played, superimposed on the stress caused by performing in front of an audience. For an emerging class of algorithms that can analyse HRV independent of absolute data scaling, it is shown that complexity science performs a more accurate assessment of average stress levels, thus providing greater insight into the degree of physiological change experienced by musicians when performing in public.

  13. The physiological consequences of crib-biting in horses in response to an ACTH challenge test.

    PubMed

    Briefer Freymond, S; Bardou, D; Briefer, E F; Bruckmaier, R; Fouché, N; Fleury, J; Maigrot, A-L; Ramseyer, A; Zuberbühler, K; Bachmann, I

    2015-11-01

    Stereotypies are repetitive and relatively invariant patterns of behavior, which are observed in a wide range of species in captivity. Stereotypic behavior occurs when environmental demands produce a physiological response that, if sustained for an extended period, exceeds the natural physiological regulatory capacity of the organism, particularly in situations that include unpredictability and uncontrollability. One hypothesis is that stereotypic behavior functions to cope with stressful environments, but the existing evidence is contradictory. To address the coping hypothesis of stereotypies, we triggered physiological reactions in 22 horses affected by stereotypic behavior (crib-biters) and 21 non-crib-biters (controls), using an ACTH challenge test. Following administration of an ACTH injection, we measured saliva cortisol every 30 min and heart rate (HR) continuously for a period of 3h. We did not find any differences in HR or HR variability between the two groups, but crib-biters (Group CB) had significantly higher cortisol responses than controls (Group C; mean ± SD: CB, 5.84 ± 2.62 ng/ml, C, 4.76 ± 3.04 ng/ml). Moreover, crib-biters that did not perform the stereotypic behavior during the 3-hour test period (Group B) had significantly higher cortisol levels than controls, which was not the case of crib-biters showing stereotypic behavior (Group A) (B, 6.44 ± 2.38 ng/ml A, 5.58 ± 2.69 ng/ml). Our results suggest that crib-biting is a coping strategy that helps stereotypic individuals to reduce cortisol levels caused by stressful situations. We conclude that preventing stereotypic horses from crib-biting could be an inappropriate strategy to control this abnormal behavior, as it prevents individuals from coping with situations that they perceive as stressful.

  14. Physiological and subjective responses to cooling devices on firefighting protective clothing.

    PubMed

    Chou, Chinmei; Tochihara, Yutaka; Kim, Taegyou

    2008-09-01

    The aim of the present study was to examine the effectiveness of ice-packs (ICE) and phase change material (PCM) cooling devices in reducing physiological load based on subjects' physiological and subjective responses while the subjects exercised on a bicycle ergometer while wearing firefighting protective clothing in a relatively high temperature environment (30 degrees C, 50%RH). Subjects were eight graduate students, aged 25.9 years (SD 3.2). Each subject participated in four 50-min exposures: control (CON), ICE, PCM of 5 degrees C [PCM(5)] and 20 degrees C [PCM(20)]. Each subject rested in a pre-test room for 10 min before entering the test-room where they rested for another 10 min, followed by 30 min-exercise and a 10 min-recovery period. The exercise intensity was set at 55%VO(2max). Cooling effects were evaluated by measuring rectal temperature (Tre), mean skin temperature (Tsk), body weight loss and subjective responses. An increase in Tre for PCM(5) and PCM(20) which was less than that for CON and ICE was observed. The increases in Tsk were depressed using cooling devices, but the cooling effects of PCMs were greater than ICE. The subjects with CON felt hotter and wetter than those in the other conditions. The larger surface cooling area, higher melting temperature and softer material of PCMs which reduces absorption capacity caused a decrease in Tre and Tsk for PCM(5) and PCM(20) which was more than that for CON and ICE. Furthermore, PCM(20) does not require refrigeration. These results suggest that PCM(20) is more effective than other cooling devices in reducing the physiological load while wearing firefighting protective clothing.

  15. Physiological Responses During Multiplay Exergaming in Young Adult Males are Game-Dependent.

    PubMed

    McGuire, Stephen; Willems, Mark Et

    2015-06-27

    Regular moderate-intensity exercise provides health benefits. The aim of this study was to examine whether the selected exercise intensity and physiological responses during exergaming in a single and multiplayer mode in the same physical space were game-dependent. Ten males (mean ±SD, age: 23 ±5 years, body mass: 84.2 ±15.6 kg, body height: 180 ±7 cm, body mass index: 26.0 ±4.0 kg·m(-2)) played the games Kinect football, boxing and track & field (3 × ∼10 min, ∼ 2 min rest periods) in similar time sequence in two sessions. Physiological responses were measured with the portable Cosmed K4b(2) pulmonary gas exchange system. Single play demands were used to match with a competitive opponent in a multiplay mode. A within-subjects crossover design was used with one-way ANOVA and a post-hoc t-test for analysis (p<0.05). Minute ventilation, oxygen uptake and the heart rate were at least 18% higher during a multiplayer mode for Kinect football and boxing but not for track & field. Energy expenditure was 21% higher during multiplay football. Single play track & field had higher metabolic equivalent than single play football (5.7 ±1.6, range: 3.2-8.6 vs 4.1 ±1.0, range: 3.0-6.1, p<0.05). Exergaming in a multiplayer mode can provide higher physiological demands but the effects are game-dependent. It seems that exergaming with low intensity in a multiplayer mode may provide a greater physical challenge for participants than in a single play mode but may not consistently provide sufficient intensity to acquire health benefits when played regularly as part of a programme to promote and maintain health in young adults.

  16. Using physiology to predict the responses of ants to climatic warming.

    PubMed

    Diamond, Sarah E; Penick, Clint A; Pelini, Shannon L; Ellison, Aaron M; Gotelli, Nicholas J; Sanders, Nathan J; Dunn, Robert R

    2013-12-01

    Physiological intolerance of high temperatures places limits on organismal responses to the temperature increases associated with global climatic change. Because ants are geographically widespread, ecologically diverse, and thermophilic, they are an ideal system for exploring the extent to which physiological tolerance can predict responses to environmental change. Here, we expand on simple models that use thermal tolerance to predict the responses of ants to climatic warming. We investigated the degree to which changes in the abundance of ants under warming reflect reductions in the thermal niche space for their foraging. In an eastern deciduous forest system in the United States with approximately 40 ant species, we found that for some species, the loss of thermal niche space for foraging was related to decreases in abundance with increasing experimental climatic warming. However, many ant species exhibited no loss of thermal niche space. For one well-studied species, Temnothorax curvispinosus, we examined both survival of workers and growth of colonies (a correlate of reproductive output) as functions of temperature in the laboratory, and found that the range of thermal tolerances for colony growth was much narrower than for survival of workers. We evaluated these functions in the context of experimental climatic warming and found that the difference in the responses of these two attributes to temperature generates differences in the means and especially the variances of expected fitness under warming. The expected mean growth of colonies was optimized at intermediate levels of warming (2-4°C above ambient); yet, the expected variance monotonically increased with warming. In contrast, the expected mean and variance of the survival of workers decreased when warming exceeded 4°C above ambient. Together, these results for T. curvispinosus emphasize the importance of measuring reproduction (colony growth) in the context of climatic change: indeed, our examination

  17. Relationships between some psychological assessments, body-build, and physiological stress responses

    PubMed Central

    Bridges, P. K.; Jones, M. T.

    1973-01-01

    A number of physiological responses to the psychological stress of an oral academic examination were observed, including heart rate, respiration rate, blood pressure, urinary 17-oxogenic steroid excretion, and plasma corticosteroid concentration. The results were related to body-build and to four psychological tests: Eysenck Personality Inventory, Taylor Manifest Anxiety Scale, IPAT Anxiety Scale, and Stimulus-Response Inventory. No significant associations were found between the psychological test results and anticipatory physiological activity just before the examination began, including excretion of 17-oxogenic steroids. Respiration rate was not increased by anticipatory stress, unlike the other variables, which were significantly higher than control values taken under resting conditions three months later. The students of primarily linear physique had significantly higher plasma corticosteroid values than the predominantly muscular subjects at the time of the examination, as found previously. They also had significantly higher analogue measures of the degree of anxiety experienced at the examination (assessed both by the subject and by an observer). Therefore, linear subjects appear to experience more anxiety than muscular students in a similar situation of psychological stress. Both the IPAT Scale and S-R Inventory results were significantly higher for the linear group but there were no significant differences for the EPI and TMAS scores, as used in previous studies. The importance of constitutional factors associated with body-build in relation to at least some aspects of personality is strongly suggested by the findings. PMID:4753880

  18. Global transcriptome and physiological responses of Acinetobacter oleivorans DR1 exposed to distinct classes of antibiotics.

    PubMed

    Heo, Aram; Jang, Hyun-Jin; Sung, Jung-Suk; Park, Woojun

    2014-01-01

    The effects of antibiotics on environment-originated nonpathogenic Acinetobacter species have been poorly explored. To understand the antibiotic-resistance mechanisms that function in nonpathogenic Acinetobacter species, we used an RNA-sequencing (RNA-seq) technique to perform global gene-expression profiling of soil-borne Acinetobacter oleivorans DR1 after exposing the bacteria to 4 classes of antibiotics (ampicillin, Amp; kanamycin, Km; tetracycline, Tc; norfloxacin, Nor). Interestingly, the well-known two global regulators, the soxR and the rpoE genes are present among 41 commonly upregulated genes under all 4 antibiotic-treatment conditions. We speculate that these common genes are essential for antibiotic resistance in DR1. Treatment with the 4 antibiotics produced diverse physiological and phenotypic changes. Km treatment induced the most dramatic phenotypic changes. Examination of mutation frequency and DNA-repair capability demonstrated the induction of the SOS response in Acinetobacter especially under Nor treatment. Based on the RNA-seq analysis, the glyoxylate-bypass genes of the citrate cycle were specifically upregulated under Amp treatment. We also identified newly recognized non-coding small RNAs of the DR1 strain, which were also confirmed by Northern blot analysis. These results reveal that treatment with antibiotics of distinct classes differentially affected the gene expression and physiology of DR1 cells. This study expands our understanding of the molecular mechanisms of antibiotic-stress response of environment-originated bacteria and provides a basis for future investigations.

  19. Taste and Physiological Responses to Glucosinolates: Seed Predator versus Seed Disperser

    PubMed Central

    Samuni-Blank, Michal; Izhaki, Ido; Gerchman, Yoram; Dearing, M. Denise; Karasov, William H.; Trabelcy, Beny; Edwards, Thea M.; Arad, Zeev

    2014-01-01

    In contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce. Glucosinolates (GLSs) are a family of bitter-tasting compounds. The fleshy fruit pulp of Ochradenus baccatus was previously found to harbor high concentrations of GLSs, whereas the myrosinase enzyme, which breaks down GLSs to produce foul tasting chemicals, was found only in the seeds. Here we show the differential behavioral and physiological responses of three rodent species to high dose (80%) Ochradenus’ fruits diets. Acomys russatus, a predator of Ochradenus’ seeds, was the least sensitive to the taste of the fruit and the only rodent to exhibit taste-related physiological adaptations to deal with the fruits’ toxins. In contrast, Acomys cahirinus, an Ochradenus seed disperser, was more sensitive to a diet containing the hydrolyzed products of the GLSs. A third rodent (Mus musculus) was deterred from Ochradenus fruits consumption by the GLSs and their hydrolyzed products. We were able to alter M. musculus avoidance of whole fruit consumption by soaking Ochradenus fruits in a water solution containing 1% adenosine monophosphate, which blocks the bitter taste receptor in mice. The observed differential responses of these three rodent species may be due to evolutionary pressures that have enhanced or reduced their sensitivity to the taste of GLSs. PMID:25383693

  20. Growth, metabolism and physiological response of the sea cucumber, Apostichopus japonicus Selenka during periods of inactivity

    NASA Astrophysics Data System (ADS)

    Du, Rongbin; Zang, Yuanqi; Tian, Xiangli; Dong, Shuanglin

    2013-03-01

    The growth, metabolism and physiological response of the sea cucumber, Apostichopus japonicus, were investigated during periods of inactivity. The body weight, oxygen consumption rate (OCR), activities of acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD), and content of heat shock protein 70 (Hsp70) in the body wall and coelomic fluid of A. japonicus were measured during starvation, experimental aestivation and aestivation. The results showed that the body weight of sea cucumber in the three treatments decreased significantly during the experimental period ( P < 0.05). The OCR of sea cucumber reduced in starvation and experimental aestivation treatments, but increased gradually in natural aestivation treatment. The activities of ACP and AKP of sea cucumber decreased gradually in all treatments, whereas those of SOD and CAT as well as Hsp70 content decreased in the starvation and experimental aestivation treatments and increased in natural aestivation treatment. The sea cucumber entered a state of aestivation at 24°C. To some extent, the animals in experimental aestivation were different from those in natural aestivation in metabolism and physiological response. These findings suggested that the aestivation mechanism of A. japonicus is complex and may not be attributed to the elevated temperature only.

  1. Physiological and biochemical responses of resistant and susceptible wheat to injury by Russian wheat aphid.

    PubMed

    Franzen, Lisa D; Gutsche, Andrea R; Heng-Moss, Tiffany M; Higley, Leon G; Sarath, Gautam; Burd, John D

    2007-10-01

    We examined the physiological and biochemical responses of resistant ('Halt' and 'Prairie Red') and susceptible ('TAM 107') wheat, Triticum aestivum L., to injury by the Russian wheat aphid, Diuraphis noxia (Mordvilko). Photosynthetic capacity was evaluated by measuring assimilation/internal CO2 (A/Ci) curves, chlorophyll fluorescence, chlorophyll, and nonstructural carbohydrate content. Total protein and peroxidase specific activity also were determined. No significant differences were detected in chlorophyll concentration between aphid-infested and control TAM 107 plants. The aphid-infested resistant cultivars had similar or significantly higher chlorophyll concentrations compared with their respective control plants. Measurements over time showed that infested Halt plants had delays in photosynthetic senescence, Prairie Red plants had photosynthetic rate changes that were similar to control plants, and TAM 107 plants displayed accelerated photosynthetic senescence patterns. The photochemical and nonphotochemical quenching coefficients were significantly higher in infested Halt plants compared with their respective control plants on day 3. Infested TAM 107 plants had significantly higher photochemical quenching compared with control plants at all times evaluated, and they had significantly higher nonphotochemical quenching on day 3. Throughout the experiment, infested Prairie Red plants exhibited photochemical and nonphotochemical quenching coefficient values that were not significantly different from control plants. Total protein content was not significantly different between aphid-infested and control plants for all cultivars. Differences between physiological responses of infested susceptible and resistant cultivars, particularly temporal changes in photosynthetic activity, imply that resistant Halt and Prairie Red wheat tolerate some impacts of aphid injury on photosynthetic integrity.

  2. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes.

    PubMed

    Rampino, Patrizia; Pataleo, Stefano; Gerardi, Carmela; Mita, Giovanni; Perrotta, Carla

    2006-12-01

    Water deficit is a severe environmental stress and the major constraint on plant productivity with an evident effect on plant growth. The aim of this work was to study Triticum and Aegilops seedlings differing in their response to drought stress at the physiological and molecular levels. The identification of resistant and sensitive genotypes was firstly based on the relative water content (RWC) measurement. Further characterization of genotypes contrasting in their response to water stress was performed at the physiological level by determination of RWC, water loss rate (WLR) and free proline content after different hours of dehydration. Modification in the expression level of five dehydrin (DHN) genes was also analysed by reverse transcription-polymerase chain reaction (RT-PCR). Five cDNAs coding for different DHNs were identified and characterized. These genes are not expressed in the well-watered plants, but only in the stressed plants. Four of these cDNAs are related to novel DHN sequences. The results obtained clearly indicate a relation between the expression of these genes and tissue water content. In particular, in the resistant genotypes the expression of DHN genes is initiated even though tissue hydration levels are still high, indicating also in wheat the involvement of these proteins in water retention.

  3. Dynamics of food availability, body condition and physiological stress response in breeding Black-legged Kittiwakes

    USGS Publications Warehouse

    Kitaysky, A.S.; Wingfield, J.C.; Piatt, J.F.

    1999-01-01

    1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla, breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions. 2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island. 3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.

  4. Stimuli responsive deswelling of radiation synthesized collagen hydrogel in simulated physiological environment.

    PubMed

    Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin; Li, Jiuqiang

    2013-08-01

    Collagen hydrogels were prepared via radiation crosslinking. The simulated physiological environmental effects related to their biomedical applications on the volume phase transition of collagen hydrogel were studied, that is stimuli response to ions, temperature, and pH. The deswelling behavior of collagen hydrogel depends on the salt concentration, temperature, pH, and the hydrogel preparation procedure. Meanwhile, hydrogel structure related to the volume phase transition was investigated by FTIR, fluorescence spectrum, and HR-MAS NMR. Deswelling in salt solution caused little change on collagen conformation, and a denser network led to more significant tyrosine-derived fluorescence quenching. Hydrogen bonding between hydrated water and collagen polypeptide chain was dissociated and the activity of hydrophobic side chain increased, inducing a higher extent of contraction with the increasing of salt concentration. Moreover, salt solution treatments weakened the electrostatic interactions, side chains interactions, and hydrogen bonding of collagen hydrogel, which reduced the thermal stability of collagen hydrogel. Comparing with cell-free collagen hydrogel contraction, fibroblasts did not aggravate contraction of collagen hydrogel significantly. This study elucidated the deswelling mechanism of radiation crosslinked collagen hydrogel in simulated physiological environment and provides strategies for controlling the stimuli response of collagen hydrogel in biomedical application.

  5. Growth and physiological responses of maize ( Zea mays L.) to porous silica nanoparticles in soil

    NASA Astrophysics Data System (ADS)

    Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N.

    2012-12-01

    The present study aims to explore the effect of high surface area (360.85 m2 g-1) silica nanoparticles (SNPs) (20-40 nm) extracted from rice husk on the physiological and anatomical changes during maize growth in sandy loam soil at four concentrations (5-20 kg ha-1) in comparison with bulk silica (15-20 kg ha-1). The plant responses to nano and bulk silica treatments were analyzed in terms of growth characteristics, phyto compounds such as total protein, chlorophyll, and other organic compounds (gas chromatography-mass spectroscopy), and silica accumulation (high-resolution scanning electron microscopy). Growth characteristics were much influenced with increasing concentration of SNPs up to 15 kg ha-1 whereas at 20 kg ha-1, no significant increments were noticed. Silica accumulation in leaves was high at 10 and 15 kg ha-1 (0.57 and 0.82 %) concentrations of SNPs. The observed physiological changes show that the expression of organic compounds such as proteins, chlorophyll, and phenols favored to maize treated with nanosilica especially at 15 kg ha-1 compared with bulk silica and control. Nanoscale silica regimes at 15 kg ha-1 has a positive response of maize than bulk silica which help to improve the sustainable farming of maize crop as an alternative source of silica fertilizer.

  6. Analysis of Natural Variation in Bermudagrass (Cynodon dactylon) Reveals Physiological Responses Underlying Drought Tolerance

    PubMed Central

    Cheng, Zhangmin; Ye, Tiantian; Chan, Zhulong

    2012-01-01

    Bermudagrass (Cynodon dactylon) is a widely used warm-season turfgrass and one of the most drought tolerant species. Dissecting the natural variation in drought tolerance and physiological responses will bring us powerful basis and novel insight for plant breeding. In the present study, we evaluated the natural variation of drought tolerance among nine bermudagrass varieties by measuring physiological responses after drought stress treatment through withholding water. Three groups differing in drought tolerance were identified, including two tolerant, five moderately tolerant and two susceptible varieties. Under drought stress condition, drought sensitive variety (Yukon) showed relative higher water loss, more severe cell membrane damage (EL), and more accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA), while drought tolerant variety (Tifgreen) exhibited significantly higher antioxidant enzymes activities. Further results indicated that drought induced cell injury in different varieties (Yukon, SR9554 and Tifgreen) exhibited liner correlation with leaf water content (LWC), H2O2 content, MDA content and antioxidant enzyme activities. Additionally, Tifgreen plants had significantly higher levels of osmolytes (proline level and soluble sugars) when compared with Yukon and SR9554 under drought stress condition. Taken together, our results indicated that natural variation of drought stress tolerance in bermudagrass varieties might be largely related to the induced changes of water status, osmolyte accumulation and antioxidant defense system. PMID:23285294

  7. Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis.

