Ma, Zechen; Bayley, Mark T; Perrier, Laure; Dhir, Priya; Dépatie, Lana; Comper, Paul; Ruttan, Lesley; Lay, Christine; Munce, Sarah E P
2018-01-12
Adverse childhood experiences are significant risk factors for physical and mental illnesses in adulthood. Traumatic brain injury/concussion is a challenging condition where pre-injury factors may affect recovery. The association between childhood adversity and traumatic brain injury/concussion has not been previously reviewed. The research question addressed is: What is known from the existing literature about the association between adverse childhood experiences and traumatic brain injury/concussion in adults? All original studies of any type published in English since 2007 on adverse childhood experiences and traumatic brain injury/concussion outcomes were included. The literature search was conducted in multiple electronic databases. Arksey and O'Malley and Levac et al.'s scoping review frameworks were used. Two reviewers independently completed screening and data abstraction. The review yielded six observational studies. Included studies were limited to incarcerated or homeless samples, and individuals at high-risk of or with mental illnesses. Across studies, methods for childhood adversity and traumatic brain injury/concussion assessment were heterogeneous. A positive association between adverse childhood experiences and traumatic brain injury occurrence was identified. The review highlights the importance of screening and treatment of adverse childhood experiences. Future research should extend to the general population and implications on injury recovery. Implications for rehabilitation Exposure to adverse childhood experiences is associated with increased risk of traumatic brain injury. Specific types of adverse childhood experiences associated with risk of traumatic brain injury include childhood physical abuse, psychological abuse, household member incarceration, and household member drug abuse. Clinicians and researchers should inquire about adverse childhood experiences in all people with traumatic brain injury as pre-injury health conditions can affect recovery.
Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A; Münsterkötter, Anna L; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter; Lonsdorf, Tina B
2016-04-01
Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. © The Author (2015). Published by Oxford University Press.
Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A.; Münsterkötter, Anna L.; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter
2016-01-01
Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. PMID:26568620
Wang, Yan; Fu, Wei; Liu, Jing
2016-01-01
Intrauterine growth restriction (IUGR) is associated with higher rates of fetal, perinatal, and neonatal morbidity and mortality. The consequences of IUGR include short-term metabolic, hematological and thermal disturbances that lead to metabolic syndrome in children and adults. Additionally, IUGR severely affects short- and long-term fetal brain development and brain function (including motor, cognitive and executive function) and neurobehavior, especially neuropsychology. This review details the adverse effects of IUGR on fetal brain development and discusses intervention strategies.
Journey to the Center of the Fetal Brain: Environmental Exposures and Autophagy.
Lei, Jun; Calvo, Pilar; Vigh, Richard; Burd, Irina
2018-01-01
Fetal brain development is known to be affected by adverse environmental exposures during pregnancy, including infection, inflammation, hypoxia, alcohol, starvation, and toxins. These exposures are thought to alter autophagy activity in the fetal brain, leading to adverse perinatal outcomes, such as cognitive and sensorimotor deficits. This review introduces the physiologic autophagy pathways in the fetal brain. Next, methods to detect and monitor fetal brain autophagy activity are outlined. An additional discussion explores possible mechanisms by which environmental exposures during pregnancy alter fetal brain autophagy activity. In the final section, a correlation of fetal autophagy activity with the observed postnatal phenotype is attempted. Our main purpose is to provide the current understanding or a lack thereof mechanisms on autophagy, underlying the fetal brain injury exposed to environmental insults.
Kim, Yong-Ku; Ham, Byung-Joo; Han, Kyu-Man
2018-03-10
The etiology of depression is characterized by the interplay of genetic and environmental factors and brain structural alteration. Childhood adversity is a major contributing factor in the development of depression. Interactions between childhood adversity and candidate genes for depression could affect brain morphology via the modulation of neurotrophic factors, serotonergic neurotransmission, or the hypothalamus-pituitary-adrenal (HPA) axis, and this pathway may explain the subsequent onset of depression. Childhood adversity is associated with structural changes in the hippocampus, amygdala, anterior cingulate cortex (ACC), and prefrontal cortex (PFC), as well as white matter tracts such as the corpus callosum, cingulum, and uncinate fasciculus. Childhood adversity showed an interaction with the brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism, serotonin transporter-linked promoter region (5-HTTLPR), and FK506 binding protein 51 (FKBP5) gene rs1360780 in brain morphologic changes in patients with depression and in a non-clinical population. Individuals with the Met allele of BDNF Val66Met and a history of childhood adversity had reduced volume in the hippocampus and its subfields, amygdala, and PFC and thinner rostral ACC in a study of depressed patients and healthy controls. The S allele of 5-HTTLPR combined with exposure to childhood adversity or a poorer parenting environment was associated with a smaller hippocampal volume and subsequent onset of depression. The FKBP5 gene rs160780 had a significant interaction with childhood adversity in the white matter integrity of brain regions involved in emotion processing. This review identified that imaging genetic studies on childhood adversity may deepen our understanding on the neurobiological background of depression by scrutinizing complicated pathways of genetic factors, early psychosocial environments, and the accompanying morphologic changes in emotion-processing neural circuitry. Copyright © 2018 Elsevier Inc. All rights reserved.
Lomanowska, A M; Boivin, M; Hertzman, C; Fleming, A S
2017-02-07
The developing brains of young children are highly sensitive to input from their social environment. Nurturing social experience during this time promotes the acquisition of social and cognitive skills and emotional competencies. However, many young children are confronted with obstacles to healthy development, including poverty, inappropriate care, and violence, and their enhanced sensitivity to the social environment means that they are highly susceptible to these adverse childhood experiences. One source of social adversity in early life can stem from parenting that is harsh, inconsistent, non-sensitive or hostile. Parenting is considered to be the cornerstone of early socio-emotional development and an adverse parenting style is associated with adjustment problems and a higher risk of developing mood and behavioral disorders. Importantly, there is a growing literature showing that an important predictor of parenting behavior is how parents, especially mothers, were parented themselves. In this review, we examine how adversity in early-life affects mothering behavior in later-life and how these effects may be perpetuated inter-generationally. Relying on studies in humans and animal models, we consider evidence for the intergenerational transmission of mothering styles. We then describe the psychological underpinnings of mothering, including responsiveness to young, executive function and affect, as well as the physiological mediators of mothering behavior, including hormones, brain regions and neurotransmitters, and we consider how development in these relevant domains may be affected by adversity experienced in early life. Finally, we explore how genes and early experience interact to predict mothering behavior, including the involvement of epigenetic mechanisms. Understanding how adverse parenting begets adverse parenting in the next generation is critical for designing interventions aimed at preventing this intergenerational cycle of early adversity. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Anti-epileptic drugs in pediatric traumatic brain injury.
Tanaka, Tomoko; Litofsky, N Scott
2016-10-01
Pediatric post-traumatic epilepsy incidence varies depending on reporting mechanism and injury severity; anti-epileptic drug (AEDs) use also varies with lack of quality evidence-based data. Adverse AED effects are not negligible; some may negatively affect functional outcome. This review focuses on clarifying available data. This review discusses seizures associated with traumatic brain injury in children, including seizure incidence, relationship to severity of injury, potential detrimental effects of seizures, potential benefits of AED, adverse effects of AED, new developments in preventing epileptogenesis, and suggested recommendations for patient management. English language papers were identified from PubMed using search terms including but not excluding the following: adverse drug effects, anti-epileptic drugs, children, electroencephalogram, epilepsy, epileptogenesis, head injury, levetiracetam, pediatrics, phenytoin, post-traumatic epilepsy, prevention, prophylaxis, seizures, and traumatic brain injury. Expert commentary: Identification of high-risk patients for post-traumatic seizures is a key goal. Levetiracetam may prevent epileptogenesis, as may other developments.
Burns, James Geoffrey; Svetec, Nicolas; Rowe, Locke; Mery, Frederic; Dolan, Michael J.; Boyce, W. Thomas; Sokolowski, Marla B.
2012-01-01
Early life adversity has known impacts on adult health and behavior, yet little is known about the gene–environment interactions (GEIs) that underlie these consequences. We used the fruit fly Drosophila melanogaster to show that chronic early nutritional adversity interacts with rover and sitter allelic variants of foraging (for) to affect adult exploratory behavior, a phenotype that is critical for foraging, and reproductive fitness. Chronic nutritional adversity during adulthood did not affect rover or sitter adult exploratory behavior; however, early nutritional adversity in the larval period increased sitter but not rover adult exploratory behavior. Increasing for gene expression in the mushroom bodies, an important center of integration in the fly brain, changed the amount of exploratory behavior exhibited by sitter adults when they did not experience early nutritional adversity but had no effect in sitters that experienced early nutritional adversity. Manipulation of the larval nutritional environment also affected adult reproductive output of sitters but not rovers, indicating GEIs on fitness itself. The natural for variants are an excellent model to examine how GEIs underlie the biological embedding of early experience. PMID:23045644
Aging Affects Acquisition and Reversal of Reward-Based Associative Learning
ERIC Educational Resources Information Center
Weiler, Julia A.; Bellebaum, Christian; Daum, Irene
2008-01-01
Reward-based associative learning is mediated by a distributed network of brain regions that are dependent on the dopaminergic system. Age-related changes in key regions of this system, the striatum and the prefrontal cortex, may adversely affect the ability to use reward information for the guidance of behavior. The present study investigated the…
Adverse birth factors predict cognitive ability, but not hand preference.
Nicholls, Michael E R; Johnston, David W; Shields, Michael A
2012-09-01
There is a persistent theory that birth stress and subsequent brain pathology play an important role in the manifestation of left-handedness. Evidence for this theory, however, is mixed and studies are often beset with problems related to small sample sizes and unreliable health reports. TO avoid these issues, this study used a sample of approximately 10,000 children from the British Cohort Study. The study contains objective birth-health reports and comprehensive measures of socioeconomic status, handedness, cognitive ability, and behavioral/health issues. Regression analyses showed that variables associated with birth stress affected cognitive/behavioral/health outcomes of the child. Despite this, these same factors did not affect the direction or degree of hand preference. We have therefore demonstrated a dissociation whereby adverse birth factors affect the brain's cognitive ability, but not handedness, and by implication, cerebral lateralization. The study also demonstrated a link between left-handedness and reduced levels of cognitive ability. This link cannot be due a generalized birth-stress mechanism and may be caused by specific mechanisms related to changes in cerebral dominance.
Novel Neuroimaging Methods to Understand How HIV Affects the Brain
Thompson, Paul
2015-01-01
In much of the developed world, the HIV epidemic has largely been controlled by anti-retroviral treatment. Even so, there is growing concern that HIV-infected individuals may be at risk for accelerated brain aging, and a range of cognitive impairments. What promotes or resists these changes is largely unknown. There is also interest in discovering factors that promote resilience to HIV, and combat its adverse effects in children. Here we review recent developments in brain imaging that reveal how the virus affects the brain. We relate these brain changes to changes in blood markers, cognitive function, and other patient outcomes or symptoms, such as apathy or neuropathic pain. We focus on new and emerging techniques, including new variants of brain MRI. Diffusion tensor imaging, for example, can map the brain’s structural connections while fMRI can uncover functional connections. Finally, we suggest how large-scale global research alliances, such as ENIGMA, may resolve controversies over effects where evidence is now lacking. These efforts pool scans from tens of thousands of individuals, and offer a source of power not previously imaginable for brain imaging studies. PMID:25902966
Neonatal intensive care practices harmful to the developing brain.
Chaudhari, Sudha
2011-06-01
There has been a marked increase in the survival of extremely low birth weight (ELBW) infants, but these babies have a long stay in the NICU. Strategies to decrease their neurodevelopmental impairment become very important. The maximum development of the brain occurs between 29-41 weeks. From the warm, dark, acquatic econiche, where the baby hears pleasant sounds like the mother's heart beat, the baby suddenly finds itself in the dry, cold, excessively bright, noisy, environment of the NICU. Noise, bright light, painful procedures, and ill-timed caregiving activities, adversely affect the infant's development. Excessive radiation from X-rays of babies on the ventilator and CT scans also affect the brain. Medications like steroids for chronic lung disease also cause damage to the brain. Aminoglycides and frusemide are known to cause hearing impairment. Hence a developmentally supportive, humanized care will go a long way in enhancing the developmental outcome of these babies.
Childhood adversity impacts on brain subcortical structures relevant to depression.
Frodl, Thomas; Janowitz, Deborah; Schmaal, Lianne; Tozzi, Leonardo; Dobrowolny, Henrik; Stein, Dan J; Veltman, Dick J; Wittfeld, Katharina; van Erp, Theo G M; Jahanshad, Neda; Block, Andrea; Hegenscheid, Katrin; Völzke, Henry; Lagopoulos, Jim; Hatton, Sean N; Hickie, Ian B; Frey, Eva Maria; Carballedo, Angela; Brooks, Samantha J; Vuletic, Daniella; Uhlmann, Anne; Veer, Ilya M; Walter, Henrik; Schnell, Knut; Grotegerd, Dominik; Arolt, Volker; Kugel, Harald; Schramm, Elisabeth; Konrad, Carsten; Zurowski, Bartosz; Baune, Bernhard T; van der Wee, Nic J A; van Tol, Marie-Jose; Penninx, Brenda W J H; Thompson, Paul M; Hibar, Derrek P; Dannlowski, Udo; Grabe, Hans J
2017-03-01
Childhood adversity plays an important role for development of major depressive disorder (MDD). There are differences in subcortical brain structures between patients with MDD and healthy controls, but the specific impact of childhood adversity on such structures in MDD remains unclear. Thus, aim of the present study was to investigate whether childhood adversity is associated with subcortical volumes and how it interacts with a diagnosis of MDD and sex. Within the ENIGMA-MDD network, nine university partner sites, which assessed childhood adversity and magnetic resonance imaging in patients with MDD and controls, took part in the current joint mega-analysis. In this largest effort world-wide to identify subcortical brain structure differences related to childhood adversity, 3036 participants were analyzed for subcortical brain volumes using FreeSurfer. A significant interaction was evident between childhood adversity, MDD diagnosis, sex, and region. Increased exposure to childhood adversity was associated with smaller caudate volumes in females independent of MDD. All subcategories of childhood adversity were negatively associated with caudate volumes in females - in particular emotional neglect and physical neglect (independently from age, ICV, imaging site and MDD diagnosis). There was no interaction effect between childhood adversity and MDD diagnosis on subcortical brain volumes. Childhood adversity is one of the contributors to brain structural abnormalities. It is associated with subcortical brain abnormalities that are relevant to psychiatric disorders such as depression. Copyright © 2016. Published by Elsevier Ltd.
Colon-Perez, Luis M; Tran, Kelvin; Thompson, Khalil; Pace, Michael C; Blum, Kenneth; Goldberger, Bruce A; Gold, Mark S; Bruijnzeel, Adriaan W; Setlow, Barry; Febo, Marcelo
2016-01-01
The abuse of ‘bath salts' has raised concerns because of their adverse effects, which include delirium, violent behavior, and suicide ideation in severe cases. The bath salt constituent 3,4-methylenedioxypyrovalerone (MDPV) has been closely linked to these and other adverse effects. The abnormal behavioral pattern produced by acute high-dose MDPV intake suggests possible disruptions of neural communication between brain regions. Therefore, we determined if MDPV exerts disruptive effects on brain functional connectivity, particularly in areas of the prefrontal cortex. Male rats were imaged following administration of a single dose of MDPV (0.3, 1.0, or 3.0 mg/kg) or saline. Resting state brain blood oxygenation level-dependent (BOLD) images were acquired at 4.7 T. To determine the role of dopamine transmission in MDPV-induced changes in functional connectivity, a group of rats received the dopamine D1/D2 receptor antagonist cis-flupenthixol (0.5 mg/kg) 30 min before MDPV. MDPV dose-dependently reduced functional connectivity. Detailed analysis of its effects revealed that connectivity between frontal cortical and striatal areas was reduced. This included connectivity between the prelimbic prefrontal cortex and other areas of the frontal cortex and the insular cortex with hypothalamic, ventral, and dorsal striatal areas. Although the reduced connectivity appeared widespread, connectivity between these regions and somatosensory cortex was not as severely affected. Dopamine receptor blockade did not prevent the MDPV-induced decrease in functional connectivity. The results provide a novel signature of MDPV's in vivo mechanism of action. Reduced brain functional connectivity has been reported in patients suffering from psychosis and has been linked to cognitive dysfunction, audiovisual hallucinations, and negative affective states akin to those reported for MDPV-induced intoxication. The present results suggest that disruption of functional connectivity networks involving frontal cortical and striatal regions could contribute to the adverse effects of MDPV. PMID:26997298
78 FR 42075 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... effects of adverse child experiences, are fundamental to healthy brain development and have a positive... affecting physical and emotional health throughout the lifespan. NCIPC is funding five state health... funding and 3 staff members at approximately 11 organizations or agencies the health departments choose to...
Pervez, Mubashir; Kitagawa, Ryan S; Chang, Tiffany R
2018-02-01
Traumatic brain injury (TBI) disrupts the normal function of the brain. This condition can adversely affect a person's quality of life with cognitive, behavioral, emotional, and physical symptoms that limit interpersonal, social, and occupational functioning. Although many systems exist, the simplest classification includes mild, moderate, and severe TBI depending on the nature of injury and the impact on the patient's clinical status. Patients with TBI require prompt evaluation and multidisciplinary management. Aside from the type and severity of the TBI, recovery is influenced by individual patient characteristics, social and environmental factors, and access to medical and rehabilitation services. Copyright © 2017 Elsevier Inc. All rights reserved.
Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks.
Chen, Yuncai; Baram, Tallie Z
2016-01-01
Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes 'normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational methodologies. Because early-life adversity is a powerful determinant of subsequent vulnerabilities to emotional and cognitive pathologies, understanding the underlying processes will have profound implications for the world's current and future children.
Association of BDNF Val66Met Polymorphism and Brain BDNF Levels with Major Depression and Suicide.
Youssef, Mariam M; Underwood, Mark D; Huang, Yung-Yu; Hsiung, Shu-Chi; Liu, Yan; Simpson, Norman R; Bakalian, Mihran J; Rosoklija, Gorazd B; Dwork, Andrew J; Arango, Victoria; Mann, J John
2018-06-01
Brain-derived neurotrophic factor is implicated in the pathophysiology of major depressive disorder and suicide. Both are partly caused by early life adversity, which reduces brain-derived neurotrophic factor protein levels. This study examines the association of brain-derived neurotrophic factor Val66Met polymorphism and brain brain-derived neurotrophic factor levels with depression and suicide. We hypothesized that both major depressive disorder and early life adversity would be associated with the Met allele and lower brain brain-derived neurotrophic factor levels. Such an association would be consistent with low brain-derived neurotrophic factor mediating the effect of early life adversity on adulthood suicide and major depressive disorder. Brain-derived neurotrophic factor Val66Met polymorphism was genotyped in postmortem brains of 37 suicide decedents and 53 nonsuicides. Additionally, brain-derived neurotrophic factor protein levels were determined by Western blot in dorsolateral prefrontal cortex (Brodmann area 9), anterior cingulate cortex (Brodmann area 24), caudal brainstem, and rostral brainstem. The relationships between these measures and major depressive disorder, death by suicide, and reported early life adversity were examined. Subjects with the Met allele had an increased risk for depression. Depressed patients also have lower brain-derived neurotrophic factor levels in anterior cingulate cortex and caudal brainstem compared with nondepressed subjects. No effect of history of suicide death or early life adversity was observed with genotype, but lower brain-derived neurotrophic factor levels in the anterior cingulate cortex were found in subjects who had been exposed to early life adversity and/or died by suicide compared with nonsuicide decedents and no reported early life adversity. This study provides further evidence implicating low brain brain-derived neurotrophic factor and the brain-derived neurotrophic factor Met allele in major depression risk. Future studies should seek to determine how altered brain-derived neurotrophic factor expression contributes to depression and suicide.
Hoeijmakers, Lianne; Lucassen, Paul J.; Korosi, Aniko
2015-01-01
Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity. PMID:25620909
Neuroendocrine considerations in the treatment of men and women with epilepsy
Harden, Cynthia L; Pennell, Page B
2016-01-01
Complex, multidirectional interactions between hormones, seizures, and the medications used to control them can present a challenge for clinicians treating patients with epilepsy. Many hormones act as neurosteroids, modulating brain excitability via direct binding sites. Thus, changes in endogenous or exogenous hormone levels can affect the occurrence of seizures directly as well as indirectly through pharmacokinetic effects that alter the concentrations of antiepileptic drugs. The underlying structural and physiological brain abnormalities of epilepsy and the metabolic activity of antiepileptic drugs can adversely affect hypothalamic and gonadal functioning. Knowledge of these complex interactions has increased and can now be incorporated in meaningful treatment approaches for men and women with epilepsy. PMID:23237902
Pharmacological treatment of sleep disorders and its relationship with neuroplasticity.
Abad, Vivien C; Guilleminault, Christian
2015-01-01
Sleep and wakefulness are regulated by complex brain circuits located in the brain stem, thalamus, subthalamus, hypothalamus, basal forebrain, and cerebral cortex. Wakefulness and NREM and REM sleep are modulated by the interactions between neurotransmitters that promote arousal and neurotransmitters that promote sleep. Various lines of evidence suggest that sleep disorders may negatively affect neuronal plasticity and cognitive function. Pharmacological treatments may alleviate these effects but may also have adverse side effects by themselves. This chapter discusses the relationship between sleep disorders, pharmacological treatments, and brain plasticity, including the treatment of insomnia, hypersomnias such as narcolepsy, restless legs syndrome (RLS), obstructive sleep apnea (OSA), and parasomnias.
Astrocytic glycogen metabolism in the healthy and diseased brain.
Bak, Lasse K; Walls, Anne B; Schousboe, Arne; Waagepetersen, Helle S
2018-05-11
The brain contains a fairly low amount of glycogen, mostly located in astrocytes, a fact that has prompted the suggestion that glycogen does not have a significant physiological role in the brain. However, glycogen metabolism in astrocytes is essential for several key physiological processes and is adversely affected in disease. For instance, diminished ability to break down glycogen impinges on learning, and epilepsy, Alzheimer's disease, and type 2 diabetes are all associated with abnormal astrocyte glycogen metabolism. Glycogen metabolism supports astrocytic K + and neurotransmitter glutamate uptake and subsequent glutamine synthesis-three fundamental steps in excitatory signaling at most brain synapses. Thus, there is abundant evidence for a key role of glycogen in brain function. Here, we summarize the physiological brain functions that depend on glycogen, discuss glycogen metabolism in disease, and investigate how glycogen breakdown is regulated at the cellular and molecular levels. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Effects of Age and Age-Related Hearing Loss on the Brain
ERIC Educational Resources Information Center
Tremblay, Kelly; Ross, Bernhard
2007-01-01
It is well documented that aging adversely affects the ability to perceive time-varying acoustic cues. Here we review how physiological measures are being used to explore the effects of aging (and concomitant hearing loss) on the neural representation of temporal cues. Also addressed are the implications of current research findings on the…
Effect of socioeconomic status disparity on child language and neural outcome: how early is early?
Hurt, Hallam; Betancourt, Laura M
2016-01-01
It is not news that poverty adversely affects child outcome. The literature is replete with reports of deleterious effects on developmental outcome, cognitive function, and school performance in children and youth. Causative factors include poor nutrition, exposure to toxins, inadequate parenting, lack of cognitive stimulation, unstable social support, genetics, and toxic environments. Less is known regarding how early in life adverse effects may be detected. This review proposes to elucidate "how early is early" through discussion of seminal articles related to the effect of socioeconomic status on language outcome and a discussion of the emerging literature on effects of socioeconomic status disparity on brain structure in very young children. Given the young ages at which such outcomes are detected, the critical need for early targeted interventions for our youngest is underscored. Further, the fiscal reasonableness of initiating quality interventions supports these initiatives. As early life adversity produces lasting and deleterious effects on developmental outcome and brain structure, increased focus on programs and policies directed to reducing the impact of socioeconomic disparities is essential.
Simpson, Grahame; Jones, Kate
2013-04-01
To investigate the relationship between resilience and affective state, caregiver burden and caregiving strategies among family members of people with traumatic brain or spinal cord injury. An observational prospective cross-sectional study. Inpatient and community rehabilitation services. Convenience sample of 61 family respondents aged 18 years or older at the time of the study and supporting a relative with severe traumatic brain injury (n = 30) or spinal cord injury (n= 31). Resilience Scale, Positive And Negative Affect Schedule, Caregiver Burden Scale, Functional Independence Measure, Carer's Assessment of Managing Index. Correlational analyses found a significant positive association between family resilience scores and positive affect (r(s) = 0.67), and a significant negative association with negative affect (r(s) = -0.47) and caregiver burden scores (r(s) = -0.47). No association was found between family resilience scores and their relative's severity of functional impairment. Family members with high resilience scores rated four carer strategies as significantly more helpful than family members with low resilience scores. Between-groups analyses (families supporting relative with traumatic brain injury vs. spinal cord injury) found no significant differences in ratings of the perceived helpfulness of carer strategies once Bonferroni correction for multiple tests was applied. Self-rated resilience correlated positively with positive affect, and negatively with negative affect and caregiver burden. These results are consistent with resilience theories which propose that people with high resilience are more likely to display positive adaptation when faced by significant adversity.
Neuromodulation for the treatment of eating disorders and obesity
Lee, Darrin J.; Elias, Gavin J.B.; Lozano, Andres M.
2017-01-01
Eating disorders and obesity adversely affect individuals both medically and psychologically, leading to reduced life expectancy and poor quality of life. While there exist a number of treatments for anorexia, morbid obesity and bulimia, many patients do not respond favorably to current behavioral, medical or bariatric surgical management. Neuromodulation has been postulated as a potential treatment for eating disorders and obesity. In particular, deep brain stimulation and transcranial non-invasive brain stimulation have been studied for these indications across a variety of brain targets. Here, we review the neurobiology behind eating and eating disorders as well as the current status of preclinical and clinical neuromodulation trials for eating disorders and obesity. PMID:29399320
Chaotic home environment is associated with reduced infant processing speed under high task demands.
Tomalski, Przemysław; Marczuk, Karolina; Pisula, Ewa; Malinowska, Anna; Kawa, Rafał; Niedźwiecka, Alicja
2017-08-01
Early adversity has profound long-term consequences for child development across domains. The effects of early adversity on structural and functional brain development were shown for infants under 12 months of life. However, the causal mechanisms of these effects remain relatively unexplored. Using a visual habituation task we investigated whether chaotic home environment may affect processing speed in 5.5 month-old infants (n=71). We found detrimental effects of chaos on processing speed for complex but not for simple visual stimuli. No effects of socio-economic status on infant processing speed were found although the sample was predominantly middle class. Our results indicate that chaotic early environment may adversely affect processing speed in early infancy, but only when greater cognitive resources need to be deployed. The study highlights an attractive avenue for research on the mechanisms linking home environment with the development of attention control. Copyright © 2017 Elsevier Inc. All rights reserved.
Branched-chain amino acids and brain function.
Fernstrom, John D
2005-06-01
Branched-chain amino acids (BCAAs) influence brain function by modifying large, neutral amino acid (LNAA) transport at the blood-brain barrier. Transport is shared by several LNAAs, notably the BCAAs and the aromatic amino acids (ArAAs), and is competitive. Consequently, when plasma BCAA concentrations rise, which can occur in response to food ingestion or BCAA administration, or with the onset of certain metabolic diseases (e.g., uncontrolled diabetes), brain BCAA concentrations rise, and ArAA concentrations decline. Such effects occur acutely and chronically. Such reductions in brain ArAA concentrations have functional consequences: biochemically, they reduce the synthesis and the release of neurotransmitters derived from ArAAs, notably serotonin (from tryptophan) and catecholamines (from tyrosine and phenylalanine). The functional effects of such neurochemical changes include altered hormonal function, blood pressure, and affective state. Although the BCAAs thus have biochemical and functional effects in the brain, few attempts have been made to characterize time-course or dose-response relations for such effects. And, no studies have attempted to identify levels of BCAA intake that might produce adverse effects on the brain. The only "model" of very high BCAA exposure is a very rare genetic disorder, maple syrup urine disease, a feature of which is substantial brain dysfunction but that probably cannot serve as a useful model for excessive BCAA intake by normal individuals. Given the known biochemical and functional effects of the BCAAs, it should be a straightforward exercise to design studies to assess dose-response relations for biochemical and functional effects and, in this context, to explore for adverse effect thresholds.
Traumatic Brain Injury: At the Crossroads of Neuropathology and Common Metabolic Endocrinopathies
Li, Melanie
2018-01-01
Building on the seminal work by Geoffrey Harris in the 1970s, the neuroendocrinology field, having undergone spectacular growth, has endeavored to understand the mechanisms of hormonal connectivity between the brain and the rest of the body. Given the fundamental role of the brain in the orchestration of endocrine processes through interactions among neurohormones, it is thus not surprising that the structural and/or functional alterations following traumatic brain injury (TBI) can lead to endocrine changes affecting the whole organism. Taking into account that systemic hormones also act on the brain, modifying its structure and biochemistry, and can acutely and chronically affect several neurophysiological endpoints, the question is to what extent preexisting endocrine dysfunction may set the stage for an adverse outcome after TBI. In this review, we provide an overview of some aspects of three common metabolic endocrinopathies, e.g., diabetes mellitus, obesity, and thyroid dysfunction, and how these could be triggered by TBI. In addition, we discuss how the complex endocrine networks are woven into the responses to sudden changes after TBI, as well as some of the potential mechanisms that, separately or synergistically, can influence outcomes after TBI. PMID:29538298
The Sun Health Research Institute Brain Donation Program: Description and Eexperience, 1987–2007
Sue, Lucia I.; Walker, Douglas G.; Roher, Alex E.; Lue, LihFen; Vedders, Linda; Connor, Donald J.; Sabbagh, Marwan N.; Rogers, Joseph
2008-01-01
The Brain Donation Program at Sun Health Research Institute has been in continual operation since 1987, with over 1000 brains banked. The population studied primarily resides in the retirement communities of northwest metropolitan Phoenix, Arizona. The Institute is affiliated with Sun Health, a nonprofit community-owned and operated health care provider. Subjects are enrolled prospectively to allow standardized clinical assessments during life. Funding comes primarily from competitive grants. The Program has made short postmortem brain retrieval a priority, with a 2.75-h median postmortem interval for the entire collection. This maximizes the utility of the resource for molecular studies; frozen tissue from approximately 82% of all cases is suitable for RNA studies. Studies performed in-house have shown that, even with very short postmortem intervals, increasing delays in brain retrieval adversely affect RNA integrity and that cerebrospinal fluid pH increases with postmortem interval but does not predict tissue viability. PMID:18347928
Systematic review of pediatric health outcomes associated with childhood adversity.
Oh, Debora Lee; Jerman, Petra; Silvério Marques, Sara; Koita, Kadiatou; Purewal Boparai, Sukhdip Kaur; Burke Harris, Nadine; Bucci, Monica
2018-02-23
Early detection of and intervention in childhood adversity has powerful potential to improve the health and well-being of children. A systematic review was conducted to better understand the pediatric health outcomes associated with childhood adversity. PubMed, PsycArticles, and CINAHL were searched for relevant articles. Longitudinal studies examining various adverse childhood experiences and biological health outcomes occurring prior to age 20 were selected. Mental and behavioral health outcomes were excluded, as were physical health outcomes that were a direct result of adversity (i.e. abusive head trauma). Data were extracted and risk of bias was assessed by 2 independent reviewers. After identifying 15940 records, 35 studies were included in this review. Selected studies indicated that exposure to childhood adversity was associated with delays in cognitive development, asthma, infection, somatic complaints, and sleep disruption. Studies on household dysfunction reported an effect on weight during early childhood, and studies on maltreatment reported an effect on weight during adolescence. Maternal mental health issues were associated with elevated cortisol levels, and maltreatment was associated with blunted cortisol levels in childhood. Furthermore, exposure to childhood adversity was associated with alterations of immune and inflammatory response and stress-related accelerated telomere erosion. Childhood adversity affects brain development and multiple body systems, and the physiologic manifestations can be detectable in childhood. A history of childhood adversity should be considered in the differential diagnosis of developmental delay, asthma, recurrent infections requiring hospitalization, somatic complaints, and sleep disruption. The variability in children's response to adversity suggests complex underlying mechanisms and poses a challenge in the development of uniform diagnostic guidelines. More large longitudinal studies are needed to better understand how adversity, its timing and severity, and the presence of individual genetic, epigenetic, and protective factors affects children's health and development.
Gibson, William S.; Jo, Hang Joon; Testini, Paola; Cho, Shinho; Felmlee, Joel P.; Welker, Kirk M.; Klassen, Bryan T.; Min, Hoon-Ki
2016-01-01
Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identified in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain stimulation. PMID:27329768
Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy.
Klinger, Neil V; Mittal, Sandeep
2016-01-01
Epilepsy affects 50 million people worldwide and about 30% of these patients will not be adequately controlled with antiepileptic drugs (AEDs) alone. For patients where resective surgery is not indicated, deep brain stimulation (DBS) may be an effective alternative. The majority of available literature targets the thalamic nuclei (anterior; centromedian), subthalamic nucleus, hippocampus, and cerebellum. Here, we review patient outcomes and adverse events related to DBS to these various targets. Data show DBS may be a safe and effective treatment option for refractory epilepsy. Copyright © 2015. Published by Elsevier B.V.
Social Origins of Developmental Risk for Mental and Physical Illness.
Cameron, Judy L; Eagleson, Kathie L; Fox, Nathan A; Hensch, Takao K; Levitt, Pat
2017-11-08
Adversity in early childhood exerts an enduring impact on mental and physical health, academic achievement, lifetime productivity, and the probability of interfacing with the criminal justice system. More science is needed to understand how the brain is affected by early life stress (ELS), which produces excessive activation of stress response systems broadly throughout the child's body (toxic stress). Our research examines the importance of sex, timing and type of stress exposure, and critical periods for intervention in various brain systems across species. Neglect (the absence of sensitive and responsive caregiving) or disrupted interaction with offspring induces robust, lasting consequences in mice, monkeys, and humans. Complementary assessment of internalizing disorders and brain imaging in children suggests that early adversity can interfere with white matter development in key brain regions, which may increase risk for emotional difficulties in the long term. Neural circuits that are most plastic during ELS exposure in monkeys sustain the greatest change in gene expression, offering a mechanism whereby stress timing might lead to markedly different long-term behaviors. Rodent models reveal that disrupted maternal-infant interactions yield metabolic and behavioral outcomes often differing by sex. Moreover, ELS may further accelerate or delay critical periods of development, which reflect GABA circuit maturation, BDNF, and circadian Clock genes. Such factors are associated with several mental disorders and may contribute to a premature closure of plastic windows for intervention following ELS. Together, complementary cross-species studies are elucidating principles of adaptation to adversity in early childhood with molecular, cellular, and whole organism resolution. Copyright © 2017 the authors 0270-6474/17/3710783-09$15.00/0.
NASA Astrophysics Data System (ADS)
Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.
2017-03-01
Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.
The hidden side of drug action: Brain temperature changes induced by neuroactive drugs
Kiyatkin, Eugene A.
2013-01-01
Rationale Most neuroactive drugs affect brain metabolism as well as systemic and cerebral blood flow, thus altering brain temperature. Although this aspect of drug action usually remains in the shadows, drug-induced alterations in brain temperature reflect their metabolic neural effects and affect neural activity and neural functions. Objectives Here, I review brain temperature changes induced by neuroactive drugs, which are used therapeutically (general anesthetics), as a research tool (dopamine agonists and antagonists), and self-administered to induce desired psychic effects (cocaine, methamphetamine, ecstasy). I consider the mechanisms underlying these temperature fluctuations and their influence on neural, physiological, and behavioral effects of these drugs. Results By interacting with neural mechanisms regulating metabolic activity and heat exchange between the brain and the rest of the body, neuroactive drugs either increase or decrease brain temperatures both within (35-39°C) and exceeding the range of physiological fluctuations. These temperature effects differ drastically depending upon the environmental conditions and activity state during drug administration. This state-dependence is especially important for drugs of abuse that are usually taken by humans during psycho-physiological activation and in environments that prevent proper heat dissipation from the brain. Under these conditions, amphetamine-like stimulants induce pathological brain hyperthermia (>40°C) associated with leakage of the blood-brain barrier and structural abnormalities of brain cells. Conclusions The knowledge on brain temperature fluctuations induced by neuroactive drugs provides new information to understand how they influence metabolic neural activity, why their effects depend upon the behavioral context of administration, and the mechanisms underlying adverse drug effects including neurotoxicity PMID:23274506
Distribution of Non-Persistent Endocrine Disruptors in Two Different Regions of the Human Brain
van der Meer, Thomas P.; Artacho-Cordón, Francisco; Swaab, Dick F.; Struik, Dicky; Makris, Konstantinos C.; Wolffenbuttel, Bruce H. R.; Frederiksen, Hanne; van Vliet-Ostaptchouk, Jana V.
2017-01-01
Non-persistent endocrine disrupting chemicals (npEDCs) can affect multiple organs and systems in the body. Whether npEDCs can accumulate in the human brain is largely unknown. The major aim of this pilot study was to examine the presence of environmental phenols and parabens in two distinct brain regions: the hypothalamus and white-matter tissue. In addition, a potential association between these npEDCs concentrations and obesity was investigated. Post-mortem brain material was obtained from 24 individuals, made up of 12 obese and 12 normal-weight subjects (defined as body mass index (BMI) > 30 and BMI < 25 kg/m2, respectively). Nine phenols and seven parabens were measured by isotope dilution TurboFlow-LC-MS/MS. In the hypothalamus, seven suspect npEDCs (bisphenol A, triclosan, triclocarban and methyl-, ethyl-, n-propyl-, and benzyl paraben) were detected, while five npEDCs (bisphenol A, benzophenone-3, triclocarban, methyl-, and n-propyl paraben) were found in the white-matter brain tissue. We observed higher levels of methylparaben (MeP) in the hypothalamic tissue of obese subjects as compared to controls (p = 0.008). Our findings indicate that some suspected npEDCs are able to cross the blood–brain barrier. Whether the presence of npEDCs can adversely affect brain function and to which extent the detected concentrations are physiologically relevant needs to be further investigated. PMID:28902174
[Toxoplasmosis and cancer: Current knowledge and research perspectives].
Vittecoq, M; Thomas, F
2017-02-01
Toxoplasmosis, caused by Toxoplasma gondii, is one of the most prevalent parasitic diseases; it is estimated to affect a third of the world's human population. Many studies showed that latent toxoplasmosis may cause in some patients significant adverse effects including schizophrenia and bipolar disorders. In addition, two recent studies highlighted a positive correlation between the prevalence of brain tumors and that of T. gondii at national and international scale. These studies are correlative, thus they do not demonstrate a causal link between T. gondii and brain tumors. Yet, they call for further research that could shed light on the possible mechanisms underlying this association.
Stressful Life Events, ADHD Symptoms, and Brain Structure in Early Adolescence.
Humphreys, Kathryn L; Watts, Emily L; Dennis, Emily L; King, Lucy S; Thompson, Paul M; Gotlib, Ian H
2018-05-21
Despite a growing understanding that early adversity in childhood broadly affects risk for psychopathology, the contribution of stressful life events to the development of symptoms of attention-deficit/hyperactivity disorder (ADHD) is not clear. In the present study, we examined the association between number of stressful life events experienced and ADHD symptoms, assessed using the Attention Problems subscale of the Child Behavior Checklist, in a sample of 214 children (43% male) ages 9.11-13.98 years (M = 11.38, SD = 1.05). In addition, we examined whether the timing of the events (i.e., onset through age 5 years or after age 6 years) was associated with ADHD symptoms. Finally, we examined variation in brain structure to determine whether stressful life events were associated with volume in brain regions that were found to vary as a function of symptoms of ADHD. We found a small to moderate association between number of stressful life events and ADHD symptoms. Although the strength of the associations between number of events and ADHD symptoms did not differ as a function of the age of occurrence of stressful experiences, different brain regions were implicated in the association between stressors and ADHD symptoms in the two age periods during which stressful life events occurred. These findings support the hypothesis that early adversity is associated with ADHD symptoms, and provide insight into possible brain-based mediators of this association.
Harrison, Jordan L; Rowe, Rachel K; O'Hara, Bruce F; Adelson, P David; Lifshitz, Jonathan
2014-09-01
Following mild traumatic brain injury (TBI), patients may self-treat symptoms of concussion, including post-traumatic headache, taking over-the-counter (OTC) analgesics. Administering one dose of OTC analgesics immediately following experimental brain injury mimics the at-home treated population of concussed patients and may accelerate the understanding of the relationship between brain injury and OTC pharmacological intervention. In the current study, we investigate the effect of acute administration of OTC analgesics on neurological function and cortical cytokine levels after experimental diffuse TBI in the mouse. Adult, male C57BL/6 mice were injured using a midline fluid percussion (mFPI) injury model of concussion (6-10 min righting reflex time for brain-injured mice). Experimental groups included mFPI paired with either ibuprofen (60 mg/kg, i.p.; n = 16), acetaminophen (40 mg/kg, i.p.; n = 9), or vehicle (15% ethanol (v/v) in 0.9% saline; n = 13) and sham injury paired OTC medicine or vehicle (n = 7-10 per group). At 24 h after injury, functional outcome was assessed using the rotarod task and a modified neurological severity score. Following behavior assessment, cortical cytokine levels were measured by multiplex ELISA at 24 h post-injury. To evaluate efficacy on acute inflammation, cortical cytokine levels were measured also at 6 h post-injury. In the diffuse brain-injured mouse, immediate pharmacological intervention did not attenuate or exacerbate TBI-induced functional deficits. Cortical cytokine levels were affected by injury, time, or their interaction. However, levels were not affected by treatment at 6 or 24 h post-injury. These data indicate that acute administration of OTC analgesics did not exacerbate or attenuate brain-injury deficits which may inform clinical recommendations for the at-home treated mildly concussed patient.
Brooks, Samantha J; Dalvie, Shareefa; Cuzen, Natalie L; Cardenas, Valerie; Fein, George; Stein, Dan J
2014-06-01
Previous neuroimaging studies link both alcohol use disorder (AUD) and early adversity to neurobiological differences in the adult brain. However, the association between AUD and childhood adversity and effects on the developing adolescent brain are less clear, due in part to the confound of psychiatric comorbidity. Here we examine early life adversity and its association with brain volume in a unique sample of 116 South African adolescents (aged 12-16) with AUD but without psychiatric comorbidity. Participants were 58 adolescents with DSM-IV alcohol dependence and with no other psychiatric comorbidities, and 58 age-, gender- and protocol-matched light/non-drinking controls (HC). Assessments included the Childhood Trauma Questionnaire (CTQ). MR images were acquired on a 3T Siemens Magnetom Allegra scanner. Volumes of global and regional structures were estimated using SPM8 Voxel Based Morphometry (VBM), with analysis of covariance (ANCOVA) and regression analyses. In whole brain ANCOVA analyses, a main effect of group when examining the AUD effect after covarying out CTQ was observed on brain volume in bilateral superior temporal gyrus. Subsequent regression analyses to examine how childhood trauma scores are linked to brain volumes in the total cohort revealed a negative correlation in the left hippocampus and right precentral gyrus. Furthermore, bilateral (but most significantly left) hippocampal volume was negatively associated with sub-scores on the CTQ in the total cohort. These findings support our view that some alterations found in brain volumes in studies of adolescent AUD may reflect the impact of confounding factors such as psychiatric comorbidity rather than the effects of alcohol per se. In particular, early life adversity may influence the developing adolescent brain in specific brain regions, such as the hippocampus.
The Role of Ammonia in the Metabolic Effects of Hydrazine.
various experiments, various doses of hydrazine were given. The dogs given high doses developed hyperammonemia, respiratory alkalosis , coma and...The acute effects of administration of hydrazine on plasma ammonia, blood urea nitrogen, pH, pCO2, and respiratory rate were studied in dogs. In...convulsions. Relatively little change in blood urea nitrogen was found. Since brain function is adversely affected by hyperammonemia and alkalosis , it is
Prini, Pamela; Penna, Federica; Sciuccati, Emanuele; Alberio, Tiziana; Rubino, Tiziana
2017-10-04
Adolescence represents a vulnerable period for the psychiatric consequences of delta9-tetrahydrocannabinol (Δ⁸-THC) exposure, however, the molecular underpinnings of this vulnerability remain to be established. Histone modifications are emerging as important epigenetic mechanisms involved in the etiopathogenesis of psychiatric diseases, thus, we investigated the impact of chronic Δ⁸-THC exposure on histone modifications in different brain areas of female rats. We checked histone modifications associated to both transcriptional repression (H3K9 di- and tri-methylation, H3K27 tri-methylation) and activation (H3K9 and H3K14 acetylation) after adolescent and adult chronic Δ⁸-THC exposure in the hippocampus, nucleus accumbens, and amygdala. Chronic exposure to increasing doses of Δ⁸-THC for 11 days affected histone modifications in a region- and age-specific manner. The primary effect in the adolescent brain was represented by changes leading to transcriptional repression, whereas the one observed after adult treatment led to transcriptional activation. Moreover, only in the adolescent brain, the primary effect was followed by a homeostatic response to counterbalance the Δ⁸-THC-induced repressive effect, except in the amygdala. The presence of a more complex response in the adolescent brain may be part of the mechanisms that make the adolescent brain vulnerable to Δ⁸-THC adverse effects.
Mahmoudian, Alireza; Rajaei, Ziba; Haghir, Hossein; Banihashemian, Shahaboldin; Hami, Javad
2012-04-01
The aim of the present study was to determine the effects of valerian (Valeriana officinalis) consumption in pregnancy on cortical volume and the levels of zinc and copper, two essential elements that affect brain development and function, in the brain tissues of mouse fetuses. Pregnant female mice were treated with either saline or 1.2 g/kg body weight valerian extract intraperitoneally daily on gestation days (GD) 7 to 17. On GD 20, mice were sacrificed and their fetuses were collected. Fetal brains were dissected, weighed and processed for histological analysis. The volume of cerebral cortex was estimated by the Cavalieri principle. The levels of zinc and copper in the brain tissues were measured by atomic absorption spectroscopy. The results indicated that valerian consumption in pregnancy had no significant effect on brain weight, cerebral cortex volume and copper level in fetal brain. However,it significantly decreased the level of zinc in the brain (P<0.05). Using valerian during midgestation do not have an adverse effect on cerebral cortex; however,it caused a significant decrease in zinc level in the fetal brain. This suggests that valerian use should be limited during pregnancy.
Grape seed and skin extract prevents high-fat diet-induced brain lipotoxicity in rat.
Charradi, Kamel; Elkahoui, Salem; Karkouch, Ines; Limam, Ferid; Hassine, Fethy Ben; Aouani, Ezzedine
2012-09-01
Obesity is related to an elevated risk of dementia and the physiologic mechanisms whereby fat adversely affects the brain are poorly understood. The present investigation analyzed the effect of a high fat diet (HFD) on brain steatosis and oxidative stress and the intracellular mediators involved in signal transduction, as well as the protection offered by grape seed and skin extract (GSSE). HFD induced ectopic deposition of cholesterol and phospholipid but not triglyceride. Moreover brain lipotoxicity is linked to an oxidative stress characterized by increased lipoperoxidation and carbonylation, inhibition of glutathione peroxidase and superoxide dismutase activities, depletion of manganese and a concomitant increase in ionizable calcium and acetylcholinesterase activity. Importantly GSSE alleviated all the deleterious effects of HFD treatment. Altogether our data indicated that HFD could find some potential application in the treatment of manganism and that GSSE should be used as a safe anti-lipotoxic agent in the prevention and treatment of fat-induced brain injury.
Wardill, Hannah R; Mander, Kimberley A; Van Sebille, Ysabella Z A; Gibson, Rachel J; Logan, Richard M; Bowen, Joanne M; Sonis, Stephen T
2016-12-15
Neurotoxicity is a common side effect of chemotherapy treatment, with unclear molecular mechanisms. Clinical studies suggest that the most frequent neurotoxic adverse events affect memory and learning, attention, concentration, processing speeds and executive function. Emerging preclinical research points toward direct cellular toxicity and induction of neuroinflammation as key drivers of neurotoxicity and subsequent cognitive impairment. Emerging data now show detectable levels of some chemotherapeutic agents within the CNS, indicating potential disruption of blood brain barrier integrity or transport mechanisms. Blood brain barrier disruption is a key aspect of many neurocognitive disorders, particularly those characterized by a proinflammatory state. Importantly, many proinflammatory mediators able to modulate the blood brain barrier are generated by tissues and organs that are targets for chemotherapy-associated toxicities. This review therefore aims to explore the hypothesis that peripherally derived inflammatory cytokines disrupt blood brain barrier permeability, thereby increasing direct access of chemotherapeutic agents into the CNS to facilitate neuroinflammation and central neurotoxicity. © 2016 UICC.
Alvarez, G
1982-01-01
An intellectual deficit is known to exist in populations where extreme poverty is rife and is thus seen extensively in the lower socio-economic strata of underdeveloped nations. Poverty is a complex entity whose sociological and economic indicators often bear little relevance to the biological agents which can affect the central nervous system. An attempt is made to express poverty in terms of identifiable defects, physiological in nature. Thus adverse socio-economic factors are converted into specific biological entities which, though necessary for adequate development of the brain, are restricted where there is poverty. A number of causative deficiencies, including nutritional, visual, auditory, tactile, vestibular, affective, and other stimuli are postulated. These interact and potentiate one another. Each is capable of an independent action on the brain and examples are given of some sensory deprivations as well as malnutrition and their possible mechanism of action. If the various deficiencies can independently harm the brain, then a number of separate specific functions should be affected; examples are offered. The nature of this intellectual deficit is probably a non-fulfillment of genetic potential of certain specific functions of the brain, which may exhibit limited variations between one community and another, depending on cultural differences. The deleterious effect of this intellectual impairment is seen most clearly in figures of school desertion, for example in Latin America. Analogous data for adults is scarce.
Ventral striatum and amygdala activity as convergence sites for early adversity and conduct disorder
Boecker-Schlier, Regina; Buchmann, Arlette F.; Blomeyer, Dorothea; Jennen-Steinmetz, Christine; Baumeister, Sarah; Plichta, Michael M.; Cattrell, Anna; Schumann, Gunter; Esser, Günter; Schmidt, Martin; Buitelaar, Jan; Meyer-Lindenberg, Andreas; Banaschewski, Tobias; Brandeis, Daniel; Laucht, Manfred
2017-01-01
Abstract Childhood family adversity (CFA) increases the risk for conduct disorder (CD) and has been associated with alterations in regions of affective processing like ventral striatum (VS) and amygdala. However, no study so far has demonstrated neural converging effects of CFA and CD in the same sample. At age 25 years, functional MRI data during two affective tasks, i.e. a reward (N = 171) and a face-matching paradigm (N = 181) and anatomical scans (N = 181) were acquired in right-handed currently healthy participants of an epidemiological study followed since birth. CFA during childhood was determined using a standardized parent interview. Disruptive behaviors and CD diagnoses during childhood and adolescence were obtained by diagnostic interview (2–19 years), temperamental reward dependence was assessed by questionnaire (15 and 19 years). CFA predicted increased CD and amygdala volume. Both exposure to CFA and CD were associated with a decreased VS response during reward anticipation and blunted amygdala activity during face-matching. CD mediated the effect of CFA on brain activity. Temperamental reward dependence was negatively correlated with CFA and CD and positively with VS activity. These findings underline the detrimental effects of CFA on the offspring's affective processing and support the importance of early postnatal intervention programs aiming to reduce childhood adversity factors. PMID:27694318
Lovallo, William R.
2012-01-01
Altered reactivity to stress, either in the direction of exaggerated reactivity or diminished reactivity, may signal a dysregulation of systems intended to maintain homeostasis and a state of good health. Evidence has accumulated that diminished reactivity to psychosocial stress may signal poor health outcomes. One source of diminished cortisol and autonomic reactivity is the experience of adverse rearing during childhood and adolescence. The Oklahoma Family Health Patterns Project has examined a cohort of 426 healthy young adults with and without a family history of alcoholism. Regardless of family history, persons who had experienced high degrees of adversity prior to age 16 had a constellation of changes including reduced cortisol and heart rate reactivity, diminished cognitive capacity, and unstable regulation of affect, leading to behavioral impulsivity and antisocial tendencies. We present a model whereby this constellation of physiological, cognitive, and affective tendencies is consistent with altered central dopaminergic activity leading to changes in brain function that may foster impulsive and risky behaviors. These in turn may promote greater use of alcohol other drugs along with adopting poor health behaviors. This model provides a pathway from early life adversity to low stress reactivity that forms a basis for risky behaviors and poor health outcomes. PMID:23085387
Long Term Consequences: Effects on Normal Development Profile after Concussion
Daneshvar, Daniel H.; Riley, David O.; Nowinski, Christopher J.; McKee, Ann C.; Stern, Robert A.; Cantu, Robert C.
2011-01-01
Each year in the United States, approximately 1.7 million people are diagnosed with a traumatic brain injury (TBI); an estimated 75% of these injuries are classified as mild TBIs (mTBI) or concussions. The symptoms of such injuries include a variety of somatic, cognitive, and behavioral deficits. While these symptoms typically resolve in a matter of weeks, both children and adults may suffer from Post-Concussion Syndrome (PCS) for months or longer. Suffering from PCS-related symptoms for an extended time may delay an individual’s return to work, adversely affect one’s quality of life, and result in additional social and economic costs. Though a consensus has not been reached on the cause of long-term PCS, it is likely that biological, physiological, psychological, and social elements all play a role in symptom persistence. Additionally, persistent PCS may adversely affect one’s developmental trajectory. The enduring effects of head trauma are not limited to PCS-related effects, however. A progressive tauopathy, chronic traumatic encephalopathy (CTE) is believed to stem from repeated brain trauma. While CTE was originally associated with boxing, it has recently been found in other cases of repetitive head injury including former football and hockey players, and professional wrestlers. In addition to this observed pathology, repetitive brain trauma is also associated with Alzheimer’s-like dementia, Parkinsonism, and motor neuron disease including Amyotrophic Lateral Sclerosis (ALS). With these significant long-term effects of head injuries, there is a clear need to develop effective diagnoses, treatments, and education plans to reduce future burden and incidence. PMID:22050943
Day, Kimberly L; Van Lieshout, Ryan J; Vaillancourt, Tracy; Saigal, Saroj; Boyle, Michael H; Schmidt, Louis A
2017-09-01
Exposure to early adversity is known to have deleterious effects on brain-behaviour relations across the lifespan and across a range of domains. Here, we tested a cumulative risk hypothesis of adult social functioning and health outcomes in the fourth decade of life, using the oldest known longitudinally followed cohort of survivors of extremely low birthweight (ELBW; <1,000 g). We investigated the additional impact of peer victimization in youth on social outcomes at age 29-36 years in ELBW survivors and matched normal birthweight (NBW; >2,500 g) participants. In the combined sample, peer victimization was associated with lower likelihood of having children and household income, poorer family functioning and self-esteem, more loneliness and chronic health conditions, less social support, and increased likelihood for contact with police. Moderation analyses indicated that among ELBW survivors, compared to their NBW counterparts, victimization was more strongly associated with being convicted of a crime and with having chronic health conditions. These findings highlight the negative long-term impact of peer victimization on all children and that some outcomes may be differentially affected by prenatal and early post-natal environments. Statement of contribution What is already known on this subject Exposure to early adversity has deleterious effects on brain-behaviour relations across the lifespan. Extremely premature children have higher rates of exposure to adversities, including peer victimization. Peer victimization is associated with adverse outcomes in adulthood in those born at term. What does this study add? Victimization negatively impacts the social outcomes of those born extremely premature and at term into adulthood. Associations appear to be affected by individual differences in prenatal and early post-natal environments. Intervention is crucial when peer victimization occurs in children at risk, as well as those typically developing. © 2016 The British Psychological Society.
Bertolaccini, Maria Laura; Contento, Gregorio; Lennen, Ross; Sanna, Giovanni; Blower, Philip J; Ma, Michelle T; Sunassee, Kavitha; Girardi, Guillermina
2016-12-01
Placental ischemic disease and adverse pregnancy outcomes are frequently observed in patients with antiphospholipid syndrome (APS). Despite the administration of conventional antithrombotic treatment a significant number of women continue to experience adverse pregnancy outcomes, with uncertain prevention and management. Efforts to develop effective pharmacological strategies for refractory obstetric APS cases will be of significant clinical benefit for both mothers and fetuses. Although the antimalarial drug, hydroxychloroquine (HCQ) is increasingly used to treat pregnant women with APS, little is known about its efficacy and mechanism of action of HCQ. Because complement activation plays a crucial and causative role in placental ischemia and abnormal fetal brain development in APS we hypothesised that HCQ prevents these pregnancy complications through inhibition of complement activation. Using a mouse model of obstetric APS that closely resembles the clinical condition, we found that HCQ prevented fetal death and the placental metabolic changes -measured by proton magnetic resonance spectroscopy in APS-mice. Using 111 In labelled antiphospholipid antibodies (aPL) we identified the placenta and the fetal brain as the main organ targets in APS-mice. Using this same method, we found that HCQ does not inhibit aPL binding to tissues as was previously suggested from in vitro studies. While HCQ did not affect aPL binding to fetal brain it prevented fetal brain abnormal cortical development. HCQ prevented complement activation in vivo and in vitro. Complement C5a levels in serum samples from APS patients and APS-mice were lower after treatment with HCQ while the antibodies titres remained unchanged. HCQ prevented not only placental insufficiency but also abnormal fetal brain development in APS. By inhibiting complement activation, HCQ might also be an effective antithrombotic therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fujiwara, Yuki; Miyazaki, Wataru; Koibuchi, Noriyuki; Katoh, Takahiko
2018-01-01
Environmental chemicals are known to disrupt the endocrine system in humans and to have adverse effects on several organs including the developing brain. Recent studies indicate that exposure to environmental chemicals during gestation can interfere with neuronal differentiation, subsequently affecting normal brain development in newborns. Xenoestrogen, bisphenol A (BPA), which is widely used in plastic products, is one such chemical. Adverse effects of exposure to BPA during pre- and postnatal periods include the disruption of brain function. However, the effect of BPA on neural differentiation remains unclear. In this study, we explored the effects of BPA or bisphenol F (BPF), an alternative compound for BPA, on neural differentiation using ReNcell, a human fetus-derived neural progenitor cell line. Maintenance in growth factor-free medium initiated the differentiation of ReNcell to neuronal cells including neurons, astrocytes, and oligodendrocytes. We exposed the cells to BPA or BPF for 3 days from the period of initiation and performed real-time PCR for neural markers such as β III-tubulin and glial fibrillary acidic protein (GFAP), and Olig2. The β III-tubulin mRNA level decreased in response to BPA, but not BPF, exposure. We also observed that the number of β III-tubulin-positive cells in the BPA-exposed group was less than that of the control group. On the other hand, there were no changes in the MAP2 mRNA level. These results indicate that BPA disrupts neural differentiation in human-derived neural progenitor cells, potentially disrupting brain development.
Kalm, Marie; Andreasson, Ulf; Björk-Eriksson, Thomas; Zetterberg, Henrik; Pekny, Milos; Blennow, Kaj; Pekna, Marcela; Blomgren, Klas
2016-04-12
Radiotherapy in the treatment of pediatric brain tumors is often associated with debilitating late-appearing adverse effects, such as intellectual impairment. Areas in the brain harboring stem cells are particularly sensitive to irradiation (IR) and loss of these cells may contribute to cognitive deficits. It has been demonstrated that IR-induced inflammation negatively affects neural progenitor differentiation. In this study, we used mice lacking the third complement component (C3-/-) to investigate the role of complement in a mouse model of IR-induced injury to the granule cell layer (GCL) of the hippocampus. C3-/- and wild type (WT) mice received a single, moderate dose of 8 Gy to the brain on postnatal day 10. The C3-/- mice displayed 55 % more microglia (Iba-1+) and a trend towards increase in proliferating cells in the GCL compared to WT mice 7 days after IR. Importantly, months after IR C3-/- mice made fewer errors than WT mice in a reversal learning test indicating better learning capacity in C3-/- mice after IR. Notably, months after IR C3-/- and WT mice had similar GCL volumes, survival of newborn cells (BrdU), microglia (Iba-1) and astrocyte (S100β) numbers in the GCL. In summary, our data show that the complement system contributes to IR-induced loss of proliferating cells and maladaptive inflammatory responses in the acute phase after IR, leading to impaired learning capacity in adulthood. Targeting the complement system is hence promising for future strategies to reduce the long-term adverse consequences of IR in the young brain.
Mayerhofer, Raphaela; Fröhlich, Esther E; Reichmann, Florian; Farzi, Aitak; Kogelnik, Nora; Fröhlich, Eleonore; Sattler, Wolfgang; Holzer, Peter
2017-02-01
Microbial metabolites are known to affect immune system, brain, and behavior via activation of pattern recognition receptors such as Toll-like receptor 4 (TLR4). Unlike the effect of the TLR4 agonist lipopolysaccharide (LPS), the role of other TLR agonists in immune-brain communication is insufficiently understood. We therefore hypothesized that the TLR2 agonist lipoteichoic acid (LTA) causes immune activation in the periphery and brain, stimulates the hypothalamic-pituitary-adrenal (HPA) axis and has an adverse effect on blood-brain barrier (BBB) and emotional behavior. Since LTA preparations may be contaminated by LPS, an extract of LTA (LTA extract ), purified LTA (LTA pure ), and pure LPS (LPS ultrapure ) were compared with each other in their effects on molecular and behavioral parameters 3h after intraperitoneal (i.p.) injection to male C57BL/6N mice. The LTA extract (20mg/kg) induced anxiety-related behavior in the open field test, enhanced the circulating levels of particular cytokines and the cerebral expression of cytokine mRNA, and blunted the cerebral expression of tight junction protein mRNA. A dose of LPS ultrapure matching the amount of endotoxin/LPS contaminating the LTA extract reproduced several of the molecular and behavioral effects of LTA extract . LTA pure (20mg/kg) increased plasma levels of tumor necrosis factor-α (TNF-α), interleukin-6 and interferon-γ, and enhanced the transcription of TNF-α, interleukin-1β and other cytokines in the amygdala and prefrontal cortex. These neuroinflammatory effects of LTA pure were associated with transcriptional down-regulation of tight junction-associated proteins (claudin 5, occludin) in the brain. LTA pure also enhanced circulating corticosterone, but failed to alter locomotor and anxiety-related behavior in the open field test. These data disclose that TLR2 agonism by LTA causes peripheral immune activation and initiates neuroinflammatory processes in the brain that are associated with down-regulation of BBB components and activation of the HPA axis, although emotional behavior (anxiety) is not affected. The results obtained with an LTA preparation contaminated with LPS hint at a facilitatory interaction between TLR2 and TLR4, the adverse impact of which on long-term neuroinflammation, disruption of the BBB and mental health warrants further analysis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Creativity, brain, and art: biological and neurological considerations.
Zaidel, Dahlia W
2014-01-01
Creativity is commonly thought of as a positive advance for society that transcends the status quo knowledge. Humans display an inordinate capacity for it in a broad range of activities, with art being only one. Most work on creativity's neural substrates measures general creativity, and that is done with laboratory tasks, whereas specific creativity in art is gleaned from acquired brain damage, largely in observing established visual artists, and some in visual de novo artists (became artists after the damage). The verb "to create" has been erroneously equated with creativity; creativity, in the classic sense, does not appear to be enhanced following brain damage, regardless of etiology. The turning to communication through art in lieu of language deficits reflects a biological survival strategy. Creativity in art, and in other domains, is most likely dependent on intact and healthy knowledge and semantic conceptual systems, which are represented in several pathways in the cortex. It is adversely affected when these systems are dysfunctional, for congenital reasons (savant autism) or because of acquired brain damage (stroke, dementia, Parkinson's), whereas inherent artistic talent and skill appear less affected. Clues to the neural substrates of general creativity and specific art creativity can be gleaned from considering that art is produced spontaneously mainly by humans, that there are unique neuroanatomical and neurofunctional organizations in the human brain, and that there are biological antecedents of innovation in animals.
Creativity, brain, and art: biological and neurological considerations
Zaidel, Dahlia W.
2014-01-01
Creativity is commonly thought of as a positive advance for society that transcends the status quo knowledge. Humans display an inordinate capacity for it in a broad range of activities, with art being only one. Most work on creativity’s neural substrates measures general creativity, and that is done with laboratory tasks, whereas specific creativity in art is gleaned from acquired brain damage, largely in observing established visual artists, and some in visual de novo artists (became artists after the damage). The verb “to create” has been erroneously equated with creativity; creativity, in the classic sense, does not appear to be enhanced following brain damage, regardless of etiology. The turning to communication through art in lieu of language deficits reflects a biological survival strategy. Creativity in art, and in other domains, is most likely dependent on intact and healthy knowledge and semantic conceptual systems, which are represented in several pathways in the cortex. It is adversely affected when these systems are dysfunctional, for congenital reasons (savant autism) or because of acquired brain damage (stroke, dementia, Parkinson’s), whereas inherent artistic talent and skill appear less affected. Clues to the neural substrates of general creativity and specific art creativity can be gleaned from considering that art is produced spontaneously mainly by humans, that there are unique neuroanatomical and neurofunctional organizations in the human brain, and that there are biological antecedents of innovation in animals. PMID:24917807
Ordaz, S J; Lenroot, R K; Wallace, G L; Clasen, L S; Blumenthal, J D; Schmitt, J E; Giedd, J N
2010-04-01
Twins provide a unique capacity to explore relative genetic and environmental contributions to brain development, but results are applicable to non-twin populations only to the extent that twin and singleton brains are alike. A reason to suspect differences is that as a group twins are more likely than singletons to experience adverse prenatal and perinatal events that may affect brain development. We sought to assess whether this increased risk leads to differences in child or adolescent brain anatomy in twins who do not experience behavioral or neurological sequelae during the perinatal period. Brain MRI scans of 185 healthy pediatric twins (mean age = 11.0, SD = 3.6) were compared to scans of 167 age- and sex-matched unrelated singletons on brain structures measured, which included gray and white matter lobar volumes, ventricular volume, and area of the corpus callosum. There were no significant differences between groups for any structure, despite sufficient power for low type II (i.e. false negative) error. The implications of these results are twofold: (1) within this age range and for these measures, it is appropriate to include healthy twins in studies of typical brain development, and (2) findings regarding heritability of brain structures obtained from twin studies can be generalized to non-twin populations.
Pathophysiology of premenstrual syndrome and premenstrual dysphoric disorder.
Rapkin, Andrea J; Akopians, Alin L
2012-06-01
Premenstrual syndrome (PMS) and premenstrual dysphoric disorder are triggered by hormonal events ensuing after ovulation. The symptoms can begin in the early, mid or late luteal phase and are not associated with defined concentrations of any specific gonadal or non-gonadal hormone. Although evidence for a hormonal abnormality has not been established, the symptoms of the premenstrual disorders are related to the production of progesterone by the ovary. The two best-studied and relevant neurotransmitter systems implicated in the genesis of the symptoms are the GABArgic and the serotonergic systems. Metabolites of progesterone formed by the corpus luteum of the ovary and in the brain bind to a neurosteroid-binding site on the membrane of the gamma-aminobutyric acid (GABA) receptor, changing its configuration, rendering it resistant to further activation and finally decreasing central GABA-mediated inhibition. By a similar mechanism, the progestogens in some hormonal contraceptives are also thought to adversely affect the GABAergic system. The lowering of serotonin can give rise to PMS-like symptoms and serotonergic functioning seems to be deficient by some methods of estimating serotonergic activity in the brain; agents that augment serotonin are efficacious and are as effective even if administered only in the luteal phase. However, similar to the affective disorders, PMS is ultimately not likely to be related to the dysregulation of individual neurotransmitters. Brain imaging studies have begun to shed light on the complex brain circuitry underlying affect and behaviour and may help to explicate the intricate neurophysiological foundation of the syndrome.
Boksa, Patricia; Zhang, Ying; Nouel, Dominique
2015-08-01
Ineffective contractions and prolonged labor are common birth complications in primiparous women, and oxytocin is the most common agent given for induction or augmentation of labor. Clinical studies in humans suggest oxytocin might adversely affect the CNS response to hypoxia at birth. In this study, we used a rat model of global anoxia during Cesarean section birth to test if administering oxytocin to pregnant dams prior to birth affects the acute neonatal CNS response to birth anoxia. Anoxic pups born from dams pre-treated with intravenous injections or infusions of oxytocin before birth showed significantly increased brain lactate, a metabolic indicator of CNS hypoxia, compared to anoxic pups from dams pre-treated with saline. Anoxic pups born from dams given oxytocin before birth also showed decreased brain ATP compared to anoxic pups from saline dams. Direct injection of oxytocin to postnatal day 2 rat pups followed by exposure to anoxia also resulted in increased brain lactate and decreased brain ATP, compared to anoxia exposure alone. Oxytocin pre-treatment of the dam decreased brain malondialdehyde, a marker of lipid peroxidation, as well as protein kinase C activity, both in anoxic pups and controls, suggesting oxytocin may reduce aspects of oxidative stress. Finally, when dams were pretreated with indomethacin, a cyclooxygenase (COX) inhibitor, maternal oxytocin no longer potentiated effects of anoxia on neonatal brain lactate, suggesting this effect of oxytocin may be mediated via prostaglandin production or other COX-derived products. The results indicate that maternal oxytocin administration may have multiple acute effects on CNS metabolic responses to anoxia at birth.
Neurobiological and neurocognitive effects of chronic cigarette smoking and alcoholism.
Durazzo, Timothy C; Meyerhoff, Dieter J
2007-05-01
Chronic cigarette smoking is associated with adverse effects on cardiac, pulmonary, and vascular function as well as the increased risk for various forms of cancer. However, little is known about the effects of chronic smoking on human brain function. Although smoking rates have decreased in the developed world, they remain high in individuals with alcohol use disorders (AUD) and other neuropsychiatric conditions. Despite the high prevalence of chronic smoking in AUD, few studies have addressed the potential neurobiological or neurocognitive consequences of chronic smoking in alcohol use disorders. Here, we review the the neurobiological and neurocognitive findings in both AUD and chronic cigarette smoking, followed by a review of the effects of comorbid cigarette smoking on neurobiology and neurocognition in AUD. Recent research suggests that comorbid chronic cigarette smoking modulates magnetic resonance-detectable brain injury and neurocognition in alcohol use disorders and adversely affects neurobiological and neurocognitive recovery in abstinent alcoholics.. Consideration of the potential separate and interactive effects of chronic smoking and alcohol use disorders may have significant implications for pharmacological and behavioral treatment interventions.
Haas, David W; Bradford, Yuki; Verma, Anurag; Verma, Shefali S; Eron, Joseph J; Gulick, Roy M; Riddler, Sharon A; Sax, Paul E; Daar, Eric S; Morse, Gene D; Acosta, Edward P; Ritchie, Marylyn D
2018-05-29
We characterized associations between central nervous system (CNS) adverse events and brain neurotransmitter transporter/receptor genomics among participants randomized to efavirenz-containing regimens in AIDS Clinical Trials Group studies in the USA. Four clinical trials randomly assigned treatment-naive participants to efavirenz-containing regimens. Genome-wide genotype and PrediXcan were used to infer gene expression levels in tissues including 10 brain regions. Multivariable regression models stratified by race/ethnicity were adjusted for CYP2B6/CYP2A6 genotypes that predict plasma efavirenz exposure, age, and sex. Combined analyses also adjusted for genetic ancestry. Analyses included 167 cases with grade 2 or greater efavirenz-consistent CNS adverse events within 48 weeks of study entry, and 653 efavirenz-tolerant controls. CYP2B6/CYP2A6 genotype level was independently associated with CNS adverse events (odds ratio: 1.07; P=0.044). Predicted expression of six genes postulated to mediate efavirenz CNS side effects (SLC6A2, SLC6A3, PGR, HTR2A, HTR2B, HTR6) were not associated with CNS adverse events after correcting for multiple testing, the lowest P value being for PGR in hippocampus (P=0.012), nor were polymorphisms in these genes or AR and HTR2C, the lowest P value being for rs12393326 in HTR2C (P=6.7×10). As a positive control, baseline plasma bilirubin concentration was associated with predicted liver UGT1A1 expression level (P=1.9×10). Efavirenz-related CNS adverse events were not associated with predicted neurotransmitter transporter/receptor gene expression levels in brain or with polymorphisms in these genes. Variable susceptibility to efavirenz-related CNS adverse events may not be explained by brain neurotransmitter transporter/receptor genomics.
