Science.gov

Sample records for adversely affect cell

  1. Pancreatic β-Cell Adaptive Plasticity in Obesity Increases Insulin Production but Adversely Affects Secretory Function.

    PubMed

    Alarcon, Cristina; Boland, Brandon B; Uchizono, Yuji; Moore, Patrick C; Peterson, Bryan; Rajan, Suryalekha; Rhodes, Olivia S; Noske, Andrew B; Haataja, Leena; Arvan, Peter; Marsh, Bradly J; Austin, Jotham; Rhodes, Christopher J

    2016-02-01

    Pancreatic β-cells normally produce adequate insulin to control glucose homeostasis, but in obesity-related diabetes, there is a presumed deficit in insulin production and secretory capacity. In this study, insulin production was assessed directly in obese diabetic mouse models, and proinsulin biosynthesis was found to be contrastingly increased, coupled with a significant expansion of the rough endoplasmic reticulum (without endoplasmic reticulum stress) and Golgi apparatus, increased vesicular trafficking, and a depletion of mature β-granules. As such, β-cells have a remarkable capacity to produce substantial quantities of insulin in obesity, which are then made available for immediate secretion to meet increased metabolic demand, but this comes at the price of insulin secretory dysfunction. Notwithstanding, it can be restored. Upon exposing isolated pancreatic islets of obese mice to normal glucose concentrations, β-cells revert back to their typical morphology with restoration of regulated insulin secretion. These data demonstrate an unrealized dynamic adaptive plasticity of pancreatic β-cells and underscore the rationale for transient β-cell rest as a treatment strategy for obesity-linked diabetes. PMID:26307586

  2. Folic Acid Supplementation Adversely Affects Chemosensitivity of Colon Cancer Cells to 5-fluorouracil.

    PubMed

    Ishiguro, Lisa; Yang, Michael; Sohn, Kyoung-Jin; Streutker, Catherine J; Grin, Andrea; Croxford, Ruth; Kim, Young-In

    2016-07-01

    Folic acid (FA) fortification and widespread supplemental use have significantly increased folate status in North America. Furthermore, >50% of colorectal cancer patients use FA supplement. The increased folate status may interfere with cancer chemotherapy. We investigated the effect of FA supplementation on chemosensitivity of human colon cancer cells to 5-fluorouracil (5-FU) using a xenograft model. Mice harboring human HCT116 colon cancer xenografts were randomized to receive the control, or 4× or 12.5× supplemental levels of FA. Within each diet group, mice were randomized to receive 5-FU+leucovorin or saline and xenograft growth and characteristics were determined. The expression of genes involved in folate metabolism and cancer treatment was determined. FA supplementation and 5-FU significantly interacted to influence xenograft growth (P < 0.007). At the control level, 5-FU significantly inhibited the growth of the xenografts (P < 0.0001). However, at the 4× supplemental level, 5-FU-treated xenografts grew faster than untreated xenografts (P = 0.048) while at the 12.5× supplemental level, 5-FU exhibited no effect. Cell proliferation, degree of necrosis, and expression of the selected genes did not significantly differ by the supplemental levels of FA. Our data suggest that FA supplementation may be detrimental to 5-FU chemotherapy of colon cancer and pose public health concern. PMID:27175995

  3. Hyperinsulinemia adversely affects lung structure and function.

    PubMed

    Singh, Suchita; Bodas, Manish; Bhatraju, Naveen K; Pattnaik, Bijay; Gheware, Atish; Parameswaran, Praveen Kolumam; Thompson, Michael; Freeman, Michelle; Mabalirajan, Ulaganathan; Gosens, Reinoud; Ghosh, Balaram; Pabelick, Christina; Linneberg, Allan; Prakash, Y S; Agrawal, Anurag

    2016-05-01

    There is limited knowledge regarding the consequences of hyperinsulinemia on the lung. Given the increasing prevalence of obesity, insulin resistance, and epidemiological associations with asthma, this is a critical lacuna, more so with inhaled insulin on the horizon. Here, we demonstrate that insulin can adversely affect respiratory health. Insulin treatment (1 μg/ml) significantly (P < 0.05) increased the proliferation of primary human airway smooth muscle (ASM) cells and induced collagen release. Additionally, ASM cells showed a significant increase in calcium response and mitochondrial respiration upon insulin exposure. Mice administered intranasal insulin showed increased collagen deposition in the lungs as well as a significant increase in airway hyperresponsiveness. PI3K/Akt mediated activation of β-catenin, a positive regulator of epithelial-mesenchymal transition and fibrosis, was observed in the lungs of insulin-treated mice and lung cells. Our data suggests that hyperinsulinemia may have adverse effects on airway structure and function. Insulin-induced activation of β-catenin in lung tissue and the contractile effects on ASM cells may be causally related to the development of asthma-like phenotype. PMID:26919895

  4. Lactate adversely affects the in vitro formation of endothelial cell tubular structures through the action of TGF-{beta}1

    SciTech Connect

    Schmid, Stephan A. . E-mail: leoni.kunz-schughart@oncoray.de; Gaumann, Andreas; Wondrak, Marit; Eckermann, Christoph; Schulte, Stephanie; Mueller-Klieser, Wolfgang; Wheatley, Denys N.; Kunz-Schughart, Leoni A.

    2007-07-15

    When lactate accumulation in a tumor microenvironment reaches an average concentration of 10-20 mM, it tends to reflect a high degree of malignancy. However, the hypothesis that tumor-derived lactate has a number of partially adverse biological effects on malignant and tumor-associated host cells requires further evidence. The present study attempted to evaluate the impact of lactate on the process of angiogenesis, in particular on the formation of tubular structures. The endothelial cell (EC) network in desmoplastic breast tumors is primarily located in areas of reactive fibroblastic stroma. We employed a fibroblast-endothelial cell co-culture model as in vitro angiogenesis system normally producing florid in vitro tubule formation to analyze this situation. In contrast to previous studies, we found that lactate significantly reduces EC network formation in a dose-dependent manner as quantified by semi-automated morphometric analyses following immunohistochemical staining. The decrease in CD31-positive tubular structures and the number of intersections was independent of VEGF supplementation and became more pronounced in the presence of protons. The number of cells, primarily of the fibroblast population, was reduced but cell loss could not be attributed to a decrease in proliferative activity or pronounced apoptotic cell death. Treatment with 10 mM lactate was accompanied by enhanced mRNA expression and release of TGF-{beta}1, which also shows anti-angiogenic activity in the model. Both TGF-{beta}1 and lactate induced myofibroblastic differentiation adjacent to the EC tubular structures. The lactate response on the EC network was diminished by TGF-{beta}1 neutralization, indicating a causal relationship between lactate and TGF-{beta}1 in the finely tuned processes of vessel formation and maturation which may also occur in vivo within tumor tissue.

  5. Feline Foamy Virus Adversely Affects Feline Mesenchymal Stem Cell Culture and Expansion: Implications for Animal Model Development

    PubMed Central

    Kol, Amir; Murphy, Brian; Walker, Naomi J.; Wood, Joshua A.; Clark, Kaitlin; Verstraete, Frank J.M.; Borjesson, Dori L.

    2015-01-01

    Abstract Mesenchymal stem cells (MSCs) are a promising therapeutic option for various immune-mediated and inflammatory disorders due to their potent immunomodulatory and trophic properties. Naturally occurring diseases in large animal species may serve as surrogate animal models of human disease, as they may better reflect the complex genetic, environmental, and physiologic variation present in outbred populations. We work with naturally occurring diseases in large animal species to better understand how MSCs work and to facilitate optimal translation of MSC-based therapies. We are investigating the use of MSC therapy for a chronic oral inflammatory disease in cats. During our efforts to expand fat-derived feline MSCs (fMSCs), we observed that∼50% of the cell lines developed giant foamy multinucleated cells in later passages. These morphologic alterations were associated with proliferation arrest. We hypothesized that the cytopathic effects were caused by infection with a retrovirus, feline foamy virus (FFV). Using transmission electron microscopy, polymerase chain reaction, and in vitro assays, we determined that syncytial cell formation and proliferation arrest in fMSCs were caused by FFV strains that were highly homologous to previously reported FFV strains. We determined that the antiretroviral drug, tenofovir, may be used to support ex vivo expansion and salvage of FFV-infected fMSC lines. MSC lines derived from specific pathogen-free cats do not appear to be infected with FFV and may be a source of allogeneic fMSCs for clinical application. FFV infection of fMSC lines may hinder large-scale expansion of autologous MSC for therapeutic use in feline patients. PMID:25404388

  6. Sirtuin Inhibition Adversely Affects Porcine Oocyte Meiosis

    PubMed Central

    Zhang, Liang; Ma, Rujun; Hu, Jin; Ding, Xiaolin; Xu, Yinxue

    2015-01-01

    Sirtuins have been implicated in diverse biological processes, including oxidative stress, energy metabolism, cell migration, and aging. Here, we employed Sirtuin inhibitors, nicotinamide (NAM) and Sirtinol, to investigate their effects on porcine oocyte maturation respectively. The rate of polar body extrusion in porcine oocytes decreased after treatment with NAM and Sirtinol, accompanied with the failure of cumulus cell expansion. We further found that NAM and Sirtinol significantly disrupted oocyte polarity, and inhibited the formation of actin cap and cortical granule-free domain (CGFD). Moreover, the abnormal spindles and misaligned chromosomes were readily detected during porcine oocyte maturation after treatment with NAM and Sirtinol. Together, these results suggest that Sirtuins are involved in cortical polarity and spindle organization in porcine oocytes. PMID:26176547

  7. FACTORS ADVERSELY AFFECTING AMPHIBIAN POPULATIONS IN THE US

    EPA Science Inventory

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from species accounts written in a standardized format by multiple authors in a forthcoming book. Specific adverse factors were identified for 53 (58%) of...

  8. Low shear red cell oxygen transport effectiveness is adversely affected by transfusion and further worsened by deoxygenation in sickle cell disease patients on chronic transfusion therapy

    PubMed Central

    Detterich, Jon; Alexy, Tamas; Rabai, Miklos; Dongelyan, Ani; Coates, Thomas; Wood, John; Meiselman, Herbert

    2012-01-01

    BACKGROUND Simple chronic transfusion therapy (CTT) is a mainstay for stroke prophylaxis in sickle cell anemia, but its effects on hemodynamics are poorly characterized. Transfusion improves oxygen carrying capacity, reducing demands for high cardiac output. While transfusion decreases factors associated with vaso-occlusion, including percent HbS, reticulocyte count and circulating cell-free hemoglobin, it increases blood viscosity, which reduces microvascular flow. The hematocrit to viscosity ratio (HVR) is an index of red cell oxygen transport effectiveness that varies with shear stress and balances the benefits of improved oxygen capacity to viscosity-mediated impairment of microvascular flow. We hypothesized that transfusion would improve HVR at high shear despite increased blood viscosity, but would decrease HVR at low shear. STUDY DESIGN AND METHODS To test this hypothesis, we examined oxygenated and deoxygenated blood samples from 15 sickle cell patients on CTT immediately pre-transfusion and again 12–120 hours post-transfusion. RESULTS Comparable changes in hemoglobin, hematocrit, reticulocyte count and hemoglobin S with transfusion were observed in all subjects. Viscosity, hematocrit and high-shear HVR increased with transfusion while low shear HVR decreased significantly. CONCLUSION Decreased low-shear HVR suggests impaired oxygen transport to low-flow regions and may explain why some complications of sickle cell anemia are ameliorated by chronic transfusion therapy and others may be made worse. PMID:22882132

  9. Adversity before Conception Will Affect Adult Progeny in Rats

    ERIC Educational Resources Information Center

    Shachar-Dadon, Alice; Schulkin, Jay; Leshem, Micah

    2009-01-01

    The authors investigated whether adversity in a female, before she conceives, will influence the affective and social behavior of her progeny. Virgin female rats were either undisturbed (controls) or exposed to varied, unpredictable, stressors for 7 days (preconceptual stress [PCS]) and then either mated immediately after the end of the stress…

  10. Adversity before conception will affect adult progeny in rats.

    PubMed

    Shachar-Dadon, Alice; Schulkin, Jay; Leshem, Micah

    2009-01-01

    The authors investigated whether adversity in a female, before she conceives, will influence the affective and social behavior of her progeny. Virgin female rats were either undisturbed (controls) or exposed to varied, unpredictable, stressors for 7 days (preconceptual stress [PCS]) and then either mated immediately after the end of the stress (PCS0) or 2 weeks after the stress ended (PCS2). Their offspring were raised undisturbed until tested in adulthood. PCS offspring showed reduced social interaction; in the acoustic startle test, PCS males were less fearful, whereas PCS females were more fearful; in the shuttle task, PCS0 males avoided shock better; and in the elevated maze, PCS0 females were more active and anxious. The 2-week interval between stress and mating assuaged the effects on offspring activity and shock avoidance but not the changes in social behavior and fear in male and female offspring. Hence, PCS to the dam, even well before pregnancy, influences affective and social behavior in her adult offspring, depending on how long before conception it occurred, the behavior tested, and sex. (PsycINFO Database Record (c) 2009 APA, all rights reserved). PMID:19209986

  11. The synthetic progestin megestrol acetate adversely affects zebrafish reproduction.

    PubMed

    Han, Jian; Wang, Qiangwei; Wang, Xianfeng; Li, Yonggang; Wen, Sheng; Liu, Shan; Ying, Guangguo; Guo, Yongyong; Zhou, Bingsheng

    2014-05-01

    Synthetic progestins contaminate the aquatic ecosystem, and may cause adverse health effects on aquatic organisms. Megestrol acetate (MTA) is present in the aquatic environment, but its possible effects on fish reproduction are unknown. In the present study, we investigated the endocrine disruption and impact of MTA on fish reproduction. After a pre-exposure period of 14 days, reproductively mature zebrafish (Danio rerio) (F0) were exposed to MTA at environmental concentrations (33, 100, 333, and 666 ng/L) for 21 days. Egg production was decreased in F0 fish exposed to MTA, with a significant decrease at 666 ng/L. The exposure significantly decreased the circulating concentrations of estradiol (E2) and testosterone (T) in female fish or 11-keto testosterone (11-KT) in male fish. MTA exposure significantly downregulated the transcription of certain genes along the hypothalamic-pituitary-gonadal (HPG) axis. MTA did not affect early embryonic development or hatching success in the F1 generation. The present study showed that MTA is a potent endocrine disruptor in fish, and short-term exposure to MTA could significantly affect reproduction in fish and negatively impact the fish population. PMID:24647012

  12. Factors affecting the development of adverse drug reactions (Review article)

    PubMed Central

    Alomar, Muaed Jamal

    2013-01-01

    Objectives To discuss the effect of certain factors on the occurrence of Adverse Drug Reactions (ADRs). Data Sources A systematic review of the literature in the period between 1991 and 2012 was made based on PubMed, the Cochrane database of systematic reviews, EMBASE and IDIS. Key words used were: medication error, adverse drug reaction, iatrogenic disease factors, ambulatory care, primary health care, side effects and treatment hazards. Summary Many factors play a crucial role in the occurrence of ADRs, some of these are patient related, drug related or socially related factors. Age for instance has a very critical impact on the occurrence of ADRs, both very young and very old patients are more vulnerable to these reactions than other age groups. Alcohol intake also has a crucial impact on ADRs. Other factors are gender, race, pregnancy, breast feeding, kidney problems, liver function, drug dose and frequency and many other factors. The effect of these factors on ADRs is well documented in the medical literature. Taking these factors into consideration during medical evaluation enables medical practitioners to choose the best drug regimen. Conclusion Many factors affect the occurrence of ADRs. Some of these factors can be changed like smoking or alcohol intake others cannot be changed like age, presence of other diseases or genetic factors. Understanding the different effects of these factors on ADRs enables healthcare professionals to choose the most appropriate medication for that particular patient. It also helps the healthcare professionals to give the best advice to patients. Pharmacogenomics is the most recent science which emphasizes the genetic predisposition of ADRs. This innovative science provides a new perspective in dealing with the decision making process of drug selection. PMID:24648818

  13. Does Ramadan Fasting Adversely Affect Cognitive Function in Young Females?

    PubMed Central

    Ghayour Najafabadi, Mahboubeh; Rahbar Nikoukar, Laya; Memari, Amir; Ekhtiari, Hamed; Beygi, Sara

    2015-01-01

    We examined the effects of Ramadan fasting on cognitive function in 17 female athletes. Data were obtained from participants of two fasting (n = 9) and nonfasting (n = 8) groups at three periods of the study (before Ramadan, at the third week in Ramadan, and after Ramadan). Digit span test (DST) and Stroop color test were employed to assess short-term memory and inhibition/cognitive flexibility at each time point. There were no significant changes for DST and Stroop task 1 in both groups, whereas Stroop task 2 and task 3 showed significant improvements in Ramadan condition (p < 0.05). Interference indices did not change significantly across the study except in post-Ramadan period of fasting group (p < 0.05). Group × week interaction was significant only for error numbers (p < 0.05). Athletes in nonfasting showed a significant decrease in number of errors in Ramadan compared to baseline (p < 0.05). The results suggest that Ramadan fasting may not adversely affect cognitive function in female athletes. PMID:26697263

  14. Family Adversity and Autonomic Reactivity Association With Immune Changes in HIV-Affected School Children

    PubMed Central

    Thomas, Melanie; Wara, Diane; Saxton, Katherine; Truskier, Mary; Chesney, Margaret; Boyce, W. Thomas

    2013-01-01

    Objective To explore whether primary school entry is associated with changes in immune system parameters in HIV-affected children. HIV-affected children are vulnerable to psychosocial stressors, regardless of their own HIV serological status. Methods Data from 38 HIV+ and 29 HIV− children born to seropositive women were obtained before and after school entry. Measures included family adversity questionnaires, autonomic nervous system (ANS) reactivity (based on mean arterial responses to challenge tasks), and enumerative and functional changes in peripheral blood immune parameters. Results In comparison to children who were HIV−, children who were HIV+ at baseline had fewer CD4+ T lymphocytes (M = 916 vs. 1206 cells/mm3 × 103; F = 7.8, p = .007), more CD8+ cells (M = 1046 vs. 720 cells/mm3 ×103; F = 7.98, p = .006), and diminished NK cell cytotoxicity (M =−.29 vs. .41; F = 8.87, p = .004). School entry was associated with changes in immune parameters, but HIV status was not associated with the magnitude of changes. Changes in immune parameters following school entry were associated with family stress and pre school entry ANS reactivity. Highly ANS reactive children had either the greatest increase in CD8+ cells following school entry or the greatest decrease, depending upon reported levels of family adversity (B = 215.35; t = 3.74, p < .001). Changes in functional immune assays were significantly associated with the interactions between HIV status and ANS reactivity. Conclusions These results suggest that autonomic reactivity is associated with increased immunological sensitivity to adverse or challenging social contexts among children affected by HIV. PMID:23766380

  15. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  16. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  17. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  18. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  19. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  20. Missing Out: Excessive Absenteeism Adversely Affects Elementary Reading Scores

    ERIC Educational Resources Information Center

    Hockert, Christine; Harrington, Sonja; Vaughn, Debra; Kelly, Kirk; Gooden, John

    2005-01-01

    This study was designed to answer the question "Does excessive absenteeism affect student academic achievement?" During the 2002-2003 academic year, 188 students attending grades 3 through 5 at an urban Tennessee elementary school with a high poverty level participated in the study. Demographic data were gathered to provide descriptive statistics…

  1. Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

    PubMed Central

    Saunders, Lyndsay E.; Koontz, Melissa B.; Pezeshki, Reza

    2013-01-01

    Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested. PMID:24833234

  2. Urban sprawl and you: how sprawl adversely affects worker health.

    PubMed

    Pohanka, Mary; Fitzgerald, Sheila

    2004-06-01

    Urban sprawl, once thought of as just an environmental issue, is currently gaining momentum as an emerging public health issue worthy of research and political attention. Characteristics seen in sprawling communities include increasing traffic volumes; inadequate public transportation; pedestrian unfriendly streets; and the division of businesses, shops, and homes. These characteristics can affect health in many ways. Greater air pollution contributes to higher asthma and other lung disorder rates. An increased dependence on the automobile encourages a more sedentary lifestyle and can potentially contribute to obesity. The increased danger and stress of long commutes can lead to more accidents, anxiety, and social isolation. Occupational health nurses can become involved by promoting physical activity in the workplace, creating programs for injury prevention and stress management, becoming involved in political smart growth measures, and educating and encouraging colleagues to become active in addressing this issue. PMID:15219110

  3. Obesity Adversely Affects Survival in Pancreatic Cancer Patients

    PubMed Central

    McWilliams, Robert R.; Matsumoto, Martha E.; Burch, Patrick A.; Kim, George P.; Halfdanarson, Thorvardur R.; de Andrade, Mariza; Reid-Lombardo, Kaye; Bamlet, William R.

    2010-01-01

    Purpose Higher body-mass index (BMI) has been implicated as a risk factor for developing pancreatic cancer, but its effect on survival has not been thoroughly investigated. We assessed the association of BMI with survival in a sample of pancreatic cancer patients and utilized epidemiologic and clinical information to understand the contribution of diabetes and hyperglycemia. Methods A survival analysis using Cox proportional hazards by usual adult BMI was performed on 1,861 unselected patients with pancreatic adenocarcinoma; analyses were adjusted for covariates that included clinical stage, age, and sex. Secondary analyses incorporated self reported diabetes and fasting blood glucose in the survival model. Results BMI as a continuous variable was inversely associated with survival from pancreatic adenocarcinoma [hazard ratio 1.019 for each increased unit of BMI (kg/m2), p < 0.001] after adjustment for age, stage, and sex. In analysis by National Institutes of Health BMI category, BMI of 30–34.99 kg/m2 (HR 1.14, 95% confidence interval 0.98–1.33), 35–39.99 kg/m2 (HR 1.32, 95% CI 1.08–1.62), and ≥40 (HR 1.60, 95% CI 1.26–2.04) were associated with decreased survival compared to normal BMI of 18,5–24.99 kg/m2 (overall trend test p<0.001). Fasting blood glucose and diabetes did not affect the results. Conclusions Higher BMI is associated with decreased survival in pancreatic cancer. Although the mechanism of this association remains undetermined, diabetes and hyperglycemia do not appear to account for the observed association. PMID:20665496

  4. Cannula implantation into the lateral ventricle does not adversely affect recognition or spatial working memory.

    PubMed

    Seyer, Benjamin; Pham, Vi; Albiston, Anthony L; Chai, Siew Yeen

    2016-08-15

    Indwelling cannulas are often used to deliver pharmacological agents into the lateral ventricles of the brain to study their effects on memory and learning, yet little is known about the possible adverse effects of the cannulation itself. In this study, the effect of implanting an indwelling cannula into the right lateral ventricle was examined with respect to cognitive function and tissue damage in rats. Specifically, the cannula passed through sections of the primary motor (M1) and somatosensory hind limb (S1HL) cortices. One week following implantation, rats were impaired on the rotarod task, implying a deficit in fine motor control, likely caused by the passage of the cannula through the aforementioned cortical regions. Importantly, neither spatial working nor recognition memory was adversely affected. Histological examination showed immune cell activation only in the area immediately surrounding the cannulation site and not spreading to other brain regions. Both GFAP and CD-11b mRNA expression was elevated in the area immediately surrounding the cannulation site, but not in the contralateral hemisphere or the hippocampus. Neither of the inflammatory cytokines, TNF-α or IL-6, were upregulated in any region. These results show that cannulation into the lateral ventricle does not impair cognition and indicates that nootropic agents delivered via this method are enhancing normal memory rather than rescuing deficits caused by the surgery procedure. PMID:27345383

  5. Analysis of adverse events of sunitinib in patients treated for advanced renal cell carcinoma

    PubMed Central

    Cedrych, Ida; Jasiówka, Marek; Niemiec, Maciej; Skotnicki, Piotr

    2016-01-01

    Introduction Treatment of the metastatic stage of renal cell carcinoma is specific because classical chemotherapy is not applicable here. The treatment is mainly based on molecularly targeted drugs, including inhibitors of tyrosine kinases. In many cases the therapy takes many months, and patients often report to general practitioners due to adverse events. In this article, the effectiveness and side effects of one of these drugs are presented. The aim of the study was to analyse of the toxicity and safety of treatment with sunitinib malate in patients with clear cell renal cell carcinoma in the metastatic stage. Material and methods Adverse events were analyzed using retrospective analysis of data collected in a group of 39 patients treated in the Department of Systemic and Generalized Malignancies in the Cancer Center in Krakow, Poland. Results Toxicity of treatment affected 50% of patients. The most common side effects observed were hypertension, thrombocytopenia, stomatitis, diarrhea and weakness. Grade 3 serious adverse events according to Common Terminology Criteria for Adverse Events (CTCAE) version 4 affected up to 10% of patients. The most common serious adverse events were hypertension and fatigue. Conclusions Sunitinib malate is characterized by a particular type of toxicity. Knowledge of the types and range of adverse events of this drug is an important part of oncological and internal medicine care. PMID:27186181

  6. Exposure to serotonin adversely affects oligodendrocyte development and myelination in vitro.

    PubMed

    Fan, Lir-Wan; Bhatt, Abhay; Tien, Lu-Tai; Zheng, Baoying; Simpson, Kimberly L; Lin, Rick C S; Cai, Zhengwei; Kumar, Praveen; Pang, Yi

    2015-05-01

    patterns of contactin-associated protein (Caspr) clustering were observed at the sites of Node of Ranvier, suggesting that 5-HT exposure may affect other axon-derived factors for myelination. In summary, this is the first study to demonstrate that manipulation of serotonin levels affects OL development and myelination, which may contribute to altered neural connectivity noted in SSRIs-treated animals. The current in vitro study demonstrated that exposure to high level of serotonin (5-HT) led to aberrant oligodendrocyte (OL) development, cell injury, and myelination deficit. We propose that elevated extracellular serotonin levels in the fetal brain, such as upon the use of selective serotonin reuptake inhibitors (SSRIs) during pregnancy, may adversely affect OL development and/or myelination, thus contributing to altered neural connectivity seen in Autism Spectrum Disorders. OPC = oligodendrocyte progenitor cell. PMID:25382136

  7. 41 CFR 102-78.40 - What responsibilities do Federal agencies have when an undertaking adversely affects a historic...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... guidance on the protection of historic and cultural properties in 36 CFR part 800. ... Federal agencies have when an undertaking adversely affects a historic or cultural property? 102-78.40...-78.40 What responsibilities do Federal agencies have when an undertaking adversely affects a...

  8. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45... habitat. (a) Consultation obligations for FIFRA actions that are not likely to adversely affect listed species or critical habitat when alternative consultation agreement is in effect. If EPA and the...

  9. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45... habitat. (a) Consultation obligations for FIFRA actions that are not likely to adversely affect listed species or critical habitat when alternative consultation agreement is in effect. If EPA and the...

  10. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45... habitat. (a) Consultation obligations for FIFRA actions that are not likely to adversely affect listed species or critical habitat when alternative consultation agreement is in effect. If EPA and the...

  11. Genetic polymorphisms affect efficacy and adverse drug reactions of DMARDs in rheumatoid arthritis.

    PubMed

    Zhang, Ling Ling; Yang, Sen; Wei, Wei; Zhang, Xue Jun

    2014-11-01

    Disease-modifying antirheumatic drugs (DMARDs) and biological agents are critical in preventing the severe complications of rheumatoid arthritis (RA). However, the outcome of treatment with these drugs in RA patients is quite variable and unpredictable. Drug-metabolizing enzymes (dihydrofolate reductase, cytochrome P450 enzymes, N-acetyltransferases, etc.), drug transporters (ATP-binding cassette transporters), and drug targets (tumor necrosis factor-α receptors) are coded for by variant alleles. These gene polymorphisms may influence the pharmacokinetics, pharmacodynamics, and side effects of medicines. The cause for differences in efficacy and adverse drug reactions may be genetic variation in drug metabolism among individuals. Polymorphisms in drug transporter genes may change the distribution and excretion of medicines, and the sensitivity of the targets to drugs is strongly influenced by genetic variations. In this article, we review the genetic polymorphisms that affect the efficacy of DMARDs or the occurrence of adverse drug reactions associated with DMARDs in RA. PMID:25144752

  12. 42 CFR 137.435 - Will an appeal adversely affect the Indian Tribe's rights in other compact, funding negotiations...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... rights in other compact, funding negotiations, or construction project agreement? 137.435 Section 137.435... another compact, funding agreement, or construction project agreement. ... appeal adversely affect the Indian Tribe's rights in other compact, funding negotiations, or...

  13. Dietary restriction does not adversely affect bone geometry and mechanics in rapidly growing male wistar rats.

    PubMed

    Lambert, Jennifer; Lamothe, Jeremy M; Zernicke, Ronald F; Auer, Roland N; Reimer, Raylene A

    2005-02-01

    The present study assessed the effects of dietary restriction on tibial and vertebral mechanical and geometrical properties in 2-mo-old male Wistar rats. Two-month-old male Wistar rats were randomized to the ad libitum (n=8) or the 35% diet-restricted (DR) feeding group (n=9) for 5 mo. Tibiae and L6 vertebrae were dissected out for microcomputed tomography (microCT) scanning and subsequently fractured in biomechanical testing to determine geometrical and mechanical properties. The DR group had significantly lower mean tibial length, mass, area, and cross-sectional moment of inertia, as well as vertebral energy to maximal load. After adjustment for body mass, however, DR tibial mean maximal load and stiffness, and DR vertebral area, height, volume, and maximal load were significantly greater, relative to ad libitum means. No significant differences were found between the DR and ad libitum mineral ash fractions. Because the material properties of the tibiae between the two groups were not significantly different, presumably the material integrity of the bones was not adversely affected as a consequence of DR. The similar material characteristics were consistent with mineral ash fractions that were not different between the two groups. Vertebral maximal load and stiffness were not significant between the DR and ad libitum animals. Importantly, we show that a level of dietary restriction (35%) that is less severe than many studies (40%), and without micronutrient compensation does not adversely affect tibial and vertebral mechanical properties in young growing male rats when normalized for body mass. PMID:15585686

  14. Factors Affecting the Timing of Signal Detection of Adverse Drug Reactions.

    PubMed

    Hashiguchi, Masayuki; Imai, Shungo; Uehara, Keiko; Maruyama, Junya; Shimizu, Mikiko; Mochizuki, Mayumi

    2015-01-01

    We investigated factors affecting the timing of signal detection by comparing variations in reporting time of known and unknown ADRs after initial drug release in the USA. Data on adverse event reactions (AERs) submitted to U.S. FDA was used. Six ADRs associated with 6 drugs (rosuvastatin, aripiprazole, teriparatide, telithromycin, exenatide, varenicline) were investigated: Changes in the proportional reporting ratio, reporting odds ratio, and information component as indexes of signal detection were followed every 3 months after each drugs release, and the time for detection of signals was investigated. The time for the detection of signal to be detected after drug release in the USA was 2-10 months for known ADRs and 19-44 months for unknown ones. The median lag time for known and unknown ADRs was 99.0-122.5 days and 185.5-306.0 days, respectively. When the FDA released advisory information on rare but potentially serious health risks of an unknown ADR, the time lag to report from the onset of ADRs to the FDA was shorter. This study suggested that one factor affecting signal detection time is whether an ADR was known or unknown at release. PMID:26641634

  15. Sexually Dimorphic Responses to Early Adversity: Implications for Affective Problems and Autism Spectrum Disorder

    PubMed Central

    Davis, Elysia Poggi; Pfaff, Donald

    2014-01-01

    During gestation, development proceeds at a pace that is unmatched by any other stage of the lifecycle. For these reason the human fetus is particularly susceptible not only to organizing influences, but also to pathogenic disorganizing influences. Growing evidence suggests that exposure to prenatal adversity leads to neurological changes that underlie lifetime risks for mental illness. Beginning early in gestation, males and females show differential developmental trajectories and responses to stress. It is likely that sex-dependent organization of neural circuits during the fetal period influences differential vulnerability to mental health problems. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two developmental disorders: affective problems (greater female prevalence) and autism spectrum disorder (greater male prevalence). Recent prospective studies illustrating the neurodevelopmental consequences of fetal exposure to stress and stress hormones for males and females are considered here. Plausible biological mechanisms including the role of the sexually differentiated placenta are discussed. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two sets of developmental disorders: affective problems (greater female prevalence) and autism spectrum disorders (greater male prevalence). PMID:25038479

  16. 42 CFR 137.445 - Will an immediate reassumption appeal adversely affect the Self-Governance Tribe's rights in...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... affect the Self-Governance Tribe's rights in other self-governance negotiations? 137.445 Section 137.445..., DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Appeals Appeals of An Immediate Reassumption of A Self-Governance Program § 137.445 Will an immediate reassumption appeal adversely affect...

  17. 42 CFR 137.445 - Will an immediate reassumption appeal adversely affect the Self-Governance Tribe's rights in...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... affect the Self-Governance Tribe's rights in other self-governance negotiations? 137.445 Section 137.445..., DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Appeals Appeals of An Immediate Reassumption of A Self-Governance Program § 137.445 Will an immediate reassumption appeal adversely affect...

  18. 42 CFR 137.445 - Will an immediate reassumption appeal adversely affect the Self-Governance Tribe's rights in...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... affect the Self-Governance Tribe's rights in other self-governance negotiations? 137.445 Section 137.445..., DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Appeals Appeals of An Immediate Reassumption of A Self-Governance Program § 137.445 Will an immediate reassumption appeal adversely affect...

  19. 42 CFR 137.445 - Will an immediate reassumption appeal adversely affect the Self-Governance Tribe's rights in...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... affect the Self-Governance Tribe's rights in other self-governance negotiations? 137.445 Section 137.445..., DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Appeals Appeals of An Immediate Reassumption of A Self-Governance Program § 137.445 Will an immediate reassumption appeal adversely affect...

  20. 42 CFR 137.445 - Will an immediate reassumption appeal adversely affect the Self-Governance Tribe's rights in...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... affect the Self-Governance Tribe's rights in other self-governance negotiations? 137.445 Section 137.445..., DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Appeals Appeals of An Immediate Reassumption of A Self-Governance Program § 137.445 Will an immediate reassumption appeal adversely affect...

  1. Early Life in a Barren Environment Adversely Affects Spatial Cognition in Laying Hens (Gallus gallus domesticus)

    PubMed Central

    Tahamtani, Fernanda M.; Nordgreen, Janicke; Nordquist, Rebecca E.; Janczak, Andrew M.

    2015-01-01

    Spatial cognition in vertebrates is adversely affected by a lack of environmental complexity during early life. However, to our knowledge, no previous studies have tested the effect of early exposure to varying degrees of environmental complexity on specific components of spatial cognition in chickens. There are two main rearing systems for laying hens in the EU: aviaries and cages. These two systems differ from one another in environmental complexity. The aim of the present study was to test the hypothesis that rearing in a barren cage environment relative to a complex aviary environment causes long-lasting deficits in the ability to perform spatial tasks. For this purpose, 24 white Dekalb laying hens, half of which had been reared in an aviary system and the other half in a conventional cage system, were tested in a holeboard task. Birds from both treatment groups learnt the task; however, the cage-reared hens required more time to locate rewards and had poorer levels of working memory. The latter finding supports the hypothesis that rearing in a barren environment causes long-term impairment of short-term memory in chickens. PMID:26664932

  2. Exposing physicians to reduced residency work hours did not adversely affect patient outcomes after residency.

    PubMed

    Jena, Anupam B; Schoemaker, Lena; Bhattacharya, Jay

    2014-10-01

    In 2003, work hours for physicians-in-training (residents) were capped by regulation at eighty hours per week, leading to the hotly debated but unexplored issue of whether physicians today are less well trained as a result of these work-hour reforms. Using a unique database of nearly all hospitalizations in Florida during 2000-09 that were linked to detailed information on the medical training history of the physician of record for each hospitalization, we studied whether hospital mortality and patients' length-of-stay varied according to the number of years a physician was exposed to the 2003 duty-hour regulations during his or her residency. We examined this database of practicing Florida physicians, using a difference-in-differences analysis that compared trends in outcomes of junior physicians (those with one-year post-residency experience) pre- and post-2003 to a control group of senior physicians (those with ten or more years of post-residency experience) who were not exposed to these reforms during their residency. We found that the duty-hour reforms did not adversely affect hospital mortality and length-of-stay of patients cared for by new attending physicians who were partly or fully exposed to reduced duty hours during their own residency. However, assessment of the impact of the duty-hour reforms on other clinical outcomes is needed. PMID:25288430

  3. Delay of Treatment Initiation Does Not Adversely Affect Survival Outcome in Breast Cancer

    PubMed Central

    Yoo, Tae-Kyung; Han, Wonshik; Moon, Hyeong-Gon; Kim, Jisun; Lee, Jun Woo; Kim, Min Kyoon; Lee, Eunshin; Kim, Jongjin; Noh, Dong-Young

    2016-01-01

    Purpose Previous studies examining the relationship between time to treatment and survival outcome in breast cancer have shown inconsistent results. The aim of this study was to analyze the overall impact of delay of treatment initiation on patient survival and to determine whether certain subgroups require more prompt initiation of treatment. Materials and Methods This study is a retrospective analysis of stage I-III patients who were treated in a single tertiary institution between 2005 and 2008. Kaplan-Meier survival analysis and Cox proportional hazards regression model were used to evaluate the impact of interval between diagnosis and treatment initiation in breast cancer and various subgroups. Results A total of 1,702 patients were included. Factors associated with longer delay of treatment initiation were diagnosis at another hospital, medical comorbidities, and procedures performed before admission for surgery. An interval between diagnosis and treatment initiation as a continuous variable or with a cutoff value of 15, 30, 45, and 60 days had no impact on disease-free survival (DFS). Subgroup analyses for hormone-responsiveness, triple-negative breast cancer, young age, clinical stage, and type of initial treatment showed no significant association between longer delay of treatment initiation and DFS. Conclusion Our results show that an interval between diagnosis and treatment initiation of 60 days or shorter does not appear to adversely affect DFS in breast cancer. PMID:26511801

  4. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.

    PubMed

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-11-12

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture. PMID:24145453

  5. Probabilities of adverse weather affecting transport in Europe: climatology and scenarios up to the 2050s

    NASA Astrophysics Data System (ADS)

    Vajda, A.; Tuomenvirta, H.; Jokinen, P.; Luomaranta, A.; Makkonen, L.; Tikanmäki, M.; Groenemeijer, P.; Saarikivi, P.; Michaelides, S.; Papadakis, M.; Tymvios, F.; Athanasatos, S.

    2012-04-01

    This paper provides the first comprehensive climatology of the adverse and extreme weather events affecting the European transport system by estimating the frequency (or probability) of phenomena for the present climate (1971-2000) and an overview of the projected changes in some of these extremes in the future climate until the 2050s. The research was carried out within the framework of the EWENT Project that addresses the European Union (EU) policies and strategies related to climate change, with a particular focus on extreme weather impacts on the EU transportation system. This project is funded by the Seventh Framework Programme (Transports, call ID FPT7-TPT-2008-RTD-1). The analyzed phenomena are wind, snow, blizzards, heavy precipitation, cold spells and heat waves. In addition, reduced visibility conditions determined by fog and dust events, small-scale phenomena affecting the transport system, such as thunderstorms, lightning, large hail and tornadoes and events damaging infrastructure of the transport system, have been considered. Frequency and probability analysis of past and present ex¬tremes were performed using observational and atmospheric reanalysis data. Future changes in the probability of severe events were assessed based on six regional climate model simulations produced in the FP6 ENSEMBLES project (http://www.ensembles-eu.org/). To facilitate the assessment of impacts and consequences of extreme phenomena on a continental level, the WP2 Deliverable introduces a regionalization of the European extreme phenomena, defining the climate zones with similarities in extreme phenomena. The projected changes as well as large natural variability in weather extremes on the transportation network will have impacts of both signs. The decline of extreme cold and snowfall over most of the continent implies a positive impact on road, rail, inland water and air transportation, e.g., by reducing snow removal. However, even with a general decreasing trend in

  6. Proteomics for Adverse Outcome Pathway Discovery using Human Kidney Cells?

    EPA Science Inventory

    An Adverse Outcome Pathway (AOP) is a conceptual framework that applies molecular-based data for use in risk assessment and regulatory decision support. AOP development is based on effects data of chemicals on biological processes (i.e., molecular initiating events, key intermedi...

  7. 41 CFR 102-78.40 - What responsibilities do Federal agencies have when an undertaking adversely affects a historic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... guidance on the protection of historic and cultural properties in 36 CFR part 800. ... Federal agencies have when an undertaking adversely affects a historic or cultural property? 102-78.40... (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 78-HISTORIC PRESERVATION Historic Preservation §...

  8. 25 CFR 900.244 - Will an Indian tribe or tribal organization's retrocession adversely affect funding available for...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Will an Indian tribe or tribal organization's retrocession adversely affect funding available for the retroceded program? 900.244 Section 900.244 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR, AND INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE...

  9. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section...

  10. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section...

  11. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: A retrospective evaluation

    PubMed Central

    ASTOLFI, LAURA; GHISELLI, SARA; GUARAN, VALERIA; CHICCA, MILVIA; SIMONI, EDI; OLIVETTO, ELENA; LELLI, GIORGIO; MARTINI, ALESSANDRO

    2013-01-01

    Cisplatin is the most common antineoplastic drug used for the therapy of solid tumours. To date, researchers have focused on the dosage to be administered for each specific tumour, mainly considering the local adverse effects. The aim of this study was to correlate the severity of the adverse effects with: i) the dosage of cisplatin; ii) the specific site of the tumour; iii) the association with other drugs; and iv) the symptoms. We analysed data from 123 patients with 11 different tumour classes undergoing therapy from 2007 to 2008 at St. Anna Hospital (Ferrara, Italy), using the Spearman non-parametric correlation index. Even though significant correlations were found among the variables, the overall results showed that the main factor influencing the severity of the adverse effects was the dosage of cisplatin administered. PMID:23404427

  12. Severe Affective and Behavioural Dysregulation Is Associated with Significant Psychosocial Adversity and Impairment

    ERIC Educational Resources Information Center

    Jucksch, Viola; Salbach-Andrae, Harriet; Lenz, Klaus; Goth, Kirstin; Dopfner, Manfred; Poustka, Fritz; Freitag, Christine M.; Lehmkuhl, Gerd; Lehmkuhl, Ulrike; Holtmann, Martin

    2011-01-01

    Background: Recently, a highly heritable behavioral phenotype of simultaneous deviance on the Anxious/Depressed, Attention Problems, and Aggressive Behavior syndrome scales has been identified on the Child Behavior Checklist (CBCL-Dysregulation Profile, CBCL-DP). This study aims to investigate psychosocial adversity and impairment of the CBCL-DP.…

  13. Telaprevir may induce adverse cutaneous reactions by a T cell immune-mediated mechanism.

    PubMed

    Federico, Alessandro; Aitella, Ernesto; Sgambato, Dolores; Savoia, Alfonso; De Bartolomeis, Fabio; Dallio, Marcello; Ruocco, Eleonora; Pezone, Luciano; Abbondanza, Ciro; Loguercio, Carmela; Astarita, Corrado

    2015-01-01

    The HCV protease inhibitor telaprevir associated with peginterferon-alpha and ribavirin, was widely used in the recent past as standard treatment in HCV genotype-1 infected patients. Telaprevir improves the sustained virology response rates, but at the same time increases the frequency of adverse cutaneous reactions. However, mechanisms through which telaprevir induces cutaneous lesions are not yet defined. A 50-year-old woman, affected by HCV genotype 1b, was admitted to our Department for a telaprevir-related severe cutaneous eruptions, eight weeks after starting a triple therapy (telaprevir associated with Peginterferon-alpha and ribavirin). Mechanisms of cutaneous reactions were investigated by skin tests with non-irritating concentrations of telaprevir and by activating in vitro T lymphocyte with different concentrations. Immediate and delayed responses to skin testing were negative, but the drug-induced lymphocytes activation was significantly higher as compared to patient's baseline values and to parallel results obtained in three healthy subjects (p < 0.05). In conclusion, adverse cutaneous reactions of our patient were caused by a telaprevir-induced T-cell dependent immune mechanism. PMID:25864225

  14. 30 CFR 285.816 - What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility? 285.816 Section 285.816 Mineral Resources..., pipeline, or facility? If environmental or other conditions adversely affect a cable, pipeline, or...

  15. Does Maternal Prenatal Stress Adversely Affect the Child's Learning and Memory at Age Six?

    ERIC Educational Resources Information Center

    Gutteling, Barbara M.; de Weerth, Carolina; Zandbelt, Noortje; Mulder, Eduard J. H.; Visser, Gerard H. A.; Buitelaar, Jan K.

    2006-01-01

    Prenatal maternal stress has been shown to affect postnatal development in animals and humans. In animals, the morphology and function of the offspring's hippocampus is negatively affected by prenatal maternal stress. The present study prospectively investigated the influence of prenatal maternal stress on learning and memory of 112 children (50…

  16. Can aircraft noise less than or equal 115 to dBA adversely affect reproductive outcome in USAF women?

    NASA Astrophysics Data System (ADS)

    Brubaker, P. A.

    1985-06-01

    It has been suggested, mainly through animal studies, that exposure to high noise levels may be associated with lower birth weight, reduced gestational length and other adverse reproductive outcomes. Few studies have been done on humans to show this association. The Air Force employs pregnant women in areas where there is a high potential for exposure to high noise levels. This study proposes a method to determine if there is an association between high frequency noise levels or = 115 dBA and adverse reproductive outcomes through a review of records and self-administered questionnaires in a case-comparison design. Prevelance rates will be calculated and a multiple logistic regression analysis computed for the independent variables that can affect reproduction.

  17. Adverse childhood experiences associate to reduced glutamate levels in the hippocampus of patients affected by mood disorders.

    PubMed

    Poletti, Sara; Locatelli, Clara; Falini, Andrea; Colombo, Cristina; Benedetti, Francesco

    2016-11-01

    Adverse childhood experiences (ACE) can possibly permanently alter the stress response system, affect the glutamatergic system and influence hippocampal volume in mood disorders. The aim of the study is to investigate the association between glutamate levels in the hippocampus, measured through single proton magnetic resonance spectroscopy (1H-MRS), and ACE in patients affected by mood disorders and healthy controls. Higher levels of early stress associate to reduced levels of Glx/Cr in the hippocampus in depressed patients but not in healthy controls. Exposure to stress during early life could lead to a hypofunctionality of the glutamatergic system in the hippocampus of depressed patients. Abnormalities of glutamatergic signaling could then possibly underpin the structural and functional abnormalities observed in patients affected by mood disorders. PMID:27449360

  18. Elevated depressive affect is associated with adverse cardiovascular outcomes among African Americans with chronic kidney disease

    PubMed Central

    Fischer, Michael J.; Kimmel, Paul L.; Greene, Tom; Gassman, Jennifer J.; Wang, Xuelei; Brooks, Deborah H.; Charleston, Jeanne; Dowie, Donna; Thornley-Brown, Denyse; Cooper, Lisa A.; Bruce, Marino A.; Kusek, John W.; Norris, Keith C.; Lash, James P.

    2011-01-01

    This study was designed to examine the impact of elevated depressive affect on health outcomes among participants with hypertensive chronic kidney disease in the African-American Study of Kidney Disease and Hypertension (AASK) Cohort Study. Elevated depressive affect was defined by Beck Depression Inventory II (BDI-II) thresholds of 11 or more, above 14, and by 5-Unit increments in the score. Cox regression analyses were used to relate cardiovascular death/hospitalization, doubling of serum creatinine/end-stage renal disease, overall hospitalization, and all-cause death to depressive affect evaluated at baseline, the most recent annual visit (time-varying), or average from baseline to the most recent visit (cumulative). Among 628 participants at baseline, 42% had BDI-II scores of 11 or more and 26% had a score above 14. During a 5-year follow-up, the cumulative incidence of cardiovascular death/hospitalization was significantly greater for participants with baseline BDI-II scores of 11 or more compared with those with scores <11. The baseline, time-varying, and cumulative elevated depressive affect were each associated with a significant higher risk of cardiovascular death/hospitalization, especially with a time-varying BDI-II score over 14 (adjusted HR 1.63) but not with the other outcomes. Thus, elevated depressive affect is associated with unfavorable cardiovascular outcomes in African Americans with hypertensive chronic kidney disease. PMID:21633409

  19. Water pollution by Cu and Pb can adversely affect mallard embryonic development.

    PubMed

    Kertész, Virág; Bakonyi, Gábor; Farkas, Beáta

    2006-09-01

    The effects of heavy metal pollutants on aquatic birds have been widely studied in ecotoxicological investigations; however, the predominant focus has been on the postnatal period of life. Limited information on the adverse effects of metals to bird eggs is available. The possible toxic effects of lead and copper were studied in mallard eggs. After the accidental severe heavy metal pollution of the Tisa river (Hungary) in March 2000, these metals were detected in the highest concentration in both the water and the sediment, reaching far beyond acceptable concentrations. Pb treatment (2.9 mg/L) significantly increased the rate of mortality after a single immersion of the eggs into polluted water for 30 min. The rate of dead embryos significantly increased after the combined exposure to Cu and Pb (0.86 and 2.9 mg/L, respectively) both in the single- (once for 30 min) and in the multiple- (10s daily during first trimester of incubation) immersion groups. It was concluded that elevated metal concentrations similar to those found in the Tisa river after the tailing dam failure may cause toxic effects (mortality and teratogenicity) upon exposure of mallard eggs. PMID:16678261

  20. Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling

    PubMed Central

    Medzikovic, Lejla; Schumacher, Cees A.; Verkerk, Arie O.; van Deel, Elza D.; Wolswinkel, Rianne; van der Made, Ingeborg; Bleeker, Natascha; Cakici, Daniella; van den Hoogenhof, Maarten M. G.; Meggouh, Farid; Creemers, Esther E.; Ann Remme, Carol; Baartscheer, Antonius; de Winter, Robbert J.; de Vries, Carlie J. M.; Arkenbout, E. Karin; de Waard, Vivian

    2015-01-01

    Distinct stressors may induce heart failure. As compensation, β-adrenergic stimulation enhances myocardial contractility by elevating cardiomyocyte intracellular Ca2+ ([Ca2+]i). However, chronic β-adrenergic stimulation promotes adverse cardiac remodelling. Cardiac expression of nuclear receptor Nur77 is enhanced by β-adrenergic stimulation, but its role in cardiac remodelling is still unclear. We show high and rapid Nur77 upregulation in cardiomyocytes stimulated with β-adrenergic agonist isoproterenol. Nur77 knockdown in culture resulted in hypertrophic cardiomyocytes. Ventricular cardiomyocytes from Nur77-deficient (Nur77-KO) mice exhibited elevated diastolic and systolic [Ca2+]i and prolonged action potentials compared to wild type (WT). In vivo, these differences resulted in larger cardiomyocytes, increased expression of hypertrophic genes, and more cardiac fibrosis in Nur77-KO mice upon chronic isoproterenol stimulation. In line with the observed elevated [Ca2+]i, Ca2+-activated phosphatase calcineurin was more active in Nur77-KO mice compared to WT. In contrast, after cardiac pressure overload by aortic constriction, Nur77-KO mice exhibited attenuated remodelling compared to WT. Concluding, Nur77-deficiency results in significantly altered cardiac Ca2+ homeostasis and distinct remodelling outcome depending on the type of insult. Detailed knowledge on the role of Nur77 in maintaining cardiomyocyte Ca2+ homeostasis and the dual role Nur77 plays in cardiac remodelling will aid in developing personalized therapies against heart failure. PMID:26486271

  1. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.

    PubMed

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-01

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification. PMID:26740396

  2. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH

    PubMed Central

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-01

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification. PMID:26740396

  3. Weight Reduction in Athletes May Adversely Affect the Phagocytic Function of Monocytes.

    ERIC Educational Resources Information Center

    Kono, Ichiro; And Others

    1988-01-01

    Study of the monocyte phagocytic function in nine competitive athletes before and after a two-week weight reduction (through calorie restriction) program revealed that their pre-program phagocytic activity was higher than in sedentary controls but decreased significantly after the program. This suggests calorie restriction may affect the human…

  4. Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells

    PubMed Central

    Tabet, Lyes; Bussy, Cyrill; Amara, Nadia; Setyan, Ari; Grodet, Alain; Rossi, Michel J.; Pairon, Jean-Claude; Boczkowski, Jorge; Lanone, Sophie

    2009-01-01

    The aim of this study was to evaluate adverse effects of multi-walled carbon nanotubes (MWCNT) produced for industrial purposes, on the human epithelial cell line A549. MWCNT were dispersed in dipalmitoyl lecithin (DPL), a component of pulmonary surfactant, and the effects of dispersion in DPL were compared to those in 2 other media: ethanol (EtOH) and phosphate buffer saline (PBS). Effects of MWCNT were also compared to those of 2 asbestos fibers (chrysotile and crocidolite) and carbon black (CB) nanoparticles, not only in A549 cells, but also on mesothelial cells (MeT5A human cell line), used as an asbestos-sensitive cell type. MWCNT formed agglomerates on top of both cell lines (surface area 15–35 μm2), that were significantly larger and more numerous in PBS than in EtOH and DPL. Whatever the dispersion media, incubation with 100 μg/ml MWCNT induced a similar decrease in metabolic activity without changing cell membrane permeability or apoptosis. Neither MWCNT cellular internalization nor oxidative stress were observed. In contrast, asbestos fibers penetrated into the cells, decreased metabolic activity but not cell membrane permeability and increased apoptosis, without decreasing cell number. CB was internalized without any adverse effects. In conclusion, this study demonstrates that MWCNT produced for industrial purposes exert adverse effects without being internalized by human epithelial and mesothelial pulmonary cell lines. PMID:19034795

  5. 30 CFR 585.816 - What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility? 585.816 Section 585.816 Mineral Resources BUREAU... corrective action to BOEM within 30 days of the discovery of the adverse effect. (b) Take remedial action...

  6. 30 CFR 285.816 - What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility? 285.816 Section 285.816 Mineral Resources BUREAU...: (a) Submit a plan of corrective action to MMS within 30 days of the discovery of the adverse...

  7. 30 CFR 585.816 - What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility? 585.816 Section 585.816 Mineral Resources BUREAU... corrective action to BOEM within 30 days of the discovery of the adverse effect. (b) Take remedial action...

  8. 30 CFR 585.816 - What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility? 585.816 Section 585.816 Mineral Resources BUREAU... corrective action to BOEM within 30 days of the discovery of the adverse effect. (b) Take remedial action...

  9. Depressing Antidepressant: Fluoxetine Affects Serotonin Neurons Causing Adverse Reproductive Responses in Daphnia magna.

    PubMed

    Campos, Bruno; Rivetti, Claudia; Kress, Timm; Barata, Carlos; Dircksen, Heinrich

    2016-06-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants. As endocrine disruptive contaminants in the environment, SSRIs affect reproduction in aquatic organisms. In the water flea Daphnia magna, SSRIs increase offspring production in a food ration-dependent manner. At limiting food conditions, females exposed to SSRIs produce more but smaller offspring, which is a maladaptive life-history strategy. We asked whether increased serotonin levels in newly identified serotonin-neurons in the Daphnia brain mediate these effects. We provide strong evidence that exogenous SSRI fluoxetine selectively increases serotonin-immunoreactivity in identified brain neurons under limiting food conditions thereby leading to maladaptive offspring production. Fluoxetine increases serotonin-immunoreactivity at low food conditions to similar maximal levels as observed under high food conditions and concomitantly enhances offspring production. Sublethal amounts of the neurotoxin 5,7-dihydroxytryptamine known to specifically ablate serotonin-neurons markedly decrease serotonin-immunoreactivity and offspring production, strongly supporting the effect to be serotonin-specific by reversing the reproductive phenotype attained under fluoxetine. Thus, SSRIs impair serotonin-regulation of reproductive investment in a planktonic key organism causing inappropriately increased reproduction with potentially severe ecological impact. PMID:27128505

  10. Combining S-cone and luminance signals adversely affects discrimination of objects within backgrounds

    PubMed Central

    Jennings, Ben J.; Tsattalios, Konstantinos; Chakravarthi, Ramakrishna; Martinovic, Jasna

    2016-01-01

    The visual system processes objects embedded in complex scenes that vary in both luminance and colour. In such scenes, colour contributes to the segmentation of objects from backgrounds, but does it also affect perceptual organisation of object contours which are already defined by luminance signals, or are these processes unaffected by colour’s presence? We investigated if luminance and chromatic signals comparably sustain processing of objects embedded in backgrounds, by varying contrast along the luminance dimension and along the two cone-opponent colour directions. In the first experiment thresholds for object/non-object discrimination of Gaborised shapes were obtained in the presence and absence of background clutter. Contrast of the component Gabors was modulated along single colour/luminance dimensions or co-modulated along multiple dimensions simultaneously. Background clutter elevated discrimination thresholds only for combined S-(L + M) and L + M signals. The second experiment replicated and extended this finding by demonstrating that the effect was dependent on the presence of relatively high S-(L + M) contrast. These results indicate that S-(L + M) signals impair spatial vision when combined with luminance. Since S-(L + M) signals are characterised by relatively large receptive fields, this is likely to be due to an increase in the size of the integration field over which contour-defining information is summed. PMID:26856308

  11. Nutrient supplementation may adversely affect maternal oral health--a randomised controlled trial in rural Malawi.

    PubMed

    Harjunmaa, Ulla; Järnstedt, Jorma; Dewey, Kathryn G; Ashorn, Ulla; Maleta, Kenneth; Vosti, Stephen A; Ashorn, Per

    2016-01-01

    Nutritional supplementation during pregnancy is increasingly recommended especially in low-resource settings, but its oral health impacts have not been studied. Our aim was to examine whether supplementation with multiple micronutrients (MMN) or small-quantity lipid-based nutrient supplements affects dental caries development or periodontal health in a rural Malawian population. The study was embedded in a controlled iLiNS-DYAD trial that enrolled 1391 pregnant women <20 gestation weeks. Women were provided with one daily iron-folic acid capsule (IFA), one capsule with 18 micronutrients (MMN) or one sachet of lipid-based nutrient supplements (LNS) containing protein, carbohydrates, essential fatty acids and 21 micronutrients. Oral examination of 1024 participants was conducted and panoramic X-ray taken within 6 weeks after delivery. The supplement groups were similar at baseline in average socio-economic, nutritional and health status. At the end of the intervention, the prevalence of caries was 56.7%, 69.1% and 63.3% (P = 0.004), and periodontitis 34.9%, 29.8% and 31.2% (P = 0.338) in the IFA, MMN and LNS groups, respectively. Compared with the IFA group, women in the MMN group had 0.60 (0.18-1.02) and in the LNS group 0.59 (0.17-1.01) higher mean number of caries lesions. In the absence of baseline oral health data, firm conclusions on causality cannot be drawn. However, although not confirmatory, the findings are consistent with a possibility that provision of MMN or LNS may have increased the caries incidence in this target population. Because of the potential public health impacts, further research on the association between gestational nutrient interventions and oral health in low-income settings is needed. PMID:26194850

  12. Obesity/hyperleptinemic phenotype adversely affects hippocampal plasticity: effects of dietary restriction.

    PubMed

    Grillo, Claudia A; Piroli, Gerardo G; Evans, Ashlie N; Macht, Victoria A; Wilson, Steven P; Scott, Karen A; Sakai, Randall R; Mott, David D; Reagan, Lawrence P

    2011-08-01

    Epidemiological studies estimate that greater than 60% of the adult US population may be categorized as either overweight or obese and there is a growing appreciation that obesity affects the functional integrity of the central nervous system (CNS). We recently developed a lentivirus (LV) vector that produces an insulin receptor (IR) antisense RNA sequence (IRAS) that when injected into the hypothalamus selectively decreases IR signaling in hypothalamus, resulting in increased body weight, peripheral adiposity and plasma leptin levels. To test the hypothesis that this obesity/hyperleptinemic phenotype would impair hippocampal synaptic transmission, we examined short term potentiation (STP) and long term potentiation (LTP) in the hippocampus of rats that received the LV-IRAS construct or the LV-Control construct in the hypothalamus (hypo-IRAS and hypo-Con, respectively). Stimulation of the Schaffer collaterals elicits STP that develops into LTP in the CA1 region of hypo-Con rats; conversely, hypo-IRAS rats exhibit STP that fails to develop into LTP. To more closely examine the potential role of hyperleptinemia in these electrophysiological deficits, hypo-IRAS were subjected to mild food restriction paradigms that would either: 1) prevent the development of the obesity phenotype; or 2) reverse an established obesity phenotype in hypo-IRAS rats. Both of these paradigms restored LTP in the CA1 region and reversed the decreases in the phosphorylated/total ratio of GluA1 Ser845 AMPA receptor subunit expression observed in the hippocampus of hypo-IRAS rats. Collectively, these data support the hypothesis that obesity impairs hippocampal synaptic transmission and support the hypothesis that these deficits are mediated through the impairment of hippocampal leptin activity. PMID:21036186

  13. Rat rotator cuff tendon-to-bone healing properties are adversely affected by hypercholesterolemia

    PubMed Central

    Beason, David P.; Tucker, Jennica J.; Lee, Chang Soo; Edelstein, Lena; Abboud, Joseph A.; Soslowsky, Louis J.