    PubMed

    Bovo, Rafael P; Andrade, Denis V; Toledo, Luís Felipe; Longo, Ana V; Rodriguez, David; Haddad, Célio F B; Zamudio, Kelly R; Becker, C Guilherme

    2016-01-13

    Pathophysiological effects of clinical chytridiomycosis in amphibians include disorders of cutaneous osmoregulation and disruption of the ability to rehydrate, which can lead to decreased host fitness or mortality. Less attention has been given to physiological responses of hosts where enzootic infections of Batrachochytrium dendrobatidis (Bd) do not cause apparent population declines in the wild. Here, we experimentally tested whether an enzootic strain of Bd causes significant mortality and alters host water balance (evaporative water loss, EWL; skin resistance, R(s); and water uptake, WU) in individuals of 3 Brazilian amphibian species (Dendropsophus minutus, n = 19; Ischnocnema parva, n = 17; Brachycephalus pitanga, n = 15). Infections with enzootic Bd caused no significant mortality, but we found an increase in R(s) in 1 host species concomitant with a reduction in EWL. These results suggest that enzootic Bd infections can indeed cause sub-lethal effects that could lead to reduction of host fitness in Brazilian frogs and that these effects vary among species. Thus, our findings underscore the need for further assessment of physiological responses to Bd infections in different host species, even in cases of sub-clinical chytridiomycosis and long-term enzootic infections in natural populations.

  8. Effects of Modified Multistage Field Test on Performance and Physiological Responses in Wheelchair Basketball Players

    PubMed Central

    Weissland, Thierry; Faupin, Arnaud; Borel, Benoit; Berthoin, Serge; Leprêtre, Pierre-Marie

    2015-01-01

    A bioenergetical analysis of manoeuvrability and agility performance for wheelchair players is inexistent. It was aimed at comparing the physiological responses and performance obtained from the octagon multistage field test (MFT) and the modified condition in “8 form” (MFT-8). Sixteen trained wheelchair basketball players performed both tests in randomized condition. The levels performed (end-test score), peak values of oxygen uptake (VO2peak), minute ventilation (VEpeak), heart rate (HRpeak), peak and relative blood lactate (Δ[Lact−] = peak – rest values), and the perceived rating exertion (RPE) were measured. MFT-8 induced higher VO2peak and VEpeak values compared to MFT (VO2peak: 2.5 ± 0.6 versus 2.3 ± 0.6 L·min−1 and VEpeak: 96.3 ± 29.1 versus 86.6 ± 23.4 L·min−1; P < 0.05) with no difference in other parameters. Significant relations between VEpeak and end-test score were correlated for both field tests (P < 0.05). At exhaustion, MFT attained incompletely VO2peak and VEpeak. Among experienced wheelchair players, MFT-8 had no effect on test performance but generates higher physiological responses than MFT. It could be explained by demands of wheelchair skills occurring in 8 form during the modified condition. PMID:25802841

  9. Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies.

    PubMed

    Zhang, Sheng; Jiang, Hao; Zhao, Hongxia; Korpelainen, Helena; Li, Chunyang

    2014-04-01

    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder under stressful conditions. However, little is known about sex-specific differences in responses to nutrient deficiencies. In this study, the effects of nitrogen (N) and phosphorus (P) deficiencies on the morphological, physiological and chloroplast ultrastructural traits of P. cathayana males and females were investigated. The results showed that N and P deficiencies significantly decreased plant growth, foliar N and P contents, chlorophyll content, photosynthesis, and instantaneous photosynthetic N- and P-use efficiencies (PNUE and PPUE) in both sexes. Males had higher photosynthesis, higher PNUE and PPUE rates, and a lower accumulation of plastoglobules in chloroplasts than did females when exposed to N- and P-deficiency conditions. Nitrogen-deficient males had higher glutamate dehydrogenase and peroxidase activities, and a more intact chloroplast ultrastructure, but less starch accumulation than did N-deficient females. Phosphorus-deficient males had higher nitrate reductase, glutamine synthetase and acid phosphatase activities, but a lower foliar N : P ratio and less PSII damage than did P-deficient females. These results suggest that N and P deficiencies cause greater negative effects on females than on males, and that the different sexes of P. cathayana may employ different strategies to cope with N and P deficiencies.

  10. Physiological and metabolic responses as function of the mechanical load in resistance exercise.

    PubMed

    Buitrago, Sebastian; Wirtz, Nicolas; Flenker, Ulrich; Kleinöder, Heinz

    2014-03-01

    The present study aimed to investigate the relationship between the mechanical load during resistance exercise and the elicited physiological responses. Ten resistance-trained healthy male subjects performed 1 set of resistance exercise each at 55%, 70%, and 85% of 1 repetition maximum for as many repetitions as possible and in 4 training modes: 4-1-4-1 (4 s concentric, 1 s isometric, 4 s eccentric, and 1 s isometric successive actions), 2-1-2-1, 1-1-1-1, and explosive (maximum velocity concentric). Mean concentric power and total concentric work were determined. Oxygen uptake (V̇O2) was measured during exercise and for 30 min post exercise. Total volume of consumed oxygen (O2 consumed) and excess post-exercise oxygen consumption (EPOC) were calculated. Maximum blood lactate concentration (LAmax) was also determined. V̇O2 exhibited a linear dependency on mean concentric power. Mean concentric power did not have a detectable effect on EPOC and LAmax. An augmentation of total concentric work resulted in significant linear increase of O2 consumed and EPOC. Total concentric work caused a significant increase in LAmax. In general, a higher mechanical load induced a larger physiological response. An increase in mean concentric power elicited higher aerobic energy turnover rates. However, a higher extent of total concentric work augments total energy cost covered by oxidative and (or) glycolytic pathways.

  11. Effects of playing surface on physiological responses and performance variables in a controlled football simulation.

    PubMed

    Hughes, Michael G; Birdsey, Laurence; Meyers, Rob; Newcombe, Daniel; Oliver, Jon Lee; Smith, Paul M; Stembridge, Michael; Stone, Keeron; Kerwin, David George

    2013-01-01

    In spite of the increased acceptance of artificial turf in football, few studies have investigated if matches are altered by the type of surface used and no research has compared physiological responses to football activity on artificial and natural surfaces. In the present study, participants performed a football match simulation on high-quality artificial and natural surfaces. Neither mean heart rate (171 ± 9 beats · min(-1) vs. 171 ± 9 beats · min(-1); P > 0.05) nor blood lactate (4.8 ± 1.6 mM vs. 5.3 ± 1.8 mM; P > 0.05) differed between the artificial and natural surface, respectively. Measures of sprint, jumping and agility performance declined through the match simulation but surface type did not affect the decrease in performance. For example, the fatigue index of repeated sprints did not differ (P > 0.05) between the artificial, (6.9 ± 2.1%) and natural surface (7.4 ± 2.4%). The ability to turn after sprinting was affected by surface type but this difference was dependent on the type of turn. Although there were small differences in the ability to perform certain movements between artificial and natural surfaces, the results suggest that fatigue and physiological responses to football activity do not differ markedly between surface-type using the high-quality pitches of the present study.

  12. Physiological stress response to video-game playing: the contribution of built-in music.

    PubMed

    Hébert, Sylvie; Béland, Renée; Dionne-Fournelle, Odrée; Crête, Martine; Lupien, Sonia J

    2005-04-01

    Recent studies on video game playing have uncovered a wide range of measurable physiological effects on the organism, such as increases in cardiovascular activity and breathing responses. However, the exact source of these effects remains unclear. Given the well-known effects of sound on physiological activity, especially those of noise and of music, and on the secretion of the stress hormone cortisol in particular, we hypothesized that music may be a major source of stress during video game playing. We thus examined the effect of built-in music on cortisol secretion as a consequence of video game playing. Players were assigned quasi-randomly to either a Music or a Silence condition. Four saliva samples were taken, that is, after practice (T1), immediately after having played for 10 minutes (T2), 15 minutes after the end of the experiment (T3), and 30 minutes after the end of the experiment (T4). The results show that the Music group had significantly higher cortisol levels at T3, that is, when cortisol levels are assumed to reflect the stress induced by the game. These findings suggest for the first time that the auditory input contributes significantly to the stress response found during video game playing.

  13. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change.

    PubMed

    McCoy, Sophie J; Kamenos, Nicholas A

    2015-02-01

    Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response.

  14. ENVIRONMENTAL IMPACT ON PHYSIOLOGICAL RESPONSES OF UNDERGROUND COAL MINERS IN THE EASTERN PART OF INDIA.

    PubMed

    Dey, Netai Chandra; Nath, Suva; Sharma, Gourab Dhara; Mallik, Avijit

    2014-12-01

    Coal in India is extracted generally by semi-mechanized and mechanized underground mining methods. The Bord and Pillar (B & P) mining method still continues to be popular where deployment of manual miners is more than that of other mining methods. The study is conducted at haulage based mine of Eastern Coalfields of West Bengal. Underground miners confront with a lot of hazards like extreme hostile environment, awkward working posture, dust, noise as well as low luminosity. It is difficult to delay the onset of fatigue. In order to study the physiological responses of trammers, various parameters like working heart rates, net cardiac cost and relative cardiac cost including recovery heart rate patterns are recorded during their work at site. Workload classification of trammers has been done following various scales of heaviness. The effect of environment on the physiological responses has been observed and suitable recommendations are made. The work tasks are bound to induce musculoskeletal problems and those problems could be better managed through rationalizing the work-rest scheduling.

  15. Cloudwater and O[sub 3] effects on red spruce at Whitetop Mt. , VA: Physiological response

    SciTech Connect

    Pier, P.A.; Thornton, F.C.; Neufeld, H.; Seiler, J.R.; Hutcherson, J.D.

    1994-06-01

    Results of studies on red spruce (Picea rubens Sarg.) at Whitetop Mountain (elevation 1689 m) were assessed to evaluate whether acidic cloudwater deposition and O[sub 3] contribute to reported high elevation red spruce ecosystem decline. Studies were conducted using seedling exclusion chambers, mature tree branch exclusion chambers, and field experiments with seedlings, saplings, and mature trees. Ozone had minimal effects on the measured parameters. Photosynthetic response to cloudwater varied, dependent on tree age. Seedling respiration tended to decrease with cloudwater removal, although biomass accumulation was not affected. A 3[degrees] to 5[degrees]C increase in cold tolerance was measured in seedlings with cloudwater excluded. Chlorophyll and epicuticular wax concentrations were not significantly affected. Physiological responses to cloudwater may be caused by the observed depletion of needle cations, particularly Ca, which appear to be due to foliar leaching and to increased soil Al concentrations, which can interfere with cation uptake by roots.

  16. Coherent with laughter: subjective experience, behavior, and physiological responses during amusement and joy.

    PubMed

    Herring, David R; Burleson, Mary H; Roberts, Nicole A; Devine, Michael J

    2011-02-01

    Emotion research historically has adopted a fairly homogeneous view of positive emotions. The aim of the current study was to explore how two positive emotions, amusement and joy, differ in subjective, behavioral, cardiovascular, and respiratory characteristics. Thirty-nine participants viewed two film clips, each selected to elicit amusement or joy. As predicted, participants reported more amusement, showed more positive facial expressions and laughter, and exhibited less heart rate deceleration and a larger increase in respiratory amplitude in response to the amusement clip than in response to the joy clip. In addition, subjective, behavioral, and physiological indicators were more closely related in amusement than joy, which was largely attributable to laughter during amusement. The current study adds to a growing literature suggesting the importance of adopting a more nuanced conceptualization of positive emotion.

  17. Housing environment modulates physiological and behavioral responses to anxiogenic stimuli in trait anxiety male rats.

    PubMed

    Ravenelle, R; Santolucito, H B; Byrnes, E M; Byrnes, J J; Donaldson, S T

    2014-06-13

    Environmental enrichment can modulate mild and chronic stress, responses to anxiogenic stimuli as well as drug vulnerability in a number of animal models. The current study was designed to examine the impact of postnatal environmental enrichment on selectively bred 4th generation high- (HAn) and low-anxiety (LAn) male rats. After weaning, animals were placed in isolated (IE), social (SE) and enriched environments (EE) (e.g., toys, wheels, ropes, changed weekly). We measured anxiety-like behavior (ALB) on the elevated plus maze (EPM; trial 1 at postnatal day (PND) 46, trial 2 at PND 63), amphetamine (AMPH) (0.5mg/kg, IP)-induced locomotor behavior, basal and post anxiogenic stimuli changes in (1) plasma corticosterone, (2) blood pressure and (3) core body temperature. Initially, animals showed consistent trait differences on EPM with HAn showing more ALB but after 40 days in select housing, HAn rats reared in an EE showed less ALB and diminished AMPH-induced activity compared to HAn animals housed in IE and SE. In the physiological tests, animals housed in EE showed elevated adrenocortical responses to forced novel object exposure but decreased body temperature and blood pressure changes after an air puff stressor. All animals reared in EE and SE had elevated brain-derived neurotrophic factor (BDNF)-positive cells in the central amygdala (CeA), CA1 and CA2 hippocampal regions and the caudate putamen, but these differences were most pronounced in HAn rats for CeA, CA1 and CA2. Overall, these findings suggest that environmental enrichment offers benefits for trait anxiety rats including a reduction in behavioral and physiological responses to anxiogenic stimuli and AMPH sensitivity, and these responses correlate with changes in BDNF expression in the central amygdala, hippocampus and the caudate putamen.

  18. Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava

    PubMed Central

    Turyagyenda, Laban F.; Kizito, Elizabeth B.; Ferguson, Morag; Baguma, Yona; Agaba, Morris; Harvey, Jagger J. W.; Osiru, David S. O.

    2013-01-01

    Cassava is an important root crop to resource-poor farmers in marginal areas, where its production faces drought stress constraints. Given the difficulties associated with cassava breeding, a molecular understanding of drought tolerance in cassava will help in the identification of markers for use in marker-assisted selection and genes for transgenic improvement of drought tolerance. This study was carried out to identify candidate drought-tolerance genes and expression-based markers of drought stress in cassava. One drought-tolerant (improved variety) and one drought-susceptible (farmer-preferred) cassava landrace were grown in the glasshouse under well-watered and water-stressed conditions. Their morphological, physiological and molecular responses to drought were characterized. Morphological and physiological measurements indicate that the tolerance of the improved variety is based on drought avoidance, through reduction of water loss via partial stomatal closure. Ten genes that have previously been biologically validated as conferring or being associated with drought tolerance in other plant species were confirmed as being drought responsive in cassava. Four genes (MeALDH, MeZFP, MeMSD and MeRD28) were identified as candidate cassava drought-tolerance genes, as they were exclusively up-regulated in the drought-tolerant genotype to comparable levels known to confer drought tolerance in other species. Based on these genes, we hypothesize that the basis of the tolerance at the cellular level is probably through mitigation of the oxidative burst and osmotic adjustment. This study provides an initial characterization of the molecular response of cassava to drought stress resembling field conditions. The drought-responsive genes can now be used as expression-based markers of drought stress tolerance in cassava, and the candidate tolerance genes tested in the context of breeding (as possible quantitative trait loci) and engineering drought tolerance in transgenics

  19. Chronic physiological increases in cortisol inhibit the vasopressin response to hypertonicity in conscious dogs.

    PubMed

    Papanek, P E; Raff, H

    1994-11-01

    Chronic increases in cortisol inhibit basal plasma arginine vasopressin (AVP). Acute pretreatment with cortisol inhibits the large increase in AVP during hypotension or hypoxia but does not inhibit the modest increase in AVP in response to hypertonic saline (HS). We evaluated the effect of a chronic increase in cortisol (physiological range) on the acute AVP response to HS. Five male dogs received a continuous infusion of either vehicle or cortisol (65 mg/day) for 7 days. The AVP response to HS (0.2 mmol.kg-1.min-1 for 30 min) was tested before infusion, on days 1, 4, and 7 of chronic infusion, and 2 days after the infusion was discontinued. Plasma cortisol increased significantly from 1.0 +/- 0.2 micrograms/dl to an average over the 7 days of infusion of 5.0 +/- 0.2 micrograms/dl, and basal plasma AVP was significantly decreased during cortisol infusion. The increase in plasma Na and osmolality during HS was unaffected by chronic infusion. HS resulted in an increase in AVP from 3.5 +/- 0.2 to 7.1 +/- 0.7 pg/ml before cortisol infusion. After 7 days of cortisol, the AVP response to HS (from 2.6 +/- 0.1 to 3.9 +/- 0.7 pg/ml) was significantly attenuated. Sustained, physiological increases in cortisol significantly inhibited osmotically stimulated AVP release. The decrease in AVP during hypercortisolism and the syndrome of inappropriate antidiuretic hormone in patients with adrenal insufficiency appear to be due to an inhibitory effect of cortisol on the osmotic sensitivity of the AVP control system.

  20. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress.

    PubMed

    Arndt, S K; Clifford, S C; Wanek, W; Jones, H G; Popp, M

    2001-07-01

    The physiological basis of drought resistance in Ziziphus rotundifolia Lamk., which is an important, multipurpose fruit tree of the northwest Indian arid zone, was investigated in a greenhouse experiment. Three irrigation regimes were imposed over a 34-day period: an irrigation treatment, a gradual drought stress treatment (50% of water supplied in the irrigation treatment) and a rapid drought stress treatment (no irrigation). Changes in gas exchange, water relations, carbon isotope composition and solute concentrations of leaves, stems and roots were determined. The differential rate of stress development in the two drought treatments did not result in markedly different physiological responses, but merely affected the time at which they were expressed. The initial response to decreasing soil water content was reduced stomatal conductance, effectively maintaining predawn leaf water potential (Psi(leaf)), controlling water loss and increasing intrinsic water-use efficiency, while optimizing carbon gain during drought. Carbon isotope composition (delta13C) of leaf tissue sap provided a more sensitive indicator of changes in short-term water-use efficiency than delta13C of bulk leaf tissue. As drought developed, osmotic potential at full turgor decreased and total solute concentrations increased in leaves, indicating osmotic adjustment. Decreases in leaf starch concentrations and concomitant increases in hexose sugars and sucrose suggested a shift in carbon partitioning in favor of soluble carbohydrates. In severely drought-stressed leaves, high leaf nitrate reductase activities were paralleled by increases in proline concentration, suggesting an osmoprotective role for proline. As water deficit increased, carbon was remobilized from leaves and preferentially redistributed to stems and roots, and leaves were shed, resulting in reduced whole-plant transpiration and enforced dormancy. Thus, Z. rotundifolia showed a range of responses to different drought intensities

  1. Pros and Cons of Using Water Immersion to Simulate Physiological Responses to Microgravity

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Tomko, David L. (Technical Monitor)

    1995-01-01

    Head-out water immersion (HOI) has been employed as a remedial treatment for various ills and ailments for many millennia, and total body immersion even longer as protective encapsulation for the mammalian fetus. Two discrete differences between stimuli induced by true microgravity (10(exp -4) g) and HOI are readily apparent. External water pressure on the skin and accompanying negative pressure breathing cause blood to shift headward. Secondly, the gravitational force is ever present during immersion and microgravity, but its effect is essentially neutralized during Earth orbital flight. Thus, the physiological responses to immersion should not be expected to match those during microgravity. Immersion has been used mainly to study and understand kidney function and associated cardiovascular responses for control of body fluid volume and osmotic content, with some application to and simulation of microgravity responses. There is a plethora of data from human HOI studies, but relatively few controlled data from microgravity studies. In general, it appears that physiological responses occur more quickly with water immersion than in microgravity, but this may be due to less rigorous control (voluntary and involuntary) of the preflight state of crew members. The central venous pressure-vasopressin (Gauer-Henry) reflex control for fluid balance may not be of prime importance in microgravity. Gross functions such as reduced body weight and water, level of hypovolemia, decreased isokinetic strength, and lower nitrogen balance found during immersion are qualitatively similar in microgravity, but the mechanisms controlling these and other functions are, for the most part, unclear. Only acquisition of data from well-controlled microgravity experiments will resolve this discrepancy.