Levetiracetam-induced neutropenia following traumatic brain injury.
Bunnell, Kristen; Pucci, Francesco
2015-01-01
Levetiracetam is being increasingly utilized for post-traumatic brain injury seizure prophylaxis, in part because of its more favourable adverse effect profile compared to other anti-epileptics. This report highlights an unusual, clinically significant adverse drug reaction attributed to levetiracetam use in a patient with blunt traumatic brain injury. This study describes a case of isolated neutropenia associated with levetiracetam in a 52-year-old man with traumatic brain injury. The patient developed neutropenia on day 3 of therapy with levetiracetam, with an absolute neutrophil count nadir of 200. There were no other medications that may have been implicated in the development of this haematological toxicity. Neutropenia rapidly resolved upon cessation of levetiracetam therapy. Clinicians should be aware of potentially serious adverse reactions associated with levetiracetam in patients with neurological injury.
β-Amyloid accumulation in the human brain after one night of sleep deprivation.
Shokri-Kojori, Ehsan; Wang, Gene-Jack; Wiers, Corinde E; Demiral, Sukru B; Guo, Min; Kim, Sung Won; Lindgren, Elsa; Ramirez, Veronica; Zehra, Amna; Freeman, Clara; Miller, Gregg; Manza, Peter; Srivastava, Tansha; De Santi, Susan; Tomasi, Dardo; Benveniste, Helene; Volkow, Nora D
2018-04-24
The effects of acute sleep deprivation on β-amyloid (Aβ) clearance in the human brain have not been documented. Here we used PET and 18 F-florbetaben to measure brain Aβ burden (ABB) in 20 healthy controls tested after a night of rested sleep (baseline) and after a night of sleep deprivation. We show that one night of sleep deprivation, relative to baseline, resulted in a significant increase in Aβ burden in the right hippocampus and thalamus. These increases were associated with mood worsening following sleep deprivation, but were not related to the genetic risk (APOE genotype) for Alzheimer's disease. Additionally, baseline ABB in a range of subcortical regions and the precuneus was inversely associated with reported night sleep hours. APOE genotyping was also linked to subcortical ABB, suggesting that different Alzheimer's disease risk factors might independently affect ABB in nearby brain regions. In summary, our findings show adverse effects of one-night sleep deprivation on brain ABB and expand on prior findings of higher Aβ accumulation with chronic less sleep. Copyright © 2018 the Author(s). Published by PNAS.
Chancellor, Michael B; Staskin, David R; Kay, Gary G; Sandage, Bobby W; Oefelein, Michael G; Tsao, Jack W
2012-04-01
Overactive bladder (OAB) is a common condition, particularly in the elderly. Anticholinergic agents are the mainstay of pharmacological treatment of OAB; however, many anticholinergics can cross the blood-brain barrier (BBB) and may cause central nervous system (CNS) effects, including cognitive deficits, which can be especially detrimental in older patients. Many anticholinergics have the potential to cause adverse CNS effects due to muscarinic (M(1)) receptor binding in the brain. Of note, permeability of the BBB increases with age and can also be affected by trauma, stress, and some diseases and medications. Passive crossing of a molecule across the BBB into the brain is dependent upon its physicochemical properties. Molecular characteristics that hinder passive BBB penetration include a large molecular size, positive or negative ionic charge at physiological pH, and a hydrophilic structure. Active transport across the BBB is dependent upon protein-mediated transporter systems, such as that of permeability-glycoprotein (P-gp), which occurs only for P-gp substrates, such as trospium chloride, darifenacin and fesoterodine. Reliance on active transport can be problematic since genetic polymorphisms of P-gp exist, and many commonly used drugs and even some foods are P-gp inhibitors or are substrates themselves and, due to competition, can reduce the amount of the drug that is actively transported out of the CNS. Therefore, for drugs that are preferred not to cross into the CNS, such as potent anticholinergics intended for the bladder, it is optimal to have minimal passive crossing of the BBB, although it may also be beneficial for the drug to be a substrate for an active efflux transport system. Anticholinergics demonstrate different propensities to cross the BBB. Darifenacin, fesoterodine and trospium chloride are substrates for P-gp and, therefore, are actively transported away from the brain. In addition, trospium chloride has not been detected in cerebrospinal fluid assays and does not appear to have significant CNS penetration. This article reviews the properties of anticholinergics that affect BBB penetration and active transport out of the CNS, discusses issues of increased BBB permeability in patients with OAB, and examines the clinical implications of BBB penetration on adverse events associated with anticholinergics.
Thyroid-disrupting chemicals and brain development: an update
Mughal, Bilal B; Fini, Jean-Baptiste; Demeneix, Barbara A
2018-01-01
This review covers recent findings on the main categories of thyroid hormone–disrupting chemicals and their effects on brain development. We draw mostly on epidemiological and experimental data published in the last decade. For each chemical class considered, we deal with not only the thyroid hormone–disrupting effects but also briefly mention the main mechanisms by which the same chemicals could modify estrogen and/or androgen signalling, thereby exacerbating adverse effects on endocrine-dependent developmental programmes. Further, we emphasize recent data showing how maternal thyroid hormone signalling during early pregnancy affects not only offspring IQ, but also neurodevelopmental disease risk. These recent findings add to established knowledge on the crucial importance of iodine and thyroid hormone for optimal brain development. We propose that prenatal exposure to mixtures of thyroid hormone–disrupting chemicals provides a plausible biological mechanism contributing to current increases in the incidence of neurodevelopmental disease and IQ loss. PMID:29572405
Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.
Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh
2017-08-15
Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Calem, Maria; Bromis, Konstantinos; McGuire, Philip; Morgan, Craig; Kempton, Matthew J
2017-01-01
Studies of psychiatric populations have reported associations between childhood adversity and volumes of stress-related brain structures. This meta-analysis investigated these associations in non-clinical samples and therefore independent of the effects of severe mental health difficulties and their treatment. The MEDLINE database was searched for magnetic resonance imaging studies measuring brain structure in adults with and without childhood adversity. Fifteen eligible papers (1781 participants) reporting hippocampal volumes and/or amygdala volumes were pooled using a random effects meta-analysis. Those with childhood adversity had lower hippocampus volumes (hedges g = - 0.15, p = 0.010). Controlling for gender, this difference became less evident (hedges g = - 0.12, p = 0.124). This association differed depending on whether studies included participants with some psychopathology, though this may be due to differences in the type of adversity these studies examined. There was no strong evidence of any differences in amygdala volume. Childhood adversity may have only a modest impact on stress-related brain structures in those without significant mental health difficulties.
Effects of environmental noise exposure on DNA methylation in the brain and metabolic health.
Guo, Liqiong; Li, Peng-Hui; Li, Hua; Colicino, Elena; Colicino, Silvia; Wen, Yi; Zhang, Ruiping; Feng, Xiaotian; Barrow, Timothy M; Cayir, Akin; Baccarelli, Andrea A; Byun, Hyang-Min
2017-02-01
Environmental noise exposure is associated with adverse effects on human health including hearing loss, heart disease, and changes in stress-related hormone levels. Alteration in DNA methylation in response to environmental exposures is a well-known phenomenon and it is implicated in many human diseases. Understanding how environmental noise exposures affect DNA methylation patterns may help to elucidate the link between noise and adverse effects on health. In this pilot study we examined the effects of environmental noise exposure on DNA methylation of genes related to brain function and investigated whether these changes are related with metabolic health. We exposed four groups of male Wistar rats to moderate intensity noise (70-75dB with 20-4000Hz) at night for three days as short-term exposure, and for three weeks as long-term exposure. Noise exposure was limited to 45dB during the daytime. Control groups were exposed to only 45dB, day and night. We measured DNA methylation in the Bdnf, Comt, Crhr1, Mc2r, and Snca genes in tissue from four brain regions of the rats (hippocampus, frontal lobe, medulla oblongata, and inferior colliculus). Further, we measured blood pressure and body weight after long-term noise exposure. We found that environmental noise exposure is associated with gene-specific DNA methylation changes in specific regions of the brain. Changes in DNA methylation are significantly associated with changes in body weight (between Bdnf DNA methylation and Δ body weight: r=0.59, p=0.018; and between LINE-1 ORF DNA methylation and Δ body weight: =-0.80, p=0.0004). We also observed that noise exposure decreased blood pressure (p=0.038 for SBP, p=0.017 for DBP and p 0. 017 for MAP) and decreased body weight (β=-26g, p=0.008). In conclusion, environmental noise exposures can induce changes in DNA methylation in the brain, which may be associated with adverse effects upon metabolic health through modulation of response to stress-related hormones. Copyright © 2016 Elsevier Inc. All rights reserved.
Birceanu, Oana; McClelland, Grant B; Wang, Yuxiang S; Wilkie, Michael P
2009-10-04
Although the pesticide, 3-trifluoromethyl-4-nitrophenol (TFM), has been extensively used to control invasive sea lamprey (Petromyzon marinus) populations in the Great Lakes, it is surprising that its mechanism(s) of toxicity is unresolved. A better knowledge of the mode of toxicity of this pesticide is needed for predicting and improving the effectiveness of TFM treatments on lamprey, and for risk assessments regarding potential adverse effects on invertebrate and vertebrate non-target organisms. We investigated two hypotheses of TFM toxicity in larval sea lamprey. The first was that TFM interferes with oxidative ATP production by mitochondria, causing rapid depletion of energy stores in vital, metabolically active tissues such as the liver and brain. The second was that TFM toxicity resulted from disruption of gill-ion uptake, adversely affecting ion homeostasis. Exposure of larval sea lamprey to 4.6 m gl(-1) TFM (12-h LC50) caused glycogen concentrations in the brain to decrease by 80% after 12h, suggesting that the animals increased their reliance on glycolysis to generate ATP due to a shortfall in ATP supply. This conclusion was reinforced by a 9-fold increase in brain lactate concentration, a 30% decrease in brain ATP concentration, and an 80% decrease in phosphocreatine (PCr) concentration after 9 and 12h. A more pronounced trend was noted in the liver, where glycogen decreased by 85% and ATP was no longer detected after 9 and 12h. TFM led to marginal changes in whole body Na(+), Cl(-), Ca(2+) and K(+), as well as in plasma Na(+) and Cl(-), which were unlikely to have contributed to toxicity. TFM had no adverse effect on Na(+) uptake rates or gill Na(+)/K(+)-ATPase activity. We conclude that TFM toxicity in the sea lamprey is due to a mismatch between ATP consumption and ATP production rates, leading to a depletion of glycogen in the liver and brain, which ultimately leads to neural arrest and death.
Zhang, Tianhao; Casanova, Ramon; Resnick, Susan M.; Manson, JoAnn E.; Baker, Laura D.; Padual, Claudia B.; Kuller, Lewis H.; Bryan, R. Nick; Espeland, Mark A.; Davatzikos, Christos
2016-01-01
Backgrounds The Women's Health Initiative Memory Study Magnetic Resonance Imaging (WHIMS-MRI) provides an opportunity to evaluate how menopausal hormone therapy (HT) affects the structure of older women’s brains. Our earlier work based on region of interest (ROI) analysis demonstrated potential structural changes underlying adverse effects of HT on cognition. However, the ROI-based analysis is limited in statistical power and precision, and cannot provide fine-grained mapping of whole-brain changes. Methods We aimed to identify local structural differences between HT and placebo groups from WHIMS-MRI in a whole-brain refined level, by using a novel method, named Optimally-Discriminative Voxel-Based Analysis (ODVBA). ODVBA is a recently proposed imaging pattern analysis approach for group comparisons utilizing a spatially adaptive analysis scheme to accurately locate areas of group differences, thereby providing superior sensitivity and specificity to detect the structural brain changes over conventional methods. Results Women assigned to HT treatments had significant Gray Matter (GM) losses compared to the placebo groups in the anterior cingulate and the adjacent medial frontal gyrus, and the orbitofrontal cortex, which persisted after multiple comparison corrections. There were no regions where HT was significantly associated with larger volumes compared to placebo, although a trend of marginal significance was found in the posterior cingulate cortical area. The CEE-Alone and CEE+MPA groups, although compared with different placebo controls, demonstrated similar effects according to the spatial patterns of structural changes. Conclusions HT had adverse effects on GM volumes and risk for cognitive impairment and dementia in older women. These findings advanced our understanding of the neurobiological underpinnings of HT effects. PMID:26974440
McCreary, J Keiko; Truica, L Sorina; Friesen, Becky; Yao, Youli; Olson, David M; Kovalchuk, Igor; Cross, Albert R; Metz, Gerlinde A S
2016-08-25
Prenatal stress is a risk factor for abnormal neuroanatomical, cognitive, behavioral and mental health outcomes with potentially transgenerational consequences. Females in general seem more resilient to the effects of prenatal stress than males. Here, we examined if repeated stress across generations may diminish stress resiliency and cumulatively enhance the susceptibility for adverse health outcomes in females. Pregnant female rats of three successive generations were exposed to stress from gestational days 12-18 to generate multigenerational prenatal stress (MPS) in the maternal lineage. Stress response was measured by plasma corticosterone levels and open-field exploration in each generation. Neuromorphological consequences of MPS were investigated in the F3 generation using in vivo manganese-enhanced magnetic resonance imaging (MEMRI), T2-relaxometry, and cytoarchitectonics in relation to candidate gene expression involved in brain plasticity and mental health. Each additional generation of prenatal stress incrementally elevated hypothalamic-pituitary-adrenal axis activation, anxiety-like and aversive behaviors in adult female offspring. Elevated stress responses in the MPS F3 generation were accompanied by reduced neural density in prefrontal cortex, hippocampus and whole brain along with altered brain activation patterns in in vivo MEMRI. MPS increased ephrin receptor A5 (Epha5), neuronal growth regulator (Negr1) and synaptosomal-associated protein 25 (Snap25) gene expression and reduced fibroblast growth factor 12 (Fgf12) in prefrontal cortex. These genes regulate neuronal maturation, arborization and synaptic plasticity and may explain altered brain cytoarchitectonics and connectivity. These findings emphasize that recurrent stress across generations may cumulatively increase stress vulnerability and the risk of adverse health outcomes through perinatal programing in females. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
CRHR1 genotypes, neural circuits and the diathesis for anxiety and depression.
Rogers, J; Raveendran, M; Fawcett, G L; Fox, A S; Shelton, S E; Oler, J A; Cheverud, J; Muzny, D M; Gibbs, R A; Davidson, R J; Kalin, N H
2013-06-01
The corticotrophin-releasing hormone (CRH) system integrates the stress response and is associated with stress-related psychopathology. Previous reports have identified interactions between childhood trauma and sequence variation in the CRH receptor 1 gene (CRHR1) that increase risk for affective disorders. However, the underlying mechanisms that connect variation in CRHR1 to psychopathology are unknown. To explore potential mechanisms, we used a validated rhesus macaque model to investigate association between genetic variation in CRHR1, anxious temperament (AT) and brain metabolic activity. In young rhesus monkeys, AT is analogous to the childhood risk phenotype that predicts the development of human anxiety and depressive disorders. Regional brain metabolism was assessed with (18)F-labeled fluoro-2-deoxyglucose (FDG) positron emission tomography in 236 young, normally reared macaques that were also characterized for AT. We show that single nucleotide polymorphisms (SNPs) affecting exon 6 of CRHR1 influence both AT and metabolic activity in the anterior hippocampus and amygdala, components of the neural circuit underlying AT. We also find evidence for association between SNPs in CRHR1 and metabolism in the intraparietal sulcus and precuneus. These translational data suggest that genetic variation in CRHR1 affects the risk for affective disorders by influencing the function of the neural circuit underlying AT and that differences in gene expression or the protein sequence involving exon 6 may be important. These results suggest that variation in CRHR1 may influence brain function before any childhood adversity and may be a diathesis for the interaction between CRHR1 genotypes and childhood trauma reported to affect human psychopathology.
Fábián, Katalin; Gyulai, Márton; Furák, József; Várallyay, Péter; Jäckel, Márta; Bogos, Krisztina; Döme, Balázs; Pápay, Judit; Tímár, József; Szállási, Zoltán; Moldvay, Judit
2016-01-01
Brain metastasis of lung cancer adversely affects overall survival (OS) and quality of life, while peritumoral brain edema is responsible for life-threatening complications. We retrospectively analyzed the clinicopathological and cerebral radiological data of 575 consecutive lung cancer patients with brain metastases. In adenocarcinoma and squamous cell carcinoma, peritumoral brain edema was more pronounced than in small-cell lung cancer (p < 0.001 and p < 0.001, respectively). There was a positive correlation between the size of metastasis and the thickness of peritumoral brain edema (p < 0.001). It was thicker in supratentorial tumors (p = 0.019), in younger patients (≤50 years) (p = 0.042), and in females (p = 0.016). The time to development of brain metastasis was shorter in central than in peripheral lung cancer (5.3 vs. 9.0 months, p = 0.035). Early brain metastasis was characteristic for adenocarcinomas. A total of 135 patients had brain only metastases (N0 disease) characterized by peripheral lung cancer predominance (p < 0.001) and a longer time to development of brain metastasis (9.2 vs. 4.4 months, p < 0.001). OS was longer in the brain only subgroup than in patients with N1-3 diseases (p < 0.001). The clinicopathological characteristics of lung cancer are related to the development and radiographic features of brain metastases. Our results might be helpful in selecting patients who might benefit from prophylactic cranial irradiation. © 2016 S. Karger AG, Basel.
Smoking modulates language lateralization in a sex-specific way.
Hahn, Constanze; Pogun, Sakire; Güntürkün, Onur
2010-12-01
Smoking affects a widespread network of neuronal functions by altering the properties of acetylcholinergic transmission. Recent studies show that nicotine consumption affects ascending auditory pathways and alters auditory attention, particularly in men. Here we show that smoking affects language lateralization in a sex-specific way. We assessed brain asymmetries of 90 healthy, right-handed participants using a classic consonant-vowel syllable dichotic listening paradigm in a 2×3 experimental design with sex (male, female) and smoking status (non-smoker, light smoker, heavy smoker) as between-subject factors. Our results revealed that male smokers had a significantly less lateralized response pattern compared to the other groups due to a decreased response rate of their right ear. This finding suggests a group-specific impairment of the speech dominant left hemisphere. In addition, decreased overall response accuracy was observed in male smokers compared to the other experimental groups. Similar adverse effects of smoking were not detected in women. Further, a significant negative correlation was detected between the severity of nicotine dependency and response accuracy in male but not in female smokers. Taken together, these results show that smoking modulates functional brain lateralization significantly and in a sexually dimorphic manner. Given that some psychiatric disorders have been associated with altered brain asymmetries and increased smoking prevalence, nicotinergic effects need to be specifically investigated in this context in future studies. Copyright © 2010 Elsevier Ltd. All rights reserved.
Toward a Theory of Stuttering.
Mawson, Anthony R; Radford, Nola T; Jacob, Binu
2016-01-01
Stuttering affects about 1% of the general population and from 8 to 11% of children. The onset of persistent developmental stuttering (PDS) typically occurs between 2 and 4 years of age. The etiology of stuttering is unknown and a unifying hypothesis is lacking. Clues to the pathogenesis of stuttering include the following observations: PDS is associated with adverse perinatal outcomes and birth-associated trauma; stuttering can recur or develop in adulthood following traumatic events such as brain injury and stroke; PDS is associated with structural and functional abnormalities in the brain associated with speech and language; and stuttering resolves spontaneously in a high percentage of affected children. Evidence marshaled from the literature on stuttering and from related sources suggests the hypothesis that stuttering is a neuro-motor disorder resulting from perinatal or later-onset hypoxic-ischemic injury (HII), and that chronic stuttering and its behavioral correlates are manifestations of recurrent transient ischemic episodes affecting speech-motor pathways. The hypothesis could be tested by comparing children who stutter and nonstutterers (controls) in terms of the occurrence of perinatal trauma, based on birth records, and by determining rates of stuttering in children exposed to HII during the perinatal period. Subject to testing, the hypothesis suggests that interventions to increase brain perfusion directly could be effective both in the treatment of stuttering and its prevention at the time of birth or later trauma. © 2016 S. Karger AG, Basel.
Neuroimaging of child abuse: a critical review
Hart, Heledd; Rubia, Katya
2012-01-01
Childhood maltreatment is a stressor that can lead to the development of behavior problems and affect brain structure and function. This review summarizes the current evidence for the effects of childhood maltreatment on behavior, cognition and the brain in adults and children. Neuropsychological studies suggest an association between child abuse and deficits in IQ, memory, working memory, attention, response inhibition and emotion discrimination. Structural neuroimaging studies provide evidence for deficits in brain volume, gray and white matter of several regions, most prominently the dorsolateral and ventromedial prefrontal cortex but also hippocampus, amygdala, and corpus callosum (CC). Diffusion tensor imaging (DTI) studies show evidence for deficits in structural interregional connectivity between these areas, suggesting neural network abnormalities. Functional imaging studies support this evidence by reporting atypical activation in the same brain regions during response inhibition, working memory, and emotion processing. There are, however, several limitations of the abuse research literature which are discussed, most prominently the lack of control for co-morbid psychiatric disorders, which make it difficult to disentangle which of the above effects are due to maltreatment, the associated psychiatric conditions or a combination or interaction between both. Overall, the better controlled studies that show a direct correlation between childhood abuse and brain measures suggest that the most prominent deficits associated with early childhood abuse are in the function and structure of lateral and ventromedial fronto-limbic brain areas and networks that mediate behavioral and affect control. Future, large scale multimodal neuroimaging studies in medication-naïve subjects, however, are needed that control for psychiatric co-morbidities in order to elucidate the structural and functional brain sequelae that are associated with early environmental adversity, independently of secondary co-morbid conditions. PMID:22457645
Lyden, Hannah; Gimbel, Sarah I; Del Piero, Larissa; Tsai, A Bryna; Sachs, Matthew E; Kaplan, Jonas T; Margolin, Gayla; Saxbe, Darby
2016-01-01
Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant). The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations were found between early family aggression exposure and brain volume depending on the segmentation method used.
Lyden, Hannah; Gimbel, Sarah I.; Del Piero, Larissa; Tsai, A. Bryna; Sachs, Matthew E.; Kaplan, Jonas T.; Margolin, Gayla; Saxbe, Darby
2016-01-01
Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant). The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations were found between early family aggression exposure and brain volume depending on the segmentation method used. PMID:27656121
Early and Later Life Stress Alter Brain Activity and Sleep in Rats
Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne
2013-01-01
Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. PMID:23922857
Harro, Jaanus; Kanarik, Margus; Kaart, Tanel; Matrov, Denis; Kõiv, Kadri; Mällo, Tanel; Del Río, Joaquin; Tordera, Rosa M; Ramirez, Maria J
2014-07-01
The large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models. Rats were rendered vulnerable to depression either by partial serotonergic lesion or by maternal deprivation, or selected for a vulnerable phenotype (low positive affect, low novelty-related activity or high hedonic response). Environmental adversity was brought about by applying chronic variable stress or chronic social defeat. Several brain regions, most significantly median raphe, habenula, retrosplenial cortex and reticular thalamus, were universally implicated in long-term metabolic stress response, vulnerability to depression, or both. Vulnerability was associated with higher oxidative metabolism levels as compared to resilience to chronic stress. Chronic stress, in contrast, had three distinct patterns of effect on oxidative metabolism in vulnerable vs. resilient animals. In general, associations between regional activities in several brain circuits were strongest in vulnerable animals, and chronic stress disrupted this interrelatedness. These findings highlight networks that underlie resilience to stress, and the distinct response to stress that occurs in vulnerable subjects. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gasecka, Alicja; Tanti, Arnaud; Lutz, Pierre-Eric; Mechawar, Naguib; Cote, Daniel C.
2017-02-01
Adverse childhood experiences have lasting detrimental effects on mental health and are strongly associated with impaired cognition and increased risk of developing psychopathologies. Preclinical and neuroimaging studies have suggested that traumatic events during brain development can affect cerebral myelination particularly in areas and tracts implicated in mood and emotion. Although current neuroimaging techniques are quite powerful, they lack the resolution to infer myelin integrity at the cellular level. Recently demonstrated coherent Raman microscopy has accomplished cellular level imaging of myelin sheaths in the nervous system. However, a quantitative morphometric analysis of nerve fibers still remains a challenge. In particular, in brain, where fibres exhibit small diameters and varying local orientation. In this work, we developed an automated myelin identification and analysis method that is capable of providing a complete picture of axonal myelination and morphology in brain samples. This method performs three main procedures 1) detects molecular anisotropy of membrane phospholipids based on polarization resolved coherent Raman microscopy, 2) identifies regions of different molecular organization, 3) calculates morphometric features of myelinated axons (e.g. myelin thickness, g-ratio). We applied this method to monitor white matter areas from suicides adults that suffered from early live adversity and depression compared to depressed suicides adults and psychiatrically healthy controls. We demonstrate that our method allows for the rapid acquisition and automated analysis of neuronal networks morphology and myelination. This is especially useful for clinical and comparative studies, and may greatly enhance the understanding of processes underlying the neurobiological and psychopathological consequences of child abuse.
Doody, Rachelle S; D'Amico, Stephen; Cutler, Andrew J; Davis, Charles S; Shin, Paul; Ledon, Fred; Yonan, Charles; Siffert, João
2016-12-01
Dextromethorphan (DM)/quinidine (Q) is an approved treatment for pseudobulbar affect (PBA) based on trials in amyotrophic lateral sclerosis or multiple sclerosis. PRISM II evaluated DM/Q effectiveness and tolerability for PBA secondary to dementia, stroke, or traumatic brain injury; dementia cohort results are reported. This was an open-label, multicenter, 90 day trial; patients received DM/Q 20/10 mg twice daily. Primary outcome was change in Center for Neurologic Study-Lability Scale (CNS-LS) score. Secondary outcomes included PBA episode count and Clinical and Patient/Caregiver Global Impression of Change scores with respect to PBA (CGI-C/PGI-C). 134 patients were treated. CNS-LS improved by a mean (SD) of 7.2 (6.0) points at Day 90/Endpoint (P<.001) vs. baseline. PBA episodes were reduced 67.7% (P<.001) vs. baseline; global measures showed 77.5% CGI-C and 76.5% PGI-C "much"/"very much" improved. Adverse events included headache (7.5%), urinary tract infection (4.5%), and diarrhea (3.7%); few patients dropped out for adverse events (10.4%). DM/Q significantly reduced PBA symptoms in patients with dementia; reported adverse events were consistent with the known safety profile of DM/Q. Trial Registration clinicaltrials.gov identifier: NCT01799941.
Effect of Early Adversity and Childhood Internalizing Symptoms on Brain Structure in Young Men.
Jensen, Sarah K G; Dickie, Erin W; Schwartz, Deborah H; Evans, C John; Dumontheil, Iroise; Paus, Tomáš; Barker, Edward D
2015-10-01
Early adversity is an important risk factor that relates to internalizing symptoms and altered brain structure. To assess the direct effects of early adversity and child internalizing symptoms (ie, depression, anxiety) on cortical gray matter (GM) volume, as well as the extent to which early adversity associates with variation in cortical GM volume indirectly via increased levels of internalizing symptoms. A prospective investigation of associations between adversity within the first 6 years of life, internalizing symptoms during childhood and early adolescence, and altered brain structure in late adolescence (age, 18-21 years) was conducted in a community-based birth cohort in England (Avon Longitudinal Study of Parents and Children). Participants from the cohort included 494 mother-son pairs monitored since the mothers were pregnant (estimated date of delivery between April 1, 1991, and December 31, 1992). Data collection for the present study was conducted between April 1, 1991, and November 30, 2010; the neuroimaging data were collected between September 1, 2010, and November 30, 2012, and data analyses for the present study occurred between January 25, 2013, and February 15, 2015. Risk factors were adversity within the first 6 years of the child's life (including prenatal exposure) and the child's internalizing symptoms between age 7 and 13 years. Early childhood adversity. The main outcome was GM volume of cortical regions previously associated with major depression measured through T1-weighted magnetic resonance images collected in late adolescence. Among 494 young men included in this analysis, early adversity was directly associated with lower GM volumes in the anterior cingulate cortex (β = -.18; P = .01) and higher GM volume in the precuneus (β = .18; P = .009). Childhood internalizing symptoms were associated with lower GM volume in the right superior frontal gyrus (β = -.20; P = .002). Early adversity was also associated with higher levels of internalizing symptoms (β = .37; P < .001), which, in turn, were associated with lower superior frontal gyrus volume (ie, an indirect effect) (β = -.08; 95% CI, -0.14 to -0.01; P = .02). Adversity early in life was associated with higher levels of internalizing symptoms as well as with altered brain structure. Early adversity was related to variation in brain structure both directly and via increased levels of internalizing symptoms. These findings may suggest that some of the structural variation often attributed to depression might be associated with early adversity in addition to the effect of depression.
Outcomes of intrathecal baclofen therapy in patients with cerebral palsy and acquired brain injury
Yoon, Young Kwon; Lee, Kil Chan; Cho, Han Eol; Chae, Minji; Chang, Jin Woo; Chang, Won Seok; Cho, Sung-Rae
2017-01-01
Abstract Intrathecal baclofen (ITB) has been known to reduce spasticity which did not respond to oral medications and botulinum toxin treatment. However, few results have been reported comparing the effects of ITB therapy in patients with cerebral palsy (CP) and acquired brain injury. This study aimed to investigate beneficial and adverse effects of ITB bolus injection and pump therapy in patients with CP and to compare outcomes to patients with acquired brain injury such as traumatic brain injury and hypoxic brain injury. ITB test trials were performed in 37 patients (19 CP and 18 acquired brain injury). Based on ambulatory function, CP patients were divided into 2 groups: 11 patients with nonambulatory CP and 8 patients with ambulatory CP. Change of spasticity was evaluated using the Modified Ashworth Scale. Additional positive or negative effects were also evaluated after ITB bolus injection. In patients who received ITB pump implantation, outcomes of spasticity, subjective satisfaction and adverse events were evaluated until 12 months post-treatment. After ITB bolus injection, 32 patients (86.5%) (CP 84.2% versus acquired brain injury 88.9%) showed a positive response of reducing spasticity. However, 8 patients with CP had negative adverse effects. Particularly, 3 ambulatory CP patients showed standing impairment and 1 ambulatory CP patient showed impaired gait pattern such as foot drop because of excessive reduction of lower extremity muscle tone. Ambulatory CP patients received ITB pump implantation less than patients with acquired brain injury after ITB test trials (P = .003 by a chi-squared test). After the pump implantation, spasticity was significantly reduced within 1 month and the effect maintained for 12 months. Seventeen patients or their caregivers (73.9%) were very satisfied, whereas 5 patients (21.7%) suffered from adverse events showed no subjective satisfaction. In conclusion, ITB therapy was effective in reducing spasticity in patients with CP and acquired brain injury. Before ITB pump implantation, it seems necessary to perform the ITB bolus injection to verify beneficial effects and adverse effects especially in ambulatory CP. PMID:28834868
Gene-environment interaction of ApoE genotype and combat exposure on PTSD.
Lyons, Michael J; Genderson, Margo; Grant, Michael D; Logue, Mark; Zink, Tyler; McKenzie, Ruth; Franz, Carol E; Panizzon, Matthew; Lohr, James B; Jerskey, Beth; Kremen, William S
2013-10-01
Factors determining who develops PTSD following trauma are not well understood. The €4 allele of the apolipoprotein E (apoE) gene is associated with dementia and unfavorable outcome following brain insult. PTSD is also associated with dementia. Given evidence that psychological trauma adversely affects the brain, we hypothesized that the apoE genotype moderates effects of psychological trauma on PTSD pathogenesis. To investigate the moderation of the relationship between PTSD symptoms and combat exposure, we used 172 participants with combat trauma sustained during the Vietnam War. PTSD symptoms were the dependent variable and number of combat experiences, apoE genotype, and the combat experiences × apoE genotype interaction were predictors. We also examined the outcome of a diagnosis of PTSD (n = 39) versus no PTSD diagnosis (n = 131). The combat × apoE genotype interaction was significant for both PTSD symptoms (P = .014) and PTSD diagnosis (P = .009). ApoE genotype moderates the relationship between combat exposure and PTSD symptoms. Although the pathophysiology of PTSD is not well understood, the €4 allele is related to reduced resilience of the brain to insult. Our results are consistent with the €4 allele influencing the effects of psychological trauma on the brain, thereby affecting the risk of PTSD. © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.
2002-01-01
Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.
Understanding and Promoting Resilience in the Context of Adverse Childhood Experiences
ERIC Educational Resources Information Center
Sciaraffa, Mary A.; Zeanah, Paula D.; Zeanah, Charles H.
2018-01-01
Brain development in the early years is especially susceptible to toxic stress caused by adverse childhood experiences (ACEs). According to epigenetics research, toxic stress has the capacity to physically change a child's brain and be hardwired into the child's biology via genes in the DNA. The compelling nature of the impact of early adversity…
Lu, Yi; Yeung, Cecil; Radmanesh, Alireza; Wiemann, Robert; Black, Peter M.; Golby, Alexandra J.
2015-01-01
Objective Intraoperative MRI (IoMRI) guided brain biopsy provides a real time visual feedback of the lesion that is sampled during surgery. The objective of the study is to compare the diagnostic yield and safety profiles of ioMRI needle brain biopsy with two traditional brain biopsy methods: frame-based and frameless stereotactic brain biopsies. Methods A retrospective analysis from 288 consecutive needle brain biopsies in 277 patients undergoing stereotactic brain biopsy with any of the three biopsy methods at Brigham and Women's Hospital from 2000 to 2008 was performed. Variables such as age, sex, history of radiation and previous surgery, pathology results, complications and postoperative stays were analyzed. Results Over the course of eight years, 288 brain biopsies were performed. 253 (87.8%) biopsies yielded positive diagnostic tissue. Young age (<40 years), history of brain radiation or surgery were significant negative predictors for a positive biopsy diagnostic yield. Excluding patients with prior radiation or surgeries, no significant difference in diagnostic yield was detected among the three groups, with frame-based, frameless and ioMRI guided needle biopsies yield 96.9%, 91.8% and 89.9% positive diagnostic yield, respectively. 19 biopsies (6.6%) were complicated by serious adverse events. The ioMRI-guided brain biopsy was associated with less serious adverse events and the shortest postoperative hospital stay. Conclusions Frame-based, frameless stereotactic and ioMRI guided brain needle biopsy have comparable diagnostic yield for patients with no prior treatments (either radiation or surgery). IoMRI guided brain biopsy is associated with fewer serious adverse events and shorter hospital stay. PMID:25088233
Kungl, Melanie T; Bovenschen, Ina; Spangler, Gottfried
2017-01-01
When being placed into more benign environments like foster care, children from adverse rearing backgrounds are capable of forming attachment relationships to new caregivers within the first year of placement, while certain problematic social behaviors appear to be more persistent. Assuming that early averse experiences shape neural circuits underlying social behavior, neurophysiological studies on individual differences in early social-information processing have great informative value. More precisely, ERP studies have repeatedly shown face processing to be sensitive to experience especially regarding the caregiving background. However, studies on effects of early adverse caregiving experiences are restricted to children with a history of institutionalization. Also, no study has investigated effects of attachment security as a marker of the quality of the caregiver-child relationship. Thus, the current study asks how adverse caregiving experiences and attachment security to (new) caregivers affect early- and mid-latency ERPs sensitive to facial familiarity processing. Therefore, pre-school aged foster children during their second year within the foster home were compared to an age matched control group. Attachment was assessed using the AQS and neurophysiological data was collected during a passive viewing task presenting (foster) mother and stranger faces. Foster children were comparable to the control group with regard to attachment security. On a neurophysiological level, however, the foster group showed dampened N170 amplitudes for both face types. In both foster and control children, dampened N170 amplitudes were also found for stranger as compared to (foster) mother faces, and, for insecurely attached children as compared to securely attached children. This neural pattern may be viewed as a result of poorer social interactions earlier in life. Still, there was no effect on P1 amplitudes. Indicating heightened attentional processing, Nc amplitude responses to stranger faces were found to be enhanced in foster as compared to control children. Also, insecurely attached children allocated more attentional resources for the neural processing of mother faces. The study further confirms that early brain development is highly sensitive to the quality of caregiving. The findings are also relevant from a developmental perspective as miswiring of neural circuits may possibly play a critical role in children's psycho-social adjustment.
AED Treatment Through Different Ages: As Our Brains Change, Should Our Drug Choices Also?
French, Jacqueline A.; Staley, Brigid A.
2012-01-01
Patient age can impact selection of the optimal antiepileptic drug for a number of reasons. Changes in brain physiology from neonate to elderly, as well as changes in underlying etiologies of epilepsy, could potentially affect the ability of different drugs to control seizures. Unfortunately, much of this is speculative, as good studies demonstrating differences in efficacy across age ranges do not exist. Beyond the issue of efficacy, certain drugs may be more or less appropriate at different ages because of differing pharmacokinetics, including changes in hepatic metabolism, absorption, and elimination. Lack of appropriate drug formulations (such as liquid forms) may be a barrier to using drugs in the very young. Finally, some serious adverse events are seen either exclusively or preferentially at different ages. PMID:23476119
Reich, Martin M; Brumberg, Joachim; Pozzi, Nicolò G; Marotta, Giorgio; Roothans, Jonas; Åström, Mattias; Musacchio, Thomas; Lopiano, Leonardo; Lanotte, Michele; Lehrke, Ralph; Buck, Andreas K; Volkmann, Jens; Isaias, Ioannis U
2016-11-01
Thalamic deep brain stimulation is a mainstay treatment for severe and drug-refractory essential tremor, but postoperative management may be complicated in some patients by a progressive cerebellar syndrome including gait ataxia, dysmetria, worsening of intention tremor and dysarthria. Typically, this syndrome manifests several months after an initially effective therapy and necessitates frequent adjustments in stimulation parameters. There is an ongoing debate as to whether progressive ataxia reflects a delayed therapeutic failure due to disease progression or an adverse effect related to repeated increases of stimulation intensity. In this study we used a multimodal approach comparing clinical stimulation responses, modelling of volume of tissue activated and metabolic brain maps in essential tremor patients with and without progressive ataxia to disentangle a disease-related from a stimulation-induced aetiology. Ten subjects with stable and effective bilateral thalamic stimulation were stratified according to the presence (five subjects) of severe chronic-progressive gait ataxia. We quantified stimulated brain areas and identified the stimulation-induced brain metabolic changes by multiple 18 F-fluorodeoxyglucose positron emission tomography performed with and without active neurostimulation. Three days after deactivating thalamic stimulation and following an initial rebound of symptom severity, gait ataxia had dramatically improved in all affected patients, while tremor had worsened to the presurgical severity, thus indicating a stimulation rather than disease-related phenomenon. Models of the volume of tissue activated revealed a more ventrocaudal stimulation in the (sub)thalamic area of patients with progressive gait ataxia. Metabolic maps of both patient groups differed by an increased glucose uptake in the cerebellar nodule of patients with gait ataxia. Our data suggest that chronic progressive gait ataxia in essential tremor is a reversible cerebellar syndrome caused by a maladaptive response to neurostimulation of the (sub)thalamic area. The metabolic signature of progressive gait ataxia is an activation of the cerebellar nodule, which may be caused by inadvertent current spread and antidromic stimulation of a cerebellar outflow pathway originating in the vermis. An anatomical candidate could be the ascending limb of the uncinate tract in the subthalamic area. Adjustments in programming and precise placement of the electrode may prevent this adverse effect and help fine-tuning deep brain stimulation to ameliorate tremor without negative cerebellar signs. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi
2017-01-01
Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model—the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the “critical” GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. PMID:28111189
Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi
2017-04-01
Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model-the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the "critical" GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Wong, N M L; Liu, H-L; Lin, C; Huang, C-M; Wai, Y-Y; Lee, S-H; Lee, T M C
2016-09-01
Late-life depression (LLD) in the elderly was reported to present with emotion dysregulation accompanied by high perceived loneliness. Previous research has suggested that LLD is a disorder of connectivity and is associated with aberrant network properties. On the other hand, perceived loneliness is found to adversely affect the brain, but little is known about its neurobiological basis in LLD. The current study investigated the relationships between the structural connectivity, functional connectivity during affective processing, and perceived loneliness in LLD. The current study included 54 participants aged >60 years of whom 31 were diagnosed with LLD. Diffusion tensor imaging (DTI) data and task-based functional magnetic resonance imaging (fMRI) data of an affective processing task were collected. Network-based statistics and graph theory techniques were applied, and the participants' perceived loneliness and depression level were measured. The affective processing task included viewing affective stimuli. Structurally, a loneliness-related sub-network was identified across all subjects. Functionally, perceived loneliness was related to connectivity differently in LLD than that in controls when they were processing negative stimuli, with aberrant networking in subcortical area. Perceived loneliness was identified to have a unique role in relation to the negative affective processing in LLD at the functional brain connectional and network levels. The findings increas our understanding of LLD and provide initial evidence of the neurobiological mechanisms of loneliness in LLD. Loneliness might be a potential intervention target in depressive patients.
Al Amrani, Fatema; Marcovitz, Jaclyn; Sanon, Priscille-Nice; Khairy, May; Saint-Martin, Christine; Shevell, Michael; Wintermark, Pia
2018-05-01
To determine whether an MRI scoring system, which was validated in the pre-cooling era, can still predict the neurodevelopmental outcome of asphyxiated newborns treated with hypothermia at 2 years of age. We conducted a retrospective cohort study of asphyxiated newborns treated with hypothermia. An MRI scoring system, which was validated in the pre-cooling era, was used to grade the severity of brain injury on the neonatal brain MRI. Their neurodevelopment was assessed around 2 years of age; adverse outcome included cerebral palsy, global developmental delay, and/or epilepsy. One hundred and sixty-nine newborns were included. Among the 131 newborns who survived and had a brain MRI during the neonatal period, 92% were evaluated around 2 years of age or later. Of these newborns, 37% displayed brain injury, and 23% developed an adverse outcome. Asphyxiated newborns treated with hypothermia who had an adverse outcome had a significantly higher MRI score (p <0.001) compared to those without an adverse outcome. An MRI scoring system that was validated before the cooling era is still able to reliably differentiate which of the asphyxiated newborns treated with hypothermia were more prone to develop an adverse outcome around 2 years of age. Copyright © 2018 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Torres-Jardón, Ricardo; Henriquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Valencia-Salazar, Gildardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderón, Rafael; Reed, William
2007-01-01
Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1beta (IL-1beta) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of beta -amyloid peptide (Abeta 42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer's disease (AD) is characterized by brain inflammation and the accumulation of Abeta 42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1beta expression and Abeta 42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.
Sandström, J; Broyer, A; Zoia, D; Schilt, C; Greggio, C; Fournier, M; Do, K Q; Monnet-Tschudi, F
2017-05-01
Exposure to environmental toxicants during vulnerable windows of brain development is suspected to raise the prevalence for neurological dysfunctions at later stages in life. Differentiation processes and changes in morphology, as well as a lack of physiological barriers, might be reasons that render a developing brain more susceptible to neurotoxicants than an adult. However, also the intrinsic capacity of cells to combat toxicant induced cellular stress might differ between the immature- and mature brain. In order to study whether this intrinsic protection capacity differs between immature and maturated brain cells we chose to study the maturation-dependent adverse effects of the known neurotoxicant Paraquat Dichloride (PQ) in 3D rat brain cell cultures. This in vitro system consists of the major brain cell types - neurons, astrocytes, oligodendrocytes and microglia - and over the time in vitro cultured cells undergo differentiation and maturation into a tissue-like organization. PQ was applied repeatedly over ten days in the sub-micromolar range, and effects were evaluated on neurons and glial cells. We observed that despite a higher PQ-uptake in mature cultures, PQ-induced adverse effects on glutamatergic-, GABAergic- and dopaminergic neurons, as assessed by gene expression and enzymatic activity, were more pronounced in immature cultures. This was associated with a stronger astrogliosis in immature- as compared to mature cultures, as well as perturbations of the glutathione-mediated defense against oxidative stress. Furthermore we observed evidence of microglial activation only in mature cultures, whereas immature cultures appeared to down-regulate markers for neuroprotective M2-microglial phenotype upon PQ-exposure. Taken together our results indicate that immature brain cell cultures have less intrinsic capacity to cope with cellular stress elicited by PQ as compared to mature cells. This may render immature brain cells more susceptible to the adverse effects of PQ. Copyright © 2017 Elsevier B.V. All rights reserved.
Lithium suppression of tau induces brain iron accumulation and neurodegeneration.
Lei, P; Ayton, S; Appukuttan, A T; Moon, S; Duce, J A; Volitakis, I; Cherny, R; Wood, S J; Greenough, M; Berger, G; Pantelis, C; McGorry, P; Yung, A; Finkelstein, D I; Bush, A I
2017-03-01
Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T 2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer's disease), and may explain lithium-associated motor symptoms in susceptible patients.
Vyas, N.B.; Kuenzel, W.J.; Hill, E.F.; Romo, G.A.; Komaragiri, M.V.S.
1996-01-01
Effects of a 14-day dietary exposure to an organophosphorus pesticide, acephate (acetylphosphoramidothioic acid O,S-dimethyl ester), were determined on cholinesterase activity in three regions (basal ganglia, hippocampus, and hypothalamus) of the white-throated sparrow, Zonotrichia albicollis, brain. All three regions experienced depressed cholinesterase activity between 0.5–2 ppm acephate. The regions exhibited cholinesterase recovery at 2–16 ppm acephate; however, cholinesterase activity dropped and showed no recovery at higher dietary levels (>16 ppm acephate). Evidence indicates that the recovery is initiated by the magnitude of depression, not the duration. In general, as acephate concentration increased, differences in ChE activity among brain regions decreased. Three terms are introduced to describe ChE response to acephate exposure: 1) ChE resistance threshold, 2) ChE compensation threshold, and 3) ChE depression threshold. It is hypothesized that adverse effects to birds in the field may occur at pesticide exposure levels customarily considered negligible.
Niwińska, Anna
2016-10-01
The role of systemic treatment was assessed after local therapy for breast cancer patients who developed central nervous system (CNS) metastases as a first and isolated recurrence. Subjects were 128 breast cancer patients with brain metastases as the first and isolated site of recurrence that were selected from 673 consecutive breast cancer patients with brain metastases treated at the same institution. Median survival from brain metastases in patients with and without systemic treatment after local therapy was respectively 15 and 4 months (p < 0.001). In patients with a Karnofsky Performance Status ≥70 and those <70, survival was respectively 16 and 5.5 months (p < 0.001). The median survival from brain metastasis in patients with solitary brain metastasis, with and without systemic treatment after local therapy, was respectively 22 and 7 months (p = 0.003). Cox multivariate analysis demonstrated that good performance status, solitary brain metastasis and systemic therapy undertaken after local treatment were factors which prolonged survival. However patient survival was adversely affected by those having leptomeningeal metastasis associated with brain parenchymal lesions. Systemic therapy, undertaken after local treatment improved survival in those patients with breast cancer and brain metastases as the site of first and isolated recurrence. Further study is required in order to fully establish the role of systemic treatment for this patient group.
Traffic pollution exposure is associated with altered brain connectivity in school children.
Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi
2016-04-01
Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain. Copyright © 2016 Elsevier Inc. All rights reserved.
Zurich, Marie-Gabrielle; Honegger, Paul
2011-08-28
Ochratoxin A (OTA), a fungal contaminant of basic food commodities, is known to be highly cytotoxic, but the pathways underlying adverse effects at subcytotoxic concentrations remain to be elucidated. Recent reports indicate that OTA affects cell cycle regulation. Therefore, 3D brain cell cultures were used to study OTA effects on mitotically active neural stem/progenitor cells, comparing highly differentiated cultures with their immature counterparts. Changes in the rate of DNA synthesis were related to early changes in the mRNA expression of neural stem/progenitor cell markers. OTA at 10nM, a concentration below the cytotoxic level, was ineffective in immature cultures, whereas in mature cultures it significantly decreased the rate of DNA synthesis together with the mRNA expression of key transcriptional regulators such as Sox2, Mash1, Hes5, and Gli1; the cell cycle activator cyclin D2; the phenotypic markers nestin, doublecortin, and PDGFRα. These effects were largely prevented by Sonic hedgehog (Shh) peptide (500ngml(-1)) administration, indicating that OTA impaired the Shh pathway and the Sox2 regulatory transcription factor critical for stem cell self-renewal. Similar adverse effects of OTA in vivo might perturb the regulation of stem cell proliferation in the adult brain and in other organs exhibiting homeostatic and/or regenerative cell proliferation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Beech, Anthony R; Mitchell, Ian J
2005-02-01
This paper describes what is currently known about attachment from the development, social-cognitive and biological literatures and outlines the impact on organisms given adverse development experiences that can have an effect upon attachment formation in childhood across these three literatures. We then describe the effects that 'insecure' attachment styles arising in childhood can affect brain chemistry and brain function and subsequently adult social/romantic relationships. In the paper, we note that a number of sexual offenders report adverse childhood experiences and that they possess attachment styles that, taken together, make it likely that they will either seek out intimate attachments in ways where they will have sex with children, perhaps confusing sex with intimacy or in aggressive ways as particularly happens with men who sexually assault adult women. The last section of the paper describes chemical treatment for sexual offenders, focusing on the use of selective serotonin re-uptake inhibitors (SSRIs). We note evidence for the role of SSRIs in promoting more social/affiliative behaviors and speculate on the effects that SSRIs have in the treatment of sexual offenders by targeting areas of the social brain. Here, we would argue that it would be useful to carry out treatment where there is a combination of SSRI treatment (to promote more prosocial feelings and behaviors) in conjunction with therapy that typically addresses thoughts and behaviors, i.e., cognitive-behavioral therapy/schema-focused therapy.
Singh, Pallavi; Chowdhuri, D Kar
2017-07-01
A number of environmental chemicals are known to cause neurotoxicity to exposed organisms. Chromium (Cr), one of the major elements in earth's crust, is a priority environmental chemical depending on its valence state, and limited information is available on its neurotoxic potential. We, therefore, explored the neurotoxic potential of environmentally present trivalent- (Cr(III)) and hexavalent-Cr (Cr(VI)) on tested brain cell types in a genetically tractable organism Drosophila melanogaster along with its organismal response. Third instar larvae of w 1118 were fed environmentally relevant concentrations (5.0-20.0 μg/ml) of Cr(III)- or Cr(VI)-salt-mixed food for 24 and 48 h, and their exposure effects were examined in different brain cells of exposed organism. A significant reduction in the number of neuronal cells was observed in organism that were fed Cr(VI)- but not Cr(III)-salt-mixed food. Interestingly, glial cells were not affected by Cr(III) or Cr(VI) exposure. The tested cholinergic and dopaminergic neuronal cells were affected by Cr(VI) only with the later by 20.0 μg/ml Cr(VI) exposure after 48 h. The locomotor activity was significantly affected by Cr(VI) in exposed organism. Concomitantly, a significant increase in the level of reactive oxygen species (ROS) coupled with increased oxidative stress led to apoptotic cell death in the tested brain cells of Cr(VI)-exposed Drosophila, which were reversed by vitamin C supplementation. Conclusively, the present study provides evidence of environmental Cr(VI)-induced adversities on the brain of exposed Drosophila along with behavioral deficit which would likely to have relevance in humans and recommends Drosophila as a model for neurotoxicity.
Localization of deformed wing virus (DWV) in the brains of the honeybee, Apis mellifera Linnaeus.
Shah, Karan S; Evans, Elizabeth C; Pizzorno, Marie C
2009-10-30
Deformed wing virus (DWV) is a positive-strand RNA virus that infects European honeybees (Apis mellifera L.) and has been isolated from the brains of aggressive bees in Japan. DWV is known to be transmitted both vertically and horizontally between bees in a colony and can lead to both symptomatic and asymptomatic infections in bees. In environmentally stressful conditions, DWV can contribute to the demise of a honeybee colony. The purpose of the current study is to identify regions within the brains of honeybees where DWV replicates using in-situ hybridization. In-situ hybridizations were conducted with both sense and antisense probes on the brains of honeybees that were positive for DWV as measured by real-time RT-PCR. The visual neuropils demonstrated detectable levels of the DWV positive-strand genome. The mushroom bodies and antenna lobe neuropils also showed the presence of the viral genome. Weaker staining with the sense probe in the same regions demonstrates that the antigenome is also present and that the virus is actively replicating in these regions of the brain. These results demonstrate that in bees infected with DWV the virus is replicating in critical regions of the brain, including the neuropils responsible for vision and olfaction. Therefore DWV infection of the brain could adversely affect critical sensory functions and alter normal bee behavior.
Peri-Implantation Hormonal Milieu: Elucidating Mechanisms of Adverse Neurodevelopmental Outcomes.
Mainigi, Monica; Rosenzweig, Jason M; Lei, Jun; Mensah, Virginia; Thomaier, Lauren; Talbot, C Conover; Olalere, Devvora; Ord, Teri; Rozzah, Rayyan; Johnston, Michael V; Burd, Irina
2016-06-01
While live births resulting from assisted reproductive technology (ART) exceed 1% of total births annually, the effect of ART on fetal development is not well understood. Data have demonstrated that IVF leads to alterations in DNA methylation and gene expression in the placenta that may have long-term effects on health and disease. Studies have linked adverse neurodevelopmental outcomes to ART, although human studies are inconclusive. In order to isolate the peri-implantation environment and its effects on brain development, we utilized a mouse model with and without superovulation and examined the effect of adult behavior as well as adult cortical neuronal density. Adult offspring of superovulated dams showed increased anxiety-like behavior compared to offspring of naturally mated dams (P < .05). There was no difference in memory and learning tests between the 2 groups. The adult brains from offspring of superovulated recipients had fewer neurons per field compared to naturally mated control offspring (P < .05). In order to examine potential pathways leading to these changes, we measured messenger RNA and microRNA (miRNA) expression in fetal brains at E18.5. Microarray analysis found that miRNAs miR-122, miR-144, and miR-211, involved in regulation of neuronal migration and differentiation, were downregulated in brains of offspring exposed to a superovulated environment(P < .05). There was also altered expression of genes involved in neuronal development. These results suggest that the peri-implantation environment can affect neurodevelopment and can lead to behavioral changes in adulthood. Human studies with long-term follow-up of children from ART are necessary to further investigate the influence of ART on the offspring. © The Author(s) 2015.
Yap, Marie B H; Whittle, Sarah; Yücel, Murat; Sheeber, Lisa; Pantelis, Christos; Simmons, Julian G; Allen, Nicholas B
2008-12-01
Although some evidence suggests that neuroanatomic abnormalities may confer risk for major depressive disorder, findings are inconsistent. One potential explanation for this is the moderating role of environmental context, with individuals differing in their biological sensitivity to context. To examine the influence of adverse parenting as an environmental moderator of the association between brain structure and depressive symptoms. Cross-sectional measurement of brain structure, adverse parenting, and depressive symptoms in early adolescents. General community. A total of 106 students aged 11 to 13 years (55 males [51%]), recruited from primary schools in Melbourne, Australia, and their mothers. Selection was based on affective temperament, aimed at producing a sample representing a broad range of risk for major depressive disorder. No participant evidenced current or past case-level depressive, substance use, or eating disorder. (1) Volumetric measures of adolescents' amygdala, hippocampus, and anterior cingulate cortex (ACC); (2) frequency of observed maternal aggressive behavior during a mother-adolescent conflict-resolution interaction; and (3) adolescent depressive symptoms. Boys with smaller right amygdalas reported more depressive symptoms. However, neither hippocampal volume nor asymmetry measures of limbic or paralimbic ACC were directly related to level of depressive symptoms. Importantly, frequency of maternal aggressive behaviors moderated the associations between both the amygdala and ACC, and adolescent symptoms. Particularly, in conditions of low levels of maternal aggressiveness, boys with larger right amygdalas, girls with smaller bilateral amygdalas, and both boys and girls with smaller left paralimbic ACC reported fewer symptoms. These findings help elucidate the complex relationships between brain structure, environmental factors, and depressive symptoms. Further longitudinal research is required to examine how these factors contribute to the onset of case-level disorder, but given that family context risk factors are modifiable, our findings do suggest the potential utility of targeted early parenting interventions.
Xin, Yong; Guo, WenWen; Yang, Chun Sheng; Huang, Qian; Zhang, Pei; Zhang, Long Zhen; Jiang, Guan
2018-04-01
The aim of this meta-analysis was to compare the efficiency of whole-brain radiotherapy (WBRT) plus temozolomide (TMZ) with WBRT for the treatment of brain metastases from non-small-cell lung cancer (NSCLC). For dichotomous variables, outcomes were reported as relative risk ratio (RR) and 95% confidence interval (CI) was used to investigate the following outcome measures: overall response rate, headache, gastrointestinal adverse reactions, and hematological adverse reactions. Twelve randomized controlled trials involving 925 participants (480 received WBRT plus TMZ; 445 received WBRT) were included in the meta-analysis. There was a significant difference between the overall response rate (RR = 1.40, 95% CI 1.24-1.57; Z = 5.51; P < 0.00001), gastrointestinal adverse reactions (RR = 1.46, 95% CI 1.05-2.04; Z = 2.27; P = 0.02), and hematological adverse reactions (RR = 1.45, 95% CI 1.04-2.02; Z = 2.21; P = 0.03) of patients treated with WBRT plus TMZ compared with patients treated with WBRT alone. There was no significant difference between headaches (RR = 1.11, 95% CI 0.93-1.02; Z = 1.13; P = 0.26) in patients treated with WBRT plus TMZ compared with patients treated with WBRT alone. In conclusion, the currently available evidence shows that WBRT plus TMZ increases the overall response rate in patients with brain metastases of NSCLC compared with WBRT alone. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Lopes, Fernanda Moreira; Caldas, Sergiane Souza; Primel, Ednei Gilberto; da Rosa, Carlos Eduardo
2017-04-01
It has been demonstrated that glyphosate-based herbicides are toxic to animals. In the present study, reactive oxygen species (ROS) generation, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO), as well as the activity and expression of the acetylcholinesterase (AChE) enzyme, were evaluated in Danio rerio males exposed to 5 or 10 mg/L of glyphosate for 24 and 96 h. An increase in ACAP in gills after 24 h was observed in the animals exposed to 5 mg/L of glyphosate. A decrease in LPO was observed in brain tissue of animals exposed to 10 mg/L after 24 h, while an increase was observed in muscle after 96 h. No significant alterations were observed in ROS generation. AChE activity was not altered in muscles or brains of animals exposed to either glyphosate concentration for 24 or 96 h. However, gene expression of this enzyme in the brain was reduced after 24 h and was enhanced in both brain and muscle tissues after 96 h. Thus, contrary to previous findings that had attributed the imbalance in the oxidative state of animals exposed to glyphosate-based herbicides to surfactants and other inert compounds, the present study demonstrated that glyphosate per se promotes this same effect in zebrafish males. Although glyphosate concentrations did not alter AChE activity, this study demonstrated for the first time that this molecule affects ache expression in male zebrafish D. rerio.
Exercise, cognitive function, and aging
2015-01-01
Increasing the lifespan of a population is often a marker of a country's success. With the percentage of the population over 65 yr of age expanding, managing the health and independence of this population is an ongoing concern. Advancing age is associated with a decrease in cognitive function that ultimately affects quality of life. Understanding potential adverse effects of aging on brain blood flow and cognition may help to determine effective strategies to mitigate these effects on the population. Exercise may be one strategy to prevent or delay cognitive decline. This review describes how aging is associated with cardiovascular disease risks, vascular dysfunction, and increasing Alzheimer's disease pathology. It will also discuss the possible effects of aging on cerebral vascular physiology, cerebral perfusion, and brain atrophy rates. Clinically, these changes will present as reduced cognitive function, neurodegeneration, and the onset of dementia. Regular exercise has been shown to improve cognitive function, and we hypothesize that this occurs through beneficial adaptations in vascular physiology and improved neurovascular coupling. This review highlights the potential interactions and ideas of how the age-associated variables may affect cognition and may be moderated by regular exercise. PMID:26031719
Neurogenetics and Epigenetics in Impulsive Behaviour: Impact on Reward Circuitry
Archer, Trevor; Oscar-Berman, Marlene; Blum, Kenneth; Gold, Mark
2012-01-01
Adverse, unfavourable life conditions, particularly during early life stages and infancy, can lead to epigenetic regulation of genes involved in stress-response, behavioral disinhibition, and cognitive-emotional systems. Over time, the ultimate final outcome can be expressed through behaviors bedeviled by problems with impulse control, such as eating disorders, alcoholism, and indiscriminate social behavior. While many reward gene polymorphisms are involved in impulsive behaviors, a polymorphism by itself may not translate to the development of a particular behavioral disorder unless it is impacted by epigenetic effects. Brain-derived neurotrophic factor (BDNF) affects the development and integrity of the noradrenergic, dopaminergic, serotonergic, glutamatergic, and cholinergic neurotransmitter systems, and plasma levels of the neurotrophin are associated with both cognitive and aggressive impulsiveness. Epigenetic mechanisms associated with a multitude of environmental factors, including premature birth, low birth weight, prenatal tobacco exposure, non-intact family, young maternal age at birth of the target child, paternal history of antisocial behavior, and maternal depression, alter the developmental trajectories for several neuropsychiatric disorders. These mechanisms affect brain development and integrity at several levels that determine structure and function in resolving the final behavioral expressions. PMID:23264884
Metals and cholesterol: two sides of the same coin in Alzheimer’s disease pathology
Wong, Bruce X.; Hung, Ya Hui; Bush, Ashley I.; Duce, James A.
2014-01-01
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease. It begins years prior to the onset of clinical symptoms, such as memory loss and cognitive decline. Pathological hallmarks of AD include the accumulation of β-amyloid in plaques and hyperphosphorylated tau in neurofibrillary tangles. Copper, iron, and zinc are abnormally accumulated and distributed in the aging brain. These metal ions can adversely contribute to the progression of AD. Dysregulation of cholesterol metabolism has also been implicated in the development of AD pathology. To date, large bodies of research have been carried out independently to elucidate the role of metals or cholesterol on AD pathology. Interestingly, metals and cholesterol affect parallel molecular and biochemical pathways involved in AD pathology. The possible links between metal dyshomeostasis and altered brain cholesterol metabolism in AD are reviewed. PMID:24860500
Mulholland, Patrick J; Self, Rachel L; Harris, Barton R; Littleton, John M; Prendergast, Mark A
2004-11-25
Exposure to high levels of glucocorticoids (GCs) may adversely affect neuronal viability, particularly in the developing hippocampus, via increased function or sensitivity of N-methyl-D-aspartate (NMDA)-type glutamate receptors. Conversely, choline supplementation in the developing brain may reduce the severity of subsequent insult. The present studies aimed to examine the extent to which short-term exposure to high concentrations of corticosterone would produce neuronal injury mediated by NMDA receptor activity. These studies also assessed the ability of choline to prevent this form of injury via interactions with nicotinic acetylcholine receptors (nAChRs) expressing the alpha7 subunit. Organotypic hippocampal slice cultures derived from neonatal rat were pre-treated for 72 h with corticosterone (100 nM) alone or with choline (0.1-10 mM), prior to a brief (1 h) NMDA exposure (5 microM). NMDA exposure produced significant cellular damage, reflected as increased fluorescence of the non-vital marker propidium iodide, in the CA1 region. While exposure to corticosterone alone did not produce damage, pre-treatment of cultures with corticosterone markedly exacerbated NMDA-induced toxicity. Pre-treatment with choline (> or =1 mM) alone or in combination with corticosterone markedly reduced subsequent NMDA toxicity, effects blocked by co-exposure to methyllycaconitine (100 nM), an antagonist active at nAChRs expressing the alpha7 subunit. These data suggest that even short-term exposure to high concentrations of GCs may adversely affect neuronal viability and that choline supplementation protects the brain from NMDA receptor-mediated damage, including that associated with hypercortisolemia.
Zucchi, Fabíola C. R.; Yao, Youli; Ilnytskyy, Yaroslav; Robbins, Jerrah C.; Soltanpour, Nasrin; Kovalchuk, Igor; Kovalchuk, Olga; Metz, Gerlinde A. S.
2014-01-01
Prenatal stress (PS) represents a critical variable affecting lifetime health trajectories, metabolic and vascular functions. Beneficial experiences may attenuate the effects of PS and its programming of health outcomes in later life. Here we investigated in a rat model (1) if PS modulates recovery following cortical ischemia in adulthood; (2) if a second hit by adult stress (AS) exaggerates stress responses and ischemic damage; and (3) if tactile stimulation (TS) attenuates the cumulative effects of PS and AS. Prenatally stressed and non-stressed adult male rats underwent focal ischemic motor cortex lesion and were tested in skilled reaching and skilled walking tasks. Two groups of rats experienced recurrent restraint stress in adulthood and one of these groups also underwent daily TS therapy. Animals that experienced both PS and AS displayed the most severe motor disabilities after lesion. By contrast, TS promoted recovery from ischemic lesion and reduced hypothalamic-pituitary-adrenal axis activity. The data also showed that cumulative effects of adverse and beneficial lifespan experiences interact with disease outcomes and brain plasticity through the modulation of gene expression. Microarray analysis of the lesion motor cortex revealed that cumulative PS and AS interact with genes related to growth factors and transcription factors, which were not affected by PS or lesion alone. TS in PS+AS animals reverted these changes, suggesting a critical role for these factors in activity-dependent motor cortical reorganization after ischemic lesion. These findings suggest that beneficial experience later in life can moderate adverse consequences of early programming to improve cerebrovascular health. PMID:24651125
Cumulative Adversity Sensitizes Neural Response to Acute Stress: Association with Health Symptoms
Seo, Dongju; Tsou, Kristen A; Ansell, Emily B; Potenza, Marc N; Sinha, Rajita
2014-01-01
Cumulative adversity (CA) increases stress sensitivity and risk of adverse health outcomes. However, neural mechanisms underlying these associations in humans remain unclear. To understand neural responses underlying the link between CA and adverse health symptoms, the current study assessed brain activity during stress and neutral-relaxing states in 75 demographically matched, healthy individuals with high, mid, and low CA (25 in each group), and their health symptoms using the Cornell Medical Index. CA was significantly associated with greater adverse health symptoms (P=0.01) in all participants. Functional magnetic resonance imaging results indicated significant associations between CA scores and increased stress-induced activity in the lateral prefrontal cortex, insula, striatum, right amygdala, hippocampus, and temporal regions in all 75 participants (p<0.05, whole-brain corrected). In addition to these regions, the high vs low CA group comparison revealed decreased stress-induced activity in the medial orbitofrontal cortex (OFC) in the high CA group (p<0.01, whole-brain corrected). Specifically, hypoactive medial OFC and hyperactive right hippocampus responses to stress were each significantly associated with greater adverse health symptoms (p<0.01). Furthermore, an inverse correlation was found between activity in the medial OFC and right hippocampus (p=0.01). These results indicate that high CA sensitizes limbic–striatal responses to acute stress and also identifies an important role for stress-related medial OFC and hippocampus responses in the effects of CA on increasing vulnerability to adverse health consequences. PMID:24051900
Cumulative adversity sensitizes neural response to acute stress: association with health symptoms.
Seo, Dongju; Tsou, Kristen A; Ansell, Emily B; Potenza, Marc N; Sinha, Rajita
2014-02-01
Cumulative adversity (CA) increases stress sensitivity and risk of adverse health outcomes. However, neural mechanisms underlying these associations in humans remain unclear. To understand neural responses underlying the link between CA and adverse health symptoms, the current study assessed brain activity during stress and neutral-relaxing states in 75 demographically matched, healthy individuals with high, mid, and low CA (25 in each group), and their health symptoms using the Cornell Medical Index. CA was significantly associated with greater adverse health symptoms (P=0.01) in all participants. Functional magnetic resonance imaging results indicated significant associations between CA scores and increased stress-induced activity in the lateral prefrontal cortex, insula, striatum, right amygdala, hippocampus, and temporal regions in all 75 participants (p<0.05, whole-brain corrected). In addition to these regions, the high vs low CA group comparison revealed decreased stress-induced activity in the medial orbitofrontal cortex (OFC) in the high CA group (p<0.01, whole-brain corrected). Specifically, hypoactive medial OFC and hyperactive right hippocampus responses to stress were each significantly associated with greater adverse health symptoms (p<0.01). Furthermore, an inverse correlation was found between activity in the medial OFC and right hippocampus (p=0.01). These results indicate that high CA sensitizes limbic-striatal responses to acute stress and also identifies an important role for stress-related medial OFC and hippocampus responses in the effects of CA on increasing vulnerability to adverse health consequences.
The Brain in Congenital Heart Disease across the Lifespan: The Cumulative Burden of Injury
Marelli, Ariane; Miller, Steven P.; Marino, Bradley Scott; Jefferson, Angela L.; Newburger, Jane W.
2017-01-01
The number of patients surviving with congenital heart disease (CHD) has soared over the last three decades. Adults constitute the fastest growing segment of the CHD population, now outnumbering children. Research to date on the heart-brain intersection in this population has largely been focused on neurodevelopmental outcomes in childhood and adolescence. Mutations in genes that are highly expressed in heart and brain may cause cerebral dysgenesis. Together with altered cerebral perfusion in utero, these factors are associated with abnormalities of brain structure and brain immaturity in a significant portion of neonates with critical CHD even before they undergo cardiac surgery. In infancy and childhood, the brain may be affected by risk factors related to heart disease itself or to its interventional treatments. As children with CHD become adults, they increasingly develop heart failure, atrial fibrillation, hypertension, diabetes and coronary disease. These acquired cardiovascular comorbidities can be expected to have effects similar to those in the general population on cerebral blood flow, brain volumes, and dementia. In both children and adults, cardiovascular disease may have adverse effects on achievement, executive function, memory, language, social interactions, and quality of life. In summary, against the backdrop of shifting demographics, risk factors for brain injury in the CHD population are cumulative and synergistic. As neurodevelopmental sequelae in children with CHD evolve to cognitive decline or dementia during adulthood, a growing population of CHD can be expected to require support services. We highlight evidence gaps and future research directions. PMID:27185022
Adverse effect versus quality control of the Fuenzalida-Palacios antirabies vaccine.
Nogueira, Y L
1998-01-01
We evaluated the components of the Fuenzalida-Palacios antirabies vaccine, which is till used in most developing countries in human immunization for treatment and prophylaxis. This vaccine is prepared from newborn mouse brains at 1% concentration. Even though the vaccine is considered to have a low myelin content, it is not fully free of myelin or of other undesirable components that might trigger adverse effects after vaccination. The most severe effect is a post-vaccination neuroparalytic accident associated with Guillain-Barré syndrome. In the present study we demonstrate how the vaccines produced and distributed by different laboratories show different component patterns with different degrees of impurity and with varying protein concentrations, indicating that production processes can vary from one laboratory to another. These differences, which could be resolved using a better quality control process, may affect and impair immunization, with consequent risks and adverse effects after vaccination. We used crossed immunoelectrophoresis to evaluate and demonstrate the possibility of quality control in vaccine production, reducing the risk factors possibly involved in these immunizing products.
Chistiakov, Dimitry A; Chekhonin, Vladimir P
2017-06-05
To examine whether chronic physical aggression (CPA) in adulthood can be epigenetically programmed early in life due to exposure to early-life adversity. Literature search of public databases such as PubMed/MEDLINE and Scopus. Children/adolescents susceptible for CPA and exposed to early-life abuse fail to efficiently cope with stress that in turn results in the development of CPA later in life. This phenomenon was observed in humans and animal models of aggression. The susceptibility to aggression is a complex trait that is regulated by the interaction between environmental and genetic factors. Epigenetic mechanisms mediate this interaction. Subjects exposed to stress early in life exhibited long-term epigenetic programming that can influence their behaviour in adulthood. This programming affects expression of many genes not only in the brain but also in other systems such as neuroendocrine and immune. The propensity to adult CPA behaviour in subjects experienced to early-life adversity is mediated by epigenetic programming that involves long-term systemic epigenetic alterations in a whole genome.