    2014-01-01

    Background Rotator cuff tendon tears represent a major component of reported orthopaedic injuries. In addition, more than one quarter of U.S. adults either currently have high cholesterol levels or have reduced their previously high cholesterol levels through the use of pharmaceuticals. Our clinical data have already linked hypercholesterolemia to full-thickness rotator cuff tears, and experimental data from our laboratory have shown effects on native tendon properties in multiple species. The objective of this study was to evaluate healing of supraspinatus tendons in our rat rotator cuff injury model. We hypothesized that tendon healing would be inferior in rats receiving a high-cholesterol diet for 6 months compared with those receiving standard chow. Methods All animals were subjected to a unilateral supraspinatus detachment and repair surgery, with contralateral limbs serving as within-animal comparative data. Animals continued their respective diet courses, and their supraspinatus tendons were biomechanically or histologically evaluated at 2, 4, and 8 weeks postoperatively. Results Biomechanical testing revealed a significant reduction in normalized stiffness in hypercholesterolemic rats compared with controls at 4 weeks after injury, whereas histologic analyses showed no significant differences in collagen organization, cellularity, or cell shape between groups. Conclusion On the basis of our findings, hypercholesterolemia may have a detrimental biomechanical effect on tendon healing in our rat rotator cuff injury and repair model. Level of evidence Basic Science Study, Animal Model. PMID:24295837

  14. Dectin-1 predicts adverse postoperative prognosis of patients with clear cell renal cell carcinoma.

    PubMed

    Xia, Yu; Liu, Li; Bai, Qi; Wang, Jiajun; Xi, Wei; Qu, Yang; Xiong, Ying; Long, Qilai; Xu, Jiejie; Guo, Jianming

    2016-01-01

    Dectin-1, a classical pattern-recognition receptor, was now identified as an important regulator in immune homeostasis and cancer immunity through its extensive ligands binding functions and subsequent cytokines production. The aim of this study was to assess the clinical significance of dectin-1 expression in 290 patients with clear cell renal cell carcinoma (ccRCC) through immunohistochemistry on tissue microarrays. We found that dectin-1 was predominantly expressed on ccRCC cells, in accordance with several other online databases. Moreover, Kaplan-Meier method was conducted and high expression of tumoral dectin-1 was associated with shorter patient recurrence free survival (RFS) and overall survival (OS) (P < 0.001 for both). In multivariate analyses, tumoral dectin-1 expression was also confirmed as an independent prognostic factor for patients' survival together with other clinical parameters (P < 0.001 for RFS and OS). After incorporating these characteristics including tumoral dectin-1 expression, two nomograms were constructed to predict ccRCC patients' RFS and OS (c-index 0.796 and 0.812, respectively) and performed better than existed integrated models (P < 0.001 for all models comparisons). In conclusion, high tumoral dectin-1 expression was an independent predictor of adverse clinical outcome in ccRCC patients. This molecule and established nomograms might help clinicians in future decision making and therapeutic developments. PMID:27600310

  15. Dectin-1 predicts adverse postoperative prognosis of patients with clear cell renal cell carcinoma

    PubMed Central

    Xia, Yu; Liu, Li; Bai, Qi; Wang, Jiajun; Xi, Wei; Qu, Yang; Xiong, Ying; Long, Qilai; Xu, Jiejie; Guo, Jianming

    2016-01-01

    Dectin-1, a classical pattern-recognition receptor, was now identified as an important regulator in immune homeostasis and cancer immunity through its extensive ligands binding functions and subsequent cytokines production. The aim of this study was to assess the clinical significance of dectin-1 expression in 290 patients with clear cell renal cell carcinoma (ccRCC) through immunohistochemistry on tissue microarrays. We found that dectin-1 was predominantly expressed on ccRCC cells, in accordance with several other online databases. Moreover, Kaplan-Meier method was conducted and high expression of tumoral dectin-1 was associated with shorter patient recurrence free survival (RFS) and overall survival (OS) (P < 0.001 for both). In multivariate analyses, tumoral dectin-1 expression was also confirmed as an independent prognostic factor for patients’ survival together with other clinical parameters (P < 0.001 for RFS and OS). After incorporating these characteristics including tumoral dectin-1 expression, two nomograms were constructed to predict ccRCC patients’ RFS and OS (c-index 0.796 and 0.812, respectively) and performed better than existed integrated models (P < 0.001 for all models comparisons). In conclusion, high tumoral dectin-1 expression was an independent predictor of adverse clinical outcome in ccRCC patients. This molecule and established nomograms might help clinicians in future decision making and therapeutic developments. PMID:27600310

  16. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    EPA Science Inventory

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  17. Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures

    SciTech Connect

    Monnet-Tschudi, Florianne Hazekamp, Arno; Perret, Nicolas; Zurich, Marie-Gabrielle; Mangin, Patrice; Giroud, Christian; Honegger, Paul

    2008-04-01

    Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 {mu}M in single treatment and of 1 {mu}M and 2 {mu}M in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 {mu}M of THC or JWH 015, whereas the expression of TNF-{alpha} remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.

  18. The Cultivation of Bt Corn Producing Cry1Ac Toxins Does Not Adversely Affect Non-Target Arthropods

    PubMed Central

    Guo, Yanyan; Feng, Yanjie; Ge, Yang; Tetreau, Guillaume; Chen, Xiaowen; Dong, Xuehui; Shi, Wangpeng

    2014-01-01

    Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The “sampling dates” had a significant effect on these indices, but no clear tendencies related to “Bt corn” or “sampling dates X corn variety” interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs. PMID:25437213

  19. Could cancer and infection be adverse effects of mesenchymal stromal cell therapy?

    PubMed Central

    Arango-Rodriguez, Martha L; Ezquer, Fernando; Ezquer, Marcelo; Conget, Paulette

    2015-01-01

    Multipotent mesenchymal stromal cells [also referred to as mesenchymal stem cells (MSCs)] are a heterogeneous subset of stromal cells. They can be isolated from bone marrow and many other types of tissue. MSCs are currently being tested for therapeutic purposes (i.e., improving hematopoietic stem cell engraftment, managing inflammatory diseases and regenerating damaged organs). Their tropism for tumors and inflamed sites and their context-dependent potential for producing trophic and immunomodulatory factors raises the question as to whether MSCs promote cancer and/or infection. This article reviews the effect of MSCs on tumor establishment, growth and metastasis and also susceptibility to infection and its progression. Data published to date shows a paradoxical effect regarding MSCs, which seems to depend on isolation and expansion, cells source and dose and the route and timing of administration. Cancer and infection may thus be adverse or therapeutic effects arising form MSC administration. PMID:25815124

  20. Adverse effects of small-volume red blood cell transfusions in the neonatal population

    PubMed Central

    2014-01-01

    Background Adverse transfusion reactions in the neonatal population are poorly understood and defined. The incidence and pattern of adverse effects due to red blood cell (RBC) transfusion are not well known, and there has been no systematic review of published adverse events. RBC transfusions continue to be linked to the development of morbidities unique to neonates, including chronic lung disease, retinopathy of prematurity, intraventricular haemorrhage and necrotising enterocolitis. Uncertainties about the exact nature of risks alongside benefits of RBC transfusion may contribute to evidence of widespread variation in neonatal RBC transfusion practice. Our review aims to describe clinical adverse effects attributed to small-volume (10–20 mL/kg) RBC transfusions and, where possible, their incidence rates in the neonatal population through the systematic identification of all relevant studies. Methods A comprehensive search of the following bibliographic databases will be performed: MEDLINE (PubMed/OVID which includes the Cochrane Library) and EMBASE (OVID). The intervention of interest is small-volume (10–20 mL/kg) RBC transfusions in the neonatal population. We will undertake a narrative synthesis of the evidence. If clinical similarity and data quantity and quality permit, we will also carry out meta-analyses on the listed outcomes. Discussion This systematic review will identify and synthesise the reported adverse effects and associations of RBC transfusions in the neonatal population. We believe that this systematic review is timely and will make a valuable contribution to highlight an existing research gap. Trial Registration PROSPERO, CRD42013005107 http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42013005107 PMID:25143009

  1. Circulating Endothelial Cells and Endothelial Function predict Major Adverse Cardiac Events and Early Adverse Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Magdy, Abdel Hamid; Bakhoum, Sameh; Sharaf, Yasser; Sabry, Dina; El-Gengehe, Ahmed T; Abdel-Latif, Ahmed

    2016-01-01

    Endothelial progenitor cells (EPCs) and circulating endothelial cells (CECs) are mobilized from the bone marrow and increase in the early phase after ST-elevation myocardial infarction (STEMI). The aim of this study was to assess the prognostic significance of CECs and indices of endothelial dysfunction in patients with STEMI. In 78 patients with acute STEMI, characterization of CD34+/VEGFR2+ CECs, and indices of endothelial damage/dysfunction such as brachial artery flow mediated dilatation (FMD) were determined. Blood samples for CECs assessment and quantification were obtained within 24 hours of admission and FMD was assessed during the index hospitalization. At 30 days follow up, the primary composite end point of major cardiac adverse events (MACE) consisting of all-cause mortality, recurrent non-fatal MI, or heart failure and the secondary endpoint of early adverse left ventricular (LV) remodeling were analyzed. The 17 patients (22%) who developed MACE had significantly higher CEC level (P = 0.004), vWF level (P =0.028), and significantly lower FMD (P = 0.006) compared to the remaining patients. Logistic regression analysis showed that CECs level and LV ejection fraction were independent predictors of MACE. The areas under the receiver operating characteristic curves (ROC) for CEC level, FMD, and the logistic model with both markers were 0.73, 0.75, and 0.82 respectively for prediction of the MACE. The 16 patients who developed the secondary endpoint had significantly higher CEC level compared to remaining patients (p =0.038). In conclusion, increased circulating endothelial cells and endothelial dysfunction predicted the occurrence of major adverse cardiac events and adverse cardiac remodeling in patients with STEMI. PMID:26864952

  2. Increased Fracture Collapse after Intertrochanteric Fractures Treated by the Dynamic Hip Screw Adversely Affects Walking Ability but Not Survival

    PubMed Central

    Fang, Christian; Gudushauri, Paata; Wong, Tak-Man; Lau, Tak-Wing; Pun, Terence; Leung, Frankie

    2016-01-01

    In osteoporotic hip fractures, fracture collapse is deliberately allowed by commonly used implants to improve dynamic contact and healing. The muscle lever arm is, however, compromised by shortening. We evaluated a cohort of 361 patients with AO/OTA 31.A1 or 31.A2 intertrochanteric fracture treated by the dynamic hip screw (DHS) who had a minimal follow-up of 3 months and an average follow-up of 14.6 months and long term survival data. The amount of fracture collapse and shortening due to sliding of the DHS was determined at the latest follow-up and graded as minimal (<1 cm), moderate (1-2 cm), or severe (>2 cm). With increased severity of collapse, more patients were unable to maintain their premorbid walking function (minimal collapse = 34.2%, moderate = 33.3%, severe = 62.8%, and p = 0.028). Based on ordinal regression of risk factors, increased fracture collapse was significantly and independently related to increasing age (p = 0.037), female sex (p = 0.024), A2 fracture class (p = 0.010), increased operative duration (p = 0.011), poor reduction quality (p = 0.000), and suboptimal tip-apex distance of >25 mm (p = 0.050). Patients who had better outcome in terms of walking function were independently predicted by younger age (p = 0.036), higher MMSE marks (p = 0.000), higher MBI marks (p = 0.010), better premorbid walking status (p = 0.000), less fracture collapse (p = 0.011), and optimal lag screw position in centre-centre or centre-inferior position (p = 0.020). According to Kaplan-Meier analysis, fracture collapse had no association with mortality from 2.4 to 7.6 years after surgery. In conclusion, increased fracture collapse after fixation of geriatric intertrochanteric fractures adversely affected walking but not survival. PMID:26955637

  3. Increased Fracture Collapse after Intertrochanteric Fractures Treated by the Dynamic Hip Screw Adversely Affects Walking Ability but Not Survival.

    PubMed

    Fang, Christian; Gudushauri, Paata; Wong, Tak-Man; Lau, Tak-Wing; Pun, Terence; Leung, Frankie

    2016-01-01

    In osteoporotic hip fractures, fracture collapse is deliberately allowed by commonly used implants to improve dynamic contact and healing. The muscle lever arm is, however, compromised by shortening. We evaluated a cohort of 361 patients with AO/OTA 31.A1 or 31.A2 intertrochanteric fracture treated by the dynamic hip screw (DHS) who had a minimal follow-up of 3 months and an average follow-up of 14.6 months and long term survival data. The amount of fracture collapse and shortening due to sliding of the DHS was determined at the latest follow-up and graded as minimal (<1 cm), moderate (1-2 cm), or severe (>2 cm). With increased severity of collapse, more patients were unable to maintain their premorbid walking function (minimal collapse = 34.2%, moderate = 33.3%, severe = 62.8%, and p = 0.028). Based on ordinal regression of risk factors, increased fracture collapse was significantly and independently related to increasing age (p = 0.037), female sex (p = 0.024), A2 fracture class (p = 0.010), increased operative duration (p = 0.011), poor reduction quality (p = 0.000), and suboptimal tip-apex distance of >25 mm (p = 0.050). Patients who had better outcome in terms of walking function were independently predicted by younger age (p = 0.036), higher MMSE marks (p = 0.000), higher MBI marks (p = 0.010), better premorbid walking status (p = 0.000), less fracture collapse (p = 0.011), and optimal lag screw position in centre-centre or centre-inferior position (p = 0.020). According to Kaplan-Meier analysis, fracture collapse had no association with mortality from 2.4 to 7.6 years after surgery. In conclusion, increased fracture collapse after fixation of geriatric intertrochanteric fractures adversely affected walking but not survival. PMID:26955637

  4. Neonatal and fetal exposure to trans-fatty acid retards early growth and adiposity while adversely affecting glucose in mice

    PubMed Central

    Kavanagh, Kylie; Sajadian, Soraya; Jenkins, Kurt A.; Wilson, Martha D.; Carr, J. Jeffery; Wagner, Janice D.; Rudel, Lawrence L.

    2010-01-01

    Industrially produced trans fatty acids (TFAs) consumed in western diets are incorporated into maternal and fetal tissues, and are passed linearly to offspring via breast milk. We hypothesized that TFA exposure in utero and during lactation in infants would promote obesity and poor glycemic control as compared to unmodified fatty acids. We further hypothesized that in utero exposure alone may program for these outcomes in adulthood. To test this hypothesis we fed female C57/BL6 mice identical western diets that differed only in cis- or trans-isomers of C18:1 and then aimed to determine whether maternal transfer of TFAs through pregnancy and lactation alters growth, body composition and glucose metabolism. Mice were unexposed, exposed during pregnancy, during lactation, or throughout pregnancy and lactation to TFA. Body weight and composition (by computed tomography), and glucose metabolism we assessed at weaning and adulthood. TFA exposure through breast milk caused significant early growth retardation (p<0.001) and higher fasting glucose (p=0.01) but insulin sensitivity was not different. Elevated plasma insulin-like growth factor-1 in mice consuming TFA-enriched milk (p=0.02) may contribute to later catch-up growth, leanness and preserved peripheral insulin sensitivity observed in these mice. Mice exposed to TFA in utero underwent rapid early neonatal growth with TFA-free breast milk and had significantly impaired insulin sensitivity (p<0.05) and greater abdominal fat (p=0.01). We conclude that very early catch-up growth resulted in impaired peripheral insulin sensitivity in this model of diet-related fetal and neonatal programming. TFA surprisingly retarded growth and adiposity while still adversely affecting glucose metabolism. PMID:20650350

  5. Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study.

    PubMed

    Brook, Robert D; Sun, Zhichao; Brook, Jeffrey R; Zhao, Xiaoyi; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Rao, Xiaoquan; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Sun, Qinghua; Fan, Zhongjie; Rajagopalan, Sanjay

    2016-01-01

    Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m(3) and 0.2 to 24.5 µg/m(3), respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3-3.7) to 2.7 (0.6-4.8) mm Hg per SD increase (67.2 µg/m(3)), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0-2.5) to 1.7 (0.3-3.2) mm Hg per SD increase (3.6 µg/m(3)). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01-0.36] and 0.22 [0.04-0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02-0.34] and 0.22 [0.08-0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today. PMID:26573709

  6. Do social disadvantage and early family adversity affect the diurnal cortisol rhythm in infants? The Generation R Study.

    PubMed

    Saridjan, Nathalie S; Huizink, Anja C; Koetsier, Jitske A; Jaddoe, Vincent W; Mackenbach, Johan P; Hofman, Albert; Kirschbaum, Clemens; Verhulst, Frank C; Tiemeier, Henning

    2010-02-01

    Dysregulation of diurnal cortisol secretion patterns may explain the link between adversities early in life and later mental health problems. However, few studies have investigated the influence of social disadvantage and family adversity on the hypothalamic-pituitary-adrenal (HPA) axis early in life. In 366 infants aged 12-20 months from the Generation R Study, a population-based cohort from fetal life onwards, parents collected saliva samples from their infant at 5 moments over the course of 1 day. The area under the curve (AUC), the cortisol awakening response (CAR) and the diurnal cortisol slope were calculated as different composite measures of the diurnal cortisol rhythm. Information about social disadvantage and early adversity was collected using prenatal and postnatal questionnaires. We found that older infants showed lower AUC levels; moreover, infants with a positive CAR were significantly older. Both the AUC and the CAR were related to indicators of social disadvantage and early adversity. Infants of low income families, in comparison to high income families, showed higher AUC levels and a positive CAR. Infants of mothers who smoked during pregnancy were also significantly more likely to show a positive CAR. Furthermore, infants of mothers experiencing parenting stress showed higher AUC levels. The results of our study show that effects of social disadvantage and early adversity on the diurnal cortisol rhythm are already observable in infants. This may reflect the influence of early negative life events on early maturation of the HPA axis. PMID:20006614

  7. Morbid obesity in liver transplant recipients adversely affects longterm graft and patient survival in a single-institution analysis

    PubMed Central

    Conzen, Kendra D; Vachharajani, Neeta; Collins, Kelly M; Anderson, Christopher D; Lin, Yiing; Wellen, Jason R; Shenoy, Surendra; Lowell, Jeffrey A; Doyle, M B Majella; Chapman, William C

    2015-01-01

    Objective The effects of obesity in liver transplantation remain controversial. Earlier institutional data demonstrated no significant difference in postoperative complications or 1-year mortality. This study was conducted to test the hypothesis that obesity alone has minimal effect on longterm graft and overall survival. Methods A retrospective, single-institution analysis of outcomes in patients submitted to primary adult orthotopic liver transplantation was conducted using data for the period from 1 January 2002 to 31 December 2012. Recipients were divided into six groups by pre-transplant body mass index (BMI), comprising those with BMIs of <18.0 kg/m2, 18.0–24.9 kg/m2, 25.0–29.9 kg/m2, 30.0–35.0 kg/m2, 35.1–40.0 kg/m2 and >40 kg/m2, respectively. Pre- and post-transplant parameters were compared. A P-value of <0.05 was considered to indicate statistical significance. Independent predictors of patient and graft survival were determined using multivariate analysis. Results A total of 785 patients met the study inclusion criteria. A BMI of >35 kg/m2 was associated with non-alcoholic steatohepatitis (NASH) cirrhosis (P < 0.0001), higher Model for End-stage Liver Disease (MELD) score, and longer wait times for transplant (P = 0.002). There were no differences in operative time, intensive care unit or hospital length of stay, or perioperative complications. Graft and patient survival at intervals up to 3 years were similar between groups. Compared with non-obese recipients, recipients with a BMI of >40 kg/m2 showed significantly reduced 5-year graft (49.0% versus 75.8%; P < 0.02) and patient (51.3% versus 78.8%; P < 0.01) survival. Conclusions Obesity increasingly impacts outcomes in liver transplantation. Although the present data are limited by the fact that they were sourced from a single institution, they suggest that morbid obesity adversely affects longterm outcomes despite providing similar short-term results. Further analysis is

  8. Minimum Pricing of Alcohol versus Volumetric Taxation: Which Policy Will Reduce Heavy Consumption without Adversely Affecting Light and Moderate Consumers?

    PubMed Central

    Sharma, Anurag; Vandenberg, Brian; Hollingsworth, Bruce

    2014-01-01

    Background We estimate the effect on light, moderate and heavy consumers of alcohol from implementing a minimum unit price for alcohol (MUP) compared with a uniform volumetric tax. Methods We analyse scanner data from a panel survey of demographically representative households (n = 885) collected over a one-year period (24 Jan 2010–22 Jan 2011) in the state of Victoria, Australia, which includes detailed records of each household's off-trade alcohol purchasing. Findings The heaviest consumers (3% of the sample) currently purchase 20% of the total litres of alcohol (LALs), are more likely to purchase cask wine and full strength beer, and pay significantly less on average per standard drink compared to the lightest consumers (A$1.31 [95% CI 1.20–1.41] compared to $2.21 [95% CI 2.10–2.31]). Applying a MUP of A$1 per standard drink has a greater effect on reducing the mean annual volume of alcohol purchased by the heaviest consumers of wine (15.78 LALs [95% CI 14.86–16.69]) and beer (1.85 LALs [95% CI 1.64–2.05]) compared to a uniform volumetric tax (9.56 LALs [95% CI 9.10–10.01] and 0.49 LALs [95% CI 0.46–0.41], respectively). A MUP results in smaller increases in the annual cost for the heaviest consumers of wine ($393.60 [95% CI 374.19–413.00]) and beer ($108.26 [95% CI 94.76–121.75]), compared to a uniform volumetric tax ($552.46 [95% CI 530.55–574.36] and $163.92 [95% CI 152.79–175.03], respectively). Both a MUP and uniform volumetric tax have little effect on changing the annual cost of wine and beer for light and moderate consumers, and likewise little effect upon their purchasing. Conclusions While both a MUP and a uniform volumetric tax have potential to reduce heavy consumption of wine and beer without adversely affecting light and moderate consumers, a MUP offers the potential to achieve greater reductions in heavy consumption at a lower overall annual cost to consumers. PMID:24465368

  9. Physical parameters affecting living cells in space.

    PubMed

    Langbein, D

    1986-01-01

    The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present. PMID:11537842

  10. Benefits of adversity?! How life history affects the behavioral profile of mice varying in serotonin transporter genotype

    PubMed Central

    Bodden, Carina; Richter, S. Helene; Schreiber, Rebecca S.; Kloke, Vanessa; Gerß, Joachim; Palme, Rupert; Lesch, Klaus-Peter; Lewejohann, Lars; Kaiser, Sylvia; Sachser, Norbert

    2015-01-01

    Behavioral profiles are influenced by both positive and negative experiences as well as the genetic disposition. Traditionally, accumulating adversity over lifetime is considered to predict increased anxiety-like behavior (“allostatic load”). The alternative “mismatch hypothesis” suggests increased levels of anxiety if the early environment differs from the later-life environment. Thus, there is a need for a whole-life history approach to gain a deeper understanding of how behavioral profiles are shaped. The aim of this study was to elucidate the effects of life history on the behavioral profile of mice varying in serotonin transporter (5-HTT) genotype, an established mouse model of increased anxiety-like behavior. For this purpose, mice grew up under either adverse or beneficial conditions during early phases of life. In adulthood, they were further subdivided so as to face a situation that either matched or mismatched the condition experienced so far, resulting in four different life histories. Subsequently, mice were tested for their anxiety-like and exploratory behavior. The main results were: (1) Life history profoundly modulated the behavioral profile. Surprisingly, mice that experienced early beneficial and later escapable adverse conditions showed less anxiety-like and more exploratory behavior compared to mice of other life histories. (2) Genotype significantly influenced the behavioral profile, with homozygous 5-HTT knockout mice displaying highest levels of anxiety-like and lowest levels of exploratory behavior. Our findings concerning life history indicate that the absence of adversity does not necessarily cause lower levels of anxiety than accumulating adversity. Rather, some adversity may be beneficial, particularly when following positive events. Altogether, we conclude that for an understanding of behavioral profiles, it is not sufficient to look at experiences during single phases of life, but the whole life history has to be considered

  11. Genetically-induced Estrogen Receptor Alpha mRNA (Esr1) Overexpression Does Not Adversely Affect Fertility or Penile Development in Male Mice

    PubMed Central

    Heath, John; Abdelmageed, Yazeed; Braden, Tim D.; Williams, Carol S.; Williams, John W.; Paulose, Tessie; Hernandez-Ochoa, Isabel; Gupta, Rupesh; Flaws, Jodi A.; Goyal, Hari O.

    2011-01-01

    Previously, we reported that estrogen receptor alpha mRNA (Esr1) or protein (ESR1) overexpression resulting from neonatal exposure to estrogens in rats was associated with infertility and mal-developed penis characterized by reduced length and weight and abnormal accumulation of fat cells. The objective of this study was to determine if mutant male mice overexpressing Esr1 are naturally infertile or have reduced fertility and/or develop abnormal penis. The fertility parameters, including fertility and fecundity indices, numbers of days from the day of cohabitation to the day of delivery, and numbers of pups per female, were not altered from controls, as a result of Esr1 overexpression. Likewise, penile morphology, including the length, weight, and diameter and os penis development, was not altered from controls. Conversely, weights of the seminal vesicles and bulbospongiosus and levator ani (BS/LA) muscles were significantly (P < 0.05) lower as compared to controls; however, the weight of the testis, the morphology of the testis and epididymis, and the plasma and testicular testosterone concentration were not different from controls. Hence, the genetically-induced Esr1 overexpression alone, without an exogenous estrogen exposure during the neonatal period, is unable to adversely affect the development of the penis as well as other male reproductive organs, except limited, but significant, reductions in weights of the seminal vesicles and BS/LA muscles. PMID:20930192

  12. The Emerging Prominence of the Cardiac Mast Cell as a Potent Mediator of Adverse Myocardial Remodeling

    PubMed Central

    Janicki, Joseph S.; Brower, Gregory L.; Levick, Scott P.

    2015-01-01

    Cardiac mast cells store and release a variety of biologically active mediators, several of which have been implicated in the activation of matrix metalloproteinases in the volume-overloaded heart, while others are involved in the fibrotic process in pressure-overloaded hearts. Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension, myocardial infarction, and chronic cardiac volume overload. Also, there is evolving evidence implicating the cardiac mast cell as having a major role in the adverse remodeling underlying these cardiovascular disorders. Thus, the cardiac mast cell is the focus of this chapter that begins with a historical background, followed by sections on methods for their isolation and characterization, endogenous secretagogues, phenotype, and ability of estrogen to alter their phenotype so as to provide cardioprotection. Finally the role of mast cells in myocardial remodeling secondary to a sustained cardiac volume overload, hypertension, and ischemic injury and future research directions are discussed. PMID:25388248

  13. Adverse Late and Long-Term Treatment Effects in Adult Allogeneic Hematopoietic Stem Cell Transplant Survivors.

    PubMed

    Mosesso, Kara

    2015-11-01

    Hematopoietic stem cell transplantation (HSCT) has become the standard of care for many malignant and nonmalignant hematologic diseases that don't respond to traditional therapy. There are two types: autologous transplantation (auto-HSCT), in which an individual's stem cells are collected, stored, and infused back into that person; and allogeneic transplantation (allo-HSCT), in which healthy donor stem cells are infused into a recipient whose bone marrow has been damaged or destroyed. There have been numerous advancements in this field, leading to marked increases in the number of transplants performed annually. This article--the first of several on cancer survivorship--focuses on the care of adult allo-HSCT survivors because of the greater complexity of their posttransplant course. The author summarizes potential adverse late and long-term treatment-related effects, with special focus on the evaluation and management of several cardiovascular disease risk factors that can occur either independently or concurrently as part of the metabolic syndrome. These risk factors are potentially modifiable with appropriate nursing interventions and lifestyle modifications. PMID:26473441

  14. CT and MR imaging findings of systemic complications occurring during pregnancy and puerperal period, adversely affected by natural changes

    PubMed Central

    Himoto, Yuki; Kido, Aki; Moribata, Yusaku; Yamaoka, Toshihide; Okumura, Ryosuke; Togashi, Kaori

    2015-01-01

    Dynamic physiological and anatomical changes for delivery may adversely induce various specific non-obstetric complications during pregnancy and puerperal period. These complications can be fatal to both the mother and the fetus, thus a precise and early diagnosis ensued by an early treatment is essential. Along with ultrasonography, computed tomography (CT) and magnetic resonance imaging (MRI) have assumed an increasing role in the diagnosis. This article aims to discuss the pathophysiology of these complications, the indications for CT and MRI, and the imaging findings. PMID:26937442

  15. CT and MR imaging findings of systemic complications occurring during pregnancy and puerperal period, adversely affected by natural changes.

    PubMed

    Himoto, Yuki; Kido, Aki; Moribata, Yusaku; Yamaoka, Toshihide; Okumura, Ryosuke; Togashi, Kaori

    2015-01-01

    Dynamic physiological and anatomical changes for delivery may adversely induce various specific non-obstetric complications during pregnancy and puerperal period. These complications can be fatal to both the mother and the fetus, thus a precise and early diagnosis ensued by an early treatment is essential. Along with ultrasonography, computed tomography (CT) and magnetic resonance imaging (MRI) have assumed an increasing role in the diagnosis. This article aims to discuss the pathophysiology of these complications, the indications for CT and MRI, and the imaging findings. PMID:26937442

  16. Factors affecting the development of adverse drug reactions to β-blockers in hospitalized cardiac patient population

    PubMed Central

    Mugoša, Snežana; Djordjević, Nataša; Djukanović, Nina; Protić, Dragana; Bukumirić, Zoran; Radosavljević, Ivan; Bošković, Aneta; Todorović, Zoran

    2016-01-01

    The aim of the present study was to undertake a study on the prevalence of cytochrome P450 2D6 (CYP2D6) poor metabolizer alleles (*3, *4, *5, and *6) on a Montenegrin population and its impact on developing adverse drug reactions (ADRs) of β-blockers in a hospitalized cardiac patient population. A prospective study was conducted in the Cardiology Center of the Clinical Center of Montenegro and included 138 patients who had received any β-blocker in their therapy. ADRs were collected using a specially designed questionnaire, based on the symptom list and any signs that could point to eventual ADRs. Data from patients’ medical charts, laboratory tests, and other available parameters were observed and combined with the data from the questionnaire. ADRs to β-blockers were observed in 15 (10.9%) patients. There was a statistically significant difference in the frequency of ADRs in relation to genetically determined enzymatic activity (P<0.001), with ADRs’ occurrence significantly correlating with slower CYP2D6 metabolism. Our study showed that the adverse reactions to β-blockers could be predicted by the length of hospitalization, CYP2D6 poor metabolizer phenotype, and the concomitant use of other CYP2D6-metabolizing drugs. Therefore, in hospitalized patients with polypharmacy CYP2D6 genotyping might be useful in detecting those at risk of ADRs. PMID:27536078

  17. Impaired Glucose Tolerance or Newly Diagnosed Diabetes Mellitus Diagnosed during Admission Adversely Affects Prognosis after Myocardial Infarction: An Observational Study

    PubMed Central

    George, Anish; Bhatia, Raghav T.; Buchanan, Gill L.; Whiteside, Anne; Moisey, Robert S.; Beer, Stephen F.; Chattopadhyay, Sudipta; Sathyapalan, Thozhukat; John, Joseph

    2015-01-01

    Objective To investigate the prognostic effect of newly diagnosed diabetes mellitus (NDM) and impaired glucose tolerance (IGT) post myocardial infarction (MI). Research Design and Methods Retrospective cohort study of 768 patients without preexisting diabetes mellitus post-MI at one centre in Yorkshire between November 2005 and October 2008. Patients were categorised as normal glucose tolerance (NGT n = 337), IGT (n = 279) and NDM (n = 152) on pre- discharge oral glucose tolerance test (OGTT). Primary end-point was the first occurrence of major adverse cardiovascular events (MACE) including cardiovascular death, non-fatal MI, severe heart failure (HF) or non-haemorrhagic stroke. Secondary end-points were all cause mortality and individual components of MACE. Results Prevalence of NGT, impaired fasting glucose (IFG), IGT and NDM changed from 90%, 6%, 0% and 4% on fasting plasma glucose (FPG) to 43%, 1%, 36% and 20% respectively after OGTT. 102 deaths from all causes (79 as first events of which 46 were cardiovascular), 95 non fatal MI, 18 HF and 9 non haemorrhagic strokes occurred during 47.2 ± 9.4 months follow up. Event free survival was lower in IGT and NDM groups. IGT (HR 1.54, 95% CI: 1.06–2.24, p = 0.024) and NDM (HR 2.15, 95% CI: 1.42–3.24, p = 0.003) independently predicted MACE free survival. IGT and NDM also independently predicted incidence of MACE. NDM but not IGT increased the risk of secondary end-points. Conclusion Presence of IGT and NDM in patients presenting post-MI, identified using OGTT, is associated with increased incidence of MACE and is associated with adverse outcomes despite adequate secondary prevention. PMID:26571120

  18. Emerging role of angiogenin in stress response and cell survival under adverse conditions

    PubMed Central

    Li, Shuping; Hu, Guo-Fu

    2011-01-01

    Angiogenin (ANG), also known as ribonuclease (RNASE) 5, is a member of the vertebrate-specific, secreted RNASE superfamily. ANG was originally identified as a tumor angiogenic factor, but its biological activity has been extended from inducing angiogenesis to stimulating cell proliferation and more recently, to promoting cell survival. Under growth conditions, ANG is translocated to nucleus where it accumulates in nucleolus and stimulates ribosomal RNA (rRNA) transcription, thus facilitating cell growth and proliferation. Under stress conditions, ANG is accumulated in cytoplasmic compartments and modulates the production of tiRNA, a novel class of small RNA that is derived from tRNA and is induced by stress. tiRNA suppress global protein translation by inhibiting both cap-dependent and -independent translation including that mediated by weak IRESes. However, strong IRES-mediated translation, a mechanism often used by genes involved in pro-survival and anti-apoptosis, is not affected. Thus, ANG-mediated tiRNA reprogram protein translation, save anabolic energy, and promote cell survival. This recently uncovered function of ANG presents a novel mechanism of action in regulating cell growth and survival. PMID:22021078

  19. When the serotonin transporter gene meets adversity: the contribution of animal models to understanding epigenetic mechanisms in affective disorders and resilience.

    PubMed

    Lesch, Klaus-Peter

    2011-01-01

    Although converging epidemiological evidence links exposure to stressful life events with increased risk for affective spectrum disorders, there is extraordinary interindividual variability in vulnerability to adversity. The environmentally moderated penetrance of genetic variation is thought to play a major role in determining who will either develop disease or remain resilient. Research on genetic factors in the aetiology of disorders of emotion regulation has, nevertheless, been complicated by a mysterious discrepancy between high heritability estimates and a scarcity of replicable gene-disorder associations. One explanation for this incongruity is that at least some specific gene effects are conditional on environmental cues, i.e. gene-by-environment interaction (G × E) is present. For example, a remarkable number of studies reported an association of variation in the human serotonin (5-HT) transporter gene (SLC6A4, 5-HTT, SERT) with emotional and cognitive traits as well as increased risk for depression in interaction with psychosocial adversity. The results from investigations in non-human primate and mouse support the occurrence of G × E interaction by showing that variation of 5-HTT function is associated with a vulnerability to adversity across the lifespan leading to unfavourable outcomes resembling various neuropsychiatric disorders. The neural and molecular mechanisms by which environmental adversity in early life increases disease risk in adulthood are not known but may include epigenetic programming of gene expression during development. Epigenetic mechanisms, such as DNA methylation and chromatin modification, are dynamic and reversible and may also provide targets for intervention strategies (see Bountra et al., Curr Top Behav Neurosci, 2011). Animal models amenable to genetic manipulation are useful in the identification of molecular mechanisms underlying epigenetic programming by adverse environments and individual differences in

  20. The type B brevetoxin (PbTx-3) adversely affects development, cardiovascular function, and survival in Medaka (Oryzias latipes) embryos.

    PubMed Central

    Colman, Jamie R; Ramsdell, John S

    2003-01-01

    Brevetoxins are produced by the red tide dinoflagellate Karenia brevis. The toxins are lipophilic polyether toxins that elicit a myriad of effects depending on the route of exposure and the target organism. Brevetoxins are therefore broadly toxic to marine and estuarine animals. By mimicking the maternal route of exposure to the oocytes in finfish, we characterized the adverse effects of the type B brevetoxin brevetoxin-3 (PbTx-3) on embryonic fish development and survival. The Japanese rice fish, medaka (Oryzias latipes), was used as the experimental model in which individual eggs were exposed via microinjection to various known concentrations of PbTx-3 dissolved in an oil vehicle. Embryos injected with doses exceeding 1.0 ng/egg displayed tachycardia, hyperkinetic twitches in the form of sustained convulsions, spinal curvature, clumping of the erythrocytes, and decreased hatching success. Furthermore, fish dosed with toxin were often unable to hatch in the classic tail-first fashion and emerged head first, which resulted in partial hatches and death. We determined that the LD(50) (dose that is lethal to 50% of the fish) for an injected dose of PbTx-3 is 4.0 ng/egg. The results of this study complement previous studies of the developmental toxicity of the type A brevetoxin brevetoxin-1 (PbTx-1), by illustrating in vivo the differing affinities of the two congeners for cardiac sodium channels. Consequently, we observed differing cardiovascular responses in the embryos, wherein embryos exposed to PbTx-3 exhibited persistent tachycardia, whereas embryos exposed to PbTx-1 displayed bradycardia, the onset of which was delayed. PMID:14644667

  1. A Computational Study on the Effects of Dynamic Roughness Application to Separated Transitional Flows Affected by Adverse Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Campitelli, Gennaro

    The study of transitional flows is considered crucial for many practical engineering applications. In fact, a comprehensive understanding of the laminar-turbulent transition phenomenon often helps to improve the overall performance of apparatuses such as airfoils, wind turbines, hulls and turbomachinery blades. In addition to understanding and prediction of transitional flows, active research continues in the area of boundary layer control, which includes control of phenomena such as flow separation and transition. For instance, optimum geometrical shaping may be followed by the adoption on the wall-surface of riblets to adjust pressure gradient and reduce drag. Further "flow control" may also be acquired by introducing active devices able to modify the flow field in order to accomplish a desired aerodynamic task. Such flow manipulation is often achieved by using time-dependent forcing mechanisms which promote natural instabilities amplifying the control effectiveness. Localized energy inputs such as Lorentz-force actuator, piezoelectric flaps and synthetic jets all produce a consistent boundary layer mixing enhancement with lift increase and drag abatement. The current numerical study attempts to demonstrate the efficacy of dynamic roughness (DR) on altering separated-reattached transitional flows under adverse pressure gradient. It has already been proven how DR, acting on the boundary sublayer perturbation, is able to suppress (partially or completely) the typical leading edge separation for an airfoil at different angles of attack. This makes DR particularly suitable for separated flow control applications where the shear layer reattaches presenting the characteristic laminar separation bubble. A numerical sensitivity study has been conducted with an efficient orthogonal design taking into account four different control parameters on three levels (actuation frequency, humps height, rows displacement, synchronization) to provide an optimum DR setup which limits

  2. The skin tissue is adversely affected by TNF-alpha blockers in patients with chronic inflammatory arthritis: a 5-year prospective analysis

    PubMed Central

    Machado, Natalia P.; dos Reis Neto, Edgard Torres; Soares, Maria Roberta M. P.; Freitas, Daniele S.; Porro, Adriana; Ciconelli, Rozana M.; Pinheiro, Marcelo M.

    2013-01-01

    OBJECTIVE: We evaluated the incidence of and the main risk factors associated with cutaneous adverse events in patients with chronic inflammatory arthritis following anti-TNF-α therapy. METHODS: A total of 257 patients with active arthritis who were taking TNF-α blockers, including 158 patients with rheumatoid arthritis, 87 with ankylosing spondylitis and 12 with psoriatic arthritis, were enrolled in a 5-year prospective analysis. Patients with overlapping or other rheumatic diseases were excluded. Anthropometric, socioeconomic, demographic and clinical data were evaluated, including the Disease Activity Score-28, Bath Ankylosing Spondylitis Disease Activity Index and Psoriasis Area Severity Index. Skin conditions were evaluated by two dermatology experts, and in doubtful cases, skin lesion biopsies were performed. Associations between adverse cutaneous events and clinical, demographic and epidemiological variables were determined using the chi-square test, and logistic regression analyses were performed to identify risk factors. The significance level was set at p<0.05. RESULTS: After 60 months of follow-up, 71 adverse events (73.85/1000 patient-years) were observed, of which allergic and immune-mediated phenomena were the most frequent events, followed by infectious conditions involving bacterial (47.1%), parasitic (23.5%), fungal (20.6%) and viral (8.8%) agents. CONCLUSION: The skin is significantly affected by adverse reactions resulting from the use of TNF-α blockers, and the main risk factors for cutaneous events were advanced age, female sex, a diagnosis of rheumatoid arthritis, disease activity and the use of infliximab. PMID:24141833

  3. Task-Oriented and Bottle Feeding Adversely Affect the Quality of Mother-Infant Interactions Following Abnormal Newborn Screens

    PubMed Central

    Tluczek, Audrey; Clark, Roseanne; McKechnie, Anne Chevalier; Orland, Kate Murphy; Brown, Roger L.

    2010-01-01

    Objective Examine effects of newborn screening (NBS) and neonatal diagnosis on the quality of mother-infant interactions in the context of feeding. Methods Study compared the quality of mother-infant feeding interactions among four groups of infants classified by severity of NBS and diagnostic results: cystic fibrosis (CF), congenital hypothyroidism, heterozygote CF carrier, and healthy with normal NBS. The Parent-Child Early Relational Assessment and a task-oriented item measured the quality of feeding interactions for 130 dyads, infant ages 3–19 weeks (M=9.19, SD=3.28). The Center for Epidemiologic Studies Depression Scale and State-Trait Anxiety Inventory measured maternal depression and anxiety. Results Composite Indicator Structure Equation Modeling showed that infant diagnostic status and, to a lesser extent, maternal education predicted feeding method. Mothers of infants with CF were most likely to bottle feed, which was associated with more task-oriented maternal behavior than breastfeeding. Mothers with low task-oriented behavior showed more sensitivity and responsiveness to infant cues, as well as less negative affect and behavior in their interactions with their infants than mothers with high task-oriented scores. Mothers of infants with CF were significantly more likely to have clinically significant anxiety and depression than the other groups. However, maternal psychological profile did not predict feeding method or interaction quality. Conclusions Mothers in the CF group were the least likely to breastfeed. Research is needed to explicate long-term effects of feeding methods on quality of mother-child relationship and ways to promote continued breastfeeding following a neonatal CF diagnosis. PMID:20495477

  4. Hematopoietic Stem Cell Transplantation with Cryopreserved Grafts: Adverse Reactions after Transplantation and Cryoprotectant Removal Prior to Infusion

    PubMed Central

    Shu, Zhiquan; Heimfeld, Shelly; Gao, Dayong

    2015-01-01

    Transplantation of hematopoietic stem cells (HSC) has been successfully developed as a part of treatment protocols for a large number of clinical indications, and cryopreservation of both autologous and allogeneic sources of HSC grafts is increasingly being employed to facilitate logistical challenges in coordinating the collection, processing, preparation, quality control testing and release of the final HSC product with delivery to the patient. Direct infusion of cryopreserved cell products into patients has been associated with the development of adverse reactions, ranging from relatively mild symptoms to much more serious, life-threatening complications, including allergic/gastrointestinal/cardiovascular/neurological complications, renal/hepatic dysfunctions, etc. In many cases the cryoprotective agent (CPA) used — which is typically dimethyl sulfoxide (DMSO), is believed to be the main causal agent of these adverse reactions and thus many studies recommend depletion of DMSO before cell infusion. In this paper, we will briefly review the history of HSC cryopreservation, the side effects reported after transplantation, along with advances in strategies for reducing the adverse reactions, including methods and devices for removal of DMSO. Strategies to minimize adverse effects include medication before and after transplantation, optimizing the infusion procedure, reducing the DMSO concentration or using alternative CPAs for cryopreservation, and removing DMSO prior to infusion. For DMSO removal, besides the traditional and widely applied method of centrifugation, new approaches have been explored in the last decade, such as filtration by spinning membrane, stepwise dilution-centrifugation using rotating syringe, diffusion-based DMSO extraction in microfluidic channels, dialysis and dilution-filtration through hollow-fiber dialyzers, and some instruments (CytoMate™, Sepax S-100, Cobe 2991, microfluidic channels, dilution-filtration system, etc.) as well

  5. Patients' Induced Pluripotent Stem Cells to Model Drug Induced Adverse Events: A Role in Predicting Thiopurine Induced Pancreatitis?

    PubMed

    Stocco, Gabriele; Lanzi, Gaetana; Yue, Fengming; Giliani, Silvia; Sasaki, Katsunori; Tommasini, Alberto; Pelin, Marco; Martelossi, Stefano; Ventura, Alessandro; Decorti, Giuliana

    2015-01-01

    Induced pluripotent stem cells (iPSC) can be produced from adult cells by transfecting them with a definite set of pluripotency-associated genes. Under adequate growth conditions and stimulation iPSC can differentiate to almost every somatic lineage in the body. Patients' derived iPSC are an innovative model to study mechanisms of adverse drug reactions in individual patients and in cell types that cannot be easily obtained from human subjects. Proof-of concept studies with known toxicants have been performed for liver, cardiovascular and central nervous system cells: neurons obtained from iPSC have been used to elucidate the mechanism of chemotherapy-induced peripheral neuropathy by evaluating the effects of neurotoxic drugs such as vincristine. However, no study has been performed yet on pancreatic tissue and drug induced pancreatitis. Thiopurines (azathioprine and mercaptopurine) are immunosuppressive antimetabolite drugs, commonly used to treat Crohn's disease. About 5% of Crohn's disease patients treated with thiopurines develop pancreatitis, a severe idiosyncratic adverse event; these patients have to stop thiopurine administration and may require medical treatment, with significant personal and social costs. Molecular mechanism of thiopurine induced pancreatitis (TIP) is currently unknown and no fully validated biomarker is available to assist clinicians in preventing this adverse event. Hence, in this review we have reflected upon the probable research applications of exocrine pancreatic cells generated from patient specific iPS cells. Such pancreatic cells can provide excellent insights into the molecular mechanism of TIP. In particular three hypotheses on the mechanism of TIP could be explored: drug biotransformation, innate immunity and adaptative immunity. PMID:26526832

  6. Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice.

    PubMed

    McGovern, Gillian; Mabbott, Neil; Jeffrey, Martin

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrP(d)) accumulations in the brain and lymphoreticular system (LRS). Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrP(d) accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs) and tingible body macrophages (TBMs). Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs) of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrP(d) plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrP(d) accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrP(d). Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrP(d) accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function. PMID:19997557

  7. Developing a Gene Biomarker at the Tipping Point of Adaptive and Adverse Responses in Human Bronchial Epithelial Cells.

    PubMed

    Currier, Jenna M; Cheng, Wan-Yun; Menendez, Daniel; Conolly, Rory; Chorley, Brian N

    2016-01-01

    Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Shifting from in vivo, low-throughput toxicity studies to high-throughput screening (HTS) paradigms and risk assessment based on in vitro and in silico testing requires utilizing toxicity pathway information to distinguish adverse outcomes from recoverable adaptive events. Little work has focused on oxidative stresses in human airway for the purposes of predicting adverse responses. We hypothesize that early gene expression-mediated molecular changes could be used to delineate adaptive and adverse responses to environmentally-based perturbations. Here, we examined cellular responses of the tracheobronchial airway to zinc (Zn) exposure, a model oxidant. Airway derived BEAS-2B cells exposed to 2-10 μM Zn2+ elicited concentration- and time-dependent cytotoxicity. Normal, adaptive, and cytotoxic Zn2+ exposure conditions were determined with traditional apical endpoints, and differences in global gene expression around the tipping point of the responses were used to delineate underlying molecular mechanisms. Bioinformatic analyses of differentially expressed genes indicate early enrichment of stress signaling pathways, including those mediated by the transcription factors p53 and NRF2. After 4 h, 154 genes were differentially expressed (p < 0.01) between the adaptive and cytotoxic Zn2+ concentrations. Nearly 40% of the biomarker genes were related to the p53 signaling pathway with 30 genes identified as likely direct targets using a database of p53 ChIP-seq studies. Despite similar p53 activation profiles, these data revealed widespread dampening of p53 and NRF2-related genes as early as 4 h after exposure at higher, unrecoverable Zn2+ exposures. Thus, in our model early increased activation of stress response pathways indicated a recoverable adaptive event. Overall, this study highlights the

  8. Developing a Gene Biomarker at the Tipping Point of Adaptive and Adverse Responses in Human Bronchial Epithelial Cells

    PubMed Central

    Currier, Jenna M.; Cheng, Wan-Yun; Menendez, Daniel; Conolly, Rory; Chorley, Brian N.

    2016-01-01

    Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Shifting from in vivo, low-throughput toxicity studies to high-throughput screening (HTS) paradigms and risk assessment based on in vitro and in silico testing requires utilizing toxicity pathway information to distinguish adverse outcomes from recoverable adaptive events. Little work has focused on oxidative stresses in human airway for the purposes of predicting adverse responses. We hypothesize that early gene expression-mediated molecular changes could be used to delineate adaptive and adverse responses to environmentally-based perturbations. Here, we examined cellular responses of the tracheobronchial airway to zinc (Zn) exposure, a model oxidant. Airway derived BEAS-2B cells exposed to 2–10 μM Zn2+ elicited concentration- and time-dependent cytotoxicity. Normal, adaptive, and cytotoxic Zn2+ exposure conditions were determined with traditional apical endpoints, and differences in global gene expression around the tipping point of the responses were used to delineate underlying molecular mechanisms. Bioinformatic analyses of differentially expressed genes indicate early enrichment of stress signaling pathways, including those mediated by the transcription factors p53 and NRF2. After 4 h, 154 genes were differentially expressed (p < 0.01) between the adaptive and cytotoxic Zn2+ concentrations. Nearly 40% of the biomarker genes were related to the p53 signaling pathway with 30 genes identified as likely direct targets using a database of p53 ChIP-seq studies. Despite similar p53 activation profiles, these data revealed widespread dampening of p53 and NRF2-related genes as early as 4 h after exposure at higher, unrecoverable Zn2+ exposures. Thus, in our model early increased activation of stress response pathways indicated a recoverable adaptive event. Overall, this study highlights the

  9. Mobilization and collection of peripheral blood stem cells in healthy donors: risks, adverse events and follow-up.

    PubMed

    Moalic, V

    2013-04-01

    Allogeneic haematopoietic stem cell transplantation is the choice treatment for many haematological malignancies. Granulocyte-colony-stimulating factor (G-CSF) has been widely used to mobilize stem cells into the peripheral blood from healthy siblings or volunteer unrelated donors. To a large extent, the use of mobilized peripheral blood haematopoietic stem cells has replaced marrow-derived stem cells as the preferred source of donor haematopoietic stem cells. Clinicians have been aware since the first clinical use, that administration of G-CSF, even in a single short course, could possibly be a risk for healthy donors either in short-term or as a delayed effect. The immediate side effects of G-CSF have been established for a long time, most of them are frequent but transient, self-limited and without long-term consequences. Questions have been raised about potential long-term adverse effects such as an elevated risk of haematological malignancies after G-CSF administration. More long-term safety data from registries are needed to adequately evaluate such a relationship. Our objective in this article is to provide an in-depth review of reported adverse events associated with the use of G-CSF in healthy donors and to focus attention on unanswered questions related to their long-term follow-up. PMID:23199456

  10. Factors Affecting Polymer Electrolyte Fuel Cells Performance and Reproducibility

    SciTech Connect

    Moller-Holst S.

    1998-11-01

    Development of fuel cells is often based on small-scale laboratory studies. Due to limited time and budgets, a minimum number of cells are usually prepared and tested, thus, conclusions about improved performance are often drawn from studies of a few cells. Generally, statistics showing the significance of an effect are seldom reported. In this work a simple PEM fuel cell electrode optimization experiment is used as an example to illustrate the importance of statistical evaluation of factors affecting cell performance. The use of fractional factorial design of experiments to reduce the number of cells that have to be studied is also addressed.

  11. Curcumin and Vitamin E Protect against Adverse Effects of Benzo[a]pyrene in Lung Epithelial Cells

    PubMed Central

    Cai, Qingsong; Lv, Tangfeng; Singh, Kamaleshwar; Gao, Weimin

    2014-01-01

    Benzo[a]pyrene (BaP), a well-known environmental carcinogen, promotes oxidative stress and DNA damage. Curcumin and vitamin E (VE) have potent antioxidative activity that protects cells from oxidative stress and cellular damage. The objectives of the present study were to investigate the adverse effects of BaP on normal human lung epithelial cells (BEAS-2B), the potential protective effects of curcumin and VE against BaP-induced cellular damage, and the molecular mechanisms of action. MTT assay, flow cytometry, fluorescence microplate assay, HPLC, qRT-PCR, and western blot were performed to analyze cytotoxicity, cell cycle, reactive oxygen species (ROS), BaP diol-epoxidation (BPDE)-DNA adducts, gene expression, and protein expression, respectively. Curcumin or VE prevented cells from BaP-induced cell cycle arrest and growth inhibition, significantly suppressed BaP-induced ROS levels, and decreased BPDE-DNA adducts. While CYP1A1 and 1B1 were induced by BaP, these inductions were not significantly reduced by curcumin or VE. Moreover, the level of activated p53 and PARP-1 were significantly induced by BaP, whereas this induction was markedly reduced after curcumin and VE co-treatment. Survivin was significantly down-regulated by BaP, and curcumin significantly restored survivin expression in BaP-exposed cells. The ratio of Bax/Bcl-2 was also significantly increased in cells exposed to BaP and this increase was reversed by VE co-treatment. Taken together, BaP-induced cytotoxicity occurs through DNA damage, cell cycle arrest, ROS production, modulation of metabolizing enzymes, and the expression/activation of p53, PARP-1, survivin, and Bax/Bcl-2. Curcumin and VE could reverse some of these BaP-mediated alterations and therefore be effective natural compounds against the adverse effects of BaP in lung cells. PMID:24664296

  12. Curcumin and vitamin E protect against adverse effects of benzo[a]pyrene in lung epithelial cells.

    PubMed

    Zhu, Wenbin; Cromie, Meghan M; Cai, Qingsong; Lv, Tangfeng; Singh, Kamaleshwar; Gao, Weimin

    2014-01-01

    Benzo[a]pyrene (BaP), a well-known environmental carcinogen, promotes oxidative stress and DNA damage. Curcumin and vitamin E (VE) have potent antioxidative activity that protects cells from oxidative stress and cellular damage. The objectives of the present study were to investigate the adverse effects of BaP on normal human lung epithelial cells (BEAS-2B), the potential protective effects of curcumin and VE against BaP-induced cellular damage, and the molecular mechanisms of action. MTT assay, flow cytometry, fluorescence microplate assay, HPLC, qRT-PCR, and western blot were performed to analyze cytotoxicity, cell cycle, reactive oxygen species (ROS), BaP diol-epoxidation (BPDE)-DNA adducts, gene expression, and protein expression, respectively. Curcumin or VE prevented cells from BaP-induced cell cycle arrest and growth inhibition, significantly suppressed BaP-induced ROS levels, and decreased BPDE-DNA adducts. While CYP1A1 and 1B1 were induced by BaP, these inductions were not significantly reduced by curcumin or VE. Moreover, the level of activated p53 and PARP-1 were significantly induced by BaP, whereas this induction was markedly reduced after curcumin and VE co-treatment. Survivin was significantly down-regulated by BaP, and curcumin significantly restored survivin expression in BaP-exposed cells. The ratio of Bax/Bcl-2 was also significantly increased in cells exposed to BaP and this increase was reversed by VE co-treatment. Taken together, BaP-induced cytotoxicity occurs through DNA damage, cell cycle arrest, ROS production, modulation of metabolizing enzymes, and the expression/activation of p53, PARP-1, survivin, and Bax/Bcl-2. Curcumin and VE could reverse some of these BaP-mediated alterations and therefore be effective natural compounds against the adverse effects of BaP in lung cells. PMID:24664296

  13. Managing treatment-related adverse events associated with egfr tyrosine kinase inhibitors in advanced non-small-cell lung cancer

    PubMed Central

    Hirsh, V.

    2011-01-01

    Non-small-cell lung cancer (nsclc) has the highest prevalence of all types of lung cancer, which is the second most common cancer and the leading cause of cancer-related mortality in Canada. The need for more effective and less toxic treatment options for nsclc has led to the development of agents targeting the epidermal growth factor receptor (egfr)–mediated signalling pathway, such as egfr tyrosine kinase inhibitors (egfr-tkis). Although egfr-tkis are less toxic than traditional anti-neoplastic agents, they are commonly associated with acneiform-like rash and diarrhea. This review summarizes the clinical presentation and causes of egfr-tki–induced rash and diarrhea, and presents strategies for effective assessment, monitoring, and treatment of these adverse effects. Strategies to improve the management of egfr-tki–related adverse events should improve clinical outcomes, compliance, and quality of life in patients with advanced nsclc. PMID:21655159

  14. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming

    PubMed Central

    Li, Heng-Hong; Wang, Yi-wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D.; Fornace, Albert J.

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures. PMID:26078715

  15. Laboratory adverse events and discontinuation of therapy according to CD4+ cell count at the start of antiretroviral therapy

    PubMed Central

    Jose, Sophie; Quinn, Killian; Hill, Teresa; Leen, Clifford; Walsh, John; Hay, Phillip; Fisher, Martin; Post, Frank; Nelson, Mark; Gompels, Mark; Johnson, Margaret; Chadwick, David; Gilson, Richard; Sabin, Caroline; Fidler, Sarah

    2014-01-01

    Objective: Few data describe antiretroviral treatment (ART)-related adverse events when treatment is initiated at CD4+ cell counts more than 350 cells/μl. We compared rates of laboratory-defined adverse events (LDAEs) according to CD4+ cell count at ART initiation. Design: Analysis of on-going cohort study. Methods: ART-naive persons initiating ART from 2000 to 2010 were included. Chi-square, analysis of variance (ANOVA) and Kruskal–Wallis tests compared characteristics among those starting ART with a CD4+ cell count of 350 or less, 351–499 and at least 500 cells/μl. Time-updated Poisson regression compared rates of LDAE in the three CD4+ cell strata. Cox proportional hazard models compared risk of ART discontinuation. Results: Nine thousand, four hundred and six individuals were included: median age 37 years, 61% white, 80% men, median viral load 4.8 log copies/ml. Four hundred and forty-seven (4.9%) and 1099 (11.7%) started ART with a CD4+ cell count at least 500 and 351–499 cells/μl, respectively. One thousand, two hundred and eighty-three (13.6%) patients experienced at least one LDAE. The rate of LDAE did not differ between those starting ART with a CD4+ cell count 351–499 and less than 350 cells/μl [relative rate 0.90, 95% confidence interval (CI) 0.74–1.09)], but an increased risk of ART discontinuation was observed (hazard ratio 1.58, 95% CI 1.10–2.27). Those starting ART at CD4+ cell count at least 500 cells/μl had an increased rate of LDAE (relative rate 1.44, 95% CI 1.13–1.82) but were not more likely to discontinue ART (hazard ratio 1.15, 95% CI 0.64–2.09). Conclusion: This study demonstrates the need to consider ART-related toxicities when initiating therapy at CD4+ cell counts at least 500 cells/μl. Whilst evidence from randomized controlled trials is awaited, the timing of ART initiation in terms of benefits and risks of ART remains an important question. PMID:24583670

  16. The Relationship Between the Adverse Events and Efficacy of Sorafenib in Patients With Metastatic Renal Cell Carcinoma

    PubMed Central

    Zheng, Yu; Wang, Fuli; Wu, Guojun; Zhang, Longlong; Wang, Yangmin; Wang, Zhiping; Chen, Peng; Wang, Qing; Lu, Jingyi; Wang, Yujie; Li, Peijun; Wang, Jian; Lu, Xitao; Yuan, Jianlin

    2015-01-01

    Abstract The aim of the study is to evaluate the relationship between the adverse events and efficacy of sorafenib in patients with metastatic renal cell carcinoma (mRCC), with a purpose to guide the judgment of efficacy in sorafenib treatment. Eighty-three mRCC patients who received sorafenib therapy at northwest China were studied retrospectively. Univariate and multivariate analyses were performed to correlate tumor response, progression-free survival (PFS), and overall survival (OS) with adverse event types and grades. Among 83 patients who underwent sorafenib therapy, 2 cases (2.4%) had completed response (CR), 14 cases (16.9%) had partial response (PR), 57 cases (68.7%) had stable disease (SD), and 10 cases (12.0%) developed progressive disease (PD). The median PFS and OS were 15.0 and 29.0 months, respectively. The most frequent grade 1 or 2 adverse events included hand-foot syndrome (68.7%), diarrhea (54.2%), and alopecia (51.8%). The most common grade 3 or 4 adverse events were hand-foot syndrome (6.0%), hypertension (4.8%), and diarrhea (3.6%). The frequency and severity of adverse events correlated with tumor response rate (both with P < 0.05). Multivariate analysis showed the independent predictors of better PFS included rash (OR 0.307, 95%CI 0.148–0.636, P = 0.001) and diarrhea (OR 0.391, 95%CI 0.169–0.783, P = 0.008). Elevated transaminase was the independent predictor of poor PFS (OR 2.606, 95%CI 1.299–5.532, P = 0.012). For OS, rash (OR 0.473, 95%CI 0.253–0.886, P = 0.019) and diarrhea (OR 0.321, 95%CI 0.171–0.605, P = 0.000) correlated with better OS. Sorafenib-related adverse events are associated with efficacy in patients with mRCC from northwest China. Rash and diarrhea are independent protective factors of both PFS and OS, and elevated transaminase is an independent risk factor of PFS. A large prospective study is warranted. PMID:26656362

  17. Managing adverse effects of glaucoma medications

    PubMed Central

    Inoue, Kenji

    2014-01-01

    Glaucoma is a chronic, progressive disease in which retinal ganglion cells disappear and subsequent, gradual reductions in the visual field ensues. Glaucoma eye drops have hypotensive effects and like all other medications are associated with adverse effects. Adverse reactions may either result from the main agent or from preservatives used in the drug vehicle. The preservative benzalkonium chloride, is one such compound that causes frequent adverse reactions such as superficial punctate keratitis, corneal erosion, conjunctival allergy, and conjunctival injection. Adverse reactions related to main hypotensive agents have been divided into those affecting the eye and those affecting the entire body. In particular, β-blockers frequently cause systematic adverse reactions, including bradycardia, decrease in blood pressure, irregular pulse and asthma attacks. Prostaglandin analogs have distinctive local adverse reactions, including eyelash bristling/lengthening, eyelid pigmentation, iris pigmentation, and upper eyelid deepening. No systemic adverse reactions have been linked to prostaglandin analog eye drop usage. These adverse reactions may be minimized when they are detected early and prevented by reducing the number of different eye drops used (via fixed combination eye drops), reducing the number of times eye drops are administered, using benzalkonium chloride-free eye drops, using lower concentration eye drops, and providing proper drop instillation training. Additionally, a one-time topical medication can be given to patients to allow observation of any adverse reactions, thereafter the preparation of a topical medication with the fewest known adverse reactions can be prescribed. This does require precise patient monitoring and inquiries about patient symptoms following medication use. PMID:24872675

  18. Oxypurinol-Specific T Cells Possess Preferential TCR Clonotypes and Express Granulysin in Allopurinol-Induced Severe Cutaneous Adverse Reactions.