  2. Taekwondo exercise protocols do not recreate the physiological responses of championship combat.

    PubMed

    Bridge, C A; McNaughton, L R; Close, G L; Drust, B

    2013-07-01

    The aim of this study was to determine the external validity of Taekwondo-specific exercise protocols. 10 male international Taekwondo competitors (age 18±2 years) took part in a championship combat and an exercise protocol that simulated the activity pattern of Taekwondo combat. Heart rate and venous blood samples were obtained in both settings. Despite similarity in the activity profiles, the championship Taekwondo combats elicited higher (p<0.05) heart rate (188±8 beats.min - 1), plasma lactate (12.2±4.6 mmol.L - 1), glucose (10.3±1.1 mmol.L - 1), -glycerol (143.4±49.4 µmol.L - 1), -adrena-line (2.7±1.7 nmol.L - 1) and noradrenaline (14.3±9.4 nmol.L - 1) responses than the -Taekwondo exercise protocol (heart rate: 172±4 beats.min - 1; plasma lactate: 3.6±2.7 mmol.L - 1; glucose: 5.9±0.8 mmol.L - 1; glycerol: 77.7±21.3 µmol.L - 1; adrenaline: 0.6±0.2 nmol.L - 1 and noradrenaline: 3.0±1.1 nmol.L - 1). This discrepancy in the physiological responses appeared to be mediated by a reduced stress response in the Taekwondo exercise protocol. These findings suggest that Taekwondo-specific exercise protocols are not appropriate to study the physiological demands of Taekwondo. -Strategies designed to increase the stress response in this setting may be necessary to improve the external validity of this experimental framework.

  3. Global transcriptional, physiological, and metabolite analyses of the responses of Desulfovibrio vulgaris hildenborough to salt adaptation.

    PubMed

    He, Zhili; Zhou, Aifen; Baidoo, Edward; He, Qiang; Joachimiak, Marcin P; Benke, Peter; Phan, Richard; Mukhopadhyay, Aindrila; Hemme, Christopher L; Huang, Katherine; Alm, Eric J; Fields, Matthew W; Wall, Judy; Stahl, David; Hazen, Terry C; Keasling, Jay D; Arkin, Adam P; Zhou, Jizhong

    2010-03-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels.

  4. Effect of peer instruction on the likelihood for choosing the correct response to a physiology question.

    PubMed

    Relling, Alejandro E; Giuliodori, Mauricio J

    2015-09-01

    The aims of the present study were to measure the effects of individual answer (correct vs. incorrect), individual answer of group members (no vs. some vs. all correct), self-confidence about the responses (low vs. mid vs. high), sex (female vs. male students), and group size (2-4 students) on the odds for change and for correctness after peer instruction in a veterinary physiology course (n = 101 students). Data were assessed by multivariable logistic regression analysis. The likelihood for change after peer instruction increased when the confidence on an individual answer was low (P < 0.01), when the answer was incorrect (P < 0.01), and when group members had different responses (P < 0.01). The likelihood for correctness after peer instruction increased when the confidence in group answers was high (P < 0.01), when the individual answer was correct (P < 0.01), and when at least one of the group members had the correct response (P < 0.01). After peer discussion, more changes were from incorrect to correct responses than vice versa (72% vs. 28%, P < 0.01). Changes to correct answers occurred after discussion with peers having both the correct individual response (76% of times) and also the incorrect individual answer (24% of times). In conclusion, the benefits of peer instruction are due to students having correct answers generally prevail in discussions. Also, students who all have incorrect answers can get the correct answer through debate and discussion.

  5. Characterization of the Physiological Response following In Vivo Administration of Astragalus membranaceus

    PubMed Central

    Denzler, Karen; Moore, Jessica; Harrington, Heather; Morrill, Kira; Huynh, Trung; Jacobs, Bertram; Waters, Robert; Langland, Jeffrey

    2016-01-01

    The botanical, Astragalus membranaceus, is a therapeutic in traditional Chinese medicine. Limited literature exists on the overall in vivo effects of A. membranaceus on the human body. This study evaluates the physiological responses to A. membranaceus by measuring leukocyte, platelet, and cytokine responses as well as body temperature and blood pressure in healthy individuals after the in vivo administration of A. membranaceus. A dose-dependent increase in monocytes, neutrophils, and lymphocytes was measured 8–12 hours after administration and an increase in the number of circulating platelets was seen as early as 4 hours. A dynamic change in the levels of circulating cytokines was observed, especially in interferon-γ and tumor necrosis factor-α, IL-13, IL-6, and soluble IL-2R. Subjective symptoms reported by participants were similar to those typically experienced in viral type immune responses and included fatigue, malaise, and headache. Systolic and diastolic blood pressure were reduced within 4 hours after administration, while body temperature mildly increased within 8 hours after administration. In general, all responses returned to baseline values by 24 hours. Collectively, these results support the role of A. membranaceus in priming for a potential immune response as well as its effect on blood flow and wound healing. PMID:27190535

  6. Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves

    PubMed Central

    Zhang, Xinhua; Teixeira da Silva, Jaime A.; Niu, Meiyun; Li, Mingzhi; He, Chunmei; Zhao, Jinhui; Zeng, Songjun; Duan, Jun; Ma, Guohua

    2017-01-01

    Santalum album L. (Indian sandalwood) is an economically important plant species because of its ability to produce highly valued perfume oils. Little is known about the mechanisms by which S. album adapts to low temperatures. In this study, we obtained 100,445,724 raw reads by paired-end sequencing from S. album leaves. Physiological and transcriptomic changes in sandalwood seedlings exposed to 4 °C for 0–48 h were characterized. Cold stress induced the accumulation of malondialdehyde, proline and soluble carbohydrates, and increased the levels of antioxidants. A total of 4,424 differentially expressed genes were responsive to cold, including 3,075 cold-induced and 1,349 cold-repressed genes. When cold stress was prolonged, there was an increase in the expression of cold-responsive genes coding for transporters, responses to stimuli and stress, regulation of defense response, as well as genes related to signal transduction of all phytohormones. Candidate genes in the terpenoid biosynthetic pathway were identified, eight of which were significantly involved in the cold stress response. Gene expression analyses using qRT-PCR showed a peak in the accumulation of SaCBF2 to 4, 50-fold more than control leaves and roots following 12 h and 24 h of cold stress, respectively. The CBF-dependent pathway may play a crucial role in increasing cold tolerance. PMID:28169358

  7. Developing a gene biomarker at the tipping point of adaptive and adverse responses in human bronchial epithelial cells

    EPA Science Inventory

    Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Shifting from in vivo, low-throughput toxicity studies to high-throughput screening (HTS) paradigms and risk...

  8. Leaf physiological responses of mature Norway Spruce trees exposed to elevated carbon dioxide and temperature

    NASA Astrophysics Data System (ADS)

    Lamba, Shubhangi; Uddling, Johan; Räntfors, Mats; Hall, Marianne; Wallin, Göran

    2014-05-01

    Leaf photosynthesis, respiration and stomatal conductance exert strong control over the exchange of carbon, water and energy between the terrestrial biosphere and the atmosphere. As such, leaf physiological responses to rising atmospheric CO2 concentration ([CO2]) and temperature have important implications for the global carbon cycle and rate of ongoing global warming, as well as for local and regional hydrology and evaporative cooling. It is therefore critical to improve the understanding of plant physiological responses to elevated [CO2] and temperature, in particular for boreal and tropical ecosystems. In order to do so, we examined physiological responses of mature boreal Norway spruce trees (ca 40-years old) exposed to elevated [CO2] and temperature inside whole-tree chambers at Flakaliden research site, Northern Sweden. The trees were exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 degree C in summer and +5.6 degree C in winter). Three replicates in each of the four treatments were used. It was found that photosynthesis was increased considerably in elevated [CO2], but was not affected by the warming treatment. The maximum rate of photosynthetic carboxylation was reduced in the combined elevated [CO2] and elevated temperature treatment, but not in single factor treatments. Elevated [CO2] also strongly increased the base rate of respiration and to a lesser extent reduced the temperature sensitivity (Q10 value) of respiration; responses which may be important for the carbon balance of these trees which have a large proportion of shaded foliage. Stomatal conductance at a given VPD was reduced by elevated temperature treatment, to a degree that mostly offset the higher vapour pressure deficit in warmed air with respect to transpiration. Elevated [CO2] did not affect stomatal conductance, and thus increased the ratio of leaf internal to external [CO2]. These results indicate that the large elevated

  9. Physiological responses of water-polo players under different tactical strategie.

    PubMed

    Botonis, Petros G; Toubekis, Argyris G; Platanou, Theodoros I

    2015-03-01

    The aim of this study was to investigate the effect of defense tactical strategy on physiological responses characterizing playing intensity in water-polo game. In the first part of the study, fourteen players were assigned to defending (n = 7) and offending (n = 7) groups and participated in nine 4-min plays applying three different defending systems: press, static-zone and zone-press, in front of the defense court of one goalpost. In the second part, 18 players participated in nine different real full court water-polo games consisting of 3X15min of live-time playing periods. Both in defense court plays and real games, the three defense systems were played in a counterbalanced order and heart rate (HR) was continuously recorded. Additionally, in defense court plays, blood lactate concentration (La) was measured at the end of each 4-min period. Mean HR within defense court plays was higher in press (153 ± 10 beats(.)min(-1)) than in static-zone (140 ± 11 beats(.)min(-1)) and zone-press (143 ± 16 beats(.)min(-1), p < 0.01). Furthermore, shorter amount of playing time was spent with HR ≤85% of HR peak in press (46.3 ± 22.8%) than in static-zone (81.8 ± 20.5%) and zone-press (75.7 ± 32.0%, p < 0.01). Likewise, mean La was higher in press (6.5±2.9 mmol(.)l(-1)) than in static-zone (4.7 ± 2.5 mmol(.)l(-1)) and zone-press (4.6 ± 1.8 mmol(.)l(-1), p < 0.01). In real games, however, mean HR was similar between tactical strategies (p > 0.05). Defenders and offenders showed similar HR and La responses across the tactical modes. In conclusion, defense tactical strategies affect physiological responses within a part of the game but do not affect the overall playing intensity of a real water-polo game. Tactical strategies similarly affect offenders and defenders. Key pointsWithin defence court plays, exercise intensity in press is higher than zone-press and static zone tactical systems.In real game the physiological response is similar between defense systems

  10. Trekking poles increase physiological responses to hiking without increased perceived exertion.

    PubMed

    Saunders, Michael J; Hipp, G Ryan; Wenos, David L; Deaton, Michael L

    2008-09-01

    Trekking poles are used by hikers for improved stability and lowered leg fatigue due to increased upper body muscle involvement. However, the weight of the poles and exaggerated upper body movement when using poles may increase total energy expenditure at a given walking speed. Few studies have investigated the physiological responses of hiking with trekking poles outside the laboratory setting. The purposes of this study were to determine if trekking poles altered physiological responses to hiking on varied terrain, and whether responses between trials were dependent on the grade of the terrain. Fourteen recreational hikers completed four hiking trials over a course that included sustained sections of flat (0 +/- 1% grade), steep uphill (>10% grade), gradual uphill (5% grade), gradual downhill (-5% grade) and steep downhill (<-10% grade) terrain. Subjects walked at a self-selected speed that was matched across trials using time-splits and a metronome. Two trials were conducted with hiking poles and two without poles. [latin capital V with dot above]O2 was significantly elevated (p <0.05) during the pole trials (1502.9 +/- 510.7 ml/min) compared to the no-pole trials (1362.4 +/- 473.2 ml/min). Similarly, ventilatory efficiency ([latin capital V with dot above]E) (43.1 +/- 9.6; 38.3 +/- 10.1 L/min) and heart rate (HR) (112.1 +/- 9.7; 105.7 +/- 10.4 bt/min) were significantly higher during the pole trials than the no-pole trials. However, ratings of perceived exertion (RPE) was not altered by pole condition (8.5 +/- 0.7; 8.4 +/- 0.8). Comparisons within each grade revealed significantly higher physiological responses for [latin capital V with dot above]O2, [latin capital V with dot above]E and HR in the pole-condition at all grades, with no significant variable*grade interactions. RPE measures were not significantly different between pole trials at any grade. These data suggest that trekking poles may be a beneficial tool for increasing caloric expenditure, as energy

  11. Physiological limitation at alpine treeline: relationships of threshold responses of conifers to their establishment patterns

    NASA Astrophysics Data System (ADS)

    Germino, M. J.; Lazarus, B.; Castanha, C.; Moyes, A. B.; Kueppers, L. M.

    2014-12-01

    An understanding of physiological limitations to tree establishment at alpine treeline form the basis for predicting how this climate-driven boundary will respond to climate shifts. Most research on this topic has focused on limitations related to carbon balance and growth of trees. Carbon balance could limit survival and establishment primarily through slow-acting, chronic means. We asked whether tree survival and thus establishment patterns reflect control by chronic effects in comparison to acute, threshold responses, such as survival of frost events. Seedling survivorship patterns were compared to thresholds in freezing (temperature causing leaf freezing, or freezing point, FP; and physiological response to freezing) and water status (turgor loss point, TLP; and related physiological adjustments). Subject seedlings were from forest, treeline, and alpine sites in the Alpine Treeline Warming Experiment in Colorado, and included limber and lodgepole pine (a low-elevation species), and Engelmann Spruce. Preliminary results show survival increases with seedling age, but the only corresponding increase in stress acclimation was photosynthetic resistance to freezing and TLP, not FP. Differences in survivorship among the species were not consistent with variation in FP but they generally agreed with variation in photosynthetic resistance to deep freezing and to early-season drought avoidance. Mortality of limber pine increased 35% when minimum temperatures decreased below -9C, which compares with FPs of >-8.6C, and about 1/3 of its mortality occurred during cold/wet events, particularly in the alpine. The other major correlate of mortality is midsummer drying events, as previously reported. Also in limber pine, the TLP for year-old seedlings (-2.5 MPa) corresponded with seasonal-drought mortality. In summary, we show several examples of correspondence in physiological thresholds to mortality events within a species, although the relationships are not strong. Across

  12. Reduced aspirin responsiveness as assessed by impedance aggregometry is not associated with adverse outcome after cardiac surgery in a small low-risk cohort.

    PubMed

    Bolliger, Daniel; Filipovic, Miodrag; Matt, Peter; Tanaka, Kenichi A; Gregor, Michael; Zenklusen, Urs; Seeberger, Manfred D; Lurati Buse, Giovanna

    2016-01-01

    Reduced aspirin responsiveness (i.e. persistent high platelet reactivity in platelet function testing) might be associated with increased risk of myocardial ischemia and cardiac mortality in patients with coronary disease. However, the impact in patients undergoing coronary artery bypass grafting (CABG) is unclear. The aim of this prospective cohort study was to evaluate the predictive value of reduced aspirin responsiveness on cardiac and thromboembolic events in patients undergoing elective isolated CABG surgery with aspirin intake until at least two days before surgery. We included 304 patients in this prospective single-center cohort study. Impedance platelet aggregometry (Multiplate®) was performed directly before and on the first day after surgery. Reduced aspirin responsiveness was defined as area under the curve in ASPItest (AUCASPI) ≥300 U. The primary outcome was a composite of all-cause mortality and/or major adverse cardiac or thromboembolic events within 1 year. Reduced aspirin responsiveness was found in 13 and 24% of patients pre and postoperatively, respectively. There was no difference in the outcomes between patients with normal and reduced aspirin responsiveness in the preoperative measurement (log-rank test, p = 0.540). Multivariate analysis including logistic EuroSCORE I and postoperative troponin T levels did not show any association of reduced aspirin responsiveness with adverse outcome (hazard ratio, 0.576; (95% CI 0.128-2.585; p = 0.471). Similarly, postoperative reduced aspirin responsiveness was not associated with adverse events. To conclude, reduced aspirin responsiveness as evaluated by Multiplate® platelet function analyzer was not associated with increased incidence of major adverse cardiac and thromboembolic events and mortality after CABG surgery.

  13. Perinatal sulfamonomethoxine exposure influences physiological and behavioral responses and the brain mTOR pathway in mouse offspring.

    PubMed

    Zhang, Q; Zhang, D; Liu, Kai-Yong; Liu, Ye-Hao; Sheng, J; Jin, Zhong-Xiu; Wang, Su-Fang; Bo, Qing-Li; Wang, Jia-Jia; Yin, Hui-Fang

    2017-03-01

    Sulfamonomethoxine (SMM) is widely used in the veterinary field in China. Although some clinical surveys have revealed that sulfonamide antibiotics cause adverse nervous system symptoms, the related mechanisms of maternal SMM exposure on the neurobehavioral development of offspring remain unclear. Here, we investigated the effects of perinatal SMM exposure on the physiological and behavioral responses of pubertal offspring mice and the underlying mechanisms. We randomly allocated pregnant mice into the groups treated with SMM at different doses and the saline-treated groups. Maternal mice were orally administered SMM daily from gestational day 1 to postpartum day 21. On postnatal day (PND) 22, the parameters of growth, endocrine hormones, and brain amino acid composition were assessed, as well as the brain transcript levels of key genes involved in the mammalian target of rapamycin (mTOR) signaling pathway. From PND 50 to 55, a battery of behavioral tests relevant to anxiety and memory were then administered. Analysis of the results indicated that the pups, particularly the pubertal female offspring, showed anxiety-like behavior. Moreover, the pubertal offspring showed cognitive impairments and fat accumulation. Furthermore, the relative mRNA expression of genes involved in the mTOR signaling pathway in females on PND 22 was elevated, whereas the expression of N-methyl-d-aspartate receptor 2B (NR2B) was reduced. Together, the results showed that perinatal SMM exposure perturbs neuroendocrine functions, and further alters gene expression in the mTOR pathway and NR2B gene expression early in life, which may contribute to brain dysfunction in pubertal life.

  14. Hydrocarbonoclastic Alcanivorax Isolates Exhibit Different Physiological and Expression Responses to n-dodecane

    PubMed Central

    Barbato, Marta; Scoma, Alberto; Mapelli, Francesca; De Smet, Rebecca; Banat, Ibrahim M.; Daffonchio, Daniele; Boon, Nico; Borin, Sara

    2016-01-01

    Autochthonous microorganisms inhabiting hydrocarbon polluted marine environments play a fundamental role in natural attenuation and constitute promising resources for bioremediation approaches. Alcanivorax spp. members are ubiquitous in contaminated surface waters and are the first to flourish on a wide range of alkanes after an oil-spill. Following oil contamination, a transient community of different Alcanivorax spp. develop, but whether they use a similar physiological, cellular and transcriptomic response to hydrocarbon substrates is unknown. In order to identify which cellular mechanisms are implicated in alkane degradation, we investigated the response of two isolates belonging to different Alcanivorax species, A. dieselolei KS 293 and A. borkumensis SK2 growing on n-dodecane (C12) or on pyruvate. Both strains were equally able to grow on C12 but they activated different strategies to exploit it as carbon and energy source. The membrane morphology and hydrophobicity of SK2 changed remarkably, from neat and hydrophilic on pyruvate to indented and hydrophobic on C12, while no changes were observed in KS 293. In addition, SK2 accumulated a massive amount of intracellular grains when growing on pyruvate, which might constitute a carbon reservoir. Furthermore, SK2 significantly decreased medium surface tension with respect to KS 293 when growing on C12, as a putative result of higher production of biosurfactants. The transcriptomic responses of the two isolates were also highly different. KS 293 changes were relatively balanced when growing on C12 with respect to pyruvate, giving almost the same amount of upregulated (28%), downregulated (37%) and equally regulated (36%) genes, while SK2 transcription was upregulated for most of the genes (81%) when growing on pyruvate when compared to C12. While both strains, having similar genomic background in genes related to hydrocarbon metabolism, retained the same capability to grow on C12, they nevertheless presented very

  15. Small-sided games in soccer: amateur vs. professional players' physiological responses, physical, and technical activities.