Gingnell, Malin; Engman, Jonas; Frick, Andreas; Moby, Lena; Wikström, Johan; Fredrikson, Mats; Sundström-Poromaa, Inger
2013-07-01
Most women on combined oral contraceptives (COC) report high levels of satisfaction, but 4-10% complain of adverse mood effects. The aim of this randomized, double-blinded, placebo-controlled trial was to investigate if COC use would induce more pronounced mood symptoms than placebo in women with previous history of COC-induced adverse mood. A second aim was to determine if COC use is associated with changes in brain reactivity in regions previously associated with emotion processing. Thirty-four women with previous experience of mood deterioration during COC use were randomized to one treatment cycle with a levonorgestrel-containing COC or placebo. An emotional face matching task (vs. geometrical shapes) was administered during functional magnetic resonance imaging (fMRI) prior to and during the COC treatment cycle. Throughout the trial, women recorded daily symptom ratings on the Cyclicity Diagnoser (CD) scale. During the last week of the treatment cycle COC users had higher scores of depressed mood, mood swings, and fatigue than placebo users. COC users also had lower emotion-induced reactivity in the left insula, left middle frontal gyrus, and bilateral inferior frontal gyri as compared to placebo users. In comparison with their pretreatment cycle, the COC group had decreased emotion-induced reactivity in the bilateral inferior frontal gyri, whereas placebo users had decreased reactivity in the right amygdala. COC use in women who previously had experienced emotional side effects resulted in mood deterioration, and COC use was also accompanied by changes in emotional brain reactivity. These findings are of relevance for the understanding of how combined oral contraceptives may influence mood. Placebo-controlled fMRI studies in COC sensitive women could be of relevance for future testing of adverse mood effects in new oral contraceptives. Copyright © 2012 Elsevier Ltd. All rights reserved.
Neurobiological consequences of childhood trauma.
Nemeroff, Charles B
2004-01-01
There is considerable evidence to suggest that adverse early-life experiences have a profound effect on the developing brain. Neurobiological changes that occur in response to untoward early-life stress can lead to lifelong psychiatric sequelae. Children who are exposed to sexual or physical abuse or the death of a parent are at higher risk for development of depressive and anxiety disorders later in life. Preclinical and clinical studies have shown that repeated early-life stress leads to alterations in central neurobiological systems, particularly in the corticotropin-releasing factor system, leading to increased responsiveness to stress. Clearly, exposure to early-life stressors leads to neurobiological changes that increase the risk of psychopathology in both children and adults. Identification of the neurobiological substrates that are affected by adverse experiences in early life should lead to the development of more effective treatments for these disorders. The preclinical and clinical studies evaluating the consequences of early-life stress are reviewed.
Space-brain: The negative effects of space exposure on the central nervous system.
Jandial, Rahul; Hoshide, Reid; Waters, J Dawn; Limoli, Charles L
2018-01-01
Journey to Mars will be a large milestone for all humankind. Throughout history, we have learned lessons about the health dangers associated with exploratory voyages to expand our frontiers. Travelling through deep space, the final frontier, is planned for the 2030s by NASA. The lessons learned from the adverse health effects of space exposure have been encountered from previous, less-lengthy missions. Prolonged multiyear deep space travel to Mars could be encumbered by significant adverse health effects, which could critically affect the safety of the mission and its voyagers. In this review, we discuss the health effects of the central nervous system by space exposure. The negative effects from space radiation and microgravity have been detailed. Future aims and recommendations for the safety of the voyagers have been discussed. With proper planning and anticipation, the mission to Mars can be done safely and securely.
Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain.
Saito, Mariko; Chakraborty, Goutam; Hui, Maria; Masiello, Kurt; Saito, Mitsuo
2016-08-16
Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.
Schuurmans, Juliette; Benders, Manon; Lemmers, Petra; van Bel, Frank
2015-01-01
Preterm infants requiring intensive care experience a large number of stressful and painful procedures. Management of stress and pain is therefore an important issue. This review provides an overview of the research on the use of morphine and its neurodevelopmental effects on this vulnerable group of neonates. A structural literature search of both experimental and clinical data has been done using an electronic database (PubMed), but also relevant reference lists and related articles were used. A total of 39 sources were considered relevant for this review to elucidate the effects of morphine on the developing brain. The results showed that both animal experimental and clinical data displayed conflicting results on the effects of neonatal morphine on neurodevelopmental outcome. However, in contrast to specific short-term neurological outcomes long-term neurodevelopmental outcome does not seem to be adversely affected by morphine. After a careful review of the literature, no definite conclusions concerning the effects of neonatal morphine on the long-term neurodevelopmental outcome in extremely premature neonates can be drawn. More prospectively designed trials should be conducted using reliable and validated pain assessment scores to evaluate effects of morphine on long-term neurodevelopmental outcome to demonstrate a beneficial or adverse effect of morphine in preterm infants.
Ameliorating the biological impacts of childhood adversity: A review of intervention programs.
Purewal Boparai, Sukhdip K; Au, Vanessa; Koita, Kadiatou; Oh, Debora Lee; Briner, Susan; Burke Harris, Nadine; Bucci, Monica
2018-05-01
Childhood adversity negatively impacts the biological development of children and has been linked to poor health outcomes across the life course. The purpose of this literature review is to explore and evaluate the effectiveness of interventions that have addressed an array of biological markers and physical health outcomes in children and adolescents affected by adversity. PubMed, CINAHL, PsychInfo, Sociological Abstracts databases and additional sources (Cochrane, WHO, NIH trial registries) were searched for English language studies published between January 2007 and September 2017. Articles with a childhood adversity exposure, biological health outcome, and evaluation of intervention using a randomized controlled trial study design were selected. The resulting 40 intervention studies addressed cortisol outcomes (n = 20) and a range of neurological, epigenetic, immune, and other outcomes (n = 22). Across institutional, foster care, and community settings, intervention programs demonstrated success overall for improving or normalizing morning and diurnal cortisol levels, and ameliorating the impacts of adversity on brain development, epigenetic regulation, and additional outcomes in children. Factors such as earlier timing of intervention, high quality and nurturant parenting traits, and greater intervention engagement played a role in intervention success. This study underlines progress and promise in addressing the health impacts of adversity in children. Ongoing research efforts should collect baseline data, improve retention, replicate studies in additional samples and settings, and evaluate additional variables, resilience factors, mediators, and long-term implications of results. Clinicians should integrate lessons from the intervention sciences for preventing and treating the health effects of adversity in children and adolescents. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rosa, Araceli; Cuesta, Manuel J; Peralta, Víctor; Zarzuela, Amalia; Serrano, Fermín; Martínez-Larrea, Alfredo; Fañanás, Lourdes
2005-12-15
The neurodevelopmental hypothesis of schizophrenia suggests that adverse genetic loading in conjunction with environmental factors early in fetal life causes a disruption of neural development, decades before the symptomatic manifestation of the disease. Neurocognitive deficits have been observed early on the course of schizophrenia, and their association with an early developmental brain lesion has been postulated. Dermatoglyphics have been analyzed in schizophrenia as markers of prenatal brain injury because of their early fetal ontogenesis and susceptibility to the same environmental factors that can also affect cerebral development. The aim of our study was to conduct a comparative examination of neurocognitive functions and dermatoglyphic variables in 89 sibling pairs discordant for schizophrenia spectrum disorders. Therefore, we investigated the association between these two markers to explore the prenatal origin of cognitive deficits in schizophrenia. The affected siblings were significantly impaired on all the cognitive variables assessed (Wisconsin Card Sorting Test, Trail Making Test and Continuous Performance Test) and had a greater number of dermatoglyphic anomalies. These results suggest the influence of intrauterine environmental factors in the siblings affected with schizophrenia. However, we did not detect a significant association between these two vulnerability markers in the schizophrenic patients, suggesting the role of genetic or late environmental factors in the origin of the neurocognitive deficits found in these patients.
Enhancing Approaches to the Identification and Management of Pseudobulbar Affect.
Crumpacker, David W
2016-09-01
Pseudobulbar affect (PBA) is a socially debilitating condition that primarily affects people with neurologic diseases, such as Alzheimer's disease or multiple sclerosis. This condition is characterized by uncontrolled, exaggerated expressions of laughing or crying-often when the situation does not warrant this behavior. Although the true prevalence of PBA is surprisingly high, this condition remains widely misdiagnosed and underdiagnosed. While its exact etiology is unknown, PBA likely results from disruptions in the brain structures and/or neurotransmitters that regulate emotions. Differential diagnosis of PBA includes ruling out depression or other psychiatric conditions. Treatment of PBA has traditionally centered on antidepressant therapies, but newer therapeutic options include combination agents employing multiple modalities. Therapy should include patient counseling to reassure patients and families that PBA is not the fault of the individual. Counseling should also emphasize safety precautions to minimize adverse events and maximize appropriate adherence to the selected therapies. © Copyright 2016 Physicians Postgraduate Press, Inc.
Jiménez-Castro, Mónica B; Meroño, Noelia; Mendes-Braz, Mariana; Gracia-Sancho, Jordi; Martínez-Carreres, Laia; Cornide-Petronio, Maria Eugenia; Casillas-Ramirez, Araní; Rodés, Juan; Peralta, Carmen
2015-01-01
Most liver grafts undergoing transplantation derive from brain dead donors, which may also show hepatic steatosis, being both characteristic risk factors in liver transplantation. Ischemic preconditioning shows benefits when applied in non-brain dead clinical situations like hepatectomies, whereas it has been less promising in the transplantation from brain dead patients. This study examined how brain death affects preconditioned steatotic and non-steatotic liver grafts undergoing transplantation. Steatotic and non-steatotic grafts from non-brain dead and brain dead-donors were cold stored for 6h and then transplanted. After 2, 4, and 16 h of reperfusion, hepatic damage was analysed. In addition, two therapeutic strategies, ischemic preconditioning and/or acetylcholine pre-treatment, and their underlying mechanisms were characterized. Preconditioning benefits in non-brain dead donors were associated with nitric oxide and acetylcholine generation. In brain dead donors, preconditioning generated nitric oxide but did not promote acetylcholine upregulation, and this resulted in inflammation and damage. Acetylcholine treatment in brain dead donors, through PKC, increased antioxidants and reduced lipid peroxidation, nitrotyrosines and neutrophil accumulation, altogether protecting against damage. The combination of acetylcholine and preconditioning conferred stronger protection against damage, oxidative stress and neutrophil accumulation than acetylcholine treatment alone. These superior beneficial effects were due to a selective preconditioning-mediated generation of nitric oxide and regulation of PPAR and TLR4 pathways, which were not observed when acetylcholine was administered alone. Our findings propose the combination of acetylcholine+preconditioning as a feasible and highly protective strategy to reduce the adverse effects of brain death and to ultimately improve liver graft quality. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
The adverse outcome pathway (AOP) provides a framework for organizing knowledge to define links between a molecular initiating event (MIE) and an adverse outcome (AO) occurring at a higher level of biological organization, such as the individual or population. The AOP framework p...
Mishra, Manoj K; Beaty, Claude A; Lesniak, Wojciech G; Kambhampati, Siva P; Zhang, Fan; Wilson, Mary A; Blue, Mary E; Troncoso, Juan C; Kannan, Sujatha; Johnston, Michael V; Baumgartner, William A; Kannan, Rangaramanujam M
2014-03-25
Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer-drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems.
2015-01-01
Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer–drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems. PMID:24499315
Herringa, Ryan J; Burghy, Cory A; Stodola, Diane E; Fox, Michelle E; Davidson, Richard J; Essex, Marilyn J
2016-07-01
Much research has focused on the deleterious neurobiological effects of childhood adversity that may underlie internalizing disorders. While most youth show emotional adaptation following adversity, the corresponding neural mechanisms remain poorly understood. In this longitudinal community study, we examined the associations among childhood family adversity, adolescent internalizing symptoms, and their interaction on regional brain activation and amygdala/hippocampus functional connectivity during emotion processing in 132 adolescents. Consistent with prior work, childhood adversity predicted heightened amygdala reactivity to negative, but not positive, images in adolescence. However, amygdala reactivity was not related to internalizing symptoms. Furthermore, childhood adversity predicted increased fronto-amygdala connectivity to negative, but not positive, images, yet only in lower internalizing adolescents. Childhood adversity also predicted increased fronto-hippocampal connectivity to negative images, but was not moderated by internalizing. These findings were unrelated to adolescence adversity or externalizing symptoms, suggesting specificity to childhood adversity and adolescent internalizing. Together, these findings suggest that adaptation to childhood adversity is associated with augmentation of fronto-subcortical circuits specifically for negative emotional stimuli. Conversely, insufficient enhancement of fronto-amygdala connectivity, with increasing amygdala reactivity, may represent a neural signature of vulnerability for internalizing by late adolescence. These findings implicate early childhood as a critical period in determining the brain's adaptation to adversity, and suggest that even normative adverse experiences can have significant impact on neurodevelopment and functioning. These results offer potential neural mechanisms of adaptation and vulnerability which could be used in the prediction of risk for psychopathology following childhood adversity.
Genetic Engineering: A Possible Strategy for Protein-Energy Malnutrition Regulation.
Guleria, Praveen; Kumar, Vineet; Guleria, Shiwani
2017-12-01
Protein-energy malnutrition (PEM) has adversely affected the generations of developing countries. It is a syndrome that in severity causes death. PEM generally affects infants of 1-5 age group. This manifestation is maintained till adulthood in the form of poor brain and body development. The developing nations are continuously making an effort to curb PEM. However, it is still a prime concern as it was in its early years of occurrence. Transgenic crops with high protein and enhanced nutrient content have been successfully developed. Present article reviews the studies documenting genetic engineering-mediated improvement in the pulses, cereals, legumes, fruits and other crop plants in terms of nutritional value, stress tolerance, longevity and productivity. Such genetically engineered crops can be used as a possible remedial tool to eradicate PEM.
Lansing, Amy E; Virk, Agam; Notestine, Randy; Plante, Wendy Y; Fennema-Notestine, Christine
2016-08-30
Delinquent youth have substantial trauma exposure, with life-course persistent delinquents [LCPD] demonstrating notably elevated cross-diagnostic psychopathology and cognitive deficits. Because adolescents remain in the midst of brain and neurocognitive development, tailored interventions are key to improving functional outcomes. This structural magnetic resonance imaging study compared neuroanatomical profiles of 23 LCPD and 20 matched control adolescent boys. LCPD youth had smaller overall gray matter, and left hippocampal, volumes alongside less cortical surface area and folding within the left pars opercularis and supramarginal cortex. LCPD youth had more adversity-related exposures, and their higher Cumulative Trauma, Adversity and Grief [C-TAG] symptoms were associated with less surface area and folding in the pars opercularis and lingual gyrus. Neuroanatomical differences between LCPD and control youth overlap with data from both maltreatment and antisocial literatures. The affected left frontal regions also share connections to language- and executive-related functions, aligning well with LCPD youths' cognitive and behavioral difficulties. These data also dovetail with research suggesting the possibility of neurodevelopmental delays or disruptions related to cumulative adversity burden. Thus, concurrent treatment of LCPD youths' C-TAG symptoms and, cognitive deficits with overlapping neuroanatomical bases, may be most effective in improving outcomes and optimizing neurodevelopmental trajectories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
What is a psychosis and where is it located?
Saugstad, Letten F
2008-06-01
Kraepelin's dichotomy, manic-depressive insanity and dementia praecox, are contrasting and true endogenous disease entities which affect excitability, the fundamental property of the CNS. Kraepelin wanted to establish a valid classification and hit the extremes in brain structure and function at a time when we had no knowledge of brain dysfunction in "functional" psychoses. The aetiology is now known: the psychoses are part of human growth and maturation and might be classified according to their brain dysfunction, which is exactly what Kraepelin wanted. However, presumably to reduce the stigma attached to the word "psychosis", there is currently a strong initiative to eliminate the concept. But knowledge of what is happening in the brain in a psychosis might be more helpful in reducing stigma. It is suggested that psychosis is due to an affection of the supplementary motor area (SMA), located at the centre of the Medial Frontal Lobe network. The SMA is one of the rare universally connected areas of the brain, as should be the case for such a key structure that makes decisions as to the right moment for action. This important network, which partly has continuous neurogenesis, has sufficiently widespread connections. The SMA, a premotor area located on the medial side of the frontal lobes, is one of the last regions to reach a concurrence of synaptogenesis. An affection of the SMA, a deficient or abolished Delayed Response Task, seriously disturbs our relation and adaptation to the surroundings. We usually master the Delayed Response Task around the age of 7 months, a time at which the second CNS regressive event takes place, which proceeds from the posterior to the anterior of the brain. In very late maturation, a persistent affection of the SMA might occur. We experience a chronic psychosis: infantile autism (IA), a chronic inability to act consciously, which contrasts with the episodic SMA affection post-puberty, when excitation is reduced due to excessive pruning of excitatory synapses. Silent spots are the result of insufficient fill-in mechanisms following a breakdown of circuitry. They may affect the SMA in the case of very late puberty. An acute reduction in excitation and concomitantly a marked increase in silent spots might lead to an acute psychosis. A frontal preference is likely, given that a reduction might occur anywhere in the cortex, but particularly in the areas maturing latest. The varying localisations probably explain the difficulty in accepting schizophrenia as a disease entity. The multifactorial inheritance of the dichotomy implies that the genetics are not fate, a psychotic development might be prevented given enough epigenetic factors: brain food (omega 3). Might the present dietary adversity, with its lack of brain food, be responsible for a rising incidence in psychosis? A psychosis is an understandable and preventable dysfunction of the brain, and its mechanisms are known. Primarily a disorder of reduced excitation in an attenuated CNS, this explains why all the neuroleptics are convulsants, raising excitation, in contrast to all antidepressives, which are anti-epileptic.
Wilford, Justin; Buchbinder, David; Fortier, Michelle A; Osann, Kathryn; Shen, Violet; Torno, Lilibeth; Sender, Leonard S; Parsons, Susan K; Wenzel, Lari
Psychosocial sequelae of diagnosis and treatment for childhood brain tumor survivors are significant, yet little is known about their impact on adolescent and young adult (AYA) brain tumor survivors. Interviews were conducted with parents of AYA brain tumor survivors with a focus on social functioning. Semistructured interviews were conducted with English- and Spanish-speaking parents of AYA brain tumor survivors ≥10 years of age who were >2 years postdiagnosis, and analyzed using emergent themes theoretically integrated with a social neuroscience model of social competence. Twenty parents representing 19 survivors with a survivor mean age 15.7 ± 3.3 years and 10.1 ± 4.8 years postdiagnosis were interviewed. Several themes relevant to the social neuroscience social competence model emerged. First, parents' perceptions of their children's impaired social functioning corroborated the model, particularly with regard to poor social adjustment, social withdrawal, impaired social information processing, and developmentally inappropriate peer communication. Second, ongoing physical and emotional sequelae of central nervous system insults were seen by parents as adversely affecting social functioning among survivors. Third, a disrupted family environment and ongoing parent psychosocial distress were experienced as salient features of daily life. We document that the aforementioned framework is useful for understanding the social impact of diagnosis and treatment on AYA brain tumor survivorship. Moreover, the framework highlights areas of intervention that may enhance social functioning for AYA brain tumor survivors.
Yang, Zhen-Zhen; Zhang, Yan-Qing; Wang, Zhan-Zhang; Wu, Kai; Lou, Jin-Ning; Qi, Xian-Rong
2013-08-16
Alzheimer's disease (AD) is a common progressive neurodegenerative disorder associated with cholinergic neurons degeneration. The blood-brain barrier (BBB) not only provides protection for the brain but also hinders the treatment and diagnosis of this neurological disease, because the drugs must cross BBB to reach the lesions. The present work was aimed at formulating rivastigmine liposomes (Lp) and cell-penetrating peptide (CPP) modified liposomes (CPP-Lp) to improve rivastigmine distribution in brain and proceed to enhance pharmacodynamics by intranasal (IN) administration and minimize side effects. The results revealed that Lp especially the CPP-Lp can enhance the permeability across the BBB by murine brain microvascular endothelial cells model in vitro. IN administration of rivastigmine solution and rivastigmine liposomes demonstrated the capacity to improve rivastigmine distribution and adequate retention in CNS regions especially in hippocampus and cortex, which were the regions most affected by AD, than that of IV administration. Importantly, the lagging but intense inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities were relative to the extended release, absorption and retention. In addition, there was very mild nasal toxicity of liposomal formulations. The data suggest that rivastigmine liposomes especially CPP-Lp improve the brain delivery and enhance pharmacodynamics which respect to BBB penetration and nasal olfactory pathway into brain after IN administration, and simultaneously decrease the hepatic first pass metabolism and gastrointestinal adverse effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana
2016-01-01
Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases. PMID:27069362
Organochlorine Pesticides in Gonad, Brain, and Blood of Mice in Two Agricultural Areas of Sinaloa.
Perez-Gonzalez, Ernestina; Osuna-Martinez, Ulises-Giovanni; Herrera-Moreno, Maria-Nancy; Rodriguez-Meza, Guadalupe-Durga; Gonzalez-Ocampo, Hector-A; Bucio-Pacheco, Marcos
2017-04-01
The adverse effect of pesticides on non-target wildlife and human health is a primary concern in the world, but in Mexico, we do not know which wildlife species are at the greatest risk. The aim of this study was to determine organochlorine pesticides in mice of two agricultural fields in Sinaloa, Culiacan and Guasave. Procedures of extraction, analysis, and quantification were followed according to the modified EPA 8081b method. In three mouse tissues (gonad, brain, and blood), γBHC and decachlorobiphenyl with a frequency higher than 50% and endosulfan sulfate with 43% were observed. The wildlife fauna living in agricultural areas are at great risk due to: (1) diversity of the chemicals used for pest control, like mice, and (2) variety of organochlorine pesticides in direct or indirect contact with non-target organisms, affecting the health of animals and humans (toxic effects and accumulation).
Zollman, Felise S; Larson, Eric B; Wasek-Throm, Laura K; Cyborski, Cherina M; Bode, Rita K
2012-01-01
: To assess the efficacy of acupuncture in treating insomnia in traumatic brain injury (TBI) survivors as compared to medication, to determine whether acupuncture has fewer cognitive and affective adverse effects than does medication. : Twenty-four adult TBI survivors, randomized to acupuncture or control arms. : Outpatient rehabilitation clinic. : Insomnia Severity Index (degree of insomnia); actigraphy (sleep time); Hamilton Depression Rating Scale (depression); Repeatable Battery for the Assessment of Neuropsychological Status and Paced Auditory Serial Addition Test (cognitive function) administered at baseline and postintervention. : Sleep time did not differ between the treatment and control groups after intervention, whereas cognition improved in the former but not the latter. : Acupuncture has a beneficial effect on perception of sleep or sleep quality and on cognition in our small sample of patients with TBI. Further studies of this treatment modality are warranted to validate these findings and to explore factors that contribute to treatment efficacy.
van der Meer, Dennis; Hartman, Catharina A; van Rooij, Daan; Franke, Barbara; Heslenfeld, Dirk J; Oosterlaan, Jaap; Faraone, Stephen V; Buitelaar, Jan K; Hoekstra, Pieter J
2017-03-01
Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by impaired response inhibition; both have been associated with aberrant dopamine signalling. Given that prenatal exposure to alcohol or smoking is known to affect dopamine-rich brain regions, we hypothesized that individuals carrying the ADHD risk alleles of the dopamine receptor D4 ( DRD4 ) and dopamine transporter ( DAT1 ) genes may be especially sensitive to their effects. Functional MRI data, information on prenatal adversities and genetic data were available for 239 adolescents and young adults participating in the multicentre ADHD cohort study NeuroIMAGE (average age 17.3 yr). We analyzed the effects of DRD4 and DAT1 , prenatal exposure to alcohol and smoking and their interactions on ADHD severity, response inhibition and neural activity. We found no significant gene × environment interaction effects. We did find that the DRD4 7-repeat allele was associated with less superior frontal and parietal brain activity and with greater activity in the frontal pole and occipital cortex. Prenatal exposure to smoking was also associated with lower superior frontal activity, but with greater activity in the parietal lobe. Further, those exposed to alcohol had more activity in the lateral orbitofrontal cortex, and the DAT1 risk variant was associated with lower cerebellar activity. Retrospective reports of maternal substance use and the cross-sectional study design restrict causal inference. While we found no evidence of gene × environment interactions, the risk factors under investigation influenced activity of brain regions associated with response inhibition, suggesting they may add to problems with inhibiting behaviour.
McGregor, I S; Callaghan, P D; Hunt, G E
2008-05-01
Addictive drugs can profoundly affect social behaviour both acutely and in the long-term. Effects range from the artificial sociability imbued by various intoxicating agents to the depressed and socially withdrawn state frequently observed in chronic drug users. Understanding such effects is of great potential significance in addiction neurobiology. In this review we focus on the 'social neuropeptide' oxytocin and its possible role in acute and long-term effects of commonly used drugs. Oxytocin regulates social affiliation and social recognition in many species and modulates anxiety, mood and aggression. Recent evidence suggests that popular party drugs such as MDMA and gamma-hydroxybutyrate (GHB) may preferentially activate brain oxytocin systems to produce their characteristic prosocial and prosexual effects. Oxytocin interacts with the mesolimbic dopamine system to facilitate sexual and social behaviour, and this oxytocin-dopamine interaction may also influence the acquisition and expression of drug-seeking behaviour. An increasing body of evidence from animal models suggests that even brief exposure to drugs such as MDMA, cannabinoids, methamphetamine and phencyclidine can cause long lasting deficits in social behaviour. We discuss preliminary evidence that these adverse effects may reflect long-term neuroadaptations in brain oxytocin systems. Laboratory studies and preliminary clinical studies also indicate that raising brain oxytocin levels may ameliorate acute drug withdrawal symptoms. It is concluded that oxytocin may play an important, yet largely unexplored, role in drug addiction. Greater understanding of this role may ultimately lead to novel therapeutics for addiction that can improve mood and facilitate the recovery of persons with drug use disorders.
NASA Astrophysics Data System (ADS)
Sekino, Masaki; Ueno, Shoogo
2002-05-01
We compared current density distributions in electroconvulsive therapy (ECT) and transcranial magnetic stimulation (TMS) by numerical calculations. The model consisted of an air region and three types of tissues with different conductivities representing the brain, the skull, and the scalp. In the ECT model, electric currents were applied through electrodes with a voltage of 100 V. In the TMS model, a figure-eight coil (6 cm diameter per coil) was placed on the vertex of the head model. An alternating current with a peak intensity of 3.0 kA and a frequency of 4.2 kHz was applied to the coil. The maximum current densities inside the brain in ECT (bilateral electrode position) and TMS were 234 and 322 A/m2, respectively. The results indicate that magnetic stimulators can generate comparable current densities to ECT. While the skull significantly affected current distributions in ECT, TMS efficiently induced eddy currents in the brain. In addition, TMS is more beneficial than ECT because the localized current distribution reduces the risk of adverse side effects.
Biodegradable DNA Nanoparticles that Provide Widespread Gene Delivery in the Brain
Mastorakos, Panagiotis; Song, Eric; Zhang, Clark; Berry, Sneha; Park, Hee Won; Kim, Young Eun; Park, Jong Sung; Lee, Seulki; Suk, Jung Soo; Hanes, Justin
2016-01-01
Successful gene therapy of neurological disorders is predicated on achieving widespread and uniform transgene expression throughout the affected disease area in the brain. However, conventional gene vectors preferentially travel through low-resistance perivascular spaces and/or are confined to the administration site even with the aid of a pressure-driven flow provided by convection-enhanced delivery. Biodegradable DNA nanoparticles offer a safe gene delivery platform devoid of adverse effects associated with virus-based or synthetic non-biodegradable systems. Using a state-of-the-art biodegradable polymer, poly(β-amino ester), we engineered colloidally stable sub-100 nm DNA nanoparticles coated with a non-adhesive polyethylene glycol corona that are able to avoid the adhesive and steric hindrances imposed by the extracellular matrix. Following convection enhanced delivery, these brain-penetrating nanoparticles were able to homogeneously distribute throughout the rodent striatum and mediate widespread and high-level transgene expression. These nanoparticles provide a biodegradable DNA nanoparticle platform enabling uniform transgene expression patterns in vivo and hold promise for the treatment of neurological diseases. PMID:26680637
DeLisi, Lynn E.
2015-01-01
Purpose of This Review This review explores what is known about cannabis’s association with schizophrenia, cannabis’s effects on the brain, and whether the brain changes known to be present in schizophrenia could be caused by cannabis and thus lead to a psychosis. Recent Findings The heavy use of cannabis is known to be associated with some adverse consequences, such as the occurrence of acute psychotic episodes and the development of chronic schizophrenia in some people even after its use has terminated. Recent studies have produced controversy about whether cannabis in heavy use can cause irreversible brain damage, particularly to adolescents and thus, whether a chronic psychosis could be a result of brain changes caused by cannabis. Summary From the evidence that exists, it appears that the above view is unlikely and that cannabis may even have benign effects on brain structure, not producing deleterious damage. However, its neurochemical interactions with the dopaminergic pathway may, particularly in genetically vulnerable individuals, have adverse consequences. PMID:18332661
Yam, Kit-Yi; Naninck, Eva F G; Schmidt, Mathias V; Lucassen, Paul J; Korosi, Aniko
2015-01-01
Clinical and pre-clinical studies have shown that early-life adversities, such as abuse or neglect, can increase the vulnerability to develop psychopathologies and cognitive decline later in life. Remarkably, the lasting consequences of stress during this sensitive period on the hypothalamic-pituitary-adrenal axis and emotional function closely resemble the long-term effects of early malnutrition and suggest a possible common pathway mediating these effects. During early-life, brain development is affected by both exogenous factors, like nutrition and maternal care as well as by endogenous modulators including stress hormones. These elements, while mostly considered for their independent actions, clearly do not act alone but rather in a synergistic manner. In order to better understand how the programming by early-life stress takes place, it is important to gain further insight into the exact interplay of these key elements, the possible common pathways as well as the underlying molecular mechanisms that mediate their effects. We here review evidence that exposure to both early-life stress and early-life under-/malnutrition similarly lead to life-long alterations on the neuroendocrine stress system and modify emotional functions. We further discuss how the different key elements of the early-life environment interact and affect one another and next suggest a possible role for the early-life adversity induced alterations in metabolic hormones and nutrient availability in shaping later stress responses and emotional function throughout life, possibly via epigenetic mechanisms. Such knowledge will help to develop intervention strategies, which gives the advantage of viewing the synergistic action of a more complete set of changes induced by early-life adversity.
Development of a Human Neurovascular Unit Organotypic Systems Model of Early Brain Development
The inability to model human brain and blood-brain barrier development in vitro poses a major challenge in studies of how chemicals impact early neurogenic periods. During human development, disruption of thyroid hormone (TH) signaling is related to adverse morphological effects ...
Weaver, Frances M; Follett, Kenneth; Stern, Matthew; Hur, Kwan; Harris, Crystal; Marks, William J; Rothlind, Johannes; Sagher, Oren; Reda, Domenic; Moy, Claudia S; Pahwa, Rajesh; Burchiel, Kim; Hogarth, Penelope; Lai, Eugene C; Duda, John E; Holloway, Kathryn; Samii, Ali; Horn, Stacy; Bronstein, Jeff; Stoner, Gatana; Heemskerk, Jill; Huang, Grant D
2009-01-07
Deep brain stimulation is an accepted treatment for advanced Parkinson disease (PD), although there are few randomized trials comparing treatments, and most studies exclude older patients. To compare 6-month outcomes for patients with PD who received deep brain stimulation or best medical therapy. Randomized controlled trial of patients who received either deep brain stimulation or best medical therapy, stratified by study site and patient age (< 70 years vs > or = 70 years) at 7 Veterans Affairs and 6 university hospitals between May 2002 and October 2005. A total of 255 patients with PD (Hoehn and Yahr stage > or = 2 while not taking medications) were enrolled; 25% were aged 70 years or older. The final 6-month follow-up visit occurred in May 2006. Bilateral deep brain stimulation of the subthalamic nucleus (n = 60) or globus pallidus (n = 61). Patients receiving best medical therapy (n = 134) were actively managed by movement disorder neurologists. The primary outcome was time spent in the "on" state (good motor control with unimpeded motor function) without troubling dyskinesia, using motor diaries. Other outcomes included motor function, quality of life, neurocognitive function, and adverse events. Patients who received deep brain stimulation gained a mean of 4.6 h/d of on time without troubling dyskinesia compared with 0 h/d for patients who received best medical therapy (between group mean difference, 4.5 h/d [95% CI, 3.7-5.4 h/d]; P < .001). Motor function improved significantly (P < .001) with deep brain stimulation vs best medical therapy, such that 71% of deep brain stimulation patients and 32% of best medical therapy patients experienced clinically meaningful motor function improvements (> or = 5 points). Compared with the best medical therapy group, the deep brain stimulation group experienced significant improvements in the summary measure of quality of life and on 7 of 8 PD quality-of-life scores (P < .001). Neurocognitive testing revealed small decrements in some areas of information processing for patients receiving deep brain stimulation vs best medical therapy. At least 1 serious adverse event occurred in 49 deep brain stimulation patients and 15 best medical therapy patients (P < .001), including 39 adverse events related to the surgical procedure and 1 death secondary to cerebral hemorrhage. In this randomized controlled trial of patients with advanced PD, deep brain stimulation was more effective than best medical therapy in improving on time without troubling dyskinesias, motor function, and quality of life at 6 months, but was associated with an increased risk of serious adverse events. clinicaltrials.gov Identifier: NCT00056563.
Modeling the impact of COPD on the brain.
Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing
2008-01-01
Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable-COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p < or = 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities.
Modeling the impact of COPD on the brain
Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing
2008-01-01
Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p ≤ 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities. PMID:18990971
Ebuehi, O A T; Ajayl, O E; Onyeulor, A L; Awelimobor, D
2011-01-01
Energy drinks are canned or bottled carbonated beverages that contain large amounts of caffeine and sugar with additional ingredients, such as B-Vitamins, amino acids and herbal stimulants. Previous reports have shown that consumption of large amounts of these energy drinks may result in adverse health consequences. The present study is to ascertain if oral administration of energy drinks, such as "power horse" and "red bull", may affect blood chemistry, tissue histology and acetyl choline levels in rabbits. Five ml of power horse and red bull energy drinks, caffeine and saline (control) were orally administered daily for 36 days to rabbits. Body weight, feed and water intake were measured every other day. The blood samples were taken by cardiac puncture for blood chemistry measurement and their liver, heart and brain tissues were used for histological assay. The plasma, liver, brain and heart acetylcholine levels were also determined. There were no significant differences in the body weight, feed intake and organ weights of rabbits administered energy drinks or caffeine as compared to the control. The blood chemistry results showed that the activities of the aspartate and alanine amino transferase, concentrations of plasma creatinine, uric acid and albumin were increased in the control as compared to the red bull and caffeine administered rabbits. The concentrations of total protein, total cholesterol, triglyceride, high density lipoprotein (HDL) and low density lipoprotein (LDL) and glucose concentrations were increased in power horse and red bull administered rabbits as compared to caffeine administered rabbits and control rabbits. The concentrations of plasma and brain acetylcholine of rabbits administered power horse and red bull were significantly higher than in the control, while it was lower in liver and heart acetyl choline levels. The histopathological findings of the brain and liver show that there were no obvious histopathological abnormalities in the brain, liver and heart of rabbits administered power horse or red bull and caffeine as compared to the control rabbits. Data of the present study indicate that oral administration of the energy drinks, specifically power horse and red bull, affected blood chemistry, liver enzymes activities, but do not significantly affect the histopathology of the brain, heart and liver of the rabbits. This findings suggest that energy drinks may alter cholinergic neurotransmission and neural functions mediated by acetylcholine.
Shijo, Katsunori; Ghavim, Sima; Harris, Neil G.; Hovda, David A.; Sutton, Richard L.
2015-01-01
The impact of hyperglycemia after traumatic brain injury (TBI), and even the administration of glucose–containing solutions to head injured patients, remains controversial. In the current study adult male Sprague-Dawley rats were tested on behavioral tasks and then underwent surgery to induce sham injury or unilateral controlled cortical impact (CCI) injury followed by injections (i.p.) with either a 50% glucose solution (Glc; 2 g/kg) or an equivalent volume of either 0.9% or 8% saline (Sal) at 0, 1, 3 and 6 h post-injury. The type of saline treatment did not significantly affect any outcome measures, so these data were combined. Rats with CCI had significant deficits in beam-walking traversal time and rating scores (p’s <0.001 versus sham) that recovered over test sessions from 1 to 13 days post-injury (p’s <0.001), but these beam-walking deficits were not affected by Glc versus Sal treatments. Persistent post-CCI deficits in forelimb contraflexion scores and forelimb tactile placing ability were also not differentially affected by Glc or Sal treatments. However, deficits in latency to retract the right hind limb after limb extension were significantly attenuated in the CCI-Glc group (p<0.05 versus CCI-Sal). Both CCI groups were significantly impaired in a plus maze test of spatial working memory on days 4, 9 and 14 post-surgery (p<0.001 versus sham), and there was no effect of Glc versus Sal on this cognitive outcome measure. At 15 days post-surgery the loss of cortical tissue volume (p<0.001 versus sham) was significantly less in the CCI-Glc group (30.0%; p<0.05) compared to the CCI-Sal group (35.7%). Counts of surviving hippocampal hilar neurons revealed a significant (~40%) loss ipsilateral to CCI (p<0.001 versus sham), but neuronal loss in the hippocampus was not different in the CCI-Sal and CCI-Glc groups. Taken together, these results indicate that an early elevation of blood glucose may improve some neurological outcomes and, importantly, the induction of hyperglycemia after isolated TBI did not adversely affect any sensorimotor, cognitive or histological outcomes. PMID:25911580
Lassa-Vesicular Stomatitis Chimeric Virus Safely Destroys Brain Tumors
Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N.; Cepko, Connie
2015-01-01
ABSTRACT High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. IMPORTANCE Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We tested a series of chimeric viruses containing genes coding for VSV, together with a gene coding for the glycoprotein from other viruses, including Ebola virus, Lassa virus, LCMV, rabies virus, and Marburg virus, which was substituted for the VSV glycoprotein gene. Ebola and Lassa chimeric viruses were safe in the brain and targeted brain tumors. Lassa-VSV was particularly effective, showed no adverse side effects even when injected directly into the brain, and targeted and destroyed two different types of deadly brain cancer, including glioblastoma and melanoma. PMID:25878115
Helbok, Raimund; Olson, DaiWai M; Le Roux, Peter D; Vespa, Paul
2014-12-01
The effect of intracranial pressure (ICP) and the role of ICP monitoring are best studied in traumatic brain injury (TBI). However, a variety of acute neurologic illnesses e.g., subarachnoid hemorrhage, intracerebral hemorrhage, ischemic stroke, meningitis/encephalitis, and select metabolic disorders, e.g., liver failure and malignant, brain tumors can affect ICP. The purpose of this paper is to review the literature about ICP monitoring in conditions other than TBI and to provide recommendations how the technique may be used in patient management. A PubMed search between 1980 and September 2013 identified 989 articles; 225 of which were reviewed in detail. The technique used to monitor ICP in non-TBI conditions is similar to that used in TBI; however, indications for ICP monitoring often are intertwined with the presence of obstructive hydrocephalus and hence the use of ventricular catheters is more frequent. Increased ICP can adversely affect outcome, particularly when it fails to respond to treatment. However, patients with elevated ICP can still have favorable outcomes. Although the influence of ICP-based care on outcome in non-TBI conditions appears less robust than in TBI, monitoring ICP and cerebral perfusion pressure can play a role in guiding therapy in select patients.
NASA Astrophysics Data System (ADS)
Adibzadeh, F.; Verhaart, R. F.; Verduijn, G. M.; Fortunati, V.; Rijnen, Z.; Franckena, M.; van Rhoon, G. C.; Paulides, M. M.
2015-02-01
To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H&N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H&N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR10g) in the brains of 16 selected H&N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF.
Vitamin D and the brain: key questions for future research.
Cui, Xiaoying; Gooch, Helen; Groves, Natalie J; Sah, Pankaj; Burne, Thomas H; Eyles, Darryl W; McGrath, John J
2015-04-01
Over the last decade a convergent body of evidence has emerged from epidemiology, animal experiments and clinical trials which links low vitamin D status with a range of adverse neuropsychiatric outcomes. This research demonstrates that the timing of exposure to low vitamin D influences the nature of brain phenotypes, as exposures during gestation versus adulthood result in different phenotypes. With respect to early life exposures, there is robust evidence from rodent experiments indicating that transient developmental vitamin D (DVD) deficiency is associated with changes in brain structure, neurochemistry, gene and protein expression and behavior. In particular, DVD deficiency is associated with alterations in the dopaminergic neurotransmitter systems. In contrast, recently published animal experiments indicate that adult vitamin D (AVD) deficiency is associated with more subtle neurochemical and behavioral phenotypes. This paper explores key issues that need to be addressed in future research. There is a need to define the timing and duration of the 'critical window' during which low vitamin D status is associated with differential and adverse brain outcomes. We discuss the role for 'two-hit hypotheses', which propose that adult vitamin D deficiency leaves the brain more vulnerable to secondary adverse exposures, and thus may exacerbate disease progression. Finally, we explore the evidence implicating a role for vitamin D in rapid, non-genomic mechanisms that may involve L-type calcium channels and brain function. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.
The effect of brain based learning with contextual approach viewed from adversity quotient
NASA Astrophysics Data System (ADS)
Kartikaningtyas, V.; Kusmayadi, T. A.; Riyadi, R.
2018-05-01
The aim of this research was to find out the effect of Brain Based Learning (BBL) with contextual approach viewed from adversity quotient (AQ) on mathematics achievement. BBL-contextual is the model to optimize the brain in the new concept learning and real life problem solving by making the good environment. Adversity Quotient is the ability to response and faces the problems. In addition, it is also about how to turn the difficulties into chances. This AQ classified into quitters, campers, and climbers. The research method used in this research was quasi experiment by using 2x3 factorial designs. The sample was chosen by using stratified cluster random sampling. The instruments were test and questionnaire for the data of AQ. The results showed that (1) BBL-contextual is better than direct learning on mathematics achievement, (2) there is no significant difference between each types of AQ on mathematics achievement, and (3) there is no interaction between learning model and AQ on mathematics achievement.
Analysis of radiation therapy in a model of triple-negative breast cancer brain metastasis.
Smart, DeeDee; Garcia-Glaessner, Alejandra; Palmieri, Diane; Wong-Goodrich, Sarah J; Kramp, Tamalee; Gril, Brunilde; Shukla, Sudhanshu; Lyle, Tiffany; Hua, Emily; Cameron, Heather A; Camphausen, Kevin; Steeg, Patricia S
2015-10-01
Most cancer patients with brain metastases are treated with radiation therapy, yet this modality has not yet been meaningfully incorporated into preclinical experimental brain metastasis models. We applied two forms of whole brain radiation therapy (WBRT) to the brain-tropic 231-BR experimental brain metastasis model of triple-negative breast cancer. When compared to sham controls, WBRT as 3 Gy × 10 fractions (3 × 10) reduced the number of micrometastases and large metastases by 87.7 and 54.5 %, respectively (both p < 0.01); whereas a single radiation dose of 15 Gy × 1 (15 × 1) was less effective, reducing metastases by 58.4 % (p < 0.01) and 47.1 % (p = 0.41), respectively. Neuroinflammation in the adjacent brain parenchyma was due solely to a reaction from metastases, and not radiotherapy, while adult neurogenesis in brains was adversely affected following both radiation regimens. The nature of radiation resistance was investigated by ex vivo culture of tumor cells that survived initial WBRT ("Surviving" cultures). The Surviving cultures surprisingly demonstrated increased radiosensitivity ex vivo. In contrast, re-injection of Surviving cultures and re-treatment with a 3 × 10 WBRT regimen significantly reduced the number of large and micrometastases that developed in vivo, suggesting a role for the microenvironment. Micrometastases derived from tumor cells surviving initial 3 × 10 WBRT demonstrated a trend toward radioresistance upon repeat treatment (p = 0.09). The data confirm the potency of a fractionated 3 × 10 WBRT regimen and identify the brain microenvironment as a potential determinant of radiation efficacy. The data also nominate the Surviving cultures as a potential new translational model for radiotherapy.
Brain inflammation and Alzheimer's-like pathology in individuals exposed to severe air pollution.
Calderón-Garcidueñas, Lilian; Reed, William; Maronpot, Robert R; Henríquez-Roldán, Carlos; Delgado-Chavez, Ricardo; Calderón-Garcidueñas, Ana; Dragustinovis, Irma; Franco-Lira, Maricela; Aragón-Flores, Mariana; Solt, Anna C; Altenburg, Michael; Torres-Jardón, Ricardo; Swenberg, James A
2004-01-01
Air pollution is a complex mixture of gases (e.g., ozone), particulate matter, and organic compounds present in outdoor and indoor air. Dogs exposed to severe air pollution exhibit chronic inflammation and acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by pollutants. We investigated whether residency in cities with high levels of air pollution is associated with human brain inflammation. Expression of cyclooxygenase-2 (COX2), an inflammatory mediator, and accumulation of the 42-amino acid form of beta-amyloid (Abeta42), a cause of neuronal dysfunction, were measured in autopsy brain tissues of cognitively and neurologically intact lifelong residents of cities having low (n:9) or high (n:10) levels of air pollution. Genomic DNA apurinic/apyrimidinic sites, nuclear factor-kappaB activation and apolipoprotein E genotype were also evaluated. Residents of cities with severe air pollution had significantly higher COX2 expression in frontal cortex and hippocampus and greater neuronal and astrocytic accumulation of Abeta42 compared to residents in low air pollution cities. Increased COX2 expression and Abeta42 accumulation were also observed in the olfactory bulb. These findings suggest that exposure to severe air pollution is associated with brain inflammation and Abeta42 accumulation, two causes of neuronal dysfunction that precede the appearance of neuritic plaques and neurofibrillary tangles, hallmarks of Alzheimer's disease.
Perinatal programming of emotional brain circuits: an integrative view from systems to molecules
Bock, Jörg; Rether, Kathy; Gröger, Nicole; Xie, Lan; Braun, Katharina
2014-01-01
Environmental influences such as perinatal stress have been shown to program the developing organism to adapt brain and behavioral functions to cope with daily life challenges. Evidence is now accumulating that the specific and individual effects of early life adversity on the functional development of brain and behavior emerge as a function of the type, intensity, timing and the duration of the adverse environment, and that early life stress (ELS) is a major risk factor for developing behavioral dysfunctions and mental disorders. Results from clinical as well as experimental studies in animal models support the hypothesis that ELS can induce functional “scars” in prefrontal and limbic brain areas, regions that are essential for emotional control, learning and memory functions. On the other hand, the concept of “stress inoculation” is emerging from more recent research, which revealed positive functional adaptations in response to ELS resulting in resilience against stress and other adversities later in life. Moreover, recent studies indicate that early life experiences and the resulting behavioral consequences can be transmitted to the next generation, leading to a transgenerational cycle of adverse or positive adaptations of brain function and behavior. In this review we propose a unifying view of stress vulnerability and resilience by connecting genetic predisposition and programming sensitivity to the context of experience-expectancy and transgenerational epigenetic traits. The adaptive maturation of stress responsive neural and endocrine systems requires environmental challenges to optimize their functions. Repeated environmental challenges can be viewed within the framework of the match/mismatch hypothesis, the outcome, psychopathology or resilience, depends on the respective predisposition and on the context later in life. PMID:24550772
Lung Focused Resuscitation at a Specialized Donor Care Facility Improves Lung Procurement Rates.
Chang, Stephanie H; Kreisel, Daniel; Marklin, Gary F; Cook, Lindsey; Hachem, Ramsey; Kozower, Benjamin D; Balsara, Keki R; Bell, Jennifer M; Frederiksen, Christine; Meyers, Bryan F; Patterson, G Alexander; Puri, Varun
2018-05-01
Lung procurement for transplantation occurs in approximately 20% of brain dead donors and is a major impediment to wider application of lung transplantation. We investigated the effect of lung protective management at a specialized donor care facility on lung procurement rates from brain dead donors. Our local organ procurement organization instituted a protocol of lung protective management at a freestanding specialized donor care facility in 2008. Brain dead donors from 2001 to 2007 (early period) were compared with those from 2009 to 2016 (current period) for lung procurement rates and other solid-organ procurement rates using a prospectively maintained database. An overall increase occurred in the number of brain dead donors during the study period (early group, 791; late group, 1,333; p < 0.0001). The lung procurement rate (lung donors/all brain dead donors) improved markedly after the introduction of lung protective management (early group, 157 of 791 [19.8%]; current group, 452 of 1,333 [33.9%]; p < 0.0001). The overall organ procurement rate (total number of organs procured/donor) also increased during the study period (early group, 3.5 organs/donor; current group, 3.8 organs/donor; p = 0.006). Lung protective management in brain dead donors at a specialized donor care facility is associated with higher lung utilization rates compared with conventional management. This strategy does not adversely affect the utilization of other organs in a multiorgan donor. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Gould, Joanna M; Smith, Phoebe J; Airey, Chris J; Mort, Emily J; Airey, Lauren E; Warricker, Frazer D M; Pearson-Farr, Jennifer E; Weston, Eleanor C; Gould, Philippa J W; Semmence, Oliver G; Restall, Katie L; Watts, Jennifer A; McHugh, Patrick C; Smith, Stephanie J; Dewing, Jennifer M; Fleming, Tom P; Willaime-Morawek, Sandrine
2018-06-25
Maternal protein malnutrition throughout pregnancy and lactation compromises brain development in late gestation and after birth, affecting structural, biochemical, and pathway dynamics with lasting consequences for motor and cognitive function. However, the importance of nutrition during the preimplantation period for brain development is unknown. We have previously shown that maternal low-protein diet (LPD) confined to the preimplantation period (Emb-LPD) in mice, with normal nutrition thereafter, is sufficient to induce cardiometabolic and locomotory behavioral abnormalities in adult offspring. Here, using a range of in vivo and in vitro techniques, we report that Emb-LPD and sustained LPD reduce neural stem cell (NSC) and progenitor cell numbers at E12.5, E14.5, and E17.5 through suppressed proliferation rates in both ganglionic eminences and cortex of the fetal brain. Moreover, Emb-LPD causes remaining NSCs to up-regulate the neuronal differentiation rate beyond control levels, whereas in LPD, apoptosis increases to possibly temper neuron formation. Furthermore, Emb-LPD adult offspring maintain the increase in neuron proportion in the cortex, display increased cortex thickness, and exhibit short-term memory deficit analyzed by the novel-object recognition assay. Last, we identify altered expression of fragile X family genes as a potential molecular mechanism for adverse programming of brain development. Collectively, these data demonstrate that poor maternal nutrition from conception is sufficient to cause abnormal brain development and adult memory loss.
Mercury levels, reproduction, and hematology in western grebes from three California Lakes, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elbert, R.A.; Anderson, D.W.
1998-02-01
Twenty-three healthy adult western and Clark`s grebes (Aechmorphorus occidentalis and Aechmorphorus clarkii) were collected at three study sites in California, USA, in 1992: Clear Lake, Lake County; Eagle Lake, Lassen County; and Tule Lake, Siskiyou County. Liver, kidney, breast muscle, and brain were analyzed for total mercury (Hg) concentration (ppm wet weight), and blood was analyzed for various blood parameters. Clear Lake birds had greater Hg concentrations in kidney, breast muscle, and brain than birds from the other two lakes whereas liver concentrations were not statistically different. Average concentrations for Clear Lake birds were 2.74 ppm for liver, 2.06 ppmmore » for kidney, 1.06 ppm for breast muscle, and 0.28 ppm for brain. The tissue levels of kidney, breast muscle, and brain at the other two study sites were one half the levels found at Clear Lake. These mean tissue levels were near, but below, those known to cause adverse effects. When data from all sites were merged, kidney, breast muscle, and brain concentrations are positively correlated to each other. Liver concentrations were not correlated to any other value. Brain Hg concentrations were also negatively correlated to blood potassium and blood phosphorus levels. Kidney Hg levels were positively correlated to percent blood heterophils and negatively correlated to percent eosinophils, suggesting that mercury levels might be affecting immune function. These biomarkers could not be related to any obvious ecological effects.« less
Identifying and managing the adverse effects of immune checkpoint blockade
Winer, Arthur; Bodor, J. Nicholas
2018-01-01
Immunotherapy has revolutionized the field of oncology. By inhibiting the cytotoxic T-lymphocyte-associated protein (CTLA-4) and programmed death-1 (PD-1) immune checkpoint pathways, multiple studies have demonstrated greatly improved survival in locally advanced and metastatic cancers including melanoma, renal, lung, gastric, and hepatocellular carcinoma. Trials in other malignancies are ongoing, and undoubtedly the number of drugs in this space will grow beyond the six currently approved by the Food and Drug Administration. However, by altering the immune response to fight cancer, a new class of side effects has emerged known as immune-related adverse events (irAEs). These adverse events are due to overactivation of the immune system in almost any organ of the body, and can occur at any point along a patient’s treatment course. irAEs such as endocrinopathies (thyroiditis), colitis, and pneumonitis may occur more commonly. However, other organs such as the liver, heart, or brain may also be affected by immune overactivation and any of these side effects may become life threatening. This review presents an approach to promptly recognize and manage these toxicities, to hopefully minimize morbidity and mortality from irAEs. PMID:29593893
Raineki, Charlis; Bodnar, Tamara S; Holman, Parker J; Baglot, Samantha L; Lan, Ni; Weinberg, Joanne
2017-11-01
The contribution of the early postnatal environment to the pervasive effects of prenatal alcohol exposure (PAE) is poorly understood. Moreover, PAE often carries increased risk of exposure to adversity/stress during early life. Dysregulation of immune function may play a role in how pre- and/or postnatal adversity/stress alters brain development. Here, we combine two animal models to examine whether PAE differentially increases vulnerability to immune dysregulation in response to early-life adversity. PAE and control litters were exposed to either limited bedding (postnatal day [PN] 8-12) to model early-life adversity or normal bedding, and maternal behavior and pup vocalizations were recorded. Peripheral (serum) and central (amygdala) immune (cytokines and C-reactive protein - CRP) responses of PAE animals to early-life adversity were evaluated at PN12. Insufficient bedding increased negative maternal behavior in both groups. Early-life adversity increased vocalization in all animals; however, PAE pups vocalized less than controls. Early-life adversity reduced serum TNF-α, KC/GRO, and IL-10 levels in control but not PAE animals. PAE increased serum CRP, and levels were even higher in pups exposed to adversity. Finally, PAE reduced KC/GRO and increased IL-10 levels in the amygdala. Our results indicate that PAE alters immune system development and both behavioral and immune responses to early-life adversity, which could have subsequent consequences for brain development and later life health. Copyright © 2017 Elsevier Inc. All rights reserved.
Murray, Andrea L; Scratch, Shannon E; Thompson, Deanne K; Inder, Terrie E; Doyle, Lex W; Anderson, Jacqueline F. I.; Anderson, Peter J
2014-01-01
Objective This study aimed to examine attention and processing speed outcomes in very preterm (VPT; <32 weeks' gestational age) or very low birth weight (VLBW; <1500 g) children, and to assess the ability of brain abnormalities measured by neonatal magnetic resonance imaging (MRI) to predict outcome in these domains. Methods A cohort of 198 children born <30 weeks' gestational age and/or <1250 g and 70 term controls were examined. Neonatal MRI scans at term equivalent age were quantitatively assessed for white matter, cortical gray matter, deep gray matter, and cerebellar abnormalities. Attention and processing speed were assessed at 7 years using standardized neuropsychological tests. Group differences were tested in attention and processing speed, and the relationships between these cognitive domains and brain abnormalities at birth were investigated. Results At 7 years of age, the VPT/VLBW group performed significantly poorer than term controls on all attention and processing speed outcomes. Associations between adverse attention and processing speed performances at 7 years and higher neonatal brain abnormality scores were found; in particular, white matter and deep gray matter abnormalities were reasonable predictors of long-term cognitive outcomes. Conclusion Attention and processing speed are significant areas of concern in VPT/VLBW children. This is the first study to show that adverse attention and processing speed outcomes at 7 years are associated with neonatal brain pathology. PMID:24708047
Murray, Andrea L; Scratch, Shannon E; Thompson, Deanne K; Inder, Terrie E; Doyle, Lex W; Anderson, Jacqueline F I; Anderson, Peter J
2014-07-01
This study aimed to examine attention and processing speed outcomes in very preterm (VPT; < 32 weeks' gestational age) or very low birth weight (VLBW; < 1,500 g) children, and to determine whether brain abnormality measured by neonatal MRI can be used to predict outcome in these domains. A cohort of 198 children born < 30 weeks' gestational age and/or < 1,250 g and 70 term controls were examined. Neonatal MRI scans at term equivalent age were quantitatively assessed for white matter, cortical gray matter, deep gray matter, and cerebellar abnormalities. Attention and processing speed were assessed at 7 years using standardized neuropsychological tests. Group differences were tested in attention and processing speed, and the relationships between these cognitive domains and brain abnormalities at birth were investigated. At 7 years of age, the VPT/VLBW group performed significantly poorer than term controls on all attention and processing speed outcomes. Associations between adverse attention and processing speed performances at 7 years and higher neonatal brain abnormality scores were found; in particular, white matter and deep gray matter abnormalities were reasonable predictors of long-term cognitive outcomes. Attention and processing speed are significant areas of concern in VPT/VLBW children. This is the first study to show that adverse attention and processing speed outcomes at 7 years are associated with neonatal brain pathology.
James, Anthony; James, Christine; Thwaites, Thomas
2013-12-30
Cannabis is widely used in adolescence; however, the effects of cannabis on the developing brain remain unclear. Cannabis might be expected to have increased effects upon brain development and cognition during adolescence. There is extensive re-organisation of grey (GM) and white matter (WM) at this time, while the endocannabinoid (eCB) system, which is involved in the normal physiological regulation of neural transmission, is still developing. In healthy adolescent cannabis users there is a suggestion of greater memory loss and hippocampal volume changes. Functional studies point to recruitment of greater brain areas under cognitive load. Structural and DTI studies are few, and limited by comorbid drug and alcohol use. The studies of cannabis use in adolescent-onset schizophrenia (AOS) differ, with one study pointing to extensive GM and WM changes. There is an intriguing suggestion that the left parietal lobe may be more vulnerable to the effects of cannabis in AOS. As in adult schizophrenia cognition does not appear to be adversely affected in AOS following cannabis use. Given the limited number of studies it is not possible to draw firm conclusions. There is a need for adequately powered, longitudinal studies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Developmental effects of 3,4-methylenedioxymethamphetamine: a review.
Skelton, Matthew R; Williams, Michael T; Vorhees, Charles V
2008-03-01
+/-3,4-Methylenedioxymethamphetamine (MDMA) is a chemical derivative of amphetamine that has become a popular drug of abuse and has been shown to deplete serotonin in the brains of users and animals exposed to it. To date, most studies have investigated the effects of MDMA on adult animals. With a majority of users of MDMA being young adults, the chances of the users becoming pregnant and exposing the fetuses to MDMA are also a concern. Evidence to date has shown that developmental exposure to MDMA results in learning and memory impairments in the Morris water maze, a task known to be sensitive to hippocampal disruption, when the animals are tested as adults. Developmental MDMA exposure leads to hypoactivity in the offspring as adults but does not affect outcome on tests of anxiety. MDMA administration decreases pup weight, increases corticosterone and brain-derived neurotrophic factor levels during treatment while decreasing brain levels of serotonin; a decrease that initially dissipates and then reappears in adulthood. Neonatal MDMA exposure increases the sensitivity of the serotonin 1A receptor, a possible mechanism underlying the learning and memory deficits seen. Taken together, the evidence shows that MDMA exposure has adverse effects on the developing brain and behavior. The animal and human data on developmental MDMA exposure are reviewed and their public health implications discussed.
Neuropathic Pain and Lung Delivery of Nanoparticulate Drugs: An Emerging Novel Therapeutic Strategy.
Islam, Nazrul; Abbas, Muzaffar; Rahman, Shafiqur
2017-01-01
Neuropathic pain is a chronic neurological disorder affecting millions of people around the world. The currently available pharmacologic agents for the treatment of neuropathic pain have limited efficacy and are associated with dose related unwanted adverse effects. Due to the limited access of drug molecules across blood-brain barrier, a small percentage of drug that is administered systematically, reaches the central nervous system in active form. These therapeutic agents also require daily treatment regimen that is inconvenient and potentially impact patient compliance. Application of nanoparticulate drugs for enhanced delivery system has been explored extensively in the last decades. Pulmonary delivery of nanomedicines for the management of various diseases has become an emerging treatment strategy that ensures the targeted delivery of drugs both for systemic and local effects with low dose and limited adverse effects. To the best of our knowledge, there are no inhaled drug products available on market for the treatment of neuropathic pain. The advantages of delivering therapeutics into deep lungs include non-invasive drug delivery, higher bioavailability with low dose, lower systemic toxicity, and potentially greater blood-brain barrier penetration. This review discusses and highlights the important issues on the application of emerging nanoparticulate lung delivery of drugs for the effective treatment of neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Facial recognition in children after perinatal stroke.
Ballantyne, A O; Trauner, D A
1999-04-01
To examine the effects of prenatal or perinatal stroke on the facial recognition skills of children and young adults. It was hypothesized that the nature and extent of facial recognition deficits seen in patients with early-onset lesions would be different from that seen in adults with later-onset neurologic impairment. Numerous studies with normal and neurologically impaired adults have found a right-hemisphere superiority for facial recognition. In contrast, little is known about facial recognition in children after early focal brain damage. Forty subjects had single, unilateral brain lesions from pre- or perinatal strokes (20 had left-hemisphere damage, and 20 had right-hemisphere damage), and 40 subjects were controls who were individually matched to the lesion subjects on the basis of age, sex, and socioeconomic status. Each subject was given the Short-Form of Benton's Test of Facial Recognition. Data were analyzed using the Wilcoxon matched-pairs signed-rank test and multiple regression. The lesion subjects performed significantly more poorly than did matched controls. There was no clear-cut lateralization effect, with the left-hemisphere group performing significantly more poorly than matched controls and the right-hemisphere group showing a trend toward poorer performance. Parietal lobe involvement, regardless of lesion side, adversely affected facial recognition performance in the lesion group. Results could not be accounted for by IQ differences between lesion and control groups, nor was lesion severity systematically related to facial recognition performance. Pre- or perinatal unilateral brain damage results in a subtle disturbance in facial recognition ability, independent of the side of the lesion. Parietal lobe involvement, in particular, has an adverse effect on facial recognition skills. These findings suggest that the parietal lobes may be involved in the acquisition of facial recognition ability from a very early point in brain development, but that there is sufficient potential to reorganize or compensate such that the residual deficits, though significant, are subtle.
Zonisamide in Brain Tumor-Related Epilepsy: An Observational Pilot Study.
Maschio, Marta; Dinapoli, Loredana; Zarabla, Alessia; Maialetti, Andrea; Giannarelli, Diana; Fabi, Alessandra; Vidiri, Antonello; Cantelmi, Tonino
Epilepsy heavily affects the quality of life (QoL) of patients with brain tumor because in addition to taking treatments for the oncological illness, patients are required to live with the long-term taking of antiepileptic drugs (AEDs). The AEDs' adverse effects are common in these patients and can negatively influence their perceptions of their QoL.We conducted an observational pilot study in patients with brain tumor-related epilepsy to verify efficacy, tolerability, and impact on QoL and global neurocognitive performances of zonisamide (ZNS) in add-on. We recruited 13 patients (5 females, 8 males; mean age, 49.6 years) presenting uncontrolled seizures. At first visit and at final follow-up at 6 months, patients underwent neurological examination, evaluation of adverse events, and cognitive and QoL tests. A seizure diary was given. Eight patients underwent chemotherapy, 3 underwent radiotherapy, and 5 had disease progression. Mean dosage of ZNS at final follow-up was 300 mg/d.Of 9 patients who reached the sixth month follow-up, the mean weekly seizure number before ZNS had been 3.2 ± 5.0, and at final follow-up, the mean weekly seizure number was 0.18 ± 0.41 (P = 0.05).Compared with baseline, we observed stability in all cognitive domains, except for verbal fluency that significantly worsened.Results on QoL tests showed that QoL remained unchanged over time, which could indicate that ZNS did not influence the patients' perceived QoL. Zonisamide as add-on in our patients seems to be well tolerated and efficacious in controlling seizures. Despite having limitations represented by the fact that our study is observational, with a small study population and a short follow-up period, our results confirm that when choosing an AED, in addition to efficacy, the drug's effect on patients' QoL also needs to be considered, especially for patients facing many psychosocial challenges, such as those with brain tumor-related epilepsy.
Haorah, James; Rump, Travis J; Xiong, Huangui
2013-01-01
Neuropathy and neurocognitive deficits are common among chronic alcohol users, which are believed to be associated with mitochondrial dysfunction in the brain. The specific type of brain mitochondrial respiratory chain complexes (mRCC) that are adversely affected by alcohol abuse has not been studied. Thus, we examined the alterations of mRCC in freshly isolated mitochondria from mice brain that were pair-fed the ethanol (4% v/v) and control liquid diets for 7-8 weeks. We observed that alcohol intake severely reduced the levels of complex I and V. A reduction in complex I was associated with a decrease in carnitine palmitoyltransferase 1 (cPT1) and cPT2 levels. The mitochondrial outer (cPT1) and inner (cPT2) membrane transporter enzymes are specialized in acylation of fatty acid from outer to inner membrane of mitochondria for ATP production. Thus, our results showed that alterations of cPT1 and cPT2 paralleled a decrease β-oxidation of palmitate and ATP production, suggesting that impairment of substrate entry step (complex I function) can cause a negative impact on ATP production (complex V function). Disruption of cPT1/cPT2 was accompanied by an increase in cytochrome C leakage, while reduction of complex I and V paralleled a decrease in depolarization of mitochondrial membrane potential (ΔΨ, monitored by JC-1 fluorescence) and ATP production in alcohol intake. We noted that acetyl-L-carnitine (ALC, a cofactor of cPT1 and cPT2) prevented the adverse effects of alcohol while coenzyme Q10 (CoQ10) was not very effective against alcohol insults. These results suggest that understanding the molecular, biochemical, and signaling mechanisms of the CNS mitochondrial β-oxidation such as ALC can mitigate alcohol related neurological disorders.
Does age matter? Age and rehabilitation of visual field disorders after brain injury.
Schuett, Susanne; Zihl, Josef
2013-04-01
Homonymous visual field disorders (HVFD) are frequent and disabling consequences of acquired brain injury, particularly in older age. Their rehabilitation is therefore of great importance. Compensatory oculomotor therapy has been found to be effective in improving the associated functional impairments in reading and visual exploration. But older age is commonly considered to adversely affect practice-dependent functional plasticity and, thus, functional and rehabilitation outcome after acquired brain injury. The effect of age in the compensatory treatment of HVFD, however, has never been investigated hitherto. It remains unknown whether age determines not only patients' functional impairments but also the rehabilitation outcome and the required amount of treatment. We therefore present the first study to determine the effect of age in 38 patients with HVFD receiving compensatory oculomotor treatment for their reading and visual exploration impairments. We investigated whether older patients with HVFD (1) show more pronounced impairments and less spontaneous adaptation, (2) show lesser compensatory treatment-related improvement in reading and visual exploration, and (3) require a higher amount of treatment than younger patients. Our main finding is that older patients achieve the same treatment-induced improvements in reading and visual exploration with the same amount of treatment as younger patients; severity of functional impairment also did not differ between older and younger patients, at least in reading. Age does not seem to be a critical factor determining the functional and rehabilitation outcome in the compensatory treatment of HVFD. Older age per se is not necessarily associated with a decline in practice-dependent functional plasticity and adaptation. To the contrary, the effectiveness of compensatory treatment to reduce the functional impairments to a similar extent in younger and older patients with HVFD adds to the growing evidence for a life-long potential for adaptation to the adverse effects of brain injury. Copyright © 2012 Elsevier Ltd. All rights reserved.
Myers, Gary J; Thurston, Sally W; Pearson, Alexander T; Davidson, Philip W; Cox, Christopher; Shamlaye, Conrad F; Cernichiari, Elsa; Clarkson, Thomas W
2009-05-01
Fish is an important source of nutrition worldwide. Fish contain both the neurotoxin methyl mercury (MeHg) and nutrients important for brain development. The developing brain appears to be most sensitive to MeHg toxicity and mothers who consume fish during pregnancy expose their fetus prenatally. Although brain development is most dramatic during fetal life, it continues for years postnatally and additional exposure can occur when a mother breast feeds or the child consumes fish. This raises the possibility that MeHg might influence brain development after birth and thus adversely affect children's developmental outcomes. We reviewed postnatal MeHg exposure and the associations that have been published to determine the issues associated with it and then carried out a series of analyses involving alternative metrics of postnatal MeHg exposure in the Seychelles Child Development Study (SCDS) Main Cohort. The SCDS is a prospective longitudinal evaluation of prenatal MeHg exposure from fish consumption. The Main Cohort includes 779 subjects on whom recent postnatal exposure data were collected at the 6-, 19-, 29-, 66-, and 107-month evaluations. We examined the association of recent postnatal MeHg exposure with multiple 66- and 107-month outcomes and then used three types of alternative postnatal exposure metrics to examine their association with the children's intelligence quotient (IQ) at 107 months of age. Recent postnatal exposure at 107 months of age was adversely associated with four endpoints, three in females only. One alternative postnatal metric was beneficially associated with 9-year IQ in males only. We found several associations between postnatal MeHg biomarkers and children's developmental endpoints. However, as has been the case with prenatal MeHg exposure in the SCDS Main Cohort study, no consistent pattern of associations emerged to support a causal relationship.
Resiliency in the Face of Adversity: A Short Longitudinal Test of the Trait Hypothesis.
Karaırmak, Özlem; Figley, Charles
2017-01-01
Resilience represents coping with adversity and is in line with a more positive paradigm for viewing responses to adversity. Most research has focused on resilience as coping-a state-based response to adversity. However, a competing hypothesis views resilience or resiliency as a trait that exists across time and types of adversity. We tested undergraduates enrolled in social work classes at a large southern university at two time periods during a single semester using measures of adversity, positive and negative affect, and trait-based resiliency. Consistent with the trait-based resiliency, and in contrast to state-based resilience, resiliency scores were not strongly correlated with adversity at both testing points but were with positive affect, and resiliency scores remained the same over time despite adversity variations. There was no gender or ethnic group difference in resilience scores. Black/African Americans reported significantly less negative affect and more positive affect than White/Caucasians.
Vattikonda, Anirudh; Surampudi, Bapi Raju; Banerjee, Arpan; Deco, Gustavo; Roy, Dipanjan
2016-08-01
Computational modeling of the spontaneous dynamics over the whole brain provides critical insight into the spatiotemporal organization of brain dynamics at multiple resolutions and their alteration to changes in brain structure (e.g. in diseased states, aging, across individuals). Recent experimental evidence further suggests that the adverse effect of lesions is visible on spontaneous dynamics characterized by changes in resting state functional connectivity and its graph theoretical properties (e.g. modularity). These changes originate from altered neural dynamics in individual brain areas that are otherwise poised towards a homeostatic equilibrium to maintain a stable excitatory and inhibitory activity. In this work, we employ a homeostatic inhibitory mechanism, balancing excitation and inhibition in the local brain areas of the entire cortex under neurological impairments like lesions to understand global functional recovery (across brain networks and individuals). Previous computational and empirical studies have demonstrated that the resting state functional connectivity varies primarily due to the location and specific topological characteristics of the lesion. We show that local homeostatic balance provides a functional recovery by re-establishing excitation-inhibition balance in all areas that are affected by lesion. We systematically compare the extent of recovery in the primary hub areas (e.g. default mode network (DMN), medial temporal lobe, medial prefrontal cortex) as well as other sensory areas like primary motor area, supplementary motor area, fronto-parietal and temporo-parietal networks. Our findings suggest that stability and richness similar to the normal brain dynamics at rest are achievable by re-establishment of balance. Copyright © 2016 Elsevier Inc. All rights reserved.