    PubMed

    Chung, Wen-Hung; Pan, Ren-You; Chu, Mu-Tzu; Chin, See-Wen; Huang, Yu-Lin; Wang, Wei-Chi; Chang, Jen-Yun; Hung, Shuen-Iu

    2015-09-01

    Allopurinol, a first-line drug for treating gout and hyperuricemia, is one of the leading causes of severe cutaneous adverse reactions (SCARs). To investigate the molecular mechanism of allopurinol-induced SCAR, we enrolled 21 patients (13 Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and 8 drug reaction with eosinophilia and systemic symptoms (DRESS)), 11 tolerant controls, and 23 healthy donors. We performed in vitro T-cell activation assays by culturing peripheral blood mononuclear cells (PBMCs) with allopurinol, oxypurinol, or febuxostat and measuring the expression of granulysin and IFN-γ in the supernatants of cultures. TCR repertoire was investigated by next-generation sequencing. Oxypurinol stimulation resulted in a significant increase in granulysin in the cultures of blood samples from SCAR patients (n=14) but not tolerant controls (n=11) or healthy donors (n=23). Oxypurinol induced T-cell response in a concentration- and time-dependent manner, whereas allopurinol or febuxostat did not. T cells from patients with allopurinol-SCAR showed no crossreactivity with febuxostat. Preferential TCR-V-β usage and clonal expansion of specific CDR3 (third complementarity-determining region) were found in the blister cells from skin lesions (n=8) and oxypurinol-activated T-cell cultures (n=4) from patients with allopurinol-SCAR. These data suggest that, in addition to HLA-B*58:01, clonotype-specific T cells expressing granulysin upon oxypurinol induction participate in the pathogenesis of allopurinol-induced SCAR. PMID:25946710

  19. Cell surface lectin array: parameters affecting cell glycan signature.

    PubMed

    Landemarre, Ludovic; Cancellieri, Perrine; Duverger, Eric

    2013-04-01

    Among the "omics", glycomics is one of the most complex fields and needs complementary strategies of analysis to decipher the "glycan dictionary". As an alternative method, which has developed since the beginning of the 21st century, lectin array technology could generate relevant information related to glycan motifs, accessibility and a number of other valuable insights from molecules (purified and non-purified) or cells. Based on a cell line model, this study deals with the key parameters that influence the whole cell surface glycan interaction with lectin arrays and the consequences on the interpretation and reliability of the results. The comparison between the adherent and suspension forms of Chinese Hamster Ovary (CHO) cells, showed respective glycan signatures, which could be inhibited specifically by neoglycoproteins. The modifications of the respective glycan signatures were also revealed according to the detachment modes and cell growth conditions. Finally the power of lectin array technology was highlighted by the possibility of selecting and characterizing a specific clone from the mother cell line, based on the slight difference determination in the respective glycan signatures. PMID:22899543

  20. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    SciTech Connect

    Mestre, Francisco; Gutiérrez, Antonio; Rodriguez, Jose; Ramos, Rafael; Garcia, Juan Fernando; Martinez-Serra, Jordi; Casasus, Marta; Nicolau, Cristina; Bento, Leyre; Herraez, Ines; Lopez-Perezagua, Paloma; Daumal, Jaime; Besalduch, Joan

    2015-05-01

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2 defined a subgroup with significantly worse prognosis. Considering COX-2{sup +} patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2{sup −} patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2{sup +} and COX-2{sup −} patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT.

  1. The FRIABLE1 Gene Product Affects Cell Adhesion in Arabidopsis

    PubMed Central

    Neumetzler, Lutz; Humphrey, Tania; Lumba, Shelley; Snyder, Stephen; Yeats, Trevor H.; Usadel, Björn; Vasilevski, Aleksandar; Patel, Jignasha; Rose, Jocelyn K. C.; Persson, Staffan; Bonetta, Dario

    2012-01-01

    Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion. PMID:22916179

  2. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    PubMed Central

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  3. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells.

    PubMed

    Pan, Zhi; Lee, Wilson; Slutsky, Lenny; Clark, Richard A F; Pernodet, Nadine; Rafailovich, Miriam H

    2009-04-01

    The effects of exposure of human dermal fibroblasts to rutile and anatase TiO(2) nanoparticles are reported. These particles can impair cell function, with the latter being more potent at producing damage. The exposure to nanoparticles decreases cell area, cell proliferation, mobility, and ability to contract collagen. Individual particles are shown to penetrate easily through the cell membrane in the absence of endocytosis, while some endocytosis is observed for larger particle clusters. Once inside, the particles are sequestered in vesicles, which continue to fill up with increasing incubation time till they rupture. Particles coated with a dense grafted polymer brush are also tested, and, using flow cytometry, are shown to prevent adherence to the cell membrane and hence penetration of the cell, which effectively decreases reactive oxygen species (ROS) formation and protects cells, even in the absence of light exposure. Considering the broad applications of these nanoparticles in personal health care products, the functionalized polymer coating can potentially play an important role in protecting cells and tissue from damage. PMID:19197964

  4. The Competitive Interplay between Allosteric HIV-1 Integrase Inhibitor BI/D and LEDGF/p75 during the Early Stage of HIV-1 Replication Adversely Affects Inhibitor Potency.

    PubMed

    Feng, Lei; Dharmarajan, Venkatasubramanian; Serrao, Erik; Hoyte, Ashley; Larue, Ross C; Slaughter, Alison; Sharma, Amit; Plumb, Matthew R; Kessl, Jacques J; Fuchs, James R; Bushman, Frederic D; Engelman, Alan N; Griffin, Patrick R; Kvaratskhelia, Mamuka

    2016-05-20

    Allosteric HIV-1 integrase inhibitors (ALLINIs) have recently emerged as a promising class of antiretroviral agents and are currently in clinical trials. In infected cells, ALLINIs potently inhibit viral replication by impairing virus particle maturation but surprisingly exhibit a reduced EC50 for inhibiting HIV-1 integration in target cells. To better understand the reduced antiviral activity of ALLINIs during the early stage of HIV-1 replication, we investigated the competitive interplay between a potent representative ALLINI, BI/D, and LEDGF/p75 with HIV-1 integrase. While the principal binding sites of BI/D and LEDGF/p75 overlap at the integrase catalytic core domain dimer interface, we show that the inhibitor and the cellular cofactor induce markedly different multimerization patterns of full-length integrase. LEDGF/p75 stabilizes an integrase tetramer through the additional interactions with the integrase N-terminal domain, whereas BI/D induces protein-protein interactions in C-terminal segments that lead to aberrant, higher-order integrase multimerization. We demonstrate that LEDGF/p75 binds HIV-1 integrase with significantly higher affinity than BI/D and that the cellular protein is able to reverse the inhibitor induced aberrant, higher-order integrase multimerization in a dose-dependent manner in vitro. Consistent with these observations, alterations of the cellular levels of LEDGF/p75 markedly affected BI/D EC50 values during the early steps of HIV-1 replication. Furthermore, genome-wide sequencing of HIV-1 integration sites in infected cells demonstrate that LEDGF/p75-dependent integration site selection is adversely affected by BI/D treatment. Taken together, our studies elucidate structural and mechanistic details of the interplay between LEDGF/p75 and BI/D during the early stage of HIV-1 replication. PMID:26910179

  5. Role of mast cells, basophils and their mediators in adverse reactions to general anesthetics and radiocontrast media.

    PubMed

    Genovese, A; Stellato, C; Marsella, C V; Adt, M; Marone, G

    1996-05-01

    General anesthetics and radiocontrast media (RCM) can cause anaphylactic or anaphylactoid reactions. These are usually underdiagnosed and underreported, but their incidence is apparently rising. Their pathogenesis is complex and not completely understood, but the release of vasoactive mediators from basophils and mast cells plays a central role. The recent development of in vitro techniques to study the release of preformed (histamine and tryptase) and de novo synthesized mediators (PGD2, LTC4, and PAF) from purified basophils and mast cells has made it possible to quantify the mediator-releasing activity of anesthetics such as muscle relaxants, general anesthetics, opioids, and benzodiazepines and RCM on human basophils and mast cells isolated from lung, skin and heart tissues. The majority of general anesthetics and RCM tested induced only the release of preformed mediators (histamine and tryptase), not of the de novo synthesized eicosanoids. There was wide variability in the response of basophils and mast cells from different donors to the same drug or RCM, presumably due to the releasability parameter. Hyperosmolality is probably not the only factor responsible for basophil and mast cell activation by RCM. The in vitro release of histamine induced by anesthetic drugs and RCM was correlated with the release of tryptase. Given the longer half-life of tryptase than histamine in plasma, measurements of plasma tryptase may become a useful diagnostic tool for identifying adverse reactions to anesthetics and RCM. PMID:8645973

  6. High fat diet enriched with saturated, but not monounsaturated fatty acids adversely affects femur, and both diets increase calcium absorption in older female mice.

    PubMed

    Wang, Yang; Dellatore, Peter; Douard, Veronique; Qin, Ling; Watford, Malcolm; Ferraris, Ronaldo P; Lin, Tiao; Shapses, Sue A

    2016-07-01

    Diet induced obesity has been shown to reduce bone mineral density (BMD) and Ca absorption. However, previous experiments have not examined the effect of high fat diet (HFD) in the absence of obesity or addressed the type of dietary fatty acids. The primary objective of this study was to determine the effects of different types of high fat feeding, without obesity, on fractional calcium absorption (FCA) and bone health. It was hypothesized that dietary fat would increase FCA and reduce BMD. Mature 8-month-old female C57BL/6J mice were fed one of three diets: a HFD (45% fat) enriched either with monounsaturated fatty acids (MUFAs) or with saturated fatty acids (SFAs), and a normal fat diet (NFD; 10% fat). Food consumption was controlled to achieve a similar body weight gain in all groups. After 8wk, total body bone mineral content and BMD as well as femur total and cortical volumetric BMD were lower in SFA compared with NFD groups (P<.05). In contrast, femoral trabecular bone was not affected by the SFAs, whereas MUFAs increased trabecular volume fraction and thickness. The rise over time in FCA was greater in mice fed HFD than NFD and final FCA was higher with HFD (P<.05). Intestinal calbindin-D9k gene and hepatic cytochrome P450 2r1 protein levels were higher with the MUFA than the NFD diet (P<.05). In conclusion, HFDs elevated FCA overtime; however, an adverse effect of HFD on bone was only observed in the SFA group, while MUFAs show neutral or beneficial effects. PMID:27262536

  7. Fetal chlorpyrifos exposure: adverse effects on brain cell development and cholinergic biomarkers emerge postnatally and continue into adolescence and adulthood.

    PubMed Central

    Qiao, Dan; Seidler, Frederic J; Tate, Charlotte A; Cousins, Mandy M; Slotkin, Theodore A

    2003-01-01

    Fetal and childhood exposures to widely used organophosphate pesticides, especially chlorpyrifos (CPF), have raised concerns about developmental neurotoxicity. Previously, biomarkers for brain cell number, cell packing density, and cell size indicated that neonatal rats were more sensitive to CPF than were fetal rats, yet animals exposed prenatally still developed behavioral deficits in adolescence and adulthood. In the present study, we administered CPF to pregnant rats on gestational days 17-20, using regimens devoid of overt fetal toxicity. We then examined subsequent development of acetylcholine systems in forebrain regions involved in cognitive function and compared the effects with those on general biomarkers of cell development. Choline acetyltransferase, a constitutive marker for cholinergic nerve terminals, showed only minor CPF-induced changes during the period of rapid synaptogenesis. In contrast, hemicholinium-3 binding to the presynaptic choline transporter, which is responsive to nerve impulse activity, displayed marked suppression in the animals exposed to CPF; despite a return to nearly normal values by weaning, deficits were again apparent in adolescence and adulthood. There was no compensatory up-regulation of cholinergic receptors, as m2-muscarinic cholinergic receptor binding was unchanged. CPF also elicited delayed-onset alterations in biomarkers for general aspects of cell integrity, with reductions in cell packing density, increases in relative cell size, and contraction of neuritic extensions; however, neither the magnitude nor timing of these changes was predictive of the cholinergic defects. The present findings indicate a wide window of vulnerability of cholinergic systems to CPF, extending from prenatal through postnatal periods, occurring independently of adverse effects on general cellular neurotoxicity. PMID:12676612

  8. Design and implementation of Cell-PREVEN: a real-time surveillance system for adverse events using cell phones in Peru.

    PubMed

    Curioso, Walter H; Karras, Bryant T; Campos, Pablo E; Buendia, Clara; Holmes, King K; Kimball, Ann Marie

    2005-01-01

    With more clinical trials involving evaluations of new drugs or vaccines, monitoring for early detection of adverse events is essential. The overall goal of this study was to develop an interactive-computer system using cell phones for real-time collection and transmission of adverse events related to metronidazole administration among female sex workers (FSW) in Peru. We developed an application for cell phones in Spanish, called Cell-PREVEN, based on a system from Voxiva Inc. We used cell phones to enter data collected by interviewers from FSW in three communities. Information was stored in an online database, where it could be immediately accessed worldwide and exported over a secure Internet connection. E-mail and text messages sent to mobile devices alerted key personnel to selected symptoms. This pilot project has demonstrated that it is feasible to develop a public-health-surveillance system based on cell phones to collect data in real-time in Peru (http://www.prevenperu.org). PMID:16779025

  9. The drug efficacy and adverse reactions in a mouse model of oral squamous cell carcinoma treated with oxaliplatin at different time points during a day

    PubMed Central

    Yang, Kai; Zhao, Ningbo; Zhao, Dan; Chen, Dan; Li, Yadong

    2013-01-01

    Background Recent studies have shown that the growth and proliferation of cancer cells in vivo exhibit circadian rhythm, and the efficacy and adverse reactions of platinum-based anticancer drugs administered at different times of the day vary significantly on colon cancer. However, since the circadian rhythms of growth and proliferation of various cancer cells often differ, the question of whether the administration of platinum anticancer drugs at different times of the day exerts significantly different efficacy and adverse effects on oral cancers remains to be elucidated. This study has compared the efficacy and adverse effects of oxaliplatin (L-OHP) administration at different times during a day on oral squamous cell carcinoma in mice and has analyzed cellular circadian rhythms. Methods The mouse model for oral squamous cell carcinoma was established in 75 nude mice, housed in a 12 hour light/12 hour dark cycle environment. The mice were randomly divided into five groups; four experimental groups were intravenously injected with L-OHP at four time points within a 24-hour period (4, 10, 16, and 22 hours after lights on [HALO]). The control group was intravenously injected with the same volume of saline. Treatment efficacy and adverse reactions were compared on the seventh day after the injection, at 22 HALO. The existence of circadian rhythms was determined by cosine analysis. Results Only injections of L-OHP at 16 and 22 HALO significantly prolonged animal survival time. The adverse reactions in mice injected with L-OHP at 16 and 22 HALO were significantly less than those observed in mice administered L-OHP at 4 and 10 HALO. The cosine fitting curve showed that the survival time and adverse reactions exhibited circadian rhythm. Conclusion The time factor should be considered when treating patients with oral squamous cell carcinoma with L-OHP in order to achieve better efficacy, reduce the adverse reactions, and improve the patients’ survival time and quality

  10. Ron tyrosine kinase receptor synergises with EGFR to confer adverse features in head and neck squamous cell carcinoma

    PubMed Central

    Keller, J; Nimnual, A S; Shroyer, K R; Joy, C; Ischenko, I; Chandler, C S; Dong, L M; Hayman, M J; Chan, E L

    2013-01-01

    Background: Although EGFR inhibitors have shown some success in the treatment of head and neck squamous cell carcinomas (HNSCCs), the results are not dramatic. Additional molecular targets are urgently needed. We previously showed that the loss of Ron receptor activity significantly slowed squamous tumour growth and progression in a murine model. Based on these data, we hypothesised that Ron expression confers an aggressive phenotype in HNSCCs. Methods: We prospectively collected and evaluated 154 snap-frozen, primary HNSCCs for Ron and EGFR expression/phosphorylation. Biomarker correlation with clinical, pathological and outcome data was performed. The biological responses of HNSCC cell lines to Ron knockdown, its activation and the biochemical interaction between Ron and EGFR were examined. Results: We discovered that 64.3% (99 out of 154) HNSCCs expressed Ron. The carcinomas expressed exclusively mature functional Ron, whereas the adjacent nonmalignant epithelium expressed predominantly nonfunctional Ron precursor. There was no significant association between Ron and sex, tumour differentiation, perineural/vascular invasion or staging. However, patients with Ron+HNSCC were significantly older and more likely to have oropharyngeal tumours. Ron+HNSCC also had significantly higher EGFR expression and correlated strongly with phosphorylated EGFR (pEGFR). Newly diagnosed HNSCC with either Ron/pEGFR or both had lower disease-free survival than those without Ron and pEGFR. Knocking down Ron in SCC9 cells significantly blunted their migratory response to not only the Ron ligand, MSP, but also EGF. Stimulation of Ron in SCC9 cells significantly augmented the growth effect of EGF; the synergistic effect of both growth factors in SCC9 cells was dependent on Ron expression. Activated Ron also interacted with and transactivated EGFR. Conclusion: Ron synergises with EGFR to confer certain adverse features in HNSCCs. PMID:23799848

  11. The adverse prognostic hallmarks in identical twins with Langerhans cell histiocytosis: a clinical report and literature review.

    PubMed

    Chai, Damin; Tao, Yisheng; Bao, Zhengqi; Yang, Li; Feng, Zhenzhong; Ma, Li; Liang, Limei; Zhou, Xinwen

    2013-01-01

    Langerhans cell histiocytosis (LCH) is characterized by uncontrolled proliferation of Langerhans cells accompanying eosinophils. It often attacks children under 10 years of age. LCH in identical twins is very rare and its prognosis is different. Here we report identical-twin sisters with LCH. Computed tomography (CT) revealed osteolytic change in each twin's skull, and the elder exhibited poor eyesight. There were massive histiocyte-like cells surrounded by eosinophils in pathologic specimen of the abnormal lesions, which is typical pathologic finding in LCH. These pathologic cells were positive for S-100 and the cell surface protein CD1 antigen (CD1α), the known markers of LCH. After treating them with surgery, no symptoms were seen in the younger until now. While the older was found another soft mass (about 2.0 cm in diameter) in the left temporal area 18 months later. The same treatment was given to the older after admission, and she is healthy to date. To explore the relationship between hallmarks and the prognosis of identical-twin patients with LCH, we retrieved the 16 literatures (16 identical-twin pairs, 31 patients) listed in PubMed during the past 60 years. The data revealed all those patients who have disseminated to the bone marrow, spleen and liver with symptoms of fever and hepatosplenomegaly exhibited worse prognosis (9 out of the 31 patients). The other identical-twin subjects without infiltration of those organs recovered well. In conclusion, this study reveals the adverse hallmarks of prognosis in identical-twin patients with LCH by reviewing relevant literatures. PMID:23924960

  12. The agr Inhibitors Solonamide B and Analogues Alter Immune Responses to Staphylococccus aureus but Do Not Exhibit Adverse Effects on Immune Cell Functions.

    PubMed

    Baldry, Mara; Kitir, Betül; Frøkiær, Hanne; Christensen, Simon B; Taverne, Nico; Meijerink, Marjolein; Franzyk, Henrik; Olsen, Christian A; Wells, Jerry M; Ingmer, Hanne

    2016-01-01

    Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA) strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed as an alternative approach to treat multi-drug resistant pathogens. One interesting anti-virulence target is the agr quorum-sensing system, which regulates virulence of CA-MRSA in response to agr-encoded autoinducing peptides. Agr regulation confines exotoxin production to the stationary growth phase with concomitant repression of surface-expressed adhesins. Solonamide B, a non-ribosomal depsipeptide of marine bacterial origin, was recently identified as a putative anti-virulence compound that markedly reduced expression of α-hemolysin and phenol-soluble modulins. To further strengthen solonamide anti-virulence candidacy, we report the chemical synthesis of solonamide analogues, investigation of structure-function relationships, and assessment of their potential to modulate immune cell functions. We found that structural differences between solonamide analogues confer significant differences in interference with agr, while immune cell activity and integrity is generally not affected. Furthermore, treatment of S. aureus with selected solonamides was found to only marginally influence the interaction with fibronectin and biofilm formation, thus addressing the concern that application of compounds inducing an agr-negative state may have adverse interactions with host factors in favor of host colonization. PMID:26731096

  13. The agr Inhibitors Solonamide B and Analogues Alter Immune Responses to Staphylococccus aureus but Do Not Exhibit Adverse Effects on Immune Cell Functions

    PubMed Central

    Baldry, Mara; Kitir, Betül; Frøkiær, Hanne; Christensen, Simon B.; Taverne, Nico; Meijerink, Marjolein; Franzyk, Henrik; Olsen, Christian A.; Wells, Jerry M.; Ingmer, Hanne

    2016-01-01

    Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA) strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed as an alternative approach to treat multi-drug resistant pathogens. One interesting anti-virulence target is the agr quorum-sensing system, which regulates virulence of CA-MRSA in response to agr-encoded autoinducing peptides. Agr regulation confines exotoxin production to the stationary growth phase with concomitant repression of surface-expressed adhesins. Solonamide B, a non-ribosomal depsipeptide of marine bacterial origin, was recently identified as a putative anti-virulence compound that markedly reduced expression of α-hemolysin and phenol-soluble modulins. To further strengthen solonamide anti-virulence candidacy, we report the chemical synthesis of solonamide analogues, investigation of structure–function relationships, and assessment of their potential to modulate immune cell functions. We found that structural differences between solonamide analogues confer significant differences in interference with agr, while immune cell activity and integrity is generally not affected. Furthermore, treatment of S. aureus with selected solonamides was found to only marginally influence the interaction with fibronectin and biofilm formation, thus addressing the concern that application of compounds inducing an agr-negative state may have adverse interactions with host factors in favor of host colonization. PMID:26731096

  14. Melanopsin, Photosensitive Ganglion Cells, and Seasonal Affective Disorder

    PubMed Central

    Roecklein, Kathryn A.; Wong, Patricia M.; Miller, Megan A.; Donofry, Shannon D.; Kamarck, Marissa L.; Brainard, George C.

    2013-01-01

    ROECKLEIN, K.A., WONG, P.M., MILLER, M.A., DONOFRY, S.D., KAMARCK, M.L., BRAINARD, G.C. Melanopsin, Photosensitive Ganglion Cells, and Seasonal Affective Disorder…NEUROSCI BIOBEHAV REV x(x) XXX-XXX, 2012. In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1–2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells. PMID:23286902

  15. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells

    PubMed Central

    Moreb, Jan S; Baker, Henry V; Chang, Lung-Ji; Amaya, Maria; Lopez, M Cecilia; Ostmark, Blanca; Chou, Wayne

    2008-01-01

    Background Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied. Methods We have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA. Results We confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by ≥ 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways. Conclusion These molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer. PMID:19025616

  16. Dynamical System Modeling of Immune Reconstitution after Allogeneic Stem Cell Transplantation Identifies Patients at Risk for Adverse Outcomes.

    PubMed

    Toor, Amir A; Sabo, Roy T; Roberts, Catherine H; Moore, Bonny L; Salman, Salman R; Scalora, Allison F; Aziz, May T; Shubar Ali, Ali S; Hall, Charles E; Meier, Jeremy; Thorn, Radhika M; Wang, Elaine; Song, Shiyu; Miller, Kristin; Rizzo, Kathryn; Clark, William B; McCarty, John M; Chung, Harold M; Manjili, Masoud H; Neale, Michael C

    2015-07-01

    Systems that evolve over time and follow mathematical laws as they evolve are called dynamical systems. Lymphocyte recovery and clinical outcomes in 41 allograft recipients conditioned using antithymocyte globulin (ATG) and 4.5-Gy total body irradiation were studied to determine if immune reconstitution could be described as a dynamical system. Survival, relapse, and graft-versus-host disease (GVHD) were not significantly different in 2 cohorts of patients receiving different doses of ATG. However, donor-derived CD3(+) cell reconstitution was superior in the lower ATG dose cohort, and there were fewer instances of donor lymphocyte infusion (DLI). Lymphoid recovery was plotted in each individual over time and demonstrated 1 of 3 sigmoid growth patterns: Pattern A (n = 15) had rapid growth with high lymphocyte counts, pattern B (n = 14) had slower growth with intermediate recovery, and pattern C (n = 10) had poor lymphocyte reconstitution. There was a significant association between lymphocyte recovery patterns and both the rate of change of donor-derived CD3(+) at day 30 after stem cell transplantation (SCT) and clinical outcomes. GVHD was observed more frequently with pattern A, relapse and DLI more so with pattern C, with a consequent survival advantage in patients with patterns A and B. We conclude that evaluating immune reconstitution after SCT as a dynamical system may differentiate patients at risk of adverse outcomes and allow early intervention to modulate that risk. PMID:25849208

  17. Dynamical System Modeling of Immune Reconstitution after Allogeneic Stem Cell Transplantation Identifies Patients at Risk for Adverse Outcomes

    PubMed Central

    Toor, Amir A.; Sabo, Roy T.; Roberts, Catherine H.; Moore, Bonny L.; Salman, Salman R.; Scalora, Allison F.; Aziz, May T.; Shubar Ali, Ali S.; Hall, Charles E.; Meier, Jeremy; Thorn, Radhika M.; Wang, Elaine; Song, Shiyu; Miller, Kristin; Rizzo, Kathryn; Clark, William B.; McCarty, John M.; Chung, Harold M.; Manjili, Masoud H.; Neale, Michael C.

    2016-01-01

    Systems that evolve over time and follow mathematical laws as they evolve are called dynamical systems. Lymphocyte recovery and clinical outcomes in 41 allograft recipients conditioned using antithymocyte globulin (ATG) and 4.5-Gy total body irradiation were studied to determine if immune reconstitution could be described as a dynamical system. Survival, relapse, and graft-versus-host disease (GVHD) were not significantly different in 2 cohorts of patients receiving different doses of ATG. However, donor-derived CD3+ cell reconstitution was superior in the lower ATG dose cohort, and there were fewer instances of donor lymphocyte infusion (DLI). Lymphoid recovery was plotted in each individual over time and demonstrated 1 of 3 sigmoid growth patterns: Pattern A (n = 15) had rapid growth with high lymphocyte counts, pattern B (n = 14) had slower growth with intermediate recovery, and pattern C (n = 10) had poor lymphocyte reconstitution. There was a significant association between lymphocyte recovery patterns and both the rate of change of donor-derived CD3+ at day 30 after stem cell transplantation (SCT) and clinical outcomes. GVHD was observed more frequently with pattern A, relapse and DLI more so with pattern C, with a consequent survival advantage in patients with patterns A and B. We conclude that evaluating immune reconstitution after SCT as a dynamical system may differentiate patients at risk of adverse outcomes and allow early intervention to modulate that risk. PMID:25849208

  18. Vaccenic acid and trans fatty acid isomers from partially hydrogenated oil both adversely affect LDL cholesterol: a double-blind, randomized controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence of the adverse effects of industrially-produced trans fatty acids (iTFA) on risk of cardiovascular disease is consistent and well documented in the scientific literature; however, the cardiovascular effects of naturally-occurring TFA synthesized in ruminant animals (rTFA), such as vaccenic ...

  19. Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation

    PubMed Central

    Zhou, Xiaoou; Dotti, Gianpietro; Krance, Robert A.; Martinez, Caridad A.; Naik, Swati; Kamble, Rammurti T.; Durett, April G.; Dakhova, Olga; Savoldo, Barbara; Di Stasi, Antonio; Spencer, David M.; Lin, Yu-Feng; Liu, Hao; Grilley, Bambi J.; Gee, Adrian P.; Rooney, Cliona M.; Heslop, Helen E.

    2015-01-01

    To test the feasibility of a single T-cell manipulation to eliminate alloreactivity while sparing antiviral and antitumor T cells, we infused 12 haploidentical hematopoietic stem cell transplant patients with increasing numbers of alloreplete haploidentical T cells expressing the inducible caspase 9 suicide gene (iC9-T cells). We determined whether the iC9-T cells produced immune reconstitution and if any resultant graft-versus-host disease (GVHD) could be controlled by administration of a chemical inducer of dimerization (CID; AP1903/Rimiducid). All patients receiving >104 alloreplete iC9-T lymphocytes per kilogram achieved rapid reconstitution of immune responses toward 5 major pathogenic viruses and concomitant control of active infections. Four patients received a single AP1903 dose. CID infusion eliminated 85% to 95% of circulating CD3+CD19+ T cells within 30 minutes, with no recurrence of GVHD within 90 days. In one patient, symptoms and signs of GVHD-associated cytokine release syndrome (CRS-hyperpyrexia, high levels of proinflammatory cytokines, and rash) resolved within 2 hours of AP1903 infusion. One patient with varicella zoster virus meningitis and acute GVHD had iC9-T cells present in the cerebrospinal fluid, which were reduced by >90% after CID. Notably, virus-specific T cells recovered even after AP1903 administration and continued to protect against infection. Hence, alloreplete iC9-T cells can reconstitute immunity posttransplant and administration of CID can eliminate them from both peripheral blood and the central nervous system (CNS), leading to rapid resolution of GVHD and CRS. The approach may therefore be useful for the rapid and effective treatment of toxicities associated with infusion of engineered T lymphocytes. This trial was registered at www.clinicaltrials.gov as #NCT01494103. PMID:25977584

  20. Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation.

    PubMed

    Zhou, Xiaoou; Dotti, Gianpietro; Krance, Robert A; Martinez, Caridad A; Naik, Swati; Kamble, Rammurti T; Durett, April G; Dakhova, Olga; Savoldo, Barbara; Di Stasi, Antonio; Spencer, David M; Lin, Yu-Feng; Liu, Hao; Grilley, Bambi J; Gee, Adrian P; Rooney, Cliona M; Heslop, Helen E; Brenner, Malcolm K

    2015-06-25

    To test the feasibility of a single T-cell manipulation to eliminate alloreactivity while sparing antiviral and antitumor T cells, we infused 12 haploidentical hematopoietic stem cell transplant patients with increasing numbers of alloreplete haploidentical T cells expressing the inducible caspase 9 suicide gene (iC9-T cells). We determined whether the iC9-T cells produced immune reconstitution and if any resultant graft-versus-host disease (GVHD) could be controlled by administration of a chemical inducer of dimerization (CID; AP1903/Rimiducid). All patients receiving >10(4) alloreplete iC9-T lymphocytes per kilogram achieved rapid reconstitution of immune responses toward 5 major pathogenic viruses and concomitant control of active infections. Four patients received a single AP1903 dose. CID infusion eliminated 85% to 95% of circulating CD3(+)CD19(+) T cells within 30 minutes, with no recurrence of GVHD within 90 days. In one patient, symptoms and signs of GVHD-associated cytokine release syndrome (CRS-hyperpyrexia, high levels of proinflammatory cytokines, and rash) resolved within 2 hours of AP1903 infusion. One patient with varicella zoster virus meningitis and acute GVHD had iC9-T cells present in the cerebrospinal fluid, which were reduced by >90% after CID. Notably, virus-specific T cells recovered even after AP1903 administration and continued to protect against infection. Hence, alloreplete iC9-T cells can reconstitute immunity posttransplant and administration of CID can eliminate them from both peripheral blood and the central nervous system (CNS), leading to rapid resolution of GVHD and CRS. The approach may therefore be useful for the rapid and effective treatment of toxicities associated with infusion of engineered T lymphocytes. This trial was registered at www.clinicaltrials.gov as #NCT01494103. PMID:25977584

  1. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells

    PubMed Central

    Kössler, Sonja; Nofziger, Charity; Jakab, Martin; Dossena, Silvia; Paulmichl, Markus

    2012-01-01

    Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current IClswell in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The IClswell channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1–10 μM curcumin modulates IClswell in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5–5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect IClswell neither if applied from the extracellular nor from the intracellular side – therefore, a direct effect of curcumin on

  2. Genome rearrangement affects RNA virus adaptability on prostate cancer cells.

    PubMed

    Pesko, Kendra; Voigt, Emily A; Swick, Adam; Morley, Valerie J; Timm, Collin; Yin, John; Turner, Paul E

    2015-01-01

    Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wild type gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense non-segmented RNA viruses (order Mononegavirales) have specific genome architecture: 3' UTR - core protein genes - envelope protein genes - RNA-dependent RNA-polymerase gene - 5' UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV) variants with the nucleocapsid (N) gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N gene translocation toward the 5' end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC-3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function), especially on PC-3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture) adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective environments for a given gene

  3. Overexpression of Ku80 correlates with aggressive clinicopathological features and adverse prognosis in esophageal squamous cell carcinoma

    PubMed Central

    WANG, SHUAI; WANG, ZHOU; YANG, YU; SHI, MO; SUN, ZHENGUO

    2015-01-01

    Ku80, a subunit of the heterodymeric Ku protein, is clearly implicated in nonhomologous end joining DNA repair, chemoresistance and radioresistance in malignant tumors. In the present study, the clinicopathological significance of Ku80 in esophageal squamous cell carcinoma (ESCC) was investigated. The expression levels of Ku80 were determined by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry in ESCC specimens and normal esophageal mucosa. The mRNA and protein levels of Ku80 were significantly higher in ESCC tissues than in normal esophageal mucosa, and were significantly associated with tumor differentiation, local invasion, lymph node metastasis and tumor-node-metastasis (TNM) stage. However, overexpression of Ku80 mRNA and protein levels were not significantly correlated with age, gender, tumor site or tumor size. Cox proportional hazards regression model demonstrated that tumor local invasion, lymph node metastasis, TNM stage and Ku80 mRNA and protein levels were independent risk factors indicating the overall survival of patients with ESCC. The present study demonstrated that aberrant Ku80 overexpression is observed in ESCC. In addition, high expression levels of Ku80 are associated with adverse clinicopathological features and unfavorable prognosis in ESCC patients. PMID:26722230

  4. Business oriented EU human cell and tissue product legislation will adversely impact Member States' health care systems.

    PubMed

    Pirnay, Jean-Paul; Vanderkelen, Alain; De Vos, Daniel; Draye, Jean-Pierre; Rose, Thomas; Ceulemans, Carl; Ectors, Nadine; Huys, Isabelle; Jennes, Serge; Verbeken, Gilbert

    2013-12-01

    The transplantation of conventional human cell and tissue grafts, such as heart valve replacements and skin for severely burnt patients, has saved many lives over the last decades. The late eighties saw the emergence of tissue engineering with the focus on the development of biological substitutes that restore or improve tissue function. In the nineties, at the height of the tissue engineering hype, industry incited policymakers to create a European regulatory environment, which would facilitate the emergence of a strong single market for tissue engineered products and their starting materials (human cells and tissues). In this paper we analyze the elaboration process of this new European Union (EU) human cell and tissue product regulatory regime-i.e. the EU Cell and Tissue Directives (EUCTDs) and the Advanced Therapy Medicinal Product (ATMP) Regulation and evaluate its impact on Member States' health care systems. We demonstrate that the successful lobbying on key areas of regulatory and policy processes by industry, in congruence with Europe's risk aversion and urge to promote growth and jobs, led to excessively business oriented legislation. Expensive industry oriented requirements were introduced and contentious social and ethical issues were excluded. We found indications that this new EU safety and health legislation will adversely impact Member States' health care systems; since 30 December 2012 (the end of the ATMP transitional period) there is a clear threat to the sustainability of some lifesaving and established ATMPs that were provided by public health institutions and small and medium-sized enterprises under the frame of the EUCTDs. In the light of the current economic crisis it is not clear how social security systems will cope with the inflation of costs associated with this new regulatory regime and how priorities will be set with regard to reimbursement decisions. We argue that the ATMP Regulation should urgently be revised to focus on delivering

  5. Tricellulin deficiency affects tight junction architecture and cochlear hair cells

    PubMed Central

    Nayak, Gowri; Lee, Sue I.; Yousaf, Rizwan; Edelmann, Stephanie E.; Trincot, Claire; Van Itallie, Christina M.; Sinha, Ghanshyam P.; Rafeeq, Maria; Jones, Sherri M.; Belyantseva, Inna A.; Anderson, James M.; Forge, Andrew; Frolenkov, Gregory I.; Riazuddin, Saima

    2013-01-01

    The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin. PMID:23979167

  6. ASXL1 but Not TET2 Mutations Adversely Impact Overall Survival of Patients Suffering Systemic Mastocytosis with Associated Clonal Hematologic Non-Mast-Cell Diseases

    PubMed Central

    Damaj, Gandhi; Joris, Magalie; Chandesris, Olivia; Hanssens, Katia; Soucie, Erinn; Canioni, Danielle; Kolb, Brigitte; Durieu, Isabelle; Gyan, Emanuel; Livideanu, Cristina; Chèze, Stephane; Diouf, Momar; Garidi, Reda; Georgin-Lavialle, Sophie; Asnafi, Vahid; Lhermitte, Ludovic; Lavigne, Christian; Launay, David; Arock, Michel; Lortholary, Olivier

    2014-01-01

    Systemic mastocytosis with associated hematologic clonal non-mast cell disease (SM-AHNMD) is a rare and heterogeneous subtype of SM and few studies on this specific entity have been reported. Sixty two patients with Systemic mastocytosis with associated hematologic clonal non-mast cell disease (SM-AHNMD) were presented. Myeloid AHNMD was the most frequent (82%) cases. This subset of patients were older, had more cutaneous lesions, splenomegaly, liver enlargement, ascites; lower bone mineral density and hemoglobin levels and higher tryptase level than lymphoid AHNMD. Defects in KIT, TET2, ASXL1 and CBL were positive in 87%, 27%, 14%, and 11% of cases respectively. The overall survival of patients with SM-AHNMD was 85.2 months. Within the myeloid group, SM-MPN fared better than SM-MDS or SM-AML (p = 0.044,). In univariate analysis, the presence of C-findings, the AHNMD subtypes (SM-MDS/CMML/AML versus SM-MPN/hypereosinophilia) (p = 0.044), Neutropenia (p = 0.015), high monocyte level (p = 0.015) and the presence of ASXL1 mutation had detrimental effects on OS (p = 0.007). In multivariate analysis and penalized Cox model, only the presence of ASXL1 mutation remained an independent prognostic factor that negatively affected OS (p = 0.035). SM-AHNMD is heterogeneous with variable prognosis according to the type of the AHNMD. ASXL1 is mutated in a subset of myeloid AHNMD and adversely impact on OS. PMID:24465546

  7. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    PubMed

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-01

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell׳s behaviors to the global mechanics and patterns of tissues. PMID:26774292

  8. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    SciTech Connect

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-06-15

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [{sup 3}H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [{sup 3}H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-{kappa}B, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  9. High d(+)-fructose diet adversely affects testicular weight gain in weaning rats─protection by moderate d(+)-glucose diet.

    PubMed

    Shibata, Katsumi; Fukuwatari, Tsutomu

    2013-01-01

    The use of high D(+)-fructose corn syrup has increased over the past several decades in the developed countries, while overweight and obesity rates and the related diseases have risen dramatically. However, we found that feeding a high D(+)-fructose diet (80% D(+)-fructose as part of the diet) to weaning rats for 21 days led to reduced food intake (50% less, P < 0.0001) and thus delayed the weight gains in the body (40% less, P < 0.0001) and testes (40% less, P < 0.0001) compared to the no D(+)-fructose diet. We also challenged a minimum requirement of dietary D(+)-glucose for preventing the adverse effects of D(+)-fructose, such as lower food intake and reduction of body weight and testicular weight; the minimum requirement of D(+)-glucose was ≈23% of the diet. This glucose amount may be the minimum requirement of exogenous glucose for reducing weight gain. PMID:23935370

  10. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction

    PubMed Central

    Tejada, Thor; Tan, Lin; Torres, Rebecca A.; Calvert, John W.; Lambert, Jonathan P.; Zaidi, Madiha; Husain, Murtaza; Berce, Maria D.; Naib, Hussain; Pejler, Gunnar; Abrink, Magnus; Graham, Robert M.; Lefer, David J.; Naqvi, Nawazish; Husain, Ahsan

    2016-01-01

    Heart disease is a leading cause of death in adults. Here, we show that a few days after coronary artery ligation and reperfusion, the ischemia-injured heart elaborates the cardioprotective polypeptide, insulin-like growth factor-1 (IGF-1), which activates IGF-1 receptor prosurvival signaling and improves cardiac left ventricular systolic function. However, this signaling is antagonized by the chymase, mouse mast cell protease 4 (MMCP-4), which degrades IGF-1. We found that deletion of the gene encoding MMCP-4 (Mcpt4), markedly reduced late, but not early, infarct size by suppressing IGF-1 degradation and, consequently, diminished cardiac dysfunction and adverse structural remodeling. Our findings represent the first demonstration to our knowledge of tissue IGF-1 regulation through proteolytic degradation and suggest that chymase inhibition may be a viable therapeutic approach to enhance late cardioprotection in postischemic heart disease. PMID:27274047

  11. New common variants affecting susceptibility to basal cell carcinoma.

    PubMed

    Stacey, Simon N; Sulem, Patrick; Masson, Gisli; Gudjonsson, Sigurjon A; Thorleifsson, Gudmar; Jakobsdottir, Margret; Sigurdsson, Asgeir; Gudbjartsson, Daniel F; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R; Thorisdottir, Kristin; Ragnarsson, Rafn; Scherer, Dominique; Hemminki, Kari; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Botella-Estrada, Rafael; Soriano, Virtudes; Juberias, Pablo; Saez, Berta; Gilaberte, Yolanda; Fuentelsaz, Victoria; Corredera, Cristina; Grasa, Matilde; Höiom, Veronica; Lindblom, Annika; Bonenkamp, Johannes J; van Rossum, Michelle M; Aben, Katja K H; de Vries, Esther; Santinami, Mario; Di Mauro, Maria G; Maurichi, Andrea; Wendt, Judith; Hochleitner, Pia; Pehamberger, Hubert; Gudmundsson, Julius; Magnusdottir, Droplaug N; Gretarsdottir, Solveig; Holm, Hilma; Steinthorsdottir, Valgerdur; Frigge, Michael L; Blondal, Thorarinn; Saemundsdottir, Jona; Bjarnason, Hjördis; Kristjansson, Kristleifur; Bjornsdottir, Gyda; Okamoto, Ichiro; Rivoltini, Licia; Rodolfo, Monica; Kiemeney, Lambertus A; Hansson, Johan; Nagore, Eduardo; Mayordomo, José I; Kumar, Rajiv; Karagas, Margaret R; Nelson, Heather H; Gulcher, Jeffrey R; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Olafsson, Jon H; Kong, Augustine; Stefansson, Kari

    2009-08-01

    In a follow-up to our previously reported genome-wide association study of cutaneous basal cell carcinoma (BCC), we describe here several new susceptibility variants. SNP rs11170164, encoding a G138E substitution in the keratin 5 (KRT5) gene, affects risk of BCC (OR = 1.35, P = 2.1 x 10(-9)). A variant at 9p21 near CDKN2A and CDKN2B also confers susceptibility to BCC (rs2151280[C]; OR = 1.19, P = 6.9 x 10(-9)), as does rs157935[T] at 7q32 near the imprinted gene KLF14 (OR = 1.23, P = 5.7 x 10(-10)). The effect of rs157935[T] is dependent on the parental origin of the risk allele. None of these variants were found to be associated with melanoma or fair-pigmentation traits. A melanoma- and pigmentation-associated variant in the SLC45A2 gene, L374F, is associated with risk of both BCC and squamous cell carcinoma. Finally, we report conclusive evidence that rs401681[C] in the TERT-CLPTM1L locus confers susceptibility to BCC but protects against melanoma. PMID:19578363

  12. Intraventricular encapsulated calf adrenal chromaffin cells: viable for at least 500 days in vivo without detectable adverse effects on behavioral/cognitive function or host immune sensitization in rats.

    PubMed

    Lindner, M D; Plone, M A; Frydel, B; Kaplan, F A; Krueger, P M; Bell, W J; Blaney, T J; Winn, S R; Sherman, S S; Doherty, E J; Emerich, D F

    1997-01-01

    Numerous studies have reported that adrenal chromaffin cell transplants, including encapsulated xenogeneic adrenal chromaffin cells, have analgesic effects. However, in addition to efficacy, the clinical utility of encapsulated xenogeneic adrenal chromaffin cells for treatment of chronic pain is dependent on the duration of cell viability in vivo, and their relative safety. The objectives of the present study in rats were to: (1) examine encapsulated calf adrenal chromaffin (CAC) cells for evidence of viable cells and continued release of analgesic agents after an extended period in vivo; (2) determine if intraventricular encapsulated CAC cells produce detectable adverse effects on behavioral/cognitive function; and (3) test for evidence of host immune sensitization after an extended period of exposure to encapsulated xenogeneic adrenal chromaffin cells. Results of the present study suggest that some encapsulated CAC cells remain viable for nearly 1.5 years in vivo and continue to produce catecholamines and met-enkephalin. Post-explant device norepinephrine output was equivalent to amounts previously shown to produce analgesic effects with intrathecal implants. Encapsulated adrenal chromaffin cells also appeared relatively safe, even when implanted in the cerebral ventricals, with a lower side-effect profile than systemic morphine (4 mg/kg). There was no evidence that encapsulated CAC-cells implanted in the ventricles affected body weight, spontaneous activity levels, or performance in the delayed matching to position operant task which is sensitive to deficits in learning, memory, attention, motivation, and motor function. Finally, encapsulated CAC cells produced no detectable evidence of host immune sensitization after 16.7 months in vivo, although unencapsulated CAC cells produced a robust immune response even in aged rats. The results of the present study suggest that adrenal chromaffin cells remain viable in vivo for long periods of time, and that long

  13. Posttraumatic Stress Disorder, Adverse Childhood Events, and Buccal Cell Telomere Length in Elderly Swiss Former Indentured Child Laborers

    PubMed Central

    Küffer, Andreas Lorenz; O’Donovan, Aoife; Burri, Andrea; Maercker, Andreas

    2016-01-01

    Posttraumatic stress disorder (PTSD) is associated with increased risk for age-related diseases and early mortality. Accelerated biological aging could contribute to this elevated risk. The aim of the present study was to assess buccal cell telomere length (BTL) – a proposed marker of biological age – in men and women with and without PTSD. The role of childhood trauma was assessed as a potential additional risk factor for shorter telomere length. The sample included 62 former indentured Swiss child laborers (age: M = 76.19, SD = 6.18) and 58 healthy controls (age: M = 71.85, SD = 5.97). Structured clinical interviews were conducted to screen for PTSD and other psychiatric disorders. The Childhood Trauma Questionnaire (CTQ) was used to assess childhood trauma exposure. Quantitative polymerase chain reaction was used to measure BTL. Covariates include age, sex, years of education, self-evaluated financial situation, depression, and mental and physical functioning. Forty-eight (77.42%) of the former indentured child laborers screened positive for childhood trauma, and 21 (33.87%) had partial or full-blown PTSD. Results did not support our hypotheses that PTSD and childhood trauma would be associated with shorter BTL. In fact, results revealed a trend toward longer BTL in participants with partial or full PTSD [F(2,109) = 3.27, p = 0.04, η2 = 0.06], and longer BTL was marginally associated with higher CTQ scores (age adjusted: β = 0.17 [95% CI: −0.01 to 0.35], t = 1.90, p = 0.06). Furthermore, within-group analyses indicated no significant association between BTL and CTQ scores. To the best of our knowledge, this is the first study exploring the association between childhood trauma and BTL in older individuals with and without PTSD. Contrary to predictions, there were no significant differences in BTL between participants with and without PTSD in our adjusted analyses, and childhood adversity was not associated with

  14. Inhibition of focal adhesion kinase suppresses the adverse phenotype of endocrine-resistant breast cancer cells and improves endocrine response in endocrine-sensitive cells.

    PubMed

    Hiscox, Stephen; Barnfather, Peter; Hayes, Edd; Bramble, Pamela; Christensen, James; Nicholson, Robert I; Barrett-Lee, Peter

    2011-02-01

    Acquired resistance to endocrine therapy in breast cancer is a major clinical problem. Previous reports have demonstrated that cell models of acquired endocrine resistance have altered cell-matrix adhesion and a highly migratory phenotype, features which may impact on tumour spread in vivo. Focal adhesion kinase (FAK) is an intracellular kinase that regulates signalling pathways central to cell adhesion, migration and survival and its expression is frequently deregulated in breast cancer. In this study, we have used the novel FAK inhibitor PF573228 to address the role of FAK in the development of endocrine resistance. Whilst total-FAK expression was similar between endocrine-sensitive and endocrine-resistant MCF7 cells, FAK phosphorylation status (Y397 or Y861) was altered in resistance. PF573228 promoted a dose-dependent inhibition of FAK phosphorylation at Y397 but did not affect other FAK activation sites (pY407, pY576 and pY861). Endocrine-resistant cells were more sensitive to these inhibitory effects versus MCF7 (mean IC(50) for FAK pY397 inhibition: 0.43 μM, 0.05 μM and 0.13 μM for MCF7, TamR and FasR cells, respectively). Inhibition of FAK pY397 was associated with a reduction in TamR and FasR adhesion to, and migration over, matrix components. PF573228 as a single agent (0-1 μM) did not affect the growth of MCF7 cells or their endocrine-resistant counterparts. However, treatment of endocrine-sensitive cells with PF573228 and tamoxifen combined resulted in greater suppression of proliferation versus single agent treatment. Together these data suggest the importance of FAK in the process of endocrine resistance, particularly in the development of an aggressive, migratory cell phenotype and demonstrate the potential to improve endocrine response through combination treatment. PMID:20354780

  15. Migration, neighborhoods, and networks: approaches to understanding how urban environmental conditions affect syndemic adverse health outcomes among gay, bisexual and other men who have sex with men.

    PubMed

    Egan, James E; Frye, Victoria; Kurtz, Steven P; Latkin, Carl; Chen, Minxing; Tobin, Karin; Yang, Cui; Koblin, Beryl A

    2011-04-01

    Adopting socioecological, intersectionality, and lifecourse theoretical frameworks may enhance our understanding of the production of syndemic adverse health outcomes among gay, bisexual and other men who have sex with men (MSM). From this perspective, we present preliminary data from three related studies that suggest ways in which social contexts may influence the health of MSM. The first study, using cross-sectional data, looked at migration of MSM to the gay resort area of South Florida, and found that amount of time lived in the area was associated with risk behaviors and HIV infection. The second study, using qualitative interviews, observed complex interactions between neighborhood-level social environments and individual-level racial and sexual identity among MSM in New York City. The third study, using egocentric network analysis with a sample of African American MSM in Baltimore, found that sexual partners were more likely to be found through face-to-face means than the Internet. They also observed that those who co-resided with a sex partner had larger networks of people to depend on for social and financial support, but had the same size sexual networks as those who did not live with a partner. Overall, these findings suggest the need for further investigation into the role of macro-level social forces on the emotional, behavioral, and physical health of urban MSM. PMID:21369730

  16. Trans-generational exposure to low levels of rhodamine B does not adversely affect litter size or liver function in murine mucopolysaccharidosis type IIIA.

    PubMed

    Roberts, Ainslie L K; Fletcher, Janice M; Moore, Lynette; Byers, Sharon

    2010-01-01

    MPS IIIA is a lysosomal storage disorder caused by mutations in the sulphamidase gene, resulting in the accumulation of heparan sulphate glycosaminoglycans (HS GAGs). Symptoms predominantly manifest in the CNS and there is no current therapy that effectively addresses neuropathology in MPS IIIA patients. Recent studies in MPS IIIA mice have shown that rhodamine B substrate deprivation therapy (SDT) (also termed substrate reduction therapy/SRT) inhibits GAG biosynthesis and, improves both somatic and CNS disease pathology. Acute overexposure to high doses of rhodamine B results in liver toxicity and is detrimental to reproductive ability. However, the long-term effects of decreasing GAG synthesis, at the low dose sufficient to alter neurological function are unknown. A trans-generational study was therefore initiated to evaluate the continuous exposure of rhodamine B treatment in MPS IIIA mice over 4 generations, including treatment during pregnancy. No alterations in litter size, liver histology or liver function were observed. Overall, there are no long-term issues with the administration of rhodamine B at the low dose tested and no adverse effects were noted during pregnancy in mice. PMID:20650670

  17. Rock Glacier Outflows May Adversely Affect Lakes: Lessons from the Past and Present of Two Neighboring Water Bodies in a Crystalline-Rock Watershed

    PubMed Central

    2014-01-01

    Despite the fact that rock glaciers are one of the most common geomorphological expressions of mountain permafrost, the impacts of their solute fluxes on lakes still remain largely obscure. We examined water and sediment chemistry, and biota of two neighboring water bodies with and without a rock glacier in their catchments in the European Alps. Paleolimnological techniques were applied to track long-term temporal trends in the ecotoxicological state of the water bodies and to establish their baseline conditions. We show that the active rock glacier in the mineralized catchment of Lake Rasass (RAS) represents a potent source of acid rock drainage that results in enormous concentrations of metals in water, sediment, and biota of RAS. The incidence of morphological abnormalities in the RAS population of Pseudodiamesa nivosa, a chironomid midge, is as high as that recorded in chironomid populations inhabiting sites heavily contaminated by trace metals of anthropogenic origin. The incidence of morphological deformities in P. nivosa of ∼70% persisted in RAS during the last 2.5 millennia and was ∼40% in the early Holocene. The formation of RAS at the toe of the rock glacier most probably began at the onset of acidic drainage in the freshly deglaciated area. The present adverse conditions are not unprecedented in the lake’s history and cannot be associated exclusively with enhanced thawing of the rock glacier in recent years. PMID:24804777

  18. Rock glacier outflows may adversely affect lakes: lessons from the past and present of two neighboring water bodies in a crystalline-rock watershed.

    PubMed

    Ilyashuk, Boris P; Ilyashuk, Elena A; Psenner, Roland; Tessadri, Richard; Koinig, Karin A

    2014-06-01

    Despite the fact that rock glaciers are one of the most common geomorphological expressions of mountain permafrost, the impacts of their solute fluxes on lakes still remain largely obscure. We examined water and sediment chemistry, and biota of two neighboring water bodies with and without a rock glacier in their catchments in the European Alps. Paleolimnological techniques were applied to track long-term temporal trends in the ecotoxicological state of the water bodies and to establish their baseline conditions. We show that the active rock glacier in the mineralized catchment of Lake Rasass (RAS) represents a potent source of acid rock drainage that results in enormous concentrations of metals in water, sediment, and biota of RAS. The incidence of morphological abnormalities in the RAS population of Pseudodiamesa nivosa, a chironomid midge, is as high as that recorded in chironomid populations inhabiting sites heavily contaminated by trace metals of anthropogenic origin. The incidence of morphological deformities in P. nivosa of ∼70% persisted in RAS during the last 2.5 millennia and was ∼40% in the early Holocene. The formation of RAS at the toe of the rock glacier most probably began at the onset of acidic drainage in the freshly deglaciated area. The present adverse conditions are not unprecedented in the lake's history and cannot be associated exclusively with enhanced thawing of the rock glacier in recent years. PMID:24804777

  19. Plasmid load adversely affects growth and gluconic acid secretion ability of mineral phosphate-solubilizing rhizospheric bacterium Enterobacter asburiae PSI3 under P limited conditions.

    PubMed

    Sharma, Vikas; Archana, G; Naresh Kumar, G

    2011-01-20

    Effect of the metabolic load caused by the presence of plasmids on mineral phosphate-solubilizing (MPS) Enterobacter asburiae PSI3, was monitored with four plasmid cloning vectors and one native plasmid, varying in size, nature of the replicon, copy number and antibiotic resistance genes. Except for one plasmid, the presence of all other plasmids in E. asburiae PSI3 resulted in the loss of the MPS phenotype as reflected by the failure to bring about a drop in pH and release soluble P when grown in media containing rock phosphate (RP) as the sole P source. When 100 μM soluble P was supplemented along with RP, the adverse effects of plasmids on MPS phenotype and on growth parameters was reduced for some plasmid bearing derivatives, as monitored in terms of specific growth rates, glucose consumed, gluconic acids yields and P released. When 10 mM of soluble P as the only P source, was added to the medium all transformants showed growth and pH drop comparable with native strain. It may be concluded that different plasmids impose, to varying extents, a metabolic load in the phosphate-solubilizing bacterium E. asburiae PSI3 and results in diminishing its growth and P-solubilizing ability in P deficient conditions. PMID:20171856

  20. Migration, Neighborhoods, and Networks: Approaches to Understanding How Urban Environmental Conditions Affect Syndemic Adverse Health Outcomes Among Gay, Bisexual and Other Men Who Have Sex with Men

    PubMed Central

    Egan, James E.; Kurtz, Steven P.; Latkin, Carl; Chen, Minxing; Tobin, Karin; Yang, Cui; Koblin, Beryl A.

    2011-01-01

    Adopting socioecological, intersectionality, and lifecourse theoretical frameworks may enhance our understanding of the production of syndemic adverse health outcomes among gay, bisexual and other men who have sex with men (MSM). From this perspective, we present preliminary data from three related studies that suggest ways in which social contexts may influence the health of MSM. The first study, using cross-sectional data, looked at migration of MSM to the gay resort area of South Florida, and found that amount of time lived in the area was associated with risk behaviors and HIV infection. The second study, using qualitative interviews, observed complex interactions between neighborhood-level social environments and individual-level racial and sexual identity among MSM in New York City. The third study, using egocentric network analysis with a sample of African American MSM in Baltimore, found that sexual partners were more likely to be found through face-to-face means than the Internet. They also observed that those who co-resided with a sex partner had larger networks of people to depend on for social and financial support, but had the same size sexual networks as those who did not live with a partner. Overall, these findings suggest the need for further investigation into the role of macro-level social forces on the emotional, behavioral, and physical health of urban MSM. PMID:21369730

  1. Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse.

    PubMed

    Harrison, Jordan L; Rowe, Rachel K; O'Hara, Bruce F; Adelson, P David; Lifshitz, Jonathan

    2014-09-01

    Following mild traumatic brain injury (TBI), patients may self-treat symptoms of concussion, including post-traumatic headache, taking over-the-counter (OTC) analgesics. Administering one dose of OTC analgesics immediately following experimental brain injury mimics the at-home treated population of concussed patients and may accelerate the understanding of the relationship between brain injury and OTC pharmacological intervention. In the current study, we investigate the effect of acute administration of OTC analgesics on neurological function and cortical cytokine levels after experimental diffuse TBI in the mouse. Adult, male C57BL/6 mice were injured using a midline fluid percussion (mFPI) injury model of concussion (6-10 min righting reflex time for brain-injured mice). Experimental groups included mFPI paired with either ibuprofen (60 mg/kg, i.p.; n = 16), acetaminophen (40 mg/kg, i.p.; n = 9), or vehicle (15% ethanol (v/v) in 0.9% saline; n = 13) and sham injury paired OTC medicine or vehicle (n = 7-10 per group). At 24 h after injury, functional outcome was assessed using the rotarod task and a modified neurological severity score. Following behavior assessment, cortical cytokine levels were measured by multiplex ELISA at 24 h post-injury. To evaluate efficacy on acute inflammation, cortical cytokine levels were measured also at 6 h post-injury. In the diffuse brain-injured mouse, immediate pharmacological intervention did not attenuate or exacerbate TBI-induced functional deficits. Cortical cytokine levels were affected by injury, time, or their interaction. However, levels were not affected by treatment at 6 or 24 h post-injury. These data indicate that acute administration of OTC analgesics did not exacerbate or attenuate brain-injury deficits which may inform clinical recommendations for the at-home treated mildly concussed patient. PMID:24760409

  2. Human Immunodeficiency Syndromes Affecting Human Natural Killer Cell Cytolytic Activity

    PubMed Central

    Ham, Hyoungjun; Billadeau, Daniel D.

    2013-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process. PMID:24478771

  3. Autologous Stem Cell Therapy: How Aging and Chronic Diseases Affect Stem and Progenitor Cells

    PubMed Central

    Efimenko, Anastasia Yu.; Kochegura, Tatiana N.; Akopyan, Zhanna A.; Parfyonova, Yelena V.

    2015-01-01

    Abstract During recent years different types of adult stem/progenitor cells have been successfully applied for the treatment of many pathologies, including cardiovascular diseases. The regenerative potential of these cells is considered to be due to their high proliferation and differentiation capacities, paracrine activity, and immunologic privilege. However, therapeutic efficacy of the autologous stem/progenitor cells for most clinical applications remains modest, possibly because of the attenuation of their regenerative potential in aged patients with chronic diseases such as cardiovascular diseases and metabolic disorders. In this review we will discuss the risk factors affecting the therapeutic potential of adult stem/progenitor cells as well as the main approaches to mitigating them using the methods of regenerative medicine. PMID:26309780

  4. How Chimeric Antigen Receptor Design Affects Adoptive T Cell Therapy.

    PubMed

    Gacerez, Albert T; Arellano, Benjamine; Sentman, Charles L

    2016-12-01

    Chimeric antigen receptor (CAR) T cells have been developed to treat tumors and have shown great success against B cell malignancies. Exploiting modular designs and swappable domains, CARs can target an array of cell surface antigens and, upon receptor-ligand interactions, direct signaling cascades, thereby driving T cell effector functions. CARs have been designed using receptors, ligands, or scFv binding domains. Different regions of a CAR have each been found to play a role in determining the overall efficacy of CAR T cells. Therefore, this review provides an overview of CAR construction and common designs. Each CAR region is discussed in the context of its importance to a CAR's function. Additionally, the review explores how various engineering strategies have been applied to CAR T cells in order to regulate CAR T cell function and activity. J. Cell. Physiol. 231: 2590-2598, 2016. © 2016 Wiley Periodicals, Inc. PMID:27163336

  5. 5-ASA Affects Cell Cycle Progression in Colorectal Cells by Reversibly Activating a Replication Checkpoint

    PubMed Central

    LUCIANI, M. GLORIA; CAMPREGHER, CHRISTOPH; FORTUNE, JOHN M.; KUNKEL, THOMAS A.; GASCHE, CHRISTOPH

    2007-01-01

    Background & Aims Individuals with inflammatory bowel disease are at risk of developing colorectal cancer (CRC). Epidemiologic, animal, and laboratory studies suggest that 5-amino-salicylic acid (5-ASA) protects from the development of CRC by altering cell cycle progression and by inducing apoptosis. Our previous results indicate that 5-ASA improves replication fidelity in colorectal cells, an effect that is active in reducing mutations. In this study, we hypothesized that 5-ASA restrains cell cycle progression by activating checkpoint pathways in colorectal cell lines, which would prevent tumor development and improve genomic stability. Methods CRC cells with different genetic backgrounds such as HT29, HCT116, HCT116p53−/−, HCT116+chr3, and LoVo were treated with 5-ASA for 2–96 hours. Cell cycle progression, phosphorylation, and DNA binding of cell cycle checkpoint proteins were analyzed. Results We found that 5-ASA at concentrations between 10 and 40 mmol/L affects cell cycle progression by inducing cells to accumulate in the S phase. This effect was independent of the hMLH1, hMSH2, and p53 status because it was observed to a similar extent in all cell lines under investigation. Moreover, wash-out experiments demonstrated reversibility within 48 hours. Although p53 did not have a causative role, p53 Ser15 was strongly phosphorylated. Proteins involved in the ATM-and-Rad3-related kinase (ATR)-dependent S-phase checkpoint response (Chk1 and Rad17) were also phosphorylated but not ataxia telengectasia mutated kinase. Conclusions Our data demonstrate that 5-ASA causes cells to reversibly accumulate in S phase and activate an ATR-dependent checkpoint. The activation of replication checkpoint may slow down DNA replication and improve DNA replication fidelity, which increases the maintenance of genomic stability and counteracts carcinogenesis. PMID:17241873

  6. Exposure to Phthalates Affects Calcium Handling and Intercellular Connectivity of Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Posnack, Nikki Gillum; Idrees, Rabia; Ding, Hao; Jaimes III, Rafael; Stybayeva, Gulnaz; Karabekian, Zaruhi; Laflamme, Michael A.; Sarvazyan, Narine

    2015-01-01

    Background The pervasive nature of plastics has raised concerns about the impact of continuous exposure to plastic additives on human health. Of particular concern is the use of phthalates in the production of flexible polyvinyl chloride (PVC) products. Di-2-ethylhexyl-phthalate (DEHP) is a commonly used phthalate ester plasticizer that imparts flexibility and elasticity to PVC products. Recent epidemiological studies have reported correlations between urinary phthalate concentrations and cardiovascular disease, including an increased risk of high blood pressure and coronary risk. Yet, there is little direct evidence linking phthalate exposure to adverse effects in human cells, including cardiomyocytes. Methods and Results The effect of DEHP on calcium handling was examined using monolayers of gCAMP3 human embryonic stem cell-derived cardiomyocytes, which contain an endogenous calcium sensor. Cardiomyocytes were exposed to DEHP (5 – 50 μg/mL), and calcium transients were recorded using a Zeiss confocal imaging system. DEHP exposure (24 – 72 hr) had a negative chronotropic and inotropic effect on cardiomyocytes, increased the minimum threshold voltage required for external pacing, and modified connexin-43 expression. Application of Wy-14,643 (100 μM), an agonist for the peroxisome proliferator-activated receptor alpha, did not replicate DEHP’s effects on calcium transient morphology or spontaneous beating rate. Conclusions Phthalates can affect the normal physiology of human cardiomyocytes, including DEHP elicited perturbations in cardiac calcium handling and intercellular connectivity. Our findings call for additional studies to clarify the extent by which phthalate exposure can alter cardiac function, particularly in vulnerable patient populations who are at risk for high phthalate exposure. PMID:25799571

  7. Signet ring cell histology is associated with unique clinical features but does not affect gastric cancer survival.

    PubMed

    Theuer, C P; Nastanski, F; Brewster, W R; Butler, J A; Anton-Culver, H

    1999-10-01

    Signet ring cell histology is found in 3 to 39 per cent of gastric cancer cases and has been reported to be a feature of poor prognosis, although this issue has not been rigorously examined. The objective of this study was to determine those demographic and clinical variables associated with signet ring cell histology and to determine the effect of signet ring cell histology on survival using multivariate analyses. We studied a historical cohort of consecutive cases of gastric cancer reported to the population-based California Cancer Registries of Orange, San Diego, and Imperial Counties from 1984 through 1994. Factors associated with signet ring cell histology were assessed using chi2 and logistic regression. Life tables were constructed to assess unadjusted survival and survival differences in patient subgroups. Multivariate survival was determined using a Cox proportional hazards model. Of 3020 patients, 464 (15%) had signet ring cell histology. Patients with signet ring cell histology were more likely to be younger than 50 years (odds ratio (OR) = 2.4; 95% confidence interval (CI) = 1.6-3.5), less likely to be male (OR = 0.49; 95% CI = 0.37-0.66), and more likely to have tumors of the distal stomach (OR = 2.0; 95% CI = 1.4-3.0). Signet ring cell histology did not adversely affect unadjusted overall survival, race-stratified survival, or stage-stratified survival. Multivariate analysis indicated that patients with signet ring cell histology had an insignificant increased risk of dying (relative risk = 1.027; P>0.10) in comparison with patients without signet ring cell histology. Patients with signet ring cell histology were more likely to be young women and to have tumors of the distal stomach. Signet ring cell histology did not impact survival in our group of largely advanced gastric cancer cases. PMID:10515534

  8. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment. PMID:26498911

  9. Stem cell origin differently affects bone tissue engineering strategies

    PubMed Central

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  10. Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo

    PubMed Central

    Onjiko, Rosemary M.; Moody, Sally A.; Nemes, Peter

    2015-01-01

    Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo. PMID:25941375

  11. Early pregnancy vitamin D status and risk for adverse maternal and infant outcomes in a bi-ethnic cohort: the Behaviors Affecting Baby and You (B.A.B.Y.) Study.