    PubMed

    Dellal, Alexandre; Hill-Haas, Stephen; Lago-Penas, Carlos; Chamari, Karim

    2011-09-01

    The aim of this study was to examine the relationship between the playing level in soccer (i.e., amateur vs. professional players) and the physiological impact, perceptual responses, time-motion characteristics, and technical activities during various small-sided games (SSGs). Twenty international players (27.4 ± 1.5 years and 17.4 ± 0.8 km·h(-1) of vVO(2)max) and 20 amateur players of the fourth French division (26.3 ± 2.2 years and 17.0 ± 1.2 km·h(-1) of vVO(2)max) played 9 SSGs (i.e., 2 vs. 2, 3 vs. 3, and 4 vs. 4) in which the number of ball touches authorized by possession varied (1 ball touch authorized = 1T, 2 ball touches authorized = 2T, and Free Play = FP). Heart rate (HR), blood lactate ([La]), subjective perception of effort (rating of perceived exertion [RPE]), physical performance, and technical performance of all players were analyzed during all SSGs. Across the various SSGs, amateurs completed a lower percent of successful passes (p < 0.01), recorded higher RPE and [La] values, lost a greater amount of ball possessions (p < 0.001), and covered less total distance with respect to sprinting and high-intensity running (HIR). The HR responses, however, were similar when expressed as %HRmax and %HRreserve. The comparison of the professional and amateur soccer players' activities during SSGs showed that the playing level influenced the physiological responses, physical and technical activities. Consequently, this study has shown that the main differences between elite and amateur players within SSGs concerned their capacity to perform high-intensity actions (HIR and sprints) and execute various technical abilities (in particular number of ball lost per possession and percentage of successful passes).

  16. Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles.

    PubMed

    Hebly, Marit; de Ridder, Dick; de Hulster, Erik A F; de la Torre Cortes, Pilar; Pronk, Jack T; Daran-Lapujade, Pascale

    2014-07-01

    Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and the yeast transcriptome has not been studied in detail. In this study, 24-h sinusoidal temperature cycles, oscillating between 12°C and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose and extracellular metabolites as well as CO2 production rates showed regular, reproducible circadian rhythms. DTC also led to waves of transcriptional activation and repression, which involved one-sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to respond primarily to changes in the glucose concentration. Elimination of known glucose-responsive genes revealed an overrepresentation of previously identified temperature-responsive genes as well as genes involved in the cell cycle and de novo purine biosynthesis. In-depth analysis demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that the 24-h DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to acclimate their transcriptome and physiology at the DTC temperature maximum and to approach acclimation at the DTC temperature minimum. Furthermore, this comparison and literature data on growth rate-dependent cell cycle phase distribution indicated that cell cycle synchronization was most likely an effect of imposed fluctuations of the relative growth rate (μ/μmax) rather than a direct effect of temperature.

  17. Limpet feeding rate and the consistency of physiological response to temperature.

    PubMed

    Morley, Simon A; Lai, Chien-Hsiang; Clarke, Andrew; Tan, Koh Siang; Thorne, Michael A S; Peck, Lloyd S

    2014-07-01

    Thermal reaction norms are fundamental relationships for geographic comparisons of organism response to temperature. They are shaped by an organism's environmental history and provide insights into both the global patterns of thermal sensitivity and the physiological mechanisms underlying temperature response. In this study we conducted the first measure of the thermal reaction norm for feeding, comparing the radula rasping rate of two tropical and one polar limpet species. The consistency of thermal response was tested through comparisons with limpet duration tenacity. Feeding and duration tenacity of limpets are ecologically important muscular mechanisms that rely on very different aspects of muscle physiology, repeated concentric (shortening) and isometric (fixed length) contraction of muscles, respectively. In these limpets the thermal reaction norms of feeding limpets were best described by a single break point at a maximum temperature with linear declines at higher (Siphonaria atra) or lower temperatures (Nacella concinna and Cellana radiata) rather than a bell-shaped curve. The thermal reaction norms for duration tenacity were similar in the two tropical limpets. However, the rasping rate in Antarctic N. concinna increased linearly with temperature up to a maximum at 12.3 °C (maximal range 8.5-12.3 °C) when feeding stopped. In contrast, duration tenacity in N. concinna was maximal at 1.0 °C (-0.6 to 3.8 °C) and linearly decreased with increasing temperature. The thermal reaction norms of muscular activity were, therefore, inconsistent within and between species, indicating that different mechanisms likely underlie different aspects of species sensitivities to temperature.

  18. Hydrocarbonoclastic Alcanivorax Isolates Exhibit Different Physiological and Expression Responses to n-dodecane.

    PubMed

    Barbato, Marta; Scoma, Alberto; Mapelli, Francesca; De Smet, Rebecca; Banat, Ibrahim M; Daffonchio, Daniele; Boon, Nico; Borin, Sara

    2016-01-01

    Autochthonous microorganisms inhabiting hydrocarbon polluted marine environments play a fundamental role in natural attenuation and constitute promising resources for bioremediation approaches. Alcanivorax spp. members are ubiquitous in contaminated surface waters and are the first to flourish on a wide range of alkanes after an oil-spill. Following oil contamination, a transient community of different Alcanivorax spp. develop, but whether they use a similar physiological, cellular and transcriptomic response to hydrocarbon substrates is unknown. In order to identify which cellular mechanisms are implicated in alkane degradation, we investigated the response of two isolates belonging to different Alcanivorax species, A. dieselolei KS 293 and A. borkumensis SK2 growing on n-dodecane (C12) or on pyruvate. Both strains were equally able to grow on C12 but they activated different strategies to exploit it as carbon and energy source. The membrane morphology and hydrophobicity of SK2 changed remarkably, from neat and hydrophilic on pyruvate to indented and hydrophobic on C12, while no changes were observed in KS 293. In addition, SK2 accumulated a massive amount of intracellular grains when growing on pyruvate, which might constitute a carbon reservoir. Furthermore, SK2 significantly decreased medium surface tension with respect to KS 293 when growing on C12, as a putative result of higher production of biosurfactants. The transcriptomic responses of the two isolates were also highly different. KS 293 changes were relatively balanced when growing on C12 with respect to pyruvate, giving almost the same amount of upregulated (28%), downregulated (37%) and equally regulated (36%) genes, while SK2 transcription was upregulated for most of the genes (81%) when growing on pyruvate when compared to C12. While both strains, having similar genomic background in genes related to hydrocarbon metabolism, retained the same capability to grow on C12, they nevertheless presented very

  19. The influence of playing surface on physiological and performance responses during and after soccer simulation.

    PubMed

    Stone, Keeron J; Hughes, Michael G; Stembridge, Michael R; Meyers, Robert W; Newcombe, Daniel J; Oliver, Jon L

    2016-01-01

    The aim of this study was to investigate the effect of playing surface on physiological and performance responses during and in the 48 h after simulated soccer match play. Blood lactate, single-sprint, repeated-sprint and agility of eight amateur soccer players were assessed throughout a 90-min soccer-simulation protocol (SSP) completed on natural turf (NT) and artificial turf. Counter-movement jump, multiple-rebound jump, sprint (10 m, 60 m), L-agility run (L-AR), creatine kinase (CK) and perception of muscle soreness (PMS) were measured before, immediately after, 24 h and 48 h after exercise. Analyses revealed significant changes in blood lactate and single-sprint performance (both P < 0.05) during the SSP but with no significant differences between surfaces. Conversely, repeated-sprint performance demonstrated an interaction effect, with reductions in performance evident on NT only (P < 0.05). Whilst L-AR and 10-m sprint performance remained unchanged, 60-m sprint and multiple-rebound jump performance were impaired, and PMS and CK were elevated immediately following the SSP (all P < 0.05) but with no surface effects. Although performance, CK and PMS were negatively affected to some degree in the 48 h after the SSP, there was no surface effect. For the artificial and natural surfaces used in the present study, physiological and performance responses to simulated soccer match play appear to be similar. Whilst a potential for small differences in performance response exists during activity, surface type does not affect the pattern of recovery following simulated match play.

  20. Physiological and Transcriptional Responses of Anaerobic Chemostat Cultures of Saccharomyces cerevisiae Subjected to Diurnal Temperature Cycles

    PubMed Central

    Hebly, Marit; de Ridder, Dick; de Hulster, Erik A. F.; de la Torre Cortes, Pilar; Pronk, Jack T.

    2014-01-01

    Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and the yeast transcriptome has not been studied in detail. In this study, 24-h sinusoidal temperature cycles, oscillating between 12°C and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose and extracellular metabolites as well as CO2 production rates showed regular, reproducible circadian rhythms. DTC also led to waves of transcriptional activation and repression, which involved one-sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to respond primarily to changes in the glucose concentration. Elimination of known glucose-responsive genes revealed an overrepresentation of previously identified temperature-responsive genes as well as genes involved in the cell cycle and de novo purine biosynthesis. In-depth analysis demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that the 24-h DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to acclimate their transcriptome and physiology at the DTC temperature maximum and to approach acclimation at the DTC temperature minimum. Furthermore, this comparison and literature data on growth rate-dependent cell cycle phase distribution indicated that cell cycle synchronization was most likely an effect of imposed fluctuations of the relative growth rate (μ/μmax) rather than a direct effect of temperature. PMID:24814792

  1. Animal models and their importance to human physiological responses in microgravity

    NASA Technical Reports Server (NTRS)

    Tipton, C. M.

    1996-01-01

    Two prominent theories to explain the physiological effects of microgravity relate to the cascade of changes associated with the cephalic shifts of fluids and the absence of tissue deformation forces. One-g experiments for humans used bed rest and the head-down tilt (HDT) method, while animal experiments have been conducted using the tail-suspended, head-down, and hindlimbs non-weightbearing model. Because of the success of the HDT approach with rats to simulate the gravitational effects on the musculoskeletal system exhibited by humans, the same model has been used to study the effects of gravity on the cardiopulmonary systems of humans and other vertebrates. Results to date indicate the model is effective in producing comparable changes associated with blood volume, erythropoiesis, cardiac mass, baroreceptor responsiveness, carbohydrate metabolism, post-flight VO2max, and post-flight cardiac output during exercise. Inherent with these results is the potential of the model to be useful in investigating responsible mechanisms. The suspension model has promise in understanding the capillary blood PO2 changes in space as well as the arterial PO2 changes in subjects participating in a HDT experiment. However, whether the model can provide insights on the up-or-down regulation of adrenoreceptors remains to be determined, and many investigators believe the HDT approach should not be followed to study gravitational influences on pulmonary function in either humans or animals. It was concluded that the tail-suspended animal model had sufficient merit to study in-flight and post-flight human physiological responses and mechanisms.

  2. Physiologic responses during the six minute walk test in obese and non-obese COPD patients.

    PubMed

    Bautista, Jennifer; Ehsan, Mohsin; Normandin, Edgar; Zuwallack, Richard; Lahiri, Bimalin

    2011-08-01

    Although obesity is a common co-morbid condition in COPD, relatively little is known how it may affect functional exercise capacity. Accordingly, we compared physiologic responses during a 6 min walk test in 10 obese and 10 non-obese COPD patients matched by gender, age, and spirometric severity category. Patients first exercised on a treadmill to determine maximal exercise responses, then following a rest period they completed a 6 min walk test. Breath by-breath analyses of expired air via a facemask was obtained using a portable, battery operated device. Oxygen consumption (VO(2)), carbon dioxide production (VCO(2)), tidal volume (VT), respiratory rate (RR), minute ventilation (VE), and inspiratory capacity (IC) were compared. The mean FEV1 in the obese and non-obese groups was 52 ± 13 and 58 ± 18 percent of predicted, respectively, and the BMI of the obese patients was 37 ± 02 kg/m(2). Obese patients had shorter 6 min walk distances than non-obese patients (247 ± 73 vs 348 ± 51 m, respectively, p = 0.003), but walk-work, defined as 6 min walk distance × weight (in kg), was not different. There were no significant between-group differences in any exercise variable measured during the 6 min walk test. In both groups, VO(2) and VE increased linearly over the first 2-3 min, then plateaued at approximately 80% of maximum. Although 6 min walk distance is shorter in obese COPD patients, their physiologic responses are similar to those of non-obese patients.

  3. Physiological and molecular responses of juvenile shortnose sturgeon (Acipenser brevirostrum) to thermal stress.

    PubMed

    Zhang, Yueyang; Loughery, Jennifer R; Martyniuk, Christopher J; Kieffer, James D

    2017-01-01

    The shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818) is a vulnerable species that is found along the eastern coast of North America. Little is known about temperature tolerance in this species and with a rapidly changing global climate, it becomes increasingly important to define the thermal tolerance of this species to better predict population distribution. Using a modified critical thermal maximum test (CTMax), the objectives of this study were to determine the impact of heating rate (0.1, 0.2 and 0.25°Cmin(-1)) on the thermal tolerance, associated hematological responses, and oxygen consumption in juvenile sturgeon. In addition, transcripts associated with physiological stress and heat shock (i.e., heat shock proteins) were also measured. Heating rate did not alter the CTMax values of shortnose sturgeon. Neither heating rate nor thermal stress affected plasma sodium and chloride levels, nor the expression of transcripts that included catalase, glucocorticoid receptor, heat shock protein70 (hsp70), heat shock protein 90α (hsp90α) and cytochrome P450 1a (cyp1a). However, regardless of heating rate, thermal stress increased both plasma potassium and lactate concentrations. Glucose levels were increased at heating rates of 0.2 and 0.25°Cmin(-1), but not at 0.1°Cmin(-1). Overall, oxygen consumption rates increased with thermal stress, but the response patterns were not affected by heating rate. These data support the hypothesis that shortnose sturgeon can tolerate acute heat stress, as many physiological and molecular parameters measured here were non-responsive to the thermal stress.

  4. Physiological responses of three species of unionid mussels to intermittent exposure to elevated carbon dioxide

    PubMed Central

    Hannan, Kelly D.; Jeffrey, Jennifer D.; Hasler, Caleb T.; Suski, Cory D.

    2016-01-01

    Freshwater systems are at risk owing to increasing carbon dioxide (CO2) levels, and one of the possible reasons for these elevations is the deployment of non-physical fish barriers to prevent invasive fish movements. Carbon dioxide barriers have the potential to create short, chronic and intermittent exposures of CO2 for surrounding freshwater biota. Although intermittent exposures to a stressor may be more ecologically relevant, the majority of laboratory tests use chronic or short-term time periods to determine how organisms will respond to an environmental stressor. Measurements of the physiological responses of three species of unionid mussel, giant floaters (Pyganodon grandis), threeridge (Amblema plicata) and plain pocketbook (Lampsilis cardium), exposed to control pCO2 (~1000 µatm) or intermittent conditions of pCO2 (ranging from ~1000 to ~55 000 µatm) 12 times per day over a 28 day period were gathered. There was no indication of recovery in the physiological responses of mussels between applications of CO2, suggesting that the recovery time between CO2 pulses (1.5 h) was not sufficient for recovery from the CO2 exposure period (0.5 h). Observations of acid–base and stress responses were consistent with what has been observed in chronic studies of freshwater mussels exposed to elevated pCO2 (i.e. elevations in HCO3 −, Ca2+, Na+ and glucose, and decreases in Mg2+ and Cl−). However, species differences were observed across almost all variables measured, which emphasizes the need for multispecies studies. PMID:28066552

  5. A review of the scientific literature related to the adverse impact of physical restraint: gaining a clearer understanding of the physiological factors involved in cases of restraint-related death.

    PubMed

    Barnett, Richard; Stirling, Chris; Pandyan, Anand D

    2012-07-01

    Deaths occurring during and/or in close proximity to physical restraint have been attributed to positional asphyxia, a conclusion primarily based on opinion and reviews of case studies. This review sought to identify the current scientific evidence available in regard to the aetiology of adverse events or death occurring during or in close proximity to physical restraint. A systematic search of electronic databases (SPORTDiscus, AMED, CINAHL, MEDLINE, PsycINFO) for papers published in English, between 1980 and 2011, using keywords that related to restraint, restraint position and cardiovascular function resulted in 11 experimental papers being found for review. The term positional asphyxia as a mechanism for sudden death is poorly understood. The literature shows that restraint position has the ability to impede life-maintaining physiological functions, but that the imposed impediment is not uniform across all restraint positions/techniques. Further research is required to ascertain the risks posed by struggling during restraint for more prolonged periods of time and in different positions using varied techniques of restraint. This research should seek to and rank known or future risk factors of adverse events occurring during restraint, seeking to understand the interactions and if present the cumulative effect of these risk factors. Finally, future research should focus on populations other than apparently healthy male adults.

  6. Effects of routine handling and tagging procedures on physiological stress responses in juvenile chinook salmon

    USGS Publications Warehouse

    Sharpe, C.S.; Thompson, D.A.; Blankenship, H.L.; Schreck, C.B.

    1998-01-01

    Juvenile chinook salmon Oncorhynchus tshawytscha were subjected to handling and tagging protocols typical of normal hatchery operations and monitored for their physiological response to stress. Treatments included coded-wire-tagging, counting, ventral fin clipping, adipose fin clipping, and a procedure simulating a pond split. Treatment fish were also subjected to a standardized stress challenge (1 h confinement) to evaluate their ability to deal with disturbances subsequent to a handling or tagging procedure. Circulating levels of cortisol and glucose were used as indicators of stress. Each of the treatments elicited very similar responses among treatment groups. Cortisol increased from resting levels of about 20 ng/mL to about 90 ng/mL by 1 h poststress and returned to near resting levels by 8 h poststress. Glucose levels increased from 50 mg/dL to about 80 mg/dL by 1 h poststress and remained elevated for much of the experiment. The cortisol and glucose responses to the confinement stress did not differ over time or among treatments. However, the confinement stress results do suggest a small but significant cumulative response, indicating small residual effects of the original handling protocols. No deaths were noted among treatment groups.

  7. Vestibular responses to loud dance music: a physiological basis of the "rock and roll threshold"?

    PubMed

    Todd, N P; Cody, F W

    2000-01-01

    In this paper new evidence is provided to indicate that vestibular responses may be obtained from loud dance music for intensities above 90 dB(A) SPL (Impulse-weighted). In a sample of ten subjects acoustically evoked EMG were obtained from the sternocleidomastoid muscle in response to a sample of techno music typical of that which may be experienced in a dance club. Previous research has shown that this response is vestibularly mediated since it can be obtained in subjects with loss of cochlear function, but is absent in subjects with loss of vestibular function (Colebatch et al. [J. Neurol. Neurosurg. Psychiatr. 57, 190-197 (1994)]. Given that pleasurable sensations of self-motion are widely sought after by more normal means of vestibular stimulation, it is suggested that acoustically evoked sensations of self-motion may account for the compulsion to exposure to loud music. Given further the similarity between the thresholds found, and the intensities and frequency distributions that are typical in rock concerts and dance clubs, it is also suggested that this response may be a physiological basis for the minimum loudness necessary for rock and dance music to work-the "rock and roll threshold".