Raschpichler, Matthias; Straatman, Kees; Schroeter, Matthias Leopold; Arelin, Katrin; Schlögl, Haiko; Fritzsch, Dominik; Mende, Meinhard; Pampel, André; Böttcher, Yvonne; Stumvoll, Michael; Villringer, Arno; Mueller, Karsten
2013-01-01
Objectives To investigate whether the metabolically important visceral adipose tissue (VAT) relates differently to structural and functional brain changes in comparison with body weight measured as body mass index (BMI). Moreover, we aimed to investigate whether these effects change with age. Design Cross-sectional, exploratory. Setting University Clinic, Integrative Research and Treatment Centre. Participants We included 100 (mean BMI=26.0 kg/m², 42 women) out of 202 volunteers randomly invited by the city's registration office, subdivided into two age groups: young-to-mid-age (n=51, 20–45 years of age, mean BMI=24.9, 24 women) versus old (n=49, 65–70 years of age, mean BMI=27.0, 18 women). Main outcome measures VAT, BMI, subcutaneous abdominal adipose tissue, brain structure (grey matter density), functional brain architecture (eigenvector centrality, EC). Results We discovered a loss of cerebellar structure with increasing VAT in the younger participants, most significantly in regions involved in motor processing. This negative correlation disappeared in the elderly. Investigating functional brain architecture showed again inverse VAT–cerebellum correlations, whereas now regions involved in cognitive and emotional processing were significant. Although we detected similar results for EC using BMI, significant age interaction for both brain structure and functional architecture was only found using VAT. Conclusions Visceral adiposity is associated with cerebellar changes of both structure and function, whereas the regions involved contribute to motor, cognitive and emotional processes. Furthermore, these associations seem to be age dependent, with younger adults’ brains being adversely affected. PMID:23355665
Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I
2012-12-21
The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.
Ardouin, C; Pillon, B; Peiffer, E; Bejjani, P; Limousin, P; Damier, P; Arnulf, I; Benabid, A L; Agid, Y; Pollak, P
1999-08-01
There is a renewal of interest in surgical approaches including lesions and deep brain stimulation directed at motor subcorticofrontal loops. Bilateral lesioning presents a far greater risk of adverse effects, especially cognitive impairment. Furthermore, the main advantages of the stimulation procedure over lesioning are adaptability and reversibility of effects. The aim of this study was to assess the influence of bilateral stimulation of the subthalamic nucleus or internal globus pallidus on memory and executive functions in Parkinson's disease. Sixty-two patients were assessed before and after 3 to 6 months of chronic bilateral stimulation of the subthalamic nucleus (n = 49) or internal globus pallidus (n = 13). The neuropsychological tests used were the Mattis Dementia Rating Scale, the Grober and Buschke Verbal Learning Test, the Wisconsin Card Sorting Test, category and literal fluency, graphic and motor series, the Stroop Test, and the Trail Making Test. Mood was evaluated by the Beck Depression Inventory. Only 4 of 25 cognitive variables were affected by deep brain stimulation. Under stimulation, performance improved for Parts A and B of the Trail Making Test, but there was a deterioration in literal and total lexical fluency. There was also a mild but significant improvement in mood. It may therefore be concluded that stimulation of the subthalamic nucleus or internal globus pallidus does not change the overall cognitive performance in Parkinson's disease and does not greatly affect the functioning of subcorticofrontal loops involved in cognition in humans. This relative absence of cognitive impairment in bilateral deep brain stimulation is likely because of the accurate positioning of the electrodes, allowing the effects of stimulation to be confined to sensorimotor circuits.
Ansorge, Mark S; Morelli, Emanuela; Gingrich, Jay A
2008-01-02
Serotonin (5-HT) acts as a neurotransmitter, but also modulates brain maturation during early development. The demonstrated influence of genetic variants on brain function, personality traits, and susceptibility to neuropsychiatric disorders suggests a critical importance of developmental mechanisms. However, little is known about how and when developmentally perturbed 5-HT signaling affects circuitry and resulting behavior. The 5-HT transporter (5-HTT) is a key regulator of extracellular 5-HT levels and we used pharmacologic strategies to manipulate 5-HTT function during development and determine behavioral consequences. Transient exposure to the 5-HTT inhibitors fluoxetine, clomipramine, and citalopram from postnatal day 4 (P4) to P21 produced abnormal emotional behaviors in adult mice. Similar treatment with the norepinephrine transporter (NET) inhibitor, desipramine, did not adversely affect adult behavior, suggesting that 5-HT and norepinephrine (NE) do not share the same effects on brain development. Shifting our period of treatment/testing to P90/P185 failed to mimic the effect of earlier exposure, demonstrating that 5-HT effects on adult behavior are developmentally specific. We have hypothesized that early-life perturbations of 5-HT signaling affect corticolimbic circuits that do not reach maturity until the peri-adolescent period. In support of this idea, we found that abnormal behaviors resulting from postnatal fluoxetine exposure have a post-pubescent onset and persist long after reaching adult age. A better understanding of the underlying 5-HT sensitive circuits and how they are perturbed should lead to new insights into how various genetic polymorphisms confer their risk to carriers. Furthermore, these studies should help determine whether in utero exposure to 5-HTT blocking drugs poses a risk for behavioral abnormalities in later life.
Triglycerides are negatively correlated with cognitive function in nondemented aging adults.
Parthasarathy, Vishnu; Frazier, Darvis T; Bettcher, Brianne M; Jastrzab, Laura; Chao, Linda; Reed, Bruce; Mungas, Dan; Weiner, Michael; DeCarli, Charles; Chui, Helena; Kramer, Joel H
2017-09-01
Vascular risk factors like hyperlipidemia may adversely affect brain function. We hypothesized that increased serum triglycerides are associated with decreased executive function and memory in nondemented elderly subjects. We also researched possible vascular mediators and white matter microstructure as assessed with diffusion tensor imaging (DTI). Participants were 251 nondemented elderly adults (54% male) with a mean age of 78 (SD = 6.4; range: 62-94) years and a mean education of 15.6 (SD = 2.9; range: 8-23) years. Fasting blood samples were used to detect serum triglyceride and low-density lipoprotein (LDL) levels along with ApoE4 status. DTI was used to determine whole brain fractional anisotropy (FA). Composite executive and memory scores were derived from item response theory. Clinical Dementia Rating (CDR) scores provided informant-based measures of daily functioning. Triglyceride levels were inversely correlated with executive function, but there was no relationship with memory. Controlling for age, gender, and education did not affect this correlation. This relationship persisted after controlling for vascular risk factors like LDL, total cholesterol, CDR and ApoE4 status. Lastly, adding whole-brain FA to the model did not affect the correlation between triglycerides and executive function. Triglyceride levels are inversely correlated with executive function in nondemented elderly adults after controlling for age, education, gender, total cholesterol, LDL, ApoE4 status, CDR, and white-matter microstructure. The fact that the effect of triglycerides on cognition was not clearly mediated by vascular risks or cerebrovascular injury raises questions about widely held assumptions of how triglycerides might impact cognition function. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Acute post-traumatic stress symptoms and age predict outcome in military blast concussion.
Mac Donald, Christine L; Adam, Octavian R; Johnson, Ann M; Nelson, Elliot C; Werner, Nicole J; Rivet, Dennis J; Brody, David L
2015-05-01
High rates of adverse outcomes have been reported following blast-related concussive traumatic brain injury in US military personnel, but the extent to which such adverse outcomes can be predicted acutely after injury is unknown. We performed a prospective, observational study of US military personnel with blast-related concussive traumatic brain injury (n = 38) and controls (n = 34) enrolled between March and September 2012. Importantly all subjects returned to duty and did not require evacuation. Subjects were evaluated acutely 0-7 days after injury at two sites in Afghanistan and again 6-12 months later in the United States. Acute assessments revealed heightened post-concussive, post-traumatic stress, and depressive symptoms along with worse cognitive performance in subjects with traumatic brain injury. At 6-12 months follow-up, 63% of subjects with traumatic brain injury and 20% of controls had moderate overall disability. Subjects with traumatic brain injury showed more severe neurobehavioural, post-traumatic stress and depression symptoms along with more frequent cognitive performance deficits and more substantial headache impairment than control subjects. Logistic regression modelling using only acute measures identified that a diagnosis of traumatic brain injury, older age, and more severe post-traumatic stress symptoms provided a good prediction of later adverse global outcomes (area under the receiver-operating characteristic curve = 0.84). Thus, US military personnel with concussive blast-related traumatic brain injury in Afghanistan who returned to duty still fared quite poorly on many clinical outcome measures 6-12 months after injury. Poor global outcome seems to be largely driven by psychological health measures, age, and traumatic brain injury status. The effects of early interventions and longer term implications of these findings are unknown. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
van der Meer, Dennis; Hartman, Catharina A.; van Rooij, Daan; Franke, Barbara; Heslenfeld, Dirk J.; Oosterlaan, Jaap; Faraone, Stephen V.; Buitelaar, Jan K.; Hoekstra, Pieter J.
2017-01-01
Background Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by impaired response inhibition; both have been associated with aberrant dopamine signalling. Given that prenatal exposure to alcohol or smoking is known to affect dopamine-rich brain regions, we hypothesized that individuals carrying the ADHD risk alleles of the dopamine receptor D4 (DRD4) and dopamine transporter (DAT1) genes may be especially sensitive to their effects. Methods Functional MRI data, information on prenatal adversities and genetic data were available for 239 adolescents and young adults participating in the multicentre ADHD cohort study NeuroIMAGE (average age 17.3 yr). We analyzed the effects of DRD4 and DAT1, prenatal exposure to alcohol and smoking and their interactions on ADHD severity, response inhibition and neural activity. Results We found no significant gene × environment interaction effects. We did find that the DRD4 7-repeat allele was associated with less superior frontal and parietal brain activity and with greater activity in the frontal pole and occipital cortex. Prenatal exposure to smoking was also associated with lower superior frontal activity, but with greater activity in the parietal lobe. Further, those exposed to alcohol had more activity in the lateral orbitofrontal cortex, and the DAT1 risk variant was associated with lower cerebellar activity. Limitations Retrospective reports of maternal substance use and the cross-sectional study design restrict causal inference. Conclusion While we found no evidence of gene × environment interactions, the risk factors under investigation influenced activity of brain regions associated with response inhibition, suggesting they may add to problems with inhibiting behaviour. PMID:28234207
Schalinski, I; Moran, J K; Elbert, T; Reindl, V; Wienbruch, C
2017-08-15
Individuals with trauma-related disorders are complex and heterogeneous; part of this complexity derives from additional psychopathology like dissociation as well as environmental adversities such as traumatic stress, experienced throughout the lifespan. Understanding the neurophysiological abnormalities in Post-traumatic stress disorder (PTSD) requires a simultaneous consideration of these factors. Resting state magnetoencephalography (MEG) recordings were obtained from 41 women with PTSD and comorbid depressive symptoms, and 16 healthy women. Oscillatory brain activity was extracted for five frequency bands and 11 source locations, and analyzed in relation to shutdown dissociation and adversity-related measures. Dissociative symptoms were related to increased delta and lowered beta power. Adversity-related measures modulated theta and alpha oscillatory power (in particular childhood sexual abuse) and differed between patients and controls. Findings are based on women with comorbid depressive symptoms and therefore may not be applicable for men or groups with other clinical profiles. In respect to childhood adversities, we had no reliable source for the early infancy. Trauma-related abnormalities in neural organization vary with both exposure to adversities as well as their potential to evoke ongoing shutdown responses. Copyright © 2017 Elsevier B.V. All rights reserved.
Luszczki, Jarogniew J; Czernecki, Remigiusz; Wojtal, Katarzyna; Borowicz, Kinga K; Czuczwar, Stanislaw J
2008-11-01
Accumulating evidence indicates that agmatine (AGM--an endogenous neuromodulator/neurotransmitter in the brain) exerts the anticonvulsant action in various in vivo experiments. Therefore, the aim of this study was to assess the influence of AGM on the protective action of numerous conventional and newer antiepileptic drugs [carbamazepine (CBZ), lamotrigine (LTG), oxcarbazepine (OXC), phenobarbital (PB), phenytoin (PHT), topiramate (TPM) and valproate (VPA)] in the mouse maximal electroshock seizure (MES) model. Results indicate that AGM (up to 100 mg/kg, i.p., 45 min before the test) neither altered the threshold for electroconvulsions nor protected the animals against MES-induced seizures in mice. Moreover, AGM (100 mg/kg, i.p.) significantly enhanced the anticonvulsant effects of PB and VPA in the MES test by reducing their ED50 values from 22.54 to 16.82 mg/kg (P < 0.01) for PB, and from 256.1 to 210.6 mg/kg (P < 0.05) for VPA, respectively. In contrast, AGM at 100 mg/kg (i.p.) had no significant effect on the antielectroshock action of the remaining drugs tested (CBZ, LTG, OXC, PHT, and TPM) in mice. Estimation of total brain PB and VPA concentrations revealed that the observed interactions between AGM and PB or VPA in the MES test were pharmacodynamic in nature because neither total brain PB, nor total brain VPA concentrations were altered after i.p. administration of AGM at 100 mg/kg. Moreover, none of the examined combinations of AGM (100 mg/kg) with CBZ, LTG, OXC, PB, PHT, TPM, and VPA (at their ED50 values from the MES test) affected motor coordination in the chimney test, long-term memory in the passive avoidance task, and muscular strength in the grip-strength test in mice, indicating no acute adverse effects in animals. In conclusion, one can ascertain that the selective potentiation of the antielectroshock action of PB and VPA by AGM, lack of any pharmacokinetic interactions between drugs and no acute adverse effects, make the combinations of AGM with PB or VPA of pivotal importance for epileptic patients. It seems that modulation of AGM concentration in the brain may occur favorable in further clinical practice.
Mass media, online social network, and organ donation: old mistakes and new perspectives.
Aykas, A; Uslu, A; Şimşek, C
2015-05-01
Contrary to TV programs projecting awareness about organ donation in society, concrete evidence exists about adverse influence of negative broadcasts on organ donation rates. We sought to determine the effect of mass media on public opinion toward organ donation and the efficacy of public campaigns and novel social media attempts on donation rates. We conducted a systematic review of relevant literature and national campaign results. Hoaxes about brain death and organ transplantation adversely affect organ donation rates in both Western and Eastern societies. Scientifically controversial and exaggerated press conferences and institutional advertisements create mistrust in doctors, thus reducing organ donation. The overall effect of public education campaigns in promoting organ donation is a temporary 5% gain. Increments in organ donation rates is expected with novel applications of social media (Facebook effect). Communication, based on mutual trust, must be established between medicine and the media. Continuing education programs with regard to public awareness on organ donation should be conducted over social media. Copyright © 2015 Elsevier Inc. All rights reserved.
Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum.
Zoicas, Iulia; Slattery, David A; Neumann, Inga D
2014-12-01
Central oxytocin (OXT) has anxiolytic and pro-social properties both in humans and rodents, and has been proposed as a therapeutic option for anxiety and social dysfunctions. Here, we utilized a mouse model of social fear conditioning (SFC) to study the effects of OXT on social fear, and to determine whether SFC causes alterations in central OXT receptor (OXTR) binding and local OXT release. Central infusion of OXT, but not arginine vasopressin, prior to social fear extinction training completely abolished social fear expression in an OXTR-mediated fashion without affecting general anxiety or locomotion. SFC caused increased OXTR binding in the dorso-lateral septum (DLS), central amygdala, dentate gyrus, and cornu ammunis 1, which normalized after social fear extinction, suggesting that these areas form part of a brain network involved in the development and neural support of social fear. Microdialysis revealed that the increase in OXT release observed in unconditioned mice within the DLS during social fear extinction training was attenuated in conditioned mice. Consequently, increasing the availability of local OXT by infusion of OXT into the DLS reversed social fear. Thus, alterations in the brain OXT system, including altered OXTR binding and OXT release within the DLS, play an important role in SFC and social fear extinction. Thus, we suggest that the OXT system is adversely affected in disorders associated with social fear, such as social anxiety disorder and reinstalling an appropriate balance of the OXT system may alleviate some of the symptoms.
Inoue, Tomoko; Osada, Kenichi; Tagawa, Masaaki; Ogawa, Yuriko; Haga, Toshiaki; Sogame, Yoshihisa; Hashizume, Takanori; Watanabe, Takashi; Taguchi, Atsushi; Katsumata, Takashi; Yabuki, Masashi; Yamaguchi, Noboru
2012-10-01
Although blonanserin, a novel atypical antipsychotic agent with dopamine D(2)/serotonin 5-HT(2A) antagonistic properties, displays good brain distribution, the mechanism of this distribution has not been clarified. P-glycoprotein [(P-gp) or multidrug resistance protein 1 (MDR1)] is an efflux transporter expressed in the brain and plays an important role in limiting drug entry into the central nervous system (CNS). In particular, P-gp can affect the pharmacokinetics and efficacy of antipsychotics, and exacerbate or soothe their adverse effects. In this study, we conducted in vitro and in vivo experiments to determine whether blonanserin is a P-gp substrate. Risperidone and its active metabolite 9-hydroxyrisperidone, both of which are P-gp substrates, were used as reference drugs. Affinity of blonanserin, risperidone, and 9-hydroxyrisperidone for P-gp was evaluated by in vitro transcellular transport across LLC-PK1, human MDR1 cDNA-transfected LLC-PK1 (LLC-MDR1), and mouse Mdr1a cDNA-transfected LLC-PK1 (LLC-Mdr1a). In addition, pharmacokinetic parameters in the brain and plasma (B/P ratio) of test compounds were measured in mdr1a/1b knockout (KO) and wild-type (WT) mice. The results of in vitro experiments revealed that P-gp does not actively transport blonanserin as a substrate in humans or mice. In addition, blonanserin displayed comparable B/P ratios in KO and WT mice, whereas B/P ratios of risperidone and 9-hydroxyrisperidone differed markedly in these animals. Our results indicate that blonanserin is not a P-gp substrate and therefore its brain distribution is unlikely to be affected by this transporter. Copyright © 2012 Elsevier Inc. All rights reserved.
[Academic future of children treated for brain tumors. Single-center study of 27 children].
Zucchinelli, V; Bouffet, E
2000-09-01
Brain tumours constitute the most common type of solid malignancy in childhood. Despite intensive efforts developed since the mid-1970s in paediatric neuro-oncology, survivors still have a wide range of sequelae leading to frequent failure in academic achievements. Very few studies have detailed the educational outcome of these children. The study was based on a questionnaire sent to the parents of children diagnosed with a brain tumour and treated at the Centre Léon-Bérard between 1987 and 1993. Children had to be under 12 years old at the time of diagnosis and with at least three years of follow-up since diagnosis. Questions focused on the child's education before diagnosis, his progress during and after treatment, the measures taken when the child experienced learning difficulties and their consequences on the child's socioprofessional integration. Twenty-seven responses were obtained out of 34 questionnaires. Twenty-six children were reported to experience learning difficulties. Only four children had a normal education. The main problems are associated with slowness, memory and comprehension difficulties. The main disciplines affected are mathematics, reading and spelling. Fifteen children did benefit from extra support, with large interindividual variations in the amount and the quality of this support. Half of the parents play an active role in their child's extra support. This study provides additional information to previous reports on progressive I.Q. decline following the treatment of a brain tumour in childhood. Learning difficulties are nearly constant and adversely influence the child's curriculum. They also affect the parents who experience questions about the future of their ideal child. The severity and complexity of these learning difficulties urge for an early multidisciplinary educational and psychological management. The main characteristics of these remedial efforts should be assessed in prospective studies.
Viaña, John Noel M; Gilbert, Frederic
2018-01-01
Memory dysfunction and cognitive impairments due to Alzheimer's disease can affect the selfhood and identity of afflicted individuals, causing distress to both people with Alzheimer's disease and their caregivers. Recently, a number of case studies and clinical trials have been conducted to determine the potential of deep brain stimulation as a therapeutic modality for people with Alzheimer's disease. Some of these studies have shown that deep brain stimulation could induce flashbacks and stabilize or even improve memory. However, deep brain stimulation itself has also been attributed as a potential threat to identity and selfhood, especially when procedure-related adverse events arise. We anticipate potential effects of deep brain stimulation for people with Alzheimer's disease on selfhood, reconciling information from medical reports, psychological, and sociological investigations on the impacts of deep brain stimulation or Alzheimer's disease on selfhood. A tripartite model of the self that extends the scope of Rom Harré's and Steve Sabat's social constructionist framework was used. In this model, potential effects of deep brain stimulation for Alzheimer's disease on Self 1 or singularity through use of first-person indexicals, and gestures of self-reference, attribution, and recognition; Self 2 or past and present attributes, knowledge of these characteristics, and continuity of narrative identity; and Self 3 or the relational and social self are explored. The ethical implications of potential effects of deep brain stimulation for Alzheimer's disease on the tripartite self are then highlighted, focusing on adapting informed consent procedures and care provided throughout the trial to account for both positive and negative plausible effects on Self 1, Self 2, and Self 3.
Yokel, Robert; Grulke, Eric; MacPhail, Robert
2013-01-01
This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern. Copyright © 2013 Wiley Periodicals, Inc.
Brain networks modulated by subthalamic nucleus deep brain stimulation.
Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A
2016-09-01
Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
He, Xiao-Song; Wang, Zhao-Xin; Zhu, You-Zhi; Wang, Nan; Hu, Xiaoping; Zhang, Da-Ren; Zhu, De-Fa; Zhou, Jiang-Ning
2014-01-01
Type 2 diabetes mellitus (T2DM) is well known for its adverse impacts on brain and cognition, which lead to multidimensional cognitive deficits and wildly-spread cerebral structure abnormalities. However, existing literatures are mainly focused on patients with advanced age or extended T2DM duration. Therefore, it remains unclear whether and how brain function would be affected at the initial onset stage of T2DM in relatively younger population. In current study, twelve newly-diagnosed middle-aged T2DM patients with no previous diabetic treatment history and twelve matched controls were recruited. Brain activations during a working memory task, the digit n-back paradigm (0-, 1- and 2-back), were obtained with functional magnetic resonance imaging (fMRI) and tested by repeated measures ANOVA. Whereas patients performed the n-back task comparably well as controls, significant load-by-group interactions of brain activation were found in the right dorsolateral prefrontal cortex (DLPFC), left middle/inferior frontal gyrus, and left parietal cortex, where patients exhibited hyperactivation in the 2-back but not the 0-back or 1-back condition compared to controls. Furthermore, the severity of chronic hyperglycemia, estimated by glycosylated hemoglobin (HbA1c) level, was entered into partial correlational analyses with task-related brain activations, while controlling for the real-time influence of glucose, estimated by instant plasma glucose level measured before scanning. Significant positive correlations were found between HbA1c and brain activations in the anterior cingulate cortex and bilateral DLPFC only in patients. Taken together, these findings suggest there might be a compensatory mechanism due to brain inefficiency related to chronic hyperglycemia at the initial onset stage of T2DM. PMID:24993663
Orrock, Janet E; Panchapakesan, Karuna; Vezina, Gilbert; Chang, Taeun; Harris, Kari; Wang, Yunfei; Knoblach, Susan; Massaro, An N
2016-05-01
Cytokines have been proposed as mediators of neonatal brain injury via neuroinflammatory pathways triggered by hypoxia-ischemia. Limited data are available on cytokine profiles in larger cohorts of newborns with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH). Serum cytokines interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-13, tumor necrosis factor-α, and interferon-γ were measured in newborns with HIE at 24 and 72 h of TH. Differences between infants with favorable (survivors with mild/no magnetic resonance imaging (MRI) injury) vs. adverse outcome (death or moderate/severe MRI injury) were compared using mixed models to adjust for covariates. Data from 36 term newborns with HIE (favorable outcome: n = 20, adverse outcome: n = 16) were evaluated. Cytokines IL-1β, IL-2, IL-6, IL-8, IL-10, and IL-13 were elevated in the adverse relative to favorable outcome group at 24 h. IL-6 remained significantly elevated in the adverse outcome group at 72 h. IL-6 and IL-10 remained significantly associated with outcome group after controlling for covariates. Inflammatory cytokines are elevated in HIE newborns with brain injury by MRI. In particular, IL-6 and IL-10 were associated with adverse outcomes after controlling for baseline characteristics and severity of presentation. These data suggest that cytokine response may identify infants in need of additional neuroprotective interventions.
Pakulak, Eric; Hampton Wray, Amanda; Longoria, Zayra; Garcia Isaza, Alejandra; Stevens, Courtney; Bell, Theodore; Burlingame, Sarah; Klein, Scott; Berlinski, Samuel; Attanasio, Orazio; Neville, Helen
2017-12-01
The relationship between early adversity and numerous negative outcomes across the lifespan is evident in a wide range of societies and cultures (e.g., Pakulak, Stevens, & Neville, 2018). Among the most affected neural systems are those supporting attention, self-regulation, and stress regulation. As such, these systems represent targets for neurobiologically informed interventions addressing early adversity. In prior work with monolingual native English-speaking families, we showed that a two-generation intervention targeting these systems in families improves outcomes across multiple domains including child brain function for selective attention (for detail, see Neville et al., 2013). Here, we discuss the translation and cultural adaptation (CA) of this intervention in local and international contexts, which required systematic consideration of cultural differences that could affect program acceptability. First, we conducted a translation and CA of our program to serve Latino families in the United States using the Cultural Adaptation Process (CAP), a model that works closely with stakeholders in a systematic, iterative process. Second, to implement the adapted program in Medellín, Colombia, we conducted a subsequent adaptation for Colombian culture using the same CAP. Our experience underscores the importance of consideration of cultural differences and a systematic approach to adaptation before assessing the efficacy of neurobiologically informed interventions in different cultural contexts. © 2017 Wiley Periodicals, Inc.
Sarman, Ihsan
2018-06-01
Studies are increasingly focusing on the effects of prenatal alcohol exposure (PAE) on child health. The aim of this review was to provide paediatricians with new insights to help them communicate key messages about avoiding alcohol during pregnancy. Inspired by the 7th International Conference on Fetal Alcohol Spectrum Disorder, which focused on integrating research, policy and practice, we studied English language papers published since 2010 on how early PAE triggered epigenetic mechanisms that had an impact on the development of some chronic diseases. We also report the findings of a human study using three-dimensional photography of the face to explore associations between PAE and craniofacial phenotyping. Animal models with different alcohol exposure patterns show that early PAE may lead to long-term chronic effects, due to developmental programming for some adult diseases in cardiovascular, metabolic and renal systems. The study with three-dimensional photographing is very promising in helping paediatricians to understand how even small amounts of PAE can affect craniofacial phenotyping. Even low levels of PAE can cause adverse foetal effects and not just in the brain. It is not currently possible to determine a safe period and level when alcohol consumption would not affect the foetus. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Code of Federal Regulations, 2010 CFR
2010-04-01
... to apply for TAA. (c) Adversely affected worker means an individual who, because of lack of work in adversely affected employment: (1) Has been totally or partially separated from such employment; or (2) Has been totally separated from employment with the firm in a subdivision of which such adversely affected...
47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC 79-387...
47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC 79-387...
Fukuwatari, Tsutomu; Kurata, Kaori; Shibata, Katsumi
2009-04-01
To determine the tolerable upper intake level of nicotinic acid in humans, we investigated the effects of excess nicotinic acid administration on body weight gain, food intake, and urinary excretion of water-soluble vitamins and the metabolism of tryptophan in weaning rats. The weaning rats were freely fed a niacin-free 20% casein diet (control diet) or the same diet with 0.1%, 0.3% or 0.5% nicotinic acid for 23 days. The excess nicotinic acid intake did not affect body weight gain, food intake, serotonin contents in the brain, stomach and small intestine, or the urinary excretions of water-soluble vitamins. Although excess nicotinic acid did not affect the upper part of the tryptophan-nicotinamide pathway, 0.5% nicotinic acid diet increased the urinary excretion of quinolinic acid. The diet containing more than 0.3% nicotinic acid also increased the urinary excretion of nicotinic acid, which is usually below the limit of detection. As determined from the results of body weight gain and food intake as indices for apparent adverse effects, the no-observed-adverse-effect-level (NOAEL) for nicotinic acid was 0.5% in diet, corresponding to 450 mg/kg body weight/day. As judged from in increase of urinary quinolinic acid and nicotinic acid as indices of metabolic change, NOAEL was 0.1% in diet, corresponding to 90 mg/kg body weight/day, and the lowest-observed-adverse-effect-level (LOAEL) was 0.3% in diet, corresponding to 270 mg/kg body weight/day.
Legg, Julian; Davies, Evan; Raich, Annie L; Dettori, Joseph R; Sherry, Ned
2014-04-01
Cerebral palsy (CP) is a group of nonprogressive syndromes of posture and motor impairment associated with lesions of the immature brain. Spastic quadriplegia is the most severe form with a high incidence of scoliosis, back pain, respiratory compromise, pelvic obliquity, and poor sitting balance. Surgical stabilization of the spine is an effective technique for correcting deformity and restoring sitting posture. The decision to operate in this group of patients is challenging. The aim of this study is to determine the benefits of surgical correction of scoliosis in children with spastic quadriplegia, the adverse effects of this treatment, and what preoperative factors affect patient outcome after surgical correction. A systematic review was undertaken to identify studies describing benefits and adverse effects of surgery in spastic quadriplegia. Factors affecting patient outcome following surgical correction of scoliosis were assessed. Studies involving adults and nonspastic quadriplegia were excluded. A total of 10 case series and 1 prospective and 3 retrospective cohort studies met inclusion criteria. There was significant variation in the overall risk of complications (range, 10.9-70.9%), mortality (range, 2.8-19%), respiratory/pulmonary complications (range, 26.9-57.1%), and infection (range, 2.5-56.8%). Factors associated with a worse outcome were a significant degree of thoracic kyphosis, days in the intensive care unit, and poor nutritional status. Caregivers report a high degree of satisfaction with scoliosis surgery for children with spastic quadriplegia. There is limited evidence of preoperative factors that can predict patient outcome after scoliosis. There is a need for well-designed prospective studies of scoliosis surgery in spastic quadriplegia.
Lawson, Gwendolyn M.; Camins, Joshua S.; Wisse, Laura; Wu, Jue; Duda, Jeffrey T.; Cook, Philip A.; Gee, James C.; Farah, Martha J.
2017-01-01
The present study examined the relationship between childhood socioeconomic status (SES), childhood maltreatment, and the volumes of the hippocampus and amygdala between the ages of 25 and 36 years. Previous work has linked both low SES and maltreatment with reduced hippocampal volume in childhood, an effect attributed to childhood stress. In 46 adult subjects, only childhood maltreatment, and not childhood SES, predicted hippocampal volume in regression analyses, with greater maltreatment associated with lower volume. Neither factor was related to amygdala volume. When current SES and recent interpersonal stressful events were also considered, recent interpersonal stressful events predicted smaller hippocampal volumes over and above childhood maltreatment. Finally, exploratory analyses revealed a significant sex by childhood SES interaction, with women’s childhood SES showing a significantly more positive relation (less negative) with hippocampus volume than men’s. The overall effect of childhood maltreatment but not SES, and the sex-specific effect of childhood SES, indicate that different forms of stressful childhood adversity affect brain development differently. PMID:28414755
Shams, Soaleha; Amlani, Shahid; Buske, Christine; Chatterjee, Diptendu; Gerlai, Robert
2018-01-01
The zebrafish is a social vertebrate and an excellent translational model for a variety of human disorders. Abnormal social behavior is a hallmark of several human brain disorders. Social behavioral problems can arise as a result of adverse early social environment. Little is known about the effects of early social isolation in adult zebrafish. We compared zebrafish that were isolated for either short (7 days) or long duration (180 days) to socially housed zebrafish, testing their behavior across ontogenesis (ages 10, 30, 60, 90, 120, 180 days), and shoal cohesion and whole-brain monoamines and their metabolites in adulthood. Long social isolation increased locomotion and decreased shoal cohesion and anxiety in the open-field in adult. Additionally, both short and long social isolation reduced dopamine metabolite levels in response to social stimuli. Thus, early social isolation has lasting effects in zebrafish, and may be employed to generate zebrafish models of human neuropsychiatric conditions. © 2017 Wiley Periodicals, Inc.
EDLOW, Andrea G.; GUEDJ, Faycal; PENNINGS, Jeroen L.A.; SVERDLOV, Deanna; NERI, Caterina; BIANCHI, Diana W.
2016-01-01
BACKGROUND Maternal obesity is associated with adverse neurodevelopmental outcomes in children, including autism spectrum disorders, developmental delay, and attention deficit hyperactivity disorder. The underlying mechanisms remain unclear. We previously identified second trimester amniotic fluid and term cord blood gene expression patterns suggesting dysregulated brain development in fetuses of obese compared to lean women. OBJECTIVES We sought to investigate the biological significance of these findings in a mouse model of maternal diet-induced obesity. We evaluated sex-specific differences in fetal growth, brain gene expression signatures and associated pathways. STUDY DESIGN Female C57BL/6J mice were fed a 60% high-fat diet or 10% fat control diet for 12–14 weeks prior to mating. During pregnancy, obese dams continued on the high-fat diet (HFD/HFD), or transitioned to the CD (HFD/CD). Lean dams stayed on the control diet. On embryonic day 17.5, embryos were weighed and fetal brains were snap frozen. RNA was extracted from male and female forebrains (10/diet group/sex) and hybridized to whole genome expression arrays. Significantly differentially expressed genes were identified using Welch’s t-test with the Benjamini-Hochberg correction. Functional analyses were performed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. RESULTS Embryos of HFD/HFD dams were significantly smaller than controls, with males more severely affected than females (p=0.01). Maternal obesity and maternal obesity with dietary change in pregnancy resulted in significantly more dysregulated genes in male versus female fetal brains (386 vs 66, p<0.001). Maternal obesity with and without dietary change in pregnancy was associated with unique brain gene expression signatures for each sex, with overlap of only one gene. Changing obese dams to a control diet in pregnancy resulted in more differentially expressed genes in the fetal brain than maternal obesity alone. Functional analyses identified common dysregulated pathways in both sexes, but maternal obesity and maternal dietary change affected different aspects of brain development in males compared to females. CONCLUSIONS Maternal obesity is associated with sex-specific differences in fetal size and fetal brain gene expression signatures. Male fetal growth and brain gene expression may be more sensitive to environmental influences during pregnancy. Maternal diet during pregnancy significantly impacts the embryonic brain transcriptome. It is important to consider both fetal sex and maternal diet when evaluating the effects of maternal obesity on fetal neurodevelopment. PMID:26945603
Edlow, Andrea G; Guedj, Faycal; Pennings, Jeroen L A; Sverdlov, Deanna; Neri, Caterina; Bianchi, Diana W
2016-05-01
Maternal obesity is associated with adverse neurodevelopmental outcomes in children, including autism spectrum disorders, developmental delay, and attention-deficit hyperactivity disorder. The underlying mechanisms remain unclear. We previously identified second-trimester amniotic fluid and term cord blood gene expression patterns suggesting dysregulated brain development in fetuses of obese compared with lean women. We sought to investigate the biological significance of these findings in a mouse model of maternal diet-induced obesity. We evaluated sex-specific differences in fetal growth, brain gene expression signatures, and associated pathways. Female C57BL/6J mice were fed a 60% high-fat diet or 10% fat control diet for 12-14 weeks prior to mating. During pregnancy, obese dams continued on the high-fat diet or transitioned to the control diet. Lean dams stayed on the control diet. On embryonic day 17.5, embryos were weighed and fetal brains were snap frozen. RNA was extracted from male and female forebrains (10 per diet group per sex) and hybridized to whole-genome expression arrays. Significantly differentially expressed genes were identified using a Welch's t test with the Benjamini-Hochberg correction. Functional analyses were performed using ingenuity pathways analysis and gene set enrichment analysis. Embryos of dams on the high-fat diet were significantly smaller than controls, with males more severely affected than females (P = .01). Maternal obesity and maternal obesity with dietary change in pregnancy resulted in significantly more dysregulated genes in male vs female fetal brains (386 vs 66, P < .001). Maternal obesity with and without dietary change in pregnancy was associated with unique brain gene expression signatures for each sex, with an overlap of only 1 gene. Changing obese dams to a control diet in pregnancy resulted in more differentially expressed genes in the fetal brain than maternal obesity alone. Functional analyses identified common dysregulated pathways in both sexes, but maternal obesity and maternal dietary change affected different aspects of brain development in males compared with females. Maternal obesity is associated with sex-specific differences in fetal size and fetal brain gene expression signatures. Male fetal growth and brain gene expression may be more sensitive to environmental influences during pregnancy. Maternal diet during pregnancy has a significant impact on the embryonic brain transcriptome. It is important to consider both fetal sex and maternal diet when evaluating the effects of maternal obesity on fetal neurodevelopment. Copyright © 2016 Elsevier Inc. All rights reserved.
Uses of Complementary and Alternative Medicine in Multiple Sclerosis
Namjooyan, Foroogh; Ghanavati, Rahil; Majdinasab, Nastaran; Jokari, Shiva; Janbozorgi, Mohammad
2014-01-01
Multiple sclerosis (MS) is a chronic, disabling, recurrent demyelination of the central nervous system (CNS). It could affect different regions in the brain and spinal cord, and according to the domain which is affected, it could cause different symptoms such as motor, sensory, or visual impairment; fatigue; bowel, bladder, and sexual dysfunction; cognitive impairment; and depression. MS patients also face reduced quality of life. Drugs that are used in MS are not fully efficient and patients suffer from many symptoms and adverse effects. Today there is an increasing trend of using complementary and alternative medicine (CAM). People are more likely to use this type of treatment. Using appropriate lifestyle and CAM therapy can subside some of the symptoms and could improve the quality of life in these patients. Many people with MS explore CAM therapies for their symptoms. This review is aimed to introduce CAM therapies that could be used in MS patients. PMID:25161918
The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders
Kundakovic, Marija; Jaric, Ivana
2017-01-01
Prenatal adverse environments, such as maternal stress, toxicological exposures, and viral infections, can disrupt normal brain development and contribute to neurodevelopmental disorders, including schizophrenia, depression, and autism. Increasing evidence shows that these short- and long-term effects of prenatal exposures on brain structure and function are mediated by epigenetic mechanisms. Animal studies demonstrate that prenatal exposure to stress, toxins, viral mimetics, and drugs induces lasting epigenetic changes in the brain, including genes encoding glucocorticoid receptor (Nr3c1) and brain-derived neurotrophic factor (Bdnf). These epigenetic changes have been linked to changes in brain gene expression, stress reactivity, and behavior, and often times, these effects are shown to be dependent on the gestational window of exposure, sex, and exposure level. Although evidence from human studies is more limited, gestational exposure to environmental risks in humans is associated with epigenetic changes in peripheral tissues, and future studies are required to understand whether we can use peripheral biomarkers to predict neurobehavioral outcomes. An extensive research effort combining well-designed human and animal studies, with comprehensive epigenomic analyses of peripheral and brain tissues over time, will be necessary to improve our understanding of the epigenetic basis of neurodevelopmental disorders. PMID:28335457
Controversies about the enhanced vulnerability of the adolescent brain to develop addiction.
Bernheim, Aurélien; Halfon, Olivier; Boutrel, Benjamin
2013-11-28
Adolescence, defined as a transition phase toward autonomy and independence, is a natural time of learning and adjustment, particularly in the setting of long-term goals and personal aspirations. It also is a period of heightened sensation seeking, including risk taking and reckless behaviors, which is a major cause of morbidity and mortality among teenagers. Recent observations suggest that a relative immaturity in frontal cortical neural systems may underlie the adolescent propensity for uninhibited risk taking and hazardous behaviors. However, converging preclinical and clinical studies do not support a simple model of frontal cortical immaturity, and there is substantial evidence that adolescents engage in dangerous activities, including drug abuse, despite knowing and understanding the risks involved. Therefore, a current consensus considers that much brain development during adolescence occurs in brain regions and systems that are critically involved in the perception and evaluation of risk and reward, leading to important changes in social and affective processing. Hence, rather than naive, immature and vulnerable, the adolescent brain, particularly the prefrontal cortex, should be considered as prewired for expecting novel experiences. In this perspective, thrill seeking may not represent a danger but rather a window of opportunities permitting the development of cognitive control through multiple experiences. However, if the maturation of brain systems implicated in self-regulation is contextually dependent, it is important to understand which experiences matter most. In particular, it is essential to unveil the underpinning mechanisms by which recurrent adverse episodes of stress or unrestricted access to drugs can shape the adolescent brain and potentially trigger life-long maladaptive responses.
Inverse association between BMI and prefrontal metabolic activity in healthy adults.
Volkow, Nora D; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S; Goldstein, Rita Z; Alia-Klein, Nelly; Logan, Jean; Wong, Christopher; Thanos, Panayotis K; Ma, Yemine; Pradhan, Kith
2009-01-01
Obesity has been associated with a higher risk for impaired cognitive function, which most likely reflects associated medical complications (i.e., cerebrovascular pathology). However, there is also evidence that in healthy individuals excess weight may adversely affect cognition (executive function, attention, and memory). Here, we measured regional brain glucose metabolism (using positron emission tomography (PET) and 2-deoxy-2[(18)F]fluoro-D-glucose (FDG)) to assess the relationship between BMI and brain metabolism (marker of brain function) in 21 healthy controls (BMI range 19-37 kg/m(2)) studied during baseline (no stimulation) and during cognitive stimulation (numerical calculations). Statistical parametric mapping (SPM) revealed a significant negative correlation between BMI and metabolic activity in prefrontal cortex (Brodmann areas 8, 9, 10, 11, 44) and cingulate gyrus (Brodmann area 32) but not in other regions. Moreover, baseline metabolism in these prefrontal regions was positively associated with performance on tests of memory (California Verbal Learning Test) and executive function (Stroop Interference and Symbol Digit Modality tests). In contrast, the regional brain changes during cognitive stimulation were not associated with BMI nor with neuropsychological performance. The observed association between higher BMI and lower baseline prefrontal metabolism may underlie the impaired performance reported in healthy obese individuals on some cognitive tests of executive function. On the other hand, the lack of an association between BMI and brain metabolic activation during cognitive stimulation indicates that BMI does not influence brain glucose utilization during cognitive performance. These results further highlight the urgency to institute public health interventions to prevent obesity.
Postmenopausal hormone therapy and regional brain volumes: the WHIMS-MRI Study.
Resnick, S M; Espeland, M A; Jaramillo, S A; Hirsch, C; Stefanick, M L; Murray, A M; Ockene, J; Davatzikos, C
2009-01-13
To determine whether menopausal hormone therapy (HT) affects regional brain volumes, including hippocampal and frontal regions. Brain MRI scans were obtained in a subset of 1,403 women aged 71-89 years who participated in the Women's Health Initiative Memory Study (WHIMS). WHIMS was an ancillary study to the Women's Health Initiative, which consisted of two randomized, placebo-controlled trials: 0.625 mg conjugated equine estrogens (CEE) with or without 2.5 mg medroxyprogesterone acetate (MPA) in one daily tablet. Scans were performed, on average, 3.0 years post-trial for the CEE + MPA trial and 1.4 years post-trial for the CEE-Alone trial; average on-trial follow-up intervals were 4.0 years for CEE + MPA and 5.6 years for CEE-Alone. Total brain, ventricular, hippocampal, and frontal lobe volumes, adjusted for age, clinic site, estimated intracranial volume, and dementia risk factors, were the main outcome variables. Compared with placebo, covariate-adjusted mean frontal lobe volume was 2.37 cm(3) lower among women assigned to HT (p = 0.004), mean hippocampal volume was slightly (0.10 cm(3)) lower (p = 0.05), and differences in total brain volume approached significance (p = 0.07). Results were similar for CEE + MPA and CEE-Alone. HT-associated reductions in hippocampal volumes were greatest in women with the lowest baseline Modified Mini-Mental State Examination scores (scores <90). Conjugated equine estrogens with or without MPA are associated with greater brain atrophy among women aged 65 years and older; however, the adverse effects are most evident in women experiencing cognitive deficits before initiating hormone therapy.
Antidepressants and the adolescent brain.
Cousins, Lesley; Goodyer, Ian M
2015-05-01
Major unipolar depression is a significant global health problem, with the highest incident risk being during adolescence. A depressive illness during this period is associated with negative long-term consequences including suicide, additional psychiatric comorbidity, interpersonal relationship problems, poor educational performance and poor employment attainment well into adult life. Despite previous safety concerns, selective serotonin reuptake inhibitors (SSRIs) remain a key component of the treatment of moderate to severe depression episodes in adolescents. The impact of SSRIs on the developing adolescent brain, however, remains unclear. In this review we first consider what is currently known about the developing brain during adolescence and how these development processes may be affected by a depressive illness. We then review our understanding of the action of SSRIs, their effects on the brain and how these may differ between adults and adolescents. We conclude that there is currently little evidence to indicate that the human adolescent brain is at developmental risk from SSRIs. Furthermore, there is no clear-cut evidence to support the concerns of marked suicidal adverse side effects accruing in depressed adolescents being treated with SSRIs. Neither, however, is there irrefutable evidence to dismiss all such concerns. This makes SSRI prescribing a matter of medical judgement, ensuring the benefits outweigh the risks for the individual patients, as with so much in therapeutics. Overall, SSRIs show clinical benefits that we judge to outweigh the risks to neurodevelopment and are an important therapeutic choice in the treatment of moderate to severe adolescent depression. © The Author(s) 2015.
Gupta, Avinash; Roberts, Corran; Tysoe, Finn; Goff, Matthew; Nobes, Jenny; Lester, James; Marshall, Ernie; Corner, Carie; Wolstenholme, Virginia; Kelly, Charles; Wise, Adelyn; Collins, Linda; Love, Sharon; Woodward, Martha; Salisbury, Amanda; Middleton, Mark R
2016-11-08
Brain metastases occur in up to 75% of patients with advanced melanoma. Most are treated with whole-brain radiotherapy (WBRT), with limited effectiveness. Vandetanib, an inhibitor of vascular endothelial growth factor receptor, epidermal growth factor receptor and rearranged during transfection tyrosine kinases, is a potent radiosensitiser in xenograft models. We compared WBRT with WBRT plus vandetanib in the treatment of patients with melanoma brain metastases. In this double-blind, multi-centre, phase 2 trial patients with melanoma brain metastases were randomised to receive WBRT (30 Gy in 10 fractions) plus 3 weeks of concurrent vandetanib 100 mg once daily or placebo. The primary endpoint was progression-free survival in brain (PFS brain). The main study was preceded by a safety run-in phase to confirm tolerability of the combination. A post-hoc analysis and literature review considered barriers to recruiting patients with melanoma brain metastases to clinical trials. Twenty-four patients were recruited, six to the safety phase and 18 to the randomised phase. The study closed early due to poor recruitment. Median PFS brain was 3.3 months (90% confidence interval (CI): 1.6-5.6) in the vandetanib group and 2.5 months (90% CI: 0.2-4.8) in the placebo group (P=0.34). Median overall survival (OS) was 4.6 months (90% CI: 1.6-6.3) and 2.5 months (90% CI: 0.2-7.2), respectively (P=0.54). The most frequent adverse events were fatigue, alopecia, confusion and nausea. The most common barrier to study recruitment was availability of alternative treatments. The combination of WBRT plus vandetanib was well tolerated. Compared with WBRT alone, there was no significant improvement in PFS brain or OS, although we are unable to provide a definitive result due to poor accrual. A review of barriers to trial accrual identified several factors that affect study recruitment in this difficult disease area.
D'Mello, Charlotte; Swain, Mark G
2014-01-01
Chronic inflammatory liver diseases are often accompanied by behavior alterations including fatigue, mood disorders, cognitive dysfunction and sleep disturbances. These altered behaviors can adversely affect patient quality of life. The communication pathways between the inflamed liver and the brain that mediate changes in central neural activity leading to behavior alterations during liver inflammation are poorly understood. Neural and humoral communication pathways have been most commonly implicated as driving peripheral inflammation to brain signaling. Classically, the cytokines TNFα, IL-1β and IL-6 have received the greatest scientific attention as potential mediators of this communication pathway. In mice with liver inflammation we have identified a novel immune-mediated liver-to-brain communication pathway whereby CCR2(+) monocytes found within the peripheral circulation transmigrate into the brain parenchyma in response to MCP-1/CCL2 expressing activated microglia. Inhibition of cerebral monocyte infiltration in these mice significantly improved liver inflammation associated sickness behaviors. Importantly, in recent work we have found that at an earlier time point, when cerebral monocyte infiltration is not evident in mice with liver inflammation, increased monocyte:cerebral endothelial cell adhesive interactions are observed using intravital microscopy of the brain. These monocyte:cerebral endothelial cell adhesive interactions are P-selectin mediated, and inhibition of these interactions attenuated microglial activation and sickness behavior development. Delineating the pathways that the periphery uses to communicate with the brain during inflammatory liver diseases, and the central neurotransmitter systems that are altered through these communication pathways (e.g., serotonin, corticotrophin releasing hormone) to give rise to liver inflammation-associated sickness behaviors, will allow for the identification of novel therapeutic targets to decrease the burden of debilitating symptoms in these patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Maldonado-Cedillo, Brenda Gabriela; Díaz-Ruiz, Araceli; Montes, Sergio; Galván-Arzate, Sonia; Ríos, Camilo; Beltrán-Campos, Vicente; Alcaraz-Zubeldia, Mireya; Díaz-Cintra, Sofia
2016-09-01
Prenatal malnutrition (M) and lead intoxication (Pb) have adverse effects on neuronal development; one of the cellular mechanisms involved is a disruption of the pro- and anti-oxidant balance. In the developing brain, the vulnerability of neuronal membrane phospholipids is variable across the different brain areas. This study assesses the susceptibility of different brain regions to damage by quitar tissue oxidative stress and lead quitar concentrations to determine whether the combined effect of prenatal malnutrition (M) and lead (Pb) intoxication is worse than the effect of either of them individually. M was induced with an isocaloric and hypoproteinic (6% casein) diet 4 weeks before pregnancy. Intoxication was produced with lead acetate in drinking water, from the first gestational day. Both the M and Pb models were continued until the day of birth. Four brain regions (hippocampus, cortex, striatum, and cerebellum) were dissected out to analyze the lipid peroxidation (LP) levels in four groups: normally nourished (C); normally nourished but intoxicated with lead (CPb); malnourished (M); and M intoxicated with lead (MPb). Dam body and brain weights were significantly reduced in the fourth gestational week in the MPb group. Their pups had significantly lower body weights than those in the C and CPb groups. The PbM group exhibited significant increases of lead concentration and LP in all areas evaluated. A potentiation effect of Pb and M on LP was found in the cerebellum. This study provides information on how environmental conditions (intoxication and malnutrition) during the intrauterine period could differentially affect the development of neuronal plasticity and, in consequence, alter adult brain functions such as learning and memory.
Early life stress-induced alterations in rat brain structures measured with high resolution MRI.
Sarabdjitsingh, R Angela; Loi, Manila; Joëls, Marian; Dijkhuizen, Rick M; van der Toorn, Annette
2017-01-01
Adverse experiences early in life impair cognitive function both in rodents and humans. In humans this increases the vulnerability to develop mental illnesses while in the rodent brain early life stress (ELS) abnormalities are associated with changes in synaptic plasticity, excitability and microstructure. Detailed information on the effects of ELS on rodent brain structural integrity at large and connectivity within the brain is currently lacking; this information is highly relevant for understanding the mechanism by which early life stress predisposes to mental illnesses. Here, we exposed rats to 24 hours of maternal deprivation (MD) at postnatal day 3, a paradigm known to increase corticosterone levels and thereby activate glucocorticoid receptors in the brain. Using structural magnetic resonance imaging we examined: i) volumetric changes and white/grey matter properties of the whole cerebrum and of specific brain areas; and ii) whether potential alterations could be normalized by blocking glucocorticoid receptors with mifepristone during the critical developmental window of early adolescence, i.e. between postnatal days 26 and 28. The results show that MD caused a volumetric reduction of the prefrontal cortex, particularly the ventromedial part, and the orbitofrontal cortex. Within the whole cerebrum, white (relative to grey) matter volume was decreased and region-specifically in prefrontal cortex and dorsomedial striatum following MD. A trend was found for the hippocampus. Grey matter fractions were not affected. Treatment with mifepristone did not normalize these changes. This study indicates that early life stress in rodents has long lasting consequences for the volume and structural integrity of the brain. However, changes were relatively modest and-unlike behavior- not mitigated by blockade of glucocorticoid receptors during a critical developmental period.
White matter correlates of psychopathic traits in a female community sample
Budhiraja, Meenal; Westerman, Johan; Savic, Ivanka; Jokinen, Jussi; Tiihonen, Jari; Hodgins, Sheilagh
2017-01-01
Abstract Psychopathy comprises interpersonal, affective, lifestyle and antisocial facets that vary dimensionally in the population and are associated with criminal offending and adverse psychosocial outcomes. Evidence associating these facets with white matter microstructure of the uncinate fasciculus and the cingulum tracts is inconsistent and derives principally from studies of male offenders. In a sample of 99 young women presenting a range of scores on the Psychopathy Checklist: Screening Version, we used Diffusion Tensor Imaging, tractography and Tract-Based Spatial Statistics to investigate microstructure across the brain and of the uncinate fasciculus and cingulum. Right uncinate fasciculus microstructure was negatively associated with the interpersonal facet, while cingulum integrity was not associated with any facet of psychopathy. Whole-brain analyses revealed that both affective and lifestyle facets were negatively correlated with white matter microstructure adjacent to the fusiform gyrus, and the interpersonal facet correlated negatively with the integrity of the fornix. Findings survived adjustment for the other facet scores, and age, verbal and performance IQ. A similar negative association between the interpersonal facet and uncinate fasciculus integrity was previously observed in male offenders. Thus, previous evidence showing that psychopathic traits are associated with functional and structural abnormalities within limbic networks may also apply to females. PMID:28992269
Adequate levels of thyroid hormones (TH) are needed for proper brain development and deficiencies lead to adverse neurological outcomes in humans and in animal models. Environmental chemicals have been shown to disrupt TH levels, yet the relationship between developmental exposur...
Sleep and Behavior in Cross-Fostering Rats: Developmental and Sex Aspects.
Santangeli, Olena; Lehtikuja, Henna; Palomäki, Eeva; Wigren, Henna-Kaisa; Paunio, Tiina; Porkka-Heiskanen, Tarja
2016-12-01
Adverse early-life events induce behavioral psychopathologies and sleep changes in adulthood. In order to understand the molecular level mechanisms by which the maltreatment modifies sleep, valid animal models are needed. Changing pups between mothers at early age (cross-fostering) may satisfyingly model adverse events in human childhood. Cross-fostering (CF) was used to model mild early-life stress in male and female Wistar rats. Behavior and BDNF gene expression in the basal forebrain (BF), cortex, and hypothalamus were assessed during adolescence and adulthood. Spontaneous sleep, sleep homeostasis, and BF extracellular adenosine levels were assessed in adulthood. CF rats demonstrated increased number of REM sleep onsets in light and dark periods of the day. Total REM and NREM sleep duration was also increased during the light period. While sleep homeostasis was not severely affected, basal level of adenosine in the BF of both male and female CF rats was lower than in controls. CF did not lead to considerable changes in behavior. Even when the consequences of adverse early-life events are not observed in tests for anxiety and depression, they leave a molecular mark in the brain, which can act as a vulnerability factor for psychopathologies in later life. Sleep is a sensitive indicator for even mild early-life stress. © 2016 Associated Professional Sleep Societies, LLC.
Pathophysiological implications of neurovascular P450 in brain disorders
Ghosh, Chaitali; Hossain, Mohammed; Solanki, Jesal; Dadas, Aaron; Marchi, Nicola; Janigro, Damir
2016-01-01
Over the past decades, the significance of cytochrome P450 (CYP) enzymes has expanded beyond their role as peripheral drug metabolizers in the liver and gut. CYP enzymes are also functionally active at the neurovascular interface. CYP expression is modulated by disease states, impacting cellular functions, detoxification, and reactivity to toxic stimuli and brain drug biotransformation. Unveiling the physiological and molecular complexity of brain P450 enzymes will improve our understanding of the mechanisms underlying brain drug availability, pharmacological efficacy, and neurotoxic adverse effects from pharmacotherapy targeting brain disorders. PMID:27312874
Cortical gyrification is abnormal in children with prenatal alcohol exposure.
Hendrickson, Timothy J; Mueller, Bryon A; Sowell, Elizabeth R; Mattson, Sarah N; Coles, Claire D; Kable, Julie A; Jones, Kenneth L; Boys, Christopher J; Lim, Kelvin O; Riley, Edward P; Wozniak, Jeffrey R
2017-01-01
Prenatal alcohol exposure (PAE) adversely affects early brain development. Previous studies have shown a wide range of structural and functional abnormalities in children and adolescents with PAE. The current study adds to the existing literature specifically on cortical development by examining cortical gyrification in a large sample of children with PAE compared to controls. Relationships between cortical development and intellectual functioning are also examined. Included were 92 children with PAE and 83 controls ages 9-16 from four sites in the Collaborative Initiative on FASD (CIFASD). All PAE participants had documented heavy PAE. All underwent a formal evaluation of physical anomalies and dysmorphic facial features. MRI data were collected using modified matched protocols on three platforms (Siemens, GE, and Philips). Cortical gyrification was examined using a semi-automated procedure. Whole brain group comparisons using Monte Carlo z-simulation for multiple comparisons showed significantly lower cortical gyrification across a large proportion of the cerebral cortex amongst PAE compared to controls. Whole brain comparisons and ROI based analyses showed strong positive correlations between cortical gyrification and IQ (i.e. less developed cortex was associated with lower IQ). Abnormalities in cortical development were seen across the brain in children with PAE compared to controls. Cortical gyrification and IQ were strongly correlated, suggesting that examining mechanisms by which alcohol disrupts cortical formation may yield clinically relevant insights and potential directions for early intervention.
Taurine, caffeine, and energy drinks: Reviewing the risks to the adolescent brain.
Curran, Christine Perdan; Marczinski, Cecile A
2017-12-01
Energy drinks are emerging as a major component of the beverage market with sales projected to top $60 billion globally in the next five years. Energy drinks contain a variety of ingredients, but many of the top-selling brands include high doses of caffeine and the amino acid taurine. Energy drink consumption by children has raised concerns, due to potential caffeine toxicity. An additional risk has been noted among college-aged consumers of energy drinks who appear at higher risk of over-consumption of alcohol when the two drinks are consumed together. The differential and combinatorial effects of caffeine and taurine on the developing brain are reviewed here with an emphasis on the adolescent brain, which is still maturing. Key data from animal studies are summarized to highlight both reported benefits and adverse effects reported following acute and chronic exposures. The data suggest that age is an important factor in both caffeine and taurine toxicity. Although the aged or diseased brain might benefit from taurine or caffeine supplementation, it appears that adolescents are not likely to benefit from supplementation and may, in fact, suffer ill effects from chronic ingestion of high doses. Additional work is needed though to address gaps in our understanding of how taurine affects females, since the majority of animal studies focused exclusively on male subjects. © 2017 Wiley Periodicals, Inc.
Effects of boron on growth and physiology in mallard ducklings
Hoffman, D.J.; Camardese, M.B.; LeCaptain, L.J.; Pendleton, G.W.
1990-01-01
High concentrations of boron (B) have been associated with irrigation drainwater and aquatic plants consumed by waterfowl. Day-old mallard (Anas platyrhynchos) ducklings received an untreated diet (controls) or diets containing 100, 400 or 1,600 ppm B as boric acid. Survival, growth and food consumption were measured for 10 weeks. At termination, blood and tissue samples were collected for biochemical assays and histological examination. The highest dietary concentration of B caused 10% mortality, decreased overall growth and the rate of growth (sexes combined), whereas lower concentrations of B altered growth only in females. Food consumption water lower during the first 3 weeks in the 1,600-ppm group and during the second week in all B-treated groups compared to controls. Hematocrit and hemaglobin were lower and plasma calcium concentration higher in the 1,600-ppm group compared to controls. Plasma triglyceride concentration was elevated in all B-treated groups. Brain B concentration increased to 25 times that of controls in the 1,600-ppm group. Brain ATP decreased with increasing dietary B. Brain acetylcholinesterase activity and total ATPase activity (in males) were elevated and protein concentration lowered in the 1,600-ppm group. Boron accumulated less in the liver than in the brain but resulted in an initial elevation of hepatic glutathione. These findings, in combination with altered duckling behavior, suggest that concentrations of B occurring in aquatic plants could adversely affect normal duckling development.
Han, S. Duke; Suzuki, Hideo; Drake, Angela I.; Jak, Amy J.; Houston, Wes S.; Bondi, Mark W.
2012-01-01
Objective Traumatic brain injury (TBI) is a risk associated with military duty, and residual effects from TBI may adversely affect a service member's ability to complete duties. It is, therefore, important to identify factors associated with a change in job status following TBI in an active military population. On the basis of previous research, we predicted that apolipoprotein E (APOE) genotype may be 1 factor. Design Cohort study of military personnel who sustained a mild to moderate TBI. Setting Military medical clinics. Patients or Other Participants Fifty-two military participants were recruited through the Defense and Veterans Brain Injury Center, affiliated with Naval Medical Center San Diego and the Defense and Veterans Brain Injury Center Concussion Clinic located at the First Marine Division at Camp Pendleton. Intervention(s) A multivariate statistical classification approach called optimal data analysis allowed for consideration of APOE genotype alongside cognitive, emotional, psychosocial, and physical functioning. Main Outcome Measure(s) APOE genotype, neuropsychological, psychosocial, and clinical outcomes. Results We identified a model of factors that was associated with a change in job status among military personnel who experienced a mild or moderate TBI. Conclusions Factors associated with a change in job status are different when APOE genotype is considered. We conclude that APOE genotype may be an important genetic factor in recovery from mild to moderate head injury. PMID:19158597
Ventral striatal activity links adversity and reward processing in children.
Kamkar, Niki H; Lewis, Daniel J; van den Bos, Wouter; Morton, J Bruce
2017-08-01
Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive outcomes and impulsive decision-making, but unrelated to learning from negative outcomes. We then show via functional magnetic resonance imaging that the link between adversity and reward processing is partially mediated by differences in ventral striatal response to rewards. The findings suggest that early-life adversity is associated with alterations in the brain's sensitivity to rewards accounting, in part, for the link between adversity and altered reward processing in children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Garner, Andrew S; Shonkoff, Jack P
2012-01-01
Advances in a wide range of biological, behavioral, and social sciences are expanding our understanding of how early environmental influences (the ecology) and genetic predispositions (the biologic program) affect learning capacities, adaptive behaviors, lifelong physical and mental health, and adult productivity. A supporting technical report from the American Academy of Pediatrics (AAP) presents an integrated ecobiodevelopmental framework to assist in translating these dramatic advances in developmental science into improved health across the life span. Pediatricians are now armed with new information about the adverse effects of toxic stress on brain development, as well as a deeper understanding of the early life origins of many adult diseases. As trusted authorities in child health and development, pediatric providers must now complement the early identification of developmental concerns with a greater focus on those interventions and community investments that reduce external threats to healthy brain growth. To this end, AAP endorses a developing leadership role for the entire pediatric community-one that mobilizes the scientific expertise of both basic and clinical researchers, the family-centered care of the pediatric medical home, and the public influence of AAP and its state chapters-to catalyze fundamental change in early childhood policy and services. AAP is committed to leveraging science to inform the development of innovative strategies to reduce the precipitants of toxic stress in young children and to mitigate their negative effects on the course of development and health across the life span.
Shijo, Katsunori; Ghavim, Sima; Harris, Neil G; Hovda, David A; Sutton, Richard L
2015-07-21
The impact of hyperglycemia after traumatic brain injury (TBI), and even the administration of glucose-containing solutions to head injured patients, remains controversial. In the current study adult male Sprague-Dawley rats were tested on behavioral tasks and then underwent surgery to induce sham injury or unilateral controlled cortical impact (CCI) injury followed by injections (i.p.) with either a 50% glucose solution (Glc; 2g/kg) or an equivalent volume of either 0.9% or 8% saline (Sal) at 0, 1, 3 and 6h post-injury. The type of saline treatment did not significantly affect any outcome measures, so these data were combined. Rats with CCI had significant deficits in beam-walking traversal time and rating scores (p's < 0.001 versus sham) that recovered over test sessions from 1 to 13 days post-injury (p's < 0.001), but these beam-walking deficits were not affected by Glc versus Sal treatments. Persistent post-CCI deficits in forelimb contraflexion scores and forelimb tactile placing ability were also not differentially affected by Glc or Sal treatments. However, deficits in latency to retract the right hind limb after limb extension were significantly attenuated in the CCI-Glc group (p < 0.05 versus CCI-Sal). Both CCI groups were significantly impaired in a plus maze test of spatial working memory on days 4, 9 and 14 post-surgery (p < 0.001 versus sham), and there was no effect of Glc versus Sal on this cognitive outcome measure. At 15 days post-surgery the loss of cortical tissue volume (p < 0.001 versus sham) was significantly less in the CCI-Glc group (30.0%; p < 0.05) compared to the CCI-Sal group (35.7%). Counts of surviving hippocampal hilar neurons revealed a significant (~40%) loss ipsilateral to CCI (p < 0.001 versus sham), but neuronal loss in the hippocampus was not different in the CCI-Sal and CCI-Glc groups. Taken together, these results indicate that an early elevation of blood glucose may improve some neurological outcomes and, importantly, the induction of hyperglycemia after isolated TBI did not adversely affect any sensorimotor, cognitive or histological outcomes. Copyright © 2015 Elsevier B.V. All rights reserved.
Child Development in the Context of Adversity: Experiential Canalization of Brain and Behavior
ERIC Educational Resources Information Center
Blair, Clancy; Raver, C. Cybele
2012-01-01
The authors examine the effects of poverty-related adversity on child development, drawing upon psychobiological principles of experiential canalization and the biological embedding of experience. They integrate findings from research on stress physiology, neurocognitive function, and self-regulation to consider adaptive processes in response to…
Adequate levels of thyroid hormones (TH) are needed for proper brain development, deficiencies may lead to adverse neurological outcomes in humans and animal models. Environmental chemicals have been linked to TH disruption, yet the relationship between developmental exposures an...
Spinhoven, Philip; Elzinga, Bernet M; Hovens, Jacqueline G F M; Roelofs, Karin; Zitman, Frans G; van Oppen, Patricia; Penninx, Brenda W J H
2010-10-01
Although several studies have shown that life adversities play an important role in the etiology and maintenance of both depressive and anxiety disorders, little is known about the relative specificity of several types of life adversities to different forms of depressive and anxiety disorder and the concurrent role of neuroticism. Few studies have investigated whether clustering of life adversities or comorbidity of psychiatric disorders critically influence these relationships. Using data from the Netherlands Study of Depression and Anxiety (NESDA), we analyzed the association of childhood adversities and negative life experiences across the lifespan with lifetime DSM-IV-based diagnoses of depression or anxiety among 2288 participants with at least one affective disorder. Controlling for comorbidity and clustering of adversities the association of childhood adversity with affective disorders was greater than that of negative life events across the life span with affective disorders. Among childhood adversities, emotional neglect was specifically associated with depressive disorder, dysthymia, and social phobia. Persons with a history of emotional neglect and sexual abuse were more likely to develop more than one lifetime affective disorder. Neuroticism and current affective disorder did not affect the adversity-disorder relationships found. Using a retrospective study design, causal interpretations of the relationships found are not warranted. Emotional neglect seems to be differentially related to depression, dysthymia and social phobia. This knowledge may help to reduce underestimation of the impact of emotional abuse and lead to better recognition and treatment to prevent long-term disorders. Copyright 2010 Elsevier B.V. All rights reserved.
PUTATIVE ADVERSE OUTCOME PATHWAY FOR INHIBITON ...
The adverse outcome pathway (AOP) provides a framework for organizing knowledge to define links between a molecular initiating event (MIE) and an adverse outcome (AO) occurring at a higher level of biological organization, such as the individual or population. The AOP framework proceeds from a general (e.g., not chemical specific) molecular mode of action, designated as a MIE, through stepwise changes in biological status, defined as key events (KEs), to a final AO that can be used in risk assessment. Because aromatase-inhibiting pharmaceuticals are widely used to treat breast cancer patients, we explored the unintended consequences that might occur in fish exposed to these chemicals through wastewater discharge into the aquatic environment. Unlike mammals, fish have two isoforms of aromatase, one that predominates in the ovary (cyp19a1a) and a second (cyp19a1b) that prevails in the brain. Aromatase activity in fish brain can be 100 to 1000 times that in mammals and is associated with reproduction. We have developed a putative AOP for inhibition of brain aromatase in fish leading to reproductive dysfunction based on review of relevant literature and reproductive experiments with the marine fish cunner (Tautogolabrus adspersus) exposed to aromatase-inhibiting pharmaceuticals in the laboratory. The first KE in this AOP is a decrease in brain aromatase activity due to exposure to an aromatase inhibitor. KEs then progress through subsequent steps including decreas
Salas-Ramirez, Kaliris Y.; Montalto, Pamela R.; Sisk, Cheryl L.
2010-01-01
Anabolic androgenic steroids (AAS) are synthetic derivatives of testosterone used by over half a million adolescents in the United States for their tissue-building potency and performance-enhancing effects. AAS also affect behavior, including reports of heightened aggression and changes in sexual libido. The expression of sexual and aggressive behaviors is a function of complex interactions among hormones, social context, and the brain, which is extensively remodeled during adolescence. Thus, AAS may have different consequences on behavior during adolescence and adulthood. Using a rodent model, these studies directly compared the effects of AAS on the expression of male sexual and aggressive behaviors in adolescents and adults. Male Syrian hamsters were injected daily for 14 days with either vehicle or an AAS cocktail containing testosterone cypionate (2 mg/kg), nandrolone decanoate (2 mg/kg), and boldenone undecylenate (1 mg/kg), either during adolescence (27–41 days of age) or in adulthood (63–77 days of age). The day after the last injection, males were tested for either sexual behavior with a receptive female or agonistic behavior with a male intruder. Adolescent males treated with AAS showed significant increases in sexual and aggressive behaviors relative to vehicle-treated adolescents. In contrast, AAS-treated adults showed significantly lower levels of sexual behavior compared with vehicle-treated adults and did not show heightened aggression. Thus, adolescents, but not adults, displayed significantly higher behavioral responses to AAS, suggesting that the still-developing adolescent brain is more vulnerable than the adult brain to the adverse consequences of AAS on the nervous system and behavior. PMID:18201704
2010-01-01
reversibly inhibits 5a. CONTRACT NUMBER central and peripheral acetylcholinesterase activity without adverse cognitive–behavioral effects 5b. GRANT...huperzine reversibly inhibits central and peripheral acetylcholinesterase activity without adverse cognitive–behavioral effects Todd M. Myers a,⁎, Wei Sun b...HUP to enter the brain is also evidenced by studies that use well-documented centrally active anticholinergics to induce cognitive impairments that are
CHEMICALS THAT DISRUPT THE THYROID AXIS: COLLABORATION BETWEEN ORD AND STAR GRANT RECIPIENTS.
For effective regulation, the EPA must determine the potential adverse consequences of mild disturbances of the thyroid axis on brain development. Severe hypothyroidism has long been known to lead to profound alterations in brain development and mental retardation. However, the s...
De Ruysscher, Dirk; Dingemans, Anne-Marie C; Praag, John; Belderbos, Jose; Tissing-Tan, Caroline; Herder, Judith; Haitjema, Tjeerd; Ubbels, Fred; Lagerwaard, Frank; El Sharouni, Sherif Y; Stigt, Jos A; Smit, Egbert; van Tinteren, Harm; van der Noort, Vincent; Groen, Harry J M
2018-05-22
Purpose The purpose of the current study was to investigate whether prophylactic cranial irradiation (PCI) reduces the incidence of symptomatic brain metastases in patients with stage III non-small-cell lung cancer (NSCLC) treated with curative intention. Patients and Methods Patients with stage III NSCLC-staged with a contrast-enhanced brain computed tomography or magnetic resonance imaging-were randomly assigned to either observation or PCI after concurrent/sequential chemoradiotherapy with or without surgery. The primary end point-development of symptomatic brain metastases at 24 months-was defined as one or a combination of key symptoms that suggest brain metastases-signs of increased intracranial pressure, headache, nausea and vomiting, cognitive or affective disturbances, seizures, and focal neurologic symptoms-and magnetic resonance imaging or computed tomography demonstrating the existence of brain metastasis. Adverse effects, survival, quality of life, quality-adjusted survival, and health care costs were secondary end points. Results Between 2009 and 2015, 175 patients were randomly assigned: 87 received PCI and 88 underwent observation only. Median follow-up was 48.5 months (95% CI, 39 to 54 months). Six (7.0%) of 86 patients in the PCI group and 24 (27.2%) of 88 patients in the control group had symptomatic brain metastases ( P = .001). PCI significantly increased the time to develop symptomatic brain metastases (hazard ratio, 0.23; [95% CI, 0.09 to 0.56]; P = .0012). Median time to develop brain metastases was not reached in either arm. Overall survival was not significantly different between both arms. Grade 1 and 2 memory impairment (26 of 86 v seven of 88 patients) and cognitive disturbance (16 of 86 v three of 88 patients) were significantly increased in the PCI arm. Quality of life was only decreased 3 months post-PCI and was similar to the observation arm thereafter. Conclusion PCI significantly decreased the proportion of patients who developed symptomatic brain metastases with an increase of low-grade toxicity.