    PubMed

    Nobles, Carrie J; Markenson, Glenn; Chasan-Taber, Lisa

    2015-12-28

    Vitamin D deficiency is common during pregnancy and higher in Hispanic as compared with non-Hispanic white women. However, the association between vitamin D deficiency and adverse pregnancy outcomes remains unclear and may vary across ethnic groups, in part because of genetic variation in the metabolism of vitamin D. Few studies have included Hispanic women. Therefore, we investigated this association among 237 participants in the Behaviors Affecting Baby and You Study, a randomised trial of an exercise intervention among ethnically diverse prenatal care patients in Massachusetts. Baseline serum 25-hydroxyvitamin D (25(OH)D) was measured at 15·2 (sd 4·7) weeks' gestation. Information on adverse pregnancy outcomes was abstracted from medical records. Mean 25(OH)D was 30·4 (sd 12·0) ng/ml; 53·2 % of participants had insufficient (<30 ng/ml) and 20·7 % had deficient (<20 ng/ml) 25(OH)D levels. After adjusting for month of blood draw, gestational age at blood draw, gestational age at delivery, age, BMI and Hispanic ethnicity, women with insufficient and deficient vitamin D had infants with birth weights 139·74 (se 69·16) g (P=0·045) and 175·52 (se 89·45) g (P=0·051) lower compared with women with sufficient vitamin D levels (≥30 ng/ml). Each 1 ng/ml increase in 25(OH)D was associated with an increased risk for gestational diabetes mellitus among Hispanic women only (relative risk 1·07; 95 % CI 1·03, 1·11) in multivariable analysis. We did not observe statistically significant associations between maternal vitamin D status and other pregnancy outcomes. Our findings provide further support for an adverse impact of vitamin D deficiency on birth weight in Hispanic women. PMID:26507186

  12. Genetic background affects susceptibility to tumoral stem cell reprogramming

    PubMed Central

    García-Ramírez, Idoia; Ruiz-Roca, Lucía; Martín-Lorenzo, Alberto; Blanco, Óscar; García-Cenador, María Begoña; García-Criado, Francisco Javier; Vicente-Dueñas, Carolina; Sánchez-García, Isidro

    2013-01-01

    The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control. PMID:23839033

  13. Harvesting Technique Affects Adipose-Derived Stem Cell Yield

    PubMed Central

    Iyyanki, Tejaswi; Hubenak, Justin; Liu, Jun; Chang, Edward I.; Beahm, Elisabeth K.; Zhang, Qixu

    2015-01-01

    Background The success of an autologous fat graft depends in part on its total stromal vascular fraction (SVF) and adipose-derived stem cells (ASCs). However, variations in the yields of ASCs and SVF cells as a result of different harvesting techniques and donor sites are poorly understood. Objective To investigate the effects of adipose tissue harvesting technique and donor site on the yield of ASCs and SVF cells. Methods Subcutaneous fat tissues from the abdomen, flank, or axilla were harvested from patients of various ages by mechanical liposuction, direct surgical excision, or Coleman's technique with or without centrifugation. Cells were isolated and then analyzed with flow cytometry to determine the yields of total SVF cells and ASCs (CD11b−, CD45−, CD34+, CD90+, D7-FIB+). Differences in ASC and total SVF yields were assessed with one-way analysis of variance. Differentiation experiments were performed to confirm the multilineage potential of cultured SVF cells. Results Compared with Coleman's technique without centrifugation, direct excision yielded significantly more ASCs (P < .001) and total SVF cells (P = .007); liposuction yielded significantly fewer ASCs (P < .001) and total SVF cells (P < .05); and Coleman's technique with centrifugation yielded significantly more total SVF cells (P < .005), but not ASCs. The total number of SVF cells in fat harvested from the abdomen was significantly larger than the number in fat harvested from the flank or axilla (P < .05). Cultured SVF cells differentiated to adipocytes, osteocytes, and chondrocytes. Conclusions Adipose tissue harvested from the abdomen through direct excision or Coleman's technique with centrifugation was found to yield the most SVF cells and ASCs. PMID:25791999

  14. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner.

    PubMed

    Takegahara, Yuki; Yamanouchi, Keitaro; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. PMID:24720912

  15. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  16. The Relationship Between the Adverse Events and Efficacy of Sorafenib in Patients With Metastatic Renal Cell Carcinoma: A Multicenter Retrospective Study from Northwest China.

    PubMed

    Zheng, Yu; Wang, Fuli; Wu, Guojun; Zhang, Longlong; Wang, Yangmin; Wang, Zhiping; Chen, Peng; Wang, Qing; Lu, Jingyi; Wang, Yujie; Li, Peijun; Wang, Jian; Lu, Xitao; Yuan, Jianlin

    2015-12-01

    The aim of the study is to evaluate the relationship between the adverse events and efficacy of sorafenib in patients with metastatic renal cell carcinoma (mRCC), with a purpose to guide the judgment of efficacy in sorafenib treatment.Eighty-three mRCC patients who received sorafenib therapy at northwest China were studied retrospectively. Univariate and multivariate analyses were performed to correlate tumor response, progression-free survival (PFS), and overall survival (OS) with adverse event types and grades.Among 83 patients who underwent sorafenib therapy, 2 cases (2.4%) had completed response (CR), 14 cases (16.9%) had partial response (PR), 57 cases (68.7%) had stable disease (SD), and 10 cases (12.0%) developed progressive disease (PD). The median PFS and OS were 15.0 and 29.0 months, respectively. The most frequent grade 1 or 2 adverse events included hand-foot syndrome (68.7%), diarrhea (54.2%), and alopecia (51.8%). The most common grade 3 or 4 adverse events were hand-foot syndrome (6.0%), hypertension (4.8%), and diarrhea (3.6%). The frequency and severity of adverse events correlated with tumor response rate (both with P < 0.05). Multivariate analysis showed the independent predictors of better PFS included rash (OR 0.307, 95%CI 0.148-0.636, P = 0.001) and diarrhea (OR 0.391, 95%CI 0.169-0.783, P = 0.008). Elevated transaminase was the independent predictor of poor PFS (OR 2.606, 95%CI 1.299-5.532, P = 0.012). For OS, rash (OR 0.473, 95%CI 0.253-0.886, P = 0.019) and diarrhea (OR 0.321, 95%CI 0.171-0.605, P = 0.000) correlated with better OS.Sorafenib-related adverse events are associated with efficacy in patients with mRCC from northwest China. Rash and diarrhea are independent protective factors of both PFS and OS, and elevated transaminase is an independent risk factor of PFS. A large prospective study is warranted. PMID:26656362

  17. Bax alpha perturbs T cell development and affects cell cycle entry of T cells.

    PubMed Central

    Brady, H J; Gil-Gómez, G; Kirberg, J; Berns, A J

    1996-01-01

    Bax alpha can heterodimerize with Bcl-2 and Bcl-X(L), countering their effects, as well as promoting apoptosis on overexpression. We show that bax alpha transgenic mice have greatly reduced numbers of mature T cells, which results from an impaired positive selection in the thymus. This perturbation in positive selection is accompanied by an increase in the number of cycling thymocytes. Further to this, mature T cells overexpressing Bax alpha have lower levels of p27Kip1 and enter S phase more rapidly in response to interleukin-2 stimulation than do control T cells, while the converse is true of bcl-2 transgenic T cells. These data indicate that apoptotic regulatory proteins can modulate the level of cell cycle-controlling proteins and thereby directly impact on the cell cycle. Images PMID:9003775

  18. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  19. Risk of adverse events with bevacizumab addition to therapy in advanced non-small-cell lung cancer: a meta-analysis of randomized controlled trials

    PubMed Central

    Lai, Xi-Xi; Xu, Ren-Ai; Yu-Ping, Li; Yang, Han

    2016-01-01

    Background Bevacizumab, a monoclonal antibody against vascular endothelial growth factor ligand, has shown survival benefits in the treatment of many types of malignant tumors, including non-small-cell lung cancer (NSCLC). We conducted this systematic review and meta-analysis to investigate the risk of the most clinically relevant adverse events related to bevacizumab in advanced NSCLC. Methods Databases from PubMed, Web of Science, and Cochrane Library up to August 2015, were searched to identify relevant studies. We included prospective randomized controlled Phase II/III clinical trials that compared therapy with or without bevacizumab for advanced NSCLC. Summary relative risk (RR) and 95% confidence intervals were calculated using random effects or fixed effects according to the heterogeneity among included trials. Results A total of 3,745 patients from nine clinical trials were included in the meta-analysis. Summary RRs showed a statistically significant bevacizumab-associated increased risk in three of the adverse outcomes studied: proteinuria (RR =7.55), hypertension (RR =5.34), and hemorrhagic events (RR =2.61). No statistically significant differences were found for gastrointestinal perforation (P=0.60), arterial and venous thromboembolic events (P=0.35 and P=0.92, respectively), or fatal events (P=0.29). Conclusion The addition of bevacizumab to therapy in advanced NSCLC did significantly increase the risk of proteinuria, hypertension, and hemorrhagic events but not arterial/venous thromboembolic events, gastrointestinal perforation, or fatal adverse events. PMID:27143937

  20. Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells

    PubMed Central

    Akhtar Ali, Muhammad; Younis, Shady; Wallerman, Ola; Gupta, Rajesh; Andersson, Leif; Sjöblom, Tobias

    2015-01-01

    The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle–related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-β, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes. PMID:26056301

  1. Stromal cell-derived factor 1 gene polymorphism is associated with susceptibility to adverse long-term allograft outcomes in non-diabetic kidney transplant recipients.

    PubMed

    Wang, Chung-Jieh; Tsai, Jen-Pi; Yang, Shun-Fa; Lian, Jong-Da; Chang, Horng-Rong

    2014-01-01

    Although the genetic polymorphism of Stromal Cell-Derived Factor 1 (SDF-1) is associated with higher mortality of liver allograft recipients, the role of SDF-1 in the modulation of renal allograft outcomes is unclear. Between March 2000 and January 2008, we recruited 252 non-diabetic renal transplant recipients (RTRs). Baseline characteristics and blood chemistry were recorded. Genomic DNA extraction with polymerase chain reaction-restriction fragment length polymorphism was utilized to analyze the genetic polymorphisms of SDF-1 (rs1801157). The influence of SDF-1 on an adverse renal allograft outcome, defined as either a doubling of serum creatinine, graft failure, or patient death was evaluated. Sixteen patients with the SDF-1 AA/AG genotype and nine with the SDF-1 GG genotype reached an adverse outcome. According to Kaplan-Meier analysis, patients carrying the SDF-1 AA/AG genotype or A allele showed a significantly higher risk of reaching an adverse outcome than those carrying the SDF-1 GG genotype or G allele (p=0.041; p=0.0051, respectively; log rank test). Stepwise multivariate Cox proportional regression analysis revealed that patients carrying the SDF-1 AA/AG genotype and A allele had a 2.742-fold (95% CI. 1.106-6.799, p=0.03) and 2.306-fold (95% CI. 1.254-4.24, p=0.008) risk of experiencing an adverse outcome. The SDF-1 AA/AG genotype and A allele have a detrimental impact on the long-term outcome of RTRs. PMID:25029540

  2. Stromal Cell-Derived Factor 1 Gene Polymorphism Is Associated with Susceptibility to Adverse Long-Term Allograft Outcomes in Non-Diabetic Kidney Transplant Recipients

    PubMed Central

    Wang, Chung-Jieh; Tsai, Jen-Pi; Yang, Shun-Fa; Lian, Jong-Da; Chang, Horng-Rong

    2014-01-01

    Although the genetic polymorphism of Stromal Cell-Derived Factor 1 (SDF-1) is associated with higher mortality of liver allograft recipients, the role of SDF-1 in the modulation of renal allograft outcomes is unclear. Between March 2000 and January 2008, we recruited 252 non-diabetic renal transplant recipients (RTRs). Baseline characteristics and blood chemistry were recorded. Genomic DNA extraction with polymerase chain reaction-restriction fragment length polymorphism was utilized to analyze the genetic polymorphisms of SDF-1 (rs1801157). The influence of SDF-1 on an adverse renal allograft outcome, defined as either a doubling of serum creatinine, graft failure, or patient death was evaluated. Sixteen patients with the SDF-1 AA/AG genotype and nine with the SDF-1 GG genotype reached an adverse outcome. According to Kaplan-Meier analysis, patients carrying the SDF-1 AA/AG genotype or A allele showed a significantly higher risk of reaching an adverse outcome than those carrying the SDF-1 GG genotype or G allele (p = 0.041; p = 0.0051, respectively; log rank test). Stepwise multivariate Cox proportional regression analysis revealed that patients carrying the SDF-1 AA/AG genotype and A allele had a 2.742-fold (95% CI. 1.106–6.799, p = 0.03) and 2.306-fold (95% CI. 1.254–4.24, p = 0.008) risk of experiencing an adverse outcome. The SDF-1 AA/AG genotype and A allele have a detrimental impact on the long-term outcome of RTRs. PMID:25029540

  3. Calcification rates of the Caribbean reef-building coral Siderastrea siderea adversely affected by both seawater warming and CO2-induced ocean acidification

    NASA Astrophysics Data System (ADS)

    Horvath, K. M.; Connolly, B. D.; Westfield, I. T.; Chow, E.; Castillo, K. D.; Ries, J. B.

    2013-05-01

    The Intergovernmental Panel on Climate Change (IPCC) predicts that atmospheric pCO2 will increase to ca. 550-950 ppm by the end of the century, primarily due to the anthropogenic combustion of fossil fuels, deforestation, and cement production. This is predicted to cause SST to increase by 1-3 °C and seawater pH to decrease by 0.1-0.3 units. Laboratory studies have shown that warming depresses calcification rates of scleractinian corals and that acidification yields mixed effects on coral calcification. With both warming and ocean acidification predicted for the next century, we must constrain the interactive effects of these two CO2-induced stressors on scleractinian coral calcification. Here, we present the results of experiments designed to assess the response of the scleractinian coral Siderastrea siderea to both ocean warming and acidification. Coral fragments (12/tank) were reared for 60 days under three temperatures (25.1± 0.02 °C, 28.0± 0.02 °C, 31.8± 0.02 °C) at near modern pCO2 (436 ± 7) and near the highest IPCC estimate for atmospheric pCO2 for the year 2100 AD (883 ± 16). Each temperature and pCO2 treatment was executed in triplicate and contained similarly sized S. Siderea fragments obtained from the same suite of coral colonies equitably distributed amongst the nearshore, backreef, and forereef zones of the Mesoamerican Barrier Reef System off the coast of southern Belize. Individual coral fragments were hand fed Artemia sp. to satiation twice weekly. Weekly seawater samples (250 ml) were collected and analyzed for dissolved inorganic carbon via coulometry and total alkalinity via closed-cell potentiometric titration. Seawater pCO2, pH, carbonate ion concentration, bicarbonate ion concentration, aqueous CO2, and aragonite saturation state (ΩA) were calculated with the program CO2SYS. Under near-modern atmospheric pCO2 of ca. 436 ± 7 ppm, seawater warming from 25 to 28 to 32°C caused coral calcification rates (estimated from change in

  4. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization

    PubMed Central

    Zheng, Guoping; Ge, Menghua; Qiu, Guanguan; Shu, Qiang; Xu, Jianguo

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models. PMID:26257791

  5. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization.

    PubMed

    Zheng, Guoping; Ge, Menghua; Qiu, Guanguan; Shu, Qiang; Xu, Jianguo

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models. PMID:26257791

  6. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    SciTech Connect

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.; Kaehler, Christian M. . E-mail: C.M.Kaehler@uibk.ac.at

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis. Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.

  7. Senescence affects endothelial cells susceptibility to dengue virus infection.

    PubMed

    AbuBakar, Sazaly; Shu, Meng-Hooi; Johari, Jefree; Wong, Pooi-Fong

    2014-01-01

    Alteration in the endothelium leading to increased vascular permeability contributes to plasma leakage seen in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). An earlier study showed that senescent endothelial cells (ECs) altered the ECs permeability. Here we investigated the susceptibility of senescing human umbilical vein endothelial cells (HUVECs) to dengue virus infection and determined if dengue virus infection induces HUVECs senescence. Our results suggest that DENV type-2 (DENV-2) foci forming unit (FFU) and extracellular virus RNA copy number were reduced by at least 35% and 85% in infection of the intermediate young and early senescent HUVECs, respectively, in comparison to infection of young HUVECs. No to low infectivity was recovered from infection of late senescent HUVECs. DENV infection also increases the percentage of HUVECs expressing senescence-associated (SA)-β-gal, cells arrested at the G2/M phase or 4N DNA content stage and cells with enlarged morphology, indicative of senescing cells. Alteration of HUVECs morphology was recorded using impedance-based real-time cell analysis system following DENV-2 infection. These results suggest that senescing HUVECs do not support DENV infection and DENV infection induces HUVECs senescence. The finding highlights the possible role of induction of senescence in DENV infection of the endothelial cells. PMID:24782642

  8. Neuropeptide Y directly affects ovarian cell proliferation and apoptosis.

    PubMed

    Sirotkin, Alexander V; Kardošová, Diana; Alwasel, Saleh Hamad; Harrath, Abdel Halim

    2015-12-01

    The effects of neuropeptide Y (NPY; 0, 10, 100 and 1000 ng/mL) on the expression of PCNA, bax and p53 were examined by immunocytochemistry in porcine luteinized granulosa cells. NPY inhibited proliferation as well as promoted apoptosis and accumulation of p53 in the cells. This is the first report to demonstrate the direct action of NPY on ovarian cell proliferation and apoptosis. The results of the study suggest that the effect is mediated by transcription factor p53. PMID:26679167

  9. Mesenchymal stem cells secretomes' affect multiple myeloma translation initiation.

    PubMed

    Marcus, H; Attar-Schneider, O; Dabbah, M; Zismanov, V; Tartakover-Matalon, S; Lishner, M; Drucker, L

    2016-06-01

    Bone marrow mesenchymal stem cells' (BM-MSCs) role in multiple myeloma (MM) pathogenesis is recognized. Recently, we have published that co-culture of MM cell lines with BM-MSCs results in mutual modulation of phenotype and proteome (via translation initiation (TI) factors eIF4E/eIF4GI) and that there are differences between normal donor BM-MSCs (ND-MSCs) and MM BM-MSCs (MM-MSCs) in this crosstalk. Here, we aimed to assess the involvement of soluble BM-MSCs' (ND, MM) components, more easily targeted, in manipulation of MM cell lines phenotype and TI with specific focus on microvesicles (MVs) capable of transferring critical biological material. We applied ND and MM-MSCs 72h secretomes to MM cell lines (U266 and ARP-1) for 12-72h and then assayed the cells' (viability, cell count, cell death, proliferation, cell cycle, autophagy) and TI (factors: eIF4E, teIF4GI; regulators: mTOR, MNK1/2, 4EBP; targets: cyclin D1, NFκB, SMAD5, cMyc, HIF1α). Furthermore, we dissected the secretome into >100kDa and <100kDa fractions and repeated the experiments. Finally, MVs were isolated from the ND and MM-MSCs secretomes and applied to MM cell lines. Phenotype and TI were assessed. Secretomes of BM-MSCs (ND, MM) significantly stimulated MM cell lines' TI, autophagy and proliferation. The dissected secretome yielded different effects on MM cell lines phenotype and TI according to fraction (>100kDa- repressed; <100kDa- stimulated) but with no association to source (ND, MM). Finally, in analyses of MVs extracted from BM-MSCs (ND, MM) we witnessed differences in accordance with source: ND-MSCs MVs inhibited proliferation, autophagy and TI whereas MM-MSCs MVs stimulated them. These observations highlight the very complex communication between MM and BM-MSCs and underscore its significance to major processes in the malignant cells. Studies into the influential MVs cargo are underway and expected to uncover targetable signals in the regulation of the TI/proliferation/autophagy cascade

  10. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  11. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    SciTech Connect

    Takegahara, Yuki; Yamanouchi, Keitaro Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  12. Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and marrow microenvironmental cells.

    PubMed

    Lu, Min; Xia, Lijuan; Liu, Yen-Chun; Hochman, Tsivia; Bizzari, Laetizia; Aruch, Daniel; Lew, Jane; Weinberg, Rona; Goldberg, Judith D; Hoffman, Ronald

    2015-08-20

    Myelofibrosis (MF) is characterized by cytopenias, constitutional symptoms, splenomegaly, and marrow histopathological abnormalities (fibrosis, increased microvessel density, and osteosclerosis). The microenvironmental abnormalities are likely a consequence of the elaboration of a variety of inflammatory cytokines generated by malignant megakaryocytes and monocytes. We observed that levels of a specific inflammatory cytokine, lipocalin-2 (LCN2), were elevated in the plasmas of patients with myeloproliferative neoplasms (MF > polycythemia vera or essential thrombocythemia) and that LCN2 was elaborated by MF myeloid cells. LCN2 generates increased reactive oxygen species, leading to increased DNA strand breaks and apoptosis of normal, but not MF, CD34(+) cells. Furthermore, incubation of marrow adherent cells or mesenchymal stem cells with LCN2 increased the generation of osteoblasts and fibroblasts, but not adipocytes. LCN2 priming of mesenchymal stem cells resulted in the upregulation of RUNX2 gene as well as other genes that are capable of further affecting osteoblastogenesis, angiogenesis, and the deposition of matrix proteins. These data indicate that LCN2 is an additional MF inflammatory cytokine that likely contributes to the creation of a cascade of events that results in not only a predominance of the MF clone but also a dysfunctional microenvironment. PMID:26022238

  13. Adverse ocular reactions to drugs.

    PubMed Central

    Spiteri, M. A.; James, D. G.

    1983-01-01

    Drugs acting on various parts of the body may also affect the eye insidiously. Increased awareness of such drug toxicity by the prescribing doctor should encourage him to consider effects on the cornea, lens, retina, optic nerve and elsewhere when checking the patient's progress. The following review concerns adverse ocular effects of systemic drug administration. PMID:6356101

  14. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings

    PubMed Central

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I.; Bonnema, Guusje; Angenent, Gerco C.; Immink, Richard G. H.; Groot, Steven P. C.

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  15. New thiazolidinediones affect endothelial cell activation and angiogenesis.

    PubMed

    Rudnicki, Martina; Tripodi, Gustavo L; Ferrer, Renila; Boscá, Lisardo; Pitta, Marina G R; Pitta, Ivan R; Abdalla, Dulcineia S P

    2016-07-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-β expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation. PMID:27108791

  16. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings.

    PubMed

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I; Bonnema, Guusje; Angenent, Gerco C; Immink, Richard G H; Groot, Steven P C

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  17. Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells.

    PubMed

    Ballweg, Korbinian; Mutze, Kathrin; Königshoff, Melanie; Eickelberg, Oliver; Meiners, Silke

    2014-12-01

    Cigarette smoke is the main risk factor for chronic obstructive pulmonary disease (COPD). Exposure of cells to cigarette smoke induces an initial adaptive cellular stress response involving increased oxidative stress and induction of inflammatory signaling pathways. Exposure of mitochondria to cellular stress alters their fusion/fission dynamics. Whereas mild stress induces a prosurvival response termed stress-induced mitochondrial hyperfusion, severe stress results in mitochondrial fragmentation and mitophagy. In the present study, we analyzed the mitochondrial response to mild and nontoxic doses of cigarette smoke extract (CSE) in alveolar epithelial cells. We characterized mitochondrial morphology, expression of mitochondrial fusion and fission genes, markers of mitochondrial proteostasis, as well as mitochondrial functions such as membrane potential and oxygen consumption. Murine lung epithelial (MLE)12 and primary mouse alveolar epithelial cells revealed pronounced mitochondrial hyperfusion upon treatment with CSE, accompanied by increased expression of the mitochondrial fusion protein mitofusin 2 and increased metabolic activity. We did not observe any alterations in mitochondrial proteostasis, i.e., induction of the mitochondrial unfolded protein response or mitophagy. Therefore, our data indicate an adaptive prosurvival response of mitochondria of alveolar epithelial cells to nontoxic concentrations of CSE. A hyperfused mitochondrial network, however, renders the cell more vulnerable to additional stress, such as sustained cigarette smoke exposure. As such, cigarette smoke-induced mitochondrial hyperfusion, although part of a beneficial adaptive stress response in the first place, may contribute to the pathogenesis of COPD. PMID:25326581

  18. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  19. Post-transcriptional RNA Regulons Affecting Cell Cycle and Proliferation

    PubMed Central

    Blackinton, Jeff G.

    2014-01-01

    The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression. This review examines several recent studies demonstrating the coordination of mRNA subsets encoding cell cycle proteins during nuclear export and subsequent coupling to protein synthesis, and discusses evidence for mRNA coordination of p53 targets and the DNA damage response pathway. We consider how these observations may connect to upstream and downstream post-transcriptional coordination and coupling of splicing, export, localization, and translation. Published examples from yeast, nematode, insect, and mammalian systems are discussed, and we consider genetic evidence supporting the conclusion that dysregulation of RNA regulons may promote pathogenic states of growth such as carcinogenesis. PMID:24882724

  20. Claudin-16 affects transcellular Cl− secretion in MDCK cells

    PubMed Central

    Günzel, Dorothee; Amasheh, Salah; Pfaffenbach, Sandra; Richter, Jan F; Kausalya, P Jaya; Hunziker, Walter; Fromm, Michael

    2009-01-01

    Claudin-16 (paracellin-1) is a tight junction protein localized mainly in the thick ascending limb of Henle's loop and also in the distal nephron. Its defect causes familial hypomagnesaemia with hypercalciuria and nephrocalcinosis. This had been taken as an indication that claudin-16 conveys paracellular Mg2+ and Ca2+ transport; however, evidence is still conflicting. We studied paracellular ion permeabilties as well as effects of claudin-16 on the driving forces for passive ion movement. MDCK-C7 cells were stably transfected with wild-type (wt) and mutant (R146T, T233R) claudin-16. Results indicated that paracellular permeability to Mg2+ but not to Ca2+ is increased in cells transfected with wt compared to mutant claudin-16 and control cells. Increased basolateral Mg2+ concentration activated a transcellular Cl− current which was greatly enhanced in cells transfected with wt and T233R claudin-16, as compared to R146T claudin-16-transfected or control cells. This current was triggered by the basolateral calcium-sensing receptor causing Ca2+ release from internal stores, thus activating apical Ca2+-sensitive Cl− channels and basolateral Ca2+-sensitive K+ channels. Immunohistochemical data suggest that the Cl− channel involved is bestrophin. We conclude that claudin-16 itself possesses only moderate paracellular Mg2+ permeability but governs transcellular Cl− currents by interaction with apical Ca2+-activated Cl− channels, presumably bestrophin. As the transepithelial voltage generated by such a current alters the driving force for all ions, this may be the major mechanism to regulate Mg2+ and Ca2+ absorption in the kidney. PMID:19528248

  1. Developmental exposure to T-2 toxin reversibly affects postnatal hippocampal neurogenesis and reduces neural stem cells and progenitor cells in mice.

    PubMed

    Tanaka, Takeshi; Abe, Hajime; Kimura, Masayuki; Onda, Nobuhiko; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2016-08-01

    To determine the developmental exposure effects of T-2 toxin on postnatal hippocampal neurogenesis, pregnant ICR mice were provided a diet containing T-2 toxin at 0, 1, 3, or 9 ppm from gestation day 6 to day 21 on weaning after delivery. Offspring were maintained through postnatal day (PND) 77 without T-2 toxin exposure. In the hippocampal dentate gyrus of male PND 21 offspring, GFAP(+) and BLBP(+) type-1 stem cells and PAX6(+) and TBR2(+) type-2 progenitor cells decreased in the subgranular zone (SGZ) at 9 and ≥3 ppm, respectively, in parallel with increased apoptosis at ≥3 ppm. In the dentate hilus, reelin(+) γ-aminobutyric acid (GABA)-ergic interneurons increased at 9 ppm, suggesting reflection of neuronal mismigration. T-2 toxin decreased transcript levels of cholinergic and glutamate receptor subunits (Chrna4, Chrnb2 and Gria2) and glutamate transporter (Slc17a6) in the dentate gyrus, suggesting decreased cholinergic signals on hilar GABAergic interneurons innervating type-2 cells and decreased glutamatergic signals on type-1 and type-2 cells. T-2 toxin decreased SGZ cells expressing stem cell factor (SCF) and increased cells accumulating malondialdehydes. Neurogenesis-related changes disappeared on PND 77, suggesting that T-2 toxin reversibly affects neurogenesis by inducing apoptosis of type-1 and type-2 cells with different threshold levels. Decreased cholinergic and glutamatergic signals may decrease type-2 cells at ≥3 ppm. Additionally, decreased SCF/c-Kit interactions and increased oxidative stress may decrease type-1 and type-2 cells at 9 ppm. The no-observed-adverse-effect level for offspring neurogenesis was determined to be 1 ppm (0.14-0.49 mg/kg body weight/day). PMID:26314264

  2. Uvangoletin induces mitochondria-mediated apoptosis in HL-60 cells in vitro and in vivo without adverse reactions of myelosuppression, leucopenia and gastrointestinal tract disturbances.

    PubMed

    Zheng, Zhuanzhen; Qiao, Zhenhua; Gong, Rong; Wang, Yalin; Zhang, Yiqun; Ma, Yanping; Zhang, Li; Lu, Yujin; Jiang, Bo; Li, Guoxia; Dong, Chunxia; Chen, Wenliang

    2016-02-01

    This study investigated the cytotoxic effect of uvangoletin on HL-60 cells, and the effects of uvangoletin on myelosuppression, leucopenia, gastrointestinal tract disturbances and the possible cytotoxic mechanisms by using CCK-8, flow cytometry, western blot, xenograft, cyclophosphamide-induced leucopenia, copper sulfate-induced emesis and ethanol-induced gastric mucosal lesions assays. The results of CCK-8, flow cytometry and western blot assays indicated that uvangoletin showed the cytotoxic effect on HL-60 cells and induced the apoptosis of HL-60 cells by downregulating the expression levels of anti-apoptotic proteins (Survivin, Bcl-xl and Bcl-2), upregulating the expression levels of pro-apoptotic proteins (Smac, Bax, Bad, c-caspase-3 and c-caspase-9), and promoting the release of cytochrome c from mitochondria to cytoplasm. Further, the results of xenograft assay suggested that uvangoletin inhibited the HL-60-induced tumor growth without adverse effect on body weight of nude mice in vivo by regulating the expression levels of above apoptotic proteins. The results indicated that the reductions of WBCs count and thighbone marrow granulocytes percentage in cyclophosphamide-induced leucopenia assay, the incubation period and number of emesis in copper sulfate-induced emesis assay and the gastric mucosal lesions in ethanol-induced gastric mucosal lesions assay were not exacerbated or reversed by uvangoletin. In conclusion, the research preliminarily indicated that uvangoletin induced apoptosis of HL-60 cells in vitro and in vivo without adverse reactions of myelosuppression, leucopenia and gastrointestinal tract disturbances, and the pro-apoptotic mechanisms may be related to mitochondria-mediated apoptotic pathway. PMID:26717974

  3. Elevated lead levels and adverse effects on natural killer cells in children from an electronic waste recycling area.

    PubMed

    Zhang, Yu; Huo, Xia; Cao, Junjun; Yang, Tian; Xu, Long; Xu, Xijin

    2016-06-01

    Lead (Pb) has been proved to exert immunotoxicity to influence immune homeostasis in humans. To monitor the internal Pb level and evaluate its effect on natural killer (NK) cells and cytokine/chemokine concentrations, we recruited 285 preschool children from Guiyu, one of the largest electronic waste (e-waste) destinations and recycling areas in the world, and known to have high concentrations of Pb in the air, soil, water, sediment and plants. A total of 126 preschool children were selected from Haojiang as a reference group. Results showed that children in Guiyu, the exposed area, had higher blood Pb levels and lower percentages of NK cells than children from the reference area. A significantly negative association was found between the percentage of NK cells and increasing Pb levels. Moreover, children in Guiyu area had higher platelet counts and IL-1β concentrations, and lower levels of IL-2, IL-27, MIP-1α and MIP-1β were observed in the exposed children. These changes might not be conducive to the development and differentiation of NK cells. Taken together, the elevated Pb levels result in the lower percentages of NK cells, but also alter the levels of platelets, IL-1β and IL-27, which might be unconducive to the activity and function of NK cells. PMID:26895538

  4. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    PubMed Central

    Chevalier, N.R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  5. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  6. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration.

    PubMed

    Chevalier, N R; Gazguez, E; Bidault, L; Guilbert, T; Vias, C; Vian, E; Watanabe, Y; Muller, L; Germain, S; Bondurand, N; Dufour, S; Fleury, V

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  7. Vaccine Adverse Events

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Vaccines, Blood & Biologics Home Vaccines, Blood & Biologics Safety & Availability ( ... Center for Biologics Evaluation & Research Vaccine Adverse Events Vaccine Adverse Events Share Tweet Linkedin Pin it More ...

  8. Epoxyeicosatrienoic Acids Affect Electrolyte Transport in Renal Tubular Epithelial Cells: Dependence on Cyclooxygenase and Cell Polarity

    PubMed Central

    Nüsing, Rolf M.; Schweer, Horst; Fleming, Ingrid; Zeldin, Darryl C.; Wegmann, Markus

    2007-01-01

    We investigated the effects of epoxyeicosatrienoic acids (EETs) on ion transport in the polarized renal distal tubular cell line, MDCK C7. Of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) studied, only apical, but not basolateral, application of 5,6-EET increased short circuit current (Isc) with kinetics similar to those of arachidonic acid. The ion transport was blocked by preincubation with the cyclooxygenase inhibitor indomethacin or with the chloride channel blocker NPPB. Further, both a Cl−-free bath solution and the Ca2+ antagonist verapamil blocked 5,6-EET-induced ion transport. Although the presence of the PGE2 receptors EP2, EP3, and EP4 was demonstrated, apically added PGE2 was ineffective and basolaterally added PGE2 caused a different kinetics in ion transport compared to 5,6-EET. Moreover, PGE2 sythesis in MDCK C7 cells was unaffected by 5,6-EET treatment. GC/MS/MS analysis of cell supernatants revealed the presence of the biologically inactive 5,6-dihydroxy-PGE1 in 5,6-EET-treated cells, but not in control cells. Indomethacin suppressed the formation of 5,6-dihydroxy-PGE1. 5,6-epoxy-PGE1 the precursor of 5,6-dihydroxy-PGE1, caused a similar ion transport as 5,6-EET. Cytochrome P450 enzymes homolog to human CYP2C8, CYP2C9, and CYP2J2 protein were detected immunologically in the MDCK C7 cells. Our findings suggest that 5,6-EET affects Cl-transport in renal distal tubular cells independent of PGE2 but by a mechanism, dependent on its conversion to 5,6-epoxy-PGE1 by cyclooxygenase. We suggest a role for this P450 epoxygenase product in the regulation of electrolyte transport, especially as a saluretic compound acting from the luminal side of tubular cells in the mammalian kidney. PMID:17494091

  9. Epoxyeicosatrienoic acids affect electrolyte transport in renal tubular epithelial cells: dependence on cyclooxygenase and cell polarity.

    PubMed

    Nüsing, Rolf M; Schweer, Horst; Fleming, Ingrid; Zeldin, Darryl C; Wegmann, Markus

    2007-07-01

    We investigated the effects of epoxyeicosatrienoic acids (EETs) on ion transport in the polarized renal distal tubular cell line, Madin-Darby canine kidney (MDCK) C7. Of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) studied, only apical, but not basolateral, application of 5,6-EET increased short-circuit current (I(sc)) with kinetics similar to those of arachidonic acid. The ion transport was blocked by preincubation with the cyclooxygenase inhibitor indomethacin or with the chloride channel blocker NPPB. Furthermore, both a Cl(-)-free bath solution and the Ca(2+) antagonist verapamil blocked 5,6-EET-induced ion transport. Although the presence of the PGE(2) receptors EP2, EP3, and EP4 was demonstrated, apically added PGE(2) was ineffective and basolaterally added PGE(2) caused a different kinetics in ion transport compared with 5,6-EET. Moreover, PGE(2) synthesis in MDCK C7 cells was unaffected by 5,6-EET treatment. GC/MS/MS analysis of cell supernatants revealed the presence of the biologically inactive 5,6-dihydroxy-PGE(1) in 5,6-EET-treated cells, but not in control cells. Indomethacin suppressed the formation of 5,6-dihydroxy-PGE(1). 5,6-Epoxy-PGE(1), the precursor of 5,6-dihydroxy-PGE(1), caused a similar ion transport as 5,6-EET. Cytochrome P-450 enzymes homolog to human CYP2C8, CYP2C9, and CYP2J2 protein were detected immunologically in the MDCK C7 cells. Our findings suggest that 5,6-EET affects Cl(-) transport in renal distal tubular cells independent of PGE(2) but by a mechanism, dependent on its conversion to 5,6-epoxy-PGE(1) by cyclooxygenase. We suggest a role for this P450 epoxygenase product in the regulation of electrolyte transport, especially as a saluretic compound acting from the luminal side of tubular cells in the mammalian kidney. PMID:17494091

  10. Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition.

    PubMed

    Nahirñak, Vanesa; Almasia, Natalia Inés; Fernandez, Paula Virginia; Hopp, Horacio Esteban; Estevez, José Manuel; Carrari, Fernando; Vazquez-Rovere, Cecilia

    2012-01-01

    Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense. PMID:22080603

  11. Biologics in dermatology: adverse effects.

    PubMed

    Sehgal, Virendra N; Pandhi, Deepika; Khurana, Ananta

    2015-12-01

    Biologics are a group of drugs that precisely affect certain specific steps in the immune response and are an extremely useful group when used in an appropriate setting. However, their use can often be a double-edged sword. Careful patient selection and thorough knowledge of adverse effects is a key to their successful use in various disorders. The initial enthusiasm has gradually given way to a more cautious approach wherein a balance is sought between clinical usefulness and expected side effects. The adverse effects of the biologics most commonly used in dermatology have been carefully listed for ready reference. The plausible causes of the adverse reactions are succinctly outlined along with their incriminating factor(s). Besides, in brief, the attention has been focused on their management. The content should provide an essential didactic content for educating the practitioner. PMID:26147909

  12. Adverse events among 2408 unrelated donors of peripheral blood stem cells: results of a prospective trial from the National Marrow Donor Program

    PubMed Central

    Chitphakdithai, Pintip; Miller, John P.; Logan, Brent R.; King, Roberta J.; Rizzo, J. Douglas; Leitman, Susan F.; Anderlini, Paolo; Haagenson, Michael D.; Kurian, Seira; Klein, John P.; Horowitz, Mary M.; Confer, Dennis L.

    2009-01-01

    Limited data are available describing donor adverse events (AEs) associated with filgrastim mobilized peripheral blood stem cell (PBSC) collections in unrelated volunteers. We report results in 2408 unrelated PBSC donors prospectively evaluated by the National Marrow Donor Program (NMDP) between 1999 and 2004. Female donors had higher rates of AEs, requiring central line placement more often (17% vs 4%, P < .001), experiencing more apheresis-related AEs (20% vs 7%, P < .001), more bone pain (odds ratio [OR] = 1.49), and higher rates of grades II-IV and III-IV CALGB AEs (OR = 2.22 and 2.32). Obese donors experienced more bone pain (obese vs normal, OR = 1.73) and heavy donors had higher rates of CALGB toxicities (> 95 kg vs < 70 kg, OR = 1.49). Six percent of donors experienced grade III-IV CALGB toxicities and 0.6% experienced toxicities that were considered serious and unexpected. Complete recovery is universal, however, and no late AEs attributable to donation have been identified. In conclusion, PBSC collection in unrelated donors is generally safe, but nearly all donors will experience bone pain, 1 in 4 will have significant headache, nausea, or citrate toxicity, and a small percentage will experience serious short-term adverse events. In addition, women and larger donors are at higher risk for donation-related AEs. PMID:19190248

  13. Bullous pemphigoid, an autoantibody-mediated disease, is a novel immune-related adverse event in patients treated with anti-programmed cell death 1 antibodies.

    PubMed

    Hwang, Shelley J E; Carlos, Giuliana; Chou, Shaun; Wakade, Deepal; Carlino, Matteo S; Fernandez-Penas, Pablo

    2016-08-01

    Anti-programmed cell death 1 (anti-PD1) antibodies such as pembrolizumab have shown improved progression-free and overall survival in patients with advanced melanoma. Of 124 patients reviewed in Westmead Hospital from May 2012 to November 2015, treated with pembrolizumab for advanced melanoma, we encountered three cases of bullous pemphigoid (BP). We have previously reported a case of BP. In two recent cases, BP was diagnosed early and treated promptly with potent topical or oral steroid. Patients on anti-PD1 antibodies are at a higher risk of developing cutaneous immune-related adverse events such as lichenoid reactions, eczema and vitiligo. No cases of BP were encountered in the previously published cohort of 260 melanoma patients treated with BRAF inhibitors; as such, it appears that BP is associated with anti-PD1 treatment rather than metastatic melanoma. BP appears to be another immune-related adverse event, and clinicians should have a low threshold for performing cutaneous biopsies and immunofluorescence studies in patients on anti-PD1 therapies. PMID:27031539

  14. Post-Marketing Surveillance of Human Rabies Diploid Cell Vaccine (Imovax) in the Vaccine Adverse Event Reporting System (VAERS) in the United States, 1990‒2015

    PubMed Central

    Moro, Pedro L.; Woo, Emily Jane; Paul, Wendy; Lewis, Paige; Petersen, Brett W.; Cano, Maria

    2016-01-01

    Background In 1980, human diploid cell vaccine (HDCV, Imovax Rabies, Sanofi Pasteur), was licensed for use in the United States. Objective To assess adverse events (AEs) after HDCV reported to the US Vaccine Adverse Event Reporting System (VAERS), a spontaneous reporting surveillance system. Methods We searched VAERS for US reports after HDCV among persons vaccinated from January 1, 1990–July 31, 2015. Medical records were requested for reports classified as serious (death, hospitalization, prolonged hospitalization, disability, life-threatening-illness), and those suggesting anaphylaxis and Guillain-Barré syndrome (GBS). Physicians reviewed available information and assigned a primary clinical category to each report using MedDRA system organ classes. Empirical Bayesian (EB) data mining was used to identify disproportional AE reporting after HDCV. Results VAERS received 1,611 reports after HDCV; 93 (5.8%) were serious. Among all reports, the three most common AEs included pyrexia (18.2%), headache (17.9%), and nausea (16.5%). Among serious reports, four deaths appeared to be unrelated to vaccination. Conclusions This 25-year review of VAERS did not identify new or unexpected AEs after HDCV. The vast majority of AEs were non-serious. Injection site reactions, hypersensitivity reactions, and non-specific constitutional symptoms were most frequently reported, similar to findings in pre-licensure studies. PMID:27410239

  15. Exogenous gangliosides may affect methylation mechanisms in neuronal cell cultures

    SciTech Connect

    Ferret, B.; Hubsch, A.; Dreyfus, H.; Massarelli, R. )

    1991-02-01

    Primary neurons in culture from chick embryo cerebral hemispheres were treated with a mixture of gangliosides added to the growth medium (final concentration: 10(-5)M and 10(-8)M) from the 3rd to the 6th day in vitro. Under these conditions methylation processes measured with (3H) and (35S) methionine and (3H)ethanolamine as precursors showed an increased methylation of (3H)ethanolamine containing phospholipids, a correspondent increased conversion of these compounds to (3H)choline containing phospholipids, and a general increased methylation of trichloroacetic acid precipitable macromolecules containing labeled methionine. A small increase in protein synthesis was observed after incubation of neurons with (3H)- and (35S)methionine. This was confirmed after electrophoretic separation of a protein extract with increased 3H- and 35S-labeling in protein bands with moecular weights between 50 and 60 KDaltons. A protein band of about 55 KDaltons appeared to be preferentially labelled when (3H) methionine was the precursor. The treatment with gangliosides increased the incorporation of (methyl-3H) label after incubation of neurons with (3H) methionine, into total DNA and decreased that of total RNA. The treatment of neurons in culture with exogenous gangliosides hence affects differently methylation processes, a finding which may confirm the involvement of gangliosides on the intracellular mediation of neuronal information mechanisms.

  16. Gracilaria edulis exhibit antiproliferative activity against human lung adenocarcinoma cell line A549 without causing adverse toxic effect in vitro and in vivo.

    PubMed

    Sakthivel, Ravi; Muniasamy, Samuthirapandi; Archunan, Govindaraju; Devi, Kasi Pandima

    2016-02-17

    In the present study, the antiproliferative potential of various solvent extracts of Gracilaria edulis (GE) was tested against various cancer cell lines. In the A549 lung cancer cell line model, GE ethyl acetate extract (GEEA) (100 μg mL(-1)) treated group showed the maximum and significant (P < 0.05) growth inhibition at 48 h. The IC50 value was found to be 24.5 ± 19.1 μg mL(-1) at 48 h. Moreover, a low level of LDH release was observed at 48 h at various concentrations of (40, 60, 80 and 100 μg mL(-1)) GEEA extract-treated group compared to a control group. Changes in the cell morphology and echinoid spikes formation were observed at 48 h. Safety evaluation of GEEA in a non-cancerous liver cell line, PBMC and in Wistar rats positively revealed that the extract did not show any adverse toxic effects. The GEEA extract was partially purified by column chromatography and the active fraction was characterized through LC-MS analysis. Furthermore, HPLC and FT-IR analysis of the active fractions confirmed the presence of phytol, a diterpene compound with potent antiproliferative activity, which positively suggests that the red alga G. edulis contains a potent anticancer active principle. PMID:26822457

  17. Evaluation of the adverse effect of low concentration of cadmium on interleukin-4 induced class switch recombination in Burkett's lymphoma Raji cell line.

    PubMed

    Poltoratsky, Vladimir

    2014-01-01

    Affinity maturation of B lymphocytes, a process that includes somatic hypermutation and class switch recombination, initiates global DNA rearrangements. The interruption of this process has an adverse effect on human health and results in immunodeficiency and autoimmune disease. Class switch recombination is a fundamental factor of the human adaptive immunity. Evaluation of the class switch recombination efficiency is an important component of laboratory diagnostic of immunotoxic components. Here, we describe a method for testing the efficiency of the class switch recombination. Cultivation of Raji Burkett's lymphoma cell line with anti-CD40 antibodies and recombinant interleukin-4 (IL-4) triggers a cascade of signal transduction network events that lead to switching the immunoglobulin isotopes from IgM to IgE. This chapter describes the methodology of class switch recombination assay for assessment of the effect of the environmental pollutants in toxicological laboratory diagnostics. PMID:24908303

  18. Immune-related Adverse Events of Dendritic Cell Vaccination Correlate With Immunologic and Clinical Outcome in Stage III and IV Melanoma Patients

    PubMed Central

    Boudewijns, Steve; Westdorp, Harm; Koornstra, Rutger H.T.; Aarntzen, Erik H.J.G.; Schreibelt, Gerty; Creemers, Jeroen H.A.; Punt, Cornelis J.A.; Figdor, Carl G.; Gerritsen, Winald R.; Bol, Kalijn F.

    2016-01-01

    The purpose of this study was to determine the toxicity profile of dendritic cell (DC) vaccination in stage III and IV melanoma patients, and to evaluate whether there is a correlation between side effects and immunologic and clinical outcome. This is a retrospective analysis of 82 stage III and 137 stage IV melanoma patients, vaccinated with monocyte-derived or naturally circulating autologous DCs loaded with tumor-associated antigens gp100 and tyrosinase. Median follow-up time was 54.3 months in stage III patients and 12.9 months in stage IV patients. Treatment-related adverse events occurred in 84% of patients; grade 3 toxicity was present in 3% of patients. Most common adverse events were flu-like symptoms (67%) and injection site reactions (50%), and both correlated with the presence of tetramer-positive CD8+ T cells (both P<0.001). In stage III melanoma patients experiencing flu-like symptoms, median overall survival (OS) was not reached versus 32.3 months in patients without flu-like symptoms (P=0.009); median OS in patients with an injection site reaction was not reached versus 53.7 months in patients without an injection site reaction (P<0.05). In stage IV melanoma patients (primary uveal and mucosal melanomas excluded), median OS in patients with or without flu-like symptoms was 13.1 versus 8.9 months, respectively (P=0.03); median OS in patients with an injection site reaction was 15.7 months versus 9.8 months in patients without an injection site reaction (P=0.003). In conclusion, DC vaccination is safe and tolerable and the occurrence of the immune-related side effects, such as flu-like symptoms and injection site reactions, correlates with immunologic and clinical outcome. PMID:27227325

  19. Immune-related Adverse Events of Dendritic Cell Vaccination Correlate With Immunologic and Clinical Outcome in Stage III and IV Melanoma Patients.

    PubMed

    Boudewijns, Steve; Westdorp, Harm; Koornstra, Rutger H T; Aarntzen, Erik H J G; Schreibelt, Gerty; Creemers, Jeroen H A; Punt, Cornelis J A; Figdor, Carl G; de Vries, I Jolanda M; Gerritsen, Winald R; Bol, Kalijn F

    2016-01-01

    The purpose of this study was to determine the toxicity profile of dendritic cell (DC) vaccination in stage III and IV melanoma patients, and to evaluate whether there is a correlation between side effects and immunologic and clinical outcome. This is a retrospective analysis of 82 stage III and 137 stage IV melanoma patients, vaccinated with monocyte-derived or naturally circulating autologous DCs loaded with tumor-associated antigens gp100 and tyrosinase. Median follow-up time was 54.3 months in stage III patients and 12.9 months in stage IV patients. Treatment-related adverse events occurred in 84% of patients; grade 3 toxicity was present in 3% of patients. Most common adverse events were flu-like symptoms (67%) and injection site reactions (50%), and both correlated with the presence of tetramer-positive CD8 T cells (both P<0.001). In stage III melanoma patients experiencing flu-like symptoms, median overall survival (OS) was not reached versus 32.3 months in patients without flu-like symptoms (P=0.009); median OS in patients with an injection site reaction was not reached versus 53.7 months in patients without an injection site reaction (P<0.05). In stage IV melanoma patients (primary uveal and mucosal melanomas excluded), median OS in patients with or without flu-like symptoms was 13.1 versus 8.9 months, respectively (P=0.03); median OS in patients with an injection site reaction was 15.7 months versus 9.8 months in patients without an injection site reaction (P=0.003). In conclusion, DC vaccination is safe and tolerable and the occurrence of the immune-related side effects, such as flu-like symptoms and injection site reactions, correlates with immunologic and clinical outcome. PMID:27227325

  20. Adverse effects of antipsychotics on micro-vascular endothelial cells of the human blood-brain barrier.

    PubMed

    Elmorsy, Ekramy; Elzalabany, Laila M; Elsheikha, Hany M; Smith, Paul A

    2014-10-01

    Although the mechanisms of action of antipsychotics (APs) on neuronal function are well understood, very little is known about their effects on cells of the blood-brain barrier (BBB); one function of which is to limit the access of these amphiphilic compounds to the central nervous system. To address this question we have investigated the cytological and functional effects of four APs: chlorpromazine (CLP), haloperidol (HAL), risperidone (RIS) and clozapine (CLZ), at concentrations typical of high therapeutic dosage on a human brain microvascular endothelial cell (HBMEC) model of the BBB. At ~10 µM all four APs impaired the ability of HBMECs to reduce MTT which was followed by decreased Trypan blue exclusion and increased Lactate dehydrogenase release. These effects were associated with oxidative stress which was partly reversed by incubation in 10mM glutathione. At their EC50 concentrations for MTT reduction, all four APs disrupted cellular ultrastructure and morphology. HAL, CPZ and CLZ increased Caspase -3, -8 and -9 activity, chromatin condensation and fragmentation, data indicative of apoptosis. These events were associated with decreased transcytosis of Evans blue and increased transendothelial potential difference and electrical resistance of this BBB model. These findings suggest that at high therapeutic concentrations, CPZ and CLZ are likely to incur cytoxic effects and apoptosis of BBB endothelia with an impairment of barrier functionality. Such events may underlie the aetiology of neuroleptic associated cerebral oedema and neuroleptic malignant syndrome. PMID:25139421

  1. Factors Affecting the Development of Somatic Cell Nuclear Transfer Embryos in Cattle

    PubMed Central

    AKAGI, Satoshi; MATSUKAWA, Kazutsugu; TAKAHASHI, Seiya

    2014-01-01

    Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of donor cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute to the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell cloning has remained low, and applications have been limited. In this review, we discuss some of the factors that affect the developmental ability of somatic cell nuclear transfer embryos in cattle. PMID:25341701

  2. MAGE-A3 expression is an adverse prognostic factor in diffuse large B-cell lymphoma.

    PubMed

    Olarte, Irma; Martinez, Adolfo; Ramos-Peñafiel, Christian; Castellanos-Sinco, Humberto; Zamora, Jorge; Collazo-Jaloma, Juan; Gutiérrez, Mario; Gutiérrez-Kobeh, Laila; Chavez-Olmos, Pedro; Manzanilla, Hugo; Garrido-Guerrero, Efraín; Ordoñez-Razo, Rosa M; Miranda, Enrique I

    2011-11-01

    This study evaluates the prognostic value of MAGE-A3 expression in 28 diffuse large B-cell lymphoma (DLBCL) patients. A significant association was observed between MAGE-A3 expressions, assessed by quantitative real-time RT-polymerase chain reaction (PCR), with advanced stages of disease (P < 0.05). Elevated serum lactate dehydrogenase (LDH) levels and International Prognostic Index (IPI) score were significantly higher in MAGE-A3-positive patients (P = 0.025 and P = 0.004, respectively). Expression of MAGE-A3 was associated with poor response to treatment and a significantly shorter overall survival (P < 0.001). Our data address new information in the association of MAGE-A3 expression and poor prognosis in DLBCL patients. PMID:22183072

  3. Cell adhesion property affected by cyclooxygenase and lipoxygenase: Opto-electric approach.

    PubMed

    Choi, Chang Kyoung; Sukhthankar, Mugdha; Kim, Chul-Ho; Lee, Seong-Ho; English, Anthony; Kihm, Kenneth D; Baek, Seung Joon

    2010-01-15

    Expression of cyclooxygenases (COX) and lipoxygenases (LOX) has been linked to many pathophysiological phenotypes, including cell adhesion. However, many current approaches to measure cellular changes are performed only in a fixed-time point. Since cells dynamically move in conjunction with the cell matrix, there is a pressing need for dynamic or time-dependent methods for the investigation of cell properties. In the presented study, we used stable human colorectal cancer cell lines ectopically expressing COX-1, COX-2, and 15LOX-1, to investigate whether expression of COX-1, COX-2, or 15LOX-1 would affect cell adhesion using our opto-electric methodology. In a fixed-time point experiment, only COX-1- and COX-2-expressing cells enhanced phosphorylation of focal adhesion kinase, but all the transfected cells showed invasion activity. However, in a real-time experiment using opto-electric approaches, transmitted cellular morphology was much different with tight adhesion being shown in COX-2 expressing cells, as imaged by differential interference contrast microscopy (DICM) and interference reflection contrast microscopy (IRCM). Furthermore, micro-impedance measurements showed a continued increase in both resistance and reactance of COX- and LOX-transfected cells, consistent with the imaging data. Our data indicate that both COX- and LOX-expressing cells have strong cell-to-cell and cell-to-substrate adhesions, and that cell imaging analysis with cell impedance data generates fully reliable results on cell adhesion measurement. PMID:20026301

  4. Glyceroglycolipids Affect Uptake of Carotenoids Solubilized in Mixed Micelles by Human Intestinal Caco-2 Cells.

    PubMed

    Kotake-Nara, Eiichi; Yonekura, Lina; Nagao, Akihiko

    2015-09-01

    We previously reported that phospholipids markedly affected the uptake of carotenoids solubilized in mixed micelles by human intestinal Caco-2 cells. In the present study, we found that two classes of dietary glyceroglycolipids and the corresponding lysoglyceroglycolipids affected uptake of β-carotene and lutein by differentiated Caco-2 cells. The levels of carotenoid uptake from micelles containing digalactosyldiacylglycerol or sulfoquinovosyldiacylglycerol were significantly lower than that from control micelles. On the other hand, the uptakes from micelles containing digalactosylmonoacylglycerol or sulfoquinovosylmonoacylglycerol were significantly higher than that from control micelles. In dispersed cells and Caco-2 cells with poor cell-to-cell adhesion, however, the levels of uptake from micelles containing these lyso-lipids were much lower than that from control micelles. The uptake levels from control micelles were markedly decreased depending on the development of cell-to-cell/cell-matrix adhesion in Caco-2 cells, but the uptake levels from the micelles containing these lyso-lipids were not substantially changed, suggesting that the intercellular barrier formed by cell-to-cell/cell-matrix adhesion inhibited the uptake from control micelles, but not from the lyso-lipid-containing micelles. The lyso-lipids appeared to enhance carotenoid uptake by decreasing the intercellular barrier integrity. The results showed that some types of glyceroglycolipids have the potential to modify the intestinal uptake of carotenoids. PMID:26012480

  5. Soybean-derived beta-conglycinin affects proteome expression in pig intestinal cells in vivo and in vitro.

    PubMed

    Chen, F; Hao, Y; Piao, X S; Ma, X; Wu, G Y; Qiao, S Y; Li, D F; Wang, J J

    2011-03-01

    It is well known that β-conglycinin, a soybean allergen, induces allergies and causes intestinal damage in fetuses and neonates. However, the underlying mechanisms responsible for the adverse effects of β-conglycinin remain elusive. In particular, it is unknown whether or not this dietary substance causes direct damage affecting the proliferation and integrity of intestinal cells. This study evaluated the effect of different concentrations of β-conglycinin (0 to 1,500 µg/mL) and the duration of culture (48 or 72 h) on the proliferation and proteome of porcine intestinal epithelial cells. Eight individually housed piglets (10 d old; initial BW, 3.79 ± 0.07 kg) were randomly divided into 2 groups (n = 4) and challenged with or without β-conglycinin via oral administration d 10 through 28. After the last administration of β-conglycinin or PBS, piglets were killed and jejuna mucosal samples were collected for proteomic analysis. Supplementing β-conglycinin to either culture medium or weanling pigs increased (P < 0.05) the expression of proteins related to apoptosis, stress, and inflammation, but decreased (P < 0.05) the expression of proteins related to cytoskeleton and nucleus replication in intestinal cells. Further analysis confirmed an increase in caspase-3 expression in the cells exposed to β-conglycinin in vivo and in vitro. Collectively, these novel results indicate that β-conglycinin directly induces intestinal damage by depressing intestinal-cell growth, damaging the cytoskeleton, and causing apoptosis in the piglet intestine. PMID:21057091

  6. Methylmercury Exposure during Early Xenopus laevis Development Affects Cell Proliferation and Death but not Neural Progenitor Specification

    PubMed Central

    Huyck, Ryan W.; Nagarkar, Maitreyi; Olsen, Nina; Clamons, Samuel E.; Saha, Margaret S.