  8. Physiological and Transcriptomic Analyses to Characterize the Function of Fur and Iron Response in Shewanella oneidensis

    SciTech Connect

    Yang, Yunfeng; Harris, Daniel P; Luo, Feng; Wu, Liyou; Parsons, Andrea; Palumbo, Anthony Vito; Zhou, Jizhong

    2008-01-01

    Maintaining iron homeostasis is a key metabolic challenge for most organisms. In many bacterial species, regulation of iron homeostasis is carried out by the global transcriptional regulator Fur. Physiological examination showed that Shewanella oneidensis harboring a fur deletion mutation had deficiencies in both growth and acid tolerance response. However, the fur mutant better tolerated iron-limited environments than the wild-type strain MR-1. Transcriptomic studies comparing the fur mutant and MR-1 confirmed previous findings that iron acquisition systems were highly induced by Fur inactivation. In addition, the temporal gene expression profiling of the fur mutant in response to iron depletion and repletion suggested that a number of genes involved in energy transport were iron-responsive but Fur-independent. Further identification of Fur-independent genes was obtained by generating a gene co-expression network from temporal gene expression profiles. A group of genes is involved in heat shock and has an rpoH-binding site at their promoters, and genes related to anaerobic energy transport has a highly conserved Crp binding site at the promoters. Together, this work provides useful information for the characterization of the function of Fur and the iron response in S. oneidensis.

  9. Human physiological benefits of viewing nature: EEG responses to exact and statistical fractal patterns.

    PubMed

    Hagerhall, C M; Laike, T; Küller, M; Marcheschi, E; Boydston, C; Taylor, R P

    2015-01-01

    Psychological and physiological benefits of viewing nature have been extensively studied for some time. More recently it has been suggested that some of these positive effects can be explained by nature's fractal properties. Virtually all studies on human responses to fractals have used stimuli that represent the specific form of fractal geometry found in nature, i.e. statistical fractals, as opposed to fractal patterns which repeat exactly at different scales. This raises the question of whether human responses like preference and relaxation are being driven by fractal geometry in general or by the specific form of fractal geometry found in nature. In this study we consider both types of fractals (statistical and exact) and morph one type into the other. Based on the Koch curve, nine visual stimuli were produced in which curves of three different fractal dimensions evolve gradually from an exact to a statistical fractal. The patterns were shown for one minute each to thirty-five subjects while qEEG was continuously recorded. The results showed that the responses to statistical and exact fractals differ, and that the natural form of the fractal is important for inducing alpha responses, an indicator of a wakefully relaxed state and internalized attention.

  10. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    SciTech Connect

    He, Z.; Zhou, A.; Baidoo, E.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C.L.; Huang, K.; Alm, E.J.; Fields, M.W.; Wall, J.; Stahl, D.; Hazen, T.C.; Keasling, J.D.; Arkin, A.P.; Zhou, J.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed. Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.

  11. Understanding the physiological responses of a tropical crop (Capsicum chinense Jacq.) at high temperature.

    PubMed

    Garruña-Hernández, René; Orellana, Roger; Larque-Saavedra, Alfonso; Canto, Azucena

    2014-01-01

    Temperature is one of the main environmental factors involved in global warming and has been found to have a direct effect on plants. However, few studies have investigated the effect of higher temperature on tropical crops. We therefore performed an experiment with a tropical crop of Habanero pepper (Capsicum Chinense Jacq.). Three growth chambers were used, each with 30 Habanero pepper plants. Chambers were maintained at a diurnal maximum air temperature (DMT) of 30 (chamber 1), 35 (chamber 2) and 40°C (chamber 3). Each contained plants from seedling to fruiting stage. Physiological response to variation in DMT was evaluated for each stage over the course of five months. The results showed that both leaf area and dry mass of Habanero pepper plants did not exhibit significant differences in juvenile and flowering phenophases. However, in the fruiting stage, the leaf area and dry mass of plants grown at 40°C DMT were 51 and 58% lower than plants at 30°C DMT respectively. Meanwhile, an increase in diurnal air temperature raised both stomatal conductance and transpiration rate, causing an increase in temperature deficit (air temperature - leaf temperature). Thus, leaf temperature decreased by 5°C, allowing a higher CO2 assimilation rate in plants at diurnal maximum air temperature (40°C). However, in CO2 measurements when leaf temperature was set at 40°C, physiological parameters decreased due to an increase in stomatal limitation. We conclude that the thermal optimum range in a tropical crop such as Habanero pepper is between 30 and 35°C (leaf temperature, not air temperature). In this range, gas exchange through stomata is probably optimal. Also, the air temperature-leaf temperature relationship helps to explain how temperature keeps the major physiological processes of Habanero pepper healthy under experimental conditions.

  12. Physiological responses and tolerance of kenaf (Hibiscus cannabinus L.) exposed to chromium.

    PubMed

    Ding, Han; Wang, Guodong; Lou, Lili; Lv, Jinyin

    2016-11-01

    Selection of kenaf species with chromium (Cr) tolerance and exploring the physiological mechanisms involved in Cr tolerance are crucial for application of these species to phyto-remediation. In the present study, a hydroponic experiment was conducted to investigate the variation in two kenaf cultivars, K39-2 and Zhe50-3 under Cr stress. At the same Cr concentration, the tolerance index (TI) of K39-2 was higher than that of Zhe50-3, indicating that K39-2 may be more tolerant to Cr than Zhe50-3. It was also observed that high concentration of chromium was accumulated both in the shoots and the roots of Hibiscus cannabinus L. The leaves of K39-2 accumulated 4760.28mgkg(-1) of dry weight under 1.50mM Cr stress, and the roots accumulated 11,958.33mgkg(-1). Physiological response shows that the antioxidant enzymes' superoxide dismutase (SOD), catalase activity (CAT) and peroxidase (POD) activities increased in the leaves and decreased in roots of the Cr-stressed plants nearly compared to the control. Moreover, the variation of antioxidant enzymes activities indicated Zhe50-3 was more vulnerable than K39-2, and the contents of the non-protein thiol pool (GSH, NPT and PCs) were higher in K39-2 than Zhe50-3 with the increased Cr concentration. Based on the observations above, it can be concluded that the well-coordinated physiological changes confer a greater Cr tolerance to K39-2 than Zhe50-3 under Cr exposure, and Hibiscus cannabinus L. has a great accumulation capacity for chromium.

  13. Understanding the Physiological Responses of a Tropical Crop (Capsicum chinense Jacq.) at High Temperature

    PubMed Central

    Garruña-Hernández, René; Orellana, Roger; Larque-Saavedra, Alfonso; Canto, Azucena

    2014-01-01

    Temperature is one of the main environmental factors involved in global warming and has been found to have a direct effect on plants. However, few studies have investigated the effect of higher temperature on tropical crops. We therefore performed an experiment with a tropical crop of Habanero pepper (Capsicum Chinense Jacq.). Three growth chambers were used, each with 30 Habanero pepper plants. Chambers were maintained at a diurnal maximum air temperature (DMT) of 30 (chamber 1), 35 (chamber 2) and 40°C (chamber 3). Each contained plants from seedling to fruiting stage. Physiological response to variation in DMT was evaluated for each stage over the course of five months. The results showed that both leaf area and dry mass of Habanero pepper plants did not exhibit significant differences in juvenile and flowering phenophases. However, in the fruiting stage, the leaf area and dry mass of plants grown at 40°C DMT were 51 and 58% lower than plants at 30°C DMT respectively. Meanwhile, an increase in diurnal air temperature raised both stomatal conductance and transpiration rate, causing an increase in temperature deficit (air temperature – leaf temperature). Thus, leaf temperature decreased by 5°C, allowing a higher CO2 assimilation rate in plants at diurnal maximum air temperature (40°C). However, in CO2 measurements when leaf temperature was set at 40°C, physiological parameters decreased due to an increase in stomatal limitation. We conclude that the thermal optimum range in a tropical crop such as Habanero pepper is between 30 and 35°C (leaf temperature, not air temperature). In this range, gas exchange through stomata is probably optimal. Also, the air temperature–leaf temperature relationship helps to explain how temperature keeps the major physiological processes of Habanero pepper healthy under experimental conditions. PMID:25365043

  14. Mutielemental concentration and physiological responses of Lavandula pedunculata growing in soils developed on different mine wastes.

    PubMed

    Santos, Erika S; Abreu, Maria Manuela; Saraiva, Jorge A

    2016-06-01

    This study aimed to: i) evaluate the accumulation and translocation patterns of potentially hazardous elements into the Lavandula pedunculata and their influence in the concentrations of nutrients; and ii) compare some physiological responses associated with oxidative stress (concentration of chlorophylls (Chla, Chlb and total), carotenoids, and total protein) and several components involved in tolerance mechanisms (concentrations of proline and acid-soluble thiols and total/specific activity of catalase (CAT) and superoxide dismutase (SOD)), in plants growing in soils with a multielemental contamination and non-contaminated. Composite samples of soils, developed on mine wastes and/or host rocks, and L. pedunculata (roots and shoots) were collected in São Domingos mine (SE of Portugal) and in a reference area with non-contaminated soils, Corte do Pinto, with the same climatic conditions. São Domingos soils had high total concentrations of several hazardous elements (e.g. As and Pb) but their available fractions were small (mainly <5.8 % of the total). Translocation behaviour of elements was not clear according to the physiological importance of the elements. In general, plant shoots from São Domingos had the highest elements concentrations, but only As, Mn and Zn reached phytotoxic concentrations. Concentration of Chlb in shoots from São Domingos was higher than those from Corte do Pinto. No significant differences were obtained between concentrations of Chla, total protein, proline and acid-soluble thiols in shoots collected in both areas, as well as SOD activity (total and specific) and specific CAT activity. Total CAT activity varied with population being lower in the shoots of the plants from São Domingos, but no correlation was obtained between this enzymatic activity and the concentrations of the studied elements in shoots. Lavandula pedunculata plants are able to survive in soils developed on different mine wastes with multielemental contamination and

  15. Physiological responses during continuous work in hot dry and hot humid environments in Indians

    NASA Astrophysics Data System (ADS)

    Sen Gupta, J.; Swamy, Y. V.; Pichan, G.; Dimri, G. P.

    1984-06-01

    Studies have been conducted on six young healthy heat acclimatised Indians to determine the physiological changes in prolonged continuous work in thermally neutral and in hot dry and hot humid environments. Physiological responses in maximal efforts i.e. Vo2 max, VE max and Cf max were noted. In addition, duration in continuous work at three sub-maximal rate of work in three simulated environments were also noted. Physiological responses like Vo2, VE and Cf were noted every 15 minutes of work. Besides these responses, rectal temperature (Tre), mean skin temperature (Ts) and mean sweat rate were also recorded during continuous work. Results indicated a significant decrease in maximum oxygen uptake capacity (Vo2 max) in heat with no change in maximum exercise ventilation (VE max) and maximum cardiac frequency. However, the fall in Vo2 max was more severe in the hot humid environment than in the hot dry climate. Cardiac frequency at fixed oxygen consumption of 1.0, 1.5 and 2.0 l/min was distinctly higher in the hot humid environment than in the hot dry and comfortable temperature. The duration in continuous physical effort in various grades of activities decreased in hot dry environment from that in the-comfortable climate and further decreased significantly in hot humid environment. The highest rate of sweating was observed during work in humid heat. The mean skin temperature (Ts) showed a fall in all the three rates of work in comfortable and hot dry conditions whereas in hot humid environment it showed a linear rise during the progress of work. The rectal temperature on the other hand maintained a near steady state while working at 65 and 82 watts in comfortable and hot dry environments but kept on rising during work in hot humid environment. At the highest work rate of 98 watts, the rectal temperature showed a steady increase even in the hot dry condition. It was thus concluded from the study that a hot humid climate imposes more constraints on the

  16. Genotype and neuropsychological response inhibition as resilience promoters for attention-deficit/hyperactivity disorder, oppositional defiant disorder, and conduct disorder under conditions of psychosocial adversity.

    PubMed

    Nigg, Joel; Nikolas, Molly; Friderici, Karen; Park, Leeyoung; Zucker, Robert A

    2007-01-01

    Whereas child personality, IQ, and family factors have been identified as enabling a resilient response to psychosocial adversity, more direct biological resilience factors have been less well delineated. This is particularly so for child attention-deficit/hyperactivity disorder (ADHD), which has received less attention from a resilience perspective than have associated externalizing disorders. Children from two independent samples were classified as resilient if they avoided developing ADHD, oppositional defiant disorder (ODD), or conduct disorder (CD) in the face of family adversity. Two protective factors were examined for their potential relevance to prefrontal brain development: neuropsychological response inhibition, as assessed by the Stop task, and a composite catecholamine genotype risk score. Resilient children were characterized in both samples by more effective response inhibition, although the effect in the second sample was very small. Genotype was measured in Sample 1, and a composite high risk genotype index was developed by summing presence of risk across markers on three genes expressed in prefrontal cortex: dopamine transporter, dopamine D4 receptor, and noradrenergic alpha-2 receptor. Genotype was a reliable resilience indicator against development of ADHD and CD, but not ODD, in the face of psychosocial adversity. Results illustrate potential neurobiological protective factors related to development of prefrontal cortex that may enable children to avoid developing ADHD and CD in the presence of psychosocial adversity.

  17. Physiological Stress Responses in Amphibian Larvae to Multiple Stressors Reveal Marked Anthropogenic Effects even below Lethal Levels.

    PubMed

    Burraco, Pablo; Gomez-Mestre, Ivan

    Natural and anthropogenic disturbances cause profound alterations in organisms, inducing physiological adjustments to avoid, reduce, or remedy the impact of disturbances. In vertebrates, the stress response is regulated via neuroendocrine pathways, including the hypothalamic-pituitary-interrenal axis that regulates the secretion of glucocorticoids. Glucocorticoids have cascading effects on multiple physiological pathways, affecting the metabolic rate, reactive oxygen species production, or immune system. Determining the extent to which natural and anthropogenic environmental factors induce stress responses in vertebrates is of great importance in ecology and conservation biology. Here we study the physiological stress response in spadefoot toad tadpoles (Pelobates cultripes) against three levels of a series of natural and anthropogenic stressors common to many aquatic systems: salinity (0, 6, and 9 ppt), herbicide (0, 1, and 2 mg/L acid equivalent of glyphosate), water acidity (pH 4.5, 7.0, and 9.5), predators (absent, native, and invasive), and temperature (21°, 25°, and 29°C). The physiological stress response was assessed examining corticosterone levels, standard metabolic rate, activity of antioxidant enzymes, oxidative cellular damage in lipids, and immunological status. We found that common stressors substantially altered the physiological state of tadpoles. In particular, salinity and herbicides cause dramatic physiological changes in tadpoles. Moreover, tadpoles reduced corticosterone levels in the presence of natural predators but did not do so against invasive predators, indicating a lack of innate recognition. Corticosterone and the antioxidant enzyme glutathione reductase were the most sensitive parameters to stress in this study. Anthropogenic perturbations of aquatic systems pose serious threats to larval amphibians even at nonlethal concentrations, judging from the marked physiological stress responses generated, and reveal the importance of

  18. Physiological response of cardiac tissue to bisphenol a: alterations in ventricular pressure and contractility

    PubMed Central

    Brooks, Daina; Chandra, Akhil; Jaimes, Rafael; Sarvazyan, Narine; Kay, Matthew

    2015-01-01

    Biomonitoring studies have indicated that humans are routinely exposed to bisphenol A (BPA), a chemical that is commonly used in the production of polycarbonate plastics and epoxy resins. Epidemiological studies have shown that BPA exposure in humans is associated with cardiovascular disease; however, the direct effects of BPA on cardiac physiology are largely unknown. Previously, we have shown that BPA exposure slows atrioventricular electrical conduction, decreases epicardial conduction velocity, and prolongs action potential duration in excised rat hearts. In the present study, we tested if BPA exposure also adversely affects cardiac contractile performance. We examined the impact of BPA exposure level, sex, and pacing rate on cardiac contractile function in excised rat hearts. Hearts were retrogradely perfused at constant pressure and exposed to 10−9-10−4 M BPA. Left ventricular developed pressure and contractility were measured during sinus rhythm and during pacing (5, 6.5, and 9 Hz). Ca2+ transients were imaged from whole hearts and from neonatal rat cardiomyocyte layers. During sinus rhythm in female hearts, BPA exposure decreased left ventricular developed pressure and inotropy in a dose-dependent manner. The reduced contractile performance was exacerbated at higher pacing rates. BPA-induced effects on contractile performance were also observed in male hearts, albeit to a lesser extent. Exposure to BPA altered Ca2+ handling within whole hearts (reduced diastolic and systolic Ca2+ transient potentiation) and neonatal cardiomyocytes (reduced Ca2+ transient amplitude and prolonged Ca2+ transient release time). In conclusion, BPA exposure significantly impaired cardiac performance in a dose-dependent manner, having a major negative impact upon electrical conduction, intracellular Ca2+ handing, and ventricular contractility. PMID:25980024

  19. Acute Physiological and Thermoregulatory Responses to Extended Interval Training in Endurance Runners: Influence of Athletic Performance and Age

    PubMed Central

    García-Pinillos, Felipe; Soto-Hermoso, Víctor Manuel; Latorre-Román, Pedro Ángel

    2015-01-01

    This study aimed to describe the acute impact of extended interval training (EIT) on physiological and thermoregulatory levels, as well as to determine the influence of athletic performance and age effect on the aforementioned response in endurance runners. Thirty-one experienced recreational male endurance runners voluntarily participated in this study. Subjects performed EIT on an outdoor running track, which consisted of 12 runs of 400 m. The rate of perceived exertion, physiological response through the peak and recovery heart rate, blood lactate, and thermoregulatory response through tympanic temperature, were controlled. A repeated measures analysis revealed significant differences throughout EIT in examined variables. Cluster analysis grouped according to the average performance in 400 m runs led to distinguish between athletes with a higher and lower sports level. Cluster analysis was also performed according to age, obtaining an older group and a younger group. The one-way analysis of variance between groups revealed no significant differences (p≥0.05) in the response to EIT. The results provide a detailed description of physiological and thermoregulatory responses to EIT in experienced endurance runners. This allows a better understanding of the impact of a common training stimulus on the physiological level inducing greater accuracy in the training prescription. Moreover, despite the differences in athletic performance or age, the acute physiological and thermoregulatory responses in endurance runners were similar, as long as EIT was performed at similar relative intensity. PMID:26839621

  20. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress

    PubMed Central

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2015-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. “Longshu No. 3”) plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars. PMID:25628634

  1. Physiological responses to near-miss outcomes and personal control during simulated gambling.

    PubMed

    Clark, Luke; Crooks, Ben; Clarke, Robert; Aitken, Michael R F; Dunn, Barnaby D

    2012-03-01

    Near-miss outcomes during gambling are non-win outcomes that fall close to a pay-out. While objectively equivalent to an outright miss, near-misses motivate ongoing play and may therefore be implicated in the development of disordered gambling. Given naturalistic data showing increases in heart rate (HR) and electrodermal activity (EDA) during periods of real gambling play, we sought to explore the phasic impact of win, near-miss and full-miss outcomes on physiological arousal in a controlled laboratory environment. EDA and HR were monitored as healthy, student participants (n = 33) played a simulated slot-machine task involving unpredictable monetary wins. A second gambling distortion, perceived personal control, was manipulated within the same task by allowing the participant to select the play icon on some trials, and having the computer automatically select the play icon on other trials. Near-misses were rated as less pleasant than full-misses. However, on trials that involved personal choice, near-misses produced higher ratings of 'continue to play' than full-misses. Winning outcomes were associated with phasic EDA responses that did not vary with personal choice. Compared to full-misses, near-miss outcomes also elicited an EDA increase, which was greater on personal choice trials. Near-misses were also associated with greater HR acceleration than other outcomes. Near-miss outcomes are capable of eliciting phasic changes in physiological arousal consistent with a state of subjective excitement, despite their objective non-win status.

  2. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress.

    PubMed

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2014-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. "Longshu No. 3") plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars.

  3. Delivering Health Information via Podcast or Web: Media Effects on Psychosocial and Physiological Responses

    PubMed Central

    Turner-McGrievy, Gabrielle; Kalyanaraman, Sri; Campbell, Marci K.