Schoedel, Kerri A; Morrow, Sarah A; Sellers, Edward M
2014-01-01
Pseudobulbar affect (PBA) is a common manifestation of brain pathology associated with many neurological diseases, including amyotrophic lateral sclerosis, Alzheimer’s disease, stroke, multiple sclerosis, Parkinson’s disease, and traumatic brain injury. PBA is defined by involuntary and uncontrollable expressed emotion that is exaggerated and inappropriate, and also incongruent with the underlying emotional state. Dextromethorphan/quinidine (DM/Q) is a combination product indicated for the treatment of PBA. The quinidine component of DM/Q inhibits the cytochrome P450 2D6-mediated metabolic conversion of dextromethorphan to its active metabolite dextrorphan, thereby increasing dextromethorphan systemic bioavailability and driving the pharmacology toward that of the parent drug and away from adverse effects of the dextrorphan metabolite. Three published efficacy and safety studies support the use of DM/Q in the treatment of PBA; significant effects were seen on the primary end point, the Center for Neurologic Study-Lability Scale, as well as secondary efficacy end points and quality of life. While concentration–effect relationships appear relatively weak for efficacy parameters, concentrations of DM/Q may have an impact on safety. Some special safety concerns exist with DM/Q, primarily because of the drug interaction and QT prolongation potential of the quinidine component. However, because concentrations of dextrorphan (which is responsible for many of the parent drug’s side effects) and quinidine are lower than those observed in clinical practice with these drugs administered alone, some of the perceived safety issues may not be as relevant with this low dose combination product. However, since patients with PBA have a variety of other medical problems and are on numerous other medications, they may not tolerate DM/Q adverse effects, or may be at risk for drug interactions. Some caution is warranted when initiating DM/Q treatment, particularly in patients with underlying risk factors for torsade de pointes and in those receiving medications that may interact with DM/Q. PMID:25061302
Schoedel, Kerri A; Morrow, Sarah A; Sellers, Edward M
2014-01-01
Pseudobulbar affect (PBA) is a common manifestation of brain pathology associated with many neurological diseases, including amyotrophic lateral sclerosis, Alzheimer's disease, stroke, multiple sclerosis, Parkinson's disease, and traumatic brain injury. PBA is defined by involuntary and uncontrollable expressed emotion that is exaggerated and inappropriate, and also incongruent with the underlying emotional state. Dextromethorphan/quinidine (DM/Q) is a combination product indicated for the treatment of PBA. The quinidine component of DM/Q inhibits the cytochrome P450 2D6-mediated metabolic conversion of dextromethorphan to its active metabolite dextrorphan, thereby increasing dextromethorphan systemic bioavailability and driving the pharmacology toward that of the parent drug and away from adverse effects of the dextrorphan metabolite. Three published efficacy and safety studies support the use of DM/Q in the treatment of PBA; significant effects were seen on the primary end point, the Center for Neurologic Study-Lability Scale, as well as secondary efficacy end points and quality of life. While concentration-effect relationships appear relatively weak for efficacy parameters, concentrations of DM/Q may have an impact on safety. Some special safety concerns exist with DM/Q, primarily because of the drug interaction and QT prolongation potential of the quinidine component. However, because concentrations of dextrorphan (which is responsible for many of the parent drug's side effects) and quinidine are lower than those observed in clinical practice with these drugs administered alone, some of the perceived safety issues may not be as relevant with this low dose combination product. However, since patients with PBA have a variety of other medical problems and are on numerous other medications, they may not tolerate DM/Q adverse effects, or may be at risk for drug interactions. Some caution is warranted when initiating DM/Q treatment, particularly in patients with underlying risk factors for torsade de pointes and in those receiving medications that may interact with DM/Q.
Why could meditation practice help promote mental health and well-being in aging?
Chételat, Gaël; Lutz, Antoine; Arenaza-Urquijo, Eider; Collette, Fabienne; Klimecki, Olga; Marchant, Natalie
2018-06-22
Psycho-affective states or traits such as stress, depression, anxiety and neuroticism are known to affect sleep, cognition and mental health and well-being in aging populations and to be associated with increased risk for Alzheimer's disease (AD). Mental training for stress reduction and emotional and attentional regulation through meditation practice might help reduce these adverse factors. So far, studies on the impact of meditation practice on brain and cognition in aging are scarce and have limitations but the findings are encouraging, showing a positive effect of meditation training on cognition, especially on attention and memory, and on brain structure and function especially in frontal and limbic structures and insula. In line with this, we showed in a pilot study that gray matter volume and/or glucose metabolism was higher in six older adult expert meditators compared to 67 age-matched controls in the prefrontal, anterior and posterior cingulate cortex, insula and temporo-parietal junction. These preliminary findings are important in the context of reserve and brain maintenance as they suggest that long-term meditation practice might help preserve brain structure and function from progressive age-related decline. Further studies are needed to confirm these results with larger samples and in randomized controlled trials and to investigate the mechanisms underlying these meditation-related effects. The European Commission-funded project Silver Santé Study will address these challenges by studying 316 older adults including 30 expert meditators and 286 meditation-naïve participants (either cognitively normal or with subjective cognitive decline). Two randomized controlled trials will be conducted to assess the effects of 2-month and 18-month meditation, English learning or health education training programs (versus a passive control) on behavioral, sleep, blood sampling and neuroimaging measures. This European research initiative illustrates the progressive awareness of the benefit of such non-pharmacological approaches in the prevention of dementia and the relevance of taking into account the psycho-affective dimension in endeavoring to improve mental health and well-being of older adults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, Beatriz; Sánchez, Pilar; Torres, Jesús M., E-mail: torrespi@ugr.es
Background: Early-life exposure to the endocrine disruptor bisphenol A (BPA) affects brain function and behavior, which might be attributed to its interference with hormonal steroid signaling and/or neurotransmitter systems. Alternatively, the use of structural analogs of BPA, mainly bisphenol F (BPF) and bisphenol S (BPS), has increased recently. However, limited in vivo toxicity data exist. Objectives: We investigated the effects of BPA, BPF and BPS on 5α-reductase (5α-R), a key enzyme involved in neurosteroidogenesis, as well as on dopamine (DA)- and serotonin (5-HT)-related genes, in the prefrontal cortex (PFC) of juvenile female rats. Methods: Gestating Wistar rats were treated withmore » either vehicle or 10 μg/kg/day of BPA, BPF or BPS from gestational day 12 to parturition. Then, female pups were exposed from postnatal day 1 through day 21 (PND21), when they were euthanized and RT-PCR, western blot and quantitative PCR-array experiments were performed. Results: BPA decreased 5α-R2 and 5α-R3 mRNA and protein levels, while both BPF and BPS decreased 5α-R3 mRNA levels in PFC at PND21. Further, BPA, BPF and BPS significantly altered, respectively, the transcription of 25, 56 and 24 genes out of the 84 DA and 5-HT-related genes assayed. Of particular interest was the strong induction by all these bisphenols of Cyp2d4, implicated in corticosteroids synthesis. Conclusions: Our results demonstrate for the first time that BPA, BPF and BPS differentially affect 5α-R and genes related to DA/5-HT systems in the female PFC. In vivo evidence of the potential adverse effects of BPF and BPS in the brain of mammals is provided in this work, raising questions about the safety of these chemicals as substitutes for BPA. - Highlights: • Juvenile prefrontal cortex of female rats exposed to bisphenol A, F or S was analyzed. • We provide the first in vivo data of BPF and BPS effects in mammal brain. • BPA, BPF and BPS differently affected dopamine and serotonin-related genes. • 5α-reductase was found as a potential target for BPA action in juvenile female brain.« less
FACTORS ADVERSELY AFFECTING AMPHIBIAN POPULATIONS IN THE US
Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from species accounts written in a standardized format by multiple authors in a forthcoming book. Specific adverse factors were identified for 53 (58%) of...
Kodera, Sachiko; Gomez-Tames, Jose; Hirata, Akimasa; Masuda, Hiroshi; Arima, Takuji; Watanabe, Soichi
2017-01-01
The rapid development of wireless technology has led to widespread concerns regarding adverse human health effects caused by exposure to electromagnetic fields. Temperature elevation in biological bodies is an important factor that can adversely affect health. A thermophysiological model is desired to quantify microwave (MW) induced temperature elevations. In this study, parameters related to thermophysiological responses for MW exposures were estimated using an electromagnetic-thermodynamics simulation technique. To the authors’ knowledge, this is the first study in which parameters related to regional cerebral blood flow in a rat model were extracted at a high degree of accuracy through experimental measurements for localized MW exposure at frequencies exceeding 6 GHz. The findings indicate that the improved modeling parameters yield computed results that match well with the measured quantities during and after exposure in rats. It is expected that the computational model will be helpful in estimating the temperature elevation in the rat brain at multiple observation points (that are difficult to measure simultaneously) and in explaining the physiological changes in the local cortex region. PMID:28358345
Prosopagnosia as a Type of Conversion Disorder.
Power, Clodagh; Hannigan, Oisin; Coen, Robert; Bruce, Irene; Gibb, Matthew; McCarthy, Marie; Robinson, David; Lawlor, Brian A
2018-01-01
Conversion disorder is a common and debilitating condition that remains poorly understood. We present a previously undescribed form of conversion disorder to highlight the complexity of the condition and consider the interplay of factors that produce conversion symptoms. A 50-year-old male presented with acquired prosopagnosia and language impairment. Neuropsychological testing indicated right temporal lobe dysfunction. Extensive work-up outruled an organic aetiology. Reactivation of childhood trauma coincided with the onset of his symptoms. Childhood trauma is known to have adverse effects on the developing brain which may affect an individual's emotional behaviour and coping style. Functional neuroimaging techniques suggest that conversion symptoms may be linked to the disruption of higher order neural circuitry involved in the integration of emotional processing and cortical functioning. We propose that our patient's adverse childhood experiences led to the development of a particular personality and coping style that "primed" him for a later abnormal emotional and behavioural response when confronted with reminders of his traumatic background. Further interdisciplinary studies are required to further elucidate the neurobiological basis for this condition.
White Matter Injury and General Movements in High-Risk Preterm Infants.
Peyton, C; Yang, E; Msall, M E; Adde, L; Støen, R; Fjørtoft, T; Bos, A F; Einspieler, C; Zhou, Y; Schreiber, M D; Marks, J D; Drobyshevsky, A
2017-01-01
Very preterm infants (birth weight, <1500 g) are at increased risk of cognitive and motor impairment, including cerebral palsy. These adverse neurodevelopmental outcomes are associated with white matter abnormalities on MR imaging at term-equivalent age. Cerebral palsy has been predicted by analysis of spontaneous movements in the infant termed "General Movement Assessment." The goal of this study was to determine the utility of General Movement Assessment in predicting adverse cognitive, language, and motor outcomes in very preterm infants and to identify brain imaging markers associated with both adverse outcomes and aberrant general movements. In this prospective study of 47 preterm infants of 24-30 weeks' gestation, brain MR imaging was performed at term-equivalent age. Infants underwent T1- and T2-weighted imaging for volumetric analysis and DTI. General movements were assessed at 10-15 weeks' postterm age, and neurodevelopmental outcomes were evaluated at 2 years by using the Bayley Scales of Infant and Toddler Development III. Nine infants had aberrant general movements and were more likely to have adverse neurodevelopmental outcomes, compared with infants with normal movements. In infants with aberrant movements, Tract-Based Spatial Statistics analysis identified significantly lower fractional anisotropy in widespread white matter tracts, including the corpus callosum, inferior longitudinal and fronto-occipital fasciculi, internal capsule, and optic radiation. The subset of infants having both aberrant movements and abnormal neurodevelopmental outcomes in cognitive, language, and motor skills had significantly lower fractional anisotropy in specific brain regions. Aberrant general movements at 10-15 weeks' postterm are associated with adverse neurodevelopmental outcomes and specific white matter microstructure abnormalities for cognitive, language, and motor delays. © 2017 by American Journal of Neuroradiology.
[Monitoring of brain function].
Doi, Matsuyuki
2012-01-01
Despite being the most important of organs, the brain is disproportionately unmonitored compared to other systems such as cardiorespiratory in anesthesia settings. In order to optimize level of anesthesia, it is important to quantify the brain activity suppressed by anesthetic agents. Adverse cerebral outcomes remain a continued problem in patients undergoing various surgical procedures. By providing information on a range of physiologic parameters, brain monitoring may contribute to improve perioperative outcomes. This article addresses the various brain monitoring equipments including bispectral index (BIS), auditory evoked potentials (AEP), near-infrared spectroscopy (NIRS), transcranial Doppler ultrasonography (TCD) and oxygen saturation of the jugular vein (Sjv(O2)).
ACHP | Section 106 Regulations Flow Chart
undertaking/no potential to cause effects Undertaking is type that might affect historic properties Identify No historic properties affected Historic properties are affected Assess Adverse Effects Apply affected Resolve Adverse Effects Continue consultation Memorandum of Agreement FAILURE TO AGREE COUNCIL
Konturek, Peter C; Brzozowski, T; Konturek, S J
2011-12-01
Stress, which is defined as an acute threat to homeostasis, shows both short- and long-term effects on the functions of the gastrointestinal tract. Exposure to stress results in alterations of the brain-gut interactions ("brain-gut axis") ultimately leading to the development of a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and other functional gastrointestinal diseases, food antigen-related adverse responses, peptic ulcer and gastroesophageal reflux disease (GERD). The major effects of stress on gut physiology include: 1) alterations in gastrointestinal motility; 2) increase in visceral perception; 3) changes in gastrointestinal secretion; 4) increase in intestinal permeability; 5) negative effects on regenerative capacity of gastrointestinal mucosa and mucosal blood flow; and 6) negative effects on intestinal microbiota. Mast cells (MC) are important effectors of brain-gut axis that translate the stress signals into the release of a wide range of neurotransmitters and proinflammatory cytokines, which may profoundly affect the gastrointestinal physiology. IBS represents the most important gastrointestinal disorder in humans, and is characterized by chronic or recurrent pain associated with altered bowel motility. The diagnostic testing for IBS patients include routine blood tests, stool tests, celiac disease serology, abdominal sonography, breath testing to rule out carbohydrate (lactose, fructose, etc.) intolerance and small intestinal bacterial overgrowth. Colonoscopy is recommended if alarming symptoms are present or to obtain colonic biopsies especially in patients with diarrhoea predominant IBS. The management of IBS is based on a multifactorial approach and includes pharmacotherapy targeted against the predominant symptom, behavioural and psychological treatment, dietary alterations, education, reassurance and effective patient-physician relationship. When evaluating for the stress-induced condition in the upper GI tract, the diagnostic testing includes mainly blood tests and gastroscopy to rule out GERD and peptic ulcer disease. The therapy for these conditions is mainly based on the inhibition of gastric acid by proton pump inhibitors and eradication of Helicobacter pylori-infection. Additionally, melatonin an important mediator of brain gut axis has been shown to exhibit important protective effects against stress-induced lesions in the gastrointestinal tract. Finally, probiotics may profoundly affect the brain-gut interactions ("microbiome-gut-brain axis") and attenuate the development of stress-induced disorders in both the upper and lower gastrointestinal tract. Further studies on the brain-gut axis are needed to open new therapeutic avenues in the future.
Doherty, Tiffany S.; Roth, Tania L.
2017-01-01
The efforts of many neuroscientists are directed toward understanding the appreciable plasticity of the brain and behavior. In recent years, epigenetics has become a core of this focus as a prime mechanistic candidate for behavioral modifications. Animal models have been instrumental in advancing our understanding of environmentally-driven changes to the epigenome in the developing and adult brain. This review focuses mainly on such discoveries driven by adverse environments along with their associated behavioral outcomes. While much of the evidence discussed focuses on epigenetics within the central nervous system, several peripheral studies in humans who have experienced significant adversity are also highlighted. As we continue to unravel the link between epigenetics and phenotype, discerning the complexity and specificity of epigenetic changes induced by environments is an important step toward understanding optimal development and how to prevent or ameliorate behavioral deficits bred by disruptive environments. PMID:27687803
The Effect of Positive End-Expiratory Pressure on Intracranial Pressure and Cerebral Hemodynamics.
Boone, Myles D; Jinadasa, Sayuri P; Mueller, Ariel; Shaefi, Shahzad; Kasper, Ekkehard M; Hanafy, Khalid A; O'Gara, Brian P; Talmor, Daniel S
2017-04-01
Lung protective ventilation has not been evaluated in patients with brain injury. It is unclear whether applying positive end-expiratory pressure (PEEP) adversely affects intracranial pressure (ICP) and cerebral perfusion pressure (CPP). We aimed to evaluate the effect of PEEP on ICP and CPP in a large population of patients with acute brain injury and varying categories of acute lung injury, defined by PaO 2 /FiO 2 . Retrospective data were collected from 341 patients with severe acute brain injury admitted to the ICU between 2008 and 2015. These patients experienced a total of 28,644 paired PEEP and ICP observations. Demographic, hemodynamic, physiologic, and ventilator data at the time of the paired PEEP and ICP observations were recorded. In the adjusted analysis, a statistically significant relationship between PEEP and ICP and PEEP and CPP was found only among observations occurring during periods of severe lung injury. For every centimeter H 2 O increase in PEEP, there was a 0.31 mmHg increase in ICP (p = 0.04; 95 % CI [0.07, 0.54]) and a 0.85 mmHg decrease in CPP (p = 0.02; 95 % CI [-1.48, -0.22]). Our results suggest that PEEP can be applied safely in patients with acute brain injury as it does not have a clinically significant effect on ICP or CPP. Further prospective studies are required to assess the safety of applying a lung protective ventilation strategy in brain-injured patients with lung injury.
Caffeine for apnea of prematurity: Effects on the developing brain.
Atik, Anzari; Harding, Richard; De Matteo, Robert; Kondos-Devcic, Delphi; Cheong, Jeanie; Doyle, Lex W; Tolcos, Mary
2017-01-01
Caffeine is a methylxanthine that is widely used to treat apnea of prematurity (AOP). In preterm infants, caffeine reduces the duration of respiratory support, improves survival rates and lowers the incidence of cerebral palsy and cognitive delay. There is, however, little evidence relating to the immediate and long-term effects of caffeine on brain development, especially at the cellular and molecular levels. Experimental data are conflicting, with studies showing that caffeine can have either adverse or benefical effects in the developing brain. The aim of this article is to review current understanding of how caffeine ameliorates AOP, the cellular and molecular mechanisms by which caffeine exerts its effects and the effects of caffeine on brain development. A better knowledge of the effects of caffeine on the developing brain at the cellular and/or molecular level is essential in order to understand the basis for the impact of caffeine on postnatal outcome. The studies reviewed here suggest that while caffeine has respiratory benefits for preterm infants, it may have adverse molecular and cellular effects on the developing brain; indeed a majority of experimental studies suggest that regardless of dose or duration of administration, caffeine leads to detrimental changes within the developing brain. Thus there is an urgent need to assess the impact of caffeine, at a range of doses, on the structure and function of the developing brain in preclinical studies, particularly using clinically relevant animal models. Future studies should focus on determining the maximal dose of caffeine that is safe for the preterm brain. Copyright © 2017 Elsevier B.V. All rights reserved.
How emotional abilities modulate the influence of early life stress on hippocampal functioning.
Aust, Sabine; Alkan Härtwig, Elif; Koelsch, Stefan; Heekeren, Hauke R; Heuser, Isabella; Bajbouj, Malek
2014-07-01
Early life stress (ELS) is known to have considerable influence on brain development, mental health and affective functioning. Previous investigations have shown that alexithymia, a prevalent personality trait associated with difficulties experiencing and verbalizing emotions, is particularly related to ELS. The aim of the present study was to investigate how neural correlates of emotional experiences in alexithymia are altered in the presence and absence of ELS. Therefore, 50 healthy individuals with different levels of alexithymia were matched regarding ELS and investigated with respect to neural correlates of audio-visually induced emotional experiences via functional magnetic resonance imaging. The main finding was that ELS modulated hippocampal responses to pleasant (>neutral) stimuli in high-alexithymic individuals, whereas there was no such modulation in low-alexithymic individuals matched for ELS. Behavioral and psychophysiological results followed a similar pattern. When considered independent of ELS, alexithymia was associated with decreased responses in insula (pleasant > neutral) and temporal pole (unpleasant > neutral). Our results show that the influence of ELS on emotional brain responses seems to be modulated by an individual's degree of alexithymia. Potentially, protective and adverse effects of emotional abilities on brain responses to emotional experiences are discussed. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Gianaros, Peter J.; Kuan, Dora C.-H.; Marsland, Anna L.; Sheu, Lei K.; Hackman, Daniel A.; Miller, Karissa G.; Manuck, Stephen B.
2017-01-01
Abstract Residing in communities of socioeconomic disadvantage confers risk for chronic diseases and cognitive aging, as well as risk for biological factors that negatively affect brain morphology. The present study tested whether community disadvantage negatively associates with brain morphology via 2 biological factors encompassing cardiometabolic disease risk and neuroendocrine function. Participants were 448 midlife adults aged 30–54 years (236 women) who underwent structural neuroimaging to assess cortical and subcortical brain tissue morphology. Community disadvantage was indexed by US Census data geocoded to participants' residential addresses. Cardiometabolic risk was indexed by measurements of adiposity, blood pressure, glucose, insulin, and lipids. Neuroendocrine function was indexed from salivary cortisol measurements taken over 3 days, from which we computed the cortisol awakening response, area-under-the-curve, and diurnal cortisol decline. Community disadvantage was associated with reduced cortical tissue volume, cortical surface area, and cortical thickness, but not subcortical morphology. Moreover, increased cardiometabolic risk and a flatter (dysregulated) diurnal cortisol decline mediated the associations of community disadvantage and cortical gray matter volume. These effects were independent of age, sex, and individual-level socioeconomic position. The adverse risks of residing in a disadvantaged community may extend to the cerebral cortex via cardiometabolic and neuroendocrine pathways. PMID:26498832
Birch, Sharla M.; Lenox, Mark W.; Kornegay, Joe N.; Paniagua, Beatriz; Styner, Martin A.; Goodlett, Charles R.; Cudd, Tim A.; Washburn, Shannon E.
2016-01-01
Fetal alcohol spectrum disorder (FASD) is a leading potentially preventable birth defect. Poor nutrition may contribute to adverse developmental outcomes of prenatal alcohol exposure, and supplementation of essential micronutrients such as choline has shown benefit in rodent models. The sheep model of first-trimester binge alcohol exposure was used in this study to model the dose of maternal choline supplementation used in an ongoing prospective clinical trial involving pregnancies at risk for FASD. Primary outcome measures included volumetrics of the whole brain, cerebellum, and pituitary derived from magnetic resonance imaging (MRI) in 6-month-old lambs, testing the hypothesis that alcohol-exposed lambs would have brain volume reductions that would be ameliorated by maternal choline supplementation. Pregnant sheep were randomly assigned to one of five groups – heavy binge alcohol (HBA; 2.5 g/kg/treatment ethanol), heavy binge alcohol plus choline supplementation (HBC; 2.5 g/kg/treatment ethanol and 10 mg/kg/day choline), saline control (SC), saline control plus choline supplementation (SCC; 10 mg/kg/day choline), and normal control (NC). Ewes were given intravenous alcohol (HBA, HBC; mean peak BACs of ~280 mg/dL) or saline (SC, SCC) on three consecutive days per week from gestation day (GD) 4–41; choline was administered on GD 4–148. MRI scans of lamb brains were performed postnatally on day 182. Lambs from both alcohol groups (with or without choline) showed significant reductions in total brain volume; cerebellar and pituitary volumes were not significantly affected. This is the first report of MRI-derived volumetric brain reductions in a sheep model of FASD following binge-like alcohol exposure during the first trimester. These results also indicate that maternal choline supplementation comparable to doses in human studies fails to prevent brain volume reductions typically induced by first-trimester binge alcohol exposure. Future analyses will assess behavioral outcomes along with regional brain and neurohistological measures. PMID:27788773
Elton, Amanda; Tripathi, Shanti P; Mletzko, Tanja; Young, Jonathan; Cisler, Josh M; James, G Andrew; Kilts, Clinton D
2014-04-01
Childhood adversity represents a major risk factor for drug addiction and other mental disorders. However, the specific mechanisms by which childhood adversity impacts human brain organization to confer greater vulnerability for negative outcomes in adulthood is largely unknown. As an impaired process in drug addiction, inhibitory control of behavior was investigated as a target of childhood maltreatment (abuse and neglect). Forty adults without Axis-I psychiatric disorders (21 females) completed a Childhood Trauma Questionnaire (CTQ) and underwent functional MRI (fMRI) while performing a stop-signal task. A group independent component analysis identified a putative brain inhibitory control network. Graph theoretical analyses and structural equation modeling investigated the impact of childhood maltreatment on the functional organization of this neural processing network. Graph theory outcomes revealed sex differences in the relationship between network functional connectivity and inhibitory control which were dependent on the severity of childhood maltreatment exposure. A network effective connectivity analysis indicated that a maltreatment dose-related negative modulation of dorsal anterior cingulate (dACC) activity by the left inferior frontal cortex (IFC) predicted better response inhibition and lesser attention deficit hyperactivity disorder (ADHD) symptoms in females, but poorer response inhibition and greater ADHD symptoms in males. Less inhibition of the right IFC by dACC in males with higher CTQ scores improved inhibitory control ability. The childhood maltreatment-related reorganization of a brain inhibitory control network provides sex-dependent mechanisms by which childhood adversity may confer greater risk for drug use and related disorders and by which adaptive brain responses protect individuals from this risk factor. Copyright © 2013 Wiley Periodicals, Inc.
Adverse childhood experiences and health anxiety in adulthood.
Reiser, Sarah J; McMillan, Katherine A; Wright, Kristi D; Asmundson, Gordon J G
2014-03-01
Childhood experiences are thought to predispose a person to the development of health anxiety later in life. However, there is a lack of research investigating the influence of specific adverse experiences (e.g., childhood abuse, household dysfunction) on this condition. The current study examined the cumulative influence of multiple types of childhood adversities on health anxiety in adulthood. Adults 18-59 years of age (N=264) completed a battery of measures to assess adverse childhood experiences, health anxiety, and associated constructs (i.e., negative affect and trait anxiety). Significant associations were observed between adverse childhood experiences, health anxiety, and associated constructs. Hierarchical multiple regression analysis indicted that adverse childhood experiences were predictive of health anxiety in adulthood; however, the unique contribution of these experience were no longer significant following the inclusion of the other variables of interest. Subsequently, mediation analyses indicated that both negative affect and trait anxiety independently mediated the relationship between adverse childhood experiences and health anxiety in adulthood. Increased exposure to adverse childhood experiences is associated with higher levels of health anxiety in adulthood; this relationship is mediated through negative affect and trait anxiety. Findings support the long-term negative impact of cumulative adverse childhood experiences and emphasize the importance of addressing negative affect and trait anxiety in efforts to prevent and treat health anxiety. Copyright © 2013 Elsevier Ltd. All rights reserved.
Morton, Paul D.; Ishibashi, Nobuyuki; Jonas, Richard A.
2017-01-01
In the past two decades it has become evident that individuals born with congenital heart disease (CHD) are at risk of developing life-long neurological deficits. Multifactorial risk factors contributing to neurodevelopmental abnormalities associated with CHD have been identified; however the underlying etiologies remain largely unknown and efforts to address this issue have only recently begun. There has been a dramatic shift in focus from newly acquired brain injuries associated with corrective and palliative heart surgery to antenatal and preoperative factors governing altered brain maturation in CHD. In this review, we describe key time windows of development during which the immature brain is vulnerable to injury. Special emphasis is placed on the dynamic nature of cellular events and how CHD may adversely impact the cellular units and networks necessary for proper cognitive and motor function. In addition, we describe current gaps in knowledge and offer perspectives about what can be done to improve our understanding of neurological deficits in CHD. Ultimately, a multidisciplinary approach will be essential in order to prevent or improve adverse neurodevelopmental outcomes in individuals surviving CHD. PMID:28302742
Morton, Paul D; Ishibashi, Nobuyuki; Jonas, Richard A
2017-03-17
In the past 2 decades, it has become evident that individuals born with congenital heart disease (CHD) are at risk of developing life-long neurological deficits. Multifactorial risk factors contributing to neurodevelopmental abnormalities associated with CHD have been identified; however, the underlying causes remain largely unknown, and efforts to address this issue have only recently begun. There has been a dramatic shift in focus from newly acquired brain injuries associated with corrective and palliative heart surgery to antenatal and preoperative factors governing altered brain maturation in CHD. In this review, we describe key time windows of development during which the immature brain is vulnerable to injury. Special emphasis is placed on the dynamic nature of cellular events and how CHD may adversely impact the cellular units and networks necessary for proper cognitive and motor function. In addition, we describe current gaps in knowledge and offer perspectives about what can be done to improve our understanding of neurological deficits in CHD. Ultimately, a multidisciplinary approach will be essential to prevent or improve adverse neurodevelopmental outcomes in individuals surviving CHD. © 2017 American Heart Association, Inc.
Tam, Emily W.Y.; Haeusslein, Laurel A.; Bonifacio, Sonia L.; Glass, Hannah C.; Rogers, Elizabeth E.; Jeremy, Rita J.; Barkovich, A. James; Ferriero, Donna M.
2012-01-01
Objective To investigate the contribution of hypoglycemia in the first 24 hours after birth to brain injury in term newborns at risk for neonatal encephalopathy. Study design A prospective cohort of 94 term neonates born between 1994 and 2010 with early postnatal brain MRI studies were analyzed for regions of brain injury. Neurodevelopmental outcome was assessed at one year of age. Results Hypoglycemia (glucose <46mg/dL) in the first 24 hours after birth was detected in 16% of the cohort. Adjusting for potential confounders of early perinatal distress and need for resuscitation, neonatal hypoglycemia was associated with a 3.72-fold increased odds of corticospinal tract injury (P=0.047). Hypoglycemia was also associated with 4.82-fold increased odds of one-point worsened neuromotor score (P=0.038) and a 15-point lower cognitive and language score on the Bayley Scales of Infant Development (P=0.015). Conclusion Neonatal hypoglycemia is associated with additional risks in the setting of neonatal encephalopathy with increased corticospinal tract injury and adverse motor and cognitive outcomes. PMID:22306045
Tam, Emily W Y; Haeusslein, Laurel A; Bonifacio, Sonia L; Glass, Hannah C; Rogers, Elizabeth E; Jeremy, Rita J; Barkovich, A James; Ferriero, Donna M
2012-07-01
To investigate the contribution of hypoglycemia in the first 24 hours after birth to brain injury in term newborns at risk for neonatal encephalopathy. A prospective cohort of 94 term neonates born between 1994 and 2010 with early postnatal brain magnetic resonance imaging studies were analyzed for regions of brain injury. Neurodevelopmental outcome was assessed at 1 year of age. Hypoglycemia (glucose <46 mg/dL) in the first 24 hours after birth was detected in 16% of the cohort. Adjusting for potential confounders of early perinatal distress and need for resuscitation, neonatal hypoglycemia was associated with a 3.72-fold increased odds of corticospinal tract injury (P=.047). Hypoglycemia was also associated with 4.82-fold increased odds of 1-point worsened neuromotor score (P=.038) and a 15-point lower cognitive and language score on the Bayley Scales of Infant Development (P=.015). Neonatal hypoglycemia is associated with additional risks in the setting of neonatal encephalopathy with increased corticospinal tract injury and adverse motor and cognitive outcomes. Copyright © 2012 Mosby, Inc. All rights reserved.
Do (epi)genetics impact the brain in functional neurologic disorders?
Frodl, T
2016-01-01
Advances in neuropsychiatric research are supposed to lead to significant improvements in understanding functional neurologic disorders and their diagnosis. However, epigenetic and genetic research on conversion disorders and somatoform disorders is only at its start. This review demonstrates the current state within this field and tries to bridge a gap from what is known on gene-stress interactions in other psychiatric disorders like depression. The etiology of conversion disorders is hypothesized to be multifactorial. These considerations also suggest that potential etiologic factors lead to alterations in brain function, either episodically or chronically, eventually leading to structural brain changes. In particular, the knowledge of how the environment influences brain structure and function, e.g., via epigenetic regulation, may be interesting for future research in functional neurologic disorders. Reviewing the literature results in evidence that childhood adversities play a role in the development of functional neurologic disorders, whereby at present no reports exist about the interactive effect between childhood adversity and genetic factors or about the impact of epigenetics. © 2016 Elsevier B.V. All rights reserved.
Cruz-Martinez, R; Savchev, S; Cruz-Lemini, M; Mendez, A; Gratacos, E; Figueras, F
2015-03-01
To assess the clinical value of third-trimester uterine artery (UtA) Doppler ultrasound in the prediction of hemodynamic deterioration and adverse perinatal outcome in term small-for-gestational-age (SGA) fetuses. UtA Doppler parameters, cerebroplacental ratio (CPR) and fetal middle cerebral artery (MCA) pulsatility index (PI) were evaluated weekly, starting from the time of SGA diagnosis until 24 h before induction of labor, in a cohort of 327 SGA fetuses with normal umbilical artery PI (< 95th centile), delivered at > 37 weeks' gestation. Differences in the sequence of CPR and MCA-PI changes < 5th centile, between the group with normal UtA Doppler indices at diagnosis and those with abnormal UtA indices, were analyzed by survival analysis. In addition, the use of UtA Doppler value, alone or in combination with a brain Doppler scan before delivery, to predict the risk of Cesarean section, Cesarean section for non-reassuring fetal status (NRFS), neonatal acidosis and neonatal hospitalization was evaluated by logistic regression analysis, adjusted for gestational age at birth and birth-weight percentile. Abnormal UtA Doppler at diagnosis of SGA was associated with a higher risk of developing abnormal brain Doppler indices before induction of labor than in those with a normal UtA at diagnosis (62.7% vs 34.6%, respectively; P < 0.01). Compared to those with normal UtA Doppler indices, those with abnormal UtA Doppler findings were associated with a higher risk of intrapartum Cesarean section (52.2% vs 37.3%, respectively; P = 0.03), Cesarean section for NRFS (35.8% vs 23.1%, respectively; P = 0.03), neonatal acidosis (10.4% vs 7.7%, respectively; P = 0.47) and neonatal hospitalization (23.9% vs 16.5%, respectively; P = 0.16). Logistic regression analysis indicated that UtA Doppler findings were not significantly associated with adverse perinatal outcome independent of brain Doppler findings. UtA Doppler indices predict adverse perinatal outcome, but do not help to improve the predictive value of brain Doppler indices. However, at the time of SGA diagnosis they identify the subgroup of fetuses at highest risk of progression to abnormal brain Doppler findings. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.
Exposures of children to organophosphate pesticides and their potential adverse health effects.
Eskenazi, B; Bradman, A; Castorina, R
1999-01-01
Recent studies show that young children can be exposed to pesticides during normal oral exploration of their environment and their level of dermal contact with floors and other surfaces. Children living in agricultural areas may be exposed to higher pesticide levels than other children because of pesticides tracked into their homes by household members, by pesticide drift, by breast milk from their farmworker mother, or by playing in nearby fields. Nevertheless, few studies have assessed the extent of children's pesticide exposure, and no studies have examined whether there are adverse health effects of chronic exposure. There is substantial toxicologic evidence that repeated low-level exposure to organophosphate (OP) pesticides may affect neurodevelopment and growth in developing animals. For example, animal studies have reported neurobehavorial effects such as impairment on maze performance, locomotion, and balance in neonates exposed (italic)in utero(/italic) and during early postnatal life. Possible mechanisms for these effects include inhibition of brain acetylcholinesterase, downregulation of muscarinic receptors, decreased brain DNA synthesis, and reduced brain weight in offspring. Research findings also suggest that it is biologically plausible that OP exposure may be related to respiratory disease in children through dysregulation of the autonomic nervous system. The University of California Berkeley Center for Children's Environmental Health Research is working to build a community-university partnership to study the environmental health of rural children. This Center for the Health Assessment of Mothers and Children of Salinas, or CHAMACOS in Monterey County, California, will assess (italic)in utero(/italic) and postnatal OP pesticide exposure and the relationship of exposure to neurodevelopment, growth, and symptoms of respiratory illness in children. The ultimate goal of the center is to translate research findings into a reduction of children's exposure to pesticides and other environmental agents, and thereby reduce the incidence of environmentally related disease. PMID:10346990
Gieling, Elise T.; Antonides, Alexandra; Fink-Gremmels, Johanna; ter Haar, Kim; Kuller, Wikke I.; Meijer, Ellen; Nordquist, Rebecca E.; Stouten, Jacomijn M.; Zeinstra, Elly; van der Staay, Franz Josef
2014-01-01
Low-birth-weight (LBW) children are born with several risk factors for disease, morbidity and neonatal mortality, even if carried to term. Placental insufficiency leading to hypoxemia and reduced nutritional supply is the main cause for LBW. Brain damage and poor neurological outcome can be the consequence. LBW after being carried to term gives better chances for survival, but these children are still at risk for poor health and the development of cognitive impairments. Preventive therapies are not yet available. We studied the risk/efficacy of chronic prenatal treatment with the anti-oxidative drug allopurinol, as putative preventive treatment in piglets. LBW piglets served as a natural model for LBW. A cognitive holeboard test was applied to study the learning and memory abilities of these allopurinol treated piglets after weaning. Preliminary analysis of the plasma concentrations in sows and their piglets suggested that a daily dose of 15 mg.kg−1 resulted in effective plasma concentration of allopurinol in piglets. No adverse effects of chronic allopurinol treatment were found on farrowing, birth weight, open field behavior, learning abilities, relative brain, hippocampus and spleen weights. LBW piglets showed increased anxiety levels in an open field test, but cognitive performance was not affected by allopurinol treatment. LBW animals treated with allopurinol showed the largest postnatal compensatory body weight gain. In contrast to a previous study, no differences in learning abilities were found between LBW and normal-birth-weight piglets. This discrepancy might be attributable to experimental differences. Our results indicate that chronic prenatal allopurinol treatment during the third trimester of pregnancy is safe, as no adverse side effects were observed. Compensatory weight gain of treated piglets is a positive indication for the chronic prenatal use of allopurinol in these animals. Further studies are needed to assess the possible preventive effects of allopurinol on brain functions in LBW piglets. PMID:24466072
Boussicault, Lydie; Hérard, Anne-Sophie; Calingasan, Noel; Petit, Fanny; Malgorn, Carole; Merienne, Nicolas; Jan, Caroline; Gaillard, Marie-Claude; Lerchundi, Rodrigo; Barros, Luis F; Escartin, Carole; Delzescaux, Thierry; Mariani, Jean; Hantraye, Philippe; Flint Beal, M; Brouillet, Emmanuel; Véga, Céline; Bonvento, Gilles
2014-01-01
Huntington's disease (HD) is caused by cytosine-adenine-guanine (CAG) repeat expansions in the huntingtin (Htt) gene. Although early energy metabolic alterations in HD are likely to contribute to later neurodegenerative processes, the cellular and molecular mechanisms responsible for these metabolic alterations are not well characterized. Using the BACHD mice that express the full-length mutant huntingtin (mHtt) protein with 97 glutamine repeats, we first demonstrated localized in vivo changes in brain glucose use reminiscent of what is observed in premanifest HD carriers. Using biochemical, molecular, and functional analyses on different primary cell culture models from BACHD mice, we observed that mHtt does not directly affect metabolic activity in a cell autonomous manner. However, coculture of neurons with astrocytes from wild-type or BACHD mice identified mutant astrocytes as a source of adverse non-cell autonomous effects on neuron energy metabolism possibly by increasing oxidative stress. These results suggest that astrocyte-to-neuron signaling is involved in early energy metabolic alterations in HD. PMID:24938402
A Framework for Ethical Decision Making in the Rehabilitation of Patients with Anosognosia.
Egbert, Anna Rita
2017-01-01
Currently, the number of patients diagnosed with impaired self-awareness of their own deficits after brain injury-anosognosia-is increasing. One reason is a growing understanding of this multifaceted phenomenon. Another is the development and accessibility of alternative measurements that allow more detailed diagnoses. Anosognosia can adversely affect successful rehabilitation, as often patients lack confidence in the need for treatment. Planning such treatment can become a complex process full of ethical dilemmas. To date, there is no systematic way to deal with different aspects of anosognosia rehabilitation planning. This is the first article to present a framework for ethical decision making in establishing rehabilitation plans that are focused on increasing patients' self-awareness of their own deficits after brain injury. It concentrates especially on addressing the ethical dilemmas that may arise, and describes stepwise procedures that can be applied to distinct theoretical approaches, as well as diagnostic and rehabilitation methods. To show the flexibility of the use of this framework, alternative approaches are discussed. Copyright 2016 The Journal of Clinical Ethics. All rights reserved.
Possible neurologic effects of aspartame, a widely used food additive.
Maher, T J; Wurtman, R J
1987-01-01
The artificial sweetener aspartame (L-aspartyl-L-phenylalanyl-methyl ester), is consumed, primarily in beverages, by a very large number of Americans, causing significant elevations in plasma and, probably, brain phenylalanine levels. Anecdotal reports suggest that some people suffer neurologic or behavioral reactions in association with aspartame consumption. Since phenylalanine can be neurotoxic and can affect the synthesis of inhibitory monoamine neurotransmitters, the phenylalanine in aspartame could conceiveably mediate neurologic effects. If mice are given aspartame in doses that elevate plasma phenylalanine levels more than those of tyrosine (which probably occurs after any aspartame dose in humans), the frequency of seizures following the administration of an epileptogenic drug, pentylenetetrazole, is enhanced. This effect is simulated by equimolar phenylalanine and blocked by concurrent administration of valine, which blocks phenylalanine's entry into the brain. Aspartame also potentiates the induction of seizures by inhaled fluorothyl or by electroconvulsive shock. Perhaps regulations concerning the sale of food additives should be modified to require the reporting of adverse reactions and the continuing conduct of mandated safety research. PMID:3319565
[Cannabis: Effects in the Central Nervous System. Therapeutic, societal and legal consequences].
Rivera-Olmos, Víctor Manuel; Parra-Bernal, Marisela C
2016-01-01
The consumption of marijuana extracted from Cannabis sativa and indica plants involves an important cultural impact in Mexico. Their psychological stimulatory effect is widely recognized; their biochemical and molecular components interact with CB1 and CB2 (endocannabinoid system) receptors in various central nervous system structures (CNS) and immune cells. The psychoactive element Δ-9-tetrahydrocannabinol (THC) can be reproduced synthetically. Systematic reviews show evidence of therapeutic effectiveness of therapeutic marijuana only for certain symptoms of multiple sclerosis (spasticity, spasms and pain), despite attempts for its widespread use, including refractory childhood epilepsy. Evidence indicates significant adverse effects of smoked marijuana on the structure, functioning and brain connectivity. Cannabis exposure during pregnancy affects fetal brain development, potentially leading to later behavioral problems in children. Neuropsychological tests and advanced imaging techniques show involvement in the learning process in adolescents with substance use. Also, marijuana increases the cognitive impairment in patients with multiple sclerosis. Social and ethical consequences to legally free marijuana for recreational use may be deleterious transcendentally. The medicinal or psychoactive cannabinol no addictive effect requires controlled proven efficacy and safety before regulatory approval studies.
Reneman, L; Majoie, C B; Schmand, B; van den Brink, W; den Heeten, G J
2001-10-01
3,4-methylenedioxymethamphetamine (MDMA or "Ecstasy") is known to damage brain serotonin neurons in animals and possibly humans. Because serotonergic damage may adversely affect memory, we compared verbal memory function between MDMA users and MDMA-naïve control subjects and evaluated the relationship between verbal memory function and neuronal dysfunction in the MDMA users. An auditory verbal memory task (Rey Auditory Verbal Learning Test) was used to study eight abstinent MDMA users and seven control subjects. In addition 1H-MRS was used in different brain regions of all MDMA users to measure N-acetylaspartate/creatine (NAA/Cr) ratios, a marker for neuronal viability. The MDMA users recalled significantly fewer words than control subjects on delayed (p =.03) but not immediate recall (p =.08). In MDMA users, delayed memory function was strongly associated with NAA/Cr only in the prefrontal cortex (R(2) =.76, p =.01). Greater decrements in memory function predicted lower NAA/Cr levels-and by inference greater neuronal dysfunction-in the prefrontal cortex of MDMA users.
Buchmann, Arlette F; Hellweg, Rainer; Rietschel, Marcella; Treutlein, Jens; Witt, Stephanie H; Zimmermann, Ulrich S; Schmidt, Martin H; Esser, Günter; Banaschewski, Tobias; Laucht, Manfred; Deuschle, Michael
2013-08-01
Recent studies have emphasized an important role for neurotrophins, such as brain-derived neurotrophic factor (BDNF), in regulating the plasticity of neural circuits involved in the pathophysiology of stress-related diseases. The aim of the present study was to examine the interplay of the BDNF Val⁶⁶Met and the serotonin transporter promoter (5-HTTLPR) polymorphisms in moderating the impact of early-life adversity on BDNF plasma concentration and depressive symptoms. Participants were taken from an epidemiological cohort study following the long-term outcome of early risk factors from birth into young adulthood. In 259 individuals (119 males, 140 females), genotyped for the BDNF Val⁶⁶Met and the 5-HTTLPR polymorphisms, plasma BDNF was assessed at the age of 19 years. In addition, participants completed the Beck Depression Inventory (BDI). Early adversity was determined according to a family adversity index assessed at 3 months of age. Results indicated that individuals homozygous for both the BDNF Val and the 5-HTTLPR L allele showed significantly reduced BDNF levels following exposure to high adversity. In contrast, BDNF levels appeared to be unaffected by early psychosocial adversity in carriers of the BDNF Met or the 5-HTTLPR S allele. While the former group appeared to be most susceptible to depressive symptoms, the impact of early adversity was less pronounced in the latter group. This is the first preliminary evidence indicating that early-life adverse experiences may have lasting sequelae for plasma BDNF levels in humans, highlighting that the susceptibility to this effect is moderated by BDNF Val⁶⁶Met and 5-HTTLPR genotype. Copyright © 2013. Published by Elsevier B.V.
Finke, Kathrin; Neitzel, Julia; Bäuml, Josef G; Redel, Petra; Müller, Hermann J; Meng, Chun; Jaekel, Julia; Daamen, Marcel; Scheef, Lukas; Busch, Barbara; Baumann, Nicole; Boecker, Henning; Bartmann, Peter; Habekost, Thomas; Wolke, Dieter; Wohlschläger, Afra; Sorg, Christian
2015-02-15
Although pronounced and lasting deficits in selective attention have been observed for preterm born individuals it is unknown which specific attentional sub-mechanisms are affected and how they relate to brain networks. We used the computationally specified 'Theory of Visual Attention' together with whole- and partial-report paradigms to compare attentional sub-mechanisms of pre- (n=33) and full-term (n=32) born adults. Resting-state fMRI was used to evaluate both between-group differences and inter-individual variance in changed functional connectivity of intrinsic brain networks relevant for visual attention. In preterm born adults, we found specific impairments of visual short-term memory (vSTM) storage capacity while other sub-mechanisms such as processing speed or attentional weighting were unchanged. Furthermore, changed functional connectivity was found in unimodal visual and supramodal attention-related intrinsic networks. Among preterm born adults, the individual pattern of changed connectivity in occipital and parietal cortices was systematically associated with vSTM in such a way that the more distinct the connectivity differences, the better the preterm adults' storage capacity. These findings provide first evidence for selectively changed attentional sub-mechanisms in preterm born adults and their relation to altered intrinsic brain networks. In particular, data suggest that cortical changes in intrinsic functional connectivity may compensate adverse developmental consequences of prematurity on visual short-term storage capacity. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of One Year of Spaceflight on Neurocognitive Function
NASA Technical Reports Server (NTRS)
Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Kofman, I. S.; Cassady, K.; Yuan , P.; De Dios, Y. E.; Gadd, N.; Riascos, R. F.; Wood, S. J.;
2017-01-01
It is known that spaceflight adversely affects human sensorimotor function. With interests in longer duration deep space missions it is important to understand microgravity dose-response relationships. NASA's One Year Mission project allows for comparison of the effects of one year in space with those seen in more typical six month missions to the International Space Station. In the Neuromapping project we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre- to post-spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad-ranging battery of sensory, motor, and cognitive assessments that are conducted pre-flight, during flight, and post-flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. With the one year mission we had one crewmember participate in all of the same measures pre-, per- and post-flight as in our ongoing study. During this presentation we will provide an overview of the magnitude of changes observed with our brain and behavioral assessments for the one year crewmember in comparison to participants that have completed our six month study to date.
Kosta, Prabhat; Mehta, Ashish K; Sharma, Amit K; Khanna, Naresh; Mediratta, Pramod K; Mundhada, Dharmendra R; Suke, Sanvidhan
2013-01-01
Organophosphate pesticides, such as phosphamidon (PHOS), have been shown to adversely affect memory and induce oxidative stress after both acute and chronic exposure. The present study was therefore designed to investigate the effects of piracetam (PIR) and vitamin E on PHOS-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of malondialdehyde (MDA) and nonprotein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and a prolongation of TL in the PHOS (1.74 mg/kg/day per oral; p.o.)-treated group at weeks 6 and 8, as compared to the control group. Administration of PIR (600 mg/kg/day p.o.) or vitamin E (125 mg/kg/day p.o.) for 2 weeks antagonized the effect of PHOS on SDL as well as TL. PHOS per se produced a significant increase in brain MDA levels and a decrease in brain NP-SH levels, whereas administration of PIR (600 mg/kg/day p.o.) or vitamin E (125 mg/kg/day p.o.) attenuated these effects. Thus, the results of the study showed that both PIR and vitamin E attenuated the cognitive dysfunction and oxidative stress induced by PHOS in the rat brain.
Kearns, William D; Fozard, James L; Ray, Roger D; Scott, Steven; Jasiewicz, Jan M; Craighead, Jeffrey D; Pagano, Craig V
2016-01-01
Rehabilitation of patients with traumatic brain injury typically includes therapeutic prompts for keeping appointments and adhering to medication regimens. Level of cognitive impairment may significantly affect a traumatic brain injury victim's ability to benefit from text-based prompting. We tested the hypothesis that spatial disorientation as measured by movement path tortuosity during ambulation would be associated with poorer compliance with automated prompts by veterans actively being treated for traumatic brain injury. Clinical polytrauma center. Ten (1 female) veteran patients mean age = 35.4 (SD = 12.4) years. Small group correlational study without random assignment. Fractal Dimension, a measure of movement path tortuosity derived from a GPS logging device used to record casual outdoor ambulation at the start of the study. Compliance with smart home machine-generated therapeutic prompts received during rehabilitation at the James A. Haley Veterans Administration Hospital Polytrauma Transitional Rehabilitation Program. A patient was compliant with a prompt if they transited from where the prompt was presented to the prescribed destination (both within the Polytrauma Transitional Rehabilitation Program) within 30 minutes. Noncompliance was failure to appear at the destination within the allotted time. Fractal dimension was significantly inversely related to overall prompt compliance (r = -0.603, n = 10, P = .032; 1-tailed). The findings support the hypothesis that increased spatial disorientation adversely impacts compliance with automated prompts throughout therapy. The results are consistent with previous studies linking elevated path tortuosity to cognitive impairment and increased risk for falls in assisted living facility residents.
Jiménez-Castro, Mónica B; Negrete-Sánchez, Elsa; Casillas-Ramírez, Araní; Gulfo, Jose; Álvarez-Mercado, Ana I; Cornide-Petronio, María Eugenia; Gracia-Sancho, Jordi; Rodés, Juan; Peralta, Carmen
2017-04-25
In the present study, we examined the effects of cortisol on steatotic and non-steatotic liver grafts from brain-dead donors and characterized the underlying mechanisms involved. Non-steatotic liver grafts showed reduced cortisol and increased cortisone levels in association with up-regulation of enzymes that inactivate cortisol. Conversely, steatotic liver grafts exhibited increased cortisol and reduced cortisone levels. The enzymes involved in cortisol generation were overexpressed, and those involved in cortisol inactivation or clearance were down-regulated in steatotic liver grafts. Exogenous administration of cortisol negatively affected hepatic damage and survival rate in non-steatotic liver transplantation (LT); however, cortisol treatment up-regulated the phosphoinositide 3-kinase (PI3K)-protein kinase C (PKC) pathway, resulting in protection against the deleterious effects of brain-dead donors on damage and inflammatory response in steatotic LT as well as in increased survival of recipients. The present study highlights the differences in the role of cortisol and hepatic mechanisms that regulate cortisol levels based on the type of liver. Our findings suggest that cortisol treatment is a feasible and highly protective strategy to reduce the adverse effects of brain-dead donor livers in order to ultimately improve liver graft quality in the presence of steatosis, whereas cortisol treatment would not be recommended for non-steatotic liver grafts. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Reid, Matthew W; Cooper, Douglas B; Lu, Lisa H; Iverson, Grant L; Kennedy, Jan E
2018-05-15
The objective of this study was to assess the associations between resilience, adversity, post-concussion symptoms, and post-traumatic stress symptom reporting after mild traumatic brain injury (mTBI). We hypothesized that resilience would be associated with less symptom reporting, and adversity would be associated with greater symptom reporting. This was a cross-sectional study of retrospective data collected for an ongoing TBI repository. United States military service members who screened positive for mTBI during a primary care visit completed the Trauma History Screen (THS), Connor-Davidson Resilience Scale (CD-RISC), Neurobehavioral Symptom Inventory (NSI), and post-traumatic stress disorder (PTSD) Checklist-Civilian Version (PCL-C). Data collected from February 2015 to August 2016 were used for the present study. Only participants with complete data for the above measures were included, yielding a sample size of 165 participants. Adversity (THS) and resilience (CD-RISC) scores were each correlated significantly with post-concussion (NSI) and traumatic stress (PCL-C) total and subscale scores in the hypothesized direction. Interactions between adversity and resilience were absent for all measures except the NSI sensory subscale. Four traumatic event types were significantly associated positively with most NSI and PCL-C total and subscale scores, but the age at which traumatic events were first experienced showed few and mixed significant associations. In conclusion, resilience and adversity were significantly associated with symptom endorsement after mTBI. Screening for cumulative adversity may identify individuals at greater risk of developing persistent post-concussion symptoms and/or PTSD, and interventions that increase resilience may reduce symptom severity.
Patel, Daxa M; Walker, Harrison C; Brooks, Rebekah; Omar, Nidal; Ditty, Benjamin; Guthrie, Barton L
2015-03-01
Although numerous studies have focused on the efficacy of deep brain stimulation (DBS) for movement disorders, less is known about surgical adverse events, especially over longer time intervals. Here, we analyze adverse events in 510 consecutive cases from a tertiary movement disorders center at up to 10 years postoperatively. We conducted a retrospective review of adverse events from craniotomies between January 2003 and March 2013. The adverse events were categorized into 2 broad categories--immediate perioperative and time-dependent postoperative events. Across all targets, perioperative mental status change occurred in 18 (3.5%) cases, and symptomatic intracranial hemorrhage occurred in 4 (0.78%) cases. The most common hardware-related event was skin erosion in 13 (2.5%) cases. The most frequent stimulation-related event was speech disturbance in 16 (3.1%) cases. There were no significant differences among surgical targets with respect to the incidence of these events. Time-dependent postoperative events leading to the revision of a given DBS electrode for any reason occurred in 4.7% ± 1.0%, 9.3% ± 1.4%, and 12.4% ± 1.5% of electrodes at 1, 4, and 7 years postoperatively, respectively. Staged bilateral DBS was associated with approximately twice the risk of repeat surgery for electrode replacement vs unilateral surgery (P = .020). These data provide low incidences for adverse events in a large series of DBS surgeries for movement disorders at up to 10 years follow-up. Accurate estimates of adverse events will better inform patients and caregivers about the potential risks and benefits of surgery and provide normative data for process improvement.
The effects of vitamin D on brain development and adult brain function.
Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J
2011-12-05
A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Environmental Enrichment Mitigates Detrimental Cognitive Effects of Ketogenic Diet in Weanling Rats.
Scichilone, John M; Yarraguntla, Kalyan; Charalambides, Ana; Harney, Jacob P; Butler, David
2016-09-01
For decades, the ketogenic diet has been an effective treatment of intractable epilepsy in children. Childhood epilepsy is pharmacoresistant in 25-40 % of patients taking the current prescribed medications. Chronic seizure activity has been linked to deficits in cognitive function and behavioral problems which negatively affect the learning abilities of the child. Recent studies suggest the ketogenic diet (KD), a high fat with low carbohydrate and protein diet, has adverse effects on cognition in weanling rats. The diet reduces circulating glucose levels to where energy metabolism is converted from glycolysis to burning fat and generating ketone bodies which has been suggested as a highly efficient source of energy for the brain. In contrast, when weanling rats are placed in an enriched environment, they exhibit increased spatial learning, memory, and neurogenesis. Thus, this study was done to determine if weanling rats being administered a KD in an environmental enrichment (EE) would still exhibit the negative cognitive effects of the diet previously observed. The present study suggests that an altered environment is capable of reducing the cognitive deficits in weanling rats administered a KD. Learning was improved with an EE. The effect of diet and environment on anxiety and depression suggests a significant reduction in anxiety with enrichment rearing. Interestingly, circulating energy substrate levels were increased in the EE groups along with brain-derived neurotrophic factor despite the least changes in weight gain. In light of numerous studies using KDs that seemingly have adverse effects on cognition, KD-induced reductions in excitotoxic events would not necessarily eliminate that negative aspect of seizures.
Bhakta, Ami; Gavini, Kartheek; Yang, Euitaek; Lyman-Henley, Lani; Parameshwaran, Kodeeswaran
2017-09-29
Chronic stress in humans can result in multiple adverse psychiatric and neurobiological outcomes, including memory deficits. These adverse outcomes can be more severe if each episode of stress is very traumatic. When compared to acute or short term stress relatively little is known about the effects of chronic traumatic stress on memory and molecular changes in hippocampus, a brain area involved in memory processing. Here we studied the effects of chronic traumatic stress in mice by exposing them to adult Long Evan rats for 28 consecutive days and subsequently analyzing behavioral outcomes and the changes in the hippocampus. Results show that stressed mice developed memory deficits when assayed with radial arm maze tasks. However, chronic traumatic stress did not induce anxiety, locomotor hyperactivity or anhedonia. In the hippocampus of stressed mice interleukin-1β protein expression was increased along with decreased corticotropin releasing hormone (CRH) gene expression. Furthermore, there was a reduction in acetylcholine levels in the hippocampus of stressed mice. There were no changes in brain derived neurotrophic factor (BDNF) or nerve growth factor (NGF) levels in the hippocampus of stressed mice. Gene expression of immediate early genes (Zif268, Arc, C-Fos) as well as glucocorticoid and mineralocorticoid receptors were also not affected by chronic stress. These data demonstrate that chronic traumatic stress followed by a recovery period might lead to development of resilience resulting in the development of selected, most vulnerable behavioral alterations and molecular changes in the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.
Barrett, C E; Arambula, S E; Young, L J
2015-07-21
Genes and social experiences interact to create variation in social behavior and vulnerability to develop disorders of the social domain. Socially monogamous prairie voles display remarkable diversity in neuropeptide receptor systems and social behavior. Here, we examine the interaction of early-life adversity and brain oxytocin receptor (OTR) density on adult social attachment in female prairie voles. First, pups were isolated for 3 h per day, or unmanipulated, from postnatal day 1-14. Adult subjects were tested on the partner preference (PP) test to assess social attachment and OTR density in the brain was quantified. Neonatal social isolation impaired female PP formation, without affecting OTR density. Accumbal OTR density was, however, positively correlated with the percent of time spent huddling with the partner in neonatally isolated females. Females with high accumbal OTR binding were resilient to neonatal isolation. These results are consistent with the hypothesis that parental nurturing shapes neural systems underlying social relationships by enhancing striatal OTR signaling. Thus, we next determined whether early touch, mimicking parental licking and grooming, stimulates hypothalamic OT neuron activity. Tactile stimulation induced immediate-early gene activity in OT neurons in neonates. Finally, we investigated whether pharmacologically potentiating OT release using a melanocortin 3/4 agonist, melanotan-II (10 mg kg(-1) subcutaneously), would mitigate the social isolation-induced impairments in attachment behavior. Neonatal melanotan-II administration buffered against the effects of early isolation on partner preference formation. Thus, variation in accumbal OTR density and early OT release induced by parental nurturing may moderate susceptibility to early adverse experiences, including neglect.
Khakban, Amir; Mohammadi, Tima; Lynd, Larry D; Mabbott, Don; Bouffet, Eric; Gastonguay, Louise; Zafari, Zafar; Malkin, David; Taylor, Michael; Marra, Carlo A
2017-06-01
Medulloblastoma is the most prevalent childhood brain cancer. Children with medulloblastoma typically receive a combination of surgery, radiation, and chemotherapy. The survival rate is high but survivors often have sequelae from radiotherapy of the entire developing brain and spinal cord. Ongoing genetic studies have suggested that decreasing the dose of radiation might be possible among children with favorable molecular variants; however, this may result in an increased disease recurrence. As such, there is a need to investigate the nature of trade-offs that individuals are willing to make regarding the treatment of medulloblastoma. We used best-worst scaling to estimate the importance of attributes affecting the general public's decision making around the treatment of medulloblastoma. After conducting focus groups, we selected three relevant attributes: (1) the accuracy of the genetic test; (2) the probability of serious adverse effects of the treatment(s); and (3) the survival rate. Using the paired method, we applied a conditional logit model to estimate preferences. In total, 3,006 respondents (51.3% female) with an average age of 43 years answered the questionnaires. All coefficients were statistically significantly different from zero and the attribute levels of adverse effects and the survival rate had the most impact on individuals' stated decision making. Overall, respondents showed high sensitivity to children experiencing disability particularly in the setting of a good prognosis. However, among children with poor prognostic molecular variants, participants showed tolerance about having a child with mild and partial disability compared to a low rate of survival. © 2016 Wiley Periodicals, Inc.
Philippot, Gaëtan; Gordh, Torsten; Fredriksson, Anders; Viberg, Henrik
2017-10-01
Paracetamol (acetaminophen) is a widely used non-prescription drug with analgesic and antipyretic properties. Among pregnant women and young children, paracetamol is one of the most frequently used drugs and is considered the first-choice treatment for pain and/or fever. Recent findings in both human and animal studies have shown associations between paracetamol intake during brain development and adverse behavioral outcomes later in life. The present study was undertaken to investigate if the induction of these effects depend on when the exposure occurs during a critical period of brain development and if male and female mice are equally affected. Mice of both sexes were exposed to two doses of paracetamol (30 + 30 mg kg -1 , 4 h apart) on postnatal days (PND) 3, 10 or 19. Spontaneous behavior, when introduced to a new home environment, was observed at the age of 2 months. We show that adverse effects on adult behavior and cognitive function occurred in both male and female mice exposed to paracetamol on PND 3 and 10, but not when exposed on PND 19. These neurodevelopmental time points in mice correspond to the beginning of the third trimester of pregnancy and the time around birth in humans, supporting existing human data. Considering that paracetamol is the first choice treatment for pain and/or fever during pregnancy and early life, these results may be of great importance for future research and, ultimately, for clinical practice. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Sarginson, Jane E; Deakin, J F William; Anderson, Ian M; Downey, Darragh; Thomas, Emma; Elliott, Rebecca; Juhasz, Gabriella
2014-11-01
There is increasing evidence that genetic factors have a role in differential susceptibility to depression in response to severe or chronic adversity. Studies in animals suggest that nitric oxide (NO) signalling has a key role in depression-like behavioural responses to stress. This study investigated whether genetic variation in the brain-expressed nitric oxide synthase gene NOS1 modifies the relationship between psychosocial stress and current depression score. We recruited a population sample of 1222 individuals who provided DNA and questionnaire data on symptoms and stress. Scores on the List of Life-Threatening Experiences (LTE) questionnaire for the last year and self-rated current financial hardship were used as measures of recent/ongoing psychosocial stress. Twenty SNPs were genotyped. Significant associations between eight NOS1 SNPs, comprising two regional haplotypes, and current depression score were identified that survived correction for multiple testing when current financial hardship was used as the interaction term. A smaller three-SNP haplotypes (rs10507279, rs1004356 and rs3782218) located in a regulatory region of NOS1 showed one of the strongest effects, with the A-C-T haplotype associating with higher depression scores at low adversity levels but lower depression scores at higher adversity levels (p=2.3E-05). These results suggest that NOS1 SNPs interact with exposure to economic and psychosocial stressors to alter individual's susceptibility to depression.
Sarginson, Jane E; Deakin, JF William; Anderson, Ian M; Downey, Darragh; Thomas, Emma; Elliott, Rebecca; Juhasz, Gabriella
2014-01-01
There is increasing evidence that genetic factors have a role in differential susceptibility to depression in response to severe or chronic adversity. Studies in animals suggest that nitric oxide (NO) signalling has a key role in depression-like behavioural responses to stress. This study investigated whether genetic variation in the brain-expressed nitric oxide synthase gene NOS1 modifies the relationship between psychosocial stress and current depression score. We recruited a population sample of 1222 individuals who provided DNA and questionnaire data on symptoms and stress. Scores on the List of Life-Threatening Experiences (LTE) questionnaire for the last year and self-rated current financial hardship were used as measures of recent/ongoing psychosocial stress. Twenty SNPs were genotyped. Significant associations between eight NOS1 SNPs, comprising two regional haplotypes, and current depression score were identified that survived correction for multiple testing when current financial hardship was used as the interaction term. A smaller three-SNP haplotypes (rs10507279, rs1004356 and rs3782218) located in a regulatory region of NOS1 showed one of the strongest effects, with the A-C-T haplotype associating with higher depression scores at low adversity levels but lower depression scores at higher adversity levels (p=2.3E-05). These results suggest that NOS1 SNPs interact with exposure to economic and psychosocial stressors to alter individual's susceptibility to depression. PMID:24917196
Brain ultrasound findings in neonates treated with intrauterine transfusion for fetal anaemia.
Leijser, Lara M; Vos, Nikki; Walther, Frans J; van Wezel-Meijler, Gerda
2012-09-01
The main causes of severe fetal anaemia are red-cell allo-immunization, parvo B19 virus infection and feto-maternal haemorrhage. Treatment consists of intrauterine transfusion (IUT). Neuro-imaging studies in surviving neonates treated with IUT are scarce. To assess if neonates treated with IUT for fetal anaemia are at risk for cerebral injury, report the incidence and severity of brain ultrasound (US) abnormalities and explore the relation between brain US findings and perinatal parameters and neurological outcome. Brain US scans of neonates born alive between 2001 and 2008 with at least one IUT were retrospectively reviewed and classified as normal, mildly or moderately/severely abnormal. Incidences of abnormalities were calculated for full-term and preterm neonates. Presence and severity of abnormalities were related to clinical and IUT related parameters and to neurological outcome around 2 years of age (adverse: moderate or severe disability; favourable: normal or mild disability). A total of 127 neonates (82 born preterm) were included. Median number of IUTs was 3 (range 1-6) and of brain US 2 (1-6). Median gestational age and weight at birth were 36.6 (26.0-41.1) weeks and 2870 (1040-3950)g. In 72/127 (57%) neonates ≥1 abnormality was seen on brain US, classified as moderate/severe in 30/127 (24%). Neurological outcome was adverse in 5 infants. Presence of brain US abnormalities was not significantly related to any of the perinatal parameters or to neurological outcome. Neonates undergoing IUT for fetal anaemia are at high risk of brain injury. Copyright © 2012 Elsevier Ltd. All rights reserved.
Religion, evolution, and mental health: attachment theory and ETAS theory.
Flannelly, Kevin J; Galek, Kathleen
2010-09-01
This article reviews the historical origins of Attachment Theory and Evolutionary Threat Assessment Systems Theory (ETAS Theory), their evolutionary basis and their application in research on religion and mental health. Attachment Theory has been most commonly applied to religion and mental health in research on God as an attachment figure, which has shown that secure attachment to God is positively associated with psychological well-being. Its broader application to religion and mental health is comprehensively discussed by Kirkpatrick (2005). ETAS Theory explains why certain religious beliefs--including beliefs about God and life-after-death--should have an adverse association, an advantageous association, or no association at all with mental health. Moreover, it makes specific predictions to this effect, which have been confirmed, in part. The authors advocate the application of ETAS Theory in research on religion and mental health because it explains how religious and other beliefs related to the dangerousness of the world can directly affect psychiatric symptoms through their affects on specific brain structures.
Gupta, Avinash; Roberts, Corran; Tysoe, Finn; Goff, Matthew; Nobes, Jenny; Lester, James; Marshall, Ernie; Corner, Carie; Wolstenholme, Virginia; Kelly, Charles; Wise, Adelyn; Collins, Linda; Love, Sharon; Woodward, Martha; Salisbury, Amanda; Middleton, Mark R
2016-01-01
Background: Brain metastases occur in up to 75% of patients with advanced melanoma. Most are treated with whole-brain radiotherapy (WBRT), with limited effectiveness. Vandetanib, an inhibitor of vascular endothelial growth factor receptor, epidermal growth factor receptor and rearranged during transfection tyrosine kinases, is a potent radiosensitiser in xenograft models. We compared WBRT with WBRT plus vandetanib in the treatment of patients with melanoma brain metastases. Methods: In this double-blind, multi-centre, phase 2 trial patients with melanoma brain metastases were randomised to receive WBRT (30 Gy in 10 fractions) plus 3 weeks of concurrent vandetanib 100 mg once daily or placebo. The primary endpoint was progression-free survival in brain (PFS brain). The main study was preceded by a safety run-in phase to confirm tolerability of the combination. A post-hoc analysis and literature review considered barriers to recruiting patients with melanoma brain metastases to clinical trials. Results: Twenty-four patients were recruited, six to the safety phase and 18 to the randomised phase. The study closed early due to poor recruitment. Median PFS brain was 3.3 months (90% confidence interval (CI): 1.6–5.6) in the vandetanib group and 2.5 months (90% CI: 0.2–4.8) in the placebo group (P=0.34). Median overall survival (OS) was 4.6 months (90% CI: 1.6–6.3) and 2.5 months (90% CI: 0.2–7.2), respectively (P=0.54). The most frequent adverse events were fatigue, alopecia, confusion and nausea. The most common barrier to study recruitment was availability of alternative treatments. Conclusions: The combination of WBRT plus vandetanib was well tolerated. Compared with WBRT alone, there was no significant improvement in PFS brain or OS, although we are unable to provide a definitive result due to poor accrual. A review of barriers to trial accrual identified several factors that affect study recruitment in this difficult disease area. PMID:27711083
Maternal or neonatal infection: association with neonatal encephalopathy outcomes.
Jenster, Meike; Bonifacio, Sonia L; Ruel, Theodore; Rogers, Elizabeth E; Tam, Emily W; Partridge, John Colin; Barkovich, Anthony James; Ferriero, Donna M; Glass, Hannah C
2014-07-01
Perinatal infection may potentiate brain injury among children born preterm. The objective of this study was to examine whether maternal and/or neonatal infection are associated with adverse outcomes among term neonates with encephalopathy. This study is a cohort study of 258 term newborns with encephalopathy whose clinical records were examined for signs of maternal infection (chorioamnionitis) and infant infection (sepsis). Multivariate regression was used to assess associations between infection, pattern, and severity of injury on neonatal magnetic resonance imaging, as well as neurodevelopment at 30 mo (neuromotor examination, or Bayley Scales of Infant Development, second edition mental development index <70 or Bayley Scales of Infant Development, third edition cognitive score <85). Chorioamnionitis was associated with lower risk of moderate-severe brain injury (adjusted odds ratio: 0.3; 95% confidence interval: 0.1-0.7; P = 0.004) and adverse cognitive outcome in children when compared with no chorioamnionitis. Children with signs of neonatal sepsis were more likely to exhibit watershed predominant injury than those without (P = 0.007). Among neonates with encephalopathy, chorioamnionitis was associated with a lower risk of brain injury and adverse outcomes, whereas signs of neonatal sepsis carried an elevated risk. The etiology of encephalopathy and timing of infection and its associated inflammatory response may influence whether infection potentiates or mitigates injury in term newborns.