    2015-01-01

    Methylmercury (MeHg) is a widespread environmental toxin that preferentially and adversely affects developing organisms. To investigate the impact of MeHg toxicity on the formation of the vertebrate nervous system at physiologically relevant concentrations, we designed a graded phenotype scale for evaluating Xenopus laevis embryos exposed to MeHg in solution. Embryos displayed a range of abnormalities in response to MeHg, particularly in brain development, which is influenced by both MeHg concentration and the number of embryos per ml of exposure solution. A TC50 of ~50 μg/l and LC50 of ~100 μg/l were found when maintaining embryos at a density of one per ml, and both increased with increasing embryo density. In situ hybridization and microarray analysis showed no significant change in expression of early neural patterning genes including sox2, en2, or delta; however a noticeable decrease was observed in the terminal neural differentiation genes GAD and xGAT, but not xVGlut. PCNA, a marker for proliferating cells, was negatively correlated with MeHg dose, with a significant reduction in cell number in the forebrain and spinal cord of exposed embryos by tadpole stages. Conversely, the number of apoptotic cells in neural regions detected by a TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay was significantly increased. These results provide evidence that disruption of embryonic neural development by MeHg may not be directly due to a loss of neural progenitor specification and gene transcription, but to a more general decrease in cell proliferation and increase in cell death throughout the developing nervous system. PMID:25496965

  7. Adverse antibiotic drug interactions.

    PubMed

    Bint, A J; Burtt, I

    1980-07-01

    There is enormous potential for drug interactions in patients who, today, often receive many drugs. Antibiotics are prominent amongst the groups of drugs commonly prescribed. Many interactions take place at the absorption stage. Antacids and antidiarrhoeal preparations, in particular, can delay and reduce the absorption of antibiotics such as tetracyclines and clindamycin, by combining with them in the gastrointestinal tract to form chelates or complexes. Other drugs can affect gastric motility, which in turn often controls the rate at which antibiotics are absorbed. Some broad spectrum antibiotics can alter the bacterial flora of the gut which may be related to malabsorption states. The potentiation of toxic side effects of one drug by another is a common type of interaction. Antibiotics which are implicated in this type of interaction are those which themselves possess some toxicity such as aminoglycosides, some cephalosporins, tetracyclines and colistin. Some of the most important adverse interactions with antibiotics are those which involve other drugs which have a low toxicity/efficacy ratio. These include anticoagulants such as warfarin, anticonvulsants such as phenytoin and phenobarbitone and oral antidiabetic drugs like tolbutamide. Risk of interaction arises when the metabolism of these drugs is inhibited by liver microsomal enzyme inhibitors such as some sulphonamides and chloramphenicol, or is enhanced by enzyme inducers such as rifampicin. PMID:6995091

  8. Urbanicity, social adversity and psychosis

    PubMed Central

    Heinz, Andreas; Deserno, Lorenz; Reininghaus, Ulrich

    2013-01-01

    In recent years, there has been increasing interest in research on geographical variation in the incidence of schizophrenia and other psychoses. In this paper, we review the evidence on variation in incidence of schizophrenia and other psychoses in terms of place, as well as the individual- and area-level factors that account for this variation. We further review findings on potential mechanisms that link adverse urban environment and psychosis. There is evidence from earlier and more recent studies that urbanicity is associated with an increased incidence of schizophrenia and non-affective psychosis. In addition, considerable variation in incidence across neighbourhoods has been observed for these disorders. Findings suggest it is unlikely that social drift alone can fully account for geographical variation in incidence. Evidence further suggests that the impact of adverse social contexts – indexed by area-level exposures such as population density, social fragmentation and deprivation – on risk of psychosis is explained (confounding) or modified (interaction) by environmental exposures at the individual level (i.e., cannabis use, social adversity, exclusion and discrimination). On a neurobiological level, several studies suggest a close link between social adversity, isolation and stress on the one hand, and monoamine dysfunction on the other, which resembles findings in schizophrenia patients. However, studies directly assessing correlations between urban stress or discrimination and neurobiological alterations in schizophrenia are lacking to date. PMID:24096775

  9. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness

    NASA Astrophysics Data System (ADS)

    Kal Van Tam, Janice; Uto, Koichiro; Ebara, Mitsuhiro; Pagliari, Stefania; Forte, Giancarlo; Aoyagi, Takao

    2012-12-01

    The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell-matrix interaction, using poly-ɛ-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

  10. Optimistic Expectancies and Cell-Mediated Immunity: The Role of Positive Affect

    PubMed Central

    Segerstrom, Suzanne C.; Sephton, Sandra E.

    2014-01-01

    Optimistic expectancies affect many psychosocial outcomes and may also predict immune system changes and health, but the nature and mechanisms of any such physiological effects have not been identified. The present study related law-school expectancies to cell-mediated immunity (CMI), examining the within- and between-person components of this relationship and affective mediators. First-year law students (N = 124) completed questionnaire measures of expectancies and affect and received delayed-type hypersensitivity skin tests at five time points. A positive relationship between optimistic expectancies and CMI occurred, in which that changes in optimism correlated with changes in CMI. Likewise, changes in optimism predicted changes in positive and, to a lesser degree, negative affect, but the relationship between optimism and immunity was partially accounted for only by positive affect. This dynamic relationship between expectancies and immunity has positive implications for psychological interventions to improve health, particularly those that increase positive affect. PMID:20424083

  11. MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines

    PubMed Central

    Vultur, Adina; Villanueva, Jessie; Krepler, Clemens; Rajan, Geena; Chen, Quan; Xiao, Min; Li, Ling; Gimotty, Phyllis A.; Wilson, Melissa; Hayden, James; Keeney, Frederick; Nathanson, Katherine L.; Herlyn, Meenhard

    2013-01-01

    Elevated activity of the MAPK signaling cascade is found in the majority of human melanomas and is known to regulate proliferation, survival, and invasion. Current targeted therapies focus on decreasing the activity of this pathway; however, we do not fully understand how these therapies impact tumor biology, especially given that melanoma is a heterogeneous disease. Using a three-dimensional (3D), collagen-embedded spheroid melanoma model, we observed that MEK and BRAF inhibitors can increase the invasive potential of approximately 20% of human melanoma cell lines. The invasive cell lines displayed increased receptor tyrosine kinase (RTK) activity and activation of the Src/FAK/STAT3 signaling axis, also associated with increased cell-to-cell adhesion and cadherin engagement following MEK inhibition. Targeting various RTKs, Src, FAK, and STAT3 with small molecule inhibitors in combination with a MEK inhibitor prevented the invasive phenotype, but only STAT3 inhibition caused cell death in the 3D context. We further show that STAT3 signaling is induced in BRAF-inhibitor resistant cells. Our findings suggest that MEK and BRAF inhibitors can induce STAT3 signaling, causing potential adverse effects such as increased invasion. We also provide the rationale for the combined targeting of the MAPK pathway along with inhibitors of RTKs, SRC, or STAT3 to counteract STAT3-mediated resistance phenotypes. PMID:23624919

  12. Aquaporin-1 plays important role in proliferation by affecting cell cycle progression.

    PubMed

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Toledo-Aral, Juan José; Echevarría, Miriam

    2016-01-01

    Aquaporin-1 (AQP1) has been associated with tumor development. Here, we investigated how AQP1 may affect cell proliferation. The proliferative rate of adult carotid body (CB) cells, known to proliferate under chronic hypoxia, was analyzed in wild-type (AQP1(+/+) ) and knock out (AQP1(-/-) ) mice, maintained in normoxia or exposed to hypoxia while BrdU was administered. Fewer numbers of total BrdU(+) and TH-BrdU(+) cells were observed in AQP1(-/-) mice, indicating a role for AQP1 in CB proliferation. Then, by flow cytometry, cell cycle state and proliferation of cells overexpressing AQP1 were compared to those of wild-type cells. In the AQP1-overexpressing cells, we observed higher cell proliferation and percentages of cells in phases S and G2/M and fewer apoptotic cells after nocodazole treatment were detected by annexin V staining. Also in these cells, proteomic assays showed higher expression of cyclin D1 and E1 and microarray analysis revealed changes in many cell proliferation-related molecules, including, Zeb 2, Jun, NF-kβ, Cxcl9, Cxcl10, TNF, and the TNF receptor. Overall, our results indicate that the presence of AQP1 modifies the expression of key cell cycle proteins apparently related to increases in cell proliferation. This contributes to explaining the presence of AQP1 in many different tumors. PMID:26081645

  13. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    SciTech Connect

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blueher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  14. Relationship between Microtubule Network Structure and Intracellular Transport in Cultured Endothelial Cells Affected by Shear Stress

    NASA Astrophysics Data System (ADS)

    Kudo, Susumu; Ikezawa, Kenji; Ikeda, Mariko; Tanishita, Kazuo

    Endothelial cells (ECs) that line the inner surface of blood vessels are barriers to the transport of various substances into or from vessel walls, and are continuously exposed to shear stress induced by blood flow in vivo. Shear stress affects the cytoskeleton (e.g., microtubules, microfilaments, intermediate filaments), and affects the transport of macromolecules. Here, the relationship between the microtubule network structure and this transport process for albumin uptake within cultured aortic endothelial cells affected by shear stress was studied. Based on fluorescent images of albumin uptake obtained by using confocal laser scanning microscopy (CLSM), both the microtubule network and albumin uptake in ECs were disrupted by colchicine and were affected by shear stress loading.

  15. Relaxin affects cell organization and early and late stages of spermatogenesis in a coculture of rat testicular cells.

    PubMed

    Pimenta, M T; Francisco, R A R; Silva, R P; Porto, C S; Lazari, M F M

    2015-07-01

    Relaxin and its receptor RXFP1 are co-expressed in Sertoli cells, and relaxin can stimulate proliferation of Sertoli cells. In this study, we investigated a role of relaxin in spermatogenesis, using a short-term culture of testicular cells of the rat that allowed differentiation of spermatogonia to spermatids. Sertoli, germ, and peritubular myoid cells were the predominant cell types in the culture. Sertoli and germ cells expressed RXFP1. Cultures were incubated without (control) or with 0.5% fetal bovine serum (FBS) or 100 ng/mL H2 relaxin (RLN) for 2 days. Cell organization, number, and differentiation were analyzed after 2 (D2), 5 (D5) or 8 (D8) days of culturing. Although the proportion of germ cells decayed from D2 to D5, the relative contribution of HC, 1C, 2C, and 4C germ cell populations remained constant in the control group during the whole culture. RLN did not affect the proportion of germ cell populations compared with control, but increased gene and/or protein expression of the undifferentiated and differentiated spermatogonia markers PLZF and c-KIT, and of the post-meiotic marker Odf2 in D5. RLN favored organization of cells in tubule-like structures, the arrangement of myoid cells around the tubules, arrangement of c-KIT-positive spermatogonia at the basal region of the tubules, and expression of the cell junction protein β-catenin close to the plasma membrane region. Knockdown of relaxin with small interfering RNA (siRNA) reduced expression of β-catenin at the cell junctions, and shifted its expression to the nucleus. We propose that relaxin may affect spermatogenesis by modulating spermatogonial self renewal and favoring cell contact. PMID:26041439

  16. Biochanin A affects steroidogenesis and estrogen receptor-β expression in porcine granulosa cells.

    PubMed

    Nynca, Anna; Swigonska, Sylwia; Piasecka, Joanna; Kolomycka, Agnieszka; Kaminska, Barbara; Radziewicz-Pigiel, Marta; Gut-Nagel, Marta; Ciereszko, Renata E

    2013-10-15

    Biochanin A, similar to other isoflavones, is present in soy and soy-based food, but predominantly in red clover. Red clover extract and biochanin A were reported to affect reproductive processes as well as to demonstrate menopause relief and anticancerogenic properties. Because porcine granulosa cells provide a suitable in vitro model for studying the intracellular mechanism of phytoestrogen action in the ovary, the objective of the study was to evaluate the in vitro effects of biochanin A on the following: (1) progesterone (P4) and estradiol (E2) secretion by granulosa cells, (2) viability of the granulosa cells, and (3) mRNA and protein expression of estrogen receptors α (ERα) and β (ERβ) in the granulosa cells harvested from both medium (3-6 mm) and large (≥8 mm) porcine ovarian follicles. RIA, alamarBlue assay, reverse transcriptase-polymerase chain reaction, and immunocytochemistry were used in the study to address the objectives. Biochanin A significantly inhibited P4 and did not affect E2 secretion by porcine granulosa cells regardless of the size of follicles that served as the source of the cells. Cell viability was not affected by the treatment. Biochanin A did not alter ERα and ERβ mRNA levels in the cultured porcine granulosa cells. In contrast, this isoflavone increased (P < 0.05) the immunoexpression of ERβ in the cells from both follicle types. In summary, biochanin A, similar to genistein and daidzein, affects follicular steroidogenesis and ER expression. Its effect on ERβ protein was more intense compared with other previously examined phytoestrogens. PMID:23953692

  17. Cell-surface serglycin promotes adhesion of myeloma cells to collagen type I and affects the expression of matrix metalloproteinases.

    PubMed

    Skliris, Antonis; Labropoulou, Vassiliki T; Papachristou, Dionysios J; Aletras, Alexios; Karamanos, Nikos K; Theocharis, Achilleas D

    2013-05-01

    Serglycin (SG) is mainly expressed by hematopoetic cells as an intracellular proteoglycan. Multiple myeloma cells constitutively secrete SG, which is also localized on the cell surface in some cell lines. In this study, SG isolated from myeloma cells was found to interact with collagen type I (Col I), which is a major bone matrix component. Notably, myeloma cells positive for cell-surface SG (csSG) adhered significantly to Col I, compared to cells lacking csSG. Removal of csSG by treatment of the cells with chondroitinase ABC or blocking of csSG by an SG-specific polyclonal antibody significantly reduced the adhesion of myeloma cells to Col I. Significant up-regulation of expression of the matrix metalloproteinases MMP-2 and MMP-9 at both the mRNA and protein levels was observed when culturing csSG-positive myeloma cells on Col I-coated dishes or in the presence of soluble Col I. MMP-9 and MMP-2 were also expressed in increased amounts by myeloma cells in the bone marrow of patients with multiple myeloma. Our data indicate that csSG of myeloma cells affects key functional properties, such as adhesion to Col I and the expression of MMPs, and imply that csSG may serve as a potential prognostic factor and/or target for pharmacological interventions in multiple myeloma. PMID:23387827

  18. Genetic Association of Curative and Adverse Reactions to Tyrosine Kinase Inhibitors in Chinese advanced Non-Small Cell Lung Cancer patients.

    PubMed

    Ruan, Yunfeng; Jiang, Jie; Guo, Liang; Li, Yan; Huang, Hailiang; Shen, Lu; Luan, Mengqi; Li, Mo; Du, Huihui; Ma, Cheng; He, Lin; Zhang, Xiaoqing; Qin, Shengying

    2016-01-01

    Epidermal growth factor receptor (EGFR) Tyrosine kinase inhibitor (TKI) is an effective targeted therapy for advanced non-small cell lung cancer (NSCLC) but also causes adverse drug reactions (ADRs) e.g., skin rash and diarrhea. SNPs in the EGFR signal pathway, drug metabolism/ transport pathways and miRNA might contribute to the interpersonal difference in ADRs but biomarkers for therapeutic responses and ADRs to TKIs in Chinese population are yet to be fully investigated. We recruited 226 Chinese advanced NSCLC patients who received TKIs erlotinib, gefitinib and icotinib hydrochloride and systematically studied the genetic factors associated with therapeutic responses and ADRs. Rs884225 (T > C) in EGFR 3' UTR was significantly associated with lower risk of ADRs to erlotinib (p value = 0.0010, adjusted p value = 0.042). A multivariant interaction four-SNP model (rs884225 in EGFR 3'UTR, rs7787082 in ABCB1 intron, rs38845 in MET intron and rs3803300 in AKT1 5'UTR) was associated with ADRs in general and the more specific drug induced skin injury. The SNPs associated with both therapeutic responses and ADRs indicates they might share a common genetic basis. Our study provided potential biomarkers and clues for further research of biomarkers for therapeutic responses and ADRs in Chinese NSCLC patients. PMID:26988277

  19. Multiple mismatches at the low expression HLA loci DP, DQ, and DRB3/4/5 associate with adverse outcomes in hematopoietic stem cell transplantation

    PubMed Central

    Klein, John P.; Haagenson, Michael; Spellman, Stephen R.; Anasetti, Claudio; Noreen, Harriet; Baxter-Lowe, Lee Ann; Cano, Pedro; Flomenberg, Neal; Confer, Dennis L.; Horowitz, Mary M.; Oudshoorn, Machteld; Petersdorf, Effie W.; Setterholm, Michelle; Champlin, Richard; Lee, Stephanie J.; de Lima, Marcos

    2013-01-01

    A single mismatch in highly expressed HLA-A, -B, -C, and -DRB1 loci (HEL) is associated with worse outcomes in hematopoietic stem cell transplantation, while less is known about the cumulative impact of mismatches in the lesser expressed HLA loci DRB3/4/5, DQ, and DP (LEL). We studied whether accumulation of LEL mismatches is associated with deleterious effects in 3853 unrelated donor transplants stratified according to number of matches in the HEL. In the 8/8 matched HEL group, LEL mismatches were not associated with any adverse outcome. Mismatches at HLA-DRB1 were associated with occurrence of multiple LEL mismatches. In the 7/8 HEL group, patients with 3 or more LEL mismatches scored in the graft-versus-host vector had a significantly higher risk of mortality (1.45 and 1.43) and transplant-related mortality (1.68 and 1.54) than the subgroups with 0 or 1 LEL mismatches. No single LEL locus had a more pronounced effect on clinical outcome. Three or more LEL mismatches are associated with lower survival after 7/8 HEL matched transplantation. Prospective evaluation of matching for HLA-DRB3/4/5, -DQ, and -DP loci is warranted to reduce posttransplant risks in donor-recipient pairs matched for 7/8 HEL. PMID:23596045

  20. Genetic Association of Curative and Adverse Reactions to Tyrosine Kinase Inhibitors in Chinese advanced Non-Small Cell Lung Cancer patients

    PubMed Central

    Ruan, Yunfeng; Jiang, Jie; Guo, Liang; Li, Yan; Huang, Hailiang; Shen, Lu; Luan, Mengqi; Li, Mo; Du, Huihui; Ma, Cheng; He, Lin; Zhang, Xiaoqing; Qin, Shengying

    2016-01-01

    Epidermal growth factor receptor (EGFR) Tyrosine kinase inhibitor (TKI) is an effective targeted therapy for advanced non-small cell lung cancer (NSCLC) but also causes adverse drug reactions (ADRs) e.g., skin rash and diarrhea. SNPs in the EGFR signal pathway, drug metabolism/ transport pathways and miRNA might contribute to the interpersonal difference in ADRs but biomarkers for therapeutic responses and ADRs to TKIs in Chinese population are yet to be fully investigated. We recruited 226 Chinese advanced NSCLC patients who received TKIs erlotinib, gefitinib and icotinib hydrochloride and systematically studied the genetic factors associated with therapeutic responses and ADRs. Rs884225 (T > C) in EGFR 3′ UTR was significantly associated with lower risk of ADRs to erlotinib (p value = 0.0010, adjusted p value = 0.042). A multivariant interaction four-SNP model (rs884225 in EGFR 3′UTR, rs7787082 in ABCB1 intron, rs38845 in MET intron and rs3803300 in AKT1 5′UTR) was associated with ADRs in general and the more specific drug induced skin injury. The SNPs associated with both therapeutic responses and ADRs indicates they might share a common genetic basis. Our study provided potential biomarkers and clues for further research of biomarkers for therapeutic responses and ADRs in Chinese NSCLC patients. PMID:26988277

  1. Catechins Variously Affect Activities of Conjugation Enzymes in Proliferating and Differentiated Caco-2 Cells.

    PubMed

    Lněničková, Kateřina; Procházková, Eliška; Skálová, Lenka; Matoušková, Petra; Bártíková, Hana; Souček, Pavel; Szotáková, Barbora

    2016-01-01

    The knowledge of processes in intestinal cells is essential, as most xenobiotics come into contact with the small intestine first. Caco-2 cells are human colorectal adenocarcinoma that once differentiated, exhibit enterocyte-like characteristics. Our study compares activities and expressions of important conjugation enzymes and their modulation by green tea extract (GTE) and epigallocatechin gallate (EGCG) using both proliferating (P) and differentiated (D) caco-2 cells. The mRNA levels of the main conjugation enzymes were significantly elevated after the differentiation of Caco-2 cells. However, no increase in conjugation enzymes' activities in differentiated cells was detected in comparison to proliferating ones. GTE/EGCG treatment did not affect the mRNA levels of any of the conjugation enzymes tested in either type of cells. Concerning conjugation enzymes activities, GTE/EGCG treatment elevated glutathione S-transferase (GST) activity by approx. 30% and inhibited catechol-O-methyltransferase (COMT) activity by approx. 20% in differentiated cells. On the other hand, GTE as well as EGCG treatment did not significantly affect the activities of conjugation enzymes in proliferating cells. Administration of GTE/EGCG mediated only mild changes of GST and COMT activities in enterocyte-like cells, indicating a low risk of GTE/EGCG interactions with concomitantly administered drugs. However, a considerable chemo-protective effect of GTE via the pronounced induction of detoxifying enzymes cannot be expected as well. PMID:27617982

  2. FAK and HAS inhibition synergistically decrease colon cancer cell viability and affect expression of critical genes.

    PubMed

    Heffler, Melissa; Golubovskaya, Vita M; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G; Dunn, Kelli B

    2013-05-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2 μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p < 0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p < 0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heatshock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways. PMID:22934709

  3. Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells.

    PubMed

    Villarroel-Espíndola, Franz; Tapia, Cynthia; González-Stegmaier, Roxana; Concha, Ilona I; Slebe, Juan Carlos

    2016-10-01

    Glycogen is the main storage form of glucose; however, the accumulation of glycogen-like glucose polymers can lead to degeneration and cellular death. Previously, we reported that the accumulation of glycogen in testis of transgenic animals overexpressing a constitutively active form of glycogen synthase enhances the apoptosis of pre-meiotic male germ cells and a complete disorganization of the seminiferous tubules. Here we sought to further identify the effects of glycogen storage in cells from the seminiferous tubules and the mechanism behind the pro-apoptotic activity induced by its accumulation. Using an in vitro culture of Sertoli cells (line 42GPA9) and spermatocyte-like cells (line GC-1) expressing a superactive form of glycogen synthase or the Protein Targeting to Glycogen (PTG), we found that glycogen synthesized in both cell lines is poorly branched. In addition, the immunodetection of key molecules of apoptotic events suggests that cellular death induced by polyglucosan molecules affects GC-1 cells, but not 42GPA9 cells by mitochondrial impairment and activation of an intrinsic apoptotic pathway. Furthermore, we analyzed the effects of glycogen deposition during the establishment of an in vitro blood-testis barrier. The results using a non-permeable fluorescent molecule showed that, in conditions of over-synthesis of glycogen, 42GPA9 cells do not lose their capacity to generate an impermeable barrier and the levels of connexin43, occludin, and ZO1 proteins were not affected. These results suggest that the accumulation of polyglucosan molecules has a selective effect-triggered by the intrinsic activation of the apoptotic pathway-in germ cells without directly affecting Sertoli cells. J. Cell. Physiol. 231: 2142-2152, 2016. © 2016 Wiley Periodicals, Inc. PMID:26790645

  4. High Pretreatment D-Dimer Levels Correlate with Adverse Clinical Features and Predict Poor Survival in Patients with Natural Killer/T-Cell Lymphoma

    PubMed Central

    Sun, Peng; Yan, Shu-mei; Liu, Pan-pan; Li, Zhi-ming; Jiang, Wen-qi

    2016-01-01

    Pretreatment plasma D-dimer levels have been reported to predict survival in several types of malignancies. The aim of this study was to evaluate the prognostic value of D-dimer levels in patients with newly diagnosed natural killer/T-cell lymphoma (NKTCL). The cut-off value of D-dimer to predict survival was set as 1.2 μg/mL based on the receiver operating curve analysis. Patients with a D-dimer level ≥ 1.2 μg/mL had significantly more adverse clinical features, including poor performance status, advanced stage diseases, B symptoms, elevated serum lactic dehydrogenase levels, involvement of regional lymph nodes, more extranodal diseases, and higher International Prognostic Index and natural killer/T-cell lymphoma prognostic index scores. A D-dimer level ≥ 1.2 μg/mL was significantly associated with inferior 3-year overall survival (OS, 13.0 vs. 68.5%, P < 0.001). In the multivariate analysis, a D-dimer level ≥ 1.2 μg/mL remained an independent predictor for worse OS (HR: 3.13, 95% CI: 1.47–6.68, P = 0.003) after adjusting for other confounding prognostic factors. Among patients with Ann Arbor stage I-II diseases, those with a D-dimer level ≥ 1.2 μg/mL had a significantly worse survival than those with a D-dimer level < 1.2 μg/mL (3 year-OS: 76.2 vs. 22.2%, P < 0.001). Survival of early-stage patients with a high D-dimer level was similar to that of the advanced-stage patients. In conclusion, pretreatment plasma D-dimer level may serve as a simple but effective predictor of prognosis in patients with NKTCL. PMID:27032016

  5. Decreased Zinc Availability Affects Glutathione Metabolism in Neuronal Cells and in the Developing Brain

    PubMed Central

    Omata, Yo; Salvador, Gabriela A.; Oteiza, Patricia I.

    2013-01-01

    A deficit in zinc (Zn) availability can increase cell oxidant production, affect the antioxidant defense system, and trigger oxidant-sensitive signals in neuronal cells. This work tested the hypothesis that a decreased Zn availability can affect glutathione (GSH) metabolism in the developing rat brain and in neuronal cells in culture, as well as the capacity of human neuroblastoma IMR-32 cells to upregulate GSH when challenged with dopamine (DA). GSH levels were low in the brain of gestation day 19 (GD19) fetuses from dams fed marginal Zn diets throughout gestation and in Zn-deficient IMR-32 cells. γ-Glutamylcysteine synthetase (GCL), the first enzyme in the GSH synthetic pathway, was altered by Zn deficiency (ZD). The protein and mRNA levels of the GCL modifier (GCLM) and catalytic (GCLC) subunits were lower in the Zn-deficient GD19 fetal brain and in IMR-32 cells compared with controls. The nuclear translocation of transcription factor nuclear factor (erythroid-derived 2)-like 2, which controls GCL transcription, was impaired by ZD. Posttranslationally, the caspase-3-dependent GCLC cleavage was high in Zn-deficient IMR-32 cells. Cells challenged with DA showed an increase in GCLM and GCLC protein and mRNA levels and a consequent increase in GSH concentration. Although Zn-deficient cells partially upregulated GCL subunits after exposure to DA, GSH content remained low. In summary, results show that a low Zn availability affects the GSH synthetic pathway in neuronal cells and fetal brain both at transcriptional and posttranslational levels. This can in part underlie the GSH depletion associated with ZD and the high sensitivity of Zn-deficient neurons to pro-oxidative stressors. PMID:23377617

  6. Skewed B cell differentiation affects lymphoid organogenesis but not T cell-mediated autoimmunity.

    PubMed

    Colombo, E; Tentorio, P; Musio, S; Rajewsky, K; Pedotti, R; Casola, S; Farina, C

    2014-04-01

    B cell receptor (BCR) signalling determines B cell differentiation and may potentially alter T cell-mediated immune responses. In this study we used two transgenic strains of BCR-deficient mice expressing Epstein-Barr virus latent membrane protein (LMP)2A in B cells, where either follicular and marginal zone differentiation (D(H)LMP2A mice) or B-1 cell development (V(H)LMP2A mice) were supported, and evaluated the effects of skewed B lymphocyte differentiation on lymphoid organogenesis and T cell responses in vivo. Compared to wild-type animals, both transgenic strains displayed alterations in the composition of lymphoid organs and in the dynamics of distinct immune cell subsets following immunization with the self-antigen PLP₁₈₅₋₂₀₆. However, ex-vivo T cell proliferation to PLP₁₈₅₋₂₀₆ peptide measured in immunized D(H)LMP2A and V(H)LMP2A mice was similar to that detected in immunized control mice. Further, clinical expression of experimental autoimmune encephalitis in both LMP2A strains was identical to that of wild-type mice. In conclusion, mice with skewed B cell differentiation driven by LMP2A expression in BCR-negative B cells do not show changes in the development of a T cell mediated disease model of autoimmunity, suggesting that compensatory mechanisms support the generation of T cell responses. PMID:24325711

  7. Triclosan and bisphenol a affect decidualization of human endometrial stromal cells.

    PubMed

    Forte, Maurizio; Mita, Luigi; Cobellis, Luigi; Merafina, Verdiana; Specchio, Raffaella; Rossi, Sergio; Mita, Damiano Gustavo; Mosca, Lavinia; Castaldi, Maria Antonietta; De Falco, Maria; Laforgia, Vincenza; Crispi, Stefania

    2016-02-15

    In recent years, impaired fertility and endometrium related diseases are increased. Many evidences suggest that environmental pollution might be considered a risk factor for endometrial physiopathology. Among environmental pollutants, endocrine disrupting chemicals (EDCs) act on endocrine system, causing hormonal imbalance which, in turn, leads to female and male reproductive dysfunctions. In this work, we studied the effects of triclosan (TCL) and bisphenol A (BPA), two widespread EDCs, on human endometrial stromal cells (ESCs), derived from endometrial biopsies from woman not affected by endometriosis. Cell proliferation, cell cycle, migration and decidualization mechanisms were investigated. Treatments have been performed with both the EDCs separately or in presence and in absence of progesterone used as decidualization stimulus. Both TCL and BPA did not affect cell proliferation, but they arrested ESCs at G2/M phase of cell cycle enhancing cell migration. TCL and BPA also increased gene expression and protein levels of some decidualization markers, such as insulin growth factor binding protein 1 (IGFBP1) and prolactin (PRL), amplifying the effect of progesterone alone. All together, our data strongly suggest that TCL and BPA might alter human endometrium physiology so affecting fertility and pregnancy outcome. PMID:26604029

  8. Valproic Acid Affects Membrane Trafficking and Cell-Wall Integrity in Fission Yeast

    PubMed Central

    Miyatake, Makoto; Kuno, Takayoshi; Kita, Ayako; Katsura, Kosaku; Takegawa, Kaoru; Uno, Satoshi; Nabata, Toshiya; Sugiura, Reiko

    2007-01-01

    Valproic acid (VPA) is widely used to treat epilepsy and manic-depressive illness. Although VPA has been reported to exert a variety of biochemical effects, the exact mechanisms underlying its therapeutic effects remain elusive. To gain further insights into the molecular mechanisms of VPA action, a genetic screen for fission yeast mutants that show hypersensitivity to VPA was performed. One of the genes that we identified was vps45+, which encodes a member of the Sec1/Munc18 family that is implicated in membrane trafficking. Notably, several mutations affecting membrane trafficking also resulted in hypersensitivity to VPA. These include ypt3+ and ryh1+, both encoding a Rab family protein, and apm1+, encoding the μ1 subunit of the adaptor protein complex AP-1. More importantly, VPA caused vacuolar fragmentation and inhibited the glycosylation and the secretion of acid phosphatase in wild-type cells, suggesting that VPA affects membrane trafficking. Interestingly, the cell-wall-damaging agents such as micafungin or the inhibition of calcineurin dramatically enhanced the sensitivity of wild-type cells to VPA. Consistently, VPA treatment of wild-type cells enhanced their sensitivity to the cell-wall-digesting enzymes. Altogether, our results suggest that VPA affects membrane trafficking, which leads to the enhanced sensitivity to cell-wall damage in fission yeast. PMID:17287531

  9. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

    PubMed Central

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. PMID:26730190

  10. The sertolian epithelium in the testis of men affected by 'Sertoli-cell-only syndrome'.

    PubMed

    Tedde, G; Montella, A; Fiocca, D; Delrio, A N

    1993-01-01

    Because of the architectural complexity of the seminiferous epithelium, the Sertoli cell is extremely difficult to study. The individual cellular constituents of the tubular wall are intimately associated with one another; especially Sertoli cells and germinal cells are tightly connected. As implied by the name, Sertoli-cell-only syndrome (SCOS) is characterized by the presence of only Sertoli cells in the seminiferous tubule. The absence of germinal cells makes this condition ideal for the morphological study of Sertoli cell. Testicular biopsy specimens of subjects affected by SCOS were studied under light and electron microscopy. The Sertoli cells appeared to be morphologically normal, except for their shape, that appears to be columnar as result of the complete absence of the germinal cells. The cellular outlines were irregular, particularly at the base, but the cytoplasm contained normal organelles and inclusions. The presence of both pale and dark elements was evident. These differences in staining reflect the variability in concentration of glycogen particles and intermediate microfilaments in the cytoplasm. In spite of these differences between Sertoli cells in SCOS and those in normal subjects, SCOS represents a satisfactory model for the morphological and functional analysis of the Sertoli cells. PMID:7694556

  11. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells

    PubMed Central

    Kretlow, James D; Jin, Yu-Qing; Liu, Wei; Zhang, Wen Jie; Hong, Tan-Hui; Zhou, Guangdong; Baggett, L Scott; Mikos, Antonios G; Cao, Yilin

    2008-01-01

    Background Bone marrow-derived mesenchymal stem cells (BMSCs) are a widely researched adult stem cell population capable of differentiation into various lineages. Because many promising applications of tissue engineering require cell expansion following harvest and involve the treatment of diseases and conditions found in an aging population, the effect of donor age and ex vivo handling must be understood in order to develop clinical techniques and therapeutics based on these cells. Furthermore, there currently exists little understanding as to how these two factors may be influenced by one another. Results Differences in the adipogenic, chondrogenic, and osteogenic differentiation capacity of murine MSCs harvested from donor animals of different age and number of passages of these cells were observed. Cells from younger donors adhered to tissue culture polystyrene better and proliferated in greater number than those from older animals. Chondrogenic and osteogenic potential decreased with age for each group, and adipogenic differentiation decreased only in cells from the oldest donors. Significant decreases in differentiation potentials due to passage were observed as well for osteogenesis of BMSCs from the youngest donors and chondrogenesis of the cells from the oldest donors. Conclusion Both increasing age and the number of passages have lineage dependent effects on BMSC differentiation potential. Furthermore, there is an obvious interplay between donor age and cell passage that in the future must be accounted for when developing cell-based therapies for clinical use. PMID:18957087

  12. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    PubMed Central

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity. PMID:26966693

  13. Key Immune Cell Cytokines Affects the Telomere Activity of Cord Blood Cells In vitro

    PubMed Central

    Brazvan, Balal; Farahzadi, Raheleh; Mohammadi, Seyede Momeneh; Montazer Saheb, Soheila; Shanehbandi, Dariush; Schmied, Laurent; Soleimani Rad, Jafar; Darabi, Masoud; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: Telomere is a nucleoprotein complex at the end of eukaryotic chromosomes and its length is regulated by telomerase. The number of DNA repeat sequence (TTAGGG)n is reduced with each cell division in differentiated cells. The aim of this study was to evaluate the effect of SCF (Stem Cell Factor), Flt3 (Fms- Like tyrosine kinase-3), Interleukin-2, 7 and 15 on telomere length and hTERT gene expression in mononuclear and umbilical cord blood stem cells (CD34+ cells) during development to lymphoid cells. Methods: The mononuclear cells were isolated from umbilical cord blood by Ficoll-Paque density gradient. Then cells were cultured for 21 days in the presence of different cytokines. Telomere length and hTERT gene expression were evaluated in freshly isolated cells, 7, 14 and 21 days of culture by real-time PCR. The same condition had been done for CD34+ cells but telomere length and hTERT gene expression were measured at initial and day 21 of the experiment. Results: Highest hTERT gene expression and maximum telomere length were measured at day14 of MNCs in the presence of IL-7 and IL-15. Also, there was a significant correlation between telomere length and telomerase gene expression in MNCs at 14 days in a combination of IL-7 and IL-15 (r = 0.998, p =0.04). In contrast, IL-2 showed no distinct effect on telomere length and hTERT gene expression in cells. Conclusion: Taken together, IL-7 and IL-15 increased telomere length and hTERT gene expression at 14 day of the experiment. In conclusion, it seems likely that cells maintain naïve phenotype due to prolonged exposure of IL-7 and IL-15. PMID:27478776

  14. Characterization of the activities of actin-affecting drugs on tumor cell migration

    SciTech Connect

    Hayot, Caroline; Debeir, Olivier; Ham, Philippe van; Damme, Marc van; Kiss, Robert; Decaestecker, Christine . E-mail: cdecaes@ulb.ac.be

    2006-02-15

    Metastases kill 90% of cancer patients. It is thus a major challenge in cancer therapy to inhibit the spreading of tumor cells from primary tumor sites to those particular organs where metastases are likely to occur. Whereas the actin cytoskeleton is a key component involved in cell migration, agents targeting actin dynamics have been relatively poorly investigated. Consequently, valuable in vitro pharmacological tools are needed to selectively identify this type of agent. In response to the absence of any standardized process, the present work aims to develop a multi-assay strategy for screening actin-affecting drugs with anti-migratory potentials. To validate our approach, we used two cancer cell lines (MCF7 and A549) and three actin-affecting drugs (cytochalasin D, latrunculin A, and jasplakinolide). We quantified the effects of these drugs on the kinetics of actin polymerization in tubes (by means of spectrofluorimetry) and on the dynamics of actin cytoskeletons within whole cells (by means of fluorescence microscopy). Using quantitative videomicroscopy, we investigated the actual effects of the drugs on cell motility. Finally, the combined drug effects on cell motility and cell growth were evaluated by means of a scratch-wound assay. While our results showed concordant drug-induced effects on actin polymerization occurring in vitro in test tubes and within whole cells, the whole cell assay appeared more sensitive than the tube assay. The inhibition of actin polymerization induced by cytochalasin D was paralleled by a decrease in cell motility for both cell types. In the case of jasplakinolide, which induces actin polymerization, while it significantly enhanced the locomotion of the A549 cells, it significantly inhibited that of the MCF-7 ones. All these effects were confirmed by means of the scratch-wound assay except of the jasplakinolide-induced effects on MCF-7 cell motility. These later seemed compensated by an additional effect occurring during wound

  15. High vitamin D3 diet administered during active colitis negatively affects bone metabolism in an adoptive T cell transfer model

    PubMed Central

    Larmonier, C. B.; McFadden, R.-M. T.; Hill, F. M.; Schreiner, R.; Ramalingam, R.; Besselsen, D. G.; Ghishan, F. K.

    2013-01-01

    Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D3 has been considered a viable adjunctive therapy in IBD. However, vitamin D3 plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D3 supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10−/− CD4+ T cell transfer model of chronic colitis. High-dose vitamin D3 supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D3 metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D3 supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D3 diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D3 group. Our data suggest that vitamin D3, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D3 supplementation in patients with active IBD. PMID:23639807

  16. Factors affecting the attachment of Treponema pallidum to mammalian cells in vitro.

    PubMed

    Wong, G H; Steiner, B; Faine, S; Graves, S

    1983-02-01

    Attachment of Treponema pallidum (Nichols) to mammalian cells is probably the first step in the pathogenesis of syphilis. It may also be important for the multiplication of T pallidum in vitro. When factors affecting the attachment of T pallidum to mammalian cells in vitro were studied significantly greater numbers of treponemes were found to attach to baby rabbit genital organ (BRGO) cells than to five other mammalian cell lines. When attached to BRGO cells T pallidum survived longer in vitro than unattached treponemes. Eagle's minimal essential medium was superior to three other culture media in increasing attachment and maintaining the survival of treponemes. Dithiothreitol (0.25-1.0 mmol/l) had no effect on the attachment of T pallidum to BRGO cells. Anaerobic conditions were superior to microaerophilic conditions, and the latter were superior to aerobic conditions for the attachment and survival of T pallidum to BRGO cells. Within the range of concentrations tested the number of treponemes attached to the BRGO cells was directly dependent on the concentrations of viable treponemes in the inoculum. Greater numbers of treponemes attached to actively metabolising BRGO cells than to quiescent or slowly growing cells. PMID:6337680

  17. JAK2 inhibitors do not affect stem cells present in the spleens of patients with myelofibrosis.

    PubMed

    Wang, Xiaoli; Ye, Fei; Tripodi, Joseph; Hu, Cing Siang; Qiu, Jiajing; Najfeld, Vesna; Novak, Jesse; Li, Yan; Rampal, Raajit; Hoffman, Ronald

    2014-11-01

    Dysregulation of Janus kinase (JAK)-signal transducer and activator of transcription signaling is central to the pathogenesis of myelofibrosis (MF). JAK2 inhibitor therapy in MF patients results in a rapid reduction of the degree of splenomegaly, yet the mechanism underlying this effect remains unknown. The in vitro treatment of splenic and peripheral blood MF CD34(+) cells with the JAK1/2/3 inhibitor, AZD1480, reduced the absolute number of CD34(+), CD34(+)CD90(+), and CD34(+)CXCR4(+) cells as well as assayable hematopoietic progenitor cells (HPCs) irrespective of the JAK2 and calreticulin mutational status. Furthermore, AZD1480 treatment resulted in only a modest reduction in the proportion of HPCs that were JAK2V617F(+) or had a chromosomal abnormality. To study the effect of the drug on MF stem cells (MF-SCs), splenic CD34(+) cells were treated with AZD1480 and transplanted into immunodeficient mice. JAK2 inhibitor therapy did not affect the degree of human cell chimerism or the proportion of malignant donor cells. These data indicate that JAK2 inhibitor treatment affects a subpopulation of MF-HPCs, while sparing another HPC subpopulation as well as MF-SCs. This pattern of activity might account for the reduction in spleen size observed with JAK2 inhibitor therapy as well as the rapid increase in spleen size observed frequently with its discontinuation. PMID:25193869

  18. JAK2 inhibitors do not affect stem cells present in the spleens of patients with myelofibrosis

    PubMed Central

    Wang, Xiaoli; Ye, Fei; Tripodi, Joseph; Hu, Cing Siang; Qiu, Jiajing; Najfeld, Vesna; Novak, Jesse; Li, Yan; Rampal, Raajit

    2014-01-01

    Dysregulation of Janus kinase (JAK)–signal transducer and activator of transcription signaling is central to the pathogenesis of myelofibrosis (MF). JAK2 inhibitor therapy in MF patients results in a rapid reduction of the degree of splenomegaly, yet the mechanism underlying this effect remains unknown. The in vitro treatment of splenic and peripheral blood MF CD34+ cells with the JAK1/2/3 inhibitor, AZD1480, reduced the absolute number of CD34+, CD34+CD90+, and CD34+CXCR4+ cells as well as assayable hematopoietic progenitor cells (HPCs) irrespective of the JAK2 and calreticulin mutational status. Furthermore, AZD1480 treatment resulted in only a modest reduction in the proportion of HPCs that were JAK2V617F+ or had a chromosomal abnormality. To study the effect of the drug on MF stem cells (MF-SCs), splenic CD34+ cells were treated with AZD1480 and transplanted into immunodeficient mice. JAK2 inhibitor therapy did not affect the degree of human cell chimerism or the proportion of malignant donor cells. These data indicate that JAK2 inhibitor treatment affects a subpopulation of MF-HPCs, while sparing another HPC subpopulation as well as MF-SCs. This pattern of activity might account for the reduction in spleen size observed with JAK2 inhibitor therapy as well as the rapid increase in spleen size observed frequently with its discontinuation. PMID:25193869

  19. Plant-derived decapeptide OSIP108 interferes with Candida albicans biofilm formation without affecting cell viability.

    PubMed

    Delattin, Nicolas; De Brucker, Katrijn; Craik, David J; Cheneval, Olivier; Fröhlich, Mirjam; Veber, Matija; Girandon, Lenart; Davis, Talya R; Weeks, Anne E; Kumamoto, Carol A; Cos, Paul; Coenye, Tom; De Coninck, Barbara; Cammue, Bruno P A; Thevissen, Karin

    2014-05-01

    We previously identified a decapeptide from the model plant Arabidopsis thaliana, OSIP108, which is induced upon fungal pathogen infection. In this study, we demonstrated that OSIP108 interferes with biofilm formation of the fungal pathogen Candida albicans without affecting the viability or growth of C. albicans cells. OSIP108 displayed no cytotoxicity against various human cell lines. Furthermore, OSIP108 enhanced the activity of the antifungal agents amphotericin B and caspofungin in vitro and in vivo in a Caenorhabditis elegans-C. albicans biofilm infection model. These data point to the potential use of OSIP108 in combination therapy with conventional antifungal agents. In a first attempt to unravel its mode of action, we screened a library of 137 homozygous C. albicans mutants, affected in genes encoding cell wall proteins or transcription factors important for biofilm formation, for altered OSIP108 sensitivity. We identified 9 OSIP108-tolerant C. albicans mutants that were defective in either components important for cell wall integrity or the yeast-to-hypha transition. In line with these findings, we demonstrated that OSIP108 activates the C. albicans cell wall integrity pathway and that its antibiofilm activity can be blocked by compounds inhibiting the yeast-to-hypha transition. Furthermore, we found that OSIP108 is predominantly localized at the C. albicans cell surface. These data point to interference of OSIP108 with cell wall-related processes of C. albicans, resulting in impaired biofilm formation. PMID:24566179

  20. Formulation Changes Affect Material Properties and Cell Behavior in HA-Based Hydrogels

    PubMed Central

    Lawyer, Thomas; McIntosh, Kristen; Clavijo, Cristian; Potekhina, Lydia; Mann, Brenda K.

    2012-01-01

    To develop and optimize new scaffold materials for tissue engineering applications, it is important to understand how changes to the scaffold affect the cells that will interact with that scaffold. In this study, we used a hyaluronic acid- (HA-) based hydrogel as a synthetic extracellular matrix, containing modified HA (CMHA-S), modified gelatin (Gtn-S), and a crosslinker (PEGda). By varying the concentrations of these components, we were able to change the gelation time, enzymatic degradation, and compressive modulus of the hydrogel. These changes also affected fibroblast spreading within the hydrogels and differentially affected the proliferation and metabolic activity of fibroblasts and mesenchymal stem cells (MSCs). In particular, PEGda concentration had the greatest influence on gelation time, compressive modulus, and cell spreading. MSCs appeared to require a longer period of adjustment to the new microenvironment of the hydrogels than fibroblasts. Fibroblasts were able to proliferate in all formulations over the course of two weeks, but MSCs did not. Metabolic activity changed for each cell type during the two weeks depending on the formulation. These results highlight the importance of determining the effect of matrix composition changes on a particular cell type of interest in order to optimize the formulation for a given application. PMID:23251160

  1. De novo CD5+ diffuse large B-cell lymphoma: Adverse outcomes with and without stem cell transplantation in a large, multicenter, rituximab treated cohort.

    PubMed

    Alinari, Lapo; Gru, Alejandro; Quinion, Carl; Huang, Ying; Lozanski, Arletta; Lozanski, Gerard; Poston, Jacqueline; Venkataraman, Girish; Oak, Eunhye; Kreisel, Friederike; Park, Steven I; Matthews, Stephanie; Abramson, Jeremy S; Iris Lim, Hana; Martin, Peter; Cohen, Jonathon B; Evens, Andrew; Al-Mansour, Zeina; Singavi, Arun; Fenske, Timothy S; Blum, Kristie A

    2016-06-01

    De novo CD5+ diffuse large B-cell lymphomas (DLBCL) are a distinct subgroup of DLBCL with poor prognosis. However the role of rituximab-containing therapy and salvage stem cell transplantation in this patients' population remain to be defined. We retrospectively reviewed clinical features and outcomes of 102 patients with de novo CD5+ DLBCL treated with rituximab-containing therapy at nine different institutions. By Hans' criteria, 64 patients had activated B-cell (ABC) subtype, 24 germinal center B-cell (GCB) subtype, and 14 were not evaluated. No patients had a myc translocation. Eighty-three patients were treated with rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone (R-CHOP), 7 with rituximab, etoposide, cyclophosphamide, doxorubicin, vincristine, prednisone (R-EPOCH), and 6 with R-CHOP with methotrexate, 3 g/m(2) . The overall response rate to front-line therapy was 85%. The 3-year progression free survival (PFS) and overall survival (OS) for all patients were 40 and 65%, respectively. The 3-year PFS for ABC- and GCB-subtypes was 34 and 45%, respectively. The 3-year OS for ABC- and GCB-subtypes was 62 and 67%, respectively. The median time to second treatment failure was 3 months and 1 month for ABC- and GCB-subtypes, respectively. Twenty of 28 (71%) transplanted patients with autologous, allogeneic, or both, relapsed. This study confirms the poor prognosis of de novo CD5+ DLBCL in a large multi-center cohort despite initial rituximab-containing chemotherapy and suggests that stem cell transplantation fails to salvage the majority of these patients. Approaches to prevent recurrence and/or novel therapies for relapsed disease are needed for this subgroup of DLBCL patients. PMID:26800311

  2. Fatostatin Inhibits Cancer Cell Proliferation by Affecting Mitotic Microtubule Spindle Assembly and Cell Division.

    PubMed

    Gholkar, Ankur A; Cheung, Keith; Williams, Kevin J; Lo, Yu-Chen; Hamideh, Shadia A; Nnebe, Chelsea; Khuu, Cindy; Bensinger, Steven J; Torres, Jorge Z

    2016-08-12

    The sterol regulatory element-binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of metabolic diseases and cancer. SREBPs are critical for the production and metabolism of lipids and cholesterol, which are essential for cellular homeostasis and cell proliferation. Fatostatin was recently discovered as a specific inhibitor of SREBP cleavage-activating protein (SCAP), which is required for SREBP activation. Fatostatin possesses antitumor properties including the inhibition of cancer cell proliferation, invasion, and migration, and it arrests cancer cells in G2/M phase. Although Fatostatin has been viewed as an antitumor agent due to its inhibition of SREBP and its effect on lipid metabolism, we show that Fatostatin's anticancer properties can also be attributed to its inhibition of cell division. We analyzed the effect of SREBP activity inhibitors including Fatostatin, PF-429242, and Betulin on the cell cycle and determined that only Fatostatin possessed antimitotic properties. Fatostatin inhibited tubulin polymerization, arrested cells in mitosis, activated the spindle assembly checkpoint, and triggered mitotic catastrophe and reduced cell viability. Thus Fatostatin's ability to inhibit SREBP activity and cell division could prove beneficial in treating aggressive types of cancers such as glioblastomas that have elevated lipid metabolism and fast proliferation rates and often develop resistance to current anticancer therapies. PMID:27378817

  3. The inhibition of aromatase alters the mechanical and rheological properties of non-small-cell lung cancer cell lines affecting cell migration.

    PubMed

    Giannopoulou, E; Siatis, K E; Metsiou, D; Kritikou, I; Papachristou, D J; Kalofonou, M; Koutras, A; Athanassiou, G; Kalofonos, H P

    2015-02-01

    Tumor invasion and metastasis are key aspects of non-small cell lung cancer (NSCLC). During migration, cells undergo mechanical alterations. The mechanical phenotype of breast cancer cells is correlated with aromatase gene expression. We have previously shown that targeting aromatase is a promising strategy for NSCLC. The aim of this study was to examine morphological and mechanical changes of NSCLC cells, upon treatment with aromatase inhibitor and correlate their ability to migrate and invade. In vitro experiments were performed using H23 and A549 NSCLC cell lines and exemestane was used for aromatase inhibition. We demonstrated that exemestane reduced H23 cell migration and invasion and caused changes in cell morphology including increased vacuolar structures and greater pleomorphism. In addition, exemestane changed the distribution of α-tubulin in H23 and A549 cells in a way that might destabilize microtubules polymerization. These effects were associated with increased cell viscosity and decreased elastic shear modulus. Although exemestane caused similar effects in A549 cells regarding viscosity and elastic shear modulus, it did not affect A549 cell migration and caused an increase in invasion. The increased invasion was in line with vimentin perinuclear localization. Our data show that the treatment of NSCLC cells with an aromatase inhibitor not only affects cell migration and invasion but also alters the mechanical properties of the cells. It suggests that the different origin of cancer cells is associated with different morphological characteristics and mechanical behavior. PMID:25450981

  4. Adverse reactions to sulfites

    PubMed Central

    Yang, William H.; Purchase, Emerson C.R.

    1985-01-01

    Sulfites are widely used as preservatives in the food and pharmaceutical industries. In the United States more than 250 cases of sulfite-related adverse reactions, including anaphylactic shock, asthmatic attacks, urticaria and angioedema, nausea, abdominal pain and diarrhea, seizures and death, have been reported, including 6 deaths allegedly associated with restaurant food containing sulfites. In Canada 10 sulfite-related adverse reactions have been documented, and 1 death suspected to be sulfite-related has occurred. The exact mechanism of sulfite-induced reactions is unknown. Practising physicians should be aware of the clinical manifestations of sulfite-related adverse reactions as well as which foods and pharmaceuticals contain sulfites. Cases should be reported to health officials and proper advice given to the victims to prevent further exposure to sulfites. The food industry, including beer and wine manufacturers, and the pharmaceutical industry should consider using alternative preservatives. In the interim, they should list any sulfites in their products. PMID:4052897

  5. Foetal bovine serum-derived exosomes affect yield and phenotype of human cardiac progenitor cell culture

    PubMed Central

    Angelini, Francesco; Ionta, Vittoria; Rossi, Fabrizio; Miraldi, Fabio; Messina, Elisa; Giacomello, Alessandro

    2016-01-01

    Introduction: Cardiac progenitor cells (CPCs) represent a powerful tool in cardiac regenerative medicine. Pre-clinical studies suggest that most of the beneficial effects promoted by the injected cells are due to their paracrine activity exerted on endogenous cells and tissue. Exosomes are candidate mediators of this paracrine effects. According to their potential, many researchers have focused on characterizing exosomes derived from specific cell types, but, up until now, only few studies have analyzed the possible in vitro effects of bovine serum-derived exosomes on cell proliferation or differentiation. Methods: The aim of this study was to analyse, from a qualitative and quantitative point of view, the in vitro effects of bovine serum exosomes on human CPCs cultured either as cardiospheres or as monolayers of cardiosphere-forming cells. Results: Effects on proliferation, yield and molecular patterning were detected. We show, for the first time, that exogenous bovine exosomes support the proliferation and migration of human cardiosphere-forming cells, and that their depletion affects cardiospheres formation, in terms of size, yield and extra-cellular matrix production. Conclusion: These results stress the importance of considering differential biological effects of exogenous cell culture supplements on the final phenotype of primary human cell cultures.

  6. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus

    PubMed Central

    2012-01-01

    Background Kalanchoe tubiflora (KT) is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored. Methods Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images. Results An n-Butanol-soluble fraction of KT (KT-NB) was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase. Conclusion KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate. PMID:22963191

  7. DNA Replication Licensing Affects Cell Proliferation or Endoreplication in a Cell Type–Specific Manner

    PubMed Central

    del Mar Castellano, María; Boniotti, María Beatrice; Caro, Elena; Schnittger, Arp; Gutierrez, Crisanto

    2004-01-01

    In eukaryotic cells, the function of DNA replication licensing components (Cdc6 and Cdt1, among others) is crucial for cell proliferation and genome stability. However, little is known about their role in whole organisms and whether licensing control interfaces with differentiation and developmental programs. Here, we study Arabidopsis thaliana CDT1, its regulation, and the consequences of overriding licensing control. The availability of AtCDT1 is strictly regulated at two levels: (1) at the transcription level, by E2F and growth-arresting signals, and (2) posttranscriptionally, by CDK phosphorylation, a step that is required for its proteasome-mediated degradation. We also show that CDC6 and CDT1 are key targets for the coordination of cell proliferation, differentiation, and development. Indeed, altered CDT1 or CDC6 levels have cell type–specific effects in developing Arabidopsis plants: in leaf cells competent to divide, cell proliferation is stimulated, whereas in cells programmed to undergo differentiation-associated endoreplication rounds, extra endocycles are triggered. Thus, we propose that DNA replication licensing control is critical for the proper maintenance of proliferative potential, developmental programs, and morphogenetic patterns. PMID:15316110

  8. Genomic Copy Number Variation Affecting Genes Involved in the Cell Cycle Pathway: Implications for Somatic Mosaicism

    PubMed Central

    Iourov, Ivan Y.; Vorsanova, Svetlana G.; Zelenova, Maria A.; Korostelev, Sergei A.; Yurov, Yuri B.

    2015-01-01

    Somatic genome variations (mosaicism) seem to represent a common mechanism for human intercellular/interindividual diversity in health and disease. However, origins and mechanisms of somatic mosaicism remain a matter of conjecture. Recently, it has been hypothesized that zygotic genomic variation naturally occurring in humans is likely to predispose to nonheritable genetic changes (aneuploidy) acquired during the lifetime through affecting cell cycle regulation, genome stability maintenance, and related pathways. Here, we have evaluated genomic copy number variation (CNV) in genes implicated in the cell cycle pathway (according to Kyoto Encyclopedia of Genes and Genomes/KEGG) within a cohort of patients with intellectual disability, autism, and/or epilepsy, in which the phenotype was not associated with genomic rearrangements altering this pathway. Benign CNVs affecting 20 genes of the cell cycle pathway were detected in 161 out of 255 patients (71.6%). Among them, 62 individuals exhibited >2 CNVs affecting the cell cycle pathway. Taking into account the number of individuals demonstrating CNV of these genes, a support for this hypothesis appears to be presented. Accordingly, we speculate that further studies of CNV burden across the genes implicated in related pathways might clarify whether zygotic genomic variation generates somatic mosaicism in health and disease. PMID:26421275

  9. The algal metabolite yessotoxin affects heterogeneous nuclear ribonucleoproteins in HepG2 cells.

    PubMed

    Young, Clifford; Truman, Penelope; Boucher, Magalie; Keyzers, Robert A; Northcote, Peter; Jordan, T William

    2009-05-01

    The dinoflagellate metabolite yessotoxin (YTX) is produced by several species of algae and accumulates in marine food chains, leading to concerns about possible affects on aquaculture industries and human health. In mice used for toxicity testing, YTX is lethal by the intraperitoneal route, but is considerably less toxic when orally administered. The mode of action of YTX and its potential effect on humans is unclear and we therefore conducted the first proteomic analysis of the effects of this compound. We used 2-DE to examine protein changes in HepG2 cell cultures exposed to 1.4 microM YTX for 3, 12.5, 18 and 24 h. After selecting proteins that changed more than three-fold after YTX exposure, 55 spots were deemed significantly affected by the toxin (p<0.05). Major groups of affected proteins include members from the heterogeneous nuclear ribonucleoprotein (hnRNP), lamin, cathepsin and heat shock protein families that often are associated with apoptosis. We therefore confirmed apoptosis using Annexin-V-FLUOS staining of phosphatidylserine exposed at the surface of apoptotic cells. Ingenuity pathways analysis also indicated effects on pathways involved in protein processing, cell cycling and cell death. PMID:19343718

  10. EGFRvIII does not affect radiosensitivity with or without gefitinib treatment in glioblastoma cells

    PubMed Central

    Struve, Nina; Riedel, Matthias; Schulte, Alexander; Rieckmann, Thorsten; Grob, Tobias J.; Gal, Andreas; Rothkamm, Kai; Lamszus, Katrin; Petersen, Cordula; Dikomey, Ekkehard; Kriegs, Malte

    2015-01-01

    Background Glioblastomas (GBM) are often characterized by an elevated expression of the epidermal growth factor receptor variant III (EGFRvIII). We used GBM cell lines with native EGFRvIII expression to determine whether this EGFR variant affects radiosensitivity with or without EGFR targeting. Methods Experiments were performed with GBM cell lines lacking (LN229, U87MG, U251, CAS-1) or endogenously expressing EGFRvIII (BS153, DKMG). The two latter cell lines were also used to establish sublines with a low (−) or a high proportion (+) of cells expressing EGFRvIII. EGFR signaling and the cell cycle were analyzed using Western blot and flow cytometry; cell survival was assessed by colony forming assay and double-strand break repair capacity by immunofluorescence. Results DKMG and BS153 parental cells with heterogeneous EGFRvIII expression were clearly more radiosensitive compared to other GBM cell lines without EGFRvIII expression. However, no significant difference was observed in cell proliferation, clonogenicity or radiosensitivity between the EGFRvIII− and + sublines derived from DKMG and BS153 parental cells. Expression of EGFRvIII was associated with decreased DSB repair capacity for BS153 but not for DKMG cells. The effects of EGFR targeting by gefitinib alone or in combination with irradiation were also found not to depend on EGFRvIII expression. Gefitinib was only observed to influence the proliferation of EGFRvIII− BS153 cells. Conclusion The data indicate that EGFRvIII does not alter radiosensitivity with or without anti-EGFR treatment. PMID:26418954

  11. Tumor suppressor p53 and its homologue p73alpha affect cell migration.

    PubMed

    Sablina, Anna A; Chumakov, Peter M; Kopnin, Boris P

    2003-07-25

    The p53 tumor suppressor plays a central role in the negative control of growth and survival of abnormal cells. Previously we demonstrated that in addition to these functions, p53 expression affects cell morphology and lamellar activity of the cell edge (Alexandrova, A., Ivanov, A., Chumakov, P. M., Kopnin, P. B., and Vasiliev, J. M. (2000) Oncogene 19, 5826-5830). In the present work we studied the effects of p53 and its homologue p73alpha on cell migration. We found that loss of p53 function correlated with decreased cell migration that was analyzed by in vitro wound closure test and Boyden chamber assay. The decreased motility of p53-deficient cells was observed in different cell contexts: human foreskin fibroblasts (BJ), human colon and lung carcinoma cell lines (HCT116 and H1299, respectively), as well as mouse normal fibroblasts from lung and spleen, peritoneal macrophages, and keratinocytes. On the other hand, overexpression of the p53 family member p73alpha stimulated cell migration. Changes in cell migration correlated directly with transcription activation induced by p53 or p73alpha. Noteworthy, p53 modulated cell motility in the absence of stress. The effect of p53 and p73alpha on cell migration was mediated through the activity of the phosphatidylinositol 3-kinase/Rac1 pathway. This p53/p73 function was mainly associated with some modulation of intracellular signaling rather than with stimulation of production of secreted motogenic factors. The identified novel activity of the p53 family members might be involved in regulation of embryogenesis, wound healing, or inflammatory response. PMID:12750388

  12. Scientists Trace Adversity's Toll

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2012-01-01

    The stress of a spelling bee or a challenging science project can enhance a student's focus and promote learning. But the stress of a dysfunctional or unstable home life can poison a child's cognitive ability for a lifetime, according to new research. Those studies show that stress forms the link between childhood adversity and poor academic…

  13. Nanoscale topography and chemistry affect embryonic stem cell self-renewal and early differentiation.

    PubMed

    Lapointe, Vanessa L S; Fernandes, Ana Tiago; Bell, Nia C; Stellacci, Francesco; Stevens, Molly M

    2013-12-01

    Adherent cells respond to a wide range of substrate cues, including chemistry, topography, hydrophobicity, and surface energy. The cell-substrate interface is therefore an important design parameter in regenerative medicine and tissue engineering applications, where substrate cues are used to influence cell behavior. Thin films comprising 4.5 nm (average diameter) gold nanoparticles coated with a mixture of two alkanethiols can confer hemispherical topography and specific chemistry to bulk substrates. The behavior of murine embryonic stem cells (ESCs) on the thin films can then be compared with their behavior on self-assembled monolayers of the same alkanethiols on vapor-deposited gold, which lack the topographical features. Cells cultured both with and without differentiation inhibitors are characterized by immunofluorescence for Oct4 and qPCR for Fgf5, Foxa2, Nanog, Pou5f1, and Sox2. Nanoscale chemistry and topography are found to influence stem cell differentiation, particularly the early differentiation markers, Fgf5 and Foxa2. Nanoscale topography also affects Oct4 localization, whereas the chemical composition of the substrate does not have an effect. It is demonstrated for the first time that ESCs can sense topographical features established by 4.5 nm particles, and these findings suggest that nanoscale chemistry and topography can act synergistically to influence stem cell differentiation. This study furthers the understanding of the effects of these substrate properties, improving our ability to design materials to control stem cell fate. PMID:23852884

  14. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics.