    2016-01-01

    This study explored differences in psychosocial and physiological variables in response to being presented with information on weight loss through either reading text on a website or listening to the same information via podcast. Participants were randomized to receive a weight loss website (n = 20) or podcast (n = 20). Participants had skin conductance levels measured and completed questionnaire items assessing demographic characteristics, user control, novelty, and knowledge. Participants in the podcast group exhibited greater levels of physiological arousal and reported the intervention to be more novel than those in the Web group; however, the Web group reported greater user control. There was no difference in knowledge between the groups. This study presents the first step in examining the role that novelty and user control may play in two different weight-loss electronic media, as well as differences in knowledge acquisition. Future research should explore adding additional media features, such as video content, to the podcasts and websites in order to optimize fully the different mediums and to examine whether user control and novelty are potential mediators of weight loss outcomes. PMID:22420785

  4. Delivering health information via podcast or web: media effects on psychosocial and physiological responses.

    PubMed

    Turner-McGrievy, Gabrielle; Kalyanaraman, Sri; Campbell, Marci K

    2013-01-01

    This study explored differences in psychosocial and physiological variables in response to being presented with information on weight loss through either reading text on a website or listening to the same information via podcast. Participants were randomized to receive a weight loss website (n = 20) or podcast (n = 20). Participants had skin conductance levels measured and completed questionnaire items assessing demographic characteristics, user control, novelty, and knowledge. Participants in the podcast group exhibited greater levels of physiological arousal and reported the intervention to be more novel than those in the Web group; however, the Web group reported greater user control. There was no difference in knowledge between the groups. This study presents the first step in examining the role that novelty and user control may play in two different weight-loss electronic media, as well as differences in knowledge acquisition. Future research should explore adding additional media features, such as video content, to the podcasts and websites in order to optimize fully the different mediums and to examine whether user control and novelty are potential mediators of weight loss outcomes.

  5. Differential response to ocean acidification in physiological traits of Concholepas concholepas populations

    NASA Astrophysics Data System (ADS)

    Lardies, Marco A.; Arias, María Belén; Poupin, María Josefina; Manríquez, Patricio H.; Torres, Rodrigo; Vargas, Cristian A.; Navarro, Jorge M.; Lagos, Nelson A.

    2014-07-01

    Phenotypic adaptation to environmental fluctuations frequently occurs by preexisting plasticity and its role as a major component of variation in physiological diversity is being widely recognized. Few studies have considered the change in phenotypic flexibility among geographic populations in marine calcifiers to ocean acidification projections, despite the fact that this type of study provides understanding about how the organism may respond to this chemical change in the ocean. We examined the geographic variation in CO2 seawater concentrations in the phenotype and in the reaction norm of physiological traits using a laboratory mesocosm approach with short-term acclimation in two contrasting populations (Antofagasta and Calfuco) of the intertidal snail Concholepas concholepas. Our results show that elevated pCO2 conditions increase standard metabolic rates in both populations of the snail juveniles, likely due to the higher energy cost of homeostasis. Juveniles of C. concholepas in the Calfuco (southern) population showed a lower increment of metabolic rate in high-pCO2 environments concordant with a lesser gene expression of a heat shock protein with respect to the Antofagasta (northern) population. Combined these results indicate a negative effect of ocean acidification on whole-organism functioning of C. concholepas. Finally, the significant Population × pCO2 level interaction in both studied traits indicates that there is variation between populations in response to high-pCO2 conditions.

  6. Indirect Interspecies Regulation: Transcriptional and Physiological Responses of a Cyanobacterium to Heterotrophic Partnership

    PubMed Central

    McClure, Ryan S.; Thiel, Vera; Sadler, Natalie C.; Kim, Young-Mo; Chrisler, William B.; Hill, Eric A.; Romine, Margaret F.; Jansson, Janet K.; Fredrickson, Jim K.; Beliaev, Alexander S.

    2017-01-01

    ABSTRACT The mechanisms by which microbes interact in communities remain poorly understood. Here, we interrogated specific interactions between photoautotrophic and heterotrophic members of a model consortium to infer mechanisms that mediate metabolic coupling and acclimation to partnership. This binary consortium was composed of a cyanobacterium, Thermosynechococcus elongatus BP-1, which supported growth of an obligate aerobic heterotroph, Meiothermus ruber strain A, by providing organic carbon, O2, and reduced nitrogen. Species-resolved transcriptomic analyses were used in combination with growth and photosynthesis kinetics to infer interactions and the environmental context under which they occur. We found that the efficiency of biomass production and resistance to stress induced by high levels of dissolved O2 increased, beyond axenic performance, as a result of heterotrophic partnership. Coordinated transcriptional responses transcending both species were observed and used to infer specific interactions resulting from the synthesis and exchange of resources. The cyanobacterium responded to heterotrophic partnership by altering expression of core genes involved with photosynthesis, carbon uptake/fixation, vitamin synthesis, and scavenging of reactive oxygen species (ROS). IMPORTANCE This study elucidates how a cyanobacterial primary producer acclimates to heterotrophic partnership by modulating the expression levels of key metabolic genes. Heterotrophic bacteria can indirectly regulate the physiology of the photoautotrophic primary producers, resulting in physiological changes identified here, such as increased intracellular ROS. Some of the interactions inferred from this model system represent putative principles of metabolic coupling in phototrophic-heterotrophic partnerships. PMID:28289730

  7. Genetic and physiological bases for phenological responses to current and predicted climates

    PubMed Central

    Wilczek, A. M.; Burghardt, L. T.; Cobb, A. R.; Cooper, M. D.; Welch, S. M.; Schmitt, J.

    2010-01-01

    We are now reaching the stage at which specific genetic factors with known physiological effects can be tied directly and quantitatively to variation in phenology. With such a mechanistic understanding, scientists can better predict phenological responses to novel seasonal climates. Using the widespread model species Arabidopsis thaliana, we explore how variation in different genetic pathways can be linked to phenology and life-history variation across geographical regions and seasons. We show that the expression of phenological traits including flowering depends critically on the growth season, and we outline an integrated life-history approach to phenology in which the timing of later life-history events can be contingent on the environmental cues regulating earlier life stages. As flowering time in many plants is determined by the integration of multiple environmentally sensitive gene pathways, the novel combinations of important seasonal cues in projected future climates will alter how phenology responds to variation in the flowering time gene network with important consequences for plant life history. We discuss how phenology models in other systems—both natural and agricultural—could employ a similar framework to explore the potential contribution of genetic variation to the physiological integration of cues determining phenology. PMID:20819808

  8. Proteomic analysis of physiological function response to hot summer in liver from lactating dairy cows.

    PubMed

    Wang, Qiangjun; Zhao, Xiaowei; Zhang, Zijun; Zhao, Huiling; Huang, Dongwei; Cheng, Guanglong; Yang, Yongxin

    2017-04-01

    Lactation performance of dairy cattle is susceptible to heat stress. The liver is one of the most crucial organs affected by high temperature in dairy cows. However, the physiological adaption by the liver to hot summer conditions has not been well elucidated in lactating dairy cows. In the present study, proteomic analysis of the liver in dairy cows in spring and hot summer was performed using a label-free method. In total, 127 differentially expressed proteins were identified; most of the upregulated proteins were involved in protein metabolic processes and responses to stimuli, whereas most of the downregulated proteins were related to oxidation-reduction. Pathway analysis indicated that 3 upregulated heat stress proteins (HSP90α, HSP90β, and endoplasmin) were enriched in the NOD-like receptor signaling pathway, whereas several downregulated NADH dehydrogenase proteins were involved in the oxidative phosphorylation pathway. The protein-protein interaction network indicated that several upregulated HSPs (HSP90α, HSP90β, and GRP78) were involved in more interactions than other proteins and were thus considered as central hub nodes. Our findings provide novel insights into the physiological adaption of liver function in lactating dairy cows to natural high temperature.

  9. Effects of salinity on baldcypress seedlings: Physiological responses and their relation to salinity tolerance

    USGS Publications Warehouse

    Allen, J.A.; Chambers, J.L.; Pezeshki, S.R.

    1997-01-01

    Growth and physiological responses of 15 open-pollinated families of baldcypress (Taxodium distichum var. distichum) subjected to flooding with saline water were evaluated in this study. Ten of the families were from coastal sites in Louisiana and Alabama, USA that have elevated levels of soil-water salinity. The other five families were from inland, freshwater sites in Louisiana. Seedlings from all families tolerated flooding with water of low (2 g l-1) salinity. Differences in biomass among families became most apparent at the highest salinity levels (6 and 8 g l-1). Overall, increasing salinity reduced leaf biomass more than root biomass, which in turn was reduced more than stem biomass. A subset of seedlings from the main greenhouse experiment was periodically placed indoors under artificial light, and measurements were made of gas exchange and leaf water potential. Also, tissue concentrations of Cl-, Na+, K+, and Ca2+ were determined at the end of the greenhouse experiment. Significant intraspecific variation was found for nearly all the physiological parameters evaluated, but only leaf concentrations of Na+ and Cl- were correlated with an index of family-level differences in salt tolerance.

  10. Affective and physiological responses to the suffering of others: compassion and vagal activity.

    PubMed

    Stellar, Jennifer E; Cohen, Adam; Oveis, Christopher; Keltner, Dacher

    2015-04-01

    Compassion is an affective response to another's suffering and a catalyst of prosocial behavior. In the present studies, we explore the peripheral physiological changes associated with the experience of compassion. Guided by long-standing theoretical claims, we propose that compassion is associated with activation in the parasympathetic autonomic nervous system through the vagus nerve. Across 4 studies, participants witnessed others suffer while we recorded physiological measures, including heart rate, respiration, skin conductance, and a measure of vagal activity called respiratory sinus arrhythmia (RSA). Participants exhibited greater RSA during the compassion induction compared with a neutral control (Study 1), another positive emotion (Study 2), and a prosocial emotion lacking appraisals of another person's suffering (Study 3). Greater RSA during the experience of compassion compared with the neutral or control emotion was often accompanied by lower heart rate and respiration but no difference in skin conductance. In Study 4, increases in RSA during compassion positively predicted an established composite of compassion-related words, continuous self-reports of compassion, and nonverbal displays of compassion. Compassion, a core affective component of empathy and prosociality, is associated with heightened parasympathetic activity.

  11. Hop (Humulus lupulus L.) response mechanisms in drought stress: Proteomic analysis with physiology.

    PubMed

    Kolenc, Zala; Vodnik, Dominik; Mandelc, Stanislav; Javornik, Branka; Kastelec, Damijana; Čerenak, Andreja

    2016-08-01

    Drought is one of the major environmental devastating stressors that impair the growth and productivity of crop plants. Despite the relevance of drought stress, changes in physiology and resistance mechanisms are not completely understood for certain crops, including hop (Humulus lupulus L.). In this research the drought response of hop was studied using a conventional physiological approach (gas exchange techniques, fluorescence, relative water content measurements) and proteomic analysis (2D-DIGE). Plants of two cultivars (Aurora and Savinjski golding) were exposed to progressive drought in a pot experiment and analysed at different stress stages (mild, moderate and severe). Measurements of relative water content revealed a hydrostable water balance of hop. Photosynthesis was decreased due to stomatal and non-stomatal limitation to the same extent in both cultivars. Of 28 identified differentially abundant proteins, the majority were down regulated and included in photosynthetic (41%) and sugar metabolism (33%). Fifteen % of identified proteins were classified into the nitrogen metabolism, 4% were related to a ROS related pathway and 7% to other functions.

  12. Selected physiological and psychological responses to live-fire drills in different configurations of firefighting gear.

    PubMed

    Smith, D L; Petruzzello, S J

    1998-08-01

    The purpose of this study was to examine selected physiological and psychological responses to strenuous live-fire drills in different configurations of protective firefighting gear. Career firefighters (n = 10) performed three sets of firefighting drills in a training structure that contained live fires in two different configurations of firefighting gear. On separate days subjects wore: (a) the NFPA 1500 (1987) standard configuration, and (b) a hip-boot configuration of the firefighting gear. Physiological and psychological measurements were recorded pre-activity and at the end of each trial. Repeated measures ANOVA revealed a strong trend for performance time to be greater in the 1500 gear than in the hip-boot gear. There was a significant Time x Gear interaction for tympanic membrane temperature, with temperature being greater in the 1500 gear. Perceptions of effort and thermal sensations were also greater in the 1500 gear than in the hip-boot configuration of the gear. There was little difference in mean performance on cognitive function measures between the two gear configurations, but there was greater variability in performance in the 1500 gear. These data suggest that performing strenuous firefighting drills in the current NFPA 1500 standard configuration results in longer performance time, greater thermal strain, and greater perception of effort and thermal sensation.

  13. Physiological and biochemical responses of three Veneridae clams exposed to salinity changes.

    PubMed

    Carregosa, Vanessa; Velez, Cátia; Soares, Amadeu M V M; Figueira, Etelvina; Freitas, Rosa

    2014-01-01

    Given their global importance, coastal marine environments are a major focus of concern regarding the potential impacts of climate change, namely due to alterations in seawater salinity. It is known that environmental characteristics, such as salinity, affect immune and physiological parameters of bivalves. Nevertheless, scarce information is available concerning the biochemical alterations associated with salinity changes. For this reason, the present work aimed to evaluate the biochemical responses of three venerid clam species (Venerupis decussata, Venerupis corrugata, Venerupis philippinarum) submitted to salinity changes. The effects on the native (V. decussata and V. corrugata) and invasive (V. philippinarum) species collected from the same sampling site and submitted to the same salinity gradient (0 to 42g/L) were compared. The results obtained demonstrated that V. corrugata is the most sensitive species to salinity changes and V. decussata is the species that can tolerate a wider range of salinities. Furthermore, our work showed that clams under salinity associated stress can alter their biochemical mechanisms, such as increasing their antioxidant defenses, to cope with the higher oxidative stress resulting from hypo and hypersaline conditions. Among the physiological and biochemical parameters analyzed (glycogen and protein content; lipid peroxidation levels, antioxidant enzymes activity; total, reduced and oxidized glutathione) Catalase (CAT) and especially superoxide dismutase (SOD) showed to be useful biomarkers to assess salinity impacts in clams.

  14. Morphological, physiological and behavioural response patterns of carp gudgeon Hypseleotris spp. to food deprivation: implications for assessing health.

    PubMed

    Ning, N S P; Hladyz, S; Gawne, B; Maffei, S; Price, A; Nielsen, D L

    2012-01-01

    Morphological (growth, Fulton's condition factor), physiological (per cent dry mass, total lipid content) and behavioural (activity levels) response patterns of carp gudgeon Hypseleotris spp. were examined in response to food deprivation during a 56 day experiment. Considerable variability in the nature and magnitude of these response patterns was observed, suggesting that caution should be taken when interpreting changes in the health of small-bodied fishes based on individual response variables.

  15. Genotypic variation in physiological and growth responses of Populus tremuloides to elevated atmospheric CO2 concentration.

    PubMed

    Wang, X; Curtis, P S; Pregitzer, K S; Zak, D R

    2000-09-01

    Physiological and biomass responses of six genotypes of Populus tremuloides Michx., grown in ambient t (357 micromol mol(-1)) or twice ambient (707 micromol mol(-1)) CO2 concentration ([CO2]) and in low-N or high-N soils, were studied in 1995 and 1996 in northern Lower Michigan, USA. There was a significant CO2 x genotype interaction in photosynthetic responses. Net CO2 assimilation (A) was significantly enhanced by elevated [CO2] for five genotypes in high-N soil and for four genotypes in low-N soil. Enhancement of A by elevated [CO2] ranged from 14 to 68%. Genotypes also differed in their biomass responses to elevated [CO2], but biomass responses were poorly correlated with A responses. There was a correlation between magnitude of A enhancement by elevated [CO2] and stomatal sensitivity to CO2. Genotypes with low stomatal sensitivity to CO2 had a significantly higher A at elevated [CO2] than at ambient [CO2], but elevated [CO2] did not affect the ratio of intercellular [CO2] to leaf surface [CO2]. Stomatal conductance and A of different genotypes responded differentially to recovery from drought stress. Photosynthetic quantum yield and light compensation point were unaffected by elevated [CO2]. We conclude that P. tremuloides genotypes will respond differentially to rising atmospheric [CO2], with the degree of response dependent on other abiotic factors, such as soil N and water availability. The observed genotypic variation in growth could result in altered genotypic representation within natural populations and could affect the composition and structure of plant communities in a higher [CO2] environment in the future.

  16. [Physiological response of Neocaridina denticulate to the toxicity of Cu2+ and chlorpyrifos].

    PubMed

    Li, Dian-Bao; Zhang, Wei; Wang, Li-Qing; Zhang, Rui-Lei; Ji, Gao-Hua

    2015-02-01

    In order to study the physiological response to heavy metals and organic-phosphorus pesticide toxicity of aquatic organisms, Neocaridina denticulate was used as a test organism to investigate the impact of physiological indices of N. denticulate muscle tissues when they were exposed to Cu2+ and chlorpyrifos for 5 days respectively with the test methods of semi-static toxicity. The results showed that: when exposed to different concentrations of Cu2+ and chlorpyrifos solutions, the protein concentrations in muscle tissues were significantly lower with the extension of time to varying degrees. In the lower concentration groups of Cu2+ (0.086 mg x L(-1) and 0.172 mg-L-') and the higher concentration groups of chlorpyrifos (0. 006 0 [g-L-' and 0.012 0 μg x L(-1)), the total SOD activity showed inhibitory effect; the trend of the higher concentration group of Cu2+ (0.344 mg x L(-1) and 0.688 mg x L(-1)) showed " inhibition-promotion-inhibition", however, the lower concentration groups of chlorpyrifos (0.001 5 μg x L(-1) and 0.003 0 μg x L(-1)) showed the" inhibition-promotion" changes in trends; MDA contents changed similarly, and within a certain range of concentrations, MDA contents presented a gradually rising trend with increasing Cu2+ and chlorpyrifos concentration, which indicated that Cu2+ and chlorpyrifos accelerated lipid, peroxidation in muscle tissues of N. denticulate. In addition, AChE activity in Cu2+ and chlorpyrifos solutions showed inhibitory effect, and in the solutions with higher concentration of Cu2+ and chlorpyrifos, the activity was gradually decreased with the increase of concentration, indicating that Cu2+ and chlorpyrifoscs impacted the normal physiological functions of N. denticulate, and the higher the concentration, the greater the damage effect. Based on the analysis results, we confirmed that the total SOD, MDA and AChE played significant roles as physiological indicators in evaluating toxic effect of heavy metals and organic

  17. Cutaneous neurturin overexpression alters mechanical, thermal, and cold responsiveness in physiologically identified primary afferents.

    PubMed

    Jankowski, Michael P; Baumbauer, Kyle M; Wang, Ting; Albers, Kathryn M; Davis, Brian M; Koerber, H Richard

    2017-03-01

    Neurotrophic factors play an important role in the regulation of functional properties of sensory neurons under normal and pathological conditions. The GDNF family member neurturin is one such factor that has been linked to modulating responsiveness to peripheral stimuli. Neurturin binds to the GFRα2 receptor, a receptor found primarily in isolectin B4-expressing polymodal cutaneous nociceptors. Previous work has shown that knockout of GFRα2 alters heat, but not mechanical, responses in dissociated sensory neurons and reduces pain-related behaviors during the second phase of the formalin test. Research has also shown that overexpression of neurturin in basal keratinocytes increases behavioral responsiveness to mechanical stimulation and innocuous cooling of the skin without affecting noxious heat responses. Here we directly examined the impact of neurturin overexpression on cutaneous afferent function. We compared physiological responses of individual sensory neurons to mechanical and thermal stimulation of the skin, using an ex vivo skin-nerve-dorsal root ganglion-spinal cord preparation produced from neurturin-overexpressing (NRTN/OE) mice and wild-type littermate controls. We found that neurturin overexpression increases responsiveness to innocuous mechanical stimuli in A-fiber nociceptors, alters thermal responses in the polymodal subpopulation of C-fiber sensory neurons, and changes the relative numbers of mechanically sensitive but thermally insensitive C-fiber afferents. These results demonstrate the potential roles of different functional groups of sensory neurons in the behavioral changes observed in mice overexpressing cutaneous neurturin and highlight the importance of neurturin in regulating cutaneous afferent response properties.NEW & NOTEWORTHY GDNF family neurotrophic factors regulate the development and function of primary sensory neurons. Of these, neurturin has been shown to modulate mechanical and cooling sensitivity behaviorally. Here we show

  18. Comparative studies on growth and physiological responses of unicellular and colonial Microcystis aeruginosa to Acorus calamus.