Maternal or neonatal infection: association with neonatal encephalopathy outcomes
Jenster, Meike; Bonifacio, Sonia L.; Ruel, Theodore; Rogers, Elizabeth E.; Tam, Emily W.; Partridge, John Colin; Barkovich, A. James; Ferriero, Donna M.; Glass, Hannah C.
2014-01-01
Background Perinatal infection may potentiate brain injury among children born preterm. The objective of this study was to examine whether maternal and/or neonatal infection are associated with adverse outcomes among term neonates with encephalopathy. Methods Cohort study of 258 term newborns with encephalopathy whose clinical records were examined for signs of maternal infection (chorioamnionitis) and infant infection (sepsis). Multivariate regression was used to assess associations between infection, pattern and severity of injury on neonatal MRI, as well as neurodevelopment at 30 months (neuromotor exam, or Bayley Scales of Infant Development II MDI <70 or Bayley III cognitive score <85). Results Chorioamnionitis was associated with lower risk of moderate-severe brain injury (adjusted OR 0.3; 95% CI 0.1–0.7, P=0.004), and adverse cognitive outcome in children when compared to no chorioamnionitis. Children with signs of neonatal sepsis were more likely to exhibit watershed predominant injury than those without (P=0.007). Conclusions Among neonates with encephalopathy, chorioamnionitis was associated with a lower risk of brain injury and adverse outcomes, whereas signs of neonatal sepsis carried an elevated risk. The etiology of encephalopathy and timing of infection and its associated inflammatory response may influence whether infection potentiates or mitigates injury in term newborns. PMID:24713817
Bilastine and the central nervous system.
Montoro, J; Mullol, J; Dávila, I; Ferrer, M; Sastre, J; Bartra, J; Jáuregui, I; del Cuvillo, A; Valero, A
2011-01-01
Antihistamines have been classifed as first or second generation drugs, according to their pharmacokinetic properties, chemical structure and adverse effects. The adverse effects of antihistamines upon the central nervous system (CNS) depend upon their capacity to cross the blood-brain barrier (BBB) and bind to the central H1 receptors (RH1). This in turn depends on the lipophilicity of the drug molecule, its molecular weight (MW), and affinity for P-glycoprotein (P-gp) (CNS xenobiotic substances extractor protein). First generation antihistamines show scant affinity for P-gp, unlike the second generation molecules which are regarded as P-gp substrates. Histamine in the brain is implicated in many functions (waking-sleep cycle, attention, memory and learning, and the regulation of appetite), with numerous and complex interactions with different types of receptors in different brain areas. Bilastine is a new H1 antihistamine that proves to be effective in treating allergic rhinoconjunctivitis (seasonal and perennial) and urticaria. The imaging studies made, as well as the objective psychomotor tests and subjective assessment of drowsiness, indicate the absence of bilastine action upon the CNS. This fact, and the lack of interaction with benzodiazepines and alcohol, define bilastine as a clinically promising drug with a good safety profile as regards adverse effects upon the CNS.
Dinel, A L; Rey, C; Baudry, C; Fressange-Mazda, C; Le Ruyet, P; Nadjar, A; Pallet, P; Joffre, C; Layé, S
2016-10-01
Polyunsaturated fatty acids (PUFAs) are essential fatty acids, which are critical for brain development and later life cognitive functions. The main brain PUFAs are docosahexaenoic acid (DHA) for the n-3 family and arachidonic acid (ARA) for the n-6 family, which are provided to the post-natal brain by breast milk or infant formula. Recently, the use of dairy lipids (DL) in replacement of vegetable lipids (VL) was revealed to potently promote the accretion of DHA in the developing brain. Brain DHA, in addition to be a key component of brain development, display potent anti-inflammatory activities, which protect the brain from adverse inflammatory events. In this work, we evaluated the protective effect of partial replacement of VL by DL, supplemented or not with DHA and ARA, on post-natal inflammation and its consequence on memory. Mice were fed with diets poor in vegetal n-3 PUFA (Def VL), balanced in vegetal n-3/n-6 PUFA (Bal VL), balanced in dairy lipids (Bal DL) or enriched in DHA and ARA (Supp VL; Supp DL) from the first day of gestation until adulthood. At post-natal day 14 (PND14), pups received a single administration of the endotoxin lipopolysaccharide (LPS) and brain cytokine expression, microglia phenotype and neurogenesis were measured. In a second set of experiments, memory and neurogenesis were measured at adulthood. Overall, our data showed that lipid quality of the diet modulates early life LPS effect on microglia phenotype, brain cytokine expression and neurogenesis at PND14 and memory at adulthood. In particular, Bal DL diet protects from the adverse effect of early life LPS exposure on PND14 neurogenesis and adult spatial memory. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyawaki, Daisuke; Murakami, Masao; Demizu, Yusuke
Purpose: To assess the incidence of early delayed or late morbidity of Brain after particle therapy for skull base tumors and head-and-neck cancers. Methods and Materials: Between May 2001 and December 2005, 59 patients with cancerous invasion of the skull base were treated with proton or carbon ion therapy at the Hyogo Ion Beam Medical Center. Adverse events were assessed according to the magnetic resonance imaging findings (late effects of normal tissue-subjective, objective, management, analytic [LENT-SOMA]) and symptoms (Common Terminology Criteria for Adverse Events [CTCAE], version 3.0). Dose-volume histograms were used to analyze the relationship between the dose and volumemore » of the irradiated brain and the occurrence of brain injury. The median follow-up time was 33 months. Results: Of the 48 patients treated with proton therapy and 11 patients treated with carbon ion radiotherapy, 8 (17%) and 7 (64%), respectively, developed radiation-induced brain changes (RIBCs) on magnetic resonance imaging (LENT-SOMA Grade 1-3). Four patients (7%) had some clinical symptoms, such as vertigo and headache (CTCAE Grade 2) or epilepsy (CTCAE Grade 3). The actuarial occurrence rate of RIBCs at 2 and 3 years was 20% and 39%, respectively, with a significant difference in the incidence between the proton and carbon ion radiotherapy groups. The dose-volume histogram analyses revealed significant differences between Brain lobes with and without RIBCs in the actuarial volume of brain lobes receiving high doses. Conclusion: Particle therapies produced minimal symptomatic brain toxicities, but sequential evaluation with magnetic resonance imaging detected a greater incidence of RIBCs. Significant differences were observed in the irradiated brain volume between Brain lobes with and without RIBCs.« less
Neurology of Affective Prosody and Its Functional-Anatomic Organization in Right Hemisphere
ERIC Educational Resources Information Center
Ross, Elliott D.; Monnot, Marilee
2008-01-01
Unlike the aphasic syndromes, the organization of affective prosody in brain has remained controversial because affective-prosodic deficits may occur after left or right brain damage. However, different patterns of deficits are observed following left and right brain damage that suggest affective prosody is a dominant and lateralized function of…
ERIC Educational Resources Information Center
Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Taylor, H. Gerry; Stancin, Terry; Yeates, Keith Owen; Wade, Shari L.
2016-01-01
Parent behaviors moderate the adverse consequences of pediatric traumatic brain injury (TBI); however, it is unknown how these moderating effects change over time. This study examined the moderating effect of observed parent behaviors over time since injury on the relation between TBI and behavioral outcomes. Participants included children, ages…
Coping with Stress During Aging: The Importance of a Resilient Brain.
Sampedro-Piquero, P; Alvarez-Suarez, P; Begega, A
2018-03-05
Resilience is the ability to achieve a positive outcome when we are in the face of adversity. It supposes an active resistance to adversity by coping mechanisms in which genetic, molecular, neural and environmental factors are involved. Resilience has been usually studied in early ages and few is known about it during aging. In this review, we will address the age-related changes in the brain mechanisms involved in regulating the stress response. Furthermore, using the EE paradigm, we analyse the resilient potential of this intervention and its neurobiological basis. In this case, we will focus on identifying the characteristics of a resilient brain (modifications in HPA structure and function, neurogenesis, specific neuron types, glia, neurotrophic factors, nitric oxide synthase or microRNAs, among others). The evidence suggests that a healthy lifestyle has a crucial role to promote a resilient brain during aging. Along with the behavioral changes described, a better regulation of HPA axis, enhanced levels of postmitotic type-3 cells or changes in GABAergic neurotransmission are some of the brain mechanisms involved in resilience. Future research should identify different biomarkers that increase the resistance to develop mood disorders and based on this knowledge, develop new potential therapeutic targets. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Albert-Vartanian, A; Boyd, M R; Hall, A L; Morgado, S J; Nguyen, E; Nguyen, V P H; Patel, S P; Russo, L J; Shao, A J; Raffa, R B
2016-08-01
Optimal utilization of opioid analgesics is significantly limited by the central nervous system adverse effects and misuse/abuse potential of currently available drugs. It has been postulated that opioid-associated adverse effects and abuse potential would be greatly reduced if opioids could be excluded from reaching the brain. We review the basic science and clinical evidence of one such approach - peripherally restricted kappa-opioid receptor (KOR) agonists (pKORAs). Published and unpublished literature, websites and other sources were searched for basic science and clinical information related to the potential benefits and development of peripherally restricted kappa-opioid receptor agonists. Each source was summarized, reviewed and assessed. The historical development of pKORAs can be traced from the design of increasingly KOR-selective agonists, elucidation of the pharmacologic attributes of such compounds and strategies to restrict passage across the blood-brain barrier. Novel compounds are under development and have progressed to clinical trials. The results from recent clinical trials suggest that peripherally restricted opioids can be successfully designed and that they can retain analgesic efficacy with a more favourable adverse effect profile. © 2016 John Wiley & Sons Ltd.
Chloramphenicol Toxicity Revisited: A 12-Year-Old Patient With a Brain Abscess
Wiest, Donald B.; Cochran, Joel B.; Tecklenburg, Fred W.
2012-01-01
Chloramphenicol, a broad-spectrum antibiotic, is rarely used in the United States due to its well-described adverse effects. Because of its limited use, many clinicians are unfamiliar with its indications, spectrum of activity, and potential adverse drug effects. We describe a 12-year-old patient who presented after two craniotomies for a persistent brain abscess complicated by long-term chloramphenicol administration. Findings for this patient were consistent with many of the adverse drug effects associated with chloramphenicol, including elevated chloramphenicol serum concentrations, anemia, thrombocytopenia, reticulocytopenia, and severe metabolic acidosis. Rare manifestations of chloramphenicol toxicity that developed in this patient included neutropenia, visual field changes, and peripheral neuropathy. Chloramphenicol administration was discontinued, and hemodialysis was initiated for severe metabolic acidosis. The patient recovered with severe visual field deficits. Although chloramphenicol is rarely indicated, it remains an effective antibiotic. Healthcare providers should become familiar with the pharmacology, toxicology, and monitoring parameters for appropriate use of this antibiotic. PMID:23118672
Current Concepts in Neuroendocrine Disruption
2014-01-01
In the last few years, it has become clear that a wide variety of environmental contaminants have specific effects on neuroendocrine systems in fish, amphibians, birds and mammals. While it is beyond the scope of this review to provide a comprehensive examination of all of these neuroendocrine disruptors, we will focus on select representative examples. Organochlorine pesticides bioaccumulate in neuroendocrine areas of the brain that directly regulate GnRH neurons, thereby altering the expression of genes downstream of GnRH signaling. Organochlorine pesticides can also agonize or antagonize hormone receptors, adversely affecting crosstalk between neurotransmitter systems. The impacts of polychlorinated biphenyls are varied and in many cases subtle. This is particularly true for neuroedocrine and behavioral effects of exposure. These effects impact sexual differentiation of the hypothalamic-pituitary-gonadal axis, and other neuroendocrine systems regulating the thyroid, metabolic, and stress axes and their physiological responses. Weakly estrogenic and anti-androgenic pollutants such as bisphenol A, phthalates, phytochemicals, and the fungicide vinclozolin can lead to severe and widespread neuroendocrine disruptions in discrete brain regions, including the hippocampus, amygdala, and hypothalamus, resulting in behavioral changes in a wide range of species. Behavioral features that have been shown to be affected by one or more these chemicals include cognitive deficits, heightened anxiety or anxiety-like, sociosexual, locomotor, and appetitive behaviors. Neuroactive pharmaceuticals are now widely detected in aquatic environments and water supplies through the release of wastewater treatment plant effluents. The antidepressant fluoxetine is one such pharmaceutical neuroendocrine disruptor. Fluoxetine is a selective serotonin reuptake inhibitor that can affect multiple neuroendocrine pathways and behavioral circuits, including disruptive effects on reproduction and feeding in fish. There is growing evidence for the association between environmental contaminant exposures and diseases with strong neuroendocrine components, for example decreased fecundity, neurodegeneration, and cardiac disease. It is critical to consider the timing of exposures of neuroendocrine disruptors because embryonic stages of central nervous system development are exquisitely sensitive to adverse effects. There is also evidence for epigenetic and transgenerational neuroendocrine disrupting effects of some pollutants. We must now consider the impacts of neuroendocrine disruptors on reproduction, development, growth and behaviors, and the population consequences for evolutionary change in an increasingly contaminated world. This review examines the evidence to date that various so-called neuroendocrine disruptors can induce such effects often at environmentally-relevant concentrations. PMID:24530523
Serotonin and brain function: a tale of two receptors.
Carhart-Harris, R L; Nutt, D J
2017-09-01
Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.
Grados, Marco A; Vasa, Roma A; Riddle, Mark A; Slomine, Beth S; Salorio, Cynthia; Christensen, James; Gerring, Joan
2008-01-01
Traumatic brain injury (TBI) constitutes a major source of psychiatric morbidity and disability. This study examines new onset of obsessions and compulsions (OCS) within 1 year of severe pediatric TBI. Eighty children and adolescents ages 6-18 years with severe TBI were interviewed by a child psychiatrist using the Diagnostic Interview for Children and Adolescents-Revised to diagnose OCS and comorbidities. A brain magnetic resonance imaging used a 1.5 T scanner 3 months after injury with a T1-weighted spoiled gradient-recalled-echo sequence to provide high spatial resolution and T1- and T2(*)-contrast sensitivity. Race, sex, socioeconomic status, psychosocial adversity, and injury severity were used to predict new onset OCS. Psychiatric comorbidities and brain lesion volumes in orbitofrontal, mesial prefrontal, temporal lobe, basal ganglia, and thalamus were examined in relation to new onset OCS. Twenty-one children (21/72, 29.2%) had OCS after TBI. Most common were worries about disease, cleanliness, and inappropriate actions as well as excessive cleaning, doing things a certain way and ordering. Anxiety disorders, mania, dysthymia, depressive symptoms, and posttraumatic stress disorder were significantly associated with new onset OCS. Injury severity was not associated with new onset OCS. Greater psychosocial adversity (P=0.009), and being female (P=0.005) were associated with OCS while mesial prefrontal and temporal lobe lesions were associated with new onset obsessions (P<0.05). OCS are common after severe pediatric TBI and are associated with greater comorbidities. New onset obsessions are associated with female sex, psychosocial adversity, and mesial prefrontal and temporal lesions. Published 2007 Wiley-Liss, Inc.
Motor outcome and electrode location in deep brain stimulation in Parkinson's disease.
Koivu, Maija; Huotarinen, Antti; Scheperjans, Filip; Laakso, Aki; Kivisaari, Riku; Pekkonen, Eero
2018-05-30
To evaluate the efficacy and adverse effects of subthalamic deep brain stimulation (STN-DBS) in patients with advanced Parkinson's disease (PD) and the possible correlation between electrode location and clinical outcome. We retrospectively reviewed 87 PD-related STN-DBS operations at Helsinki University Hospital (HUH) from 2007 to 2014. The changes of Unified Parkinson's Disease Rating Scale (UPDRS) part III score, Hoehn & Yahr stage, antiparkinson medication, and adverse effects were studied. We estimated the active electrode location in three different coordinate systems: direct visual analysis of MRI correlated to brain atlas, location in relation to the nucleus borders and location in relation to the midcommisural point. At 6 months after operation, both levodopa equivalent doses (LEDs; 35%, Wilcoxon signed-rank test = 0.000) and UPDRS part III scores significantly decreased (38%, Wilcoxon signed-rank test = 0.000). Four patients (5%) suffered from moderate DBS-related dysarthria. The generator and electrodes had to be removed in one patient due to infection (1%). Electrode coordinates in the three coordinate systems correlated well with each other. On the left side, more ventral location of the active contact was associated with greater LED decrease. STN-DBS improves motor function and enables the reduction in antiparkinson medication with an acceptable adverse effect profile. More ventral location of the active contact may allow stronger LED reduction. Further research on the correlation between contact location, clinical outcome, and LED reduction is warranted. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Gupta, Shreyasi; Guha, Payel; Majumder, Suravi; Pal, Puja; Sen, Koushik; Chowdhury, Piyali; Chakraborty, Arindam; Panigrahi, Ashis Kumar; Mukherjee, Dilip
2018-07-01
Estrogen regulates numerous developmental and physiological processes and effects are mediated mainly by estrogenic receptors (ERs), which function as ligand-regulated transcription factor. ERs can be activated by many different types endocrine disrupting chemicals (EDCs) and interfere with behaviour and reproductive potential of living organism. Estrogenic regulation of membrane associated G protein-coupled estrogen receptor, GPER activity has also been reported. Bisphenol A (BPA), a ubiquitous endocrine disruptor is present in many household products, has been linked to many adverse effect on sexual development and reproductive potential of wild life species. The present work is aimed to elucidate how an environmentally pervasive chemical BPA affects in vivo expression of a known estrogen target gene, cyp19a1b in the brain, and a known estrogenic biomarker, vitellogenin (Vg) in the whole body homogenate of 30 days post fertilization (dpf) swim-up fry of Labeo rohita. We confirm that, like estrogen, the xenoestrogen BPA exposure for 5-15 days induces strong overexpression of cyp19a1b, but not cyp19a1a mRNA in the brain and increase concentration of vitellogenin in swim-up fry. BPA also induces strong overexpression of aromatase B protein and aromatase activity in brain. Experiments using selective modulators of classical ERs and GPER argue that this induction is largely through nuclear ERs, not through GPER. Thus, BPA has the potential to elevate the levels of aromatase and thereby, levels of endogenous estrogen in developing brain. These results indicate that L. rohita swim-up fry can be used to detect environmental endocrine disruptors either using cyp19a1b gene expression or vitellogenin induction. Copyright © 2018 Elsevier Inc. All rights reserved.
Qiao, Dan; Nikitina, Lyudmila A; Buznikov, Gennady A; Lauder, Jean M; Seidler, Frederic J; Slotkin, Theodore A
2003-01-01
Embryonic development in the sea urchin requires trophic actions of the same neurotransmitters that participate in mammalian brain assembly. We evaluated the development of the high-affinity choline transporter, which controls acetylcholine synthesis. A variety of developmental neurotoxicants affect this transporter in mammalian brain. [3H]Hemicholinium-3 binding to the transporter was found in the cell membrane fraction at stages from the unfertilized egg to pluteus, with a binding affinity comparable with that seen in mammalian brain. Over the course of development, the concentration of transporter sites rose more than 3-fold, achieving concentrations comparable with those of cholinergically enriched mammalian brain regions. Dimethylaminoethanol (DMAE), a competitive inhibitor of choline transport, elicited dysmorphology beginning at the mid-blastula stage, with anomalies beginning progressively later as the concentration of DMAE was lowered. Pretreatment, cotreatment, or delayed treatment with acetylcholine or choline prevented the adverse effects of DMAE. Because acetylcholine was protective at a lower threshold, the DMAE-induced defects were most likely mediated by its effects on acetylcholine synthesis. Transient removal of the hyaline layer enabled a charged transport inhibitor, hemicholinium-3, to penetrate sufficiently to elicit similar anomalies, which were again prevented by acetylcholine or choline. These results indicate that the developing sea urchin possesses a high-affinity choline transporter analogous to that found in the mammalian brain, and, as in mammals, the functioning of this transporter plays a key role in the developmental, trophic activity of acetylcholine. The sea urchin model may thus be useful in high-throughput screening of suspected developmental neurotoxicants. PMID:14594623
Qiao, Dan; Nikitina, Lyudmila A; Buznikov, Gennady A; Lauder, Jean M; Seidler, Frederic J; Slotkin, Theodore A
2003-11-01
Embryonic development in the sea urchin requires trophic actions of the same neurotransmitters that participate in mammalian brain assembly. We evaluated the development of the high-affinity choline transporter, which controls acetylcholine synthesis. A variety of developmental neurotoxicants affect this transporter in mammalian brain. [3H]Hemicholinium-3 binding to the transporter was found in the cell membrane fraction at stages from the unfertilized egg to pluteus, with a binding affinity comparable with that seen in mammalian brain. Over the course of development, the concentration of transporter sites rose more than 3-fold, achieving concentrations comparable with those of cholinergically enriched mammalian brain regions. Dimethylaminoethanol (DMAE), a competitive inhibitor of choline transport, elicited dysmorphology beginning at the mid-blastula stage, with anomalies beginning progressively later as the concentration of DMAE was lowered. Pretreatment, cotreatment, or delayed treatment with acetylcholine or choline prevented the adverse effects of DMAE. Because acetylcholine was protective at a lower threshold, the DMAE-induced defects were most likely mediated by its effects on acetylcholine synthesis. Transient removal of the hyaline layer enabled a charged transport inhibitor, hemicholinium-3, to penetrate sufficiently to elicit similar anomalies, which were again prevented by acetylcholine or choline. These results indicate that the developing sea urchin possesses a high-affinity choline transporter analogous to that found in the mammalian brain, and, as in mammals, the functioning of this transporter plays a key role in the developmental, trophic activity of acetylcholine. The sea urchin model may thus be useful in high-throughput screening of suspected developmental neurotoxicants.
Bastian, Thomas W.; Duck, Kari A.; Michalopoulos, George C.; Chen, Michael J.; Liu, Zhi-Jian; Connor, James R.; Lanier, Lorene M.; Sola-Visner, Martha C.; Georgieff, Michael K.
2017-01-01
Background Thrombocytopenia is common in sick neonates. Thrombopoietin mimetics (e.g., eltrombopag (ELT)) might provide an alternative therapy for selected neonates with severe and prolonged thrombocytopenia, and for infants and young children with different varieties of thrombocytopenia. However, ELT chelates intracellular iron, which may adversely affect developing organs with high metabolic requirements. Iron deficiency (ID) is particularly deleterious during brain development, impairing neuronal myelination, dopamine signaling, and dendritic maturation and ultimately impairing long-term neurological function (e.g. hippocampal-dependent learning and memory). Objective Determine whether ELT crosses the blood-brain barrier (BBB), causes neuronal ID and impairs hippocampal neuron dendrite maturation. Methods ELT transport across the BBB was assessed using primary bovine brain microvascular endothelial cells. Embryonic mouse primary hippocampal neuron cultures were treated with ELT or deferoxamine (DFO, an iron chelator) from 7 days in vitro (DIV) through 14DIV and assessed for gene expression and neuronal dendrite complexity. Results ELT crossed the BBB in a time-dependent manner. 2 and 6 μM ELT increased Tfr1 and Slc11a2 (iron-responsive genes involved in neuronal iron uptake) mRNA levels, indicating neuronal ID. 6 μM ELT, but not 2 μM ELT, decreased BdnfVI, Camk2a, and Vamp1 mRNA levels, suggesting impaired neuronal development and synaptic function. Dendrite branch number and length was reduced in 6 μM ELT-treated neurons, resulting in blunted dendritic arbor complexity that was similar to DFO-treated neurons. Conclusions ELT treatment during development may impair neuronal structure due to neuronal ID. Pre-clinical in vivo studies are warranted to assess ELT safety during periods of rapid brain development. PMID:28005311
40 CFR 230.75 - Actions affecting plant and animal populations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes in...
40 CFR 230.75 - Actions affecting plant and animal populations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes in...
40 CFR 230.75 - Actions affecting plant and animal populations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes in...
40 CFR 230.75 - Actions affecting plant and animal populations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Actions affecting plant and animal... Actions To Minimize Adverse Effects § 230.75 Actions affecting plant and animal populations. Minimization of adverse effects on populations of plants and animals can be achieved by: (a) Avoiding changes in...
40 CFR 230.76 - Actions affecting human use.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...
40 CFR 230.76 - Actions affecting human use.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...
40 CFR 230.76 - Actions affecting human use.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...
40 CFR 230.76 - Actions affecting human use.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...
40 CFR 230.76 - Actions affecting human use.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...
How Early Events Affect Growing Brains. An Interview with Neuroscientist Pat Levitt
ERIC Educational Resources Information Center
National Scientific Council on the Developing Child, 2006
2006-01-01
Recent advances in neuroscience show clearly how experience can change brain neurochemicals, and how this in turn affects the way the brain functions. As a result, early negative events actually get built into the growing brain's neurochemistry, altering the brain's architecture. Research is continuing to investigate how children with genetic…
Shrira, Amit; Palgi, Yuval; Ben-Ezra, Menachem; Shmotkin, Dov
2010-06-01
Prior trauma can hinder coping with additional adversity or inoculate against the effect of recurrent adversity. The present study further addressed this issue by examining whether a subsample of Holocaust survivors and comparison groups, drawn from the Israeli component of the Survey of Health, Ageing, and Retirement in Europe, were differentially affected by post-Holocaust cumulative adversity. Post-Holocaust cumulative adversity had a stronger effect on the lifetime depression of Holocaust survivors than on that of comparisons. However, comparisons were more negatively affected by post-Holocaust cumulative adversity when examining markers of physical and cognitive functioning. Our findings suggest that previous trauma can both sensitize and immunize, as Holocaust survivors show general resilience intertwined with specific vulnerability when confronted with additional cumulative adversity.
ERIC Educational Resources Information Center
Kenardy, Justin; Le Brocque, Robyne; Hendrikz, Joan; Iselin, Greg; Anderson, Vicki; McKinlay, Lynne
2012-01-01
The adverse impact on recovery of posttraumatic stress disorder (PTSD) in mild traumatic brain injury (TBI) has been demonstrated in returned veterans. The study assessed this effect in children's health outcomes following TBI and extended previous work by including a full range of TBI severity, and improved assessment of PTSD within a…
Update on Deep Brain Stimulation for Dyskinesia and Dystonia: A Literature Review
TODA, Hiroki; SAIKI, Hidemoto; NISHIDA, Namiko; IWASAKI, Koichi
2016-01-01
Deep brain stimulation (DBS) has been an established surgical treatment option for dyskinesia from Parkinson disease and for dystonia. The present article deals with the timing of surgical intervention, selecting an appropriate target, and minimizing adverse effects. We provide an overview of current evidences and issues for dyskinesia and dystonia as well as emerging DBS technology. PMID:27053331
Bacoside A: Role in Cigarette Smoking Induced Changes in Brain
Vani, G.; Anbarasi, K.; Shyamaladevi, C. S.
2015-01-01
Cigarette smoking (CS) is a major health hazard that exerts diverse physiologic and biochemical effects mediated by the components present and generated during smoking. Recent experimental studies have shown predisposition to several biological consequences from both active and passive cigarette smoke exposure. In particular, passive smoking is linked to a number of adverse health effects which are equally harmful as active smoking. A pragmatic approach should be considered for designing a pharmacological intervention to combat the adverse effects of passive smoking. This review describes the results from a controlled experimental condition, testing the effect of bacoside A (BA) on the causal role of passive/secondhand smoke exposure that caused pathological and neurological changes in rat brain. Chronic exposure to cigarette smoke induced significant changes in rat brain histologically and at the neurotransmitter level, lipid peroxidation states, mitochondrial functions, membrane alterations, and apoptotic damage in rat brain. Bacoside A is a neuroactive agent isolated from Bacopa monnieri. As a neuroactive agent, BA was effective in combating these changes. Future research should examine the effects of BA at molecular level and assess its functional effects on neurobiological and behavioral processes associated with passive smoke. PMID:26413118
Bacoside A: Role in Cigarette Smoking Induced Changes in Brain.
Vani, G; Anbarasi, K; Shyamaladevi, C S
2015-01-01
Cigarette smoking (CS) is a major health hazard that exerts diverse physiologic and biochemical effects mediated by the components present and generated during smoking. Recent experimental studies have shown predisposition to several biological consequences from both active and passive cigarette smoke exposure. In particular, passive smoking is linked to a number of adverse health effects which are equally harmful as active smoking. A pragmatic approach should be considered for designing a pharmacological intervention to combat the adverse effects of passive smoking. This review describes the results from a controlled experimental condition, testing the effect of bacoside A (BA) on the causal role of passive/secondhand smoke exposure that caused pathological and neurological changes in rat brain. Chronic exposure to cigarette smoke induced significant changes in rat brain histologically and at the neurotransmitter level, lipid peroxidation states, mitochondrial functions, membrane alterations, and apoptotic damage in rat brain. Bacoside A is a neuroactive agent isolated from Bacopa monnieri. As a neuroactive agent, BA was effective in combating these changes. Future research should examine the effects of BA at molecular level and assess its functional effects on neurobiological and behavioral processes associated with passive smoke.
Icotinib as initial treatment in lung adenocarcinoma patients with brain metastases.
Xu, Jian-Ping; Liu, Xiao-Yan; Yang, Sheng; Zhang, Chang-Gong; Wang, Lin; Shi, Yuan-Kai
2016-07-01
To evaluate the antitumor activity and toxicity of icotinib as initial treatment in lung adenocarcinoma patients with brain metastases. Twenty-one patients with histologically or pathologically documented brain metastatic lung cancer were administered icotinib as initial treatment from 2011 to 2015 at the Cancer Institute and Hospital, Chinese Academy of Medical Sciences. Chemotherapy response was assessed by Response Evaluation Criteria in Solid Tumors and toxicity was evaluated according to National Cancer Institute-Common Toxicity Criteria. Icotinib was administered three times per day at a dose of 125mg. The median overall and progression-free survival rates were 15.2 (1.2-31.5 months, 95% confidence interval [CI] 6.6-23.7 months) and 8.9 months (0.6-30.5 months, 95% CI 3.4-14.3 months), respectively. The overall response and disease control rates were 61.9% and 90.5%, respectively. Icotinib was well tolerated, and no grade 3/4 adverse events were observed. The most common grade 1/2 adverse events included acneiform eruptions (38.1%), diarrhea (19.0%), and stomatitis (9.5%). Icotinib is effective and well tolerated as initial treatment in lung adenocarcinoma patients with brain metastases.
Daches, Shimrit; Kovacs, Maria; George, Charles J; Yaroslavsky, Ilya; Kiss, Eniko; Vetró, Ágnes; Dochnal, Roberta; Benák, István; Baji, Ildikó; Halas, Kitti; Makai, Attila; Kapornai, Krisztina; Rottenberg, Jonathan
2017-11-01
Adversity during early development has been shown to have enduring negative physiological consequences. In turn, atypical physiological functioning has been associated with maladaptive processing of negative affect, including its regulation. The present study therefore explored whether exposure to adverse life events in childhood predicted maladaptive (less flexible) parasympathetic nervous system functioning during the processing of negative affect among adolescents with depression histories. An initially clinic-referred, pediatric sample (N=189) was assessed at two time points. At Time 1, when subjects were 10.17years old (SD=1.42), on average, and were depressed, parents reported on adverse life events the offspring experienced up to that point. At Time 2, when subjects were 17.18years old (SD=1.28), and were remitted from depression, parents again reported on adverse life events in their offspring's lives for the interim period. At time 2, subjects' parasympathetic nervous system functioning (quantified as respiratory sinus arrhythmia) also was assessed at rest, during sad mood induction, and during instructed mood repair. Extent of adverse life events experienced by T1 (but not events occurring between T1 and T2) predicted less flexible RSA functioning 7years later during the processing of negative affect. Adolescents with more extensive early life adversities exhibited less vagal withdrawal following negative mood induction and tended to show less physiological recovery following mood repair. Early adversities appear to be associated with less flexible physiological regulatory control during negative affect experience, when measured later in development. Stress-related autonomic dysfunction in vulnerable youths may contribute to the unfavorable clinical prognosis associated with juvenile-onset depression. Copyright © 2017 Elsevier B.V. All rights reserved.
Slotkin, Theodore A; Ko, Ashley; Seidler, Frederic J
2018-06-20
Glucocorticoids are given in preterm labor to prevent respiratory distress but these agents evoke neurobehavioral deficits in association with reduced brain region volumes. To determine whether the neurodevelopmental effects are distinct from growth impairment, we gave developing rats dexamethasone at doses below or within the therapeutic range (0.05, 0.2 or 0.8 mg/kg) at different stages: gestational days (GD) 17-19, postnatal days (PN) 1-3 or PN7-9. In adolescence and adulthood, we assessed the impact on noradrenergic systems in multiple brain regions, comparing the effects to those on somatic growth or on brain region growth. Somatic growth was reduced with exposure in all three stages, with greater sensitivity for the postnatal regimens; brain region growth was impaired to a lesser extent. Norepinephrine content and concentration were reduced depending on the treatment regimen, with a rank order of deficits of PN7-9 > PN1-3 > GD17-19. However, brain growth impairment did not parallel reduced norepinephrine content in magnitude, dose threshold, sex or regional selectivity, or temporal pattern, and even when corrected for reduced brain region weights (norepinephrine per g tissue), the dexamethasone-exposed animals showed subnormal values. Regression analysis showed that somatic growth impairment accounted for an insubstantial amount of the reduction in norepinephrine content, and brain growth impairment accounted for only 12%, whereas specific effects on norepinephrine accounted for most of the effect. The adverse effects of dexamethasone on noradrenergic system development are not simply related to impaired somatic or brain region growth, but rather include specific targeting of neurodifferentiation. Copyright © 2018. Published by Elsevier B.V.
Stadlbauer, Andreas; Merkel, Andreas; Zimmermann, Max; Sommer, Björn; Buchfelder, Michael; Meyer-Bäse, Anke; Rössler, Karl
2017-04-01
Tissue oxygen tension is an important parameter for brain tissue viability and its noninvasive intraoperative monitoring in the whole brain is of highly clinical relevance. The purpose of this study was the introduction of a multiparametric quantitative blood oxygenation dependent magnetic resonance imaging (MRI) approach for intraoperative examination of oxygen metabolism during the resection of brain lesions. Sixteen patients suffering from brain lesions were examined intraoperatively twice (before craniotomy and after gross-total resection) via the quantitative blood oxygenation dependent technique and a 1.5-Tesla MRI scanner, which is installed in an operating room. The MRI protocol included T2*- and T2 mapping and dynamic susceptibility weighted perfusion. Data analysis was performed with a custom-made, in-house MatLab software for calculation of maps of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO 2 ) as well as of cerebral blood volume and cerebral blood flow. Perilesional edema showed a significant increase in both perfusion (cerebral blood volume +21%, cerebral blood flow +13%) and oxygen metabolism (OEF +32%, CMRO 2 +16%) after resection of the lesions. In perilesional nonedematous tissue only, however, oxygen metabolism (OEF +19%, CMRO 2 +11%) was significantly increased, but not perfusion. No changes were found in normal brain. Fortunately, no neurovascular adverse events were observed. This approach for intraoperative examination of oxygen metabolism in the whole brain is a new application of intraoperative MRI additionally to resection control (residual tumor detection) and updating of neuronavigation (brain shift detection). It may help to detect neurovascular adverse events early during surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Kundakovic, Marija; Lim, Sean; Gudsnuk, Kathryn; Champagne, Frances A.
2013-01-01
Early life adversity can have a significant long-term impact with implications for the emergence of psychopathology. Disruption to mother-infant interactions is a form of early life adversity that may, in particular, have profound programing effects on the developing brain. However, despite converging evidence from human and animal studies, the precise mechanistic pathways underlying adversity-associated neurobehavioral changes have yet to be elucidated. One approach to the study of mechanism is exploration of epigenetic changes associated with early life experience. In the current study, we examined the effects of postnatal maternal separation (MS) in mice and assessed the behavioral, brain gene expression, and epigenetic effects of this manipulation in offspring. Importantly, we included two different mouse strains (C57BL/6J and Balb/cJ) and both male and female offspring to determine strain- and/or sex-associated differential response to MS. We found both strain-specific and sex-dependent effects of MS in early adolescent offspring on measures of open-field exploration, sucrose preference, and social behavior. Analyses of cortical and hippocampal mRNA levels of the glucocorticoid receptor (Nr3c1) and brain-derived neurotrophic factor (Bdnf) genes revealed decreased hippocampal Bdnf expression in maternally separated C57BL/6J females and increased cortical Bdnf expression in maternally separated male and female Balb/cJ offspring. Analyses of Nr3c1and Bdnf (IV and IX) CpG methylation indicated increased hippocampal Nr3c1 methylation in maternally separated C57BL/6J males and increased hippocampal Bdnf IX methylation in male and female maternally separated Balb/c mice. Overall, though effect sizes were modest, these findings suggest a complex interaction between early life adversity, genetic background, and sex in the determination of neurobehavioral and epigenetic outcomes that may account for differential vulnerability to later-life disorder. PMID:23914177
In vitro effects of acetylcholinesterase reactivators on monoamine oxidase activity.
Fišar, Zdeněk; Hroudová, Jana; Korábečný, Jan; Musílek, Kamil; Kuča, Kamil
2011-03-05
Administration of acetylcholinesterase (AChE) reactivators (oximes) is usually used in order to counteract the poisoning effects of nerve agents. The possibility was suggested that oximes may show some therapeutic and/or adverse effects through their action in central nervous system. There are no sufficient data about interaction of oximes with monoaminergic neurotransmitter's systems in the brain. Oxime-type AChE reactivators pralidoxime, obidoxime, trimedoxime, methoxime and HI-6 were tested for their potential to affect the activity of monoamine oxidase of type A (MAO-A) and type B (MAO-B) in crude mitochondrial fraction of pig brains. The compounds were found to inhibit fully MAO-A with half maximal inhibitory concentration (IC(50)) of 0.375 mmol/l (pralidoxime), 1.53 mmol/l (HI-6), 2.31 mmol/l (methoxime), 2.42 mmol/l (obidoxime) and 4.98 mmol/l (trimedoxime). Activity of MAO-B was fully inhibited by HI-6 and pralidoxime only with IC(50) 4.81 mmol/l and 11.01 mmol/l, respectively. Methoxime, obidoxime and trimedoxime displayed non-monotonic concentration dependent effect on MAO-B activity. Because oximes concentrations effective for MAO inhibition could not be achieved in vivo at the cerebral level, we suppose that oximes investigated do not interfere with brain MAO at therapeutically relevant concentrations. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory.
Foscarin, Simona; Raha-Chowdhury, Ruma; Fawcett, James W; Kwok, Jessica C F
2017-06-28
Chondroitin sulfate (CS) proteoglycans in perineuronal nets (PNNs) from the central nervous system (CNS) are involved in the control of plasticity and memory. Removing PNNs reactivates plasticity and restores memory in models of Alzheimer's disease and ageing. Their actions depend on the glycosaminoglycan (GAG) chains of CS proteoglycans, which are mainly sulfated in the 4 (C4S) or 6 (C6S) positions. While C4S is inhibitory, C6S is more permissive to axon growth, regeneration and plasticity. C6S decreases during critical period closure. We asked whether there is a late change in CS-GAG sulfation associated with memory loss in aged rats. Immunohistochemistry revealed a progressive increase in C4S and decrease in C6S from 3 to 18 months. GAGs extracted from brain PNNs showed a large reduction in C6S at 12 and 18 months, increasing the C4S/C6S ratio. There was no significant change in mRNA levels of the chondroitin sulfotransferases. PNN GAGs were more inhibitory to axon growth than those from the diffuse extracellular matrix. The 18-month PNN GAGs were more inhibitory than 3-month PNN GAGs. We suggest that the change in PNN GAG sulfation in aged brains renders the PNNs more inhibitory, which lead to a decrease in plasticity and adversely affect memory.
Maternal dietary tryptophan deficiency alters cardiorespiratory control in rat pups.
Penatti, Eliana M; Barina, Alexis E; Raju, Sharat; Li, Aihua; Kinney, Hannah C; Commons, Kathryn G; Nattie, Eugene E
2011-02-01
Malnutrition during pregnancy adversely affects postnatal forebrain development; its effect upon brain stem development is less certain. To evaluate the role of tryptophan [critical for serotonin (5-HT) synthesis] on brain stem 5-HT and the development of cardiorespiratory function, we fed dams a diet ∼45% deficient in tryptophan during gestation and early postnatal life and studied cardiorespiratory variables in the developing pups. Deficient pups were of normal weight at postnatal day (P)5 but weighed less than control pups at P15 and P25 (P < 0.001) and had lower body temperatures at P15 (P < 0.001) and P25 (P < 0.05; females only). Oxygen consumption (Vo(2)) was unaffected. At P15, deficient pups had an altered breathing pattern and slower heart rates. At P25, they had significantly lower ventilation (Ve) and Ve-to-Vo(2) ratios in both air and 7% CO(2). The ventilatory response to CO(2) (% increase in Ve/Vo(2)) was significantly increased at P5 (males) and reduced at P15 and P25 (males and females). Deficient pups had 41-56% less medullary 5-HT (P < 0.01) compared with control pups, without a difference in 5-HT neuronal number. These data indicate important interactions between nutrition, brain stem physiology, and age that are potentially relevant to understanding 5-HT deficiency in the sudden infant death syndrome.
Franke, Helmut; Streckert, Joachim; Bitz, Andreas; Goeke, Johannes; Hansen, Volkert; Ringelstein, E Bernd; Nattkämper, Heiner; Galla, Hans-Joachim; Stögbauer, Florian
2005-09-01
The extensive use of mobile phone communication has raised public concerns about adverse health effects of radiofrequency (RF) electromagnetic fields (EMFs) in recent years. A central issue in this discussion is the question whether EMFs enhance the permeability of the blood-brain barrier (BBB). Here we report an investigation on the influence of a generic UMTS (Universal Mobile Telecommunications System) signal on barrier tightness, transport processes and the morphology of porcine brain microvascular endothelial cell cultures (PBEC) serving as an in vitro model of the BBB. An exposure device with integrated online monitoring system was developed for simultaneous exposure and measuring of transendothelial electrical resistance (TEER) to determine the tightness of the BBB. PBEC were exposed continuously for up to 84 h at an average electric-field strength of 3.4-34 V/m (maximum 1.8 W/kg) ensuring athermal conditions. We did not find any evidence of RF-field-induced disturbance of the function of the BBB. After and during exposure, the tightness of the BBB quantified by 14C-sucrose and serum albumin permeation as well as by TEER remained unchanged compared to sham-exposed cultures. Permeation of transporter substrates at the BBB as well as the localization and integrity of the tight-junction proteins occludin and ZO1 were not affected either.
Voss, Michelle W; Weng, Timothy B; Burzynska, Agnieszka Z; Wong, Chelsea N; Cooke, Gillian E; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P; Olson, Erin A; McAuley, Edward; Kramer, Arthur F
2016-05-01
Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the default mode network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks. Copyright © 2015 Elsevier Inc. All rights reserved.
Voss, Michelle W.; Weng, Timothy B.; Burzynska, Agnieszka Z.; Wong, Chelsea N.; Cooke, Gillian E.; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P.; Olson, Erin A.; McAuley, Edward; Kramer, Arthur F.
2015-01-01
Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the Default Mode Network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks. PMID:26493108
Chopra, Amit; Abulseoud, Osama A; Sampson, Shirlene; Lee, Kendall H; Klassen, Bryan T; Fields, Julie A; Matsumoto, Joseph Y; Adams, Andrea C; Stoppel, Cynthia J; Geske, Jennifer R; Frye, Mark A
2014-01-01
Deep brain stimulation for Parkinson disease has been associated with psychiatric adverse effects including anxiety, depression, mania, psychosis, and suicide. The purpose of this study was to evaluate the safety of deep brain stimulation in a large Parkinson disease clinical practice. Patients approved for surgery by the Mayo Clinic deep brain stimulation clinical committee participated in a 6-month prospective naturalistic follow-up study. In addition to the Unified Parkinson's Disease Rating Scale, stability and psychiatric safety were measured using the Beck Depression Inventory, Hamilton Depression Rating Scale, and Young Mania Rating scale. Outcomes were compared in patients with Parkinson disease who had a psychiatric history to those with no co-morbid psychiatric history. The study was completed by 49 of 54 patients. Statistically significant 6-month baseline to end-point improvement was found in motor and mood scales. No significant differences were found in psychiatric outcomes based on the presence or absence of psychiatric comorbidity. Our study suggests that patients with Parkinson disease who have a history of psychiatric co-morbidity can safely respond to deep brain stimulation with no greater risk of psychiatric adverse effect occurrence. A multidisciplinary team approach, including careful psychiatric screening ensuring mood stabilization and psychiatric follow-up, should be viewed as standard of care to optimize the psychiatric outcome in the course of deep brain stimulation treatment. © 2013 Published by The Academy of Psychosomatic Medicine on behalf of The Academy of Psychosomatic Medicine.
Sawamura, Hiromi; Fukuwatari, Tsutomu; Shibata, Katsumi
2007-12-01
To determine the effects of excess biotin administration on growth and water-soluble vitamin metabolism, weaning rats were fed on a 20% casein diet containing 0.00002% biotin, or same diet with 0.04, 0.08, 0.10, 0.20, 0.50, 0.80 or 1.0% added biotin for 28 days. More than 0.08% biotin administration decreased the food intake and body weight gain compared with the levels in control rats. An accumulation of biotin in such tissues as the liver, brain and kidney increased in a dose-dependent manner, and the both bound and free biotin contents in the liver also increased in a dose-dependent manner. An excess administration of biotin did not affect the urinary excretion of other water-soluble vitamins, suggesting no effect on the metabolism of other water-soluble vitamins. The results of the food intake and body weight gain indicated that the lowest observed adverse effect level for young rats was 79.2 mg/kg body weight/day, while the no observed adverse effect level was 38.4 mg/kg/day. These results suggested immediately setting a tolerable upper intake level for biotin.
Cruz, Gonzalo; Foster, Warren; Paredes, Alfonso; Yi, Kun Don; Uzumcu, Mehmet
2014-01-01
Estrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is thought that developmental exposure to environmental estrogens can disrupt neural and reproductive tract development potentially resulting in long-term alterations in neurobehavior and reproductive function. Many chemicals have been shown to have estrogenic activity whereas others affect estrogen production and turnover resulting in disruption of estrogen signaling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on estrogen sensitive target tissues. Hence, alternative mechanisms are thought to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including estrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying disruption of ovarian follicular development. In addition, we discuss how exposure to environmental estrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology. PMID:25040227
Cruz, G; Foster, W; Paredes, A; Yi, K D; Uzumcu, M
2014-09-01
Oestrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is considered that developmental exposure to environmental oestrogens can disrupt neural and reproductive tract development, potentially resulting in long-term alterations in neurobehaviour and reproductive function. Many chemicals have been shown to have oestrogenic activity, whereas others affect oestrogen production and turnover, resulting in the disruption of oestrogen signalling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on oestrogen-sensitive target tissues. Hence, alternative mechanisms are assumed to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including oestrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying the disruption of ovarian follicular development. In addition, we discuss how exposure to environmental oestrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology. © 2014 British Society for Neuroendocrinology.
The adverse effects of air pollution on the nervous system.
Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H; Genc, Kursad
2012-01-01
Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.
The Adverse Effects of Air Pollution on the Nervous System
Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad
2012-01-01
Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490
Ansell, Emily B; Rando, Kenneth; Tuit, Keri; Guarnaccia, Joseph; Sinha, Rajita
2012-07-01
Cumulative adversity and stress are associated with risk of psychiatric disorders. While basic science studies show repeated and chronic stress effects on prefrontal and limbic neurons, human studies examining cumulative stress and effects on brain morphology are rare. Thus, we assessed whether cumulative adversity is associated with differences in gray matter volume, particularly in regions regulating emotion, self-control, and top-down processing in a community sample. One hundred three healthy community participants, aged 18 to 48 and 68% male, completed interview assessment of cumulative adversity and a structural magnetic resonance imaging protocol. Whole-brain voxel-based-morphometry analysis was performed adjusting for age, gender, and total intracranial volume. Cumulative adversity was associated with smaller volume in medial prefrontal cortex (PFC), insular cortex, and subgenual anterior cingulate regions (familywise error corrected, p < .001). Recent stressful life events were associated with smaller volume in two clusters: the medial PFC and the right insula. Life trauma was associated with smaller volume in the medial PFC, anterior cingulate, and subgenual regions. The interaction of greater subjective chronic stress and greater cumulative life events was associated with smaller volume in the orbitofrontal cortex, insula, and anterior and subgenual cingulate regions. Current results demonstrate that increasing cumulative exposure to adverse life events is associated with smaller gray matter volume in key prefrontal and limbic regions involved in stress, emotion and reward regulation, and impulse control. These differences found in community participants may serve to mediate vulnerability to depression, addiction, and other stress-related psychopathology. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Ansell, Emily B.; Rando, Kenneth; Tuit, Keri; Guarnaccia, Joseph; Sinha, Rajita
2012-01-01
Background Cumulative adversity and stress are associated with risk of psychiatric disorders. While basic science studies show repeated and chronic stress effects on prefrontal and limbic neurons, human studies examining cumulative stress and effects on brain morphology are rare. Thus, we assessed whether cumulative adversity is associated with differences in gray matter volume, particularly in regions regulating emotion, self-control, and top-down processing in a community sample. Methods One hundred three healthy community participants, aged 18 to 48 and 68% male, completed interview assessment of cumulative adversity and a structural magnetic resonance imaging protocol. Whole-brain voxel-based-morphometry analysis was performed adjusting for age, gender, and total intracranial volume. Results Cumulative adversity was associated with smaller volume in medial prefrontal cortex (PFC), insular cortex, and subgenual anterior cingulate regions (familywise error corrected, p <.001). Recent stressful life events were associated with smaller volume in two clusters: the medial PFC and the right insula. Life trauma was associated with smaller volume in the medial PFC, anterior cingulate, and subgenual regions. The interaction of greater subjective chronic stress and greater cumulative life events was associated with smaller volume in the orbitofrontal cortex, insula, and anterior and subgenual cingulate regions. Conclusions Current results demonstrate that increasing cumulative exposure to adverse life events is associated with smaller gray matter volume in key prefrontal and limbic regions involved in stress, emotion and reward regulation, and impulse control. These differences found in community participants may serve to mediate vulnerability to depression, addiction, and other stress-related psychopathology. PMID:22218286
Changing social factors and their long-term implications for health.
Wadsworthx, M E
1997-01-01
This paper presents findings and arguments to show the power of social factors to affect health at the individual and at the national level. Social factors most strongly and negatively associated with health, at both levels, are those that indicate disorganisation and disruption, perceived helplessness and lack of support, low educational attainment, and poverty. Adverse changes in these social factors and their negative effects on health have been observed in many studies. When such adverse changes affect the lives and health of children, and those who will become parents, they affect the present and long-term future health of individuals because of the processes of biological programming described in this and other papers presented here. Such adverse changes in social factors also adversely affect the social circumstances of childhood, which in turn have a negative impact on health. Because changing social factors affect biological programming and social capitalisation, awareness of the health damaging effects of recent social change provides information on the future health of the population.
Muccigrosso, Megan M; Ford, Joni; Benner, Brooke; Moussa, Daniel; Burnsides, Christopher; Fenn, Ashley M; Popovich, Phillip G; Lifshitz, Jonathan; Walker, Fredrick Rohan; Eiferman, Daniel S; Godbout, Jonathan P
2016-05-01
Traumatic brain injury (TBI) elicits immediate neuroinflammatory events that contribute to acute cognitive, motor, and affective disturbance. Despite resolution of these acute complications, significant neuropsychiatric and cognitive issues can develop and progress after TBI. We and others have provided novel evidence that these complications are potentiated by repeated injuries, immune challenges and stressors. A key component to this may be increased sensitization or priming of glia after TBI. Therefore, our objectives were to determine the degree to which cognitive deterioration occurred after diffuse TBI (moderate midline fluid percussion injury) and ascertain if glial reactivity induced by an acute immune challenge potentiated cognitive decline 30 days post injury (dpi). In post-recovery assessments, hippocampal-dependent learning and memory recall were normal 7 dpi, but anterograde learning was impaired by 30 dpi. Examination of mRNA and morphological profiles of glia 30 dpi indicated a low but persistent level of inflammation with elevated expression of GFAP and IL-1β in astrocytes and MHCII and IL-1β in microglia. Moreover, an acute immune challenge 30 dpi robustly interrupted memory consolidation specifically in TBI mice. These deficits were associated with exaggerated microglia-mediated inflammation with amplified (IL-1β, CCL2, TNFα) and prolonged (TNFα) cytokine/chemokine expression, and a marked reactive morphological profile of microglia in the CA3 of the hippocampus. Collectively, these data indicate that microglia remain sensitized 30 dpi after moderate TBI and a secondary inflammatory challenge elicits robust microglial reactivity that augments cognitive decline. Traumatic brain injury (TBI) is a major risk factor in development of neuropsychiatric problems long after injury, negatively affecting quality of life. Mounting evidence indicates that inflammatory processes worsen with time after a brain injury and are likely mediated by glia. Here, we show that primed microglia and astrocytes developed in mice 1 month following moderate diffuse TBI, coinciding with cognitive deficits that were not initially evident after injury. Additionally, TBI-induced glial priming may adversely affect the ability of glia to appropriately respond to immune challenges, which occur regularly across the lifespan. Indeed, we show that an acute immune challenge augmented microglial reactivity and cognitive deficits. This idea may provide new avenues of clinical assessments and treatments following TBI. Copyright © 2016 Elsevier Inc. All rights reserved.
Kocevska, Desana; Muetzel, Ryan L; Luik, Annemarie I; Luijk, Maartje P C M; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Tiemeier, Henning
2017-01-01
Little is known about the impact of sleep disturbances on the structural properties of the developing brain. This study explored associations between childhood sleep disturbances and brain morphology at 7 years. Mothers from the Generation R cohort reported sleep disturbances in 720 children at ages 2 months, 1.5, 2, 3, and 6 years. T1-weighted Magnetic Resonance Imaging (MRI) images were used to assess brain structure at 7 years. Associations of sleep disturbances at each age and of sleep disturbance trajectories with brain volumes (total brain volume, cortical and subcortical grey matter, white matter) were tested with linear regressions. To assess regional differences, sleep disturbance trajectories were tested as determinants for cortical thickness in whole-brain analyses. Sleep disturbances followed a declining trend from toddlerhood onwards. Infant sleep was not associated with brain morphology at age 7. Per SD sleep disturbances (one frequent symptom or two less frequent symptoms) at 2 and 3 years of age, children had -6.3 (-11.7 to -0.8) cm3 and -6.4 (-11.7 to -1.7) cm3 smaller grey matter volumes, respectively. Sleep disturbances at age 6 years were associated with global brain morphology (grey matter: -7.3 (-12.1 to -2.6), p value = .01). Consistently, trajectory analyses showed that more adverse developmental course of childhood sleep disturbances are associated with smaller grey matter volumes and thinner dorsolateral prefrontal cortex. Sleep disturbances from age 2 years onwards are associated with smaller grey matter volumes. Thinner prefrontal cortex in children with adverse sleep disturbance trajectories may reflect effects of sleep disturbances on brain maturation. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Robinson, Bonnie; Dumas, Melanie; Gu, Qiang; Kanungo, Jyotshna
2018-06-08
N-acetylcysteine, a precursor molecule of glutathione, is an antioxidant. Ketamine, a pediatric anesthetic, has been implicated in cardiotoxicity and neurotoxicity including modulation of monoaminergic systems in mammals and zebrafish. Here, we show that N-acetylcysteine prevents ketamine's adverse effects on development and monoaminergic neurons in zebrafish embryos. The effects of ketamine and N-acetylcysteine alone or in combination were measured on the heart rate, body length, brain serotonergic neurons and tyrosine hydroxylase-immunoreactive (TH-IR) neurons. In the absence of N-acetylcysteine, a concentration of ketamine that produces an internal embryo exposure level comparable to human anesthetic plasma concentrations significantly reduced heart rate and body length and those effects were prevented by N-acetylcysteine co-treatment. Ketamine also reduced the areas occupied by serotonergic neurons in the brain, whereas N-acetylcysteine co-exposure counteracted this effect. TH-IR neurons in the embryo brain and TH-IR cells in the trunk were significantly reduced with ketamine treatment, but not in the presence of N-acetylcysteine. In our continued search for compounds that can prevent ketamine toxicity, this study using specific endpoints of developmental toxicity, cardiotoxicity and neurotoxicity, demonstrates protective effects of N-acetylcysteine against ketamine's adverse effects. This is the first study that shows the protective effects of N-acetylcysteine on ketamine-induced developmental defects of monoaminergic neurons as observed in a whole organism. Published by Elsevier B.V.
Bossong, Matthijs G; Niesink, Raymond J M
2010-11-01
Cannabis use during adolescence increases the risk of developing psychotic disorders later in life. However, the neurobiological processes underlying this relationship are unknown. This review reports the results of a literature search comprising various neurobiological disciplines, ultimately converging into a model that might explain the neurobiology of cannabis-induced schizophrenia. The article briefly reviews current insights into brain development during adolescence. In particular, the role of the excitatory neurotransmitter glutamate in experience-dependent maturation of specific cortical circuitries is examined. The review also covers recent hypotheses regarding disturbances in strengthening and pruning of synaptic connections in the prefrontal cortex, and the link with latent psychotic disorders. In the present model, cannabis-induced schizophrenia is considered to be a distortion of normal late postnatal brain maturation. Distortion of glutamatergic transmission during critical periods may disturb prefrontal neurocircuitry in specific brain areas. Our model postulates that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the primary psychoactive substance in cannabis, transiently disturbs physiological control of the endogenous cannabinoid system over glutamate and GABA release. As a result, THC may adversely affect adolescent experience-dependent maturation of neural circuitries within prefrontal cortical areas. Depending on dose, exact time window and duration of exposure, this may ultimately lead to the development of psychosis or schizophrenia. The proposed model provides testable hypotheses which can be addressed in future studies, including animal experiments, reanalysis of existing epidemiological data, and prospective epidemiological studies in which the role of the dose-time-effect relationship should be central. Copyright © 2010 Elsevier Ltd. All rights reserved.
Aberrant fetal macrophage/microglial reactions to cytomegalovirus infection
Sakao-Suzuki, Makiko; Kawasaki, Hideya; Akamatsu, Taisuke; Meguro, Shiori; Miyajima, Hiroaki; Iwashita, Toshihide; Tsutsui, Yoshihiro; Inoue, Naoki; Kosugi, Isao
2014-01-01
Objective Congenital cytomegalovirus (CMV) infection is the leading viral cause of neurodevelopmental disorders in humans, with the most severe and permanent sequelae being those affecting the cerebrum. As the fetal immune reactions to congenital CMV infection in the brain and their effects on cerebral development remain elusive, our aim was to investigate primitive innate immunity to CMV infection and its effects on cerebral corticogenesis in a mouse model for congenital CMV infection using a precise intraplacental inoculation method. Methods At 13.5 embryonic days (E13.5), pregnant C57BL/6 mice were intraplacentally infected with murine CMV (MCMV). Placentas and fetal organs were collected at 1, 3, and 5 days postinfection and analyzed. Results MCMV antigens were found frequently in perivascular macrophages, and subsequently in neural stem/progenitor cells (NSPCs). With increased expression of inducible nitric oxide synthase and proinflammatory cytokines, activated macrophages infiltrated into the infectious foci. In addition to the infected area, the numbers of both meningeal macrophages and parenchymal microglia increased even in the uninfected areas of MCMV-infected brain due to recruitment of their precursors from other sites. A bromodeoxyuridine (BrdU) incorporation experiment demonstrated that MCMV infection globally disrupted the self-renewal of NSPCs. Furthermore, BrdU-labeled neurons, particularly Brn2+ neurons of upper layers II/III in the cortical plate, decreased in number significantly in the MCMV-infected E18.5 cerebrum. Interpretation Brain macrophages are crucial for innate immunity during MCMV infection in the fetal brain, while their aberrant recruitment and activation may adversely impact on the stemness of NSPCs, resulting in neurodevelopmental disorders. PMID:25356429
... It works by changing the activity of certain natural substances in the brain. ... treatment: feeling faint fainting or loss of consciousness fast or ... the Food and Drug Administration's (FDA) MedWatch Adverse Event Reporting ...
Potential developmental neurotoxicity of pesticides used in Europe
Bjørling-Poulsen, Marina; Andersen, Helle Raun; Grandjean, Philippe
2008-01-01
Pesticides used in agriculture are designed to protect crops against unwanted species, such as weeds, insects, and fungus. Many compounds target the nervous system of insect pests. Because of the similarity in brain biochemistry, such pesticides may also be neurotoxic to humans. Concerns have been raised that the developing brain may be particularly vulnerable to adverse effects of neurotoxic pesticides. Current requirements for safety testing do not include developmental neurotoxicity. We therefore undertook a systematic evaluation of published evidence on neurotoxicity of pesticides in current use, with specific emphasis on risks during early development. Epidemiologic studies show associations with neurodevelopmental deficits, but mainly deal with mixed exposures to pesticides. Laboratory experimental studies using model compounds suggest that many pesticides currently used in Europe – including organophosphates, carbamates, pyrethroids, ethylenebisdithiocarbamates, and chlorophenoxy herbicides – can cause neurodevelopmental toxicity. Adverse effects on brain development can be severe and irreversible. Prevention should therefore be a public health priority. The occurrence of residues in food and other types of human exposures should be prevented with regard to the pesticide groups that are known to be neurotoxic. For other substances, given their widespread use and the unique vulnerability of the developing brain, the general lack of data on developmental neurotoxicity calls for investment in targeted research. While awaiting more definite evidence, existing uncertainties should be considered in light of the need for precautionary action to protect brain development. PMID:18945337
Neuroimaging findings in children with retinopathy-confirmed cerebral malaria.
Potchen, Michael J; Birbeck, Gretchen L; Demarco, J Kevin; Kampondeni, Sam D; Beare, Nicholas; Molyneux, Malcolm E; Taylor, Terrie E
2010-04-01
To describe brain CT findings in retinopathy-confirmed, paediatric cerebral malaria. In this outcomes study of paediatric cerebral malaria, a subset of children with protracted coma during initial presentation was scanned acutely. Survivors experiencing adverse neurological outcomes also underwent a head CT. All children had ophthalmological examination to confirm the presence of the retinopathy specific for cerebral malaria. Independent interpretation of CT images was provided by two neuroradiologists. Acute brain CT findings in three children included diffuse oedema with obstructive hydrocephalus (2), acute cerebral infarctions in multiple large vessel distributions with secondary oedema and herniation (1), and oedema of thalamic grey matter (1). One child who was reportedly normal prior to admission had parenchymal atrophy suggestive of pre-existing CNS injury. Among 56 survivors (9-84 months old), 15 had adverse neurologic outcomes-11/15 had a follow-up head CT, 3/15 died and 1/15 refused CT. Follow-up head CTs obtained 7-18 months after the acute infection revealed focal and multifocal lobar atrophy correlating to regions affected by focal seizures during the acute infection (5/11). Other findings were communicating hydrocephalus (2/11), vermian atrophy (1/11) and normal studies (3/11). The identification of pre-existing imaging abnormalities in acute cerebral malaria suggests that population-based studies are required to establish the rate and nature of incidental imaging abnormalities in Malawi. Children with focal seizures during acute cerebral malaria developed focal cortical atrophy in these regions at follow-up. Longitudinal studies are needed to further elucidate mechanisms of CNS injury and death in this common fatal disease. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid.
Nicolini, Chiara; Ahn, Younghee; Michalski, Bernadeta; Rho, Jong M; Fahnestock, Margaret
2015-01-20
The molecular mechanisms underlying autistic behaviors remain to be elucidated. Mutations in genes linked to autism adversely affect molecules regulating dendritic spine formation, function and plasticity, and some increase the mammalian target of rapamycin, mTOR, a regulator of protein synthesis at spines. Here, we investigated whether the Akt/mTOR pathway is disrupted in idiopathic autism and in rats exposed to valproic acid, an animal model exhibiting autistic-like behavior. Components of the mTOR pathway were assayed by Western blotting in postmortem fusiform gyrus samples from 11 subjects with idiopathic autism and 13 controls and in valproic acid versus saline-exposed rat neocortex. Additionally, protein levels of brain-derived neurotrophic factor receptor (TrkB) isoforms and the postsynaptic organizing molecule PSD-95 were measured in autistic versus control subjects. Full-length TrkB, PI3K, Akt, phosphorylated and total mTOR, p70S6 kinase, eIF4B and PSD-95 were reduced in autistic versus control fusiform gyrus. Similarly, phosphorylated and total Akt, mTOR and 4E-BP1 and phosphorylated S6 protein were decreased in valproic acid- versus saline-exposed rats. However, no changes in 4E-BP1 or eIF4E were found in autistic brains. In contrast to some monogenic disorders with high rates of autism, our data demonstrate down-regulation of the Akt/mTOR pathway, specifically via p70S6K/eIF4B, in idiopathic autism. These findings suggest that disruption of this pathway in either direction is widespread in autism and can have adverse consequences for synaptic function. The use of valproic acid, a histone deacetylase inhibitor, in rats successfully modeled these changes, implicating an epigenetic mechanism in these pathway disruptions.
Prince, Calais S; Maloyan, Alina; Myatt, Leslie
2017-01-01
Obesity is a major clinical problem in obstetrics being associated with adverse pregnancy outcomes and fetal programming. Brain derived neurotrophic factor (BDNF), a validated miR-210 target, is necessary for placental development, fetal growth, glucose metabolism, and energy homeostasis. Plasma BDNF levels are reduced in obese individuals; however, placental BDNF has yet to be studied in the context of maternal obesity. In this study, we investigated the effect of maternal obesity and sexual dimorphism on placental BDNF signaling. BDNF signaling was measured in placentas from lean (pre-pregnancy BMI < 25) and obese (pre-pregnancy BMI>30) women at term without medical complications that delivered via cesarean section without labor. MiRNA-210, BDNF mRNA, proBDNF, and mature BDNF were measured by RT - PCR, ELISA, and Western blot. Downstream signaling via TRKB (BDNF receptor) was measured using Western blot. Maternal obesity was associated with increased miRNA-210 and decreased BDNF mRNA in placentas from female fetuses, and decreased proBDNF in placentas from male fetuses. We also identified decreased mature BDNF in placentas from male fetuses when compared to female fetuses. Mir-210 expression was negatively correlated with mature BDNF protein. TRKB phosphorylated at tyrosine 817, not tyrosine 515, was increased in placentas from obese women. Maternal obesity was associated with increased phosphorylation of MAPK p38 in placentas from male fetuses, but not phosphorylation of ERK p42/44. BDNF regulation is complex and highly regulated. Pre-pregnancy/early maternal obesity adversely affects BDNF/TRKB signaling in the placenta in a sexually dimorphic manner. These data collectively suggest that induction of placental TRKB signaling could ameliorate the placental OB phenotype, thus improving perinatal outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monnet-Tschudi, Florianne; Hazekamp, Arno; Perret, Nicolas
Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type differencemore » was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 {mu}M in single treatment and of 1 {mu}M and 2 {mu}M in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 {mu}M of THC or JWH 015, whereas the expression of TNF-{alpha} remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.« less
Cannabis, the pregnant woman and her child: weeding out the myths.
Jaques, S C; Kingsbury, A; Henshcke, P; Chomchai, C; Clews, S; Falconer, J; Abdel-Latif, M E; Feller, J M; Oei, J L
2014-06-01
To review and summarise the literature reporting on cannabis use within western communities with specific reference to patterns of use, the pharmacology of its major psychoactive compounds, including placental and fetal transfer, and the impact of maternal cannabis use on pregnancy, the newborn infant and the developing child. Review of published articles, governmental guidelines and data and book chapters. Although cannabis is one of the most widely used illegal drugs, there is limited data about the prevalence of cannabis use in pregnant women, and it is likely that reported rates of exposure are significantly underestimated. With much of the available literature focusing on the impact of other illicit drugs such as opioids and stimulants, the effects of cannabis use in pregnancy on the developing fetus remain uncertain. Current evidence indicates that cannabis use both during pregnancy and lactation, may adversely affect neurodevelopment, especially during periods of critical brain growth both in the developing fetal brain and during adolescent maturation, with impacts on neuropsychiatric, behavioural and executive functioning. These reported effects may influence future adult productivity and lifetime outcomes. Despite the widespread use of cannabis by young women, there is limited information available about the impact perinatal cannabis use on the developing fetus and child, particularly the effects of cannabis use while breast feeding. Women who are using cannabis while pregnant and breast feeding should be advised of what is known about the potential adverse effects on fetal growth and development and encouraged to either stop using or decrease their use. Long-term follow-up of exposed children is crucial as neurocognitive and behavioural problems may benefit from early intervention aimed to reduce future problems such as delinquency, depression and substance use.
Barrett, C E; Arambula, S E; Young, L J
2015-01-01
Genes and social experiences interact to create variation in social behavior and vulnerability to develop disorders of the social domain. Socially monogamous prairie voles display remarkable diversity in neuropeptide receptor systems and social behavior. Here, we examine the interaction of early-life adversity and brain oxytocin receptor (OTR) density on adult social attachment in female prairie voles. First, pups were isolated for 3 h per day, or unmanipulated, from postnatal day 1–14. Adult subjects were tested on the partner preference (PP) test to assess social attachment and OTR density in the brain was quantified. Neonatal social isolation impaired female PP formation, without affecting OTR density. Accumbal OTR density was, however, positively correlated with the percent of time spent huddling with the partner in neonatally isolated females. Females with high accumbal OTR binding were resilient to neonatal isolation. These results are consistent with the hypothesis that parental nurturing shapes neural systems underlying social relationships by enhancing striatal OTR signaling. Thus, we next determined whether early touch, mimicking parental licking and grooming, stimulates hypothalamic OT neuron activity. Tactile stimulation induced immediate-early gene activity in OT neurons in neonates. Finally, we investigated whether pharmacologically potentiating OT release using a melanocortin 3/4 agonist, melanotan-II (10 mg kg−1 subcutaneously), would mitigate the social isolation-induced impairments in attachment behavior. Neonatal melanotan-II administration buffered against the effects of early isolation on partner preference formation. Thus, variation in accumbal OTR density and early OT release induced by parental nurturing may moderate susceptibility to early adverse experiences, including neglect. PMID:26196439
Markos, Steven; Failla, Michelle D.; Ritter, Anne C; Dixon, C. Edward; Conley, Yvette P.; Ricker, Joseph H; Arenth, Patricia M.; Juengst, Shannon B.; Wagner, Amy K.
2015-01-01
Introduction Traumatic brain injury (TBI) frequently results in impaired cognition, a function that can be modulated by monoaminergic signaling. Genetic variation among monoaminergic genes may affect post-TBI cognitive performance. The vesicular monoamine transporter 2 (VMAT2) gene may be a novel source of genetic variation important for cognitive outcomes post-TBI given VMAT2’s role in monoaminergic neurotransmission. Objective Evaluate associations between VMAT2 variability and cognitive outcomes post-TBI. Methods We evaluated 136 white adults with severe TBI for variation in VMAT2 using a tagging single nucleotide polymorphism (tSNP) approach (rs363223, rs363226, rs363251, and rs363341). We show genetic variation interacts with assessed cognitive impairment [cognitive composite T-scores (Comp-Cog)] to influence functional cognition [Functional Independence Measure Cognitive subscale (FIM-Cog)] 6 and 12 months post-injury. Results Multivariate analyses at 6-months post-injury showed rs363226 genotype was associated with Comp-Cog (p=0.040) and interacted with Comp-Cog to influence functional cognition (p<0.001). G-homozygotes had the largest cognitive impairment, and their cognitive impairment had the greatest adverse effect on functional cognition. Discussion We provide the first evidence that genetic variation within VMAT2 is associated with cognitive outcomes following TBI. Further work is needed to validate this finding and elucidate mechanisms by which genetic variation affects monoaminergic signaling, mediating differences in cognitive outcomes. PMID:26828714
ERIC Educational Resources Information Center
Betancourt, Laura M.; Avants, Brian; Farah, Martha J.; Brodsky, Nancy L.; Wu, Jue; Ashtari, Manzar; Hurt, Hallam
2016-01-01
There is increasing interest in both the cumulative and long-term impact of early life adversity on brain structure and function, especially as the brain is both highly vulnerable and highly adaptive during childhood. Relationships between SES and neural development have been shown in children older than age 2 years. Less is known regarding the…
30 CFR 716.2 - Steep-slope mining.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., will not vary in a way that adversely affects the ecology of any surface water or any existing or... flow during every season of the year shall not vary in a way that adversely affects the ecology of any...