    PubMed

    Rosero, Amparo; Oulehlová, Denisa; Stillerová, Lenka; Schiebertová, Petra; Grunt, Michal; Žárský, Viktor; Cvrčková, Fatima

    2016-03-01

    Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development. PMID:26738547

  15. SAMM50 Affects Mitochondrial Morphology through the Association of Drp1 in Mammalian Cells.

    PubMed

    Liu, Shuo; Gao, Yali; Zhang, Cheng; Li, Han; Pan, Shiyi; Wang, Xiaoli; Du, Shiming; Deng, Zixin; Wang, Lianrong; Song, Zhiyin; Chen, Shi

    2016-05-01

    Mitochondrial fission and fusion activities are important for cell survival and function. Drp1 is a GTPase protein responsible for mitochondrial division, and SAMM50 is responsible for protein sorting and assembly. We demonstrated that SAMM50 overexpression results in Drp1-dependent mitochondrial fragmentation in HeLa cells. However, the mitochondrial fragmentation induced by SAMM50 overexpression could be reversed through co-expression with MFN2. Furthermore, SAMM50 interacts with Drp1 both in vivo and in vitro. The mitochondria in SAMM50 knockdown HeLa cells displayed a swollen phenotype, and the levels of the SAM complex and OPA1, along with the mitochondrial Drp1 levels, significantly decreased. In addition, mitochondrial inheritance was impaired in SAMM50 silenced cells. These results suggest that SAMM50 affects the Drp1-dependent mitochondrial morphology. PMID:27059175

  16. Culture conditions affect the cholinergic development of an isolated subpopulation of chick mesencephalic neural crest cells.

    PubMed

    Barald, K F

    1989-10-01

    Although neural crest cells are known to be very responsive to environmental cues during their development, recent evidence indicates that at least some subpopulations may be committed to a specific differentiation program prior to migration. Because the neural crest is composed of a heterogeneous mixture of cells that contributes to many vertebrate cell lineages, assessing the properties of specific subpopulations and the effect of the environment on their development has been difficult. To address this problem, we have isolated a pure subpopulation of chick mesencephalic neural crest cells by fluorescence no-flow cytometry after labeling them with monoclonal antibodies (Mabs) to a 75-kDa cell surface antigen that is associated with high affinity choline uptake. When cultures of chick mesencephalic neural crest cells are labeled with these Mabs and a fluorescent second step antibody, approximately 5% of the cells are antigen-positive (A+). After sorting, 100% of the resulting cultured mesencephalic neural crest cells are A+. The Mabs we used also label all of the neurons of the embryonic chick and quail ciliary ganglion in vivo and in vitro. We have compared the effect of various cell culture media on the isolated neural crest subpopulation and the heterogeneous chick mesencephalic neural crest from which it was derived. A+ cells were passaged and grown in a variety of media, each of which differently affected its characteristics and development. A+ cells proliferated in the presence of 15% fetal bovine serum (FBS) and high concentrations (10-15%) of chick embryo extract, but did not differentiate, although they retained basal levels of choline acetyltransferase (ChAT) activity. However, in chick serum and high (25 mM as opposed to 7 mM) K+, and heart-, iris-, or lung-conditioned medium, all of which are known to promote survival and/or cholinergic development of ciliary ganglion neurons, the cells ceased to proliferate and all of the cells in the culture became

  17. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting

    PubMed Central

    Shen, Yu-I; Abaci, Hasan E.; Krupsi, Yoni; Weng, Lien-Chun; Burdick, Jason A.; Gerecht, Sharon

    2014-01-01

    Three-dimensional (3D) tissue culture models may recapitulate aspects of the tumorigenic microenvironment in vivo, enabling the study of cancer progression in vitro. Both hypoxia and matrix stiffness are known to regulate tumor growth. Using a modular culture system employing an acrylated hyaluronic acid (AHA) hydrogel, three hydrogel matrices with distinctive degrees of viscoelasticity — soft (78±16 Pa), medium (309± 57 Pa), and stiff (596± 73 Pa) — were generated using the same concentration of adhesion ligands. Oxygen levels within the hydrogel in atmospheric (21 %), hypoxic (5 %), and severely hypoxic (1 %) conditions were assessed with a mathematical model. HT1080 fibrosarcoma cells, encapsulated within the AHA hydrogels in high densities, generated nonuniform oxygen distributions, while lower cell densities resulted in more uniform oxygen distributions in the atmospheric and hypoxic environments. When we examined how varying viscoelasticity in atmospheric and hypoxic environments affects cell cycles and the expression of BNIP3 and BNIP3L (autophagy and apoptosis genes), and GLUT-1 (a glucose transport gene), we observed that HT1080 cells in 3D hydrogel adapted better to hypoxic conditions than those in a Petri dish, with no obvious correlation to matrix viscoelasticity, by recovering rapidly from possible autophagy/apoptotic events and alternating metabolism mechanisms. Further, we examined how HT1080 cells cultured in varying viscoelasticity and oxygen tension conditions affected endothelial sprouting and invasion. We observed that increased matrix stiffness reduced endothelial sprouting and invasion in atmospheric conditions; however, we observed increased endothelial sprouting and invasion under hypoxia at all levels of matrix stiffness with the upregulation of vascular endothelial growth factor (VEGF) and angiopoeitin-1 (ANG-1). Overall, HT1080 cells encapsulated in the AHA hydrogels under hypoxic stress recovered better from apoptosis and

  18. Prenatal and lactation nicotine exposure affects Sertoli cell and gonadotropin levels in rats.

    PubMed

    Paccola, C C; Miraglia, S M

    2016-02-01

    Nicotine is largely consumed in the world as a component of cigarettes. It can cross the placenta and reach the milk of smoking mothers. This drug induces apoptosis, affects sex hormone secretion, and leads to male infertility. To investigate the exposure to nicotine during the whole intrauterine and lactation phases in Sertoli cells, pregnant rats received nicotine (2 mg/kg per day) through osmotic minipumps. Male offsprings (30, 60, and 90 days old) had blood collected for hormonal analysis (FSH and LH) and their testes submitted for histophatological study, analysis of the frequency of the stages of seminiferous epithelium cycle, immunolabeling of apoptotic epithelial cells (TUNEL and Fas/FasL), analysis of the function and structure of Sertoli cells (respectively using transferrin and vimentin immunolabeling), and analysis of Sertoli-germ cell junctional molecule (β-catenin immunolabeling). The exposure to nicotine increased the FSH and LH plasmatic levels in adult rats. Although nicotine had not changed the number of apoptotic cells, neither in Fas nor FasL expression, it provoked an intense sloughing of epithelial cells and also altered the frequency of some stages of the seminiferous epithelium cycle. Transferrin and β-catenin expressions were not changed, but vimentin was significantly reduced in the early stages of the seminiferous cycle of the nicotine-exposed adult rats. Thus, we concluded that nicotine exposure during all gestational and lactation periods affects the structure of Sertoli cells by events causing intense germ cell sloughing observed in the tubular lumen and can compromise the fertility of the offspring. PMID:26556892

  19. Azithromycin differentially affects the IL-13-induced expression profile in human bronchial epithelial cells.

    PubMed

    Mertens, Tinne C J; Hiemstra, Pieter S; Taube, Christian

    2016-08-01

    The T helper 2 (Th2) cytokine interleukin(IL)-13 is a central regulator in goblet cell metaplasia and induces the recently described Th2 gene signature consisting of periostin (POSTN), chloride channel regulator 1 (CLCA1) and serpin B2 (SERPINB2) in airway epithelial cells. This Th2 gene signature has been proposed as a biomarker to classify asthma into Th2-high and Th2-low phenotypes. Clinical studies have shown that the macrolide antibiotic azithromycin reduced clinical symptoms in neutrophilic asthma, but not in the classical Th2-mediated asthma despite the ability of azithromycin to reduce IL-13-induced mucus production. We therefore hypothesize that azithromycin differentially affects the IL-13-induced expression profile. To investigate this, we focus on IL-13-induced mucin and Th2-signature expression in human bronchial epithelial cells and how this combined expression profile is affected by azithromycin treatment. Primary bronchial epithelial cells were differentiated at air liquid interface in presence of IL-13 with or without azithromycin. Azithromycin inhibited IL-13-induced MUC5AC, which was accompanied by inhibition of IL-13-induced CLCA1 and SERPINB2 expression. In contrast, IL-13-induced expression of POSTN was further increased in cells treated with azithromycin. This indicates that azithromycin has a differential effect on the IL-13-induced Th2 gene signature. Furthermore, the ability of azithromycin to decrease IL-13-induced MUC5AC expression may be mediated by a reduction in CLCA1. PMID:27246785

  20. Dihydrolipoic but not alpha-lipoic acid affects susceptibility of eukaryotic cells to bacterial invasion.

    PubMed

    Bozhokina, Ekaterina; Khaitlina, Sofia; Gamaley, Irina

    2015-05-01

    Sensitivity of eukaryotic cells to facultative pathogens can depend on physiological state of host cells. Previously we have shown that pretreatment of HeLa cells with N-acetylcysteine (NAC) makes the cells 2-3-fold more sensitive to invasion by the wild-type Serratia grimesii and recombinant Escherichia coli expressing gene of actin-specific metalloprotease grimelysin [1]. To evaluate the impact of chemically different antioxidants, in the present work we studied the effects of α-Lipoic acid (LA) and dihydrolipoic acid (DHLA) on efficiency of S. grimesii and recombinant E. coli expressing grimelysin gene to penetrate into HeLa and CaCo cells. Similarly to the effect of NAC, pretreatment of HeLa and CaCo cells with 0.6 or 1.25 mM DHLA increased the entry of grimelysin producing bacteria by a factor of 2.5 and 3 for the wild-type S. grimesii and recombinant E. coli, respectively. In contrast, pretreatment of the cells with 0.6 or 1.25 mM LA did not affect the bacteria uptake. The increased invasion of HeLa and CaCo cells correlated with the enhanced expression of E-cadherin and β-catenin genes, whereas expression of these genes in the LA-treated cells was not changed. Comparison of these results suggests that it is sulfhydryl group of DHLA that promotes efficient modification of cell properties assisting bacterial uptake. We assume that the NAC- and DHLA-induced stimulation of the E-cadherin-catenin pathway contributes to the increased internalization of the grimelysin producing bacteria within transformed cells. PMID:25817791

  1. Increase of cardiolipin content in Staphylococcus aureus by the use of antibiotics affecting the cell wall.

    PubMed

    Kariyama, R

    1982-12-01

    Effect of antibiotics affecting cell wall synthesis on phospholipid composition in Staphylococcus aureus 209P was examined. Each antibiotic was added in the middle exponential growth phase and the growth was followed turbidimetrically. Penicillin, fosfomycin, cycloserine, moenomycin and cefazolin caused a leveling off of turbidity and growth to cease without lysis. Enramycin and bacitracin were bacteriolytic. Bacteriolytic antibiotics caused a greater increase of cardiolipin content than those that were non-bacteriolytic. The amount of phosphatidylglycerol decreased in proportion to the increment of cardiolipin content. Since bacteriolytic antibiotics bind to undecaprenol, the role of cardiolipin was discussed in relation to the mechanism of synthesis of cell surface materials. PMID:7166534

  2. Chitosan and Chitin Hexamers affect expansion and differentiation of mesenchymal stem cells differently.

    PubMed

    Lieder, Ramona; Thormodsson, Finnbogi; Ng, C-H; Einarsson, Jon M; Gislason, Johannes; Petersen, Petur H; Sigurjonsson, Olafur E

    2012-11-01

    Chitooligosaccharides are of interest as potential drugs due to their bioactivity and water solubility. We compared the effect of acetylated and deacetylated chitooligomers (Hexamers) on short-term expansion (7 days) and osteogenic differentiation of bone-marrow derived, human mesenchymal stem cells in terms of gene expression, cytokine secretion and quality of osteogenic differentiation. We show that chitooligomers affect hMSC gene expression and cytokine secretion, but not mineralization. The effect of chitooligomers was shown to be dependent on the acetylation degree, with significantly stronger effects when cells are stimulated with chitin-derived Hexamers (N-Acetyl Chitohexaose) than with Chitosan Hexamers (Chitohexaose). PMID:22790025

  3. Cyclic Stretch Affects Pulmonary Endothelial Cell Control of Pulmonary Smooth Muscle Cell Growth

    PubMed Central

    Ochoa, Cristhiaan D.; Baker, Haven; Hasak, Stephen; Matyal, Robina; Salam, Aleya; Hales, Charles A.; Hancock, William; Quinn, Deborah A.

    2008-01-01

    Endothelial cells are subjected to mechanical forces in the form of cyclic stretch resulting from blood pulsatility. Pulmonary artery endothelial cells (PAECs) produce factors that stimulate and inhibit pulmonary artery smooth muscle cell (PASMC) growth. We hypothesized that PAECs exposed to cyclic stretch secrete proteins that inhibit PASMC growth. Media from PAECs exposed to cyclic stretch significantly inhibited PASMC growth in a time-dependent manner. Lyophilized material isolated from stretched PAEC-conditioned media significantly inhibited PASMC growth in a dose-dependent manner. This inhibition was reversed by trypsin inactivation, which is consistent with the relevant factor being a protein(s). To identify proteins that inhibited cell growth in conditioned media from stretched PAECs, we used proteomic techniques and found that thrombospondin (TSP)-1, a natural antiangiogenic factor, was up-regulated by stretch. In vitro, exogenous TSP-1 inhibited PASMC growth. TSP-1–blocking antibodies reversed conditioned media–induced inhibition of PASMC growth. Cyclic stretched PAECs secrete protein(s) that inhibit PASMC proliferation. TSP-1 may be, at least in part, responsible for this inhibition. The complete identification and understanding of the secreted proteome of stretched PAECs may lead to new insights into the pathophysiology of pulmonary vascular remodeling. PMID:18314539

  4. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  5. Reactive oxygen species differentially affect T cell receptor-signaling pathways.

    PubMed

    Cemerski, Saso; Cantagrel, Alain; Van Meerwijk, Joost P M; Romagnoli, Paola

    2002-05-31

    Oxidative stress plays an important role in the induction of T lymphocyte hyporesponsiveness observed in several human pathologies including cancer, rheumatoid arthritis, leprosy, and AIDS. To investigate the molecular basis of oxidative stress-induced T cell hyporesponsiveness, we have developed an in vitro system in which T lymphocytes are rendered hyporesponsive by co-culture with oxygen radical-producing activated neutrophils. We have observed a direct correlation between the level of T cell hyporesponsiveness induced and the concentration of reactive oxygen species produced. Moreover, induction of T cell hyporesponsiveness is blocked by addition of N-acetyl cysteine, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, and catalase, confirming the critical role of oxidative stress in this system. The pattern of tyrosine-phosphorylated proteins was profoundly altered in hyporesponsive as compared with normal T cells. In hyporesponsive T cells, T cell receptor (TCR) ligation no longer induced phospholipase C-gamma1 activation and caused reduced Ca(2+) flux. In contrast, despite increased levels of ERK1/2 phosphorylation, TCR-dependent activation of mitogen-activated protein kinase ERK1/2 was unaltered in hyporesponsive T lymphocytes. A late TCR-signaling event such as caspase 3 activation was as well unaffected in hyporesponsive T lymphocytes. Our data indicate that TCR-signaling pathways are differentially affected by physiological levels of oxidative stress and would suggest that although "hyporesponsive" T cells have lost certain effector functions, they may have maintained or gained others. PMID:11916964

  6. Nanoscale topographic changes on sterilized glass surfaces affect cell adhesion and spreading.

    PubMed

    Wittenburg, Gretel; Lauer, Günter; Oswald, Steffen; Labudde, Dirk; Franz, Clemens M

    2014-08-01

    Producing sterile glass surfaces is of great importance for a wide range of laboratory and medical applications, including in vitro cell culture and tissue engineering. However, sterilization may change the surface properties of glass and thereby affect its use for medical applications, for instance as a substrate for culturing cells. To investigate potential effects of sterilization on glass surface topography, borosilicate glass coverslips were left untreated or subjected to several common sterilization procedures, including low-temperature plasma gas, gamma irradiation and steam. Imaging by atomic force microscopy demonstrated that the surface of untreated borosilicate coverslips features a complex landscape of microislands ranging from 1000 to 3000 nm in diameter and 1 to 3 nm in height. Steam treatment completely removes these microislands, producing a nanosmooth glass surface. In contrast, plasma treatment partially degrades the microisland structure, while gamma irradiation has no effect on microisland topography. To test for possible effects of the nanotopographic structures on cell adhesion, human gingival fibroblasts were seeded on untreated or sterilized glass surfaces. Analyzing fibroblast adhesion 3, 6, and 24 h after cell seeding revealed significant differences in cell attachment and spreading depending on the sterilization method applied. Furthermore, single-cell force spectroscopy revealed a connection between the nanotopographic landscape of glass and the formation of cellular adhesion forces, indicating that fibroblasts generally adhere weakly to nanosmooth but strongly to nanorough glass surfaces. Nanotopographic changes induced by different sterilization methods may therefore need to be considered when preparing sterile glass surfaces for cell culture or biomedical applications. PMID:24027204

  7. IL-9 signaling affects central nervous system resident cells during inflammatory stimuli.

    PubMed

    Ding, Xiaoli; Cao, Fang; Cui, Langjun; Ciric, Bogoljub; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2015-12-01

    Interleukin (IL) 9, a dominant cytokine in Th9 cells, has been proven to play a pathogenic role in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), by augmenting T cell activation and differentiation; however, whether IL-9 signaling affects central nervous system (CNS)-resident cells during CNS autoimmunity remains unknown. In the present study, we found that the IL-9 receptor (IL-9R) was highly expressed in astrocytes, oligodendrocyte progenitor cells (OPCs), oligodendrocytes and microglia cells, and that its expression was significantly upregulated in brain and spinal cord during EAE. In addition, IL-9 increased chemokine expression, including CXCL9, CCL20 and MMP3, in primary astrocytes. Although IL-9 had no effect on the proliferation of microglia cells, it decreased OPC proliferation and differentiation when in combination with other pro-inflammatory cytokines, but not with IFN-γ. IL-9 plus IFN-γ promoted OPC proliferation and differentiation. These findings indicate that CNS-restricted IL-9 signaling may be involved in the pathogenesis of MS/EAE, thus providing a potential therapeutic target for future MS/EAE treatment through disruption of CNS cell-specific IL-9 signaling. PMID:26216406

  8. Zearalenone exposure affects mouse oocyte meiotic maturation and granulosa cell proliferation.

    PubMed

    Hou, Yan-Jun; Zhu, Cheng-Cheng; Xu, Yin-Xue; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2015-09-01

    Zearalenone (ZEN) is a metabolite of Fusarium and is a common contaminant of grains and foodstuffs. ZEN acts as a xenoestrogen and is considered to be cytotoxic, tissue toxic, and genotoxic, which causes abortions and stillbirths in humans and animals. Since estrogens affect oocyte maturation during meiosis, in this study we investigated the effects of ZEN on mouse oocyte meiotic maturation and granulosa cell proliferation. Our results showed that ZEN-treated oocyte maturation rates were decreased, which might be due to the disrupted cytoskeletons: (1) ZEN treatment resulted in significantly more oocytes with abnormal spindle morphologies; (2) actin filament expression and distribution were also disrupted after ZEN treatment, which was confirmed by the aberrant distribution of actin regulatory proteins. In addition, cortical granule-free domains (CGFDs) were disrupted after ZEN treatment, which indicated that ZEN may affect mouse oocyte fertilization capability. ZEN reduced mouse granulosa cell proliferation in a dose-dependent manner as determined by MTT assay and TUNEL apoptosis analysis, which may be another cause for the decreased oocyte maturation. Thus, our results demonstrated that exposure to zearalenone affected oocyte meiotic maturation and granulosa cell proliferation in mouse. PMID:24733567

  9. Red blood cell distribution width independently predicts medium-term mortality and major adverse cardiac events after an acute coronary syndrome

    PubMed Central

    Turcato, Gianni; Serafini, Valentina; Dilda, Alice; Bovo, Chiara; Caruso, Beatrice; Ricci, Giorgio

    2016-01-01

    Background The value of red blood cell distribution width (RDW), a simple and inexpensive measure of anisocytosis, has been associated with the outcome of many human chronic disorders. Therefore, this retrospective study was aimed to investigate whether RDW may be associated with medium-term mortality and major adverse cardiac events (MACE) after an acute coronary syndrome (ACS). Methods A total number of 979 patients diagnosed with ACS were enrolled from June 2014 to November 2014, and followed-up until June 2015. Results The RDW value in patients with 3-month MACE and in those who died was significantly higher than that of patients without 3-month MACE (13.3% vs. 14.0%; P<0.001) and those who were still alive at the end of follow-up (13.4% vs. 14.4%; P<0.001). In univariate analysis, RDW was found to be associated with 3-month MACE [odds ratio (OR), 1.70; 95% CI, 1.44–2.00, P<0.001]. In multivariate analysis, RDW remained independently associated with 3-month MACE (adjusted OR, 1.36; 95% CI, 1.19–1.55; P<0.001) and death (adjusted OR, 1.34; 95% CI, 1.05–1.71; P=0.020). The accuracy of RDW for predicting 3-month MACE was 0.67 (95% CI, 0.66–0.72; P<0.001). The most efficient discriminatory RDW value was 14.8%, which was associated with 3.8 (95% CI, 2.6–5.7; P<0.001) higher risk of 3-month MACE. Patients with RDW >14.8% exhibited a significantly short survival than those with RDW ≤14.8% (331 vs. 465 days; P<0.001). Conclusions The results of this study confirm that RDW may be a valuable, easy and inexpensive parameter for stratifying the medium-term risk in patients with ACS. PMID:27500155

  10. Proactive management strategies for potential gastrointestinal adverse reactions with ceritinib in patients with advanced ALK-positive non-small-cell lung cancer

    PubMed Central

    Schaefer, Eric S; Baik, Christina

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene fusions occur in 3%–7% of non-small-cell lung cancer (NSCLC) cases. Ceritinib, a once-daily, oral ALK inhibitor, has activity against crizotinib-resistant and crizotinib-naïve NSCLC, including brain metastases. Ceritinib (Zykadia™) was granted accelerated approval by the US Food and Drug Administration in 2014 for treating crizotinib-resistant ALK-positive NSCLC. Adverse events (AEs), particularly gastrointestinal (GI) AEs, are commonly experienced at the recommended dose of 750 mg/d and ∼38% of patients require dose interruption or reduction for GI AEs. This case study details our experience with the use of proactive GI AE management regimens in patients treated with ceritinib (750 mg/d) across two study sites. Proactive Regimens A and B were implemented in patients with metastatic ALK-positive NSCLC treated with ceritinib to manage drug-related GI AEs. Regimen A comprised ondansetron and diphenoxylate/atropine or loperamide, taken 30 minutes prior to ceritinib dose. Regimen B included dicyclomine (taken with the first ceritinib dose), ondansetron (taken 30 minutes prior to ceritinib dose for the first seven doses), and loperamide (taken as needed with the onset of diarrhea). The proactive medications were tapered off depending on patient tolerability to ceritinib. Nine patient cases are presented. Starting Regimens A or B before the first dose of ceritinib, or as soon as GI symptoms were encountered, prevented the need for dose reduction due to GI toxicity in eight of the nine patients. Using these regimens, 78% of patients were able to remain on 750 mg/d fasting. Two patients received 23 months and 16 months of therapy and remain on ceritinib 750 mg/d and 600 mg/d, respectively. Although not currently recommended or implemented in clinical studies, based on the patients evaluated here, upfront or proactive treatment plans that address AEs early on can allow the majority of patients to remain on the approved 750 mg

  11. Proactive management strategies for potential gastrointestinal adverse reactions with ceritinib in patients with advanced ALK-positive non-small-cell lung cancer.

    PubMed

    Schaefer, Eric S; Baik, Christina

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene fusions occur in 3%-7% of non-small-cell lung cancer (NSCLC) cases. Ceritinib, a once-daily, oral ALK inhibitor, has activity against crizotinib-resistant and crizotinib-naïve NSCLC, including brain metastases. Ceritinib (Zykadia™) was granted accelerated approval by the US Food and Drug Administration in 2014 for treating crizotinib-resistant ALK-positive NSCLC. Adverse events (AEs), particularly gastrointestinal (GI) AEs, are commonly experienced at the recommended dose of 750 mg/d and ∼38% of patients require dose interruption or reduction for GI AEs. This case study details our experience with the use of proactive GI AE management regimens in patients treated with ceritinib (750 mg/d) across two study sites. Proactive Regimens A and B were implemented in patients with metastatic ALK-positive NSCLC treated with ceritinib to manage drug-related GI AEs. Regimen A comprised ondansetron and diphenoxylate/atropine or loperamide, taken 30 minutes prior to ceritinib dose. Regimen B included dicyclomine (taken with the first ceritinib dose), ondansetron (taken 30 minutes prior to ceritinib dose for the first seven doses), and loperamide (taken as needed with the onset of diarrhea). The proactive medications were tapered off depending on patient tolerability to ceritinib. Nine patient cases are presented. Starting Regimens A or B before the first dose of ceritinib, or as soon as GI symptoms were encountered, prevented the need for dose reduction due to GI toxicity in eight of the nine patients. Using these regimens, 78% of patients were able to remain on 750 mg/d fasting. Two patients received 23 months and 16 months of therapy and remain on ceritinib 750 mg/d and 600 mg/d, respectively. Although not currently recommended or implemented in clinical studies, based on the patients evaluated here, upfront or proactive treatment plans that address AEs early on can allow the majority of patients to remain on the approved 750 mg

  12. Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior.

    PubMed

    Li, Haiyan; He, Jin; Yu, Hongfei; Green, Colin R; Chang, Jiang

    2016-04-01

    It is well known that gap junctions play an important role in wound healing, and bioactive glass (BG) has been shown to help healing when applied as a wound dressing. However, the effects of BG on gap junctional communication between cells involved in wound healing is not well understood. We hypothesized that BG may be able to affect gap junction mediated cell behavior to enhance wound healing. Therefore, we set out to investigate the effects of BG on gap junction related behavior of endothelial cells in order to elucidate the mechanisms through which BG is operating. In in vitro studies, BG ion extracts prevented death of human umbilical vein endothelial cells (HUVEC) following hypoxia in a dose dependent manner, possibly through connexin hemichannel modulation. In addition, BG showed stimulatory effects on gap junction communication between HUVECs and upregulated connexin43 (Cx43) expression. Furthermore, BG prompted expression of vascular endothelial growth factor and basic fibroblast growth factor as well as their receptors, and vascular endothelial cadherin in HUVECs, all of which are beneficial for vascularization. In vivo wound healing results showed that the wound closure of full-thickness excisional wounds of rats was accelerated by BG with reduced inflammation during initial stages of healing and stimulated angiogenesis during the proliferation stage. Therefore, BG can stimulate wound healing through affecting gap junctions and gap junction related endothelial cell behaviors, including prevention of endothelial cell death following hypoxia, stimulation of gap junction communication and upregulation of critical vascular growth factors, which contributes to the enhancement of angiogenesis in the wound bed and finally to accelerate wound healing. Although many studies have reported that BG stimulates angiogenesis and wound healing, this work reveals the relationship between BG and gap junction connexin 43 mediated endothelial cell behavior and elucidates

  13. Mobile phone base station radiation does not affect neoplastic transformation in BALB/3T3 cells.

    PubMed

    Hirose, H; Suhara, T; Kaji, N; Sakuma, N; Sekijima, M; Nojima, T; Miyakoshi, J

    2008-01-01

    A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields affect malignant transformation or other cellular stress responses. Our group previously reported that DNA strand breaks were not induced in human cells exposed to 2.1425 GHz Wideband Code Division Multiple Access (W-CDMA) radiation up to 800 mW/kg from mobile radio base stations employing the IMT-2000 cellular system. In the current study, BALB/3T3 cells were continuously exposed to 2.1425 GHz W-CDMA RF fields at specific absorption rates (SARs) of 80 and 800 mW/kg for 6 weeks and malignant cell transformation was assessed. In addition, 3-methylcholanthrene (MCA)-treated cells were exposed to RF fields in a similar fashion, to assess for effects on tumor promotion. Finally, the effect of RF fields on tumor co-promotion was assessed in BALB/3T3 cells initiated with MCA and co-exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). At the end of the incubation period, transformation dishes were fixed, stained with Giemsa, and scored for morphologically transformed foci. No significant differences in transformation frequency were observed between the test groups exposed to RF signals and the sham-exposed negative controls in the non-, MCA-, or MCA plus TPA-treated cells. Our studies found no evidence to support the hypothesis that RF fields may affect malignant transformation. Our results suggest that exposure to low-level RF radiation of up to 800 mW/kg does not induce cell transformation, which causes tumor formation. PMID:17694516

  14. Nivalenol and Deoxynivalenol Affect Rat Intestinal Epithelial Cells: A Concentration Related Study

    PubMed Central

    Bianco, Giuseppe; Fontanella, Bianca; Severino, Lorella; Quaroni, Andrea; Autore, Giuseppina; Marzocco, Stefania

    2012-01-01

    The integrity of the gastrointestinal tract represents a crucial first level defence against ingested toxins. Among them, Nivalenol is a trichotecenes mycotoxin frequently found on cereals and processed grains; when it contaminates human food and animal feed it is often associated with another widespread contaminant, Deoxynivalenol. Following their ingestion, intestinal epithelial cells are exposed to concentrations of these trichothecenes high enough to cause mycotoxicosis. In this study we have investigated the effects of Nivalenol and Deoxynivalenol on intestinal cells in an in vitro model system utilizing the non-tumorigenic rat intestinal epithelial cell line IEC-6. Both Nivalenol and Deoxynivalenol (5–80 µM) significantly affected IEC-6 viability through a pro-apoptotic process which mainly involved the following steps: (i) Bax induction; (ii) Bcl-2 inhibition, and (iii) caspase-3 activation. Moreover, treatment with Nivalenol produced a significant cell cycle arrest of IEC-6 cells, primarily at the G0/G1 interphase and in the S phase, with a concomitant reduction in the fraction of cells in G2. Interestingly, when administered at lower concentrations (0.1–2.5 µM), both Nivalenol and Deoxynivalenol affected epithelial cell migration (restitution), representing the initial step in gastrointestinal wound healing in the gut. This reduced motility was associated with significant remodelling of the actin cytoskeleton, and changes in expression of connexin-43 and focal adhesion kinase. The concentration range of Nivalenol or Deoxynivalenol we have tested is comparable with the mean estimated daily intake of consumers eating contaminated food. Thus, our results further highlight the risks associated with intake of even low levels of these toxins. PMID:23251682

  15. Nivalenol and deoxynivalenol affect rat intestinal epithelial cells: a concentration related study.

    PubMed

    Bianco, Giuseppe; Fontanella, Bianca; Severino, Lorella; Quaroni, Andrea; Autore, Giuseppina; Marzocco, Stefania

    2012-01-01

    The integrity of the gastrointestinal tract represents a crucial first level defence against ingested toxins. Among them, Nivalenol is a trichotecenes mycotoxin frequently found on cereals and processed grains; when it contaminates human food and animal feed it is often associated with another widespread contaminant, Deoxynivalenol. Following their ingestion, intestinal epithelial cells are exposed to concentrations of these trichothecenes high enough to cause mycotoxicosis. In this study we have investigated the effects of Nivalenol and Deoxynivalenol on intestinal cells in an in vitro model system utilizing the non-tumorigenic rat intestinal epithelial cell line IEC-6. Both Nivalenol and Deoxynivalenol (5-80 µM) significantly affected IEC-6 viability through a pro-apoptotic process which mainly involved the following steps: (i) Bax induction; (ii) Bcl-2 inhibition, and (iii) caspase-3 activation. Moreover, treatment with Nivalenol produced a significant cell cycle arrest of IEC-6 cells, primarily at the G(0)/G(1) interphase and in the S phase, with a concomitant reduction in the fraction of cells in G(2). Interestingly, when administered at lower concentrations (0.1-2.5 µM), both Nivalenol and Deoxynivalenol affected epithelial cell migration (restitution), representing the initial step in gastrointestinal wound healing in the gut. This reduced motility was associated with significant remodelling of the actin cytoskeleton, and changes in expression of connexin-43 and focal adhesion kinase. The concentration range of Nivalenol or Deoxynivalenol we have tested is comparable with the mean estimated daily intake of consumers eating contaminated food. Thus, our results further highlight the risks associated with intake of even low levels of these toxins. PMID:23251682

  16. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  17. Extracellular S100A4 affects endothelial cell integrity and stimulates transmigration of A375 melanoma cells.

    PubMed

    Herwig, Nadine; Belter, Birgit; Pietzsch, Jens

    2016-09-01

    High extracellular S100A4 level proves a specific characteristic of some cancer cases, including malignant melanoma. Concerning the latter, extracellular S100A4 in an autocrine manner was shown to promote prometastatic activation of A375 cells by interaction with the receptor for advanced glycation endproducts (RAGE). We hypothesized that interaction of extracellular S100A4 with RAGE in a paracrine manner will affect endothelial cell (EC) integrity thus further promoting melanoma metastasis. We investigated the influence of recombinant and cell (A375)-derived S100A4 on junction protein expression and EC (hCMEC/D3) integrity by measuring transendothelial electrical resistance (TEER). Decrease of TEER and diminished expression of both occludin and VE-cadherin revealed the loss of EC integrity. Transmigration of transgenic A375 cells (A375-hS100A4/A375-hRAGE) through the EC monolayer was significantly higher compared to wild-type A375 cells, and was substantially decreased by sRAGE. A pilot study in mice, intracardially injected with A375-hS100A4 or A375-hRAGE cells, showed lower survival rates and a higher incidence of metastases compared to wild-type A375 cells. Tumor development was mostly located in the brain, bones, and ovaries. These findings provide further evidence on extracellular S100A4 as paracrine mediator of prometastatic endothelial dysfunction involving its interaction with RAGE. PMID:27387233

  18. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    PubMed

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment. PMID:26530987

  19. Towards the regulation of aerosol emissions by their potential health impact: Assessing adverse effects of aerosols from wood combustion and ship diesel engine emissions by combining comprehensive data on the chemical composition and their toxicological effects on human lung cells

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Streibel, T.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Orasche, J.; Müller, L.; Rheda, A.; Passig, J.; Radischat, C.; Czech, H.; Tiita, P.; Jalava, P.; Kasurinen, S.; Schwemer, T.; Yli-Prilä, P.; Tissari, J.; Lamberg, H.; Schnelle-Kreis, J.

    2014-12-01

    Ship engine emissions are important regarding lung and cardiovascular diseases in coastal regions worldwide. Bio mass burning is made responsible for adverse health effects in many cities and rural regions. The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties and health effects of anthropogenic combustion emissions. Typical lung cell responses to combustion aerosols include inflammation and apoptosis, but a molecular link with the specific chemical composition in particular of ship emissions has not been established. Through an air-liquid interface exposure system (ALI), we exposed human lung cells at-site to exhaust fumes from a ship engine running on common heavy fuel oil (HFO) and cleaner-burning diesel fuel (DF) as well as to emissions of wood combustion compliances. A special field deployable ALI-exposition system and a mobile S2-biological laboratory were developed for this study. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized. Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling to characterise the cellular responses. The HFO ship emissions contained high concentrations of toxic compounds (transition metals, organic toxicants) and particle masses. The cellular responses included inflammation and oxidative stress. Surprisingly, the DF ship emissions, which predominantly contain rather "pure" carbonaceous soot and much less known toxicants, induced significantly broader biological effects, affecting essential cellular pathways (e.g., mitochondrial function and intracellular transport). Therefore the use of distillate fuels for shipping (this is the current emission reduction strategy of the IMO) appears insufficient for diminishing health effects. The study suggests rather reducing the particle emissions

  20. Golgi Anti-apoptotic Proteins Are Highly Conserved Ion Channels That Affect Apoptosis and Cell Migration*

    PubMed Central

    Carrara, Guia; Saraiva, Nuno; Parsons, Maddy; Byrne, Bernadette; Prole, David L.; Taylor, Colin W.; Smith, Geoffrey L.

    2015-01-01

    Golgi anti-apoptotic proteins (GAAPs) are multitransmembrane proteins that are expressed in the Golgi apparatus and are able to homo-oligomerize. They are highly conserved throughout eukaryotes and are present in some prokaryotes and orthopoxviruses. Within eukaryotes, GAAPs regulate the Ca2+ content of intracellular stores, inhibit apoptosis, and promote cell adhesion and migration. Data presented here demonstrate that purified viral GAAPs (vGAAPs) and human Bax inhibitor 1 form ion channels and that vGAAP from camelpox virus is selective for cations. Mutagenesis of vGAAP, including some residues conserved in the recently solved structure of a related bacterial protein, BsYetJ, altered the conductance (E207Q and D219N) and ion selectivity (E207Q) of the channel. Mutation of residue Glu-207 or -178 reduced the effects of GAAP on cell migration and adhesion without affecting protection from apoptosis. In contrast, mutation of Asp-219 abrogated the anti-apoptotic activity of GAAP but not its effects on cell migration and adhesion. These results demonstrate that GAAPs are ion channels and define residues that contribute to the ion-conducting pore and affect apoptosis, cell adhesion, and migration independently. PMID:25713081

  1. Factors affecting polyhydroxybutyrate accumulation in mesophyll cells of sugarcane and switchgrass

    PubMed Central

    2014-01-01

    Background Polyhydroxyalkanoates are linear biodegradable polyesters produced by bacteria as a carbon store and used to produce a range of bioplastics. Widespread polyhydroxyalkanoate production in C4 crops would decrease petroleum dependency by producing a renewable supply of biodegradable plastics along with residual biomass that could be converted into biofuels or energy. Increasing yields to commercial levels in biomass crops however remains a challenge. Previously, lower accumulation levels of the short side chain polyhydroxyalkanoate, polyhydroxybutyrate (PHB), were observed in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells in transgenic maize (Zea mays), sugarcane (Saccharum sp.), and switchgrass (Panicum virgatum L.) leading to a significant decrease in the theoretical yield potential. Here we explore various factors which might affect polymer accumulation in mesophyll cells, including targeting of the PHB pathway enzymes to the mesophyll plastid and their access to substrate. Results The small subunit of Rubisco from pea effectively targeted the PHB biosynthesis enzymes to both M and BS chloroplasts of sugarcane and switchgrass. PHB enzyme activity was retained following targeting to M plastids and was equivalent to that found in the BS plastids. Leaf total fatty acid content was not affected by PHB production. However, when fatty acid synthesis was chemically inhibited, polymer accumulated in M cells. Conclusions In this study, we provide evidence that access to substrate and neither poor targeting nor insufficient activity of the PHB biosynthetic enzymes may be the limiting factor for polymer production in mesophyll chloroplasts of C4 plants. PMID:25209261

  2. Thought waves remotely affect the performance (output voltage) of photoelectric cells

    NASA Astrophysics Data System (ADS)

    Cao, Dayong; Cao, Daqing

    2012-02-01

    In our experiments, thought waves have been shown to be capable of changing (affecting) the output voltage of photovoltaic cells located from as far away as 1-3 meters. There are no wires between brain and photoelectric cell and so it is presumed only the thought waves act on the photoelectric cell. In continual rotations, the experiments tested different solar cells, measuring devices and lamps, and the experiments were done in different labs. The first experiment was conducted on Oct 2002. Tests are ongoing. Conclusions and assumptions include: 1) the slow thought wave has the energy of space-time as defined by C1.00007: The mass, energy, space and time systemic theory- MEST. Every process releases a field effect electrical vibration which be transmitted and focussed in particular paths; 2) the thought wave has the information of the order of tester; 3) the brain (with the physical system of MEST) and consciousness (with the spirit system of the mind, consciousness, emotion and desire-MECD) can produce the information (a part of them as the Genetic code); 4) through some algorithms such as ACO Ant Colony Optimization and EA Evolutionary Algorithm (or genetic algorithm) working in RAM, human can optimize the information. This Optimizational function is the intelligence; 5) In our experiments, not only can thought waves affect the voltage of the output photoelectric signals by its energy, but they can also selectively increase or decrease those photoelectric currents through remote consciousness interface and a conscious-brain information technology.

  3. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis.

    PubMed

    Candelario, Jose; Borrego, Stacey; Reddy, Sita; Comai, Lucio

    2011-02-01

    Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced

  4. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

    SciTech Connect

    Candelario, Jose; Borrego, Stacey; Reddy, Sita; Comai, Lucio

    2011-02-01

    Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced

  5. Brefeldin A inhibits pestivirus release from infected cells, without affecting its assembly and infectivity

    SciTech Connect

    Macovei, Alina; Zitzmann, Nicole; Lazar, Catalin; Dwek, Raymond A.; Branza-Nichita, Norica . E-mail: nichita@biochim.ro

    2006-08-04

    The enveloped bovine viral diarrhea virus (BVDV) is a member of the Pestivirus genus within the Flaviviridae family. While considerable information has been gathered on virus entry into the host cell, genome structure and protein function, little is known about pestivirus morphogenesis and release from cells. Here, we analyzed the intracellular localization, N-glycan processing and secretion of BVDV using brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum (ER) and causes disruption of the Golgi complex with subsequent fusion of its cis and medial cisternae with the ER. BFA treatment of infected cells resulted in complete inhibition of BVDV secretion and increased co-localization of the envelope glycoproteins with the cis-Golgi marker GM 130. Processing of the N-linked glycans was affected by BFA, however, virus assembly was not perturbed and intracellular virions were fully infectious, suggesting that trafficking beyond the cis-Golgi is not a prerequisite for pestivirus infectivity.

  6. Expression in cultured human neuroblastoma cells of epitopes associated with affected neurons in Alzheimer's disease.

    PubMed Central

    Ko, L. W.; Sheu, K. F.; Young, O.; Thaler, H.; Blass, J. P.

    1990-01-01

    Of three human neuroblastoma lines tested, IMR32K (and IMR32 parental line) was the only cell line that, after its exposure to a differentiation medium, consistently developed materials recognized immunocytochemically by a panel of antibodies against paired helical filaments (PHF). Ultrastructurally, these cells accumulated, at their perikarya and neuritic extensions, spatially discrete arrays of fibrils, which occasionally occurred in twisted pairs. When these fibrillar structures appeared as paired helices, they exhibited dimensions and configurations reminiscent of PHF found in affected Alzheimer neurons, although less compact. Immunoelectron microscope examinations of the fibrillar structures in these neuroblastoma cells with one of these anti-PHF immunoprobes revealed that only subsets of fibrillar structures that appeared thickened or aggregated to form bundles were selectively immunolabeled. Cultures of these immortal neuroblastoma lines may provide a convenient model for studying aspects of PHF formation that are hard to examine in Alzheimer brain obtained at autopsy. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1691594

  7. Dexamethasone and Azathioprine Promote Cytoskeletal Changes and Affect Mesenchymal Stem Cell Migratory Behavior

    PubMed Central

    Schneider, Natália; Gonçalves, Fabiany da Costa; Pinto, Fernanda Otesbelgue; Lopez, Patrícia Luciana da Costa; Araújo, Anelise Bergmann; Pfaffenseller, Bianca; Passos, Eduardo Pandolfi; Cirne-Lima, Elizabeth Obino; Meurer, Luíse; Lamers, Marcelo Lazzaron; Paz, Ana Helena

    2015-01-01

    Glucocorticoids and immunosuppressive drugs are commonly used to treat inflammatory disorders, such as inflammatory bowel disease (IBD), and despite a few improvements, the remission of IBD is still difficult to maintain. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have emerged as regulators of the immune response, and their viability and activation of their migratory properties are essential for successful cell therapy. However, little is known about the effects of immunosuppressant drugs used in IBD treatment on MSC behavior. The aim of this study was to evaluate MSC viability, nuclear morphometry, cell polarity, F-actin and focal adhesion kinase (FAK) distribution, and cell migratory properties in the presence of the immunosuppressive drugs azathioprine (AZA) and dexamethasone (DEX). After an initial characterization, MSCs were treated with DEX (10 μM) or AZA (1 μM) for 24 hrs or 7 days. Neither drug had an effect on cell viability or nuclear morphometry. However, AZA treatment induced a more elongated cell shape, while DEX was associated with a more rounded cell shape (P < 0.05) with a higher presence of ventral actin stress fibers (P < 0.05) and a decrease in protrusion stability. After 7 days of treatment, AZA improved the cell spatial trajectory (ST) and increased the migration speed (24.35%, P < 0.05, n = 4), while DEX impaired ST and migration speed after 24 hrs and 7 days of treatment (-28.69% and -25.37%, respectively; P < 0.05, n = 4). In conclusion, our data suggest that these immunosuppressive drugs each affect MSC morphology and migratory capacity differently, possibly impacting the success of cell therapy. PMID:25756665

  8. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    PubMed Central

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J.; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E.; Zhu, Yingying; Peter, Gary F.; Hahn, Michael G.; Mansfield, Shawn D.; Harding, Scott A.; Tsai, Chung-Jui

    2015-01-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis. PMID:26246616

  9. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus.

    PubMed

    Swamy, Prashant S; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E; Zhu, Yingying; Peter, Gary F; Hahn, Michael G; Mansfield, Shawn D; Harding, Scott A; Tsai, Chung-Jui

    2015-10-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis. PMID:26246616

  10. Ethanol Affects the Development of Sensory Hair Cells in Larval Zebrafish (Danio rerio)

    PubMed Central

    Matsui, Jonathan I.

    2013-01-01

    Children born to mothers with substantial alcohol consumption during pregnancy can present a number of morphological, cognitive, and sensory abnormalities, including hearing deficits, collectively known as fetal alcohol syndrome (FAS). The goal of this study was to determine if the zebrafish lateral line could be used to study sensory hair cell abnormalities caused by exposure to ethanol during embryogenesis. Some lateral line sensory hair cells are present at 2 days post-fertilization (dpf) and are functional by 5 dpf. Zebrafish embryos were raised in fish water supplemented with varying concentrations of ethanol (0.75%–1.75% by volume) from 2 dpf through 5 dpf. Ethanol treatment during development resulted in many physical abnormalities characteristic of FAS in humans. Also, the number of sensory hair cells decreased as the concentration of ethanol increased in a dose-dependent manner. The dye FM 1-43FX was used to detect the presence of functional mechanotransduction channels. The percentage of FM 1-43-labeled hair cells decreased as the concentration of ethanol increased. Methanol treatment did not affect the development of hair cells. The cell cycle markers proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) demonstrated that ethanol reduced the number of sensory hair cells, as a consequence of decreased cellular proliferation. There was also a significant increase in the rate of apoptosis, as determined by TUNEL-labeling, in neuromasts following ethanol treatment during larval development. Therefore, zebrafish are a useful animal model to study the effects of hair cell developmental disorders associated with FAS. PMID:24324841

  11. Statins affect ETS1-overexpressing triple-negative breast cancer cells by restoring DUSP4 deficiency.

    PubMed

    Jung, Hae Hyun; Lee, Soo-Hyeon; Kim, Ji-Yeon; Ahn, Jin Seok; Park, Yeon Hee; Im, Young-Hyuck

    2016-01-01

    We investigated the molecular mechanisms underlying statin-induced growth suppression of triple-negative breast cancer (TNBC) that overexpress the transcription factor ets proto-oncogene 1(ets-1) and downregulate dual specific protein phosphatase 4(dusp4) expression. We examined the gene expression of BC cell lines using the nCounter expression assay, MTT viability assay, cell proliferation assay and Western blot to evaluate the effects of simvastatin. Finally, we performed cell viability testing in TNBC cell line-transfected DUSP4. We demonstrated that ETS1 mRNA and protein were overexpressed in TNBC cells compared with other BC cell lines (P = <0.001) and DUSP4 mRNA was downregulated (P = <0.001). MTT viability assay showed that simvastatin had significant antitumor activity (P = 0.002 in 0.1 μM). In addition, simvastatin could restore dusp4 deficiency and suppress ets-1 expression in TNBC. Lastly, we found that si-DUSP4 RNA transfection overcame the antitumor activity of statins. MAPK pathway inhibitor, U0126 and PI3KCA inhibitor LY294002 also decreased levels of ets-1, phosphor-ERK and phosphor-AKT on Western blot assay. Accordingly, our study indicates that simvastatin potentially affects the activity of transcriptional factors such as ets-1 and dusp4 through the MAPK pathway. In conclusion, statins might be potential candidates for TNBC therapy reducing ets-1 expression via overexpression of dusp4. PMID:27604655

  12. Statins affect ETS1-overexpressing triple-negative breast cancer cells by restoring DUSP4 deficiency

    PubMed Central

    Jung, Hae Hyun; Lee, Soo-Hyeon; Kim, Ji-Yeon; Ahn, Jin Seok; Park, Yeon Hee; Im, Young-Hyuck

    2016-01-01

    We investigated the molecular mechanisms underlying statin-induced growth suppression of triple-negative breast cancer (TNBC) that overexpress the transcription factor ets proto-oncogene 1(ets-1) and downregulate dual specific protein phosphatase 4(dusp4) expression. We examined the gene expression of BC cell lines using the nCounter expression assay, MTT viability assay, cell proliferation assay and Western blot to evaluate the effects of simvastatin. Finally, we performed cell viability testing in TNBC cell line-transfected DUSP4. We demonstrated that ETS1 mRNA and protein were overexpressed in TNBC cells compared with other BC cell lines (P = <0.001) and DUSP4 mRNA was downregulated (P = <0.001). MTT viability assay showed that simvastatin had significant antitumor activity (P = 0.002 in 0.1 μM). In addition, simvastatin could restore dusp4 deficiency and suppress ets-1 expression in TNBC. Lastly, we found that si-DUSP4 RNA transfection overcame the antitumor activity of statins. MAPK pathway inhibitor, U0126 and PI3KCA inhibitor LY294002 also decreased levels of ets-1, phosphor-ERK and phosphor-AKT on Western blot assay. Accordingly, our study indicates that simvastatin potentially affects the activity of transcriptional factors such as ets-1 and dusp4 through the MAPK pathway. In conclusion, statins might be potential candidates for TNBC therapy reducing ets-1 expression via overexpression of dusp4. PMID:27604655

  13. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Schluesener, Hermann J.

    2010-03-01

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  14. Mechanistic adaptability of cancer cells strongly affects anti-migratory drug efficacy

    PubMed Central

    Sun, Wei; Lim, Chwee Teck; Kurniawan, Nicholas Agung

    2014-01-01

    Cancer metastasis involves the dissemination of cancer cells from the primary tumour site and is responsible for the majority of solid tumour-related mortality. Screening of anti-metastasis drugs often includes functional assays that examine cancer cell invasion inside a three-dimensional hydrogel that mimics the extracellular matrix (ECM). Here, we built a mechanically tuneable collagen hydrogel model to recapitulate cancer spreading into heterogeneous tumour stroma and monitored the three-dimensional invasion of highly malignant breast cancer cells, MDA-MB-231. Migration assays were carried out in the presence and the absence of drugs affecting four typical molecular mechanisms involved in cell migration, as well as under five ECMs with different biophysical properties. Strikingly, the effects of the drugs were observed to vary strongly with matrix mechanics and microarchitecture, despite the little dependence of the inherent cancer cell migration on the ECM condition. Specifically, cytoskeletal contractility-targeting drugs reduced migration speed in sparse gels, whereas migration in dense gels was retarded effectively by inhibiting proteolysis. The results corroborate the ability of cancer cells to switch their multiple invasion mechanisms depending on ECM condition, thus suggesting the importance of factoring in the biophysical properties of the ECM in anti-metastasis drug screenings. PMID:25100319

  15. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  16. Adverse cutaneous drug eruptions: current understanding.

    PubMed

    Hoetzenecker, W; Nägeli, M; Mehra, E T; Jensen, A N; Saulite, I; Schmid-Grendelmeier, P; Guenova, E; Cozzio, A; French, L E

    2016-01-01

    Adverse cutaneous drug reactions are recognized as being major health problems worldwide causing considerable costs for health care systems. Most adverse cutaneous drug reactions follow a benign course; however, up to 2% of all adverse cutaneous drug eruptions are severe and life-threatening. These include acute generalized exanthematous pustulosis (AGEP), drug reaction with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). Physicians should be aware of specific red flags to rapidly identify these severe cutaneous drug eruptions and initiate appropriate treatment. Besides significant progress in clinical classification and treatment, recent studies have greatly enhanced our understanding in the pathophysiology of adverse cutaneous drug reactions. Genetic susceptibilities to certain drugs have been identified in SJS/TEN patients, viral reactivation in DRESS has been elucidated, and the discovery of tissue resident memory T cells helps to better understand the recurrent site-specific inflammation in patients with fixed drug eruption. PMID:26553194

  17. The Azospirillum brasilense Che1 Chemotaxis Pathway Controls Swimming Velocity, Which Affects Transient Cell-to-Cell Clumping

    PubMed Central

    Bible, Amber; Russell, Matthew H.

    2012-01-01

    The Che1 chemotaxis-like pathway of Azospirillum brasilense contributes to chemotaxis and aerotaxis, and it has also been found to contribute to regulating changes in cell surface adhesive properties that affect the propensity of cells to clump and to flocculate. The exact contribution of Che1 to the control of chemotaxis and flocculation in A. brasilense remains poorly understood. Here, we show that Che1 affects reversible cell-to-cell clumping, a cellular behavior in which motile cells transiently interact by adhering to one another at their nonflagellated poles before swimming apart. Clumping precedes and is required for flocculation, and both processes appear to be independently regulated. The phenotypes of a ΔaerC receptor mutant and of mutant strains lacking cheA1, cheY1, cheB1, or cheR1 (alone or in combination) or with che1 deleted show that Che1 directly mediates changes in the flagellar swimming velocity and that this behavior directly modulates the transient nature of clumping. Our results also suggest that an additional receptor(s) and signaling pathway(s) are implicated in mediating other Che1-independent changes in clumping identified in the present study. Transient clumping precedes the transition to stable clump formation, which involves the production of specific extracellular polysaccharides (EPS); however, production of these clumping-specific EPS is not directly controlled by Che1 activity. Che1-dependent clumping may antagonize motility and prevent chemotaxis, thereby maintaining cells in a metabolically favorable niche. PMID:22522896

  18. Developmental exposure of aflatoxin B1 reversibly affects hippocampal neurogenesis targeting late-stage neural progenitor cells through suppression of cholinergic signaling in rats.

    PubMed

    Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Onda, Nobuhiko; Sugita-Konishi, Yoshiko; Yoshida, Toshinori; Shibutani, Makoto

    2015-10-01

    To elucidate the maternal exposure effects of aflatoxin B1 (AFB1) and its metabolite aflatoxin M1, which is transferred into milk, on postnatal hippocampal neurogenesis, pregnant Sprague-Dawley rats were provided a diet containing AFB1 at 0, 0.1, 0.3, or 1.0 ppm from gestational day 6 to day 21 after delivery on weaning. Offspring were maintained through postnatal day (PND) 77 without AFB1 exposure. Following exposure to 1.0 ppm AFB1, offspring showed no apparent systemic toxicity at weaning, whereas dams showed increased liver weight and DNA repair gene upregulation in the liver. In the hippocampal dentate gyrus of male PND 21 offspring, the number of doublecortin(+) progenitor cells were decreased, which was associated with decreased proliferative cell population in the subgranular zone at ≥ 0.3 ppm, although T-box brain 2(+) cells, tubulin beta III(+) cells, gamma-H2A histone family, member X(+) cells, and cyclin-dependent kinase inhibitor 1A(+) cells did not fluctuate in number. AFB1 exposure examined at 1.0 ppm also resulted in transcript downregulation of the cholinergic receptor subunit Chrna7 and dopaminergic receptor Drd2 in the dentate gyrus, although there was no change in transcript levels of DNA repair genes. In the hippocampal dentate hilus, interneurons expressing CHRNA7 or phosphorylated tropomyosin receptor kinase B (TRKB) decreased at ≥ 0.3 ppm. On PND 77, there were no changes in neurogenesis-related parameters. These results suggested that maternal AFB1 exposure reversibly affects hippocampal neurogenesis targeting type-3 progenitor cells. This mechanism likely involves suppression of cholinergic signals on hilar GABAergic interneurons and brain-derived neurotrophic factor-TRKB signaling from granule cells. The no-observed-adverse-effect level for offspring neurogenesis was determined to be 0.1 ppm (7.1-13.6 mg/kg body weight/day). PMID:26260870

  19. Gangliosides do not affect ABC transporter function in human neuroblastoma cells.

    PubMed

    Dijkhuis, Anne-Jan; Klappe, Karin; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2006-06-01

    Previous studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines. This was established by three different assays: equilibrium radiolabeling, cholera toxin binding, and mass analysis. Fluorescence-activated cell sorting (FACS) analysis showed that ganglioside depletion only slightly and in the opposite direction affected Pgp- and MRP1-mediated efflux activity. Moreover, both effects were marginal compared with those of well-established inhibitors of either MRP1 (i.e., MK571) or Pgp (i.e., GF120918). t-PPPP slightly enhanced cellular sensitivity to vincristine, as determined by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide analysis, in both neuroblastoma cell lines, whereas NB-dNJ was without effect. MRP1 expression and its localization in detergent-resistant membranes were not affected by ganglioside depletion. Together, these results show that gangliosides are not relevant to ABC transporter-mediated MDR in neuroblastoma cells. PMID:16547352

  20. Raising cytosolic Cl− in cerebellar granule cells affects their excitability and vestibulo-ocular learning

    PubMed Central

    Seja, Patricia; Schonewille, Martijn; Spitzmaul, Guillermo; Badura, Aleksandra; Klein, Ilse; Rudhard, York; Wisden, William; Hübner, Christian A; De Zeeuw, Chris I; Jentsch, Thomas J

    2012-01-01

    Cerebellar cortical throughput involved in motor control comprises granule cells (GCs) and Purkinje cells (PCs), both of which receive inhibitory GABAergic input from interneurons. The GABAergic input to PCs is essential for learning and consolidation of the vestibulo-ocular reflex, but the role of GC excitability remains unclear. We now disrupted the Kcc2 K-Cl cotransporter specifically in either cell type to manipulate their excitability and inhibition by GABAA-receptor Cl− channels. Although Kcc2 may have a morphogenic role in synapse development, Kcc2 disruption neither changed synapse density nor spine morphology. In both GCs and PCs, disruption of Kcc2, but not Kcc3, increased [Cl−]i roughly two-fold. The reduced Cl− gradient nearly abolished GABA-induced hyperpolarization in PCs, but in GCs it merely affected excitability by membrane depolarization. Ablation of Kcc2 from GCs impaired consolidation of long-term phase learning of the vestibulo-ocular reflex, whereas baseline performance, short-term gain-decrease learning and gain consolidation remained intact. These functions, however, were affected by disruption of Kcc2 in PCs. GC excitability plays a previously unknown, but specific role in consolidation of phase learning. PMID:22252133

  1. E. coli Nissle 1917 Affects Salmonella Adhesion to Porcine Intestinal Epithelial Cells

    PubMed Central

    Schierack, Peter; Kleta, Sylvia; Tedin, Karsten; Babila, Julius Tachu; Oswald, Sibylle; Oelschlaeger, Tobias A.; Hiemann, Rico; Paetzold, Susanne; Wieler, Lothar H.

    2011-01-01

    Background The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. Methodology/Principal Findings In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. Conclusions We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion. PMID:21379575

  2. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells

    PubMed Central

    Karlic, Heidrun; Thaler, Roman; Gerner, Christopher; Grunt, Thomas; Proestling, Katharina; Haider, Florian; Varga, Franz

    2015-01-01

    The mevalonate pathway provides metabolites for post-translational modifications such as farnesylation, which are critical for the activity of RAS downstream signaling. Subsequently occurring regulatory processes can induce an aberrant stimulation of DNA methyltransferase (DNMT1) as well as changes in histone deacetylases (HDACs) and microRNAs in many cancer cell lines. Inhibitors of the mevalonate pathway are increasingly recognized as anticancer drugs. Extensive evidence indicates an intense cross-talk between signaling pathways, which affect growth, differentiation, and apoptosis either directly or indirectly via epigenetic mechanisms. Herein, we show data obtained by novel transcriptomic and corresponding methylomic or proteomic analyses from cell lines treated with pharmacologic doses of respective inhibitors (i.e., simvastatin, ibandronate). Metabolic pathways and their epigenetic consequences appear to be affected by a changed concentration of NADPH. Moreover, since the mevalonate metabolism is part of a signaling network, including vitamin D metabolism or fatty acid synthesis, the epigenetic activity of associated pathways is also presented. This emphasizes the far-reaching epigenetic impact of metabolic therapies on cancer cells and provides some explanation for clinical observations, which indicate the anticancer activity of statins and bisphosphonates. PMID:25978957

  3. Group I PAK inhibitor IPA-3 induces cell death and affects cell adhesivity to fibronectin in human hematopoietic cells.

    PubMed

    Kuželová, Kateřina; Grebeňová, Dana; Holoubek, Aleš; Röselová, Pavla; Obr, Adam

    2014-01-01

    P21-activated kinases (PAKs) are involved in the regulation of multiple processes including cell proliferation, adhesion and migration. However, the current knowledge about their function is mainly based on results obtained in adherent cell types. We investigated the effect of group I PAK inhibition using the compound IPA-3 in a variety of human leukemic cell lines (JURL-MK1, MOLM-7, K562, CML-T1, HL-60, Karpas-299, Jurkat, HEL) as well as in primary blood cells. IPA-3 induced cell death with EC50 ranging from 5 to more than 20 μM. Similar range was found for IPA-3-mediated dephosphorylation of a known PAK downstream effector, cofilin. The cell death was associated with caspase-3 activation, PARP cleavage and apoptotic DNA fragmentation. In parallel, 20 μM IPA-3 treatment induced rapid and marked decrease of the cell adhesivity to fibronectin. Per contra, partial reduction of PAK activity using lower dose IPA-3 or siRNA resulted in a slight increase in the cell adhesivity. The changes in the cell adhesivity were also studied using real-time microimpedance measurement and by interference reflection microscopy. Significant differences in the intracellular IPA-3 level among various cell lines were observed indicating that an active mechanism is involved in IPA-3 transport. PMID:24664099

  4. Ovarian Stimulation Affects the Population of Mouse Uterine NK Cells at Early Pregnancy

    PubMed Central

    Dorfeshan, Parvin; Moazzeni, Seyed Mohammad

    2013-01-01

    The aim of this study was to determine the influence of ovarian stimulation on endometrial mouse NK cell population. For superovulation, the female adult NMRI mice were injected i.p. with 10 IU of the pregnant mare serum gonadotropin followed 48 h later by an i.p. injection of 10 IU human chorionic gonadotropin hormone. Ovarian stimulated and nonstimulated mice were mated with fertile male. The presence of vaginal plug proved natural pregnancy, and this day was considered as day one of pregnancy. Tissue samples were prepared from the uterine horn and spleen of both groups of study on 7th day of pregnancy. Serum estradiol-17β and progesterone were measured at the same time. The tissue cryosections were prepared and double stained for CD 161 and CD3 markers, and NK cells population was analyzed. Relative frequency of NK cells was significantly lower in stroma and myometrium in hyperstimulated mice compared with the control group. However, no difference was seen in percentage of NK cells in spleen. The ovarian stimulation influences the proportion of uterine NK cells and may affect the embryo implantation. PMID:24350248

  5. Food contaminant zearalenone and its metabolites affect cytokine synthesis and intestinal epithelial integrity of porcine cells.