    PubMed

    Zhang, S-H; Chang, J-J; Cao, J-Y; Yang, C-L

    2015-02-01

    In order to explore the growth inhibition and physiological responses of unicellular and colonial Microcystis aeruginosa during coexistence with Acorus calamus, algal densities, chlorophyll a contents, exopolysaccharide (EPS) concentrations, malondialdehyde (MDA) contents, catalase (CAT) activities, and peroxidase (POD) activities of the two algae strains were analyzed. Although the unicellular and colonial strains of M. aeruginosa were both inhibited by A. calamus, unicellular algae were more sensitive than the colonial algae. The measurement results for EPS, MDA, CAT, and POD showed that unicellular M. aeruginosa had higher levels of stress related damage than colonial strains when they were exposed to the same density of A. calamus, and the cellular defense system of colonial M. aeruginosa was stronger than that of unicellular M. aeruginosa. Natural blooms of Microcystis are typically composed of colonial forms of M. aeruginosa, therefore future efforts to control such blooms, possibly through the development of new algicides, should focus on the unique characteristics of colonial M. aeruginosa strains.

  19. Effects of gender and body adiposity on physiological responses to physical work while wearing body armor.

    PubMed

    Ricciardi, Richard; Deuster, Patricia A; Talbot, Laura A

    2007-07-01

    The purpose of this study was to identify the effects of gender and body adiposity on physiological responses to the stress of wearing body armor. Using a within-subject, repeated-measures design, 37 military personnel volunteered to undergo two experimental conditions, with body armor and without body armor. Female and male subjects with body armor, compared to those without body armor, had no significant differences in percentage increases in aerobic capacity, heart rate, or respiratory rate while walking at slow or moderate pace. However, women, as compared to men, had a significantly increased difference in the rating of perceived physical exertion between wearing and not wearing body armor at a slow pace. Fourteen subjects were not able to complete treadmill testing while wearing body armor because of volitional fatigue and/or limiting dyspnea. Body fat was the best single predictor of treadmill test completion.

  20. NALTREXONE EFFECT ON PHYSIOLOGICAL AND SUBJECTIVE RESPONSE TO A COLD PRESSOR TASK

    PubMed Central

    Kotlyar, Michael; al’Absi, Mustafa; Brauer, Lisa H.; Grant, Jon E.; Fong, Erine; Kim, Suck Won

    2009-01-01

    In this double-blind, cross-over study physiological (i.e. blood pressure, heart rate, plasma catecholamine concentrations, plasma cortisol concentrations) and subjective (i.e. McGill Pain Questionnaire, positive affect, distress) response to a cold pressor task was assessed in 19 subjects one hour after the administration of 50 mg naltrexone and after placebo. Significant differences in plasma catecholamine concentrations were found. Plasma epinephrine concentrations increased during the one hour period after naltrexone administration but remained largely unchanged after placebo administration. A significant treatment × period effect was also found for plasma norepinephrine concentrations. No significant differences were found for other measures assessed. Further research is necessary to determine the subpopulations in which these effects are of greatest magnitude and the long term safety implications of these effects. PMID:18053632

  1. Comparative reproductive and physiological responses of northern bobwhite and scaled quail to water deprivation

    USGS Publications Warehouse

    Giuliano, W.M.; Patino, R.; Lutz, R.S.

    1998-01-01

    We compared reproductive and physiological responses of captive female northern bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) under control and water deprivation conditions. Scaled quail required less food and water to reproduce successfully under control conditions than northern bobwhite. Additionally, in scaled quail, serum osmolality levels and kidney mass were unaffected by water deprivation, whereas in northern bobwhite, serum osmolality levels increased and kidney mass declined. This finding indicates that scaled quail may have osmoregulatory abilities superior to those of northern bobwhite. Under control conditions, northern bobwhite gained more body mass and produced more but smaller eggs than scaled quail. Under water deprivation conditions, northern bobwhite lost more body mass but had more laying bens with a higher rate of egg production than scaled quail. Our data suggest that northern bobwhite allocated more resources to reproduction than to body maintenance, while scaled quail apparently forego reproduction in favor of body maintenance during water deprivation conditions.

  2. Physiology of Fluid and Electrolyte Responses During Inactivity: Water Immersion and Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1984-01-01

    This manuscript emphasizes the physiology of fluid-electrolyte-hormonal responses during the prolonged inactivity of bed rest and water immersion. An understanding of the total mechanism of adaptation (deconditioning) should provide more insight into the conditioning process. Findings that need to be confirmed during bed rest and immersion are: (1) the volume and tissues of origin of fluid shifted to the thorax and head; (2) interstitial fluid pressure changes in muscle and subcutaneous tissue, particularly during immersion; and (3) the composition of the incoming presumably interstitial fluid that contributes to the early hypervolemia. Better resolution of the time course and source of the diuretic fluid is needed. Important data will be forthcoming when hypotheses are tested involving the probable action of the emerging diuretic and natriuretic hormones, between themselves and among vasopressin and aldosterone, on diuresis and blood pressure control.

  3. Emotional and physiologic responses to laboratory challenges: patients with temporomandibular disorders versus matched control subjects.

    PubMed

    Curran, S L; Carlson, C R; Okeson, J P

    1996-01-01

    This study explored psychologic and physiologic factors differentiating patients with temporomandibular disorders (n = 23) from sex-, age-, and weight-matched asymptomatic control subjects. Each subject completed several standard psychologic questionnaires and then underwent two laboratory stressors (mental arithmetic and pressure-pain stimulation). Results indicated that patients with temporomandibular disorders had greater resting respiration rates and reported greater anxiety, sadness, and guilt relative to control subjects. In response to the math stressor, patients with temporomandibular disorders reacted with greater anger than did control subjects. There were no differences between patients with temporomandibular disorders and control subjects on pain measures or any other measured variable for the pressure-pain stimulation trial. In addition, there were no differences in electromyography levels between patients with temporomandibular disorders and control subjects. The results are discussed in terms of their implications for the etiology and treatment of this common and debilitating set of disorders.

  4. Experience Modulates the Reproductive Response to Heat Stress in C. elegans via Multiple Physiological Processes

    PubMed Central

    Gouvêa, Devin Y.; Aprison, Erin Z.; Ruvinsky, Ilya

    2015-01-01

    Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments. PMID:26713620

  5. Sensing, physiological effects and molecular response to elevated CO2 levels in eukaryotes

    PubMed Central

    Sharabi, Kfir; Lecuona, Emilia; Helenius, Iiro Taneli; Beitel, Greg J; Sznajder, Jacob Iasha; Gruenbaum, Yosef

    2009-01-01

    Carbon dioxide (CO2) is an important gaseous molecule that maintains biosphere homeostasis and is an important cellular signalling molecule in all organisms. The transport of CO2 through membranes has fundamental roles in most basic aspects of life in both plants and animals. There is a growing interest in understanding how CO2 is transported into cells, how it is sensed by neurons and other cell types and in understanding the physiological and molecular consequences of elevated CO2 levels (hypercapnia) at the cell and organism levels. Human pulmonary diseases and model organisms such as fungi, C. elegans, Drosophila and mice have been proven to be important in understanding of the mechanisms of CO2 sensing and response. PMID:19863692

  6. Physiological responses to fertilization recorded in tree rings: Isotopic lessons from a long-term fertilization trial

    EPA Science Inventory

    Nitrogen fertilizer applications are common land use management tools, but details on physiological responses to these applications are often lacking, particularly for long-term responses over decades of forest management. We used tree ring growth patterns and stable isotopes to ...

  7. Physiological responses to fertilization recorded in tree rings: isotopic lessons from a long-term fertilization trial - 2008

    EPA Science Inventory

    Nitrogen fertilizer applications are common land-use management tools, but details on physiological responses to these applications are often lacking, particularly for long-term responses over decades of forest management. We used tree-ring growth patterns and stable isotopes to...

  8. Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality.

    PubMed

    Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis

    2015-11-01

    In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.

  9. Physiological responses at the lactate-minimum-intensity with and without prior high-intensity exercise.

    PubMed

    Zagatto, Alessandro Moura; Padulo, Johnny; Silva, Adelino Ramos Sanchez da; Müller, Paulo de Tarso Guerrero; Miyagi, Willian Eiji; Gobatto, Claudio Alexandre

    2016-11-01

    This study examined the physiological responses during exercise-to-exhaustion at the lactate-minimum-intensity with and without prior high-intensity exercise. Eleven recreationally trained males performed a graded exercise test, a lactate minimum test and two constant-load tests at lactate-minimum-intensity until exhaustion, which were applied with or without prior hyperlactatemia induction (i.e., 30-s Wingate test). The physiological responses were significantly different (P < 0.05) between constant-load tests for pulmonary ventilation ([Formula: see text]), blood-lactate-concentration ([La(-)]), pH, bicarbonate concentration ([HCO3]) and partial pressure of carbon dioxide during the initial minutes. The comparisons within constant-load tests showed steady state behaviour for oxygen uptake and the respiratory exchange ratio, but heart rate and rating of perceived exertion increased significantly during both exercise conditions, while the [Formula: see text] increased only during constant-load effort. During effort performed after high-intensity exercise: [Formula: see text], [La(-)], pH and [HCO3] differed at the start of exercise compared to another condition but were similar at the end (P > 0.05). In conclusion, the constant-load exercises performed at lactate-minimum-intensity with or without prior high-intensity exercise did not lead to the steady state of all analysed parameters; however, variables such as [La(-)], pH and [HCO3] - altered at the beginning of effort performed after high-intensity exercise - were reestablished after approximately 30 min of exercise.

  10. Early physiological and biochemical responses of rice seedlings to low concentration of microcystin-LR.

    PubMed

    Azevedo, Catarina C; Azevedo, Joana; Osório, Hugo; Vasconcelos, Vitor; Campos, Alexandre

    2014-03-01

    Microcystin-leucine and arginine (microcystin-LR) is a cyanotoxin produced by cyanobacteria like Microcystis aeruginosa, and it's considered a threat to water quality, agriculture, and human health. Rice (Oryza sativa) is a plant of great importance in human food consumption and economy, with extensive use around the world. It is therefore important to assess the possible effects of using water contaminated with microcystin-LR to irrigate rice crops, in order to ensure a safe, high quality product to consumers. In this study, 12 and 20-day-old plants were exposed during 2 or 7 days to a M. aeruginosa extract containing environmentally relevant microcystin-LR concentrations, 0.26-78 μg/L. Fresh and dry weight of roots and leaves, chlorophyll fluorescence, glutathione S-transferase and glutathione peroxidase activities, and protein identification by mass spectrometry through two-dimensional gel electrophoresis from root and leaf tissues, were evaluated in order to gauge the plant's physiological condition and biochemical response after toxin exposure. Results obtained from plant biomass, chlorophyll fluorescence, and enzyme activity assays showed no significant differences between control and treatment groups. However, proteomics data indicates that plants respond to M. aeruginosa extract containing environmentally relevant microcystin-LR concentrations by changing their metabolism, responding differently to different toxin concentrations. Biological processes most affected were related to protein folding and stress response, protein biosynthesis, cell signalling and gene expression regulation, and energy and carbohydrate metabolism which may denote a toxic effect induced by M. aeruginosa extract and microcystin-LR. The implications of the metabolic alterations in plant physiology and growth require further elucidation.

  11. Does physiological response to disease incur cost to reproductive ecology in a sexually dichromatic amphibian species?

    PubMed

    Kindermann, Christina; Narayan, Edward J; Hero, Jean-Marc

    2017-01-01

    It is well known that the disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) has contributed to amphibian declines worldwide. The impact of Bd varies, with some species being more susceptible to infection than others. Recent evidence has shown that Bd can have sub-lethal effects, whereby increases in stress hormones have been associated with infection. Could this increased stress response, which is a physiological adaptation that provides an increased resilience against Bd infection, potentially be a trade-off with important life-history traits such as reproduction? We studied this question in adult male frogs of a non-declining species (Litoria wilcoxii). Frogs were sampled for (1) seasonal hormone (testosterone and corticosterone), color and disease profiles, (2) the relationship between disease infection status and hormone levels or dorsal color, (3) subclinical effects of Bd by investigating disease load and hormone level, and (4) reproductive and stress hormone relationships independent of disease. Testosterone levels and color score varied seasonally (throughout the spring/summer months) while corticosterone levels remained stable. Frogs with high Bd prevalence had significantly higher corticosterone levels and lower testosterone levels compared to uninfected frogs, and no differences in color were observed. There was a significant positive correlation between disease load and corticosterone levels, and a significant negative relationship between disease load and testosterone. Our field data provides novel evidence that increased physiological stress response associated with Bd infection in wild frogs, could suppress reproduction by down-regulating gonadal hormones in amphibians, however the impacts on reproductive output is yet to be established.

  12. Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea

    PubMed Central

    del Hoyo, Alicia; Álvarez, Raquel; del Campo, Eva M.; Gasulla, Francisco; Barreno, Eva; Casano, Leonardo M.

    2011-01-01

    Background and Aims Most lichens form associations with Trebouxia phycobionts and some of them simultaneously include genetically different algal lineages. In other symbiotic systems involving algae (e.g. reef corals), the relative abundances of different endosymbiotic algal clades may change over time. This process seems to provide a mechanism allowing the organism to respond to environmental stress. A similar mechanism may operate in lichens with more than one algal lineage, likewise protecting them against environmental stresses. Here, the physiological responses to oxidative stress of two distinct Trebouxia phycobionts (provisionally named TR1 and TR9) that coexist within the lichen Ramalina farinacea were analysed. Methods Isolated phycobionts were exposed to oxidative stress through the reactive oxygen species propagator cumene hydroperoxide (CuHP). Photosynthetic pigments and proteins, photosynthesis (through modulated chlorophyll fluorescence), the antioxidant enzymes superoxide dismutase (SOD) and glutathione reductase (GR), and the stress-related protein HSP70 were analysed. Key Results Photosynthetic performance was severely impaired by CuHP in phycobionts, as indicated by decreases in the maximal PSII photochemical efficiency (Fv/Fm), the quantum efficiency of PSII (ΦPSII) and the non-photochemical dissipation of energy (NPQ). However, the CuHP-dependent decay in photosynthesis was significantly more severe in TR1, which also showed a lower NPQ and a reduced ability to preserve chlorophyll a, carotenoids and D1 protein. Additionally, differences were observed in the capacities of the two phycobionts to modulate antioxidant activities and HPS70 levels when exposed to oxidative stress. In TR1, CuHP significantly diminished HSP70 and GR but did not change SOD activities. In contrast, in TR9 the levels of both antioxidant enzymes and those of HSP70 increased in response to CuHP. Conclusions The better physiological performance of TR9 under oxidative

  13. Domesticated horses differ in their behavioural and physiological responses to isolated and group housing.

    PubMed

    Yarnell, Kelly; Hall, Carol; Royle, Chris; Walker, Susan L

    2015-05-01

    The predominant housing system used for domestic horses is individual stabling; however, housing that limits social interaction and requires the horse to live in semi-isolation has been reported to be a concern for equine welfare. The aim of the current study was to compare behavioural and physiological responses of domestic horses in different types of housing design that provided varying levels of social contact. Horses (n = 16) were divided equally into four groups and exposed to each of four housing treatments for a period of five days per treatment in a randomized block design. The four housing treatments used were single housed no physical contact (SHNC), single housed semi-contact (SHSC), paired housed full contact (PHFC) and group housed full contact (GHFC). During each housing treatment, adrenal activity was recorded using non-invasive faecal corticosterone metabolite analysis (fGC). Thermal images of the eye were captured and eye temperature was assessed as a non-invasive measure of the stress response. Behavioural analysis of time budget was carried out and an ease of handling score was assigned to each horse in each treatment using video footage. SHNC horses had significantly higher (p = 0.01) concentrations of fGC and were significantly (p = 0.003) more difficult to handle compared to the other housing types. GHFC horses, although not significantly different, had numerically lower concentrations of fGC and were more compliant to handling when compared to all other housing treatments. Eye temperature was significantly (p = 0.0001) lower in the group housed treatment when compared to all other treatments. These results indicate that based on physiological and behavioural measures incorporating social contact into the housing design of domestic horses could improve the standard of domestic equine welfare.

  14. Photosynthetic and physiological responses of native and exotic tidal woody seedlings to simulated tidal immersion

    NASA Astrophysics Data System (ADS)

    Wu, Tonggui; Gu, Shenhua; Zhou, Hefeng; Wang, G. Geoff; Cheng, Xiangrong; Yu, Mukui

    2013-12-01

    Hibiscus hamabo, a native tidal woody species, and Myrica cerifera, an exotic tidal woody species, have been widely planted on coastal beaches in subtropical China. However, whether there are differences in physiological response and tolerance to immersion between the two tidal species is still unknown. Our objectives were to evaluate differences in the photosynthetic and physiological responses to tidal immersion for the two species in the context of sea level rise. With increasing immersion, net photosynthesis, stomatal conductance, intercellular CO2 concentration, and light saturation point declined progressively for both species, whereas dark respiration and light compensation point showed the reverse trend. Lower variation was observed in H. hamabo than in M. cerifera for each index in the same treatment. Photosynthetic ability and utilization of light, especially under high light intensity, decreased for both species. Leaf soluble sugar and protein contents, and glycolate oxidase activity first increased and then decreased with increasing of immersion degree, with the higher values observed in the W4 (4 h duration, 15 cm depth) and W6 (6 h duration, 25 cm depth) treatments for H. hamabo, and W2 (2 h duration, 5 cm depth) and W4 treatments for M. cerifera. These findings indicate that H. hamabo has a better ability to keep the reduction of photosynthesis at a minimum through soluble substance regulated osmotic potential and avoiding excess light damage to the photosynthetic system through increased photorespiration, heat dissipation, chlorophyll fluorescence. Our results suggest that H. hamabo is more tolerant to tidal immersion than M. cerifera, and therefore it is better adapted to the anticipated sea level rise in future.