30 CFR 716.2 - Steep-slope mining.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., will not vary in a way that adversely affects the ecology of any surface water or any existing or... flow during every season of the year shall not vary in a way that adversely affects the ecology of any...
30 CFR 716.2 - Steep-slope mining.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., will not vary in a way that adversely affects the ecology of any surface water or any existing or... flow during every season of the year shall not vary in a way that adversely affects the ecology of any...
30 CFR 716.2 - Steep-slope mining.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., will not vary in a way that adversely affects the ecology of any surface water or any existing or... flow during every season of the year shall not vary in a way that adversely affects the ecology of any...
Toxicity of inhaled traffic related particulate matter
NASA Astrophysics Data System (ADS)
Gerlofs-Nijland, Miriam E.; Campbell, Arezoo; Miller, Mark R.; Newby, David E.; Cassee, Flemming R.
2009-02-01
Traffic generated ultrafine particulates may play a major role in the development of adverse health effects. However, little is known about harmful effects caused by recurring exposure. We hypothesized that repeated exposure to particulate matter results in adverse pulmonary and systemic toxic effects. Exposure to diesel engine exhaust resulted in signs of oxidative stress in the lung, impaired coagulation, and changes in the immune system. Pro-inflammatory cytokine levels were decreased in some regions of the brain but increased in the striatum implying that exposure to diesel engine exhaust may selectively aggravate neurological impairment. Data from these three studies suggest that exposure to traffic related PM can mediate changes in the vasculature and brain of healthy rats. To what extent these changes may contribute to chronic neurodegenerative or vascular diseases is at present unclear.
Birch, Sharla M; Lenox, Mark W; Kornegay, Joe N; Paniagua, Beatriz; Styner, Martin A; Goodlett, Charles R; Cudd, Tim A; Washburn, Shannon E
2016-09-01
Fetal alcohol spectrum disorder (FASD) is a leading potentially preventable birth defect. Poor nutrition may contribute to adverse developmental outcomes of prenatal alcohol exposure, and supplementation of essential micronutrients such as choline has shown benefit in rodent models. The sheep model of first-trimester binge alcohol exposure was used in this study to model the dose of maternal choline supplementation used in an ongoing prospective clinical trial involving pregnancies at risk for FASD. Primary outcome measures including volumetrics of the whole brain, cerebellum, and pituitary derived from magnetic resonance imaging (MRI) in 6-month-old lambs, testing the hypothesis that alcohol-exposed lambs would have brain volume reductions that would be ameliorated by maternal choline supplementation. Pregnant sheep were randomly assigned to one of five groups - heavy binge alcohol (HBA; 2.5 g/kg/treatment ethanol), heavy binge alcohol plus choline supplementation (HBC; 2.5 g/kg/treatment ethanol and 10 mg/kg/day choline), saline control (SC), saline control plus choline supplementation (SCC; 10 mg/kg/day choline), and normal control (NC). Ewes were given intravenous alcohol (HBA, HBC; mean peak BACs of ∼280 mg/dL) or saline (SC, SCC) on three consecutive days per week from gestation day (GD) 4-41; choline was administered on GD 4-148. MRI scans of lamb brains were performed postnatally on day 182. Lambs from both alcohol groups (with or without choline) showed significant reductions in total brain volume; cerebellar and pituitary volumes were not significantly affected. This is the first report of MRI-derived volumetric brain reductions in a sheep model of FASD following binge-like alcohol exposure during the first trimester. These results also indicate that maternal choline supplementation comparable to doses in human studies fails to prevent brain volume reductions typically induced by first-trimester binge alcohol exposure. Future analyses will assess behavioral outcomes along with regional brain and neurohistological measures. Copyright © 2016 Elsevier Inc. All rights reserved.
Uncovering the Mechanisms Responsible for Why Language Learning May Promote Healthy Cognitive Aging
Antoniou, Mark; Wright, Sarah M.
2017-01-01
One of the great challenges facing humankind in the 21st century is preserving healthy brain function in our aging population. Individuals over 60 are the fastest growing age group in the world, and by 2050, it is estimated that the number of people over the age of 60 will triple. The typical aging process involves cognitive decline related to brain atrophy, especially in frontal brain areas and regions that subserve declarative memory, loss of synaptic connections, and the emergence of neuropathological symptoms associated with dementia. The disease-state of this age-related cognitive decline is Alzheimer’s disease and other dementias, which may cause older adults to lose their independence and rely on others to live safely, burdening family members and health care systems in the process. However, there are two lines of research that offer hope to those seeking to promote healthy cognitive aging. First, it has been observed that lifestyle variables such as cognitive leisure activities can moderate the risk of Alzheimer’s disease, which has led to the development of plasticity-based interventions for older adults designed to protect against the adverse effects of cognitive decline. Second, there is evidence that lifelong bilingualism acts as a safeguard in preserving healthy brain function, possibly delaying the incidence of dementia by several years. In previous work, we have suggested that foreign language learning programs aimed at older populations are an optimal solution for building cognitive reserve because language learning engages an extensive brain network that is known to overlap with the regions negatively affected by the aging process. Here, we will outline potential future lines of research that may uncover the mechanism responsible for the emergence of language learning related brain advantages, such as language typology, bi- vs. multi-lingualism, age of acquisition, and the elements that are likely to result in the largest gains. PMID:29326636
Alcohol ADME in primates studied with positron emission tomography.
Li, Zizhong; Xu, Youwen; Warner, Don; Volkow, Nora D
2012-01-01
The sensitivity to the intoxicating effects of alcohol as well as its adverse medical consequences differ markedly among individuals, which reflects in part differences in alcohol's absorption, distribution, metabolism, and elimination (ADME) properties. The ADME of alcohol in the body and its relationship with alcohol's brain bioavailability, however, is not well understood. The ADME of C-11 labeled alcohol, CH(3) (11)CH(2)OH, 1 and C-11 and deuterium dual labeled alcohol, CH(3) (11)CD(2)OH, 2 in baboons was compared based on the principle that C-D bond is stronger than C-H bond, thus the reaction is slower if C-D bond breaking occurs in a rate-determining metabolic step. The following ADME parameters in peripheral organs and brain were derived from time activity curve (TAC) of positron emission tomography (PET) scans: peak uptake (C(max)); peak uptake time (T(max)), half-life of peak uptake (T(1/2)), the area under the curve (AUC(60 min)), and the residue uptake (C(60 min)). For 1 the highest uptake occurred in the kidney whereas for 2 it occurred in the liver. A deuterium isotope effect was observed in the kidneys in both animals studied and in the liver of one animal but not the other. The highest uptake for 1 and 2 in the brain was in striatum and cerebellum but 2 had higher uptake than 1 in all brain regions most evidently in thalamus and cingulate. Alcohol's brain uptake was significantly higher when given intravenously than when given orally and also when the animal was pretreated with a pharmacological dose of alcohol. The study shows that alcohol metabolism in peripheral organs had a large effect on alcohol's brain bioavailability. This study sets the stage for clinical investigation on how genetics, gender and alcohol abuse affect alcohol's ADME and its relationship to intoxication and medical consequences.
Uncovering the Mechanisms Responsible for Why Language Learning May Promote Healthy Cognitive Aging.
Antoniou, Mark; Wright, Sarah M
2017-01-01
One of the great challenges facing humankind in the 21st century is preserving healthy brain function in our aging population. Individuals over 60 are the fastest growing age group in the world, and by 2050, it is estimated that the number of people over the age of 60 will triple. The typical aging process involves cognitive decline related to brain atrophy, especially in frontal brain areas and regions that subserve declarative memory, loss of synaptic connections, and the emergence of neuropathological symptoms associated with dementia. The disease-state of this age-related cognitive decline is Alzheimer's disease and other dementias, which may cause older adults to lose their independence and rely on others to live safely, burdening family members and health care systems in the process. However, there are two lines of research that offer hope to those seeking to promote healthy cognitive aging. First, it has been observed that lifestyle variables such as cognitive leisure activities can moderate the risk of Alzheimer's disease, which has led to the development of plasticity-based interventions for older adults designed to protect against the adverse effects of cognitive decline. Second, there is evidence that lifelong bilingualism acts as a safeguard in preserving healthy brain function, possibly delaying the incidence of dementia by several years. In previous work, we have suggested that foreign language learning programs aimed at older populations are an optimal solution for building cognitive reserve because language learning engages an extensive brain network that is known to overlap with the regions negatively affected by the aging process. Here, we will outline potential future lines of research that may uncover the mechanism responsible for the emergence of language learning related brain advantages, such as language typology, bi- vs. multi-lingualism, age of acquisition, and the elements that are likely to result in the largest gains.
... by increasing the amount of serotonin and norepinephrine, natural substances in the brain that helps maintain mental ... swelling difficulty breathing or swallowing fever, sweating, confusion, ... the Food and Drug Administration's (FDA) MedWatch Adverse Event Reporting ...
Organ Procurement Organizations and the Electronic Health Record.
Howard, R J; Cochran, L D; Cornell, D L
2015-10-01
The adoption of electronic health records (EHRs) has adversely affected the ability of organ procurement organizations (OPOs) to perform their federally mandated function of honoring the donation decisions of families and donors who have signed the registry. The difficulties gaining access to potential donor medical record has meant that assessment, evaluation, and management of brain dead organ donors has become much more difficult. Delays can occur that can lead to potential recipients not receiving life-saving organs. For over 40 years, OPO personnel have had ready access to paper medical records. But the widespread adoption of EHRs has greatly limited the ability of OPO coordinators to readily gain access to patient medical records and to manage brain dead donors. Proposed solutions include the following: (1) hospitals could provide limited access to OPO personnel so that they could see only the potential donor's medical record; (2) OPOs could join with other transplant organizations to inform regulators of the problem; and (3) hospital organizations could be approached to work with Center for Medicare and Medicaid Services (CMS) to revise the Hospital Conditions of Participation to require OPOs be given access to donor medical records. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Paterniti, Irene; Cordaro, Marika; Navarra, Michele; Esposito, Emanuela; Cuzzocrea, Salvatore
2015-01-01
Traumatic brain injury (TBI) is a common cause of morbidity and mortality in the developed world. In particular, TBI is an important cause of death and disability in young adults with consequences ranging from physical disabilities to long-term cognitive, behavioural, psychological and social defects. There is a large body of evidence that suggest that TBI conditions may adversely affect pituitary function in both the acute and chronic phases of recovery. Prevalence of hypopituitarism, from total to isolated pituitary deficiency, ranges from 5 to 90%. The time interval between TBI and pituitary function evaluation is one of the major factors responsible for variations in the prevalence of hypopituitarism reported. Diagnosis of hypopituitarism and accurate treatment of pituitary disorders offers the opportunity to improve mortality and outcome in TBI conditions. The aim of this paper is to review the history and pathophysiology of TBI and to summarize the best evidence of TBI as a cause of pituitary deficiency. Moreover, in this article we will describe the multiple changes which occur within the hypothalamic-pituitary-thyroid axis in critical illness, giving rise to 'sick euthyroid syndrome', focus our attention on thyroid hormones circulating levels from the initial insult to critical illness.
Comparative in vivo assessment of the subacute toxicity of gold and silver nanoparticles
NASA Astrophysics Data System (ADS)
Rathore, Mansee; Mohanty, Ipseeta Ray; Maheswari, Ujjwala; Dayal, Navami; Suman, Rajesh; Joshi, D. S.
2014-04-01
In spite of the projected therapeutic potentials of gold nanoparticles (GNP) and silver nanoparticles (SNP), very limited data are available on the interaction of nanoparticles with the biological systems. The present investigation was designed to evaluate as well as compare the subacute toxicity of GNP and SNP. Stable suspensions of GNP and SNP with mean particle diameter 10 and 25 nm, respectively, were prepared. Wistar rats were orally fed SNP (3 mg/kg) or GNP (20 μg/kg), once a day for 21 days. Biochemical indices (creatinine phosphokinase-MB, urea, blood urea nitrogen, aspartate transaminase, alkaline alanine transferase) and histopathological features of the liver, heart, brain, lungs, and kidney were evaluated for signs of toxicity. A significant decline in hepatic and renal function in the GNP treated group was observed as compared to SNP. GNP was found to be relatively more toxic on the lungs and SNP on the myocardial tissue as compared to SNP and GNP treatments, respectively. Interestingly, neither SNP nor GNP adversely affected the basal architecture of the brain as compared to sham. The present study demonstrated that GNP was significantly more noxious on the liver and kidney as compared with SNP.
Hanna, Laila S; Medhat, Amina M; Abdel-Menem, Hanan A
2003-04-01
In Egypt, infection with Schistosoma mansoni (S.m.) and residues of pesticides have been considered as major environmental pollutants that adversely affect health. Effects of diazinon (DZN) and/or praziquantel (PZQ) on the levels of plasma triiodothyronine (T3), thyroxine (T4), activities of brain acetylcholinesterase (AchE) and liver alanine aminotransferase (ALT) in addition to blood reduced glutathione (GSH) in healthy and S.m. infected mice were investigated after 9 and 17 weeks of either infection or intoxication with DZN. Triiodothyronine showed significant differences among the different treatments. The group of mice treated with PZQ showed the highest levels of T3 at both time intervals. Thyroxine level showed significant differences between the two time intervals. The lowest levels of T4 were observed in the infected-PZQ group at week 17. The maximum inhibition of brain AchE activity was noticed in DZN-PZQ treated group after 9 and 17 weeks. The different treatments significantly reduced the activities of liver ALT. The highest decrease was recorded in the infected-DZN-PZQ group at week 9. All treatments significantly lowered the levels of blood GSH after 9 weeks.
Growth of Malignant Non-CNS Tumors Alters Brain Metabolome
Kovalchuk, Anna; Nersisyan, Lilit; Mandal, Rupasri; Wishart, David; Mancini, Maria; Sidransky, David; Kolb, Bryan; Kovalchuk, Olga
2018-01-01
Cancer survivors experience numerous treatment side effects that negatively affect their quality of life. Cognitive side effects are especially insidious, as they affect memory, cognition, and learning. Neurocognitive deficits occur prior to cancer treatment, arising even before cancer diagnosis, and we refer to them as “tumor brain.” Metabolomics is a new area of research that focuses on metabolome profiles and provides important mechanistic insights into various human diseases, including cancer, neurodegenerative diseases, and aging. Many neurological diseases and conditions affect metabolic processes in the brain. However, the tumor brain metabolome has never been analyzed. In our study we used direct flow injection/mass spectrometry (DI-MS) analysis to establish the effects of the growth of lung cancer, pancreatic cancer, and sarcoma on the brain metabolome of TumorGraft™ mice. We found that the growth of malignant non-CNS tumors impacted metabolic processes in the brain, affecting protein biosynthesis, and amino acid and sphingolipid metabolism. The observed metabolic changes were similar to those reported for neurodegenerative diseases and brain aging, and may have potential mechanistic value for future analysis of the tumor brain phenomenon. PMID:29515623
Palgi, Yuval; Shrira, Amit
2015-01-01
Self-oriented adversity refers to traumatic events that primarily inflict the self, whereas other-oriented adversity refers to events that affect the self by primarily targeting others. The present study aimed to examine whether cultural background moderates the effects of self-oriented and other-oriented adversity on mental and physical health of older adults. Using longitudinal data from the Israeli component of the Survey of Health and Retirement, we focused on 370 Jews and 239 Arabs who reported their exposure to various adversities across the lifespan, and completed questionnaires regarding mental and physical health. Results showed that the effect of self-oriented adversity on health did not differ among Jews and Arabs. However, other-oriented adversity showed a stronger effect on Arabs’ mental and physical health than on Jews’ health. Our findings suggest that the accumulation of adverse events that affect the self by primarily targeting others may have a stronger impact in collectivist cultures than in individualist cultures. PMID:25961862
14 CFR 431.55 - Payload reentry review.
Code of Federal Regulations, 2012 CFR
2012-01-01
....55 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... any issues that would adversely affect U.S. national security or foreign policy interests, would... reentry of a proposed payload presents any issues adversely affecting U.S. national security. (c) The FAA...
14 CFR 431.55 - Payload reentry review.
Code of Federal Regulations, 2013 CFR
2013-01-01
....55 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... any issues that would adversely affect U.S. national security or foreign policy interests, would... reentry of a proposed payload presents any issues adversely affecting U.S. national security. (c) The FAA...
14 CFR 431.55 - Payload reentry review.
Code of Federal Regulations, 2010 CFR
2010-01-01
....55 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... any issues that would adversely affect U.S. national security or foreign policy interests, would... reentry of a proposed payload presents any issues adversely affecting U.S. national security. (c) The FAA...
14 CFR 431.55 - Payload reentry review.
Code of Federal Regulations, 2011 CFR
2011-01-01
....55 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... any issues that would adversely affect U.S. national security or foreign policy interests, would... reentry of a proposed payload presents any issues adversely affecting U.S. national security. (c) The FAA...
Integrated Approach for Pain Management in Parkinson Disease.
Geroin, Christian; Gandolfi, Marialuisa; Bruno, Veronica; Smania, Nicola; Tinazzi, Michele
2016-04-01
Pain, one of the most frequent nonmotor symptoms of Parkinson disease (PD), is recognized as an important component of the illness that adversely affects patient quality of life. The aims of this review are to summarize the current knowledge on the clinical assessment and to provide a detailed overview of the evidence-based pharmacologic and nonpharmacologic approaches to treating pain. Results of a literature search include studies investigating pain/sensory abnormalities in PD. The effects of levodopa administration, deep brain stimulation (DBS), pallidotomy, spinal cord stimulation, rehabilitation, and complementary/alternative medicine are reviewed critically. PD patients have altered pain and sensory thresholds; levodopa and DBS improve pain and change sensory abnormalities toward normal levels through antinociceptive and/or modulatory effects that remain unknown. A wide range of nonpharmacologic approaches require further investigation. A multidisciplinary approach is fundamental in managing pain syndromes in PD.
A multispecies approach for understanding neuroimmune mechanisms of stress
Deak, Terrence; Kudinova, Anastacia; Lovelock, Dennis F.; Gibb, Brandon E.; Hennessy, Michael B.
2017-01-01
The relationship between stress challenges and adverse health outcomes, particularly for the development of affective disorders, is now well established. The highly conserved neuroimmune mechanisms through which responses to stressors are transcribed into effects on males and females have recently garnered much attention from researchers and clinicians alike. The use of animal models, from mice to guinea pigs to primates, has greatly increased our understanding of these mechanisms on the molecular, cellular, and behavioral levels, and research in humans has identified particular brain regions and connections of interest, as well as associations between stress-induced inflammation and psychiatric disorders. This review brings together findings from multiple species in order to better understand how the mechanisms of the neuroimmune response to stress contribute to stress-related psychopathologies, such as major depressive disorder, schizophrenia, and bipolar disorder. PMID:28566946
A multispecies approach for understanding neuroimmune mechanisms of stress.
Deak, Terrence; Kudinova, Anastacia; Lovelock, Dennis F; Gibb, Brandon E; Hennessy, Michael B
2017-03-01
The relationship between stress challenges and adverse health outcomes, particularly for the development of affective disorders, is now well established. The highly conserved neuroimmune mechanisms through which responses to stressors are transcribed into effects on males and females have recently garnered much attention from researchers and clinicians alike. The use of animal models, from mice to guinea pigs to primates, has greatly increased our understanding of these mechanisms on the molecular, cellular, and behavioral levels, and research in humans has identified particular brain regions and connections of interest, as well as associations between stress-induced inflammation and psychiatric disorders. This review brings together findings from multiple species in order to better understand how the mechanisms of the neuroimmune response to stress contribute to stress-related psychopathologies, such as major depressive disorder, schizophrenia, and bipolar disorder.
Dietary Sodium and Health: More Than Just Blood Pressure
Farquhar, William B.; Edwards, David G.; Jurkovitz, Claudine T.; Weintraub, William S.
2016-01-01
Sodium is essential for cellular homeostasis and physiological function. Excess dietary sodium has been linked to elevations in blood pressure (BP). Salt-sensitivity of BP varies widely, but certain subgroups tend to be more salt-sensitive. The mechanisms underlying sodium-induced increases in BP are not completely understood, but may involve alterations in renal function, fluid volume, fluid regulatory hormones, the vasculature, cardiac function, and the autonomic nervous system. Recent pre-clinical and clinical data support that even in the absence of an increase in BP, excess dietary sodium can adversely affect target organs, including the blood vessels, heart, kidneys, and brain. In this review, we address these issues and the epidemiological literature relating dietary sodium to BP and cardiovascular health outcomes, addressing recent controversies. We also provide information and strategies for reducing dietary sodium. PMID:25766952
Gudziol, H
1995-02-01
About two million Americans suffer from anosmia. Most result from nasal obstruction, head injuries, and viral infections. Brain disorders like epileptic seizures, tumours, and dementia can distort can distort the sense of smell. Anosmia adversely affects patient well-being. Patients cannot detect spoiled food, gas leakage, or dangerous smoke. They are unable to distinguish flavour and smell the springtime or the ocean. Many products as soaps, cat litter, toilet paper, etc. are perfumed because consumers will more readily buy a product that smells nice than one that has no smell at all. Historically, the importance of odors was very different. The ancient Romans loved exotic aromas during their banquets and orgies. In the Middle Ages the church did not like fragrances. The French revolution of 1789 brought a revolution of deodorization to Europe. Today, fragrance companies' increasing sales are an indication of the power of odor.
Pattee, Gary L; Wymer, James P; Lomen-Hoerth, Catherine; Appel, Stanley H; Formella, Andrea E; Pope, Laura E
2014-11-01
Pseudobulbar affect (PBA) is associated with neurological disorders or injury affecting the brain, and characterized by frequent, uncontrollable episodes of crying and/or laughing that are exaggerated or unrelated to the patient's emotional state. Clinical trials establishing dextromethorphan and quinidine (DM/Q) as PBA treatment were conducted in patients with amyotrophic lateral sclerosis (ALS) or multiple sclerosis (MS). This trial evaluated DM/Q safety in patients with PBA secondary to any neurological condition affecting the brain. To evaluate the safety and tolerability of DM/Q during long-term administration to patients with PBA associated with multiple neurological conditions. Fifty-two-week open-label study of DM/Q 30/30 mg twice daily. Safety measures included adverse events (AEs), laboratory tests, electrocardiograms (ECGs), vital signs, and physical examinations. #NCT00056524. A total of 553 PBA patients with >30 different neurological conditions enrolled; 296 (53.5%) completed. The most frequently reported treatment-related AEs (TRAEs) were nausea (11.8%), dizziness (10.5%), headache (9.9%), somnolence (7.2%), fatigue (7.1%), diarrhea (6.5%), and dry mouth (5.1%). TRAEs were mostly mild/moderate, generally transient, and consistent with previous controlled trials. Serious AEs (SAEs) were reported in 126 patients (22.8%), including 47 deaths, mostly due to ALS progression and respiratory failure. No SAEs were deemed related to DM/Q treatment by investigators. ECG results suggested no clinically meaningful effect of DM/Q on myocardial repolarization. Differences in AEs across neurological disease groups appeared consistent with the known morbidity of the primary neurological conditions. Study interpretation is limited by the small size of some disease groups, the lack of a specific efficacy measure and the use of a DM/Q dose higher than the eventually approved dose. DM/Q was generally well tolerated over this 52 week trial in patients with PBA associated with a wide range of neurological conditions.
Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain.
Pomierny, Bartosz; Krzyżanowska, Weronika; Niedzielska, Ewa; Broniowska, Żaneta; Budziszewska, Bogusława
2016-02-01
Ethylene glycol ethers (EGEs) are compounds widely used in industry and household products, but their potential, adverse effect on brain is poorly understood, so far. The aim of the present study was to determine whether 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE), and 2-ethoxyethanol (EE) induces apoptotic process in the rat hippocampus and frontal cortex, and whether their adverse effect on the brain cells can result from disturbances in the glucose metabolism. Experiments were conducted on 40 rats, exposed to BE, PHE, EE, saline or sunflower oil for 4 weeks. Markers of apoptosis and glucose metabolism were determined in frontal cortex and hippocampus by western blot, ELISA, and fluorescent-based assays. BE and PHE, but not EE, increased expression of the active form of caspase-3 in the examined brain regions. BE and PHE increased caspase-9 level in the cortex and PHE also in the hippocampus. BE and PHE increased the level of pro-apoptotic proteins (Bax, Bak) and/or reduced the concentration of anti-apoptotic proteins (Bcl-2, Bcl-xL); whereas, the effect of BE was observed mainly in the cortex and that of PHE in the hippocampus. It has also been found that PHE increased brain glucose level, and both BE and PHE elevated pyruvate and lactate concentration. It can be concluded that chronic treatment with BE and PHE induced mitochondrial pathway of apoptosis, and disturbed glucose metabolism in the rat brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Kondo, Douglas G; Sung, Young-Hoon; Hellem, Tracy L; Fiedler, Kristen K; Shi, Xianfeng; Jeong, Eun-Kee; Renshaw, Perry F
2011-12-01
Adolescent major depressive disorder (MDD) is a life-threatening brain disease with limited interventions. Treatment resistance is common, and the illness burden is disproportionately borne by females. 31-Phosphorus magnetic resonance spectroscopy ((31)P MRS) is a translational method for in vivo measurement of brain energy metabolites. We recruited 5 female adolescents who had been on fluoxetine (Prozac®) for ≥ 8 weeks, but continued meet diagnostic criteria for MDD with a Children's Depression Rating Scale-Revised (CDRS-R) raw score ≥ 40. Treatment response was measured with the CDRS-R. (31)P MRS brain scans were performed at baseline, and repeated following adjunctive creatine 4 g daily for 8 weeks. For comparison, 10 healthy female adolescents underwent identical brain scans performed 8 weeks apart. The mean CDRS-R score declined from 69 to 30.6, a decrease of 56%. Participants experienced no Serious Adverse Events, suicide attempts, hospitalizations or intentional self-harm. There were no unresolved treatment-emergent adverse effects or laboratory abnormalities. MDD participants' baseline CDRS-R score was correlated with baseline pH (p=0.04), and was negatively correlated with beta-nucleoside triphosphate (β-NTP) concentration (p=0.03). Compared to healthy controls, creatine-treated adolescents demonstrated a significant increase in brain Phosphocreatine (PCr) concentration (p=0.02) on follow-up (31)P MRS brain scans. Lack of placebo control; and small sample size. Further study of creatine as an adjunctive treatment for adolescents with SSRI-resistant MDD is warranted. Copyright © 2011 Elsevier B.V. All rights reserved.
Semelka, Richard C; Hernandes, Mateus de A; Stallings, Clifton G; Castillo, Mauricio
2013-01-01
The purpose was to objectively evaluate a recently FDA-approved gadolinium-based contrast agent (GBCA) in comparison to our standard GBCA for acute adverse events and image quality by blinded evaluation. Evaluation was made of a recently FDA-approved GBCA, gadobutrol (Gadavist; Bayer), in comparison to our standard GBCA, gadobenate dimeglumine (MultiHance; Bracco), in an IRB- and HIPAA-compliant study. Both the imaging technologist and patient were not aware of the brand of the GBCA used. A total of 59 magnetic resonance studies were evaluated (59 patients, 31 men, 28 women, age range of 5-85 years, mean age of 52 years). Twenty-nine studies were performed with gadobutrol (22 abdominal and 7 brain studies), and 30 studies were performed with gadobenate dimeglumine (22 abdominal and 8 brain studies). Assessment was made of acute adverse events focusing on objective observations of vomiting, hives, and moderate and severe reactions. Adequacy of enhancement was rated as poor, fair and good by one of two experienced radiologists who were blinded to the type of agent evaluated. No patient experienced acute adverse events with either agent. The target minor adverse events of vomiting or hives, and moderate and severe reactions were not observed in any patient. Adequacy of enhancement was rated as good for both agents in all patients. Objective, blinded evaluation is feasible and readily performable for the evaluation of GBCAs. This proof-of-concept study showed that both GBCAs evaluated exhibited consistent good image quality and no noteworthy adverse events. Copyright © 2013 Elsevier Inc. All rights reserved.
Liu, Xudong; Zhang, Yuchao; Li, Jinquan; Wang, Dong; Wu, Yang; Li, Yan; Lu, Zhisong; Yu, Samuel CT; Li, Rui; Yang, Xu
2014-01-01
Single-walled carbon nanotubes (SWCNTs) have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test), brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH]), inflammation (nuclear factor κB, tumor necrosis factor α, interleukin-1β), and apoptosis (cysteine-aspartic acid protease 3) in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of ascorbic acid. This work suggests SWCNTs could induce cognitive deficits and decreased locomotor activity, and provides a strategy to avoid the adverse effects. PMID:24596461
Iosifescu, Dan V; Papakostas, George I; Lyoo, In Kyoon; Lee, Ho Kyu; Renshaw, Perry F; Alpert, Jonathan E; Nierenberg, Andrew; Fava, Maurizio
2005-12-30
The objective of the present work was to study the interrelationship between white matter hyperintensities (WMHs), cardiovascular risk factors and elements of the one-carbon cycle including serum folate, vitamin B12, and homocysteine levels in a relatively young sample of outpatients with major depressive disorder (MDD), and to compare the severity of white matter hyperintensities in MDD patients and healthy volunteers. Fifty MDD outpatients (34% women, age 40.6+/-10.3 years), free of psychotropic medications for at least 2 weeks before enrollment, underwent magnetic resonance imaging (MRI) scans of the brain to detect T2 WMHs and also had (1) serum folate, vitamin B12, homocysteine and cholesterol levels measured, and (2) cardiovascular risk factors assessed during the same study visit. Thirty-five healthy comparison subjects (40% women, age 39.2+/-9.8 years) also underwent brain MRI scans. Hypofolatemia, hypertension and age independently predicted a greater severity of total brain WMHs. Separately, the same factors also predicted a greater severity of subcortical WMHs. Hypofolatemic and hypertensive patients had more severe WMHs than normal controls. In light of the adverse impact of WMHs on a number of health-related outcomes later in life, hypofolatemia and hypertension may represent modifiable risk factors to prevent the occurrence of such adverse outcomes.
The effect of sleep medications on cognitive recovery from traumatic brain injury.
Larson, Eric B; Zollman, Felise S
2010-01-01
To summarize the literature on the available pharmacotherapy for insomnia and the adverse cognitive effects of those options in persons with traumatic brain injury (TBI). Ovid/MEDLINE databases were searched by using the following key words: "brain injury," "sleep initiation and maintenance disorders," "hypnotics and sedatives," "benzodiazepines," "trazodone," and "neuronal plasticity." The reviewed literature consistently reported that benzodiazepines and atypical gamma-aminobutyric acid (GABA) agonists result in cognitive impairment when plasma levels are at their peak. Evidence of residual effects on cognition was reported for benzodiazepines but was seen less often in atypical GABA agonists. However, evidence has also been presented that GABA agonists have adverse effects on neuroplasticity, raising concerns about their use in patients recovering from TBI. Use of benzodiazepines in TBI has been discouraged and some authors also advocate caution in prescribing atypical GABA agonists. Alternate treatments including trazodone and a newer class of agents, melatonin agonists, are highlighted, along with the limited data available addressing the use of these medications in TBI. Finally, suggestions are offered for further research, especially on topic related to neural plasticity and functional recovery.
... works by increasing the amount of serotonin, a natural substance in the brain that helps maintain mental ... that do not exist (hallucinating) fever, sweating, confusion, fast or ... the Food and Drug Administration's (FDA) MedWatch Adverse Event Reporting ...
... It works by increasing the amounts of certain natural substances in the brain that are needed to ... section, call your doctor immediately: muscle stiffness confusion fast or ... the Food and Drug Administration's (FDA) MedWatch Adverse Event Reporting ...
Yang, Yong; Zheng, Fangshuo; Xu, Xin; Wang, Xuefeng
2016-08-01
Seizure following traumatic brain injury (TBI) constitutes a common complication that requires effective prevention to improve the outcome of TBI. Phenytoin has been the only recommended antiepileptic drug (AED) for seizure prophylaxis; however, several shortcomings have affected its use. Intravenous levetiracetam has been available since 2006 and has been increasingly accepted as a seizure prophylaxis for brain injury, mainly due to its favorable pharmacokinetic features and minimal adverse events profile. However, the efficacy and safety of levetiracetam versus phenytoin for seizure prophylaxis following TBI are not well clarified. The aim of this study was to assess the efficacy and safety of levetiracetam versus phenytoin for seizure prophylaxis following TBI. We conducted a search of the MEDLINE, EMBASE, and Cochrane library databases to March 2016, and screened original research that included patients with TBI who received levetiracetam. We included randomized controlled trials (RCTs) or controlled observational cohort studies that compared levetiracetam and phenytoin, as well as uncontrolled case series regarding prophylactic levetiracetam following TBI. The outcomes included early or late seizure prophylaxis and safety. The estimates of seizure prophylaxis were pooled using a meta-analysis, and the estimates for the case series were pooled using descriptive statistics. A total of 1614 patients from 11 studies were included in this review, of whom 1285 patients from eight controlled studies (one RCT and seven cohort studies) were included in the meta-analysis. Levetiracetam was not superior to phenytoin with regard to early seizure prophylaxis (risk ratio [RR] 1.10, 95 % confidence interval [CI] 0.64-1.88); the estimate of early seizure incidence was 0.05 (95 % CI 0.02-0.08). Three studies that assessed late seizure did not indicate the superiority of levetiracetam to phenytoin. There were no differences in mortality during hospitalization or after 6 months, or in the number of patients with adverse reactions between levetiracetam and phenytoin. Levetiracetam does not appear to be superior to phenytoin in efficacy or safety with regard to early or late seizure prophylaxis following TBI; however, no class I evidence was identified. Additional evidence from high-quality studies is required.
Luszczki, Jarogniew J; Ratnaraj, Neville; Patsalos, Philip N; Czuczwar, Stanislaw J
2006-11-01
Isobolographic analysis was used to characterize the interactions between stiripentol (STP) and clonazepam (CZP), ethosuximide (ETS), phenobarbital (PB), and valproate (VPA) in suppressing pentylenetetrazole (PTZ)-induced clonic seizures in mice. The anticonvulsant and acute adverse (neurotoxic) effects of STP in combination with the various conventional antiepileptic drugs (AEDs), at fixed ratios of 1:3, 1:1, and 3:1, were evaluated in the PTZ and chimney tests in mice using the isobolographic analysis. Additionally, protective indices (PI) and benefit indices (BI) were calculated to identify their pharmacological profiles so that a ranking in relation to advantageous combination could be established. Moreover, adverse-effect paradigms were determined by use of the step-through passive avoidance task (long-term memory), threshold for the first pain reaction, grip-strength test (neuromuscular tone), and the hot plate test (acute thermal pain). Brain AED concentrations were also measured so as to ascertain any pharmacokinetic contribution to the pharmacodynamic interactions. All AED combinations comprising of STP and CZP, ETS, PB, and VPA (at the fixed ratios of 1:3, 1:1 and 3:1) were additive in terms of clonic seizure suppression in the PTZ test. However, these interactions were complicated by changes in brain AED concentrations consequent to pharmacokinetic interactions. Thus STP significantly increased total brain ETS and PB concentrations, and decreased VPA concentrations, but was without effect on CZP concentrations. In contrast, PB significantly decreased and VPA increased total brain STP concentrations while CZP and ETS were without effect. Furthermore, while isobolographic analysis revealed that STP and CZP in combination, at the fixed ratios of 1:1 and 3:1, were supraadditive (synergistic; p < 0.05), the combinations of STP with CZP (1:3), ETS, PB, or VPA (at all fixed ratios of 1:3, 1:1, and 3:1) were barely additivity in terms of acute neurotoxic adverse effects in the chimney test. Additionally, none of the examined combinations of STP with conventional AEDs (CZP, ETS, PB, VPA--at their median effective doses from the PTZ-test) affected long-term memory, threshold for the first pain reaction, neuromuscular tone, and acute thermal pain. Based on BI values, the combination of STP with PB at the fixed ratio of 1:3 appears to be a particularly favourable combination. In contrast, STP and CZP or ETS (at the fixed ratios of 1:1 and 3:1) were unfavorable combinations. However, these conclusions are confounded by the fact that STP is associated with significant pharmacokinetic interactions. The remaining combinations of STP with PB (1:1 and 3:1), CZP (1:3), ETS (1:3), and VPA (at all fixed ratios of 1:3, 1:1, and 3:1) do not appear to be potential favorable AED combinations.
The impact of cancer on spouses' labor earnings: a population-based study.
Syse, Astri; Tretli, Steinar; Kravdal, Oystein
2009-09-15
Cancer affects patients' incomes, but to the authors' knowledge few studies to date have examined how the income of the patients' spouses may be influenced. In this population-based study from Norway, the effects of cancer on both partners' earnings are analyzed. The difference between labor earnings the year before the cancer diagnosis and that 2, 5, or 8 years later was compared with the difference in earnings over a corresponding period for similar persons without cancer, applying linear regression models to national registry data. Approximately 1.1 million married persons ages 35 to 59 years were included, among them 17,250 persons diagnosed with cancer during 1991 through 1999. Two and 5 years after a cancer diagnosis, married men experienced lower earnings than they would have absent the illness. Cancer in wives, however, did not affect men's earnings. Women's earnings were adversely influenced to the same extent by their own as by their spouses' cancer. Brain, lung, and colorectal cancer in male spouses produced the most adverse effects on women's earnings. All effects were most pronounced for women no longer married. Women's earnings are lower after both their own and their spouses' cancer illness, and divorced and widowed women experience the most pronounced reduction after spousal cancer. Men's earnings are lower only if they are diagnosed themselves. This may reflect traditional sex roles, with men as main breadwinners and women as caregivers. For family households, cancer in men may result in greater financial difficulties than cancer among women, although the effect will depend on breadwinner roles before diagnosis. Copyright (c) 2009 American Cancer Society.
Undernutrition and quality of life.
Gabr, M
1987-01-01
Malnutrition, the most pervasive human problem especially in less developed countries (LDCs), not only adversely affects quality of life but also socioeconomic development. 25% of pregnant women in LDCs suffer from protein energy malnutrition while only 4% do in developed countries. This and other forms of malnutrition cause low birth weight infants and consequently high infant mortality and morbidity rates and limited fetal brain development. Child mortality due to measles is 200-400 times greater in malnourished children in LDCs than those in developed countries. In addition, measles brings about acute malnutrition in marginally nourished children. Malnutrition also adversely affects fertility, such as reducing a woman's fecundity during the menstrual cycle. Studies demonstrate that severe malnutrition during the 1st 6 months of life and maybe up to the 1st 2 years impairs intellectual development and the effects cannot be reversed. However, breast milk provides adequate nutrition and protects infants from infection when they are most susceptible. Inadequately nourished children are often apathetic, nonresponsive, impulsive; exhibit nongoal directed behavior; do not respond normally in social interactions; and cannot cope with stress or frequent daily demands. Studies indicate that even inadequately nourished adults develop behavior patterns similar to those of malnourished children. A starvation period among adults reduces muscle strength by almost 30% and precision of movements by 15-20%. In addition, childhood malnutrition reduces adult body weight and therefore restricting working capacity. The known effects of malnutrition should convince policy makers of the need to invest in programs that improve the nutritional standards of the populace for humanitarian reasons and to stimulate economic growth.
Efficacy and safety of icotinib in patients with brain metastases from lung adenocarcinoma.
Xu, Jianping; Liu, Xiaoyan; Yang, Sheng; Zhang, Xiangru; Shi, Yuankai
2016-01-01
The objective of this study was to evaluate the efficacy and safety of icotinib in patients with brain metastases (BMs) from lung adenocarcinoma. Clinical data of 28 cases with BMs from lung adenocarcinoma were retrospectively analyzed. All the patients took 125 mg icotinib orally three times a day. Progression of disease, intolerable adverse reactions, and number of deaths were recorded. For all the patients, the remission rate of icotinib was 67.8% and the disease control rate was 96.4%. The median overall survival time of patients was 21.2 months, and the median progression-free survival time of patients was 10.9 months. Only mild adverse events of grade 1/2 were observed during the treatment. Icotinib was an effective and safe strategy to treat patients with BMs from lung adenocarcinoma.
36 CFR 60.14 - Changes and revisions to properties listed in the National Register.
Code of Federal Regulations, 2013 CFR
2013-07-01
... previously unrecognized significance in American history, architecture, archeology, engineering or culture... would be adversely affected by the intrusion of the property; and (iv) Photographs showing the proposed... adversely affected by intrusion of the property. In addition, new photographs, acreage, verbal boundary...
36 CFR 60.14 - Changes and revisions to properties listed in the National Register.
Code of Federal Regulations, 2014 CFR
2014-07-01
... previously unrecognized significance in American history, architecture, archeology, engineering or culture... would be adversely affected by the intrusion of the property; and (iv) Photographs showing the proposed... adversely affected by intrusion of the property. In addition, new photographs, acreage, verbal boundary...
36 CFR 60.14 - Changes and revisions to properties listed in the National Register.
Code of Federal Regulations, 2011 CFR
2011-07-01
... previously unrecognized significance in American history, architecture, archeology, engineering or culture... would be adversely affected by the intrusion of the property; and (iv) Photographs showing the proposed... adversely affected by intrusion of the property. In addition, new photographs, acreage, verbal boundary...
36 CFR 60.14 - Changes and revisions to properties listed in the National Register.
Code of Federal Regulations, 2012 CFR
2012-07-01
... previously unrecognized significance in American history, architecture, archeology, engineering or culture... would be adversely affected by the intrusion of the property; and (iv) Photographs showing the proposed... adversely affected by intrusion of the property. In addition, new photographs, acreage, verbal boundary...
Tunnard, Catherine; Rane, Lena J; Wooderson, Sarah C; Markopoulou, Kalypso; Poon, Lucia; Fekadu, Abebaw; Juruena, Mario; Cleare, Anthony J
2014-01-01
Childhood adversity is a risk factor for the development of depression and can also affect clinical course. We investigated this specifically in treatment-resistant depression (TRD). One hundred and thirty-seven patients with TRD previously admitted to an inpatient affective disorders unit were included. Clinical, demographic and childhood adversity (physical, sexual, emotional abuse; bullying victimization, traumatic events) data were obtained during admission. Associations between childhood adversity, depressive symptoms and clinical course were investigated. Most patients had experienced childhood adversity (62%), with traumatic events (35%) and bullying victimization (29%) most commonly reported. Childhood adversity was associated with poorer clinical course, including earlier age of onset, episode persistence and recurrence. Logistic regression analyses revealed childhood adversity predicted lifetime suicide attempts (OR 2.79; 95% CI 1.14, 6.84) and childhood physical abuse predicted lifetime psychosis (OR 3.42; 95% CI 1.00, 11.70). The cross-sectional design and retrospective measurement of childhood adversity are limitations of the study. Childhood adversity was common amongst these TRD patients and was associated with poor clinical course, psychosis and suicide attempts. Routine assessment of early adversity may help identify at risk individuals and inform clinical intervention. Copyright © 2013 Elsevier B.V. All rights reserved.
Nishizaki, Naoto; Maiguma, Atsuko; Obinata, Kaoru; Okazaki, Tadaharu; Shimizu, Toshiaki
2016-01-01
Brain hypothermic therapy (BHT) is becoming a frequently used standard of care for perinatal asphyxia. Although cardiovascular side effects, coagulation disorders, renal impairment, electrolyte abnormalities, impaired liver function, opportunistic infections, and skin lesions are well-known adverse effects of BHT in newborns, little information is available on the clinical features of intestinal perforation-related BHT. We herein report a case of therapeutic brain cooling for perinatal asphyxia complicated by localized intestinal perforation. In practice, the neonatologist should be aware that intestinal perforation in an infant with perinatal asphyxia is possible, particularly following BHT.
Lipsman, Nir; Lam, Eileen; Volpini, Matthew; Sutandar, Kalam; Twose, Richelle; Giacobbe, Peter; Sodums, Devin J; Smith, Gwenn S; Woodside, D Blake; Lozano, Andres M
2017-04-01
Anorexia nervosa is a life-threatening illness. Brain circuits believed to drive anorexia nervosa symptoms can be accessed with surgical techniques such as deep brain stimulation (DBS). Initial results suggest that DBS of the subcallosal cingulate is safe and associated with improvements in mood and anxiety. Here, we investigated the safety, clinical, and neuroimaging outcomes of DBS of the subcallosal cingulate in a group of patients during 12 months of active stimulation. We did this prospective open-label trial at the Department of Surgery of the University of Toronto (Toronto, ON, Canada). Patients were eligible to participate if they were aged 20-60 years and had a diagnosis of anorexia nervosa (restricting or binge-purging subtype) and a demonstrated history of chronicity or treatment resistance. Following a period of medical stabilisation, patients underwent surgery for DBS and received open-label continuous stimulation for the entire 1 year study duration. The primary outcome was safety and acceptability of the procedure. The secondary outcomes were body-mass index (BMI), mood, anxiety, affective regulation, and anorexia nervosa-specific behaviours at 12 months after surgery, as well as changes in neural circuitry (measured with PET imaging of cerebral glucose metabolism at baseline and at 6 and 12 months after surgery). This trial was registered with ClinicalTrials.gov, number NCT01476540. 16 patients with treatment-refractory anorexia nervosa were enrolled between September, 2011, and January, 2014, and underwent DBS of the subcallosal cingulate between November, 2011, and April, 2014. Patients had a mean age of 34 years (SD 8) and average illness duration of 18 years (SD 6). Two patients requested that their devices be removed or deactivated during the study, although their reasons for doing so were poorly defined. The most common adverse event was pain related to surgical incision or positioning that required oral analgesics for longer than 3-4 days after surgery (five [31%] of 16 patients). Seven (44%) of 16 patients had serious adverse events, most of which were related to the underlying illness, including electrolyte disturbances. Average BMI at surgery was 13·83 (SD 1·49) and 14 (88%) of the 16 patients had comorbid mood disorders, anxiety disorders, or both. Mean BMI after 12 months of stimulation was 17·34 (SD 3·40; p=0·0009 vs baseline). DBS was associated with significant improvements in measures of depression (mean Hamilton Depression Rating Scale scores 19·40 [SD 6·76] at baseline vs 8·79 [7·64] at 12 months; p=0·00015), anxiety (mean Beck Anxiety Inventory score 38·00 [15·55] vs 27·14 [18·39]; p=0·035), and affective regulation (mean Dysfunction in Emotional Regulation Scale score 131·80 [22·04] vs 104·36 [31·27]; p=0·019). We detected significant changes in cerebral glucose metabolism in key anorexia nervosa-related structures at both 6 months and 12 months of ongoing brain stimulation. In patients with chronic treatment-refractory anorexia nervosa, DBS is well tolerated and is associated with significant and sustained improvements in affective symptoms, BMI, and changes in neural circuitry at 12 months after surgery. Klarman Family Foundation Grants Program in Eating Disorders Research and Canadian Institutes of Health Research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Role of the Immune System in HIV-associated Neuroinflammation and Neurocognitive Implications
Hong, Suzi; Banks, William A.
2014-01-01
Individuals living with HIV who are optimally treated with combination antiretroviral therapy (cART) can now lead an extended life. In spite of this remarkable survival benefit from viral suppression achieved by cART in peripheral blood, the rate of mild to moderate cognitive impairment remains high. A cognitive decline that includes impairments in attention, learning and executive function is accompanied by increased rates of mood disorders that together adversely impact the daily life of those with chronic HIV infection. The evidence is clear that cells in the brain are infected with HIV that has crossed the blood-brain barrier both as cell-free virus and within infected monocytes and T cells. Viral proteins that circulate in blood can induce brain endothelial cells to release cytokines, invoking another source of neuroinflammation. The difficulty of efficient delivery of cART to the central nervous system (CNS) contributes to elevated viral load in the CNS, resulting in a persistent HIV-associated neurocognitive disorders (HAND). The pathogenesis of HAND is multifaceted, and mounting evidence indicates that immune cells play a major role. HIV-infected monocytes and T cells not only infect brain resident cells upon migration into the CNS but also produce proinflammatory cytokines such as TNF and IL-1β, which in turn, further activate microglia and astrocytes. These activated brain resident cells, along with perivascular macrophages, are the main contributors to neuroinflammation in HIV infection and release neurotoxic factors such as excitatory amino acids and inflammatory mediators, resulting in neuronal dysfunction and death. Cytokines, which are elevated in the blood of patients with HIV infection, may also contribute to brain inflammation by entering the brain from the blood. Host factors such as aging and co-morbid conditions such as cytomegalovirus co-infection and vascular pathology are important factors that affect the HIV-host immune interactions in HAND pathogenesis. By these diverse mechanisms, HIV-1 induces a neuroinflammatory response that is likely to be a major contributor to the cognitive and behavior changes seen in HIV infection. PMID:25449672
Pneumothorax as a Complication of Apnea Testing for Brain Death.
Gorton, Lauren Elizabeth; Dhar, Rajat; Woodworth, Lindsey; Anand, Nitin J; Hayes, Benjamin; Ramiro, Joanna Isabelle; Kumar, Abhay
2016-10-01
Pneumothorax is an under-recognized complication of apnea testing performed as part of the neurological determination of death. It may result in hemodynamic instability or even cardiac arrest, compromising ability to declare brain death (BD) and viability of organs for transplantation. We report three cases of pneumothorax with apnea testing (PAT) and review the available literature of this phenomenon. Series of three cases supplemented with a systematic review of literature (including discussion of apnea testing in major brain death guidelines). Two patients were diagnosed with PAT due to immediate hemodynamic compromise, while the third was diagnosed many hours after BD. An additional nine cases of PAT were found in the literature. Information regarding oxygen cannula diameter was available for nine patients (range 2.3-5.3 mm), and flow rate was available for ten patients (mean 11 L/min). Pneumothorax was treated to resolution in the majority of patients (n = 8), although only six completed apnea testing following diagnosis/treatment of pneumothorax and only three patients became organ donors afterward. Review of major BD guidelines showed that although use of low oxygen flow rate (usually ≤ 6 L/min) during apnea testing is suggested, the risk of PAT was explicitly mentioned in just one. Development of PAT may adversely affect the process of BD determination and could limit the opportunity for organ donation. Each institution should have preventive measures in place.
Liu, Xudong; Zhang, Yuchao; Luo, Chen; Kang, Jun; Li, Jinquan; Wang, Kun; Ma, Ping; Yang, Xu
2017-11-17
Alzheimer's disease (AD) is a serious, common, global disease, yet its etiology and pathogenesis are incompletely understood. Air pollution is a multi-pollutants co-exposure system, which may affect brain. The indoor environment is where exposure to both air particulate matter (<2.5 μm in diameter) (PM 2.5 ) and formaldehyde (FA) can occur simultaneously. Whether exposure to such a multi-pollutant (PM 2.5 plus FA) mixture contributes to the development of AD, and whether there is a difference between exposure to PM 2.5 or FA alone needs to be investigated. To determine the objective, C57BL/6J mice were exposed daily to PM 2.5 (0.193 mg/Kg/day), FA (0.155 mg/Kg/day) or multi-pullutants (0.193 mg/Kg/day PM 2.5 plus 0.155 mg/Kg/day FA) for one week. AD-like changes and upstream events were investigated after exposure. The results showed that exposure to PM 2.5 or FA alone in this study had little or no adverse effects on the mouse brain. However, some AD-like pathologies were detected after multi-pullutants co-exposure. This work suggested PM 2.5 plus FA co-exposure has more potential to induce AD-like pathologies than exposure alone. Oxidative stress and inflammation may be involved into the toxic mechanisms. Synergistic effects of co-exposure may induce the hygienic or safety standards of each pollutant not safe.
Kucher, Nils; Walpoth, Nazan; Wustmann, Kerstin; Noveanu, Markus; Gertsch, Marc
2003-06-01
To test the hypothesis that Qr in V(1)is a predictor of pulmonary embolism, right ventricular strain, and adverse clinical outcome. ECG's from 151 patients with suspected pulmonary embolism were blindly interpreted by two observers. Echocardiography, troponin I, and pro-brain natriuretic peptide levels were obtained in 75 patients with pulmonary embolism. Qr in V(1)(14 vs 0 in controls; p<0.0001) and ST elevation in V(1)> or =1 mV (15 vs 1 in controls; p=0.0002) were more frequently present in patients with pulmonary embolism. Sensitivity and specificity of Qr in V(1)and T wave inversion in V(2)for predicting right ventricular dysfunction were 31/97% and 45/94%, respectively. Three of five patients who died in-hospital and 11 of 20 patients with a complicated course, presented with Qr in V(1). After adjustment for right ventricular strain including ECG, echocardiography, pro-brain natriuretic peptide and troponin I levels, Qr in V(1)(OR 8.7, 95%CI 1.4-56.7; p=0.02) remained an independent predictor of adverse outcome. Among the ECG signs seen in patients with acute pulmonary embolism, Qr in V(1)is closely related to the presence of right ventricular dysfunction, and is an independent predictor of adverse clinical outcome.
Wyczesany, Miroslaw; Ligeza, Tomasz S
2015-03-01
The locationist model of affect, which assumes separate brain structures devoted to particular discrete emotions, is currently being questioned as it has not received enough convincing experimental support. An alternative, constructionist approach suggests that our emotional states emerge from the interaction between brain functional networks, which are related to more general, continuous affective categories. In the study, we tested whether the three-dimensional model of affect based on valence, arousal, and dominance (VAD) can reflect brain activity in a more coherent way than the traditional locationist approach. Independent components of brain activity were derived from spontaneous EEG recordings and localized using the DIPFIT method. The correspondence between the spectral power of the revealed brain sources and a mood self-report quantified on the VAD space was analysed. Activation of four (out of nine) clusters of independent brain sources could be successfully explained by the specific combination of three VAD dimensions. The results support the constructionist theory of emotions.
Ben-Shaanan, Tamar; Schiller, Maya; Rolls, Asya
2017-10-01
The interactions between the brain and the immune system are bidirectional. Nevertheless, we have far greater understanding of how the immune system affects the brain than how the brain affects immunity. New technological developments such as optogenetics and chemogenetics (using DREADDs; Designer Receptors Exclusively Activated by Designer Drugs) can bridge this gap in our understanding, as they enable an unprecedented mechanistic and systemic analysis of the communication between the brain and the immune system. In this review, we discuss new experimental approaches for revealing neuronal circuits that can participate in regulation of immunity. In addition, we discuss methods, specifically optogenetics and chemogenetics, that enable targeted neuronal manipulation to reveal how different brain regions affect immunity. We describe how these techniques can be used as an experimental platform to address fundamental questions in psychoneuroimmunology and to understand how neuronal circuits associate with different psychological states can affect physiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function.
Poulose, Shibu M; Miller, Marshall G; Scott, Tammy; Shukitt-Hale, Barbara
2017-11-01
Adult neurogenesis, a complex process by which stem cells in the hippocampal brain region differentiate and proliferate into new neurons and other resident brain cells, is known to be affected by many intrinsic and extrinsic factors, including diet. Neurogenesis plays a critical role in neural plasticity, brain homeostasis, and maintenance in the central nervous system and is a crucial factor in preserving the cognitive function and repair of damaged brain cells affected by aging and brain disorders. Intrinsic factors such as aging, neuroinflammation, oxidative stress, and brain injury, as well as lifestyle factors such as high-fat and high-sugar diets and alcohol and opioid addiction, negatively affect adult neurogenesis. Conversely, many dietary components such as curcumin, resveratrol, blueberry polyphenols, sulforaphane, salvionic acid, polyunsaturated fatty acids (PUFAs), and diets enriched with polyphenols and PUFAs, as well as caloric restriction, physical exercise, and learning, have been shown to induce neurogenesis in adult brains. Although many of the underlying mechanisms by which nutrients and dietary factors affect adult neurogenesis have yet to be determined, nutritional approaches provide promising prospects to stimulate adult neurogenesis and combat neurodegenerative diseases and cognitive decline. In this review, we summarize the evidence supporting the role of nutritional factors in modifying adult neurogenesis and their potential to preserve cognitive function during aging. © 2017 American Society for Nutrition.
Yamamoto, Dorothy J; Woo, Choong-Wan; Wager, Tor D; Regner, Michael F; Tanabe, Jody
2015-04-01
Alterations in frontal and striatal function are hypothesized to underlie risky decision making in drug users, but how these regions interact to affect behavior is incompletely understood. We used mediation analysis to investigate how prefrontal cortex and ventral striatum together influence risk avoidance in abstinent drug users. Thirty-seven abstinent substance-dependent individuals (SDI) and 43 controls underwent fMRI while performing a decision-making task involving risk and reward. Analyses of a priori regions-of-interest tested whether activity in dorsolateral prefrontal cortex (DLPFC) and ventral striatum (VST) explained group differences in risk avoidance. Whole-brain analysis was conducted to identify brain regions influencing the negative VST-risk avoidance relationship. Right DLPFC (RDLPFC) positively mediated the group-risk avoidance relationship (p < 0.05); RDLPFC activity was higher in SDI and predicted higher risk avoidance across groups, controlling for SDI vs. Conversely, VST activity negatively influenced risk avoidance (p < 0.05); it was higher in SDI, and predicted lower risk avoidance. Whole-brain analysis revealed that, across group, RDLPFC and left temporal-parietal junction positively (p ≤ 0.001) while right thalamus and left middle frontal gyrus negatively (p < 0.005) mediated the VST activity-risk avoidance relationship. RDLPFC activity mediated less risky decision making while VST mediated more risky decision making across drug users and controls. These results suggest a dual pathway underlying decision making, which, if imbalanced, may adversely influence choices involving risk. Modeling contributions of multiple brain systems to behavior through mediation analysis could lead to a better understanding of mechanisms of behavior and suggest neuromodulatory treatments for addiction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yamamoto, Dorothy J.; Woo, Choong-Wan; Wager, Tor D.; Regner, Michael F.; Tanabe, Jody
2015-01-01
Background Alterations in frontal and striatal function are hypothesized to underlie risky decision-making in drug users, but how these regions interact to affect behavior is incompletely understood. We used mediation analysis to investigate how prefrontal cortex and ventral striatum together influence risk avoidance in abstinent drug users. Method Thirty-seven abstinent substance-dependent individuals (SDI) and 43 controls underwent fMRI while performing a decision-making task involving risk and reward. Analyses of a priori regions-of-interest tested whether activity in dorsolateral prefrontal cortex (DLPFC) and ventral striatum (VST) explained group differences in risk avoidance. Whole-brain analysis was conducted to identify brain regions influencing the negative VST-risk avoidance relationship. Results Right DLPFC (RDLPFC) positively mediated the group-risk avoidance relationship (p < 0.05); RDLPFC activity was higher in SDI and predicted higher risk avoidance across groups, controlling for SDI vs. controls. Conversely, VST activity negatively influenced risk avoidance (p < 0.05); it was higher in SDI, and predicted lower risk avoidance. Whole-brain analysis revealed that, across group, RDLPFC and left temporal-parietal junction positively (p ≤ 0.001) while right thalamus and left middle frontal gyrus negatively (p < 0.005) mediated the VST activity-risk avoidance relationship. Conclusion RDLPFC activity mediated less risky decision-making while VST mediated more risky decision-making across drug users and controls. These results suggest a dual pathway underlying decision-making, which, if imbalanced, may adversely influence choices involving risk. Modeling contributions of multiple brain systems to behavior through mediation analysis could lead to a better understanding of mechanisms of behavior and suggest neuromodulatory treatments for addiction. PMID:25736619
Haider, Saida; Saleem, Sadia; Tabassum, Saiqa; Khaliq, Saima; Shamim, Saima; Batool, Zehra; Parveen, Tahira; Inam, Qurat-ul-ain; Haleem, Darakhshan J
2013-03-01
Lead toxicity is known to induce a broad range of physiological, biochemical and behavioral dysfunctions that may result in adverse effects on several organs, including the central nervous system. Long-term exposure to low levels of lead (Pb(2+)) has been shown to produce behavioral deficits in rodents and humans by affecting hypothalamic-pituitary-adrenal (HPA) axis. These deficits are thought to be associated with altered brain monoamine neurotransmission and due to changes in glucocorticoids levels. This study was designed to investigate the effects of Pb(2+)exposure on growth rate, locomotor activity, anxiety, depression, plasma corticosterone and brain serotonin (5-HT) levels in rats. Rats were exposed to lead in drinking water (500 ppm; lead acetate) for 5 weeks. The assessment of depression was done using the forced swimming test (FST). Estimation of brain 5-HT was determined by high-performance liquid chromatography with electrochemical detection. Plasma corticosterone was determined by spectrofluorimetric method. The present study showed that long term exposure to Pb(2+) significantly decreased the food intake followed by the decrease in growth rate in Pb(2+)exposed rats as compared to control group. No significant changes in open field activity were observed following Pb(2+)exposure while significant increase in anxiogenic effect was observed. Increased plasma corticosterone and decreased 5-HT levels were exhibited by Pb(2+)exposed rats as compared to controls. A significant increase in depressive like symptoms was exhibited by Pb(2+)exposed rats as compared to control rats. The results are discussed in the context of Pb(2+) inducing a stress-like response in rats leading to changes in plasma corticosterone and brain 5-HT levels via altering tryptophan pyrrolase activity.
45 CFR 305.62 - Disregard of a failure which is of a technical nature.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES PROGRAM PERFORMANCE MEASURES, STANDARDS, FINANCIAL INCENTIVES, AND... adversely affect the performance of the State's IV-D program or does not adversely affect the determination of the level of the State's paternity establishment or other performance measures percentages. ...
Landuse and climate change have affected biological systems in many parts of the world, and are projected to further adversely affect associated ecosystem goods and services, including provisioning of clean air, clean water, food, and biodiversity. Such adverse effects on ecosyst...
Genetic Testing and Neuroimaging for Youth at Risk for Mental Illness: Trading off Benefit and Risk.
Lee, Grace; Mizgalewicz, Ania; Borgelt, Emily; Illes, Judy
2015-01-01
According to the World Health Organization, mental illness is one of the leading causes of disability worldwide. The first onset of mental illness usually occurs during childhood or adolescence, with nearly 12 million diagnosed cases in the United States alone. Neuroimaging and genetic testing have been invaluable in research on behavioral, affective, and attentional disorders, particularly with their potential predictive capabilities, and ability to improve diagnosis and to decrease the associated burdens of disease. The present study focused specifically the perspectives of mental health providers on the role of neuroimaging and genetic testing in clinical practice with children and adolescents. We interviewed 38 psychiatrists, psychologists, and allied mental health professionals who work primarily with youth about their receptivity toward either the use of neuroimaging or genetic testing. Interviews probed the role they foresee for these modalities for prediction, diagnosis, treatment planning, and the benefits and risks they anticipate. Practitioners anticipated three major benefits associated with clinical introduction of imaging and genetic testing in the mental health care for youth: (1) improved understanding of the brain and mental illness, (2) more accurate diagnosis than available through conventional clinical examination, and (3) legitimization of treatment plans. They also perceived three major risks: (1) misuse or misinterpretation of the imaging or genetic data, (2) potential adverse impacts on employment and insurance as adolescents reach adulthood, and (3) infringements on self-esteem or self-motivation. The nature of the interview questions focused on the future of neuroimaging and genetic testing testing research in the context of clinical neuroscience. Therefore, the responses from interview participants are based on anticipated rather than actual experience. Continued expansion of brain imaging and genetic testing into clinical care will require a delicate balance of brain biology and respect for autonomy in the still-evolving cognitive and affective world of young individuals.
Default, Cognitive, and Affective Brain Networks in Human Tinnitus
2015-10-01
AWARD NUMBER: W81XWH-13-1-0491 TITLE: Default, Cognitive, and Affective Brain Networks in Human Tinnitus PRINCIPAL INVESTIGATOR: Jennifer R...SUBTITLE 5a. CONTRACT NUMBER Default, Cognitive and Affective Brain Networks in Human Tinnitus 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Tinnitus is a major health problem among those currently and formerly in military
Brain Mechanisms of Affective Language Comprehension in Autism Spectrum Disorders
2016-10-01
AWARD NUMBER: W81XWH-14-1-0457 TITLE: Brain Mechanisms of Affective Language Comprehension in Autism Spectrum Disorders PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Brain Mechanisms of Affective Language Comprehension in Autism Spectrum Disorders 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Profound deficits in the domain of social communication are a hallmark of autism spectrum disorders (ASD
... It works by increasing the amounts of certain natural substances in the brain that are needed for ... doctor immediately: yellowing of the skin or eyes fast heartbeat unusual ... the Food and Drug Administration's (FDA) MedWatch Adverse Event Reporting ...
Plasticity of Nonneuronal Brain Tissue: Roles in Developmental Disorders
ERIC Educational Resources Information Center
Dong, Willie K.; Greenough, William T.
2004-01-01
Neuronal and nonneuronal plasticity are both affected by environmental and experiential factors. Remodeling of existing neurons induced by such factors has been observed throughout the brain, and includes alterations in dendritic field dimensions, synaptogenesis, and synaptic morphology. The brain loci affected by these plastic neuronal changes…
Traumatic Brain Injury Inpatient Rehabilitation
ERIC Educational Resources Information Center
Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen
2010-01-01
Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…
Palgi, Yuval; Shrira, Amit
2016-03-01
Self-oriented adversity refers to traumatic events that primarily inflict the self, whereas other-oriented adversity refers to events that affect the self by primarily targeting others. The present study aimed to examine whether cultural background moderates the effects of self-oriented and other-oriented adversity on mental and physical health of older adults. Using longitudinal data from the Israeli component of the Survey of Health and Retirement, we focused on 370 Jews and 239 Arabs who reported their exposure to various adversities across the life span, and completed questionnaires regarding mental and physical health. Results showed that the effect of self-oriented adversity on health did not differ among Jews and Arabs. However, other-oriented adversity showed a stronger effect on Arabs' mental and physical health than on Jews' health. Our findings suggest that the accumulation of adverse events that affect the self by primarily targeting others may have a stronger impact in collectivist cultures than in individualist cultures. (c) 2016 APA, all rights reserved).
Focal Gray Matter Plasticity as a Function of Long Duration Head-down Tilt Bed Rest
NASA Technical Reports Server (NTRS)
Koppelmans, V.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Koppelmans, V.
2014-01-01
Long duration spaceflight (i.e., > or = 22 days) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes may be related to structural and functional brain changes is yet unknown. However, experimental studies revealed changes in the gray matter (GM) of the brain after simulated microgravity. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning and motor behavior. Long duration head-down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on the brain. VBM analysis revealed a progressive decrease from pre- to in- bed rest in GM volume in bilateral areas including the frontal medial cortex, the insular cortex and the caudate. Over the same time period, there was a progressive increase in GM volume in the cerebellum, occipital-, and parietal cortex, including the precuneus. The majority of these changes did not fully recover during the post-bed rest period. Analysis of lobular GM volumes obtained with BRAINS showed significantly increased volume from pre-bed rest to in-bed rest in GM of the parietal lobe and the third ventricle. Temporal GM volume at 70 days in bed rest was smaller than that at the first pre-bed rest measurement. Trend analysis showed significant positive linear and negative quadratic relationships between parietal GM and time, a positive linear relationship between third ventricle volume and time, and a negative linear relationship between cerebellar GM volume and time. FM performance improved from pre-bed rest session 1 to session 2. From the second pre-bed rest measure to the last-day-in-bed rest, there was a significant decrease in performance that only partially recovered post-bed rest. No significant association was observed between changes in brain volume and changes in functional mobility. Extended bed rest, which is an analog for microgravity, can result in local volumetric GM increase and decrease and adversely affect functional mobility. These changes in brain structure and performance were not related in this sample. Whether the effects of bed rest dissipate at longer times post-bed rest, and if they are associated with behavior are important questions that warrant further research including more subjects and longer follow-up times.
Chen, Ligang; Sun, Xiaochuan; Jiang, Yong; Kuai, Li
2015-06-10
Traumatic brain injury (TBI) is a commonly encountered emergency and severe neurosurgical injury. Previous studies have shown that the presence of the apolipoprotein E (APOE) ε4 allele has adverse outcomes across the spectrum of TBI severity. Our objective was to evaluate the effects of APOE alleles on trauma induced early apoptosis via modification of delayed rectifier K(+) current (Ik(DR)) in neuronal/glial co-cultures model. An ex vivo neuronal/glial co-cultures model carrying individual APOE alleles (ε2, ε3, ε4) of mechanical injury was developed. Flow cytometry and patch clamp recording were performed to analyze the correlations among APOE genotypes, early apoptosis and Ik(DR). We found that APOEε4 increased early apoptosis at 24h (p<0.05) compared to the ones transfected with APOEε3 and APOEε2. Noticeably, APOEε4 significantly reduced the amplitude of the Ik(DR) at 24h compared to the APOEε3 and APOEε2 (p<0.05) which exacerbate Ca(2+) influx. This indicates a possible effect of APOEε4 on early apoptosis via inhibiting Ik(DR) following injury which may adversely affect the outcome of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.
Lindquist, Kristen A.; Satpute, Ajay B.; Wager, Tor D.; Weber, Jochen; Barrett, Lisa Feldman
2016-01-01
The ability to experience pleasant or unpleasant feelings or to represent objects as “positive” or “negative” is known as representing hedonic “valence.” Although scientists overwhelmingly agree that valence is a basic psychological phenomenon, debate continues about how to best conceptualize it scientifically. We used a meta-analysis of 397 functional magnetic resonance imaging (fMRI) and positron emission tomography studies (containing 914 experimental contrasts and 6827 participants) to test 3 competing hypotheses about the brain basis of valence: the bipolarity hypothesis that positive and negative affect are supported by a brain system that monotonically increases and/or decreases along the valence dimension, the bivalent hypothesis that positive and negative affect are supported by independent brain systems, and the affective workspace hypothesis that positive and negative affect are supported by a flexible set of valence-general regions. We found little evidence for the bipolar or bivalent hypotheses. Findings instead supported the hypothesis that, at the level of brain activity measurable by fMRI, valence is flexibly implemented across instances by a set of valence-general limbic and paralimbic brain regions. PMID:25631056
Chocyk, Agnieszka; Przyborowska, Aleksandra; Makuch, Wioletta; Majcher-Maślanka, Iwona; Dudys, Dorota; Wędzony, Krzysztof
2014-05-01
Adolescence is a developmental period characterized by extensive morphological and functional remodeling of the brain. The processes of brain maturation during this period may unmask malfunctions that originate earlier in life as a consequence of early-life stress (ELS). This is associated with the emergence of many psychopathologies during adolescence, particularly affective spectrum disorders. In the present study, we applied a maternal separation (MS) procedure (3h/day, on postnatal days 1-14) as a model of ELS to examine its effects on the acquisition, expression and extinction of fear memories in adolescent rats. Additionally, we studied the persistence of these memories into adulthood. We found that MS decreased the expression of both contextual (CFC) and auditory (AFC) fear conditioning in adolescent rats. Besides, MS had no impact on the acquisition of extinction learning. During the recall of extinction MS animals both, those previously subjected and not subjected to the extinction session, exhibited equally low levels of freezing. In adulthood, the MS animals (conditioned during adolescence) still displayed impairments in the expression of AFC (only in males) and CFC. Furthermore, the MS procedure had also an impact on the expression of CFC (but not AFC) after retraining in adulthood. Our findings imply that ELS may permanently affect fear learning and memory. The results also support the hypothesis that, depending on individual predispositions and further experiences, ELS may either lead to a resilience or a vulnerability to early- and late-onsets psychopathologies. Copyright © 2014 Elsevier B.V. All rights reserved.
BDNF val66met Polymorphism Affects Aging of Multiple Types of Memory
Kennedy, Kristen M.; Reese, Elizabeth D.; Horn, Marci M.; Sizemore, April N.; Unni, Asha K.; Meerbrey, Michael E.; Kalich, Allan G.; Rodrigue, Karen M.