    PubMed

    Marin, Daniela E; Motiu, Monica; Taranu, Ionelia

    2015-06-01

    The intestinal epithelium is the first barrier against food contaminants. Zearalenone (ZEN) is an estrogenic mycotoxin that was identified as a common contaminant of cereal grains and food and feedstuffs. In the present study, we have investigated the in vitro effects of ZEN and some of its metabolites (α-ZOL, β-ZOL) in concentrations of 10-100 µM on a swine epithelial cell line: Intestinal porcine epithelial cells (IPEC-1). We demonstrated that both ZEN metabolites were more toxic for IPEC cells as resulted from the XTT test, while for doses lower than 10 µM, only β-ZOL showed a more pronounced cytotoxicity versus epithelial cells as resulted from neutral red assay. ZEN has no effect on TER values, while α-ZOL significantly decreased the TER values, starting with day 4 of treatment. β-ZOL had a dual effect, firstly it induced a significant increase of TER, and then, starting on day 6, it induced a dramatic decrease of TER values as compared with on day 0. Concerning the cytokine synthesis, our results showed that ZEN has a tendency to increase the synthesis of IL-8 and IL-10. By contrast, α- and β-ZOL decreased the expression of both IL-8 and IL-10, in a dose dependent manner. In conclusion, our results showed that ZEN and its metabolites differently affected porcine intestinal cell viability, transepithelial resistance and cytokine synthesis with important implication for gut health. PMID:26035492

  6. Food Contaminant Zearalenone and Its Metabolites Affect Cytokine Synthesis and Intestinal Epithelial Integrity of Porcine Cells

    PubMed Central

    Marin, Daniela E.; Motiu, Monica; Taranu, Ionelia

    2015-01-01

    The intestinal epithelium is the first barrier against food contaminants. Zearalenone (ZEN) is an estrogenic mycotoxin that was identified as a common contaminant of cereal grains and food and feedstuffs. In the present study, we have investigated the in vitro effects of ZEN and some of its metabolites (α-ZOL, β-ZOL) in concentrations of 10–100 µM on a swine epithelial cell line: Intestinal porcine epithelial cells (IPEC-1). We demonstrated that both ZEN metabolites were more toxic for IPEC cells as resulted from the XTT test, while for doses lower than 10 µM, only β-ZOL showed a more pronounced cytotoxicity versus epithelial cells as resulted from neutral red assay. ZEN has no effect on TER values, while α-ZOL significantly decreased the TER values, starting with day 4 of treatment. β-ZOL had a dual effect, firstly it induced a significant increase of TER, and then, starting on day 6, it induced a dramatic decrease of TER values as compared with on day 0. Concerning the cytokine synthesis, our results showed that ZEN has a tendency to increase the synthesis of IL-8 and IL-10. By contrast, α- and β-ZOL decreased the expression of both IL-8 and IL-10, in a dose dependent manner. In conclusion, our results showed that ZEN and its metabolites differently affected porcine intestinal cell viability, transepithelial resistance and cytokine synthesis with important implication for gut health. PMID:26035492

  7. The Cell Birth Marker BrdU Does Not Affect Recruitment of Subsequent Cell Divisions in the Adult Avian Brain

    PubMed Central

    Cattan, Anat

    2015-01-01

    BrdU is commonly used to quantify neurogenesis but also causes mutation and has mitogenic, transcriptional, and translational effects. In mammalian studies, attention had been given to its dosage, but in birds such examination was not conducted. Our previous study suggested that BrdU might affect subsequent cell divisions and neuronal recruitment in the brain. Furthermore, this effect seemed to increase with time from treatment. Accordingly, we examined whether BrdU might alter neurogenesis in the adult avian brain. We compared recruitment of [3H]-thymidine+ neurons in brains of zebra finches (Taeniopygia guttata) when no BrdU was involved and when BrdU was given 1 or 3 months prior to [3H]-thymidine. In nidopallium caudale, HVC, and hippocampus, no differences were found between groups in densities and percentages of [3H]-thymidine+ neurons. The number of silver grains per [3H]-thymidine+ neuronal nucleus and their distribution were similar across groups. Additionally, time did not affect the results. The results indicate that the commonly used dosage of BrdU in birds has no long-term effects on subsequent cell divisions and neuronal recruitment. This conclusion is also important in neuronal replacement experiments, where BrdU and another cell birth marker are given, with relatively long intervals between them. PMID:25759813

  8. The cell birth marker BrdU does not affect recruitment of subsequent cell divisions in the adult avian brain.

    PubMed

    Cattan, Anat; Ayali, Amir; Barnea, Anat

    2015-01-01

    BrdU is commonly used to quantify neurogenesis but also causes mutation and has mitogenic, transcriptional, and translational effects. In mammalian studies, attention had been given to its dosage, but in birds such examination was not conducted. Our previous study suggested that BrdU might affect subsequent cell divisions and neuronal recruitment in the brain. Furthermore, this effect seemed to increase with time from treatment. Accordingly, we examined whether BrdU might alter neurogenesis in the adult avian brain. We compared recruitment of [(3)H]-thymidine(+) neurons in brains of zebra finches (Taeniopygia guttata) when no BrdU was involved and when BrdU was given 1 or 3 months prior to [(3)H]-thymidine. In nidopallium caudale, HVC, and hippocampus, no differences were found between groups in densities and percentages of [(3)H]-thymidine(+) neurons. The number of silver grains per [(3)H]-thymidine(+) neuronal nucleus and their distribution were similar across groups. Additionally, time did not affect the results. The results indicate that the commonly used dosage of BrdU in birds has no long-term effects on subsequent cell divisions and neuronal recruitment. This conclusion is also important in neuronal replacement experiments, where BrdU and another cell birth marker are given, with relatively long intervals between them. PMID:25759813

  9. Microwave heating inactivates Shiga Toxin (Stx2) in reconstituted fat-free Milk and adversely affects the nutritional value of cell culture medium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave exposure is a convenient and widely used method for defrosting, heating, and cooking numerous foods. Microwave cooking is also reported to kill pathogenic microorganisms that often contaminate food. Microwaves act by causing polar molecules in food, such as water, to rapidly rotate, thus...

  10. [Adverse reaction of pseudoephedrine].

    PubMed

    López Lois, G; Gómez Carrasco, J A; García de Frías, E

    2005-04-01

    We present a case of a 7 years old girl who developed an episode of myoclonic movements and tremors after being medicated with a not well quantified amount of a pseudoephedrine/antihistamine combination. We want to highlight the potential toxicity of pseudoephedrine, usually administered as part of cold-syrup preparations which are used for symptomatic treatment of upper respiratory tract cough and congestion associated with the common cold and allergic rhinitis. Although these products are generally considered to be safe either by physicians and parents, we can't underestimate the potential adverse events and toxic effects that can occur when administering these medications. PMID:15826569

  11. Monoolein-based cubosomes affect lipid profile in HeLa cells.

    PubMed

    Rosa, Antonella; Murgia, Sergio; Putzu, Danilo; Meli, Valeria; Falchi, Angela Maria

    2015-10-01

    Monoolein-based cubosomes are promising drug delivery nanocarriers for theranostic purposes. Nevertheless, a small amount of research has been undertaken to investigate the impact of these biocompatible nanoparticles on cell lipid profile. The purpose of the present investigation was to explore changes in lipid components occurring in human carcinoma HeLa cells when exposed to short-term treatments (2 and 4h) with monoolein-based cubosomes stabilized by Pluronic F108 (MO/PF108). A combination of TLC and reversed-phase HPLC with DAD and ELSD detection was performed to analyze cell total fatty acid profile and levels of phospholipids, free cholesterol, triacylglycerols, and cholesteryl esters. The treatments with MO/PF108 cubosomes, at non-cytotoxic concentration (83μg/mL of MO), affected HeLa fatty acid profile, and a significant increase in the level of oleic acid 18:1 n-9 was observed in treated cells after lipid component saponification. Nanoparticle uptake modulated HeLa cell lipid composition, inducing a remarkable incorporation of oleic acid in the phospholipid and triacylglycerol fractions, whereas no changes were observed in the cellular levels of free cholesterol and cholesteryl oleate. Moreover, cell-based fluorescent measurements of intracellular membranes and lipid droplet content were assessed on cubosome-treated cells with an alternative technique using Nile red staining. A significant increase in the amount of the intracellular membranes and mostly in the cytoplasmic lipid droplets was detected, confirming that monoolein-based cubosome treatment influences the synthesis of intracellular membranes and accumulation of lipid droplets. PMID:26341749

  12. Light Influences How the Fungal Toxin Deoxynivalenol Affects Plant Cell Death and Defense Responses

    PubMed Central

    Ansari, Khairul I.; Doyle, Siamsa M.; Kacprzyk, Joanna; Khan, Mojibur R.; Walter, Stephanie; Brennan, Josephine M.; Arunachalam, Chanemouga Soundharam; McCabe, Paul F.; Doohan, Fiona M.

    2014-01-01

    The Fusarium mycotoxin deoxynivalenol (DON) can cause cell death in wheat (Triticum aestivum), but can also reduce the level of cell death caused by heat shock in Arabidopsis (Arabidopsis thaliana) cell cultures. We show that 10 μg mL−1 DON does not cause cell death in Arabidopsis cell cultures, and its ability to retard heat-induced cell death is light dependent. Under dark conditions, it actually promoted heat-induced cell death. Wheat cultivars differ in their ability to resist this toxin, and we investigated if the ability of wheat to mount defense responses was light dependent. We found no evidence that light affected the transcription of defense genes in DON-treated roots of seedlings of two wheat cultivars, namely cultivar CM82036 that is resistant to DON-induced bleaching of spikelet tissue and cultivar Remus that is not. However, DON treatment of roots led to genotype-dependent and light-enhanced defense transcript accumulation in coleoptiles. Wheat transcripts encoding a phenylalanine ammonia lyase (PAL) gene (previously associated with Fusarium resistance), non-expressor of pathogenesis-related genes-1 (NPR1) and a class III plant peroxidase (POX) were DON-upregulated in coleoptiles of wheat cultivar CM82036 but not of cultivar Remus, and DON-upregulation of these transcripts in cultivar CM82036 was light enhanced. Light and genotype-dependent differences in the DON/DON derivative content of coleoptiles were also observed. These results, coupled with previous findings regarding the effect of DON on plants, show that light either directly or indirectly influences the plant defense responses to DON. PMID:24561479

  13. Light influences how the fungal toxin deoxynivalenol affects plant cell death and defense responses.

    PubMed

    Ansari, Khairul I; Doyle, Siamsa M; Kacprzyk, Joanna; Khan, Mojibur R; Walter, Stephanie; Brennan, Josephine M; Arunachalam, Chanemouga Soundharam; McCabe, Paul F; Doohan, Fiona M

    2014-02-01

    The Fusarium mycotoxin deoxynivalenol (DON) can cause cell death in wheat (Triticum aestivum), but can also reduce the level of cell death caused by heat shock in Arabidopsis (Arabidopsis thaliana) cell cultures. We show that 10 μg mL(-1) DON does not cause cell death in Arabidopsis cell cultures, and its ability to retard heat-induced cell death is light dependent. Under dark conditions, it actually promoted heat-induced cell death. Wheat cultivars differ in their ability to resist this toxin, and we investigated if the ability of wheat to mount defense responses was light dependent. We found no evidence that light affected the transcription of defense genes in DON-treated roots of seedlings of two wheat cultivars, namely cultivar CM82036 that is resistant to DON-induced bleaching of spikelet tissue and cultivar Remus that is not. However, DON treatment of roots led to genotype-dependent and light-enhanced defense transcript accumulation in coleoptiles. Wheat transcripts encoding a phenylalanine ammonia lyase (PAL) gene (previously associated with Fusarium resistance), non-expressor of pathogenesis-related genes-1 (NPR1) and a class III plant peroxidase (POX) were DON-upregulated in coleoptiles of wheat cultivar CM82036 but not of cultivar Remus, and DON-upregulation of these transcripts in cultivar CM82036 was light enhanced. Light and genotype-dependent differences in the DON/DON derivative content of coleoptiles were also observed. These results, coupled with previous findings regarding the effect of DON on plants, show that light either directly or indirectly influences the plant defense responses to DON. PMID:24561479

  14. Adverse effects of plasma transfusion.

    PubMed

    Pandey, Suchitra; Vyas, Girish N

    2012-05-01

    Plasma utilization has increased over the past two decades, and there is a growing concern that many plasma transfusions are inappropriate. Plasma transfusion is not without risk, and certain complications are more likely with plasma than other blood components. Clinical and laboratory investigations of the patients suffering reactions after infusion of fresh-frozen plasma (FFP) define the etiology and pathogenesis of the panoply of adverse effects. We review here the pathogenesis, diagnosis, and management of the risks associated with plasma transfusion. Risks commonly associated with FFP include: 1) transfusion-related acute lung injury, 2) transfusion-associated circulatory overload, and 3) allergic and/or anaphylactic reactions. Other less common risks include 1) transmission of infections, 2) febrile nonhemolytic transfusion reactions, 3) red blood cell alloimmunization, and 4) hemolytic transfusion reactions. The effects of pathogen inactivation or reduction methods on these risks are also discussed. Fortunately, a majority of the adverse effects are not lethal and are adequately treated in clinical practice. PMID:22578374

  15. Heparan Sulfate Proteoglycans May Promote or Inhibit Cancer Progression by Interacting with Integrins and Affecting Cell Migration

    PubMed Central

    Soares, Mariana A.; Teixeira, Felipe C. O. B.; Fontes, Miguel; Arêas, Ana Lúcia; Leal, Marcelo G.; Pavão, Mauro S. G.; Stelling, Mariana P.

    2015-01-01

    The metastatic disease is one of the main consequences of tumor progression, being responsible for most cancer-related deaths worldwide. This review intends to present and discuss data on the relationship between integrins and heparan sulfate proteoglycans in health and cancer progression. Integrins are a family of cell surface transmembrane receptors, responsible for cell-matrix and cell-cell adhesion. Integrins' main functions include cell adhesion, migration, and survival. Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that play important roles as cell receptors, cofactors, and overall direct or indirect contributors to cell organization. Both molecules can act in conjunction to modulate cell behavior and affect malignancy. In this review, we will discuss the different contexts in which various integrins, such as α5, αV, β1, and β3, interact with HSPGs species, such as syndecans and perlecans, affecting tissue homeostasis. PMID:26558271

  16. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice.

    PubMed

    Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge

    2016-06-01

    The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies. PMID:27174054

  17. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal.

    PubMed

    Zhao, Feng; Rahunen, Nelli; Varcoe, John R; Roberts, Alexander J; Avignone-Rossa, Claudio; Thumser, Alfred E; Slade, Robert C T

    2009-03-15

    A microbial fuel cell (MFC) has been developed for removal of sulfur-based pollutants and can be used for simultaneous wastewater treatment and electricity generation. This fuel cell uses an activated carbon cloth+carbon fibre veil composite anode, air-breathing dual cathodes and the sulfate-reducing species Desulfovibrio desulfuricans. 1.16gdm(-3) sulfite and 0.97gdm(-3) thiosulfate were removed from the wastewater at 22 degrees C, representing sulfite and thiosulfate removal conversions of 91% and 86%, respectively. The anode potential was controlled by the concentration of sulfide in the compartment. The performance of the cathode assembly was affected by the concentration of protons in the cation-exchanging ionomer with which the electrocatalyst is co-bound at the three-phase (air, catalyst and support) boundary. PMID:19022647

  18. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice

    PubMed Central

    Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge

    2016-01-01

    The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies. PMID:27174054

  19. Screening for adverse events.

    PubMed

    Karson, A S; Bates, D W

    1999-02-01

    Adverse events (AEs) in medical patients are common, costly, and often preventable. Development of quality improvement programs to decrease the number and impact of AEs demands effective methods for screening for AEs on a routine basis. Here we describe the impact, types, and potential causes of AEs and review various techniques for identifying AEs. We evaluate the use of generic screening criteria in detail and describe a recent study of the sensitivity and specificity of individual generic screening criteria and combinations of these criteria. In general, the most sensitive screens were the least specific and no small sub-set of screens identified a large percentage of adverse events. Combinations of screens that were limited to administrative data were the least expensive, but none were particularly sensitive, although in practice they might be effective since routine screening is currently rarely done. As computer systems increase in sophistication sensitivity will improve. We also discuss recent studies that suggest that programs that screen for and identify AEs can be useful in reducing AE rates. While tools for identifying AEs have strengths and weaknesses, they can play an important role in organizations' quality improvement portfolios. PMID:10468381

  20. A Whole-Genome RNA Interference Screen for Human Cell Factors Affecting Myxoma Virus Replication

    PubMed Central

    Teferi, Wondimagegnehu M.; Dodd, Kristopher; Maranchuk, Rob; Favis, Nicole

    2013-01-01

    Myxoma virus (MYXV) provides an important model for investigating host-pathogen interactions. Recent studies have also highlighted how mutations in transformed human cells can expand the host range of this rabbit virus. Although virus growth depends upon interactions between virus and host proteins, the nature of these interactions is poorly understood. To address this matter, we performed small interfering RNA (siRNA) screens for genes affecting MYXV growth in human MDA-MB-231 cells. By using siRNAs targeting the whole human genome (21,585 genes), a subset of human phosphatases and kinases (986 genes), and also a custom siRNA library targeting selected statistically significant genes (“hits”) and nonsignificant genes (“nonhits”) of the whole human genome screens (88 genes), we identified 711 siRNA pools that promoted MYXV growth and 333 that were inhibitory. Another 32 siRNA pools (mostly targeting the proteasome) were toxic. The overall overlap in the results was about 25% for the hits and 75% for the nonhits. These pro- and antiviral genes can be clustered into pathways and related groups, including well-established inflammatory and mitogen-activated protein kinase pathways, as well as clusters relating to β-catenin and the Wnt signaling cascade, the cell cycle, and cellular metabolism. The validity of a subset of these hits was independently confirmed. For example, treating cells with siRNAs that might stabilize cells in G1, or inhibit passage into S phase, stimulated MYXV growth, and these effects were reproduced by trapping cells at the G1/S boundary with an inhibitor of cyclin-dependent kinases 4/6. By using 2-deoxy-d-glucose and plasmids carrying the gene for phosphofructokinase, we also confirmed that infection is favored by aerobic glycolytic metabolism. These studies provide insights into how the growth state and structure of cells affect MYXV growth and how these factors might be manipulated to advantage in oncolytic virus therapy. PMID

  1. Chronic alcohol exposure affects the cell components involved in membrane traffic in neuronal dendrites.

    PubMed

    Romero, Ana M; Renau-Piqueras, Jaime; Marín, M Pilar; Esteban-Pretel, Guillermo

    2015-01-01

    The specific traffic of the membrane components in neurons is a major requirement to establish and maintain neuronal domains-the axonal and the somatodendritic domains-and their polarized morphology. Unlike axons, dendrites contain membranous organelles, which are involved in the secretory pathway, including the endoplasmic reticulum, the Golgi apparatus and post-Golgi apparatus carriers, the cytoskeleton, and plasma membrane. A variety of molecules and factors are also involved in this process. Previous studies have shown that chronic alcohol exposure negatively affects several of these cell components, such as the Golgi apparatus or cytoskeleton in neurons. Yet very little information is available on the possible effects of this exposure on the remaining cell elements involved in intracellular trafficking in neurons, particularly in dendrites. By qualitative and quantitative electron microscopy, immunofluorescence and immunoblotting, we herein show that chronic exposure to moderate levels (30 mM) of ethanol in cultured neurons reduces the volume and surface density of the rough endoplasmic reticulum, and increases the levels of GRP78, a chaperone involved in endoplasmic reticulum stress. Ethanol also significantly diminishes the proportion of neurons that show an extension of Golgi into dendrites and dendritic Golgi outposts, a structure present exclusively in longer, thicker apical dendrites. Both Golgi apparatus types were also fragmented into a large number of cells. We also investigated the effect of alcohol on the levels of microtubule-based motor proteins KIF5, KIF17, KIFC2, dynein, and myosin IIb, responsible for transporting different cargoes in dendrites. Of these, alcohol differently affects several of them by lowering dynein and raising KIF5, KIFC2, and myosin IIb. These results, together with other previously published ones, suggest that practically all the protein trafficking steps in dendrites are altered to a greater or lesser extent by chronic

  2. Amyloid Precursor Protein (APP) Affects Global Protein Synthesis in Dividing Human Cells

    PubMed Central

    Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J.; Alani, Sara; Bocchetta, Maurizio

    2015-01-01

    Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement—a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis. PMID:25283437

  3. Defects in Protein Folding Machinery Affect Cell Wall Integrity and Reduce Ethanol Tolerance in S. cerevisiae.

    PubMed

    Narayanan, Aswathy; Pullepu, Dileep; Reddy, Praveen Kumar; Uddin, Wasim; Kabir, M Anaul

    2016-07-01

    The chaperonin complex CCT/TRiC (chaperonin containing TCP-1/TCP-1 ring complex) participates in the folding of many crucial proteins including actin and tubulin in eukaryotes. Mutations in genes encoding its subunits can affect protein folding and in turn, the physiology of the organism. Stress response in Saccharomyces cerevisiae is important in fermentation reactions and operates through overexpression and underexpression of genes, thus altering the protein profile. Defective protein folding machinery can disturb this process. In this study, the response of cct mutants to stress conditions in general and ethanol in specific was investigated. CCT1 mutants showed decreased resistance to different conditions tested including osmotic stress, metal ions, surfactants, reducing and oxidising agents. Cct1-3 mutant with the mutation in the conserved ATP-binding region showed irreversible defects than other mutants. These mutants were found to have inherent cell wall defects and showed decreased ethanol tolerance. This study reveals that cell wall defects and ethanol sensitivity are linked. Genetic and proteomic analyses showed that the yeast genes RPS6A (ribosomal protein), SCL1 (proteasomal subunit) and TDH3 (glyceraldehyde-3-phosphate dehydrogenase) on overexpression, improved the growth of cct1-3 mutant on ethanol. We propose the breakdown of common stress response pathways caused by mutations in CCT complex and the resulting scarcity of functional stress-responsive proteins, affecting the cell's defence against different stress agents in cct mutants. Defective cytoskeleton and perturbed cell wall integrity reduce the ethanol tolerance in the mutants which are rescued by the extragenic suppressors. PMID:26992923

  4. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells.

    PubMed

    Sobol, Anna; Galluzzo, Paola; Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J; Alani, Sara; Bocchetta, Maurizio

    2015-05-01

    Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement-a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis. PMID:25283437

  5. Adverse Drug Reactions of the Lower Extremities.

    PubMed

    Adigun, Chris G

    2016-07-01

    Adverse drug reactions (ADRs) are a common cause of dermatologic consultation, involving 2 to 3 per 100 medical inpatients in the United States. Female patients are 1.3 to 1.5 times more likely to develop ADRs, except in children less than 3 years of age, among whom boys are more often affected. Certain drugs are more frequent causes, including aminopenicillins, trimethoprim-sulfamethoxazole, and nonsteroidal antiinflammatory drugs. Chemotherapeutic agents commonly cause adverse reactions to the skin and nails, with certain agents causing particular patterns of reactions. ADRs can involve any area of the skin; the appendages, including hair and nails; as well as mucosa. PMID:27215159

  6. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    PubMed Central

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  7. Assessment of Cultivation Factors that Affect Biomass and Geraniol Production in Transgenic Tobacco Cell Suspension Cultures

    PubMed Central

    Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan

    2014-01-01

    A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources. PMID:25117009

  8. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice.

    PubMed

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  9. Surface-Driven Collagen Self-Assembly Affects Early Osteogenic Stem Cell Signaling.

    PubMed

    Razafiarison, Tojo; Silván, Unai; Meier, Daniela; Snedeker, Jess G

    2016-06-01

    This study reports how extracellular matrix (ECM) ligand self-assembly on biomaterial surfaces and the resulting nanoscale architecture can drive stem cell behavior. To isolate the biological effects of surface wettability on protein deposition, folding, and ligand activity, a polydimethylsiloxane (PDMS)-based platform was developed and characterized with the ability to tune wettability of elastomeric substrates with otherwise equivalent topology, ligand loading, and mechanical properties. Using this platform, markedly different assembly of covalently bound type I collagen monomers was observed depending on wettability, with hydrophobic substrates yielding a relatively rough layer of collagen aggregates compared to a smooth collagen layer on more hydrophilic substrates. Cellular and molecular investigations with human bone marrow stromal cells revealed higher osteogenic differentiation and upregulation of focal adhesion-related components on the resulting smooth collagen layer coated substrates. The initial collagen assembly driven by the PDMS surface directly affected α1β1 integrin/discoidin domain receptor 1 signaling, activation of the extracellular signal-regulated kinase/mitogen activated protein kinase pathway, and ultimately markers of osteogenic stem cell differentiation. We demonstrate for the first time that surface-driven ligand assembly on material surfaces, even on materials with otherwise identical starting topographies and mechanical properties, can dominate the biomaterial surface-driven cell response. PMID:27125602

  10. [Alpha-1 Antitrypsin Affects U0126-Induced Cytotoxicity in Colon Cancer Cell Line (HCT116)].

    PubMed

    Ljujic, M; Mijatovic, S; Bulatovic, M Z; Mojic, M; Maksimovic-Ivanic, D; Radojkovic, D; Topic, A

    2016-01-01

    Alpha-1-antitrypsin (AAT), an acute phase protein, is the principal circulatory anti-protease. This multifunctional protein is encoded by the SERPINA1 gene. Although AAT was recognised as a potential tumour marker, its role in cancer biology remains unknown. Given that it has been demonstrated that AAT has an anti-apoptotic property against non-malignant cells, we aimed to investigate whether AAT affects apoptosis in a colon cancer cell line (HCT116). The presence of AAT in the HCT116 cell culture antagonized cytotoxicity of blockers of MEK1/2, PI3K/Akt pathways as well as NF-κB. The dominantly recovered cell viability was observed in the co-treatment with MEK1/2 inhibitor U0126. In addition, it was revealed that AAT almost completely abolished U0126-induced apoptosis through maintenance of the autophagy process. Our study revealed for the first time that the observed cyto-protection triggered by AAT was accompanied by sustained autophagy which opposed apoptosis. These results may contribute to understanding of the role of AAT in cancer development and evaluation of efficacy of cancer therapy. PMID:27028823

  11. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  12. Translocator Protein (TSPO) Affects Mitochondrial Fatty Acid Oxidation in Steroidogenic Cells.

    PubMed

    Tu, Lan N; Zhao, Amy H; Hussein, Mahmoud; Stocco, Douglas M; Selvaraj, Vimal

    2016-03-01

    Translocator protein (TSPO), also known as the peripheral benzodiazepine receptor, is a highly conserved outer mitochondrial membrane protein present in specific subpopulations of cells within different tissues. In recent studies, the presumptive model depicting mammalian TSPO as a critical cholesterol transporter for steroidogenesis has been refuted by studies examining effects of Tspo gene deletion in vivo and in vitro, biochemical testing of TSPO cholesterol transport function, and specificity of TSPO-mediated pharmacological responses. Nevertheless, high TSPO expression in steroid-producing cells seemed to indicate an alternate function for this protein in steroidogenic mitochondria. To seek an explanation, we used CRISPR/Cas9-mediated TSPO knockout steroidogenic MA-10 Leydig cell (MA-10:TspoΔ/Δ) clones to examine changes to core mitochondrial functions resulting from TSPO deficiency. We observed that 1) MA-10:TspoΔ/Δ cells had a shift in substrate utilization for energy production from glucose to fatty acids with significantly higher mitochondrial fatty acid oxidation (FAO), and increased reactive oxygen species production; and 2) oxygen consumption rate, mitochondrial membrane potential, and proton leak were not different between MA-10:TspoΔ/Δ and MA-10:Tspo+/+ control cells. Consistent with this finding, TSPO-deficient adrenal glands from global TSPO knockout (Tspo(-/-)) mice also showed up-regulation of genes involved in FAO compared with the TSPO floxed (Tspo(fl/fl)) controls. These results demonstrate the first experimental evidence that TSPO can affect mitochondrial energy homeostasis through modulation of FAO, a function that appears to be consistent with high levels of TSPO expression observed in cell types active in lipid storage/metabolism. PMID:26741196

  13. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion.

    PubMed

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-06-15

    Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  14. Umbilical Cord Mesenchymal Stromal Cells Affected by Gestational Diabetes Mellitus Display Premature Aging and Mitochondrial Dysfunction

    PubMed Central

    Kim, Jooyeon; Piao, Ying; Pak, Youngmi Kim; Chung, Dalhee; Han, Yu Mi; Hong, Joon Seok; Jun, Eun Jeong; Shim, Jae-Yoon

    2015-01-01

    Human umbilical cord mesenchymal stromal cells (hUC-MSCs) of Wharton's jelly origin undergo adipogenic, osteogenic, and chondrogenic differentiation in vitro. Recent studies have consistently shown their therapeutic potential in various human disease models. However, the biological effects of major pregnancy complications on the cellular properties of hUC-MSCs remain to be studied. In this study, we compared the basic properties of hUC-MSCs obtained from gestational diabetes mellitus (GDM) patients (GDM-UC-MSCs) and normal pregnant women (N-UC-MSCs). Assessments of cumulative cell growth, MSC marker expression, cellular senescence, and mitochondrial function-related gene expression were performed using a cell count assay, senescence-associated β-galactosidase staining, quantitative real-time reverse transcription–polymerase chain reaction, immunoblotting, and cell-based mitochondrial functional assay system. When compared with N-UC-MSCs, GDM-UC-MSCs showed decreased cell growth and earlier cellular senescence with accumulation of p16 and p53, even though they expressed similar levels of CD105, CD90, and CD73 MSC marker proteins. GDM-UC-MSCs also displayed significantly lower osteogenic and adipogenic differentiation potentials than N-UC-MSCs. Furthermore, GDM-UC-MSCs exhibited a low mitochondrial activity and significantly reduced expression of the mitochondrial function regulatory genes ND2, ND9, COX1, PGC-1α, and TFAM. Here, we report intriguing and novel evidence that maternal metabolic derangement during gestation affects the biological properties of fetal cells, which may be a component of fetal programming. Our findings also underscore the importance of the critical assessment of the biological impact of maternal–fetal conditions in biological studies and clinical applications of hUC-MSCs. PMID:25437179

  15. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences

    PubMed Central

    Dean, Afshan; van den Driesche, Sander; Wang, Yili; McKinnell, Chris; Macpherson, Sheila; Eddie, Sharon L.; Kinnell, Hazel; Hurtado-Gonzalez, Pablo; Chambers, Tom J.; Stevenson, Kerrie; Wolfinger, Elke; Hrabalkova, Lenka; Calarrao, Ana; Bayne, Rosey AL; Hagen, Casper P.; Mitchell, Rod T.; Anderson, Richard A.; Sharpe, Richard M.

    2016-01-01

    Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters. PMID:26813099

  16. ISMP Adverse Drug Reactions

    PubMed Central

    2013-01-01

    The purpose of this feature is to heighten awareness of specific adverse drug reactions (ADRs), discuss methods of prevention, and promote reporting of ADRs to the US Food and Drug Administration’s (FDA’s) MedWatch program (800-FDA-1088). If you have reported an interesting, preventable ADR to MedWatch, please consider sharing the account with our readers. Write to Dr. Mancano at ISMP, 200 Lakeside Drive, Suite 200, Horsham, PA 19044 (phone: 215-707-4936; e-mail: mmancano@temple.edu). Your report will be published anonymously unless otherwise requested. This feature is provided by the Institute for Safe Medication Practices (ISMP) in cooperation with the FDA’s MedWatch program and Temple University School of Pharmacy. ISMP is an FDA MedWatch partner. PMID:24421544

  17. [Cutaneous adverse drug reactions].

    PubMed

    Lebrun-Vignes, B; Valeyrie-Allanore, L

    2015-04-01

    Cutaneous adverse drug reactions (CADR) represent a heterogeneous field including various clinical patterns without specific features suggesting drug causality. Exanthematous eruptions, urticaria and vasculitis are the most common forms of CADR. Fixed eruption is uncommon in western countries. Serious reactions (fatal outcome, sequelae) represent 2% of CADR: bullous reactions (Stevens-Johnson syndrome, toxic epidermal necrolysis), DRESS (drug reaction with eosinophilia and systemic symptoms or drug-induced hypersensitivity syndrome) and acute generalized exanthematous pustulosis (AGEP). These forms must be quickly diagnosed to guide their management. The main risk factors are immunosuppression, autoimmunity and some HLA alleles in bullous reactions and DRESS. Most systemic drugs may induce cutaneous adverse reactions, especially antibiotics, anticonvulsivants, antineoplastic drugs, non-steroidal anti-inflammatory drugs, allopurinol and contrast media. Pathogenesis includes immediate or delayed immunologic mechanism, usually not related to dose, and pharmacologic/toxic mechanism, commonly dose-dependent or time-dependent. In case of immunologic mechanism, allergologic exploration is possible to clarify drug causality, with a variable sensitivity according to the drug and to the CADR type. It includes epicutaneous patch testing, prick test and intradermal test. However, no in vivo or in vitro test can confirm the drug causality. To determine the cause of the eruption, a logical approach based on clinical characteristics, chronologic factors and elimination of differential diagnosis is required, completed with a literature search. A reporting to pharmacovigilance network is essential in case of a serious CADR whatever the suspected drug and in any case if the involved drug is a newly marketed one or unusually related to cutaneous reactions. PMID:25458866

  18. Environment temperature affects cell proliferation in the spinal cord and brain of juvenile turtles.

    PubMed

    Radmilovich, Milka; Fernández, Anabel; Trujillo-Cenóz, Omar

    2003-09-01

    The spinal cords and brains--comprising dorsal cortex (DC), medial cortex (MC) and diencephalon (Dien)--of juvenile turtles acclimated to warm temperature [27-30 degrees C; warm-acclimated turtles (WATs)] revealed higher density values of bromodeoxyuridine-labeled cells (BrdU-LCs) than those acclimated to a cooler environment [5-14 degrees C; cold-acclimated turtles (CATs)]. Both populations were under the influence of the seasonal daily light-dark rhythms. Pronounced differences between WATs and CATs (independent t-test; confidence level, P<0.01) were found in the central area of the spinal gray matter and in the ependymal epithelium lining the brain ventricles. Forebrain regions (DC, MC and Dien) also revealed significant differences between WATs and CATs (independent t-test; confidence level, P<0.01-0.05). Unexplored biological clocks that may be affecting cell proliferation were equalized by performing paired experiments involving one WAT and one CAT. Both animals were injected on the same day at the same time and both were sacrificed 24 h later. These experiments confirmed that a warm environment increased cell proliferation in the CNS of turtles. Double- and triple-labeling experiments involving anti-BrdU antibody together with anti-glial protein antibodies revealed that temperature modulates not only cell populations expressing glial markers but also other cells that do not express them. As expected, in the case of short post-injection (BrdU) surviving time points, no cells were found colabeling for BrdU and NeuN (neuronal marker). The probable direct effect of temperature on the cell division rate should be analyzed together with potential indirect effects involving increased motor activity and increased food intake. The fate of the increased BrdU-LCs (death, permanence as progenitor cells or differentiation following neuronal or glial lines) remains a matter for further investigation. Results are discussed in the light of current opinions concerned with

  19. Psychosocial burden of sickle cell disease on parents with an affected child in Cameroon.

    PubMed

    Wonkam, Ambroise; Mba, Caryl Zameyo; Mbanya, Dora; Ngogang, Jeanne; Ramesar, Raj; Angwafo, Fru F

    2014-04-01

    The chronicity of Sickle Cell Disease (SCD) could impair the quality of life of caregivers. We performed a quantitative study to assess various indices of psychosocial burden on Cameroonian parents (N = 130) with at least one living SCD-affected child. Demographic and medical information were obtained from the participants and the review of the patients' medical records. The survey instrument included a 38-item stress factors scale using Likert-type statements, evaluating general perceptions of stress and five main specific stressors: disease factors (clinical severity), hospital factors, financial factors, family factors (life/dynamic) and SCD-child factors (perceived quality of life). The items pertaining to burden involved four response options with increasing severity: 0, 1, 2 or 3. Descriptive statistics and non-parametric tests were used for analysis. Participants were typically aged 38 years, urban dwellers (89%), female (80%), married (60.2%), employed (61.7%) and had secondary/tertiary education (82%). Median age of SCD-affected children was 9 years. The median age at diagnosis of SCD was 6 months; 47.8% had more than 3 painful crises per year. The majority of participants (88.3%) experienced moderate to severe difficulty coping with SCD. On a 0-3 scale, median score of SCD clinical severity was the major factor to undermine the coping ability of parents (2.2); vaso-occlusive painful events (>3 per year) was the disease-related stressor that most impacted their coping ability. The family life dynamic was the least stressful (0.7). Unemployment affected all the stressors' categories. Stressors scores also increased with female, single, low education level, age of SCD-affected children or more than 3 children in the family. In Cameroon, there is an urgent need to implement practices that ensure affordable access to health-care and activities that would reduce SCD morbidity. PMID:23881472

  20. Cell position during larval development affects postdiapause development in Megachile rotundata (Hymenoptera: Megachilidae).

    PubMed

    Yocum, George D; Rinehart, Joseph P; Kemp, William P

    2014-08-01

    Megachile rotundata (F.) (Hymenoptera: Megachilidae) is the primary pollinator of alfalfa in the northwestern United States and western Canada and provides pollination services for onion, carrot, hybrid canola, various legumes, and other specialty crops. M. rotundata females are gregarious, nest in cavities either naturally occurring or in artificial nesting blocks, where they construct a linear series of brood cells. Because of the physical layout of the nest, the age of the larvae within the nest and the microenvironment the individual larvae experience will vary. These interacting factors along with other maternal inputs affect the resulting phenotypes of the nest mates. To further our understanding of in-nest physiology, gender and developmental rates were examined in relationship to cell position within the nest. Eighty-two percent of the females were located within the first three cells, those furthest from the nest entrance. For those individuals developing in cells located in the deepest half of the nest, the sex of the previous bee had a significant effect on the female decision of the gender of the following nest mate. Removing the prepupae from the nest and rearing them under identical conditions demonstrated that position within the nest during larval development had a significant effect on the postdiapause developmental rates, with males whose larval development occurred deeper in the nest developing more slowly than those toward the entrance. No positional effect on postdiapause developmental rates was noted for the females. The cell position effect on male postdiapause developmental rate demonstrates that postdiapause development is not a rigid physiological mechanism uniform in all individuals, but is a dynamic plastic process shaped by past environmental conditions. PMID:24914676

  1. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    PubMed

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed. PMID:21533611

  2. Donor Age of Human Platelet Lysate Affects Proliferation and Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Lohmann, Michael; Walenda, Gudrun; Hemeda, Hatim; Joussen, Sylvia; Drescher, Wolf; Jockenhoevel, Stefan; Hutschenreuter, Gabriele; Zenke, Martin; Wagner, Wolfgang

    2012-01-01

    The regenerative potential declines upon aging. This might be due to cell-intrinsic changes in stem and progenitor cells or to influences by the microenvironment. Mesenchymal stem cells (MSC) raise high hopes in regenerative medicine. They are usually culture expanded in media with fetal calf serum (FCS) or other serum supplements such as human platelet lysate (HPL). In this study, we have analyzed the impact of HPL-donor age on culture expansion. 31 single donor derived HPLs (25 to 57 years old) were simultaneously compared for culture of MSC. Proliferation of MSC did not reveal a clear association with platelet counts of HPL donors or growth factors concentrations (PDGF-AB, TGF-β1, bFGF, or IGF-1), but it was significantly higher with HPLs from younger donors (<35 years) as compared to older donors (>45 years). Furthermore, HPLs from older donors increased activity of senescence-associated beta-galactosidase (SA-βgal). HPL-donor age did not affect the fibroblastoid colony-forming unit (CFU-f) frequency, immunophenotype or induction of adipogenic differentiation, whereas osteogenic differentiation was significantly lower with HPLs from older donors. Concentrations of various growth factors (PDGF-AB, TGF-β1, bFGF, IGF-1) or hormones (estradiol, parathormone, leptin, 1,25 vitamin D3) were not associated with HPL-donor age or MSC growth. Taken together, our data support the notion that aging is associated with systemic feedback mechanisms acting on stem and progenitor cells, and this is also relevant for serum supplements in cell culture: HPLs derived from younger donors facilitate enhanced expansion and more pronounced osteogenic differentiation. PMID:22662236

  3. Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142.

    PubMed

    Stöckel, Jana; Elvitigala, Thanura R; Liberton, Michelle; Pakrasi, Himadri B

    2013-01-01

    Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142. PMID:23457634

  4. PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice

    PubMed Central

    Iglesias, José; Barg, Sebastian; Vallois, David; Lahiri, Shawon; Roger, Catherine; Yessoufou, Akadiri; Pradevand, Sylvain; McDonald, Angela; Bonal, Claire; Reimann, Frank; Gribble, Fiona; Debril, Marie-Bernard; Metzger, Daniel; Chambon, Pierre; Herrera, Pedro; Rutter, Guy A.; Prentki, Marc; Thorens, Bernard; Wahli, Walter

    2012-01-01

    PPARβ/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in muscle, adipose tissue, and liver. However, its function in pancreas remains ill defined. To gain insight into its hypothesized role in β cell function, we specifically deleted Pparb/d in the epithelial compartment of the mouse pancreas. Mutant animals presented increased numbers of islets and, more importantly, enhanced insulin secretion, causing hyperinsulinemia. Gene expression profiling of pancreatic β cells indicated a broad repressive function of PPARβ/δ affecting the vesicular and granular compartment as well as the actin cytoskeleton. Analyses of insulin release from isolated PPARβ/δ-deficient islets revealed an accelerated second phase of glucose-stimulated insulin secretion. These effects in PPARβ/δ-deficient islets correlated with increased filamentous actin (F-actin) disassembly and an elevation in protein kinase D activity that altered Golgi organization. Taken together, these results provide evidence for a repressive role for PPARβ/δ in β cell mass and insulin exocytosis, and shed a new light on PPARβ/δ metabolic action. PMID:23093780

  5. Carbon Availability Affects Diurnally Controlled Processes and Cell Morphology of Cyanothece 51142

    PubMed Central

    Stöckel, Jana; Elvitigala, Thanura R.; Liberton, Michelle; Pakrasi, Himadri B.

    2013-01-01

    Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142. PMID:23457634

  6. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells.

    PubMed

    Söllner, Christian; Rauch, Gerd-Jörg; Siemens, Jan; Geisler, Robert; Schuster, Stephan C; Müller, Ulrich; Nicolson, Teresa

    2004-04-29

    Hair cells have highly organized bundles of apical projections, or stereocilia, that are deflected by sound and movement. Displacement of stereocilia stretches linkages at the tips of stereocilia that are thought to gate mechanosensory channels. To identify the molecular machinery that mediates mechanotransduction in hair cells, zebrafish mutants were identified with defects in balance and hearing. In sputnik mutants, stereociliary bundles are splayed to various degrees, with individuals displaying reduced or absent mechanotransduction. Here we show that the defects in sputnik mutants are caused by mutations in cadherin 23 (cdh23). Mutations in Cdh23 also cause deafness and vestibular defects in mice and humans, and the protein is present in hair bundles. We show that zebrafish Cdh23 protein is concentrated near the tips of hair bundles, and that tip links are absent in homozygous sputnik(tc317e) larvae. Moreover, tip links are absent in larvae carrying weak alleles of cdh23 that affect mechanotransduction but not hair bundle integrity. We conclude that Cdh23 is an essential tip link component required for hair-cell mechanotransduction. PMID:15057246

  7. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia

    PubMed Central

    Bendinelli, Paola; Maroni, Paola; Matteucci, Emanuela; Desiderio, Maria Alfonsina

    2016-01-01

    Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine), and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients. PMID:27187355

  8. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia.

    PubMed

    Bendinelli, Paola; Maroni, Paola; Matteucci, Emanuela; Desiderio, Maria Alfonsina

    2016-01-01

    Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine), and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients. PMID:27187355

  9. Nanog RNA-binding proteins YBX1 and ILF3 affect pluripotency of embryonic stem cells.

    PubMed

    Guo, Chuanliang; Xue, Yan; Yang, Guanheng; Yin, Shang; Shi, Wansheng; Cheng, Yan; Yan, Xiaoshuang; Fan, Shuyue; Zhang, Huijun; Zeng, Fanyi

    2016-08-01

    Nanog is a well-known transcription factor that plays a fundamental role in stem cell self-renewal and the maintenance of their pluripotent cell identity. There remains a large data gap with respect to the spectrum of the key pluripotency transcription factors' interaction partners. Limited information is available concerning Nanog-associated RNA-binding proteins (RBPs), and the intrinsic protein-RNA interactions characteristic of the regulatory activities of Nanog. Herein, we used an improved affinity protocol to purify Nanog-interacting RBPs from mouse embryonic stem cells (ESCs), and 49 RBPs of Nanog were identified. Among them, the interaction of YBX1 and ILF3 with Nanog mRNA was further confirmed by in vitro assays, such as Western blot, RNA immunoprecipitation (RIP), and ex vivo methods, such as immunofluorescence staining and fluorescent in situ hybridization (FISH), MS2 in vivo biotin-tagged RNA affinity purification (MS2-BioTRAP). Interestingly, RNAi studies revealed that YBX1 and ILF3 positively affected the expression of Nanog and other pluripotency-related genes. Particularly, downregulation of YBX1 or ILF3 resulted in high expression of mesoderm markers. Thus, a reduction in the expression of YBX1 and ILF3 controls the expression of pluripotency-related genes in ESCs, suggesting their roles in further regulation of the pluripotent state of ESCs. PMID:26289635

  10. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function.

    PubMed

    Stelzer, I; Kröpfl, J M; Fuchs, R; Pekovits, K; Mangge, H; Raggam, R B; Gruber, H-J; Prüller, F; Hofmann, P; Truschnig-Wilders, M; Obermayer-Pietsch, B; Haushofer, A C; Kessler, H H; Mächler, P

    2015-10-01

    Although amateur sports have become increasingly competitive within recent decades, there are as yet few studies on the possible health risks for athletes. This study aims to determine the impact of ultra-endurance exercise-induced stress on the number and function of circulating hematopoietic progenitor cells (CPCs) and hematological, inflammatory, clinical, metabolic, and stress parameters in moderately trained amateur athletes. Following ultra-endurance exercise, there were significant increases in leukocytes, platelets, interleukin-6, fibrinogen, tissue enzymes, blood lactate, serum cortisol, and matrix metalloproteinase-9. Ultra-endurance exercise did not influence the number of CPCs but resulted in a highly significant decline of CPC functionality after the competition. Furthermore, Epstein-Barr virus was seen to be reactivated in one of seven athletes. The link between exercise-induced stress and decline of CPC functionality is supported by a negative correlation between cortisol and CPC function. We conclude that ultra-endurance exercise induces metabolic stress and an inflammatory response that affects not only mature hematopoietic cells but also the function of the immature hematopoietic stem and progenitor cell fraction, which make up the immune system and provide for regeneration. PMID:25438993

  11. Cations in mammalian cells and chromosomes: Sample preparation protocols affect elemental abundances by SIMS

    NASA Astrophysics Data System (ADS)

    Levi-Setti, R.; Gavrilov, K. L.; Neilly, M. E.

    2006-07-01

    The focus of our current research aims at detailing and quantifying the presence of cations, primarily Ca and Mg, in mammalian cells and chromosomes throughout the different stages of the cell cycle, using our high resolution scanning ion microprobe, the UC-SIM. The 45 keV Ga + probe of this instrument, typically ˜40 nm in diameter, carries a current of 30-40 pA, appropriate for surface SIMS studies, but limited in sample erosion rate for dynamic SIMS mapping over cell-size areas, of order 100 μm × 100 μm. Practical and reliable use of this probe toward the above SIMS goals requires a careful matching of the latter factors with the physical and chemical consequences of sample preparation protocols. We examine here how the preferred sample cryo-preservation methodologies such as freeze-fracture and lyophilization affect high resolution SIMS analysis, and, from this standpoint, develop and evaluate the advantages and disadvantages of fast alternate approaches to drying frozen samples. The latter include the use of methanol, ethanol, and methanol/acetic acid fixative. Methanol-dried freeze-fractured samples preserve histological morphology and yield Ca and Mg distributions containing reliable differential dynamical information, when compared with those following lyophilization.

  12. Adverse childhood experiences and health anxiety in adulthood.

    PubMed

    Reiser, Sarah J; McMillan, Katherine A; Wright, Kristi D; Asmundson, Gordon J G

    2014-03-01

    Childhood experiences are thought to predispose a person to the development of health anxiety later in life. However, there is a lack of research investigating the influence of specific adverse experiences (e.g., childhood abuse, household dysfunction) on this condition. The current study examined the cumulative influence of multiple types of childhood adversities on health anxiety in adulthood. Adults 18-59 years of age (N=264) completed a battery of measures to assess adverse childhood experiences, health anxiety, and associated constructs (i.e., negative affect and trait anxiety). Significant associations were observed between adverse childhood experiences, health anxiety, and associated constructs. Hierarchical multiple regression analysis indicted that adverse childhood experiences were predictive of health anxiety in adulthood; however, the unique contribution of these experience were no longer significant following the inclusion of the other variables of interest. Subsequently, mediation analyses indicated that both negative affect and trait anxiety independently mediated the relationship between adverse childhood experiences and health anxiety in adulthood. Increased exposure to adverse childhood experiences is associated with higher levels of health anxiety in adulthood; this relationship is mediated through negative affect and trait anxiety. Findings support the long-term negative impact of cumulative adverse childhood experiences and emphasize the importance of addressing negative affect and trait anxiety in efforts to prevent and treat health anxiety. PMID:24011493

  13. Adverse effects of reduced oxygen tension on the proliferative capacity of rat kidney and insulin-secreting cell lines involve DNA damage and stress responses

    PubMed Central

    Chen, Jian-Hua; Jones, R. Huw; Tarry-Adkins, Jane; Smith, Noel H.; Ozanne, Susan E.

    2008-01-01

    Standard cell culture conditions do not reflect the physiological environment in terms of oxygen tension (20% vs 3%). The effects of lowering oxygen tension on cell proliferation in culture can be beneficial as well as detrimental depending on the cell line studied, but the molecular mechanism underlying such effects is not fully understood. We observed that the proliferative capacity of the rat cell lines NRK and INS-1 was inhibited when cultured under 3% oxygen as compared to 20% oxygen. Suppression of proliferation in NRK cells was accompanied by induction of DNA double strand breaks whereas in INS-1 cells it was accompanied by up-regulation of p53 and p27. Although Sirt1 was up-regulated in both cell lines by 3% oxygen the effects on antioxidant enzymes (MnSOD, CuZnSOD and catalase) were cell line specific. Marked up-regulation of heme oxygenase-1 (HO-1) was detected in both NRK and INS-1 cells when cultured in 3% oxygen. HO-1 expression can be readily induced by exposure to hydrogen peroxide in culture. These results suggest that reduced oxygen tension suppresses the proliferative capacity of these two cell lines through a stress response that is similar to an oxidative stress response but the molecular events that lead to the reduced cell proliferation are cell line specific. PMID:18692496

  14. Adverse effects of reduced oxygen tension on the proliferative capacity of rat kidney and insulin-secreting cell lines involve DNA damage and stress responses

    SciTech Connect

    Chen Jianhua Jones, R. Huw; Tarry-Adkins, Jane; Smith, Noel H.; Ozanne, Susan E.

    2008-10-01

    Standard cell culture conditions do not reflect the physiological environment in terms of oxygen tension (20% vs 3%). The effects of lowering oxygen tension on cell proliferation in culture can be beneficial as well as detrimental depending on the cell line studied, but the molecular mechanism underlying such effects is not fully understood. We observed that the proliferative capacity of the rat cell lines NRK and INS-1 was inhibited when cultured under 3% oxygen as compared to 20% oxygen. Suppression of proliferation in NRK cells was accompanied by induction of DNA double strand breaks whereas in INS-1 cells it was accompanied by up-regulation of p53 and p27. Although Sirt1 was up-regulated in both cell lines by 3% oxygen the effects on antioxidant enzymes (MnSOD, CuZnSOD and catalase) were cell line specific. Marked up-regulation of heme oxygenase-1 (HO-1) was detected in both NRK and INS-1 cells when cultured in 3% oxygen. HO-1 expression can be readily induced by exposure to hydrogen peroxide in culture. These results suggest that reduced oxygen tension suppresses the proliferative capacity of these two cell lines through a stress response that is similar to an oxidative stress response but the molecular events that lead to the reduced cell proliferation are cell line specific.

  15. Polyphenolic composition of grape stem extracts affects antioxidant activity in endothelial and muscle cells.

    PubMed

    Goutzourelas, Nikolaos; Stagos, Dimitrios; Spanidis, Ypatios; Liosi, Maria; Apostolou, Anna; Priftis, Alexandros; Haroutounian, Serko; Spandidos, Demetrios A; Tsatsakis, Aristidis M; Kouretas, Demetrios

    2015-10-01

    The aim of the present study was the assessment of the antioxidant effects of polyphenolic extracts derived from the stems of three Greek grape varieties (Moshomayro, Mavrotragano and Mandilaria) in endothelial (EA.hy926) and muscle (C2C12) cells. We also investigated the effects of the polyphenolic composition on the antioxidant effects of the grape stem extracts. For this purpose, the endothelial and muscle cells were treated with low non-cytotoxic concentrations of the extracts for 24 h in order to assess the effects of the extracts on cellular redox status using oxidative stress biomarkers. The oxidative stress markers were thiobarbituric acid reactive substances (TBARS), protein carbonyl (CARB) levels, reactive oxygen species (ROS) levels and glutathione (GSH) levels. The results revealed that treatment of the EA.hy926 cells with Mandilaria extract significantly decreased the TBARS levels by 14.8% and the CARB levels by 25.9 %, while it increased the GSH levels by 15.8% compared to the controls. Moreover, treatment of the EA.hy926 cells with Mavrotragano extract significantly increased the GSH levels by 20.2%, while it significantly decreased the TBARS and CARB levels by 12.5% and 16.6%, respectively. Treatment of the C2C12 cells with Mandilaria extract significantly decreased the TBARS levels by 47.3 %, the CARB levels by 39.0 % and the ROS levels by 21.8%, while it increased the GSH levels by 22.6% compared to the controls. Moreover, treatment of the C2C12 cells with Mavrotragano significantly decreased the TBARS, CARB and ROS levels by 36.2%, 35.9% and 16.5%, respectively. In conclusion, to the best of our knowledgel, our results demonstrate for the first time that treatment with grape stem extracts at low concentrations improves the redox status of endothelial and muscle cells. Thus, grape stem extracts may be used for developing antioxidant food supplements or biofunctional foods. However, it was also found that the polyphenolic composition of grape stem

  16. Polyphenolic composition of grape stem extracts affects antioxidant activity in endothelial and muscle cells

    PubMed Central

    GOUTZOURELAS, NIKOLAOS; STAGOS, DIMITRIOS; SPANIDIS, YPATIOS; LIOSI, MARIA; APOSTOLOU, ANNA; PRIFTIS, ALEXANDROS; HAROUTOUNIAN, SERKO; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.; KOURETAS, DEMETRIOS

    2015-01-01

    The aim of the present study was the assessment of the antioxidant effects of polyphenolic extracts derived from the stems of three Greek grape varieties (Moshomayro, Mavrotragano and Mandilaria) in endothelial (EA.hy926) and muscle (C2C12) cells. We also investigated the effects of the polyphenolic composition on the antioxidant effects of the grape stem extracts. For this purpose, the endothelial and muscle cells were treated with low non-cytotoxic concentrations of the extracts for 24 h in order to assess the effects of the extracts on cellular redox status using oxidative stress biomarkers. The oxidative stress markers were thiobarbituric acid reactive substances (TBARS), protein carbonyl (CARB) levels, reactive oxygen species (ROS) levels and glutathione (GSH) levels. The results revealed that treatment of the EA.hy926 cells with Mandilaria extract significantly decreased the TBARS levels by 14.8% and the CARB levels by 25.9 %, while it increased the GSH levels by 15.8% compared to the controls. Moreover, treatment of the EA.hy926 cells with Mavrotragano extract significantly increased the GSH levels by 20.2%, while it significantly decreased the TBARS and CARB levels by 12.5% and 16.6%, respectively. Treatment of the C2C12 cells with Mandilaria extract significantly decreased the TBARS levels by 47.3 %, the CARB levels by 39.0 % and the ROS levels by 21.8%, while it increased the GSH levels by 22.6% compared to the controls. Moreover, treatment of the C2C12 cells with Mavrotragano significantly decreased the TBARS, CARB and ROS levels by 36.2%, 35.9% and 16.5%, respectively. In conclusion, to the best of our knowledgel, our results demonstrate for the first time that treatment with grape stem extracts at low concentrations improves the redox status of endothelial and muscle cells. Thus, grape stem extracts may be used for developing antioxidant food supplements or biofunctional foods. However, it was also found that the polyphenolic composition of grape stem

  17. Sensitivity of ovarian cancer cells to acetaminophen reveals biological pathways that affect patient survival

    PubMed Central

    BUSH, STEPHEN H.; TOLLIN, SHARON; MARCHION, DOUGLAS C.; XIONG, YIN; ABBASI, FOROUGH; RAMIREZ, INGRID J.; ZGHEIB, NADIM BOU; BOAC, BERNADETTE; JUDSON, PATRICIA L.; CHON, HYE SOOK; WENHAM, ROBERT M.; APTE, SACHIN M.; CUBITT, CHRISTOPHER L.; BERGLUND, ANDERS E.; HAVRILESKY, LAURA J.; LANCASTER, JOHNATHAN M.

    2016-01-01

    Experimental and epidemiological data support the potential activity of acetaminophen against ovarian cancer (OVCA). In this study, we sought to confirm the activity of acetaminophen in OVCA cell lines and to investigate the molecular basis of response. A total of 16 OVCA cell lines underwent pretreatment (baseline) genome-wide expression measurements and were then treated with and analyzed for acetaminophen sensitivity. Pearson's correlation analysis was performed to identify genes that were associated with OVCA acetaminophen response. The identified genes were subjected to pathway analysis, and the expression of each represented pathway was summarized using principal component analysis. OVCA acetaminophen response pathways were analyzed in 4 external clinico-genomic datasets from 820 women for associations with overall survival from OVCA. Acetaminophen exhibited antiproliferative activity against all tested OVCA cell lines, with half maximal inhibitory concentration values ranging from 63.2 to 403 µM. Pearson's correlation followed by biological pathway analysis identified 13 pathways to be associated with acetaminophen sensitivity (P<0.01). Associations were observed between patient survival from OVCA and expression of the following pathways: Development/angiotensin signaling via β-arrestin (P=0.04), protein folding and maturation/angiotensin system maturation (P=0.02), signal transduction/c-Jun N-terminal kinase (JNK) pathway (P=0.03) and androstenedione and testosterone biosynthesis and metabolism (P=0.02). We confirmed that acetaminophen was active against OVCA cells in vitro. Furthermore, we identified 4 molecular signaling pathways associated with acetaminophen response that may also affect overall survival in women with OVCA, including the JNK pathway, which has been previously implicated in the mechanism of action of acetaminophen and is predictive of decreased survival in women with OVCA. PMID:26998291

  18. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  19. Energy balance affected by electrolyte recirculation and operating modes in microbial fuel cells.

    PubMed

    Jacobson, Kyle S; Kelly, Patrick T; He, Zhen

    2015-03-01

    Energy recovery and consumption in a microbial fuel cell (MFC) can be significantly affected by the operating conditions. This study investigated the effects of electrolyte recirculation and operation mode (continuous vs sequence batch reactor) on the energy balance in a tubular MFC. It was found that decreasing the anolyte recirculation also decreased the energy recovery. Because of the open environment of the cathode electrode, the catholyte recirculation consumed 10 to 50 times more energy than the anolyte recirculation, and resulted in negative energy balances despite the reduction of the anolyte recirculation. Reducing the catholyte recirculation to 20% led to a positive energy balance of 0.0288 kWh m(-3). The MFC operated as a sequence batch reactor generated less energy and had a lower energy balance than the one with continuous operation. Those results encourage the further development of MFC technology to achieve neutral or even positive energy output. PMID:25842536

  20. Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner

    NASA Astrophysics Data System (ADS)

    Arulmoli, Janahan; Pathak, Medha M.; McDonnell, Lisa P.; Nourse, Jamison L.; Tombola, Francesco; Earthman, James C.; Flanagan, Lisa A.

    2015-02-01

    Neural stem and progenitor cell (NSPC) fate is strongly influenced by mechanotransduction as modulation of substrate stiffness affects lineage choice. Other types of mechanical stimuli, such as stretch (tensile strain), occur during CNS development and trauma, but their consequences for NSPC differentiation have not been reported. We delivered a 10% static equibiaxial stretch to NSPCs and examined effects on differentiation. We found static stretch specifically impacts NSPC differentiation into oligodendrocytes, but not neurons or astrocytes, and this effect is dependent on particular extracellular matrix (ECM)-integrin linkages. Generation of oligodendrocytes from NSPCs was reduced on laminin, an outcome likely mediated by the α6 laminin-binding integrin, whereas similar effects were not observed for NSPCs on fibronectin. Our data demonstrate a direct role for tensile strain in dictating the lineage choice of NSPCs and indicate the dependence of this phenomenon on specific substrate materials, which should be taken into account for the design of biomaterials for NSPC transplantation.

  1. Micellar lipid composition profoundly affects LXR-dependent cholesterol transport across CaCo2 cells.

    PubMed

    Petruzzelli, Michele; Groen, Albert K; van Erpecum, Karel J; Vrins, Carlos; van der Velde, Astrid E; Portincasa, Piero; Palasciano, Giuseppe; van Berge Henegouwen, Gerard P; Lo Sasso, Giuseppe; Morgano, Annalisa; Moschetta, Antonio

    2009-04-17

    Intraluminal phospholipids affect micellar solubilization and absorption of cholesterol. We here study cholesterol transport from taurocholate-phospholipid-cholesterol micelles to CaCo2 cells, and associated effects on ABC-A1 mediated cholesterol efflux. Micellar incorporation of egg-yolk-phosphatidylcholine markedly increased apical retention of the sterol with decreased expression of ABC-A1, an effect that is prevented by synthetic liver X receptor (LXR) or retinoid X receptor (RXR) agonists. On the other hand, incorporation of lyso-phosphatidylcholine (LysoPC) increased ABC-A1-HDL-dependent basolateral cholesterol efflux, an effect that is abated when LXR is silenced. Thus, the modulation of cholesterol metabolism via intraluminal phospholipids is related to the activity of the oxysterol nuclear receptor LXR. PMID:19303409

  2. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells.