  15. Physiological and Transcriptome Responses to Combinations of Elevated CO2 and Magnesium in Arabidopsis thaliana

    PubMed Central

    Niu, Yaofang; Ahammed, Golam Jalal; Tang, Caixian; Guo, Longbiao; Yu, Jingquan

    2016-01-01

    The unprecedented rise in atmospheric CO2 concentration and injudicious fertilization or heterogeneous distribution of Mg in the soil warrant further research to understand the synergistic and holistic mechanisms involved in the plant growth regulation. This study investigated the influence of elevated CO2 (800 μL L−1) on physiological and transcriptomic profiles in Arabidopsis cultured in hydroponic media treated with 1 μM (low), 1000 μM (normal) and 10000 μM (high) Mg2+. Following 7-d treatment, elevated CO2 increased the shoot growth and chlorophyll content under both low and normal Mg supply, whereas root growth was improved exclusively under normal Mg nutrition. Notably, the effect of elevated CO2 on mineral homeostasis in both shoots and roots was less than that of Mg supply. Irrespective of CO2 treatment, high Mg increased number of young leaf but decreased root growth and absorption of P, K, Ca, Fe and Mn whereas low Mg increased the concentration of P, K, Ca and Fe in leaves. Transcriptomics results showed that elevated CO2 decreased the expression of genes related to cell redox homeostasis, cadmium response, and lipid localization, but enhanced signal transduction, protein phosphorylation, NBS-LRR disease resistance proteins and subsequently programmed cell death in low-Mg shoots. By comparison, elevated CO2 enhanced the response of lipid localization (mainly LTP transfer protein/protease inhibitor), endomembrane system, heme binding and cell wall modification in high-Mg roots. Some of these transcriptomic results are substantially in accordance with our physiological and/or biochemical analysis. The present findings broaden our current understanding on the interactive effect of elevated CO2 and Mg levels in the Arabidopsis, which may help to design the novel metabolic engineering strategies to cope with Mg deficiency/excess in crops under elevated CO2. PMID:26881808

  16. Cardiovascular and autonomic responses to physiological stressors before and after six hours of water immersion.

    PubMed

    Florian, John P; Simmons, Erin E; Chon, Ki H; Faes, Luca; Shykoff, Barbara E

    2013-11-01

    The physiological responses to water immersion (WI) are known; however, the responses to stress following WI are poorly characterized. Ten healthy men were exposed to three physiological stressors before and after a 6-h resting WI (32-33°C): 1) a 2-min cold pressor test, 2) a static handgrip test to fatigue at 40% of maximum strength followed by postexercise muscle ischemia in the exercising forearm, and 3) a 15-min 70° head-up-tilt (HUT) test. Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), cardiac output (Q), limb blood flow (BF), stroke volume (SV), systemic and calf or forearm vascular resistance (SVR and CVR or FVR), baroreflex sensitivity (BRS), and HR variability (HRV) frequency-domain variables [low-frequency (LF), high-frequency (HF), and normalized (n)] were measured. Cold pressor test showed lower HR, SBP, SV, Q, calf BF, LFnHRV, and LF/HFHRV and higher CVR and HFnHRV after than before WI (P < 0.05). Handgrip test showed no effect of WI on maximum strength and endurance and lower HR, SBP, SV, Q, and calf BF and higher SVR and CVR after than before WI (P < 0.05). During postexercise muscle ischemia, HFnHRV increased from baseline after WI only, and LFnHRV was lower after than before WI (P < 0.05). HUT test showed lower SBP, DBP, SV, forearm BF, and BRS and higher HR, FVR, LF/HFHRV, and LFnHRV after than before WI (P < 0.05). The changes suggest differential activation/depression during cold pressor and handgrip (reduced sympathetic/elevated parasympathetic) and HUT (elevated sympathetic/reduced parasympathetic) following 6 h of WI.

  17. Physiological responses to cold (10° C) in men after six months' practice of yoga exercises

    NASA Astrophysics Data System (ADS)

    Selvamurthy, W.; Ray, U. S.; Hegde, K. S.; Sharma, R. P.

    1988-09-01

    A study was conducted on 30 healthy soldiers (age: 40 46 years) to assess the effect of selected yogic exercises (asanas) on some physiological responses to cold exposure. They were randomly divided into two groups of 15 each. One group performed regular physical exercises of physical training (PT), while the other group practised yogic exercises. At the end of 6 months of training, both the groups were exposed together to cold stress at 10°C for 2 h, and the following parameters were periodically monitored during cold exposure: heart rate ( fH), blood pressure ( BP), cardiac output(dot Q_c ), oral temperature (Tor), skin temperature ( T sk), respiratory rate ( fR), minute ventilation(dot V_E ), oxygen consumption(dot V_{O_2 } ), and shivering response by integrated electromyogram (EMG). There were progressive increases in BP, fR,dot V_E ,dot V_{O_2 } , anddot Q_c and decreases in fH, T or and T sk during cold exposure in both the groups. However, the decrease in T or and the increases indot V_{O_2 } anddot V_E were relatively lower ( P<0.01) in the yoga group as compared to the PT group. The shivering response appeared much earlier and was more intense in the PT group. These findings suggest that practice of yoga exercises may improve cold tolerance.

  18. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature.

    PubMed

    Hancock, Robert D; Morris, Wayne L; Ducreux, Laurence J M; Morris, Jenny A; Usman, Muhammad; Verrall, Susan R; Fuller, John; Simpson, Craig G; Zhang, Runxuan; Hedley, Pete E; Taylor, Mark A

    2014-02-01

    Although significant work has been undertaken regarding the response of model and crop plants to heat shock during the acclimatory phase, few studies have examined the steady-state response to the mild heat stress encountered in temperate agriculture. In the present work, we therefore exposed tuberizing potato plants to mildly elevated temperatures (30/20 °C, day/night) for up to 5 weeks and compared tuber yield, physiological and biochemical responses, and leaf and tuber metabolomes and transcriptomes with plants grown under optimal conditions (22/16 °C). Growth at elevated temperature reduced tuber yield despite an increase in net foliar photosynthesis. This was associated with major shifts in leaf and tuber metabolite profiles, a significant decrease in leaf glutathione redox state and decreased starch synthesis in tubers. Furthermore, growth at elevated temperature had a profound impact on leaf and tuber transcript expression with large numbers of transcripts displaying a rhythmic oscillation at the higher growth temperature. RT-PCR revealed perturbation in the expression of circadian clock transcripts including StSP6A, previously identified as a tuberization signal. Our data indicate that potato plants grown at moderately elevated temperatures do not exhibit classic symptoms of abiotic stress but that tuber development responds via a diversity of biochemical and molecular signals.

  19. Physiological responses of root-less epiphytic plants to acid rain.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Bačkor, Martin; Stork, František; Hedbavny, Josef

    2011-03-01

    Selected physiological responses of Tillandsia albida (Bromeliaceae) and two lichens (Hypogymnia physodes and Xanthoria parietina) exposed to simulated acid rain (AR) over 3 months were studied. Pigments were depressed in all species being affected the most in Tillandsia. Amounts of hydrogen peroxide and superoxide were elevated and soluble proteins decreased only in AR-exposed Hypogymnia. Free amino acids were slightly affected among species and only glutamate sharply decreased in AR-exposed Xanthoria. Slight increase in soluble phenols but decrease in flavonoids in almost all species suggests that the latter are not essential for tolerance to AR. Almost all phenolic acids in Tillandsia leaves decreased in response to AR and activities of selected enzymes (phenylalanine ammonia-lyase, polyphenol oxidase, ascorbate- and guaiacol-peroxidase) were enhanced by AR. In lichens, considerable increase in metabolites (physodalic acid, atranorin and parietin) in response to AR was found but amount of ergosterol was unchanged. Macronutrients (K, Ca, Mg) decreased more pronouncedly in comparison with micronutrients in all species. Xanthoria showed higher tolerance in comparison with Hypogymnia, suggesting that could be useful for long-term biomonitoring.

  20. Reducing the Meta-Emotional Problem Decreases Physiological Fear Response during Exposure in Phobics.

    PubMed

    Couyoumdjian, Alessandro; Ottaviani, Cristina; Petrocchi, Nicola; Trincas, Roberta; Tenore, Katia; Buonanno, Carlo; Mancini, Francesco

    2016-01-01

    Anxiety disorders may not only be characterized by specific symptomatology (e.g., tachycardia) in response to the fearful stimulus (primary problem or first-level emotion) but also by the tendency to negatively evaluate oneself for having those symptoms (secondary problem or negative meta-emotion). An exploratory study was conducted driven by the hypothesis that reducing the secondary or meta-emotional problem would also diminish the fear response to the phobic stimulus. Thirty-three phobic participants were exposed to the phobic target before and after undergoing a psychotherapeutic intervention addressed to reduce the meta-emotional problem or a control condition. The electrocardiogram was continuously recorded to derive heart rate (HR) and heart rate variability (HRV) and affect ratings were obtained. Addressing the meta-emotional problem had the effect of reducing the physiological but not the subjective symptoms of anxiety after phobic exposure. Preliminary findings support the role of the meta-emotional problem in the maintenance of response to the fearful stimulus (primary problem).

  1. Muscle sympathetic nerve responses to physiological changes in prostaglandin production in humans

    NASA Technical Reports Server (NTRS)

    Doerzbacher, K. J.; Ray, C. A.

    2001-01-01

    Previous studies suggest that prostaglandins may contribute to exercise-induced increases in muscle sympathetic nerve activity (MSNA). To test this hypothesis, MSNA was measured at rest and during exercise before and after oral administration of ketoprofen, a cyclooxygenase inhibitor, or placebo. Twenty-one subjects completed two bouts of graded dynamic and isometric handgrip to fatigue. Each exercise bout was followed by 2 min of postexercise muscle ischemia. The second exercise bouts were performed after 60 min of rest in which 11 subjects were given ketoprofen (300 mg) and 10 subjects received a placebo. Ketoprofen significantly lowered plasma thromboxane B(2) in the drug group (from 36 +/- 6 to 22 +/- 3 pg/ml, P < 0.04), whereas thromboxane B(2) in the placebo group increased from 40 +/- 5 to 61 +/- 9 pg/ml from trial 1 to trial 2 (P < 0.008). Ketoprofen and placebo did not change sympathetic and cardiovascular responses to dynamic handgrip, isometric handgrip, and postexercise muscle ischemia. There was no relationship between thromboxane B(2) concentrations and MSNA or arterial pressure responses during both exercise modes. The data indicate that physiological increases or decreases in prostaglandins do not alter exercise-induced increases in MSNA and arterial pressure in humans. These findings suggest that contraction-induced metabolites other than prostaglandins mediate MSNA responses to exercise in humans.

  2. Physiological and Transcriptional Responses of Saccharomyces cerevisiae to Zinc Limitation in Chemostat Cultures †

    PubMed Central

    De Nicola, Raffaele; Hazelwood, Lucie A.; De Hulster, Erik A. F.; Walsh, Michael C.; Knijnenburg, Theo A.; Reinders, Marcel J. T.; Walker, Graeme M.; Pronk, Jack T.; Daran, Jean-Marc; Daran-Lapujade, Pascale

    2007-01-01

    Transcriptional responses of the yeast Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under limiting and abundant Zn concentrations in chemostat culture. To investigate the context dependency of this transcriptional response and eliminate growth rate-dependent variations in transcription, yeast was grown under several chemostat regimens, resulting in various carbon (glucose), nitrogen (ammonium), zinc, and oxygen supplies. A robust set of genes that responded consistently to Zn limitation was identified, and the set enabled the definition of the Zn-specific Zap1p regulon, comprised of 26 genes and characterized by a broader zinc-responsive element consensus (MHHAACCBYNMRGGT) than so far described. Most surprising was the Zn-dependent regulation of genes involved in storage carbohydrate metabolism. Their concerted down-regulation was physiologically relevant as revealed by a substantial decrease in glycogen and trehalose cellular content under Zn limitation. An unexpectedly large number of genes were synergistically or antagonistically regulated by oxygen and Zn availability. This combinatorial regulation suggested a more prominent involvement of Zn in mitochondrial biogenesis and function than hitherto identified. PMID:17933919

  3. Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves.

    PubMed

    Jia, Huan; Shao, Mingquan; He, Yongjun; Guan, Rongzhan; Chu, Pu; Jiang, Haidong

    2015-01-01

    Salt stress limits plant growth and crop productivity and is an increasing threat to agriculture worldwide. In this study, proteomic and physiological responses of Brassica napus leaves under salt stress were investigated. Seedlings under salt treatment showed growth inhibition and photosynthesis reduction. A comparative proteomic analysis of seedling leaves exposed to 200 mM NaCl for 24 h, 48 h and 72 h was conducted. Forty-four protein spots were differentially accumulated upon NaCl treatment and 42 of them were identified, including several novel salt-responsive proteins. To determine the functional roles of these proteins in salt adaptation, their dynamic changes in abundance were analyzed. The results suggested that the up-accumulated proteins, which were associated with protein metabolism, damage repair and defense response, might contribute to the alleviation of the deleterious effect of salt stress on chlorophyll biosynthesis, photosynthesis, energy synthesis and respiration in Brassica napus leaves. This study will lead to a better understanding of the molecular basis of salt stress adaptation in Brassica napus and provides a basis for genetic engineering of plants with improved salt tolerance in the future.

  4. Miniaturized iPS-Cell-Derived Cardiac Muscles for Physiologically Relevant Drug Response Analyses

    PubMed Central

    Huebsch, Nathaniel; Loskill, Peter; Deveshwar, Nikhil; Spencer, C. Ian; Judge, Luke M.; Mandegar, Mohammad A.; B. Fox, Cade; Mohamed, Tamer M.A.; Ma, Zhen; Mathur, Anurag; Sheehan, Alice M.; Truong, Annie; Saxton, Mike; Yoo, Jennie; Srivastava, Deepak; Desai, Tejal A.; So, Po-Lin; Healy, Kevin E.; Conklin, Bruce R.

    2016-01-01

    Tissue engineering approaches have the potential to increase the physiologic relevance of human iPS-derived cells, such as cardiomyocytes (iPS-CM). However, forming Engineered Heart Muscle (EHM) typically requires >1 million cells per tissue. Existing miniaturization strategies involve complex approaches not amenable to mass production, limiting the ability to use EHM for iPS-based disease modeling and drug screening. Micro-scale cardiospheres are easily produced, but do not facilitate assembly of elongated muscle or direct force measurements. Here we describe an approach that combines features of EHM and cardiospheres: Micro-Heart Muscle (μHM) arrays, in which elongated muscle fibers are formed in an easily fabricated template, with as few as 2,000 iPS-CM per individual tissue. Within μHM, iPS-CM exhibit uniaxial contractility and alignment, robust sarcomere assembly, and reduced variability and hypersensitivity in drug responsiveness, compared to monolayers with the same cellular composition. μHM mounted onto standard force measurement apparatus exhibited a robust Frank-Starling response to external stretch, and a dose-dependent inotropic response to the β-adrenergic agonist isoproterenol. Based on the ease of fabrication, the potential for mass production and the small number of cells required to form μHM, this system provides a potentially powerful tool to study cardiomyocyte maturation, disease and cardiotoxicology in vitro. PMID:27095412

  5. Physiological response to etho-ecological stressors in male Alpine chamois: timescale matters!

    NASA Astrophysics Data System (ADS)

    Corlatti, Luca; Palme, Rupert; Lovari, Sandro

    2014-07-01

    From a life history perspective, glucocorticoids secreted by the neuroendocrine system, integrating different sources of stress through an adaptive feedback mechanism, may have important consequences on individual fitness. Although stress responses have been the object of several investigations, few studies have explored the role of proximate mechanisms responsible for the potential trade-offs between physiological stress and life history traits integrating social and environmental stressors. In 2011 and 2012, we collected data on faecal cortisol metabolites (FCM) in a marked male population of Alpine chamois, within the Gran Paradiso National Park (Italy). Using a model selection approach we analysed the effect of potential etho-ecological stressors such as age, social status (territorial vs. non-territorial males), minimum temperature, snow depth and precipitation on FCM variation. To correctly interpret environmentally and socially induced stress responses, we conducted model selections over multiple temporal scales defined a priori: year, cold months, spring, warm months, mating season. Over the year, FCM levels showed a negative relationship with minimum temperature, but altogether, climatic stressors had negligible effects on glucocorticoid secretion, possibly owing to good adaptations of chamois to severe weather conditions. Age was negatively related to FCM during the rut, possibly due to greater experience of older males in agonistic contests. Social status was an important determinant of FCM excretion: while both the `stress of subordination' and the `stress of domination' hypotheses received some support in spring and during the mating season, respectively, previous data suggest that only the latter may have detrimental fitness consequences on male chamois.

  6. Reducing the Meta-Emotional Problem Decreases Physiological Fear Response during Exposure in Phobics

    PubMed Central

    Couyoumdjian, Alessandro; Ottaviani, Cristina; Petrocchi, Nicola; Trincas, Roberta; Tenore, Katia; Buonanno, Carlo; Mancini, Francesco

    2016-01-01

    Anxiety disorders may not only be characterized by specific symptomatology (e.g., tachycardia) in response to the fearful stimulus (primary problem or first-level emotion) but also by the tendency to negatively evaluate oneself for having those symptoms (secondary problem or negative meta-emotion). An exploratory study was conducted driven by the hypothesis that reducing the secondary or meta-emotional problem would also diminish the fear response to the phobic stimulus. Thirty-three phobic participants were exposed to the phobic target before and after undergoing a psychotherapeutic intervention addressed to reduce the meta-emotional problem or a control condition. The electrocardiogram was continuously recorded to derive heart rate (HR) and heart rate variability (HRV) and affect ratings were obtained. Addressing the meta-emotional problem had the effect of reducing the physiological but not the subjective symptoms of anxiety after phobic exposure. Preliminary findings support the role of the meta-emotional problem in the maintenance of response to the fearful stimulus (primary problem). PMID:27504102

  7. What are the physiological and immunological responses of coral to climate warming and disease?

    PubMed

    Mydlarz, Laura D; McGinty, Elizabeth S; Harvell, C Drew

    2010-03-15

    Coral mortality due to climate-associated stress is likely to increase as the oceans get warmer and more acidic. Coral bleaching and an increase in infectious disease are linked to above average sea surface temperatures. Despite the uncertain future for corals, recent studies have revealed physiological mechanisms that improve coral resilience to the effects of climate change. Some taxa of bleached corals can increase heterotrophic food intake and exchange symbionts for more thermally tolerant clades; this plasticity can increase the probability of surviving lethal thermal stress. Corals can fight invading pathogens with a suite of innate immune responses that slow and even arrest pathogen growth and reduce further tissue damage. Several of these responses, such as the melanin cascade, circulating amoebocytes and antioxidants, are induced in coral hosts during pathogen invasion or disease. Some components of immunity show thermal resilience and are enhanced during temperature stress and even in bleached corals. These examples suggest some plasticity and resilience to cope with environmental change and even the potential for evolution of resistance to disease. However, there is huge variability in responses among coral species, and the rate of climate change is projected to be so rapid that only extremely hardy taxa are likely to survive the projected changes in climate stressors.

  8. Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation.

    PubMed

    Santander, Ricardo D; Oliver, James D; Biosca, Elena G

    2014-05-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants distributed worldwide. This bacterium is a nonobligate pathogen able to survive outside the host under starvation conditions, allowing its spread by various means such as rainwater. We studied E. amylovora responses to starvation using water microcosms to mimic natural oligotrophy. Initially, survivability under optimal (28 °C) and suboptimal (20 °C) growth temperatures was compared. Starvation induced a loss of culturability much more pronounced at 28 °C than at 20 °C. Natural water microcosms at 20 °C were then used to characterize cellular, physiological, and molecular starvation responses of E. amylovora. Challenged cells developed starvation-survival and viable but nonculturable responses, reduced their size, acquired rounded shapes and developed surface vesicles. Starved cells lost motility in a few days, but a fraction retained flagella. The expression of genes related to starvation, oxidative stress, motility, pathogenicity, and virulence was detected during the entire experimental period with different regulation patterns observed during the first 24 h. Further, starved cells remained as virulent as nonstressed cells. Overall, these results provide new knowledge on the biology of E. amylovora under conditions prevailing in nature, which could contribute to a better understanding of the life cycle of this pathogen.

  9. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment

    PubMed Central

    Watson, Hannah; Videvall, Elin; Andersson, Martin N.; Isaksson, Caroline

    2017-01-01

    Identifying the molecular basis of environmentally induced phenotypic variation presents exciting opportunities for furthering our understanding of how ecological processes and the environment can shape the phenotype. Urban and rural environments present free-living organisms with different challenges and opportunities, which have marked consequences for the phenotype, yet little is known about responses at the molecular level. We characterised transcriptomes from an urban and a rural population of great tits Parus major, demonstrating striking differences in gene expression profiles in both blood and liver tissues. Differentially expressed genes had functions related to immune and inflammatory responses, detoxification, protection against oxidative stress, lipid metabolism, and regulation of gene expression. Many genes linked to stress responses were expressed