2014-01-01
The BDNF val66met polymorphism (rs6265) influences activity-dependent secretion of brain-derived neurotrophic factor in the synapse, which is crucial for learning and memory. Individuals homozygous or heterozygous for the met allele have lower BDNF secretion than val homozygotes and may be at risk for reduced declarative memory performance, but it remains unclear which types of declarative memory may be affected and how aging of memory across the lifespan is impacted by the BDNF val66met polymorphism. This cross-sectional study investigated the effects of BDNF polymorphism on multiple indices of memory (item, associative, prospective, subjective complaints) in a lifespan sample of 116 healthy adults aged 20-93 years. Advancing age showed a negative effect on item, associative and prospective memory, but not on subjective memory complaints. For item and prospective memory, there were significant age x BDNF group interactions, indicating the adverse effect of age on memory performance across the lifespan was much stronger in the BDNF met carriers than for the val homozygotes. BDNF met carriers also endorsed significantly greater subjective memory complaints, regardless of age, and showed a trend (p < .07) toward poorer associative memory performance compared to val homozygotes. These results suggest that genetic predisposition to the availability of brain-derived neurotrophic factor, by way of the BDNF val66met polymorphism, exerts an influence on multiple indices of episodic memory – in some cases in all individuals regardless of age (subjective memory and perhaps associative memory), in others as an exacerbation of age-related differences in memory across the lifespan (item and prospective memory). PMID:25264352
Dispositional negativity: An integrative psychological and neurobiological perspective
Shackman, Alexander J.; Tromp, Do P. M.; Stockbridge, Melissa D.; Kaplan, Claire M.; Tillman, Rachael M.; Fox, Andrew S.
2016-01-01
Dispositional negativity—the propensity to experience and express more frequent, intense, or enduring negative affect—is a fundamental dimension of childhood temperament and adult personality. Elevated levels of dispositional negativity can have profound consequences for health, wealth, and happiness, drawing the attention of clinicians, researchers, and policy makers. Here, we highlight recent advances in our understanding of the psychological and neurobiological processes linking stable individual differences in dispositional negativity to momentary emotional states. Self-report data suggest that three key pathways—increased stressor reactivity, tonic increases in negative affect, and increased stressor exposure—explain most of the heightened negative affect that characterizes individuals with a more negative disposition. Of these three pathways, tonically elevated, indiscriminate negative affect appears to be most central to daily life and most relevant to the development of psychopathology. New behavioral and biological data provide insights into the neural systems underlying these three pathways and motivate the hypothesis that seemingly ‘tonic’ increases in negative affect may actually reflect increased reactivity to stressors that are remote, uncertain, or diffuse. Research focused on humans, monkeys, and rodents suggests that this indiscriminate negative affect reflects trait-like variation in the activity and connectivity of several key brain regions, including the central extended amygdala and parts of the prefrontal cortex. Collectively, these observations provide an integrative psychobiological framework for understanding the dynamic cascade of processes that bind emotional traits to emotional states and, ultimately, to emotional disorders and other kinds of adverse outcomes. PMID:27732016
Interactive effects of cumulative stress and impulsivity on alcohol consumption.
Fox, Helen C; Bergquist, Keri L; Peihua, Gu; Rajita, Sinha
2010-08-01
Alcohol addiction may reflect adaptations to stress, reward, and regulatory brain systems. While extensive research has identified both stress and impulsivity as independent risk factors for drinking, few studies have assessed the interactive relationship between stress and impulsivity in terms of hazardous drinking within a community sample of regular drinkers. One hundred and thirty regular drinkers (56M/74F) from the local community were assessed for hazardous and harmful patterns of alcohol consumption using the Alcohol Use Disorders Identification Test (AUDIT). All participants were also administered the Barratt Impulsiveness Scale (BIS-11) as a measure of trait impulsivity and the Cumulative Stress/Adversity Checklist (CSC) as a comprehensive measure of cumulative adverse life events. Standard multiple regression models were used to ascertain the independent and interactive nature of both overall stress and impulsivity as well as specific types of stress and impulsivity on hazardous and harmful drinking. Recent life stress, cumulative traumatic stress, overall impulsivity, and nonplanning-related impulsivity as well as cognitive and motor-related impulsivity were all independently predictive of AUDIT scores. However, the interaction between cumulative stress and total impulsivity scores accounted for a significant amount of the variance, indicating that a high to moderate number of adverse events and a high trait impulsivity rating interacted to affect greater AUDIT scores. The subscale of cumulative life trauma accounted for the most variance in AUDIT scores among the stress and impulsivity subscales. Findings highlight the interactive relationship between stress and impulsivity with regard to hazardous drinking. The specific importance of cumulative traumatic stress as a marker for problem drinking is also discussed.
Swain, James E; Ho, S Shaun
2017-01-01
Insensitive parental thoughts and affect, similar to contempt, may be mapped onto a network of basic emotions moderated by attitudinal representations of social-relational value. Brain mechanisms that reflect emotional valence of baby signals among parents vary according to individual differences and show plasticity over time. Furthermore, mental health problems and treatments for parents may affect these brain systems toward or away from contempt, respectively.
Vite, Charles H.; Wang, Ping; Patel, Reema T.; Walton, Raquel M.; Walkley, Steven U.; Sellers, Rani S.; Ellinwood, N. Matthew; Cheng, Alphonsus S.; White, Joleen T.; O’Neill, Charles A.; Haskins, Mark
2011-01-01
The storage disorder mucopolysaccharidosis type I (MPS I) is caused by a deficiency in lysosomal α-L-iduronidase activity. The inability to degrade glycosaminoglycans (GAG) results in lysosomal accumulation and widespread tissue lesions. Many symptoms of MPS I are amenable to treatment with recombinant human α-L-iduronidase (rhIDU), however, peripherally administered rhIDU does not cross the blood-brain barrier and has no beneficial effects in the central nervous system (CNS). A feline model of MPS I was used to evaluate the CNS effects of rhIDU following repeated intrathecal (IT) administration. Twelve animals were randomized into four groups based on the time of euthanasia and tissue evaluation following three repeat IT administrations of 0.1 mg/kg rhIDU or placebo on Study Days 1, 4 or 5, and 9. Two days after the final IT injection, the mean tissue α-L-iduronidase (IDU) activity in the brains of the two treated animals were approximately 3-times higher (50.1 and 54.9 U/mg protein) than the activity found in normal cat brains (mean of 18.3 U/mg), and remained higher than untreated MPS1 brain at 1 month (2.4 and 4.1 U/mg protein) before returning to near-baseline levels after 2 months. This activity corresponded with decreased brain GAG concentrations after 2 days (1.4 and 2.0 mcg/mg) and 1 month (0.9 and 1.1 mcg/mg) which approached levels observed in normal animals (0.7 mcg/mg). Attenuation of GAG, gangliosides GM2 and GM3, and cholesterol reaccumulation was identified at both two days and one month following final IT injection. No adverse effects or rhIDU antibody response attributable to IT rhIDU administration were observed. IT rhIDU may be an effective means for providing enzyme replacement therapy for the central manifestations of MPS I. PMID:21482164
Effects of diquat, an aquatic herbicide, on the development of mallard embryos
Sewalk, C.J.; Brewer, G.L.; Hoffman, D.J.
2001-01-01
Bipyridylium herbicides produce embryotoxic and teratogenic effects in dipteran, amphibian, avian, and mammalian organisms. Diquat dibromide, a bipyridylium compound, is commonly used as an aquatic herbicide. Mallard (Anas platyrhynchos) eggs were exposed to diquat by immersing the eggs for 10s in solutions of 0.88, 3.5, 7, 14, or 56 g/L on either the fourth or twenty-first day of incubation. Application of diquat on day 4 yielded an estimated LC50 of 19.5 g/L through 18 days of incubation, and 9.6 g/L through hatching. Body and organ weights, and bone lengths of hatchlings did not differ between control and treatment groups with the exception of a slight increase in brain weight in the 14 g/L group. Malformations in diquat-treated embryos included defects of the brain, eye, bill, limb, and pelvis; skeletal scoliosis; and incomplete ossification. Subcutaneous edema was also present. Significant manifestations of oxidative stress were apparent in hatchlings and included increased hepatic thiobarbituric acid reactive substances (TBARS) (lipid peroxidation) and decreased brain reduced glutathione (GSH). Brain protein-bound sulfhydryls (PBSH) increased. Diquat applied on day 21 of incubation yielded an estimated LC50 of 12.6 g/L through hatching. Exposure at this late stage of development did not produce deformities. Body and organ weights, and, bone lengths of hatchlings did not differ between control and treatment groups. Significant manifestations of oxidative stress in hatchlings included decreased brain GSH, increased oxidized glutathione (GSSG) and ratio of GSSG:GSH. This study suggests that concentrations of diquat commonly used for aquatic weed control, when based upon the expected dilution effect of average water depth of the application area, would probably have little impact on mallard embryos. However, concentrations applied above ground to weeds and cattails along the edge of waters and ditches could adversely affect the survival and development of mallard embryos, and presumably other avian species nesting in such habitats.
Brain plasticity and sensorimotor deterioration as a function of 70 days head down tilt bed rest
Bloomberg, Jacob J.; De Dios, Yiri E.; Wood, Scott J.; Reuter-Lorenz, Patricia A.; Kofman, Igor S.; Riascos, Roy; Mulavara, Ajitkumar P.; Seidler, Rachael D.
2017-01-01
Background Adverse effects of spaceflight on sensorimotor function have been linked to altered somatosensory and vestibular inputs in the microgravity environment. Whether these spaceflight sequelae have a central nervous system component is unknown. However, experimental studies have shown spaceflight-induced brain structural changes in rodents’ sensorimotor brain regions. Understanding the neural correlates of spaceflight-related motor performance changes is important to ultimately develop tailored countermeasures that ensure mission success and astronauts’ health. Method Head down-tilt bed rest (HDBR) can serve as a microgravity analog because it mimics body unloading and headward fluid shifts of microgravity. We conducted a 70-day 6° HDBR study with 18 right-handed males to investigate how microgravity affects focal gray matter (GM) brain volume. MRI data were collected at 7 time points before, during and post-HDBR. Standing balance and functional mobility were measured pre and post-HDBR. The same metrics were obtained at 4 time points over ~90 days from 12 control subjects, serving as reference data. Results HDBR resulted in widespread increases GM in posterior parietal regions and decreases in frontal areas; recovery was not yet complete by 12 days post-HDBR. Additionally, HDBR led to balance and locomotor performance declines. Increases in a cluster comprising the precuneus, precentral and postcentral gyrus GM correlated with less deterioration or even improvement in standing balance. This association did not survive Bonferroni correction and should therefore be interpreted with caution. No brain or behavior changes were observed in control subjects. Conclusions Our results parallel the sensorimotor deficits that astronauts experience post-flight. The widespread GM changes could reflect fluid redistribution. Additionally, the association between focal GM increase and balance changes suggests that HDBR also may result in neuroplastic adaptation. Future studies are warranted to determine causality and underlying mechanisms. PMID:28767698
[Reversible neurotoxicity secondary to metronidazole: report of one case].
Retamal-Riquelme, Eva; Soto-San Martín, Hernán; Vallejos-Castro, José; Galdames-Poblete, Daniel
2014-03-01
Metronidazole can cause adverse effects both in the central and peripheral nervous system. We report a 34-year-old female who presented a reversible cerebellar syndrome and peripheral neuropathy as an adverse effect associated with the use of metronidazole. Brain magnetic resonance imaging (MRI) showed hyperintense T2 and FLAIR bilateral symmetrical cerebellar lesions, without contrast enhancement or mass effect, isointense in diffusion-weighted imaging and hypointense in apparent diffusion coefficient sequences. Also, electrophysiological evaluation was consistent with axonal polyneuropathy. She had received metronidazole for a liver abscess during 49 days. After discontinuation of metronidazole, she had rapid regression of cerebellar symptoms and normalization of MRI, with subsequent disappearance of peripheral symptoms. The brain MRI, electromyography and nerve conduction studies performed at 35 months later showed complete resolution of the lesions. Although metronidazole neurotoxicity is a rare event, it must be borne in mind because the prognosis is usually favorable after stopping the drug.
NASA Astrophysics Data System (ADS)
Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba
2015-07-01
Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress.
Efficacy and safety of icotinib in patients with brain metastases from lung adenocarcinoma
Xu, Jianping; Liu, Xiaoyan; Yang, Sheng; Zhang, Xiangru; Shi, Yuankai
2016-01-01
Objective The objective of this study was to evaluate the efficacy and safety of icotinib in patients with brain metastases (BMs) from lung adenocarcinoma. Patients and methods Clinical data of 28 cases with BMs from lung adenocarcinoma were retrospectively analyzed. All the patients took 125 mg icotinib orally three times a day. Progression of disease, intolerable adverse reactions, and number of deaths were recorded. Results For all the patients, the remission rate of icotinib was 67.8% and the disease control rate was 96.4%. The median overall survival time of patients was 21.2 months, and the median progression-free survival time of patients was 10.9 months. Only mild adverse events of grade 1/2 were observed during the treatment. Conclusion Icotinib was an effective and safe strategy to treat patients with BMs from lung adenocarcinoma. PMID:27274284
Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba
2015-01-01
Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress. PMID:26212690
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...
17 CFR 270.19b-1 - Frequency of distribution of capital gains.
Code of Federal Regulations, 2010 CFR
2010-04-01
... eligible trust security which adversely affects the ability of such issuer to continue payment of principal... which adversely affects the ability of such issuer to continue payment of principal or interest on its... request as not being necessary or appropriate in the public interest or for the protection of investors...
75 FR 21528 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... subsequently damage the hydraulic system and adversely affect the airplane's ability to make a safe landing... cylinder support fitting for the MLG failing during gear extension and subsequently damaging the hydraulic... the retract cylinder support fitting for the MLG, which could adversely affect the airplane's safe...
Adversity before Conception Will Affect Adult Progeny in Rats
ERIC Educational Resources Information Center
Shachar-Dadon, Alice; Schulkin, Jay; Leshem, Micah
2009-01-01
The authors investigated whether adversity in a female, before she conceives, will influence the affective and social behavior of her progeny. Virgin female rats were either undisturbed (controls) or exposed to varied, unpredictable, stressors for 7 days (preconceptual stress [PCS]) and then either mated immediately after the end of the stress…
Heimann, Gábor; Canhos, Luisa L; Frik, Jesica; Jäger, Gabriele; Lepko, Tjasa; Ninkovic, Jovica; Götz, Magdalena; Sirko, Swetlana
2017-08-01
Aging leads to adverse outcomes after traumatic brain injury. The mechanisms underlying these defects, however, are not yet clear. In this study, we found that astrocytes in the aged post-traumatic cerebral cortex develop a significantly reduced proliferative response, resulting in reduced astrocyte numbers in the penumbra. Moreover, experiments of reactive astrocytes in vitro reveal that their diminished proliferation is due to an age-related switch in the division mode with reduced cell-cycle re-entry rather than changes in cell-cycle length. Notably, reactive astrocytes in vivo and in vitro become refractory to stimuli increasing their proliferation during aging, such as Sonic hedgehog signaling. These data demonstrate for the first time that age-dependent, most likely intrinsic changes in the proliferative program of reactive astrocytes result in their severely hampered proliferative response to traumatic injury thereby affecting astrocyte homeostasis. © The Author 2017. Published by Oxford University Press.
EEG biofeedback for autism spectrum disorder: a commentary on Kouijzer et al. (2013).
Coben, Robert; Ricca, Rachel
2015-03-01
Research conducted by Kouijzer et al. (Appl Psychophysiol Biofeedback 38(1):17-28, 2013) compared the effects of skin conductance biofeedback and EEG-biofeedback on patients with autistic spectrum disorders to determine their relative efficacy. While they found a difference between treatment and control groups, there was no significant difference on many variables between the two treatment groups. From this, the increase in symptom alleviation from autistic spectrum disorder was attributed to non-specific factors surrounding the study. We now offer alternative explanations for their findings and propose different options for future studies. We hypothesize that the location and type of neurofeedback used adversely impacted the findings. We speculate that had they used a form of EEG-biofeedback that can combat deficiencies in connectivity and also trained the areas of the brain most affected by autism, there may have then been a significant difference between the effectiveness of EEG-biofeedback versus skin conductance biofeedback.
Quetiapine for hypnogogic musical release hallucinations.
David, R R; Fernandez, H H
2000-01-01
Musical release hallucinations are complex auditory phenomena, affecting mostly the deaf geriatric population, in which individuals hear vocal or instrumental music. Progressive hearing loss from otosclerosis disrupts the usual external sensory stimuli necessary to inhibit the emergence of memory traces within the brain, thereby "releasing" previously recorded perceptions. Responses to conventional antipsychotic agents have been variable and extrapyramidal and other side effects have limited their use. We report the first case of hypnogogic release hallucinations successfully treated with the atypical antipsychotic quetiapine. The patient is an 88-year-old woman with progressive deafness who complained of hearing the piano, drums, or a full orchestra every time she was about to fall asleep. She accused her neighbor of hosting loud parties. Physical, neurologic, and psychiatric examination and work-up were unremarkable. She was treated with low-dose quetiapine affording near total resolution of hallucinations without adverse effects.
Downey, Luke A.; Loftis, Jennifer M.
2014-01-01
Central nervous system (CNS) damage associated with psychostimulant dependence may be an ongoing, degenerative process with adverse effects on neuropsychiatric function. However, the molecular mechanisms regarding how altered energy regulation affects immune response in the context of substance use disorders are not fully understood. This review summarizes the current evidence regarding the effects of psychostimulant [particularly 3,4-methylenedioxy-N-methylamphetamine (MDMA) and methamphetamine] exposure on brain energy regulation, immune response, and neuropsychiatric function. Importantly, the neuropsychiatric impairments (e.g., cognitive deficits, depression, and anxiety) that persist following abstinence are associated with poorer treatment outcomes – increased relapse rates, lower treatment retention rates, and reduced daily functioning. Qualifying the molecular changes within the CNS according to the exposure and use patterns of specifically abused substances should inform the development of new therapeutic approaches for addiction treatment. PMID:24485894
Electronic Nicotine Delivery Systems (ENDS): What Nurses Need to Know.
Essenmacher, Carol; Naegle, Madeline; Baird, Carolyn; Vest, Bridgette; Spielmann, Rene; Smith-East, Marie; Powers, Leigh
Efforts to decrease adverse effects of tobacco use are affected by emergence of new nicotine delivery products. Advertising, product promotion, and social media promote use of these products, yet a lack of evidence regarding safety leaves nurses unprepared to counsel patients. To critically evaluate current research, reviews of literature, expert opinion, and stakeholder policy proposals on use and safety of electronic nicotine delivery systems (ENDS). A targeted examination of literature generated by key stakeholders and subject matter experts was conducted using key words, modified by risk factors, and limited to the past 8 years. Current knowledge gaps in research literature and practice implications of the literature are discussed. The safety of ENDS is questionable and unclear. There are clear health risks of nicotine exposure to developing brains. Potential health risks of ENDS secondhand emissions exposure exist. Using ENDS to facilitate total tobacco cessation is not proven.
Dietary sodium and health: more than just blood pressure.
Farquhar, William B; Edwards, David G; Jurkovitz, Claudine T; Weintraub, William S
2015-03-17
Sodium is essential for cellular homeostasis and physiological function. Excess dietary sodium has been linked to elevations in blood pressure (BP). Salt sensitivity of BP varies widely, but certain subgroups tend to be more salt sensitive. The mechanisms underlying sodium-induced increases in BP are not completely understood but may involve alterations in renal function, fluid volume, fluid-regulatory hormones, the vasculature, cardiac function, and the autonomic nervous system. Recent pre-clinical and clinical data support that even in the absence of an increase in BP, excess dietary sodium can adversely affect target organs, including the blood vessels, heart, kidneys, and brain. In this review, the investigators review these issues and the epidemiological research relating dietary sodium to BP and cardiovascular health outcomes, addressing recent controversies. They also provide information and strategies for reducing dietary sodium. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Downey, Luke A; Loftis, Jennifer M
2014-03-15
Central nervous system (CNS) damage associated with psychostimulant dependence may be an ongoing, degenerative process with adverse effects on neuropsychiatric function. However, the molecular mechanisms regarding how altered energy regulation affects immune response in the context of substance use disorders are not fully understood. This review summarizes the current evidence regarding the effects of psychostimulant [particularly 3,4-methylenedioxy-N-methylamphetamine (MDMA) and methamphetamine] exposure on brain energy regulation, immune response, and neuropsychiatric function. Importantly, the neuropsychiatric impairments (e.g., cognitive deficits, depression, and anxiety) that persist following abstinence are associated with poorer treatment outcomes - increased relapse rates, lower treatment retention rates, and reduced daily functioning. Qualifying the molecular changes within the CNS according to the exposure and use patterns of specifically abused substances should inform the development of new therapeutic approaches for addiction treatment. Published by Elsevier B.V.
2017-02-01
ambient conditions such as cabin pressure and temperature could potentially have detrimental effects on the already vulnerable brain. There is evidence...long-range aero-medical evacuation has adverse effects on brain blood flow and tissue oxygenation , as well as lung function in swine models of...differences in partial pressure of arterial oxygen or oxygen delivery, extraction and consumption data. This suggests that in this particular model
ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide☆☆☆★
Thompson, Paul M.; Andreassen, Ole A.; Arias-Vasquez, Alejandro; Bearden, Carrie E.; Boedhoe, Premika S.; Brouwer, Rachel M.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cannon, Dara M.; Cohen, Ronald A.; Conrod, Patricia J.; Dale, Anders M.; Deary, Ian J.; Dennis, Emily L.; de Reus, Marcel A.; Desrivieres, Sylvane; Dima, Danai; Donohoe, Gary; Fisher, Simon E.; Fouche, Jean-Paul; Francks, Clyde; Frangou, Sophia; Franke, Barbara; Ganjgahi, Habib; Garavan, Hugh; Glahn, David C.; Grabe, Hans J.; Guadalupe, Tulio; Gutman, Boris A.; Hashimoto, Ryota; Hibar, Derrek P.; Holland, Dominic; Hoogman, Martine; Pol, Hilleke E. Hulshoff; Hosten, Norbert; Jahanshad, Neda; Kelly, Sinead; Kochunov, Peter; Kremen, William S.; Lee, Phil H.; Mackey, Scott; Martin, Nicholas G.; Mazoyer, Bernard; McDonald, Colm; Medland, Sarah E.; Morey, Rajendra A.; Nichols, Thomas E.; Paus, Tomas; Pausova, Zdenka; Schmaal, Lianne; Schumann, Gunter; Shen, Li; Sisodiya, Sanjay M.; Smit, Dirk J.A.; Smoller, Jordan W.; Stein, Dan J.; Stein, Jason L.; Toro, Roberto; Turner, Jessica A.; van den Heuvel, Martijn P.; van den Heuvel, Odile L.; van Erp, Theo G.M.; van Rooij, Daan; Veltman, Dick J.; Walter, Henrik; Wang, Yalin; Wardlaw, Joanna M.; Whelan, Christopher D.; Wright, Margaret J.; Ye, Jieping
2016-01-01
In this review, we discuss recent work by the ENIGMA Consortium (http://enigma.ini.usc.edu) – a global alliance of over 500 scientists spread across 200 institutions in 35 countries collectively analyzing brain imaging, clinical, and genetic data. Initially formed to detect genetic influences on brain measures, ENIGMA has grown to over 30 working groups studying 12 major brain diseases by pooling and comparing brain data. In some of the largest neuroimaging studies to date – of schizophrenia and major depression – ENIGMA has found replicable disease effects on the brain that are consistent worldwide, as well as factors that modulate disease effects. In partnership with other consortia including ADNI, CHARGE, IMAGEN and others1, ENIGMA's genomic screens – now numbering over 30,000 MRI scans – have revealed at least 8 genetic loci that affect brain volumes. Downstream of gene findings, ENIGMA has revealed how these individual variants – and genetic variants in general – may affect both the brain and risk for a range of diseases. The ENIGMA consortium is discovering factors that consistently affect brain structure and function that will serve as future predictors linking individual brain scans and genomic data. It is generating vast pools of normative data on brain measures – from tens of thousands of people – that may help detect deviations from normal development or aging in specific groups of subjects. We discuss challenges and opportunities in applying these predictors to individual subjects and new cohorts, as well as lessons we have learned in ENIGMA's efforts so far. PMID:26658930
Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben
2012-01-01
Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters. PMID:23055972
Forbes, Erika E; Hariri, Ahmad R; Martin, Samantha L; Silk, Jennifer S; Moyles, Donna L; Fisher, Patrick M; Brown, Sarah M; Ryan, Neal D; Birmaher, Boris; Axelson, David A; Dahl, Ronald E
2009-01-01
Alterations in reward-related brain function and phenomenological aspects of positive affect are increasingly examined in the development of major depressive disorder. The authors tested differences in reward-related brain function in healthy and depressed adolescents, and the authors examined direct links between reward-related brain function and positive mood that occurred in real-world contexts. Fifteen adolescents with major depressive disorder and 28 adolescents with no history of psychiatric disorder, ages 8-17 years, completed a functional magnetic resonance imaging guessing task involving monetary reward. Participants also reported their subjective positive affect in natural environments during a 4-day cell-phone-based ecological momentary assessment. Adolescents with major depressive disorder exhibited less striatal response than healthy comparison adolescents during reward anticipation and reward outcome, but more response in dorsolateral and medial prefrontal cortex. Diminished activation in a caudate region associated with this depression group difference was correlated with lower subjective positive affect in natural environments, particularly within the depressed group. Results support models of altered reward processing and related positive affect in young people with major depressive disorder and indicate that depressed adolescents' brain response to monetary reward is related to their affective experience in natural environments. Additionally, these results suggest that reward-processing paradigms capture brain function relevant to real-world positive affect.
Feasibility of online self-administered cognitive training in moderate-severe brain injury.
Sharma, Bhanu; Tomaszczyk, Jennifer C; Dawson, Deirdre; Turner, Gary R; Colella, Brenda; Green, Robin E A
2017-07-01
Cognitive environmental enrichment (C-EE) offers promise for offsetting neural decline that is observed in chronic moderate-severe traumatic brain injury (TBI). Brain games are a delivery modality for C-EE that can be self-administered over the Internet without therapist oversight. To date, only one study has examined the feasibility of self-administered brain games in TBI, and the study focused predominantly on mild TBI. Therefore, the primary purpose of the current study was to examine the feasibility of self-administered brain games in moderate-severe TBI. A secondary and related purpose was to examine the feasibility of remote monitoring of any C-EE-induced adverse symptoms with a self-administered evaluation tool. Ten patients with moderate-severe TBI were asked to complete 12 weeks (60 min/day, five days/week) of online brain games with bi-weekly self-evaluation, intended to measure any adverse consequences of cognitive training (e.g., fatigue, eye strain). There was modest weekly adherence (42.6% ± 4.4%, averaged across patients and weeks) and 70% patient retention; of the seven retained patients, six completed the self-evaluation questionnaire at least once/week for each week of the study. Even patients with moderate-severe TBI can complete a demanding, online C-EE intervention and a self-administered symptom evaluation tool with limited therapist oversight, though at daily rate closer to 30 than 60 min per day. Further self-administered C-EE research is underway in our lab, with more extensive environmental support. Implications for Rehabilitation Online brain games (which may serve as a rehabilitation paradigm that can help offset the neurodegeneration observed in chronic TBI) can be feasibly self-administered by moderate-to-severe TBI patients. Brain games are a promising therapy modality, as they can be accessed by all moderate-to-severe TBI patients irrespective of geographic location, clinic and/or therapist availability, or impairments that limit mobility and access to rehabilitation services. Future efficacy trials that examine the effect of brain games for offsetting neurodegeneration in moderate-to-severe TBI patients are warranted.
Perinatal inflammation and adult psychopathology: From preclinical models to humans.
Depino, Amaicha Mara
2018-05-01
Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Serotonin and brain function: a tale of two receptors
Carhart-Harris, RL; Nutt, DJ
2017-01-01
Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain’s default response to adversity but that an improved ability to change one’s situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important – and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes. PMID:28858536
Panksepp, Jaak
2011-01-01
Background The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates. Principal Findings The relevant lines of evidence are as follows: 1) It is easy to elicit powerful unconditioned emotional responses using localized electrical stimulation of the brain (ESB); these effects are concentrated in ancient subcortical brain regions. Seven types of emotional arousals have been described; using a special capitalized nomenclature for such primary process emotional systems, they are SEEKING, RAGE, FEAR, LUST, CARE, PANIC/GRIEF and PLAY. 2) These brain circuits are situated in homologous subcortical brain regions in all vertebrates tested. Thus, if one activates FEAR arousal circuits in rats, cats or primates, all exhibit similar fear responses. 3) All primary-process emotional-instinctual urges, even ones as complex as social PLAY, remain intact after radical neo-decortication early in life; thus, the neocortex is not essential for the generation of primary-process emotionality. 4) Using diverse measures, one can demonstrate that animals like and dislike ESB of brain regions that evoke unconditioned instinctual emotional behaviors: Such ESBs can serve as ‘rewards’ and ‘punishments’ in diverse approach and escape/avoidance learning tasks. 5) Comparable ESB of human brains yield comparable affective experiences. Thus, robust evidence indicates that raw primary-process (i.e., instinctual, unconditioned) emotional behaviors and feelings emanate from homologous brain functions in all mammals (see Appendix S1), which are regulated by higher brain regions. Such findings suggest nested-hierarchies of BrainMind affective processing, with primal emotional functions being foundational for secondary-process learning and memory mechanisms, which interface with tertiary-process cognitive-thoughtful functions of the BrainMind. PMID:21915252
Barrett, Lisa Feldman; Satpute, Ajay
2013-01-01
Understanding how a human brain creates a human mind ultimately depends on mapping psychological categories and concepts to physical measurements of neural response. Although it has long been assumed that emotional, social, and cognitive phenomena are realized in the operations of separate brain regions or brain networks, we demonstrate that it is possible to understand the body of neuroimaging evidence using a framework that relies on domain general, distributed structure-function mappings. We review current research in affective and social neuroscience and argue that the emerging science of large-scale intrinsic brain networks provides a coherent framework for a domain-general functional architecture of the human brain. PMID:23352202
Panksepp, Jaak
2011-01-01
The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates. The relevant lines of evidence are as follows: 1) It is easy to elicit powerful unconditioned emotional responses using localized electrical stimulation of the brain (ESB); these effects are concentrated in ancient subcortical brain regions. Seven types of emotional arousals have been described; using a special capitalized nomenclature for such primary process emotional systems, they are SEEKING, RAGE, FEAR, LUST, CARE, PANIC/GRIEF and PLAY. 2) These brain circuits are situated in homologous subcortical brain regions in all vertebrates tested. Thus, if one activates FEAR arousal circuits in rats, cats or primates, all exhibit similar fear responses. 3) All primary-process emotional-instinctual urges, even ones as complex as social PLAY, remain intact after radical neo-decortication early in life; thus, the neocortex is not essential for the generation of primary-process emotionality. 4) Using diverse measures, one can demonstrate that animals like and dislike ESB of brain regions that evoke unconditioned instinctual emotional behaviors: Such ESBs can serve as 'rewards' and 'punishments' in diverse approach and escape/avoidance learning tasks. 5) Comparable ESB of human brains yield comparable affective experiences. Thus, robust evidence indicates that raw primary-process (i.e., instinctual, unconditioned) emotional behaviors and feelings emanate from homologous brain functions in all mammals (see Appendix S1), which are regulated by higher brain regions. Such findings suggest nested-hierarchies of BrainMind affective processing, with primal emotional functions being foundational for secondary-process learning and memory mechanisms, which interface with tertiary-process cognitive-thoughtful functions of the BrainMind.
Pavlova, Marina A; Krägeloh-Mann, Ingeborg
2013-04-01
Brain lesions to the white matter in peritrigonal regions, periventricular leukomalacia, in children who were born prematurely represent an important model for studying limitations on brain development. The lesional pattern is of early origin and bilateral, that constrains the compensatory potential of the brain. We suggest that (i) topography and severity of periventricular lesions may have a long-term predictive value for cognitive and social capabilities in preterm birth survivors; and (ii) periventricular lesions may impact cognitive and social functions by affecting brain connectivity, and thereby, the dissociable neural networks underpinning these functions. A further pathway to explore is the relationship between cerebral palsy and cognitive outcome. Restrictions caused by motor disability may affect active exploration of surrounding and social participation that may in turn differentially impinge on cognitive development and social cognition. As an outline for future research, we underscore sex differences, as the sex of a preterm newborn may shape the mechanisms by which the developing brain is affected.
Rahm, Christoffer; Liberg, Benny; Wiberg-Kristoffersen, Maria; Aspelin, Peter; Msghina, Mussie
2013-04-01
Characterizing the anatomical substrates of major brain functions such as cognition and emotion is of utmost importance to the ongoing efforts of understanding the nature of psychiatric ailments and their potential treatment. The aim of our study was to investigate how the brain handles affective and cognitive interferences on cognitive processes. Functional magnetic resonance imaging investigation was performed on healthy individuals, comparing the brain oxygenation level dependent activation patterns during affective and cognitive counting Stroop tasks. The affective Stroop task activated rostral parts of medial prefrontal cortex (PFC) and rostral and ventral parts of lateral PFC, while cognitive Stroop activated caudal parts of medial PFC and caudal and dorsal parts of lateral PFC. Our findings suggest that the brain may handle affective and cognitive interference on cognitive processes differentially, with affective interference preferentially activating rostral and ventral PFC networks and cognitive interference activating caudal and dorsal PFC networks. © 2013 The Authors. Scandinavian Journal of Psychology © 2013 The Scandinavian Psychological Associations.
MacDiarmid, Jennifer A; Langova, Veronika; Bailey, Dale; Pattison, Scott T; Pattison, Stacey L; Christensen, Neil; Armstrong, Luke R; Brahmbhatt, Vatsala N; Smolarczyk, Katarzyna; Harrison, Matthew T; Costa, Marylia; Mugridge, Nancy B; Sedliarou, Ilya; Grimes, Nicholas A; Kiss, Debra L; Stillman, Bruce; Hann, Christine L; Gallia, Gary L; Graham, Robert M; Brahmbhatt, Himanshu
2016-01-01
Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of EGFR-targeted, doxorubicin-loaded minicells for effective treatment of human patients with recurrent glioblastoma.
Early functional and morphological brain disturbances in late-onset intrauterine growth restriction.
Starčević, Mirta; Predojević, Maja; Butorac, Dražan; Tumbri, Jasna; Konjevoda, Paško; Kadić, Aida Salihagić
2016-02-01
To determine whether the brain disturbances develop in late-onset intrauterine growth restriction (IUGR) before blood flow redistribution towards the fetal brain (detected by Doppler measurements in the middle cerebral artery and umbilical artery). Further, to evaluate predictive values of Doppler arterial indices and umbilical cord blood gases and pH for early functional and/or morphological brain disturbances in late-onset IUGR. This cohort study included 60 singleton term pregnancies with placental insufficiency caused late-onset IUGR (IUGR occurring after 34 gestational weeks). Umbilical artery resistance index (URI), middle cerebral artery resistance index (CRI), and cerebroumbilical (C/U) ratio (CRI/URI) were monitored once weekly. Umbilical blood cord samples (arterial and venous) were collected for the analysis of pO2, pCO2 and pH. Morphological neurological outcome was evaluated by cranial ultrasound (cUS), whereas functional neurological outcome by Amiel-Tison Neurological Assessment at Term (ATNAT). 50 fetuses had C/U ratio>1, and 10 had C/U ratio≤1; among these 10 fetuses, 9 had abnormal neonatal cUS findings and all 10 had non-optimal ATNAT. However, the total number of abnormal neurological findings was much higher. 32 neonates had abnormal cUS (53.37%), and 42 (70.00%) had non-optimal ATNAT. Furthermore, Doppler indices had higher predictive validity for early brain disturbances than umbilical cord blood gases and pH. C/U ratio had the highest predictive validity with threshold for adverse neurological outcome at value 1.13 (ROC analysis), i.e., 1.18 (party machine learning algorithm). Adverse neurological outcome at average values of C/U ratios>1 confirmed that early functional and/or structural brain disturbances in late-onset IUGR develop even before activation of fetal cardiovascular compensatory mechanisms, i.e., before Doppler signs of blood flow redistribution between the fetal brain and the placenta. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
MacDiarmid, Jennifer A.; Langova, Veronika; Bailey, Dale; Pattison, Scott T.; Pattison, Stacey L.; Christensen, Neil; Armstrong, Luke R.; Brahmbhatt, Vatsala N.; Smolarczyk, Katarzyna; Harrison, Matthew T.; Costa, Marylia; Mugridge, Nancy B.; Sedliarou, Ilya; Grimes, Nicholas A.; Kiss, Debra L.; Stillman, Bruce; Hann, Christine L.; Gallia, Gary L.; Graham, Robert M.; Brahmbhatt, Himanshu
2016-01-01
Background Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. Methodology/Principle Findings EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Conclusions/Significance Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of EGFR-targeted, doxorubicin-loaded minicells for effective treatment of human patients with recurrent glioblastoma. PMID:27050167
Mendez, Ivar; Sanchez-Pernaute, Rosario; Cooper, Oliver; Viñuela, Angel; Ferrari, Daniela; Björklund, Lars; Dagher, Alain; Isacson, Ole
2008-01-01
We report the first post-mortem analysis of two patients with Parkinson’s disease who received fetal midbrain transplants as a cell suspension in the striatum, and in one case also in the substantia nigra. These patients had a favourable clinical evolution and positive 18F-fluorodopa PET scans and did not develop motor complications. The surviving transplanted dopamine neurons were positively identified with phenotypic markers of normal control human substantia nigra (n = 3), such as tyrosine hydroxylase, G-protein-coupled inward rectifying current potassium channel type 2 (Girk2) and calbindin. The grafts restored the cell type that provides specific dopaminergic innervation to the most affected striatal regions in the parkinsonian brain. Such transplants were able to densely reinnervate the host putamen with new dopamine fibres. The patients received only 6 months of standard immune suppression, yet by post-mortem analysis 3–4 years after surgery the transplants appeared only mildly immunogenic to the host brain, by analysis of microglial CD45 and CD68 markers. This study demonstrates that, using these methods, dopamine neuronal replacement cell therapy can be beneficial for patients with advanced disease, and that changing technical approaches could have a favourable impact on efficacy and adverse events following neural transplantation. PMID:15872020
Hatchard, Taylor; Mioduszewski, Ola; Fall, Carley; Byron-Alhassan, Aziza; Fried, Peter; Smith, Andra M
2017-06-30
It is widely known that alcohol consumption adversely affects human health, particularly in the immature developing brains of adolescents and young adults, which may also have a long-lasting impact on executive functioning. The present study investigated the neural activity of 28 young adults from the Ottawa Prenatal Prospective Study (OPPS) using functional magnetic resonance imaging (fMRI). The purpose of this study was to discover the impact of regular low-level alcohol consumption on response inhibition as the participants performed a Go/No-Go task. Results indicated that, despite a lack of performance differences, young adults who use alcohol on a regular basis differ significantly from those who do not use alcohol regularly (if at all) with respect to their neural activity as the circuitry engaged in response inhibition is being challenged. Specifically, areas that showed significantly more activation in users compared to controls included the left hippocampus, parahippocampal gyrus, superior frontal gyrus, precentral gyrus, right superior parietal lobule, and the cerebellum. These results suggest that even in low amounts, regular consumption of alcohol may have a significant impact on neurophysiological functioning during response inhibition in the developing brain of youth. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Obajuluwa, Adejoke Olukayode; Akinyemi, Ayodele Jacob; Afolabi, Olakunle Bamikole; Adekoya, Khalid; Sanya, Joseph Olurotimi; Ishola, Azeez Olakunle
2017-01-01
Humans in modern society are exposed to an ever-increasing number of electromagnetic fields (EMFs) and some studies have demonstrated that these waves can alter brain function but the mechanism still remains unclear. Hence, this study sought to investigate the effect of 2.5 Ghz band radio-frequency electromagnetic waves (RF-EMF) exposure on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA expression level as well as locomotor function and anxiety-linked behaviour in male rats. Animals were divided into four groups namely; group 1 was control (without exposure), group 2-4 were exposed to 2.5 Ghz radiofrequency waves from an installed WI-FI device for a period of 4, 6 and 8 weeks respectively. The results revealed that WiFi exposure caused a significant increase in anxiety level and affect locomotor function. Furthermore, there was a significant decrease in AChE activity with a concomitant increase in AChE mRNA expression level in WiFi exposed rats when compared with control. In conclusions, these data showed that long term exposure to WiFi may lead to adverse effects such as neurodegenerative diseases as observed by a significant alteration on AChE gene expression and some neurobehavioral parameters associated with brain damage.
Epigenetic determinants of space radiation-induced cognitive dysfunction
Acharya, Munjal M.; Baddour, Al Anoud D.; Kawashita, Takumi; Allen, Barrett D.; Syage, Amber R.; Nguyen, Thuan H.; Yoon, Nicole; Giedzinski, Erich; Yu, Liping; Parihar, Vipan K.; Baulch, Janet E.
2017-01-01
Among the dangers to astronauts engaging in deep space missions such as a Mars expedition is exposure to radiations that put them at risk for severe cognitive dysfunction. These radiation-induced cognitive impairments are accompanied by functional and structural changes including oxidative stress, neuroinflammation, and degradation of neuronal architecture. The molecular mechanisms that dictate CNS function are multifaceted and it is unclear how irradiation induces persistent alterations in the brain. Among those determinants of cognitive function are neuroepigenetic mechanisms that translate radiation responses into altered gene expression and cellular phenotype. In this study, we have demonstrated a correlation between epigenetic aberrations and adverse effects of space relevant irradiation on cognition. In cognitively impaired irradiated mice we observed increased 5-methylcytosine and 5-hydroxymethylcytosine levels in the hippocampus that coincided with increased levels of the DNA methylating enzymes DNMT3a, TET1 and TET3. By inhibiting methylation using 5-iodotubercidin, we demonstrated amelioration of the epigenetic effects of irradiation. In addition to protecting against those molecular effects of irradiation, 5-iodotubercidin restored behavioral performance to that of unirradiated animals. The findings of this study establish the possibility that neuroepigenetic mechanisms significantly contribute to the functional and structural changes that affect the irradiated brain and cognition. PMID:28220892
Siporin, Sheldon
2014-01-01
Maladaptive patterns of substance use are serious social problems. Both pharmacological and nonpharmacological treatments are available, but nondrug options may be preferable because they avoid the expense and adverse side effects of psychotropic medication. Contingency management (CM) and nondrug social and recreational activities (NDSRAs) are based on operant conditioning principles and seek to decrease substance use by means of nondrug rewards. However, their efficacy may be hindered where brain reward circuitry is dysfunctional. Research shows that substance abuse biases neural reward systems in favor of drug-induced highs, while disrupting circadian-based rhythms. Circadian systems also have been found to influence human reward pathways. Possibly, a bidirectional relationship exists between circadian disturbance and substance abuse effects. If so, repair of abnormal circadian rhythms might help normalize reward response in substance abusers, with positive effects on CM or NDSRA treatment outcomes. Phototherapy has been effective in repairing circadian rhythms in persons with seasonal affective disorder and other chronobiological conditions. This article proposes that it similarly may repair circadian response in substance abusers, thereby normalizing brain reward systems. By doing so, it would enhance the efficacy of CM and NDSRA therapies and may also help prevent relapse. Given its low cost and ease of administration, phototherapy seems a promising avenue to pursue.
NASA Astrophysics Data System (ADS)
Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.
2009-12-01
Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.
Martin-Bastida, Antonio; Ward, Roberta J; Newbould, Rexford; Piccini, Paola; Sharp, David; Kabba, Christina; Patel, Maneesh C; Spino, Michael; Connelly, John; Tricta, Fernando; Crichton, Robert R; Dexter, David T
2017-05-03
Parkinson's disease (PD) is associated with increased iron levels in the substantia nigra (SNc). This study evaluated whether the iron chelator, deferiprone, is well tolerated, able to chelate iron from various brain regions and improve PD symptomology. In a randomised double-blind, placebo controlled trial, 22 early onset PD patients, were administered deferiprone, 10 or 15 mg/kg BID or placebo, for 6 months. Patients were evaluated for PD severity, cognitive function, depression rating and quality of life. Iron concentrations were assessed in the substantia nigra (SNc), dentate and caudate nucleus, red nucleus, putamen and globus pallidus by T2* MRI at baseline and after 3 and 6 months of treatment. Deferiprone therapy was well tolerated and was associated with a reduced dentate and caudate nucleus iron content compared to placebo. Reductions in iron content of the SNc occurred in only 3 patients, with no changes being detected in the putamen or globus pallidus. Although 30 mg/kg deferiprone treated patients showed a trend for improvement in motor-UPDRS scores and quality of life, this did not reach significance. Cognitive function and mood were not adversely affected by deferiprone therapy. Such data supports more extensive clinical trials into the potential benefits of iron chelation in PD.
Ammerman, Seth
2014-04-01
Marijuana use in pediatric populations remains an ongoing concern, and marijuana use by adolescents had known medical, psychological, and cognitive side effects. Marijuana alters brain development and has detrimental effects on brain structure and function in ways that are incompletely understood at this point in time. Furthermore, marijuana smoke contains tar and other harmful chemicals, so marijuana cannot be recommended by physicians. At this time, no studies suggest a benefit of marijuana use by children and adolescents. In the context of limited but clear evidence showing harm or potential harm from marijuana use by adolescents, any recommendations for medical marijuana use by adolescents are based on research studies with adults and on anecdotal evidence. Criminal prosecution for marijuana possession adversely affects hundreds of thousands of youth yearly in the United States, particularly minority youth. Current evidence does not support a focus on punishment for youth who use marijuana. Rather, drug education and treatment programs should be encouraged to better help youth who are experimenting with or are dependent on marijuana. Decriminalization of recreational use of marijuana by adults has not led to an increase in youth use rates of recreational marijuana. Thus, decriminalization may be a reasonable alternative to outright criminalization, as long as it is coupled with drug education and treatment programs. The effect of outright legalization of adult recreational use of marijuana on youth use is unknown.
Alonso, Joan F; Romero, Sergio; Mañanas, Miguel A; Alcalá, Marta; Antonijoan, Rosa M; Giménez, Sandra
2016-04-14
Sleep deprivation (SD) has adverse effects on mental and physical health, affecting the cognitive abilities and emotional states. Specifically, cognitive functions and alertness are known to decrease after SD. The aim of this work was to identify the directional information transfer after SD on scalp EEG signals using transfer entropy (TE). Using a robust methodology based on EEG recordings of 18 volunteers deprived from sleep for 36 h, TE and spectral analysis were performed to characterize EEG data acquired every 2 h. Correlation between connectivity measures and subjective somnolence was assessed. In general, TE showed medium- and long-range significant decreases originated at the occipital areas and directed towards different regions, which could be interpreted as the transfer of predictive information from parieto-occipital activity to the rest of the head. Simultaneously, short-range increases were obtained for the frontal areas, following a consistent and robust time course with significant maps after 20 h of sleep deprivation. Changes during sleep deprivation in brain network were measured effectively by TE, which showed increased local connectivity and diminished global integration. TE is an objective measure that could be used as a potential measure of sleep pressure and somnolence with the additional property of directed relationships.
Ruban, Angela; Malina, Katayun Cohen-Kashi; Cooper, Itzik; Graubardt, Nadine; Babakin, Leonid; Jona, Ghil; Teichberg, Vivian I
2015-01-01
The sporadic form of the disease affects the majority of amyotrophic lateral sclerosis (ALS) patients. The role of glutamate (Glu) excitotoxicity in ALS has been extensively documented and remains one of the prominent hypotheses of ALS pathogenesis. In light of this evidence, the availability of a method to remove excess Glu from brain and spinal cord extracellular fluids without the need to deliver drugs across the blood-brain barrier and with minimal or no adverse effects may provide a major therapeutic asset, which is the primary aim of this study. The therapeutic efficacy of the combined treatment with recombinant Glu-oxaloacetate-transaminase (rGOT) and its co-factor oxaloacetic acid (OxAc) has been tested in an animal model of sporadic ALS. We found that OxAc/rGOT treatment provides significant neuroprotection to spinal cord motor neurons. It also slows down the development of motor weakness and prolongs survival. In this study we bring evidence that the administration of Glu scavengers to rats with sporadic ALS inhibited the massive death of spinal cord motor neurons, slowed the onset of motor weakness and prolonged survival. This treatment may be of high clinical significance for the future treatment of chronic neurodegenerative diseases. © 2015 S. Karger AG, Basel.
Bevacizumab in Combination with Chemotherapy for Colorectal Brain Metastasis.
Finkelmeier, Fabian; You, Se-Jong; Waidmann, Oliver; Wolff, Robert; Zeuzem, Stefan; Bähr, Oliver; Trojan, Jörg
2016-03-01
Brain metastases are rare in patients with colorectal cancer, but the incidence is expected to rise due to prolonged survival resulting from more effective regimens including anti-EGF-receptor and anti-angiogenic antibodies. Because of the potential fear of intracranial hemorrhage, patients with colorectal brain metastases have been excluded from clinical trials involving bevacizumab or aflibercept. Five patients with colorectal brain metastases treated with bevacizumab-containing chemotherapy regimen following either neurosurgery, radiosurgery, or whole-brain radiotherapy were identified between 2009 and 2014. The clinicopathological data and outcomes for these patients were reviewed. Mean time to disease progression concerning brain metastases was 14.8 months (range 5-25). Overall survival was 26.2 months (range 7-42 months) and overall survival since diagnosis of brain metastases was 20.6 month (7-42). Best response was a partial response in two and a stable disease in three patients. Treatment-related adverse events were mild hypertension (grade 1), diarrhea (grade 1), and fatigue (grade 1). No intracranial hemorrhage was observed. Bevacizumab in combination with chemotherapy is a feasible option for palliative treatment of patients with colorectal brain metastasis with a good safety profile.
Changes in Brain Metabolite Concentrations after Neonatal Hypoxic-ischemic Encephalopathy.
Shibasaki, Jun; Aida, Noriko; Morisaki, Naho; Tomiyasu, Moyoko; Nishi, Yuri; Toyoshima, Katsuaki
2018-06-12
Purpose To investigate the time-course changes and predictive utility of brain metabolite concentrations in neonatal hypoxic-ischemic encephalopathy (HIE). Materials and Methods Sixty-eight neonates (age, 35-41 gestational weeks) with HIE were admitted to a neonatal intensive care unit between September 2009 and March 2016 and examined by using proton MR spectroscopy at 18-96 hours (n = 25) and 7-14 days (n = 64) after birth (35-43 postmenstrual weeks) to estimate metabolite concentrations in the deep gray matter. Adverse outcome was defined as death or neurodevelopmental impairment at 18-22 months of age. Areas under the receiver operating characteristic curves were calculated to evaluate the prognostic values of metabolites. Results At 18-96 hours, N-acetylaspartate and creatine concentrations were lower, whereas lactate, and glutamate and glutamine (Glx) concentrations were higher in neonates with adverse outcomes than in those with favorable outcomes. Metabolite concentrations at 18-96 hours decreased during days 7-14 in neonates with adverse outcomes but did not change in those with favorable outcomes. For N-acetylaspartate, creatine, lactate, and Glx concentrations measured at 18-96 hours to predict adverse outcomes, areas under the receiver operating characteristic curve were 0.98, 0.89, 0.96, and 0.88, respectively, whereas at 7-14 days, the areas under the receiver operating characteristic curve were 0.97, 0.97, 0.59, and 0.36, respectively. Conclusion Time-dependent reductions in N-acetylaspartate and creatine concentrations at both 18-96 hours and 7-14 days accurately predicted adverse outcomes. However, higher lactate and glutamate and glutamine concentrations were often transient. © RSNA, 2018 Online supplemental material is available for this article.
Subject Reaction to Human-Caused and Naturally-Occurring Radioactive Threat.
ERIC Educational Resources Information Center
Belford, Susan; Gibbs, Margaret
While research has shown that people are adversely psychologically affected by knowledge that their communities have been toxically contaminated, it has been suggested that those who see a disaster as naturally occurring tend to be less adversely affected than those who see a disaster as caused by human acts. To examine this issue, questionnaires…
Predictors of NCLEX-RN Success of Associate Degree Graduates: A Correlational Study
ERIC Educational Resources Information Center
Kehm, Bonny J.
2013-01-01
The outcome of Associate Degree Nursing (ADN) students not passing the initial National Council of Licensure Examination for Registered Nursing (NCLEX-RN) can adversely affect schools of nursing. This failure also adversely affects the national nursing shortage. The declining national pass rates on the NCLEX-RN for ADN graduates and the increasing…
Do environmental effects on human emotions cause cardiovascular disorders?
Rosenman, R H
1997-01-01
Environmental influences on human health include the effects of toxic materials and adverse ecological factors. Natural milieu stressors also affect emotions that may adversely affect cardiovascular function and precipitate or otherwise contribute to complications of cardiovascular diseases. However, although variously hypothesized, there is inadequate evidence that they directly contribute to the pathogenesis of sustained hypertension or coronary atherosclerosis.
Church, M W; Adams, B R; Anumba, J I; Jackson, D A; Kruger, M L; Jen, K-L C
2012-01-01
Antenatal corticosteroid (AC) treatment is given to pregnant women at risk for preterm birth to reduce infant morbidity and mortality by enhancing lung and brain maturation. However, there is no accepted regimen on how frequently AC treatments should be given and some studies found that repeated AC treatments can cause growth retardation and brain damage. Our goal was to assess the dose-dependent effects of repeated AC treatment and estimate the critical number of AC courses to cause harmful effects on the auditory brainstem response (ABR), a sensitive measure of brain development, neural transmission and hearing loss. We hypothesized that repeated AC treatment would have harmful effects on the offspring's ABRs and growth only if more than 3 AC treatment courses were given. To test this hypothesis, pregnant Wistar rats were given either a high regimen of AC (HAC), a moderate regimen (MAC), a low regimen (LAC), or saline (SAL). An untreated control (CON) group was also used. Simulating the clinical condition, the HAC dams received 0.2mg/kg Betamethasone (IM) twice daily for 6 days during gestation days (GD) 17-22. The MAC dams received 3 days of AC treatment followed by 3 days of saline treatment on GD 17-19 and GD 20-22, respectively. The LAC dams received 1 day of AC treatment followed by 5 days of saline treatment on GD 17 and GD 18-22, respectively. The SAL dams received 6 days of saline treatment from GD 17 to 22 (twice daily, isovolumetric to the HAC injections, IM). The offspring were ABR-tested on postnatal day 24. Results indicated that the ABR's P4 latencies (neural transmission time) were significantly prolonged (worse) in the HAC pups and that ABR's thresholds were significantly elevated (worse) in the HAC and MAC pups when compared to the CON pups. The HAC and MAC pups were also growth retarded and had higher postnatal mortality than the CON pups. The SAL and LAC pups showed little or no adverse effects. In conclusion, repeated AC treatment had harmful effects on the rat offspring's ABRs, postnatal growth and survival. The prolonged ABR latencies reflect slowed neural transmission times along the auditory nerve and brainstem auditory pathway. The elevated ABR thresholds reflect hearing deficits. We concluded that repeated AC treatment can have harmful neurological, sensory and developmental effects on the rat offspring. These effects should be considered when weighing the benefits and risks of repeated AC treatment and when monitoring and managing the prenatally exposed child for possible adverse effects. Copyright © 2011 Elsevier Inc. All rights reserved.
Neuroscience of affect: Brain mechanisms of pleasure and displeasure
Berridge, Kent C.; Kringelbach, Morten L.
2013-01-01
Affective neuroscience aims to understand how affect (pleasure or displeasure) is created by brains. Progress is aided by recognizing that affect has both objective and subjective features. Those dual aspects reflect that affective reactions are generated by neural mechanisms, selected in evolution based on their real (objective) consequences for genetic fitness. We review evidence for neural representation of pleasure in the brain (gained largely from neuroimaging studies), and evidence for the causal generation of pleasure (gained largely from brain manipulation studies). We suggest that representation and causation may actually reflect somewhat separable neuropsychological functions. Representation reaches an apex in limbic regions of prefrontal cortex, especially orbitofrontal cortex, influencing decisions and affective regulation. Causation of core pleasure or liking reactions is much more subcortically weighted, and sometimes surprisingly localized. Pleasure liking is especially generated by restricted hedonic hotspot circuits in nucleus accumbens and ventral pallidum. Another example of localized valence generation, beyond hedonic hotspots, is an affective keyboard mechanism in nucleus accumbens for releasing intense motivations such as either positively-valenced desire and/or negatively-valenced dread. PMID:23375169
Lindquist, Kristen A; Satpute, Ajay B; Wager, Tor D; Weber, Jochen; Barrett, Lisa Feldman
2016-05-01
The ability to experience pleasant or unpleasant feelings or to represent objects as "positive" or "negative" is known as representing hedonic "valence." Although scientists overwhelmingly agree that valence is a basic psychological phenomenon, debate continues about how to best conceptualize it scientifically. We used a meta-analysis of 397 functional magnetic resonance imaging (fMRI) and positron emission tomography studies (containing 914 experimental contrasts and 6827 participants) to test 3 competing hypotheses about the brain basis of valence: the bipolarity hypothesis that positive and negative affect are supported by a brain system that monotonically increases and/or decreases along the valence dimension, the bivalent hypothesis that positive and negative affect are supported by independent brain systems, and the affective workspace hypothesis that positive and negative affect are supported by a flexible set of valence-general regions. We found little evidence for the bipolar or bivalent hypotheses. Findings instead supported the hypothesis that, at the level of brain activity measurable by fMRI, valence is flexibly implemented across instances by a set of valence-general limbic and paralimbic brain regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Shumake, Jason; Colorado, Rene A; Barrett, Douglas W; Gonzalez-Lima, F
2010-07-09
Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for the treatment of affective disorders. We hypothesized that fluoxetine antidepressant effects may be mediated by decreasing metabolism in the habenula and increasing metabolism in the ventral tegmental area. We measured the effects of fluoxetine on forced swim behavior and regional brain cytochrome oxidase activity in congenitally helpless rats treated for 2 weeks with fluoxetine (5mg/kg, i.p., daily). Fluoxetine reduced immobility in the forced swim test as anticipated, but congenitally helpless rats responded in an atypical manner, i.e., increasing climbing without affecting swimming. As hypothesized, fluoxetine reduced metabolism in the habenula and increased metabolism in the ventral tegmental area. In addition, fluoxetine reduced the metabolism of the hippocampal dentate gyrus and dorsomedial prefrontal cortex. This study provided the first detailed mapping of the regional brain effects of an antidepressant drug in congenitally helpless rats. All of the effects were consistent with previous studies that have metabolically mapped the effects of serotonergic antidepressants in the normal rat brain, and were in the predicted direction of metabolic normalization of the congenitally helpless rat for all affected brain regions except the prefrontal cortex. Copyright (c) 2010 Elsevier B.V. All rights reserved.
2016-02-01
changes in ambient conditions such as cabin pressure and temperature could potentially have detrimental effects on the already vulnerable brain. There...during simulated long-range aero-medical evacuation has adverse effects on brain blood flow and tissue oxygenation , as well as lung function in swine...is a dearth of knowledge about the effects of long range aero-medical evacuation on injured organs, as well as an emerging published database
Zakirova, Zuchra; Reed, Jon; Crynen, Gogce; Horne, Lauren; Hassan, Samira; Mathura, Venkatarajan; Mullan, Michael; Crawford, Fiona; Ait-Ghezala, Ghania
2017-09-01
Long-term consequences of combined pyridostigmine bromide (PB) and permethrin (PER) exposure in C57BL6/J mice using a well-characterized mouse model of exposure to these Gulf War (GW) agents were explored at the protein level. We used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane-bound protein fractions from brain samples using two orthogonal isotopic labeling LC-MS/MS proteomic approaches-stable isotope dimethyl labeling and iTRAQ. The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation. Collectively, our work identified key pathways which were chronically impacted in the mouse CNS following acute GW agent exposure, this may lead to the identification of potential targets for therapeutic intervention in the future. Long-term consequences of combined PB and PER exposure in C57BL6/J mice using a well-characterized mouse model of exposure to these GW agents were explored at the protein level. Expanding on earlier work, we used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane-bound protein fractions from brain samples using two orthogonal isotopic labeling LC-MS/MS proteomic approaches-stable isotope dimethyl labeling and iTRAQ. The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation at 5 months postexposure to PB + PER. © 2017 The Authors. PROTEOMICS - Clinical Applications published by WILEY-VCH Verlag GmbH & Co. KGaA.
Zakirova, Zuchra; Reed, Jon; Crynen, Gogce; Horne, Lauren; Hassan, Samira; Mathura, Venkatarajan; Mullan, Michael; Crawford, Fiona
2017-01-01
Purpose Long‐term consequences of combined pyridostigmine bromide (PB) and permethrin (PER) exposure in C57BL6/J mice using a well‐characterized mouse model of exposure to these Gulf War (GW) agents were explored at the protein level. Experimental design We used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane‐bound protein fractions from brain samples using two orthogonal isotopic labeling LC‐MS/MS proteomic approaches—stable isotope dimethyl labeling and iTRAQ. Results The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. Conclusions and clinical relevance The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation. Collectively, our work identified key pathways which were chronically impacted in the mouse CNS following acute GW agent exposure, this may lead to the identification of potential targets for therapeutic intervention in the future. Long‐term consequences of combined PB and PER exposure in C57BL6/J mice using a well‐characterized mouse model of exposure to these GW agents were explored at the protein level. Expanding on earlier work, we used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane‐bound protein fractions from brain samples using two orthogonal isotopic labeling LC‐MS/MS proteomic approaches—stable isotope dimethyl labeling and iTRAQ. The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation at 5 months postexposure to PB + PER. PMID:28371386
Lin, A; Nguy, C H; Shic, F; Ross, B D
2001-09-15
Methylsulfonylmethane (MSM) is a widely available 'alternative' medicine. In vivo magnetic resonance spectroscopy (MRS) was used to detect and quantify MSM in the brains of four patients with memory loss and in three normal volunteers all of who had ingested MSM at the recommended doses of 1-3 g daily. MSM was detected in all subjects at concentrations of 0.42-3.40 mmole/kg brain and was equally distributed between gray and white matter. MSM was undetectable in drug-naïve normal subjects (N=25), patients screened for 'toxic exposure' (N=50) or patients examined with 1H MRS for the diagnosis of probable Alzheimer Disease (N=520) between 1991 and 2001. No adverse clinical or neurochemical effects were observed. Appearance of MSM in significant concentrations in the human brain indicates ready transfer across the intact blood-brain barrier, of a compound with no known medical benefits.
Regional anatomy of the pedunculopontine nucleus: relevance for deep brain stimulation.
Fournier-Gosselin, Marie-Pierre; Lipsman, Nir; Saint-Cyr, Jean A; Hamani, Clement; Lozano, Andres M
2013-09-01
The pedunculopontine nucleus (PPN) is currently being investigated as a potential deep brain stimulation target to improve gait and posture in Parkinson's disease. This review examines the complex anatomy of the PPN region and suggests a functional mapping of the surrounding nuclei and fiber tracts that may serve as a guide to a more accurate placement of electrodes while avoiding potentially adverse effects. The relationships of the PPN were examined in different human brain atlases. Schematic representations of those structures in the vicinity of the PPN were generated and correlated with their potential stimulation effects. By providing a functional map and representative schematics of the PPN region, we hope to optimize the placement of deep brain stimulation electrodes, thereby maximizing safety and clinical efficacy. © 2013 International Parkinson and Movement Disorder Society.
Absence of the Septum Pellucidum
... accompanies various malformations of the brain that affect intelligence, behavior, and the neurodevelopmental process, and seizures may ... accompanies various malformations of the brain that affect intelligence, behavior, and the neurodevelopmental process, and seizures may ...
Morphological brain measures of cortico-limbic inhibition related to resilience.
Gupta, Arpana; Love, Aubrey; Kilpatrick, Lisa A; Labus, Jennifer S; Bhatt, Ravi; Chang, Lin; Tillisch, Kirsten; Naliboff, Bruce; Mayer, Emeran A
2017-09-01
Resilience is the ability to adequately adapt and respond to homeostatic perturbations. Although resilience has been associated with positive health outcomes, the neuro-biological basis of resilience is poorly understood. The aim of the study was to identify associations between regional brain morphology and trait resilience with a focus on resilience-related morphological differences in brain regions involved in cortico-limbic inhibition. The relationship between resilience and measures of affect were also investigated. Forty-eight healthy subjects completed structural MRI scans. Self-reported resilience was measured using the Connor and Davidson Resilience Scale. Segmentation and regional parcellation of images was performed to yield a total of 165 regions. Gray matter volume (GMV), cortical thickness, surface area, and mean curvature were calculated for each region. Regression models were used to identify associations between morphology of regions belonging to executive control and emotional arousal brain networks and trait resilience (total and subscales) while controlling for age, sex, and total GMV. Correlations were also conducted between resilience scores and affect scores. Significant associations were found between GM changes in hypothesized brain regions (subparietal sulcus, intraparietal sulcus, amygdala, anterior mid cingulate cortex, and subgenual cingulate cortex) and resilience scores. There were significant positive correlations between resilience and positive affect and negative correlations with negative affect. Resilience was associated with brain morphology of regions involved in cognitive and affective processes related to cortico-limbic inhibition. Brain signatures associated with resilience may be a biomarker of vulnerability to disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Pan, Wei; Gao, Xuemei; Shi, Shuo; Liu, Fuqu; Li, Chao
2017-01-01
A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won't significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated.
Pan, Wei; Gao, Xuemei; Shi, Shuo; Liu, Fuqu; Li, Chao
2018-01-01
A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won’t significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated. PMID:29375416
Lupien, Sonia J; Juster, Robert-Paul; Raymond, Catherine; Marin, Marie-France
2018-04-01
For the last five decades, science has managed to delineate the mechanisms by which stress hormones can impact on the human brain. Receptors for glucocorticoids are found in the hippocampus, amygdala and frontal cortex, three brain regions involved in memory processing and emotional regulation. Studies have shown that chronic exposure to stress is associated with reduced volume of the hippocampus and that chronic stress can modulate volumes of both the amygdala and frontal cortex, suggesting neurotoxic effects of stress hormones on the brain. Yet, other studies report that exposure to early adversity and/or familial/social stressors can increase vulnerability to stress in adulthood. Models have been recently developed to describe the roles that neurotoxic and vulnerability effects can have on the developing brain. These models suggest that developing early stress interventions could potentially counteract the effects of chronic stress on the brain and results going along with this hypothesis are summarized. Copyright © 2018 Elsevier Inc. All rights reserved.
Raison, Charles L.; Hale, Matthew W.; Williams, Lawrence E.; Wager, Tor D.; Lowry, Christopher A.
2015-01-01
Current theories suggest that the brain is the sole source of mental illness. However, affective disorders, and major depressive disorder (MDD) in particular, may be better conceptualized as brain-body disorders that involve peripheral systems as well. This perspective emphasizes the embodied, multifaceted physiology of well-being, and suggests that afferent signals from the body may contribute to cognitive and emotional states. In this review, we focus on evidence from preclinical and clinical studies suggesting that afferent thermosensory signals contribute to well-being and depression. Although thermoregulatory systems have traditionally been conceptualized as serving primarily homeostatic functions, increasing evidence suggests neural pathways responsible for regulating body temperature may be linked more closely with emotional states than previously recognized, an affective warmth hypothesis. Human studies indicate that increasing physical warmth activates brain circuits associated with cognitive and affective functions, promotes interpersonal warmth and prosocial behavior, and has antidepressant effects. Consistent with these effects, preclinical studies in rodents demonstrate that physical warmth activates brain serotonergic neurons implicated in antidepressant-like effects. Together, these studies suggest that (1) thermosensory pathways interact with brain systems that control affective function, (2) these pathways are dysregulated in affective disorders, and (3) activating warm thermosensory pathways promotes a sense of well-being and has therapeutic potential in the treatment of affective disorders. PMID:25628593
Castro, Beatriz; Sánchez, Pilar; Torres, Jesús M; Ortega, Esperanza
2015-10-01
Early-life exposure to the endocrine disruptor bisphenol A (BPA) affects brain function and behavior, which might be attributed to its interference with hormonal steroid signaling and/or neurotransmitter systems. Alternatively, the use of structural analogs of BPA, mainly bisphenol F (BPF) and bisphenol S (BPS), has increased recently. However, limited in vivo toxicity data exist. We investigated the effects of BPA, BPF and BPS on 5α-reductase (5α-R), a key enzyme involved in neurosteroidogenesis, as well as on dopamine (DA)- and serotonin (5-HT)-related genes, in the prefrontal cortex (PFC) of juvenile female rats. Gestating Wistar rats were treated with either vehicle or 10 μg/kg/day of BPA, BPF or BPS from gestational day 12 to parturition. Then, female pups were exposed from postnatal day 1 through day 21 (PND21), when they were euthanized and RT-PCR, western blot and quantitative PCR-array experiments were performed. BPA decreased 5α-R2 and 5α-R3 mRNA and protein levels, while both BPF and BPS decreased 5α-R3 mRNA levels in PFC at PND21. Further, BPA, BPF and BPS significantly altered, respectively, the transcription of 25, 56 and 24 genes out of the 84 DA and 5-HT-related genes assayed. Of particular interest was the strong induction by all these bisphenols of Cyp2d4, implicated in corticosteroids synthesis. Our results demonstrate for the first time that BPA, BPF and BPS differentially affect 5α-R and genes related to DA/5-HT systems in the female PFC. In vivo evidence of the potential adverse effects of BPF and BPS in the brain of mammals is provided in this work, raising questions about the safety of these chemicals as substitutes for BPA. Copyright © 2015 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Environmental Effects § 285.816 What must I do if environmental or other conditions adversely affect a cable... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I do if environmental or other... EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Environmental and Safety Management, Inspections, and...
Alpár, Alán; Di Marzo, Vincenzo; Harkany, Tibor
2016-04-01
Endocannabinoids regulate brain development via modulating neural proliferation, migration, and the differentiation of lineage-committed cells. In the fetal nervous system, (endo)cannabinoid-sensing receptors and the enzymatic machinery of endocannabinoid metabolism exhibit a cellular distribution map different from that in the adult, implying distinct functions. Notably, cannabinoid receptors serve as molecular targets for the psychotropic plant-derived cannabis constituent Δ(9)-tetrahydrocannainol, as well as synthetic derivatives (designer drugs). Over 180 million people use cannabis for recreational or medical purposes globally. Recreational cannabis is recognized as a niche drug for adolescents and young adults. This review combines data from human and experimental studies to show that long-term and heavy cannabis use during pregnancy can impair brain maturation and predispose the offspring to neurodevelopmental disorders. By discussing the mechanisms of cannabinoid receptor-mediated signaling events at critical stages of fetal brain development, we organize histopathologic, biochemical, molecular, and behavioral findings into a logical hypothesis predicting neuronal vulnerability to and attenuated adaptation toward environmental challenges (stress, drug exposure, medication) in children affected by in utero cannabinoid exposure. Conversely, we suggest that endocannabinoid signaling can be an appealing druggable target to dampen neuronal activity if pre-existing pathologies associate with circuit hyperexcitability. Yet, we warn that the lack of critical data from longitudinal follow-up studies precludes valid conclusions on possible delayed and adverse side effects. Overall, our conclusion weighs in on the ongoing public debate on cannabis legalization, particularly in medical contexts. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Andersen, Susan L
2016-11-01
Adolescence as highlighted in this special issue is a period of tremendous growth, synaptic exuberance, and plasticity, but also a period for the emergence of mental illness and addiction. This commentary aims to stimulate research on prevention science to reduce the impact of early life events that often manifest during adolescence. By promoting a better understanding of what creates a normal and abnormal trajectory, the reviews by van Duijvenvoorde et al., Kilford et al., Lichenstein et al., and Tottenham and Galvan in this special issue comprehensively describe how the adolescent brain develops under typical conditions and how this process can go awry in humans. Preclinical reviews also within this issue describe how adolescents have prolonged extinction periods to maximize learning about their environment (Baker et al.), whereas Schulz and Sisk focus on the importance of puberty and how it interacts with stress (Romeo). Caballero and Tseng then set the stage of describing the neural circuitry that is often central to these changes and psychopathology. Factors that affect the mis-wiring of the brain for illness, including prenatal exposure to anti-mitotic agents (Gomes et al.) and early life stress and inflammation (Schwarz and Brenhouse), are included as examples of how exposure to early adversity manifests. These reviews are synthesized and show how information from the maturational stages that precede or occur during adolescence is likely to hold the key towards optimizing development to produce an adolescent and adult that is resilient and well adapted to their environment. Copyright © 2016 Elsevier Ltd. All rights reserved.