    PubMed

    Das, Amitabh; Chai, Jin Choul; Jung, Kyoung Hwa; Das, Nando Dulal; Kang, Sung Chul; Lee, Young Seek; Seo, Hyemyung; Chai, Young Gyu

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53(-/-) NE-4Cs). We determined the effect of LPS as a model of inflammation in p53(-/-) NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53(-/-) NE-4Cs and in LPS-stimulated JMJD2A-kd p53(-/-) NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. PMID:25193078

  3. ADVERSE CUTANEOUS DRUG REACTION

    PubMed Central

    Nayak, Surajit; Acharjya, Basanti

    2008-01-01

    In everyday clinical practice, almost all physicians come across many instances of suspected adverse cutaneous drug reactions (ACDR) in different forms. Although such cutaneous reactions are common, comprehensive information regarding their incidence, severity and ultimate health effects are often not available as many cases go unreported. It is also a fact that in the present world, almost everyday a new drug enters market; therefore, a chance of a new drug reaction manifesting somewhere in some form in any corner of world is unknown or unreported. Although many a times, presentation is too trivial and benign, the early identification of the condition and identifying the culprit drug and omit it at earliest holds the keystone in management and prevention of a more severe drug rash. Therefore, not only the dermatologists, but all practicing physicians should be familiar with these conditions to diagnose them early and to be prepared to handle them adequately. However, we all know it is most challenging and practically difficult when patient is on multiple medicines because of myriad clinical symptoms, poorly understood multiple mechanisms of drug-host interaction, relative paucity of laboratory testing that is available for any definitive and confirmatory drug-specific testing. Therefore, in practice, the diagnosis of ACDR is purely based on clinical judgment. In this discussion, we will be primarily focusing on pathomechanism and approach to reach a diagnosis, which is the vital pillar to manage any case of ACDR. PMID:19967009

  4. Expression of Selenoprotein Genes Is Affected by Heat Stress in IPEC-J2 Cells.

    PubMed

    Cao, Lei; Tang, Jiayong; Li, Qiang; Xu, Jingyang; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Shang, Haiying; Cai, Jingyi; Zhao, Hua

    2016-08-01

    The aim of this study was to explore the impacts of heat stress (HS) on expressions of selenoprotein genes in IPEC-J2 cells. Cells were cultured with 5 % CO2-humidified chamber at 37 °C until the cells grew to complete confluence and then exposed to a mild hyperthermia at 41.5 °C (HS) or 37 °C (control) for another 24 h, finally harvested for total RNA or protein extraction. Real-time quantitative PCRs (qPCRs) were performed to compare gene expression of 25 selenoprotein genes, 3 tight junction-related genes, and 10 inflammation-related genes. Protein expressions of heat shock protein 70 (Hsp70) and selenoprotein X and P (SelX and SelP) were also investigated by Western blot. The results showed that HS up-regulated (P < 0.05) Hsp70 and one tight junction-related gene [zonula occludens-1 (Zo-1)] in IPEC-J2 cells. At the same time, HS up-regulated (P < 0.05) 4 selenoprotein genes (Gpx3, Dio2, Selk, Sels) and three inflammation-related genes (Il-6, Icam-1, Tgf-β) and down-regulated (P < 0.05 or as indicated) six selenoprotein genes (Gpx2, Gpx6, Txnrd1, Selh, Selm, Selx) and three inflammation-related genes (Ifn-β, Mcp-1, Tnf-α) in the cells. HS also exhibited impacts on protein expressions, which up-regulated Hsp70, down-regulated SelX, and showed no effect on SelP in IPEC-J2 cells. Our results showed that HS affected the expression of inflammation-related genes and up-regulated gene and protein expressions of Hsp70. The changes of so many selenoprotein genes expression implied a potential link between selenoprotein genes and HS. Moreover, the results provided by this IPEC-J2 model may be used to further study the interactive mechanisms between selenoprotein function and potential intestinal damage induced by HS. PMID:26706036

  5. Adverse events related to blood transfusion

    PubMed Central

    Sahu, Sandeep; Hemlata; Verma, Anupam

    2014-01-01

    The acute blood transfusion reactions are responsible for causing most serious adverse events. Awareness about various clinical features of acute and delayed transfusion reactions with an ability to assess the serious reactions on time can lead to a better prognosis. Evidence-based medicine has changed today's scenario of clinical practice to decrease adverse transfusion reactions. New evidence-based algorithms of transfusion and improved haemovigilance lead to avoidance of unnecessary transfusions perioperatively. The recognition of adverse events under anaesthesia is always challenging. The unnecessary blood transfusions can be avoided with better blood conservation techniques during surgery and with anaesthesia techniques that reduce blood loss. Better and newer blood screening methods have decreased the infectious complications to almost negligible levels. With universal leukoreduction of red blood cells (RBCs), selection of potential donors such as use of male donors only plasma and restriction of RBC storage, most of the non-infectious complications can be avoided. PMID:25535415

  6. A Mixture Reflecting Polybrominated Diphenyl Ether (PBDE) Profiles Detected in Human Follicular Fluid Significantly Affects Steroidogenesis and Induces Oxidative Stress in a Female Human Granulosa Cell Line.

    PubMed

    Lefevre, Pavine L C; Wade, Mike; Goodyer, Cindy; Hales, Barbara F; Robaire, Bernard

    2016-07-01

    Brominated flame retardants are incorporated into consumer products to prevent flame propagation. These compounds leach into the domestic environment, resulting in chronic exposure. Pregnancy failure is associated with high levels of polybrominated diphenyl ethers (PBDEs), a major class of brominated flame retardants, in human follicular fluid, raising serious questions regarding their impact on female fertility. Our goal was to elucidate the effects of a mixture of PBDEs, similar to the profile found in human follicular fluid, on an immortalized human granulosa cell line, the KGN cell line. We showed that cell viability was altered and oxidative stress was induced as reflected by increased reactive oxygen species formation at 100 μM of the PBDE mixture. Transcriptomic analysis revealed that PBDE treatments of 1, 5, and 20 μM altered the expression of several genes involved in the reactive oxygen species signaling pathway. Significant dose-dependent reductions in progesterone and estradiol levels in the culture medium were measured after PBDE treatment; in parallel, the expression of genes involved in estradiol metabolism, namely CYP1A1, was up-regulated by 5 and 20 μM of the PBDE mixture. Treatment with 20 μM PBDE also increased the expression and secretion of the proinflammatory factor, IL-6, into the KGN cell culture medium. Our results demonstrate that PBDEs can alter human granulosa cell functions by inducing oxidative stress and disrupting steroidogenesis. These results indicate that PBDEs may be detrimental to ovarian functions and thus may adversely affect female reproductive health after chronic exposure. PMID:27219277

  7. Hepatic drug metabolism and adverse hepatic drug reactions.

    PubMed

    Schaffner, F

    1975-01-01

    Drugs and other chemicals are usually metabolized in the liver in the drug-metabolizing enzyme system. The metabolites sometimes bind with cellular macromolecules and injure the cell directly or serve as new antigens to create immunologic injury in a delayed fashion. The immediate or toxic injury is dose-dependent, predictable and zonal in the liver lobule, usually in the central region. Carbon tetrachloride intoxication and acetaminophen overdose are examples of injury resulting from microsomal metabolism. Other injuries related to microsomal metabolism are those produced by vinyl chloride in polymerization plant workers and by methotrexate in psoriatics or leukemic children. Most adverse drug reactions affecting the liver and producing jaundice are unpredictable, delayed in onset, and only hypothetically related to microsomal metabolism in some instances. The two main types are cholestasis and viral-hepatitis-like. The former may be in a pure form, in which case it may be partly dose-dependent, or in a form mixed with hepatitis. Many drugs produce cholestasis in a small percentage of persons, and because the reaction is benign, albeit prolonged at times, such drugs continue to be used. The viral-hepatitis-like reaction involves few drugs and affects few persons, but can be fatal. The recognition that chronic hepatitis can be caused by drugs such as oxyphenisatin, alpha-methyldopa, and isoniazid has added a new dimension to the clinical problem of adverse drug reactions, which may extend to widely used and commonly available agents like aspirin. PMID:171822

  8. Corticosterone metabolism by chicken follicle cells does not affect ovarian reproductive hormone synthesis in vitro

    PubMed Central

    Rettenbacher, Sophie; Henriksen, Rie; Groothuids, Ton G.; Lepschy, Michael

    2013-01-01

    Glucocorticoids affect reproductive hormone production in many species. In chickens, elevated plasma corticosterone down-regulates testosterone and progesterone concentrations in plasma, but also in egg yolk. This suppression could be mediated via the hypothalamic-pituitary system but also via local inhibition of gonadal activity by glucocorticoids. As the latter has not been tested in birds yet, we tested if corticosterone directly inhibits ovarian steroid synthesis under in vitro conditions. We hypothesized that degradation of corticosterone by follicular cells impairs their ability to synthesize reproductive hormones due to either inhibition of enzymes or competition for common co-factors. Therefore, we first established whether follicles degrade corticosterone. Follicular tissue was harvested from freshly euthanized laying hens and incubated with radiolabelled corticosterone. Radioactive metabolites were visualized and quantified by autoradiography. Follicles converted corticosterone in a time-dependent manner into metabolites with a higher polarity than corticosterone. The predominant metabolite co-eluted with 20β-dihydrocorticosterone. Other chicken tissues mostly formed the same metabolite when incubated with corticosterone. In a second experiment, follicles were incubated with either progesterone or dehydroepiandrosterone. Corticosterone was added in increasing dosages up to 1000 ng per ml medium. Corticosterone did not inhibit the conversion of progesterone and dehydroepiandrosterone into a number of different metabolites, including 17α-hydroxyprogesterone, androstenedione and testosterone. In conclusion, avian tissues degrade corticosterone mostly to 20β-dihydrocorticosterone and even high corticosterone dosages do not affect follicular hormone production under in vitro conditions. PMID:23333751

  9. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    SciTech Connect

    Das, Amitabh; Chai, Jin Choul; Jung, Kyoung Hwa; Das, Nando Dulal; Kang, Sung Chul; Lee, Young Seek; Seo, Hyemyung; Chai, Young Gyu

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  10. Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits.

    PubMed

    Ulirsch, Jacob C; Nandakumar, Satish K; Wang, Li; Giani, Felix C; Zhang, Xiaolan; Rogov, Peter; Melnikov, Alexandre; McDonel, Patrick; Do, Ron; Mikkelsen, Tarjei S; Sankaran, Vijay G

    2016-06-01

    Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneously screen 2,756 variants in strong linkage disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity. Across 23 sentinel variants, we conservatively identified 32 MPRA functional variants (MFVs). We used targeted genome editing to demonstrate endogenous enhancer activity across 3 MFVs that predominantly affect the transcription of SMIM1, RBM38, and CD164. Functional follow-up of RBM38 delineates a key role for this gene in the alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type-specific transcriptional regulatory pathways. PMID:27259154

  11. The iron chelator deferasirox affects redox signalling in haematopoietic stem/progenitor cells.

    PubMed

    Tataranni, Tiziana; Agriesti, Francesca; Mazzoccoli, Carmela; Ruggieri, Vitalba; Scrima, Rosella; Laurenzana, Ilaria; D'Auria, Fiorella; Falzetti, Franca; Di Ianni, Mauro; Musto, Pellegrino; Capitanio, Nazzareno; Piccoli, Claudia

    2015-07-01

    The iron chelator deferasirox (DFX) prevents complications related to transfusional iron overload in several haematological disorders characterized by marrow failure. It is also able to induce haematological responses in a percentage of treated patients, particularly in those affected by myelodysplastic syndromes. The underlying mechanisms responsible for this feature, however, are still poorly understood. In this study, we investigated the effect of DFX-treatment in human haematopoietic/progenitor stem cells, focussing on its impact on the redox balance, which proved to control the interplay between stemness maintenance, self-renewal and differentiation priming. Here we show, for the first time, that DFX treatment induces a significant diphenyleneiodonium-sensitive reactive oxygen species (ROS) production that leads to the activation of POU5F1 (OCT4), SOX2 and SOX17 gene expression, relevant in reprogramming processes, and the reduction of the haematopoietic regulatory proteins CTNNB1 (β-Catenin) and BMI1. These DFX-mediated events were accompanied by decreased CD34 expression, increased mitochondrial mass and up-regulation of the erythropoietic marker CD71 (TFRC) and were compound-specific, dissimilar to deferoxamine. Our findings would suggest a novel mechanism by which DFX, probably independently on its iron-chelating property but through ROS signalling activation, may influence key factors involved in self-renewal/differentiation of haematopoietic stem cells. PMID:25825160

  12. Factors affecting the outcome of related allogeneic hematopoietic cell transplantation in patients with Fanconi Anemia.

    PubMed

    Ayas, Mouhab; Siddiqui, Khawar; Al-Jefri, Abdullah; El-Solh, Hassan; Al-Ahmari, Ali; Khairy, Ashraf; Markiz, Samer; Shahin, Hasan; Al-Musa, Abdulrahman; Al-Seraihy, Amal

    2014-10-01

    Hematopoietic cell transplantation (HCT) can cure bone marrow failure in patients with Fanconi Anemia (FA), and it is generally accepted that these patients should receive low-intensity conditioning because of the underlying DNA repair defect in their cells. Outcomes for recipients of matched related HCT have generally been favorable, but only a few studies have scrutinized the factors that may affect the eventual outcome of these patients. This retrospective analysis of 94 pediatric patients with FA who underwent related HCT at King Faisal Specialist Hospital & Research Center was carried out to attempt to identify factors that may affect outcome. Results showed overall survival (OS) probabilities of 92.5%, 89%, and 86% at 1, 5, and 10 years, respectively. In univariate analysis, use of higher dose cyclophosphamide (CY) (60 mg/kg) conditioning was associated with a better 10-year OS than lower dose CY (20 mg/kg) conditioning (91% versus 82%, respectively; P = .035), and use of radiation-containing regimens was associated with a significantly lower 10-year OS than nonradiation regimens (76% versus 91%, respectively; P = .005). Of the 4 regimens used in this study, the fludarabine-based regimen was associated with the highest survival (95.2%; P = .034). The use of the higher dose CY (60 mg/kg) was associated with a significantly increased incidence of hemorrhagic cystitis (HC) (20% versus 5.6% respectively; P = .049). Three patients (3%) developed squamous cell carcinoma (2 oropharyngeal and 1 genitourinary), at 9.4, 5.4, and 13.3 years after HCT; 2 of them had radiation-containing conditioning. In conclusion, our data suggest that although using a higher dose CY (60 mg/kg) conditioning regimen may be associated with better survival, it is also associated with a significantly increased risk of HC. The addition of fludarabine to the low-dose CY (20 mg/kg) is associated with the best survival. On the other hand, radiation-containing regimens are associated with

  13. Case Report of a Serious Adverse Event Following the Administration of T Cells Transduced With a Chimeric Antigen Receptor Recognizing ERBB2

    PubMed Central

    Morgan, Richard A; Yang, James C; Kitano, Mio; Dudley, Mark E; Laurencot, Carolyn M; Rosenberg, Steven A

    2010-01-01

    In an attempt to treat cancer patients with ERBB2 overexpressing tumors, we developed a chimeric antigen receptor (CAR) based on the widely used humanized monoclonal antibody (mAb) Trastuzumab (Herceptin). An optimized CAR vector containing CD28, 4-1BB, and CD3ζ signaling moieties was assembled in a γ-retroviral vector and used to transduce autologous peripheral blood lymphocytes (PBLs) from a patient with colon cancer metastatic to the lungs and liver, refractory to multiple standard treatments. The gene transfer efficiency into autologous T cells was 79% CAR+ in CD3+ cells and these cells demonstrated high-specific reactivity in in vitro coculture assays. Following completion of nonmyeloablative conditioning, the patient received 1010 cells intravenously. Within 15 minutes after cell infusion the patient experienced respiratory distress, and displayed a dramatic pulmonary infiltrate on chest X-ray. She was intubated and despite intensive medical intervention the patient died 5 days after treatment. Serum samples after cell infusion showed marked increases in interferon-γ (IFN-γ), granulocyte macrophage-colony stimulating factor (GM-CSF), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-10, consistent with a cytokine storm. We speculate that the large number of administered cells localized to the lung immediately following infusion and were triggered to release cytokine by the recognition of low levels of ERBB2 on lung epithelial cells. PMID:20179677

  14. The adverse health effects of chronic cannabis use.

    PubMed

    Hall, Wayne; Degenhardt, Louisa

    2014-01-01

    This paper summarizes the most probable of the adverse health effects of regular cannabis use sustained over years, as indicated by epidemiological studies that have established an association between cannabis use and adverse outcomes; ruled out reverse causation; and controlled for plausible alternative explanations. We have also focused on adverse outcomes for which there is good evidence of biological plausibility. The focus is on those adverse health effects of greatest potential public health significance--those that are most likely to occur and to affect a substantial proportion of regular cannabis users. These most probable adverse effects of regular use include a dependence syndrome, impaired respiratory function, cardiovascular disease, adverse effects on adolescent psychosocial development and mental health, and residual cognitive impairment. PMID:23836598

  15. E-Cigarette Affects the Metabolome of Primary Normal Human Bronchial Epithelial Cells

    PubMed Central

    Aug, Argo; Altraja, Siiri; Kilk, Kalle; Porosk, Rando; Soomets, Ursel; Altraja, Alan

    2015-01-01

    E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC) and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL) on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC) with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1) to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1’s maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes. PMID:26536230

  16. Benzothiadiazole (BTH) activates sterol pathway and affects vitamin D3 metabolism in Solanum malacoxylon cell cultures.

    PubMed

    Burlini, Nedda; Iriti, Marcello; Daghetti, Anna; Faoro, Franco; Ruggiero, Antonietta; Bernasconi, Silvana

    2011-11-01

    Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), a particularly efficient inducer of systemic acquired resistance (SAR), was developed as an immunizing agent to sensitize various crop species against pathogen infections. Recent works highlighted its activating effect on different metabolic pathways, concerning both primary and secondary metabolites. In this study, we investigated the effect of BTH treatment on sterol levels and vitamin D(3) metabolism in Solanum malacoxylon cultures. Calli of S. malacoxylon were incubated in Gamborg B5 liquid medium alone or added with 50 μM BTH for different times (one, two or three cycles of light). Histocytochemical investigations performed on our experimental system using 3,3'-diaminobenzidine (DAB) for hydrogen peroxide (H(2)O(2)) detection and phloroglucinol for lignin staining showed that BTH causes H(2)O(2) accumulation and lignin deposition in treated calli. Gas chromatographic analysis of principal cell membrane sterols (β-sitosterol, campesterol, stigmasterol) showed that BTH transiently increases their cellular levels. Callus cultures were found to contain also cholesterol, 7-dehydrocholesterol, the putative precursor of vitamin D(3), and the hydroxylated metabolites 25-hydroxyvitamin D(3) [25(OH)D(3)] and 1α,25-dihydroxyvitamin D(3) [1α,25(OH)(2)D(3)]. BTH treatment enhanced 7-dehydrocholesterol while reduced cholesterol. HPLC analysis of sample extracts showed that BTH does not affect the cell content of vitamin D(3), though results of ELISA tests highlighted that this elicitor moderately enhances the levels of 25(OH)D(3) and 1α,25(OH)(2)D(3) metabolites. In conclusion, BTH treatment not only causes cell wall strengthening, a typical plant defence response, as just described in other experimental models, but in the same time increases the cellular level of the main sterols and 7-dehydrocholesterol. PMID:21779826

  17. Bioactive glass coatings affect the behavior of osteoblast-like cells

    PubMed Central

    Foppiano, Silvia; Marshall, Sally J.; Marshall, Grayson W.; Saiz, Eduardo; Tomsia, Antoni P.

    2007-01-01

    Functionally graded coatings (FGCs) of bioactive glass on titanium alloy (Ti6Al4V) were fabricated by the enameling technique. These innovative coatings may be an alternative to plasma-sprayed, hydroxyapatite-coated implants. Previously we determined that a preconditioning treatment in simulated body fluid (SBF) helped to stabilize FGCs (Foppiano, S., et al., Acta Biomater, 2006; 2(2):133-42). The primary goal of this work was to assess the in vitro cytocompatibility of preconditioned FGCs with MC3T3-E1.4 mouse pre-osteoblastic cells. We evaluated cell adhesion, proliferation and mineralization on FGCs in comparison to uncoated Ti6Al4V and tissue culture polystyrene (TCPS). No difference in cell adhesion was identified, whereas proliferation was significantly different on all materials, being highest on FGCs followed by TCPS and Ti6Al4V. Qualitative and quantitative mineralization assays indicated that mineralization occurred on all materials. The amount of inorganic phosphate released by the mineralizing layers was significantly different, being highest on TCPS, followed by FGC and uncoated Ti6Al4V. The secondary objective of this work was to assess the ability of the FGCs to affect gene expression, indirectly, by means of their dissolution products, which was assessed by real-time reverse-transcription polymerase chain reaction. The FGC dissolution products induced a 2-fold increase in the expression of Runx-2, and a 20% decrease in the expression of collagen type 1 with respect to TCPS extract. These genes are regulators of osteoblast differentiation and mineralization, respectively. The findings of this study indicate that preconditioned FGCs are cytocompatible and suggest that future work may allow composition changes to induce preferred gene expression. PMID:17466608

  18. Severe cutaneous adverse drug reactions.

    PubMed

    Chung, Wen-Hung; Wang, Chuang-Wei; Dao, Ro-Lan

    2016-07-01

    The clinical manifestations of drug eruptions can range from mild maculopapular exanthema to severe cutaneous adverse drug reactions (SCAR), including drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms, Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) which are rare but occasionally fatal. Some pathogens may induce skin reactions mimicking SCAR. There are several models to explain the interaction of human leukocyte antigen (HLA), drug and T-cell receptor (TCR): (i) the "hapten/prohapten" theory; (ii) the "p-i concept"; (iii) the "altered peptide repertoire"; and (iv) the "altered TCR repertoire". The checkpoints of molecular mechanisms of SCAR include specific drug antigens interacting with the specific HLA loci (e.g. HLA-B*15:02 for carbamazepine-induced SJS/TEN and HLA-B*58:01 for allopurinol-induced SCAR), involvement of specific TCR, induction of T-cell-mediated responses (e.g. granulysin, Fas ligand, perforin/granzyme B and T-helper 1/2-associated cytokines) and cell death mechanism (e.g. miR-18a-5p-induced apoptosis; annexin A1 and formyl peptide receptor 1-induced necroptosis in keratinocytes). In addition to immune mechanism, metabolism has been found to play a role in the pathogenesis of SCAR, such as recent findings of strong association of CYP2C9*3 with phenytoin-induced SCAR and impaired renal function with allopurinol SCAR. With a better understanding of the mechanisms, effective therapeutics and prevention for SCAR can be improved. PMID:27154258

  19. Agonistic Anti-TIGIT Treatment Inhibits T Cell Responses in LDLr Deficient Mice without Affecting Atherosclerotic Lesion Development

    PubMed Central

    Foks, Amanda C.; Ran, Ingrid A.; Frodermann, Vanessa; Bot, Ilze; van Santbrink, Peter J.; Kuiper, Johan; van Puijvelde, Gijs H. M.

    2013-01-01

    Objective Co-stimulatory and co-inhibitory molecules are mainly expressed on T cells and antigen presenting cells and strongly orchestrate adaptive immune responses. Whereas co-stimulatory molecules enhance immune responses, signaling via co-inhibitory molecules dampens the immune system, thereby showing great therapeutic potential to prevent cardiovascular diseases. Signaling via co-inhibitory T cell immunoglobulin and ITIM domain (TIGIT) directly inhibits T cell activation and proliferation, and therefore represents a novel therapeutic candidate to specifically dampen pro-atherogenic T cell reactivity. In the present study, we used an agonistic anti-TIGIT antibody to determine the effect of excessive TIGIT-signaling on atherosclerosis. Methods and Results TIGIT was upregulated on CD4+ T cells isolated from mice fed a Western-type diet in comparison with mice fed a chow diet. Agonistic anti-TIGIT suppressed T cell activation and proliferation both in vitro and in vivo. However, agonistic anti-TIGIT treatment of LDLr−/− mice fed a Western-type diet for 4 or 8 weeks did not affect atherosclerotic lesion development in comparison with PBS and Armenian Hamster IgG treatment. Furthermore, elevated percentages of dendritic cells were observed in the blood and spleen of agonistic anti-TIGIT-treated mice. Additionally, these cells showed an increased activation status but decreased IL-10 production. Conclusions Despite the inhibition of splenic T cell responses, agonistic anti-TIGIT treatment does not affect initial atherosclerosis development, possibly due to increased activity of dendritic cells. PMID:24376654

  20. BRAF and MEK inhibition variably affect GD2-specific chimeric antigen receptor (CAR) T-cell function in vitro.

    PubMed

    Gargett, Tessa; Fraser, Cara K; Dotti, Gianpietro; Yvon, Eric S; Brown, Michael P

    2015-01-01

    Cancer immunotherapy has long been used in the treatment of metastatic melanoma, and an anti-CTLA-4 monoclonal antibody treatment has recently been approved by the US Food and Drug Administration. Targeted therapies such as small molecule kinase inhibitors targeting deregulated mitogen-activated protein kinase (MAPK) signaling have markedly improved melanoma control in up to 50% of metastatic disease patients and have likewise been recently approved. Combination therapies for melanoma have been proposed as a way to exploit the high-level but short-term responses associated with kinase inhibitor therapies and the low-level but longer-term responses associated with immunotherapy. Cancer immunotherapy now includes adoptive transfer of autologous tumor-specific chimeric antigen receptor (CAR) T cells and this mode of therapy is a candidate for combination with small molecule drugs. This paper describes CART cells that target GD2-expressing melanoma cells and investigates the effects of approved MAPK pathway-targeted therapies for melanoma [vemurafenib (Vem), dabrafenib (Dab), and trametinib (Tram)] on the viability, activation, proliferation, and cytotoxic T lymphocyte activity of these CAR T cells, as well as on normal peripheral blood mononuclear cells. We report that, although all these drugs lead to inhibition of stimulated T cells at high concentrations in vitro, only Vem inhibited T cells at concentrations equivalent to reported plasma concentrations in treated patients. Although the combination of Dab and Tram also resulted in inhibition of T-cell effector functions at some therapeutic concentrations, Dab itself had little adverse effect on CAR T-cell function. These findings may have implications for novel therapeutic combinations of adoptive CAR T-cell immunotherapy and MAPK pathway inhibitors. PMID:25415284

  1. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes.

    PubMed

    Auclair, Sylvain; Uzbekov, Rustem; Elis, Sébastien; Sanchez, Laura; Kireev, Igor; Lardic, Lionel; Dalbies-Tran, Rozenn; Uzbekova, Svetlana

    2013-03-15

    Cumulus cells (CC) surround the oocyte and are coupled metabolically through regulation of nutrient intake. CC removal before in vitro maturation (IVM) decreases bovine oocyte developmental competence without affecting nuclear meiotic maturation. The objective was to investigate the influence of CC on oocyte cytoplasmic maturation in relation to energy metabolism. IVM with either cumulus-enclosed (CEO) or -denuded (DO) oocytes was performed in serum-free metabolically optimized medium. Transmission electron microscopy revealed different distribution of membrane-bound vesicles and lipid droplets between metaphase II DO and CEO. By Nile Red staining, a significant reduction in total lipid level was evidenced in DO. Global transcriptomic analysis revealed differential expression of genes regulating energy metabolism, transcription, and translation between CEO and DO. By Western blot, fatty acid synthase (FAS) and hormone-sensitive phospholipase (HSL) proteins were detected in oocytes and in CC, indicating a local lipogenesis and lypolysis. FAS protein was significantly less abundant in DO that in CEO and more highly expressed in CC than in the oocytes. On the contrary, HSL protein was more abundant in oocytes than in CC. In addition, active Ser⁵⁶³-phosphorylated HSL was detected in the oocytes only after IVM, and its level was similar in CEO and DO. In conclusion, absence of CC during IVM affected lipid metabolism in the oocyte and led to suboptimal cytoplasmic maturation. Thus, CC may influence the oocyte by orienting the consumption of nutritive storage via regulation of local fatty acid synthesis and lipolysis to provide energy for maturation. PMID:23321473

  2. Adverse Reactions to Hallucinogenic Drugs.

    ERIC Educational Resources Information Center

    Meyer, Roger E. , Ed.

    This reports a conference of psychologists, psychiatrists, geneticists and others concerned with the biological and psychological effects of lysergic acid diethylamide and other hallucinogenic drugs. Clinical data are presented on adverse drug reactions. The difficulty of determining the causes of adverse reactions is discussed, as are different…

  3. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease.

    PubMed

    Jensen, Majbrit M; Arvaniti, Maria; Mikkelsen, Jens D; Michalski, Dominik; Pinborg, Lars H; Härtig, Wolfgang; Thomsen, Morten S

    2015-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes and modulating their function. Hence, changes in nAChR regulatory proteins such as Lynx proteins could underlie the dysregulation of nAChRs in AD. Using Western blotting, we detected bands corresponding to the Lynx proteins prostate stem cell antigen (PSCA) and Lypd6 in human cortex indicating that both proteins are present in the human brain. We further showed that PSCA forms stable complexes with the α4 nAChR subunit and decreases nicotine-induced extracellular-signal regulated kinase phosphorylation in PC12 cells. In addition, we analyzed protein levels of PSCA and Lypd6 in postmortem tissue of medial frontal gyrus from AD patients and found significantly increased PSCA levels (approximately 70%). In contrast, no changes in Lypd6 levels were detected. In concordance with our findings in AD patients, PSCA levels were increased in the frontal cortex of triple transgenic mice with an AD-like pathology harboring human transgenes that cause both age-dependent β-amyloidosis and tauopathy, whereas Tg2576 mice, which display β-amyloidosis only, had unchanged PSCA levels compared to wild-type animals. These findings identify PSCA as a nAChR-binding protein in the human brain that is affected in AD, suggesting that PSCA-nAChR interactions may be involved in the cognitive dysfunction observed in AD. PMID:25680266

  4. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells.

    PubMed

    Gu, Zhennan; Wu, Jiansheng; Wang, Shihua; Suburu, Janel; Chen, Haiqin; Thomas, Michael J; Shi, Lihong; Edwards, Iris J; Berquin, Isabelle M; Chen, Yong Q

    2013-09-01

    AKT is a serine-threonine protein kinase that plays important roles in cell growth, proliferation and apoptosis. It is activated after binding to phosphatidylinositol phosphates (PIPs) with phosphate groups at positions 3,4 and 3,4,5 on the inositol ring. In spite of extensive research on AKT, one aspect has been largely overlooked, namely the role of the fatty acid chains on PIPs. PIPs are phospholipids composed of a glycerol backbone with fatty acids at the sn-1 and sn-2 position and inositol at the sn-3 position. Here, we show that polyunsaturated fatty acids (PUFAs) modify phospholipid content. Docosahexaenoic acid (DHA), an ω3 PUFA, can replace the fatty acid at the sn-2 position of the glycerol backbone, thereby changing the species of phospholipids. DHA also inhibits AKT(T308) but not AKT(S473) phosphorylation, alters PI(3,4,5)P3 (PIP3) and phospho-AKT(S473) protein localization, decreases pPDPK1(S241)-AKT and AKT-BAD interaction and suppresses prostate tumor growth. Our study highlights a potential novel mechanism of cancer inhibition by ω3 PUFA through alteration of PIP3 and AKT localization and affecting the AKT signaling pathway. PMID:23633519

  5. Dietary unsaturated fatty acids differently affect catecholamine handling by adrenal chromaffin cells.

    PubMed

    Gomes, Andreia; Correia, Gustavo; Coelho, Marisa; Araújo, João Ricardo; Pinho, Maria João; Teixeira, Ana Luisa; Medeiros, Rui; Ribeiro, Laura

    2015-05-01

    Catecholamines (CA) play an important role in cardiovascular (CDV) disease risk. Namely, noradrenaline (NA) levels positively correlate whereas adrenaline (AD) levels negatively correlate with obesity and/or CDV disease. Western diets, which are tipically rich in Ω-6 fatty acids (FAs) and deficient in Ω-3 FAs, may contribute to the development of obesity, type 2 diabetes and/or coronary artery disease. Taking this into consideration and the fact that our group has already described that saturated FAs affect catecholamine handling by adrenal chromaffin cells, this work aimed to investigate the effect of unsaturated FAs upon catecholamine handling in the same model. Our results showed that chronic exposure to unsaturated FAs differently modulated CA cellular content and release, regardless of both FA series and number of carbon atoms. Namely, the Ω-6 arachidonic and linoleic acids, based on their effect on CA release and cellular content, seemed to impair NA and AD vesicular transport, whereas γ-linolenic acid selectively impaired AD synthesis and release. Within the Ω-9 FAs, oleic acid was devoid of effect, and elaidic acid behaved similarly to γ-linolenic acid. Eicosapentaenoic and docosahexaenoic acids (Ω-3 series) impaired the synthesis and release of both NA and AD. These results deserve attention and future development, namely, in what concerns the mechanisms involved and correlative effects in vivo. PMID:25727966

  6. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe*

    PubMed Central

    Di, Guo-qing; Zhou, Bing; Li, Zheng-guang; Lin, Qi-li

    2011-01-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L WECPN) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe. PMID:22135145

  7. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms

    PubMed Central

    Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions. PMID:26098633

  8. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    PubMed

    Conti, Valentina; Gandaglia, Anna; Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions. PMID:26098633

  9. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe.

    PubMed

    Di, Guo-Qing; Zhou, Bing; Li, Zheng-Guang; Lin, Qi-Li

    2011-12-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L(WECPN)) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe. PMID:22135145

  10. Fish oil source differentially affects rat immune cell alpha-tocopherol concentration.

    PubMed

    McGuire, S O; Alexander, D W; Fritsche, K L

    1997-07-01

    We have previously reported that both the source of dietary fish oil and the chemical form of vitamin E supplied in the diet affect the vitamin E status of immune cells in rats. The purpose of this study was to investigate further the effect of fish oil source on immune cell vitamin E status using free alpha-tocopherol (alpha-T) at the AIN recommended level as the sole source of vitamin E. Sixty weanling female rats were fed semipurified, high fat (20 g/100 g) diets containing either tocopherol-stripped lard (LRD), menhaden fish oil (MFO), sardine fish oil (SRD) or cod liver oil (CLO) as the primary lipid source. Endogenous alpha-T concentration was measured and equalized to 150 mg/kg oil by addition of free RRR-alpha-T to each lipid source, allowing for a final concentration of alpha-T in the mixed diet of 30 mg/kg. An additional group of rats was fed LRD without supplemental vitamin E (LRD-) as a negative control. After feeding experimental diets for 5 or 10 wk, tissues were collected for alpha-T analysis by HPLC. After 5 wk, plasma and liver alpha-T (micromol alpha-T/g lipid) were significantly lower in SRD- and CLO-fed rats compared with LRD-fed rats. At 10 wk, only plasma alpha-T in CLO-fed rats remained significantly depressed. Plasma and liver alpha-T concentrations (micromol alpha-T/g lipid) were not significantly lower in MFO-fed rats than LRD-fed rats at either time point. Compared with LRD, feeding MFO to rats for 5 or 10 wk resulted in significantly greater alpha-T content of immune cells. In similar fashion, SRD-fed rats, compared with LRD-fed rats, also had significantly greater alpha-T content in splenocytes at both time points and greater thymocyte alpha-T at 10 wk. In all instances, the alpha-T status of rats fed CLO was indistinguishable from that of rats fed the vitamin E-free diet (LRD-). These data further demonstrate the complexity of the relationship between vitamin E status and dietary (n-3) polyunsaturated fatty acids (PUFA). PMID:9202096

  11. Establishment of clonal myogenic cell lines from severely affected dystrophic muscles - CDK4 maintains the myogenic population

    PubMed Central

    2011-01-01

    Background A hallmark of muscular dystrophies is the replacement of muscle by connective tissue. Muscle biopsies from patients severely affected with facioscapulohumeral muscular dystrophy (FSHD) may contain few myogenic cells. Because the chromosomal contraction at 4q35 linked to FSHD is thought to cause a defect within myogenic cells, it is important to study this particular cell type, rather than the fibroblasts and adipocytes of the endomysial fibrosis, to understand the mechanism leading to myopathy. Results We present a protocol to establish clonal myogenic cell lines from even severely dystrophic muscle that has been replaced mostly by fat, using overexpression of CDK4 and the catalytic component of telomerase (human telomerase reverse transcriptase; hTERT), and a subsequent cloning step. hTERT is necessary to compensate for telomere loss during in vitro cultivation, while CDK4 prevents a telomere-independent growth arrest affecting CD56+ myogenic cells, but not their CD56- counterpart, in vitro. Conclusions These immortal cell lines are valuable tools to reproducibly study the effect of the FSHD mutation within myoblasts isolated from muscles that have been severely affected by the disease, without the confounding influence of variable amounts of contaminating connective-tissue cells. PMID:21798090

  12. A glycosylation mutation affects cell fate in chimeras of Dictyostelium discoideum.

    PubMed Central

    Houle, J; Balthazar, J; West, C M

    1989-01-01

    Prestalk and prespore cells form a simple pattern in the pseudoplasmodium of the cellular slime mold Dictyostelium discoideum. Prestalk cells are distinguished from prespore cells by a low level of expression of a glycoantigen on their surfaces and by reduced intercellular cohesion. We examined the possible significance of these differences, using the modB mutation, which eliminates this glycoantigen genetically, leading to reduced intercellular cohesion, modB mutant cells were allowed to develop together with normal cells to form chimeric slugs. Mutant cells labeled by feeding with fluorescent bacteria were highly enriched in the prestalk cell zone at the anterior end of the slug. In contrast, normal cells, if in a minority, were concentrated in the rear part of the prespore cell zone. Immunoblot analysis and cell-by-cell double-label immunofluorescence of these mixtures showed that mutant cells underproduced several prespore cell markers. Mutant cells tended not to form spores in chimeras unless they exceeded a threshold proportion of ca. 30%. However, mutant cells showed no tendency to produce excess prestalk cells when allowed to develop alone. These findings are most simply explained by postulating that reduced glycoantigen expression and intercellular adhesion encourage a more anterior cell localization, which in turn causes differentiation into a prestalk cell. Since normal prestalk cells also show reduced glycoantigen expression and intercellular adhesion, this suggests that a similar mechanism may contribute to pattern formation during normal development. Images PMID:2726746

  13. Strategies to Enhance the Effectiveness of Adult Stem Cell Therapy for Ischemic Heart Diseases Affecting the Elderly Patients

    PubMed Central

    Khatiwala, Roshni

    2016-01-01

    Myocardial infarctions and chronic ischemic heart disease both commonly and disproportionately affect elderly patients more than any other patient population. Despite available treatments, heart tissue is often permanently damaged as a result of cardiac injury. This review aims to summarize recent literature proposing the use of modified autologous adult stem cells to promote healing of post-infarct cardiac tissue. This novel cellular treatment involves isolation of adult stem cells from the patient, in vitro manipulation of these stem cells, and subsequent transplantation back into the patient’s own heart to accelerate healing. One of the hindrances affecting this process is that cardiac issues are increasingly common in elderly patients, and stem cells recovered from their tissues tend to be pre-senescent or already in senescence. As a result, harsh in vitro manipulations can cause the aged stem cells to undergo massive in vivo apoptosis after transplantation. The consensus in literature is that inhibition or reversal of senescence onset in adult stem cells would be of utmost benefit. In fact, it is believed that this strategy may lower stem cell mortality and coerce aged stem cells into adopting more resilient phenotypes similar to that of their younger counterparts. This review will discuss a selection of the most efficient and most-recent strategies used experimentally to enhance the effectiveness of current stem cell therapies for ischemic heart diseases. PMID:26779896

  14. 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters steroid secretion but does not affect cell viability and the incidence of apoptosis in porcine luteinised granulosa cells.

    PubMed

    Jablonska, Olga; Piasecka-Srader, Joanna; Nynca, Anna; Kołomycka, Agnieszka; Robak, Anna; Wąsowska, Barbara; Ciereszko, Renata E

    2014-09-01

    The compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a by-product of human industrial activity, was found to affect ovarian steroidogenesis in animals, but the mechanism of its action is still unclear. The aims of the study were to examine the effect of TCDD on (1) progesterone (P4) and oestradiol (E2) production by granulosa cells isolated from medium (3-6 mm) and preovulatory (≥ 8 mm) porcine follicles, (2) the viability of the cells, and (3) the incidence of apoptosis. Porcine granulosa cells were cultured (48 h) with or without TCDD (100 pM, 100 nM). Steroid hormone concentrations in the medium were determined by radioimmunoassay. The viability of granulosa cells was tested spectrophotometrically (alamarBlue™ assay). Apoptosis was evaluated by flow cytometry using Annexin V and by TUNEL assay. The higher dose of TCDD (100 nM) significantly inhibited P4 and stimulated E2 production by luteinised granulosa cells isolated from medium follicles. The lower dose of TCDD (100 pM) significantly stimulated P4 and inhibited E2 secretion by the cells isolated from preovulatory follicles. None of the two TCDD doses affected cell viability or induced apoptosis in granulosa cells. In conclusion, TCDD directly affected steroid production by granulosa cells obtained from mature pigs, but the effect of TCDD was not due to its cytotoxicity. PMID:25038954

  15. Induction of Salmonella pathogenicity island 1 under different growth conditions can affect Salmonella–host cell interactions in vitro

    PubMed Central

    Ibarra, J. Antonio; Knodler, Leigh A.; Sturdevant, Daniel E.; Virtaneva, Kimmo; Carmody, Aaron B.; Fischer, Elizabeth R.; Porcella, Stephen F.; Steele-Mortimer, Olivia

    2010-01-01

    Salmonella invade non-phagocytic cells by inducing massive actin rearrangements, resulting in membrane ruffle formation and phagocytosis of the bacteria. This process is mediated by a cohort of effector proteins translocated into the host cell by type III secretion system 1, which is encoded by genes in the Salmonella pathogenicity island (SPI) 1 regulon. This network is precisely regulated and must be induced outside of host cells. In vitro invasive Salmonella are prepared by growth in synthetic media although the details vary. Here, we show that culture conditions affect the frequency, and therefore invasion efficiency, of SPI1-induced bacteria and also can affect the ability of Salmonella to adapt to its intracellular niche following invasion. Aerobically grown late-exponential-phase bacteria were more invasive and this was associated with a greater frequency of SPI1-induced, motile bacteria, as revealed by single-cell analysis of gene expression. Culture conditions also affected the ability of Salmonella to adapt to the intracellular environment, since they caused marked differences in intracellular replication. These findings show that induction of SPI1 under different pre-invasion growth conditions can affect the ability of Salmonella to interact with eukaryotic host cells. PMID:20035008

  16. The Myeloid U937 Skin Sensitization Test (U-SENS) addresses the activation of dendritic cell event in the adverse outcome pathway for skin sensitization.

    PubMed

    Piroird, Cécile; Ovigne, Jean-Marc; Rousset, Françoise; Martinozzi-Teissier, Silvia; Gomes, Charles; Cotovio, José; Alépée, Nathalie

    2015-08-01

    The U-SENS™ assay, formerly known as MUSST (Myeloid U937 Skin Sensitization Test), is an in vitro method to assess skin sensitization. Dendritic cell activation following exposure to sensitizers was modelled in the U937 human myeloid cell line by measuring the induction of the expression of CD86 by flow cytometry. The predictive performance of U-SENS™ was assessed via a comprehensive comparison analysis with the available human and LLNA data of 175 substances. U-SENS™ showed 79% specificity, 90% sensitivity and 88% accuracy. A four laboratory ring study demonstrated the transferability, reliability and reproducibility of U-SENS™, with a reproducibility of 95% within laboratories and 79% between-laboratories, showing that the U-SENS™ assay is a promising tool in a skin sensitization risk assessment testing strategy. PMID:25820135

  17. Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells.

    PubMed

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Batle, Juan Miguel; Tur, Josep Antoni; Pons, Antoni

    2016-09-01

    Acute exercise induces changes in peripheral mononuclear cells' (PBMCs) capabilities to produce cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on cytokine production, by lipopolysaccharide (LPS)-stimulated PBMCs after exercise, and the in vitro influence of temperature. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA (1.16 g DHA/day) for 8 weeks, whereas the placebo group consumed a similar non-enriched beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise. Nutritional intervention significantly increased the DHA content in erythrocytes only in experimental group (from 34 ± 3.6 to 43 ± 3.6 nmols DHA/10(9) erythrocytes). Exercise significantly increased Toll-like receptor 4 (TLR4) in PBMCs but only in the placebo group (203 %). Exercise also significantly increased IL6, IL8, VEGF, INFγ, TNFα, IL1α, IL1β, MCP1, and EGG production rates by LPS-stimulated PBMCs, and this response was attenuated by DHA supplementation. Temperature but not DHA also affected the pattern of cytokine production increasing IL6, IL8, IL1β, and MCP1 synthesis. The higher change was evidenced in IL1β increasing the production rate at 39.5 °C from 3.19 ± 0.77 to 22.4 ± 6.1 pg/h 10(6) PBMC in placebo and from 2.36 ± 0.11 to 10.6 ± 0.38 pg/h 10(6) PBMC in the supplemented group. The profile of affected cytokines differs between temperature and exercise, suggesting a different PBMC activation pathway. DHA diet supplementation only attenuated cytokine production after exercise and not that induced by temperature. PMID:27139422

  18. BAFF regulates T follicular helper cells and affects accumulation and IFNγ production in autoimmunity

    PubMed Central

    Coquery, Christine M.; Loo, William M.; Wade, Nekeithia S.; Bederman, Annelise G.; Tung, Kenneth S.; Lewis, Janet E.; Hess, Henry; Erickson, Loren D.

    2014-01-01

    Objective T follicular helper (TFH) cells are critical for the development of protective antibodies via germinal center (GC) B-cell responses; however, uncontrolled TFH cell expansion activates autoreactive B-cells to produce antibodies that cause autoimmunity. The mechanisms that control TFH cell homeostasis remains largely unknown. The aim of this study was to determine the contribution of BAFF to TFH cell responses in autoimmunity. Methods We analyzed the properties of TFH cells in lupus-prone mice, sufficient or deficient in B-cell maturation antigen (BCMA). Adoptive transfer studies and mixed bone marrow chimeras were used to test BCMA signaling in T cells. We assessed BAFF stimulation of TFH cells through in vitro cell cocultures and in vivo depletion studies using flow cytometry. Results In Nba2 mice, TFH cells expressed the BAFF receptors BCMA and BR3, and accumulated in the spleen when BCMA was absent. BCMA deficiency in T cells promoted the expansion of TFH cells, GC formation, autoantibody production, and IFNγ production by TFH cells through BR3. IFNγ-producing TFH cells increased BAFF expression in dendritic cells. Blocking BAFF or IFNγ in vivo reduced TFH cell accumulation and improved autoimmunity in BCMA-deficient animals. Moreover, circulating TFH-like cells that expressed BR3 (but not BCMA) were elevated in SLE patients, which correlated with serum BAFF and IFNγ titers. Conclusion In Nba2 mice, BCMA negatively regulates TFH cell expansion whereas BAFF signaling through BR3 promotes TFH cell accumulation. Our work suggests the balance between BCMA and BR3 signaling in TFH cells serves as a checkpoint of immune tolerance. PMID:25385309

  19. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  20. Mechanisms and assessment of statin-related muscular adverse effects

    PubMed Central

    Moßhammer, Dirk; Schaeffeler, Elke; Schwab, Matthias; Mörike, Klaus

    2014-01-01

    Statin-associated muscular adverse effects cover a wide range of symptoms, including asymptomatic increase of creatine kinase serum activity and life-threatening rhabdomyolysis. Different underlying pathomechanisms have been proposed. However, a unifying concept of the pathogenesis of statin-related muscular adverse effects has not emerged so far. In this review, we attempt to categorize these mechanisms along three levels. Firstly, among pharmacokinetic factors, it has been shown for some statins that inhibition of cytochrome P450-mediated hepatic biotransformation and hepatic uptake by transporter proteins contribute to an increase of systemic statin concentrations. Secondly, at the myocyte membrane level, cell membrane uptake transporters affect intracellular statin concentrations. Thirdly, at the intracellular level, inhibition of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase results in decreased intracellular concentrations of downstream metabolites (e.g. selenoproteins, ubiquinone, cholesterol) and alteration of gene expression (e.g. ryanodine receptor 3, glycine amidinotransferase). We also review current recommendations for prescribers. PMID:25069381

  1. Denitrifying Bacterial Communities Affect Current Production and Nitrous Oxide Accumulation in a Microbial Fuel Cell

    PubMed Central

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M. Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427

  2. Lithium differentially affects clock gene expression in serum-shocked NIH-3T3 cells.

    PubMed

    Osland, Teresa M; Fernø, Johan; Håvik, Bjarte; Heuch, Ivar; Ruoff, Peter; Lærum, Ole Didrik; Steen, Vidar M

    2011-07-01

    Bipolar disorder has been associated with disturbances in circadian rhythms. Lithium is frequently used in the long-term treatment of bipolar disorder, and has been shown to prolong such rhythms in animals and humans. To examine whether lithium affects the expression of genes regulating the circadian clock, cultured NIH-3T3 cells were synchronized by serum-shocking, and the relative expression of the clock genes Period1 (Per1), Period2 (Per2), Period3 (Per3), Cryptochrome1 (Cry1), Cryptochrome2 (Cry2), Brain and muscle aryl hydrocarbon nuclear translocator-like 1 (Bmal1), Circadian locomotor output cycles kaput (Clock), Rev-Erb-α (Nr1d1), RAR-related orphan receptor α (Ror-α), Glycogen synthase kinase-3β (Gsk-3β), Casein kinase 1-ε (CK1-ε; Csnk1ε), E4 binding protein 4 (E4BP4; Nfil-3) and albumin D-binding protein (Dbp) was examined for three consecutive days in the presence of lithium (20 mM) or vehicle (20 mM NaCl). We found that lithium significantly increased the expression of Per2 and Cry1, whereas Per3, Cry2, Bmal1, E4BP4 and Rev-Erb-α expression was reduced. We also found that lithium prolonged the period of Per2. Taken together, these effects on clock gene expression may be relevant for the effects of lithium on biological rhythms and could also give new leads to further explore its mood-stabilizing actions in the treatment of bipolar disorder. PMID:20837565

  3. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus

    PubMed Central

    Galinato, Melissa H.; Orio, Laura; Mandyam, Chitra D.

    2014-01-01

    Methamphetamine exposure reduces hippocampal long-term potentiation (LTP) and neurogenesis and these alterations partially contribute to hippocampal maladaptive plasticity. The potential mechanisms underlying methamphetamine-induced maladaptive plasticity were identified in the present study. Expression of brain-derived neurotrophic factor (BDNF; a regulator of LTP and neurogenesis), and its receptor tropomyosin-related kinase B (TrkB) were studied in the dorsal and ventral hippocampal tissue lysates in rats that intravenously self-administered methamphetamine in a limited access (1 h/day) or extended access (6 h/day) paradigm for 17 days post baseline sessions. Extended access methamphetamine enhanced expression of BDNF with significant effects observed in the dorsal and ventral hippocampus. Methamphetamine-induced enhancements in BDNF expression were not associated with TrkB receptor activation as indicated by phospho (p)-TrkB-706 levels. Conversely, methamphetamine produced hypophosphorylation of NMDA receptor subunit 2B (GluN2B) at Tyr-1472 in the ventral hippocampus, indicating reduced receptor activation. In addition, methamphetamine enhanced expression of anti-apoptotic protein Bcl-2 and reduced pro-apoptotic protein Bax levels in the ventral hippocampus, suggesting a mechanism for reducing cell death. Analysis of Akt, a pro-survival kinase that suppresses apoptotic pathways and pAkt at Ser-473 demonstrated that extended access methamphetamine reduces Akt expression in the ventral hippocampus. These data reveal that alterations in Bcl-2 and Bax levels by methamphetamine were not associated with enhanced Akt expression. Given that hippocampal function and neurogenesis vary in a subregion-specific fashion, where dorsal hippocampus regulates spatial processing and has higher levels of neurogenesis, whereas ventral hippocampus regulates anxiety-related behaviors, these data suggest that methamphetamine self-administration initiates distinct allostatic changes in

  4. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    PubMed

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427

  5. Gene expression of peripheral blood mononuclear cells is affected by cold exposure.

    PubMed

    Reynés, Bàrbara; García-Ruiz, Estefanía; Oliver, Paula; Palou, Andreu

    2015-10-15

    Because of the discovery of brown adipose tissue (BAT) in humans, there is increased interest in the study of induction of this thermogenic tissue as a basis to combat obesity and related complications. Cold exposure is one of the strongest stimuli able to activate BAT and to induce the appearance of brown-like (brite) adipocytes in white fat depots (browning process). We analyzed the potential of peripheral blood mononuclear cells (PBMCs) to reflect BAT and retroperitoneal white adipose tissue (rWAT) response to 1-wk cold acclimation (4°C) at different ages of rat development (1, 2, 4, and 6 mo). As expected, cold exposure increased fatty acid β-oxidation capacity in BAT and rWAT (increased Cpt1a expression), explaining increased circulating nonesterified free fatty acids and decreased adiposity. Cold exposure increased expression of the key thermogenic gene, Ucp1, in BAT and rWAT, but only in 1-mo-old animals. Additionally, other brown/brite markers were affected by cold during the whole developmental period studied in BAT. However, in rWAT, cold exposure increased studied markers mainly at early age. PBMCs did not express Ucp1, but expressed other brown/brite markers, which were cold regulated. Of particular interest, PBMCs reflected adipose tissue-increased Cpt1a mRNA expression in response to cold (in older animals) and browning induction occurring in rWAT of young animals (1 mo) characterized by increased Cidea expression and by the appearance of a high number of multilocular CIDE-A positive adipocytes. These results provide evidence pointing to PBMCs as an easily obtainable biological material to be considered to perform browning studies with minimum invasiveness. PMID:26246506

  6. Some factors affecting the specific toxicity of misonidazole towards hypoxic mammalian cells.

    PubMed Central

    Stratford, I. J.; Gray, P.

    1978-01-01

    The toxic action of misonidazole towards hypoxic mammalian cells has been shown to be a function of serum concentration, with higher serum concentrations enhancing the toxic effect. Added thiols protect cells against misonidazole toxicity. In addition, the action of misonidazole on hypoxic cells labelled with 5-BUdR has been examined. Cells with incroported 5-BUdR are no more sensitive to misonidazole toxicity than are cells without label. PMID:277212

  7. Adverse possession of subsurface minerals

    SciTech Connect

    Bowles, P.N.

    1983-01-01

    Concepts applicable to adverse possession of subsurface minerals are generally the same as those that apply to adverse possession of all real estate. However, special requirements must be satisfied in order to perfect title to subsurface minerals by adverse possession, particularly when there has been a severance of the true title between surface and subsurface minerals. In those jurisdictions where senior and junior grants came from the state or commonwealth covering the same or some of the same land and in those areas where descriptions of land were vague or not carefully drawn, adverse possession serves to solidify land and mineral ownership. There may be some public, social, and economic justification in rewarding, with good title, those who take possession and use real estate for its intended use, including the extraction of subsurface minerals. 96 refernces.

  8. WS6 induces both alpha and beta cell proliferation without affecting differentiation or viability

    PubMed Central

    Boerner, Brian P.; George, Nicholas M.; Mir, Shakeel U.R.; Sarvetnick, Nora E.

    2016-01-01

    Agents that stimulate human pancreatic beta cell proliferation are needed to improve diabetes mellitus treatment. Recently, a small molecule, WS6, was observed to stimulate human beta cell proliferation. However, little is known about its other effects on human islets. To better understand the role of WS6 as a possible beta cell regenerative therapy, we carried out in-depth phenotypic analysis of WS6-treated human islets, exploring its effects on non-beta cell proliferation, beta cell differentiation, and islet cell viability. WS6 not only stimulated beta cell proliferation in cultured human islets (in agreement with previous reports), but also human alpha cell proliferation, indicating that WS6 is not a beta cell-specific mitogen. WS6 did not change the proportion of insulin-positive beta cells or the expression of beta cell-specific transcription factors, suggesting that WS6 does not alter beta cell differentiation, and WS6 had no effect on human islet cell apoptosis or viability. In conclusion, WS6 stimulates proliferation of both human beta and alpha cells while maintaining cellular viability and the beta cell differentiated phenotype. These findings expand the literature on WS6 and support the suggestion that WS6 may help increase human islet mass needed for successful treatment of diabetes. PMID:25739404

  9. [Haematological adverse effects caused by psychiatric drugs].

    PubMed

    Mazaira, Silvina

    2008-01-01

    Almost all clases of psychiatric drugs (typical and atypical antipsychotics, antidepressants, mood stabilizers, benzodiazepines) have been reported as possible causes of haematological toxicity. This is a review of the literature in which different clinical situations involving red blood cells, white blood cells, platelets and impaired coagulation are detailed and the drugs more frequently involved are listed. The haematological adverse reactions detailed here include: aplastic anemia, haemolitic anemia, leukopenia, agranulocytosis, leukocytosis, eosinophilia, thrombocytosis, thrombocytopenia, disordered platelet function and impaired coagulation. The haematologic toxicity profile of the drugs more frequently involved: lithium, clozapine, carbamazepine, valproic acid and SSRI antidepressants is mentioned. PMID:19424521

  10. Adverse Effects of a Clinically Relevant Dose of Hydroxyurea Used for the Treatment of Sickle Cell Disease on Male Fertility Endpoints

    PubMed Central

    Jones, Kea M.; Niaz, Mohammad S.; Brooks, Cynthia M.; Roberson, Shannon I.; Aguinaga, Maria P.; Hills, Edward R.; Rice, Valerie Montgomery; Bourne, Phillip; Bruce, Donald; Archibong, Anthony E.

    2009-01-01

    Two experiments were conducted to determine: 1) whether the adult male transgenic sickle cell mouse (Tg58 × Tg98; TSCM), exhibits the patterns of reproductive endpoints (hypogonadism) characteristic of men with sickle cell disease (SCD) and 2) whether hydroxyurea (HU) exacerbates this condition. In Experiment 1, blood samples were collected from adult age-matched TSCM and ICR mice (ICRM) (N = 10/group) for plasma testosterone measurements. Subsequently, mice were sacrificed, testes excised and weighed and stored spermatozoa recovered for the determination of sperm density, progressive motility and percentage of spermatozoa with normal morphology. In experiment 2, adult male TSCM were orally treated with 25 mg HU/kg body weight/day for 28 or 56 days. Control mice received the vehicle for HU (saline) as described above. At the end of the treatment periods, blood samples were collected for quantification of circulating testosterone. Subsequently, mice were sacrificed, testes and epididymides were recovered and weighed and one testis per mouse was subjected to histopathology. Stored spermatozoa were recovered for the determination of indices of sperm quality mentioned in Experiment 1. Testis weight, stored sperm density, progressive motility, percentage of spermatozoa with normal morphology and plasma testosterone concentrations of TSCM were significantly lower by 40, 65, 40, 69 and 66%, respectively than those of ICRM. These data indicate that adult TSCM used in this study suffered from hypogonadism, characteristically observed among adult male SCD patients. In Experiment 2, HU treatment significantly decreased testis weight on day 28, (0.09 ± 0.004g) that was further decreased on day 56 (0.06 ± 0.003g; treatment x time interaction) compared with controls (day 28, 0.15 ± 0.01g; day 56, 2, 0.16 ± 0.01g). Concomitant with a 52% shrinkage (P<0.001) in area of testes in 56 days of HU treatment, testes from HU-treated TSCM exhibited significant atrophic degeneration

  11. Using the History of Research on Sickle Cell Anemia to Affect Preservice Teachers' Conceptions of the Nature of Science.

    ERIC Educational Resources Information Center

    Howe, Eric M.

    This paper examines how using a series of lessons developed from the history of research on sickle cell anemia affects preservice teacher conceptions of the nature of science (NOS). The importance of a pedagogy that has students do science through an integral use of the history of science is effective at enriching students' NOS views is presented.…

  12. Loss of miR-182 affects B-cell extrafollicular antibody response.

    PubMed

    Li, Yan-Feng; Ou, Xijun; Xu, Shengli; Jin, Zi-Bing; Iwai, Naoharu; Lam, Kong-Peng

    2016-06-01

    MicroRNAs have been shown to play a role in B-cell differentiation and activation. Here, we found miR-182 to be highly induced in activated B cells. However, mice lacking miR-182 have normal B-cell and T-cell development. Interestingly, mutant mice exhibited a defective antibody response at early time-points in the immunization regimen when challenged with a T-cell-dependent antigen. Germinal centres were formed but the generation of extrafollicular plasma cells was defective in the spleens of immunized miR-182-deficient mice. Mutant mice were also not able to respond to a T-cell-independent type 2 antigen, which typically elicited an extrafollicular B-cell response. Taken together, the data indicated that miR-182 plays a critical role in driving extrafollicular B-cell antibody responses. PMID:26849109

  13. Reverse Engineering Adverse Outcome Pathways

    SciTech Connect

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  14. Melanoma Affects the Composition of Blood Cell-Derived Extracellular Vesicles

    PubMed Central

    Koliha, Nina; Heider, Ute; Ozimkowski, Tobias; Wiemann, Martin; Bosio, Andreas; Wild, Stefan

    2016-01-01

    Extracellular vesicles (EVs) are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of EVs reflects the type and status of the originating cell and EVs in melanoma patient’s plasma could be indicative for the tumor. Likewise, EVs might influence tumor progression by regulating immune responses. We performed a broad protein characterization of EVs from plasma of melanoma patients and healthy donors as well as from T cells, B cells, natural killer (NK) cells, monocytes, monocyte-derived dendritic cells (moDCs), and platelets using a multiplex bead-based platform. Using this method, we succeeded in analyzing 58 proteins that were differentially displayed on EVs. Hierarchical clustering of protein intensity patterns grouped EVs according to their originating cell type. The analysis of EVs from stimulated B cells and moDCs revealed the transfer of surface proteins to vesicles depending on the cell status. The protein profiles of plasma vesicles resembled the protein profiles of EVs from platelets, antigen-presenting cells and NK cells as shown by platelet markers, co-stimulatory proteins, and a NK cell subpopulation marker. In comparison to healthy plasma vesicles, melanoma plasma vesicles showed altered signals for platelet markers, indicating a changed vesicle secretion or protein loading of EVs by platelets and a lower CD8 signal that might be associated with a diminished activity of NK cells or T cells. As we hardly detected melanoma-derived vesicles in patient’s plasma, we concluded that blood cells induced the observed differences. In summary, our results question a direct effect of melanoma cells on the composition of EVs in melanoma plasma, but rather argue for an indirect influence of melanoma cells on the vesicle secretion or vesicle protein loading by blood cells. PMID:27507971

  15. TGF-β stimulation in human and murine cells reveals commonly affected biological processes and pathways at transcription level

    PubMed Central

    2014-01-01

    Background The TGF-β signaling pathway is a fundamental pathway in the living cell, which plays a key role in many central cellular processes. The complex and sometimes contradicting mechanisms by which TGF-β yields phenotypic effects are not yet completely understood. In this study we investigated and compared the transcriptional response profile of TGF-β1 stimulation in different cell types. For this purpose, extensive experiments are performed and time-course microarray data are generated in human and mouse parenchymal liver cells, human mesenchymal stromal cells and mouse hematopoietic progenitor cells at different time points. We applied a panel of bioinformatics methods on our data to uncover common patterns in the dynamic gene expression response in respective cells. Results Our analysis revealed a quite variable and multifaceted transcriptional response profile of TGF-β1 stimulation, which goes far beyond the well-characterized classical TGF-β1 signaling pathway. Nonetheless, we could identify several commonly affected processes and signaling pathways across cell types and species. In addition our analysis suggested an important role of the transcription factor EGR1, which appeared to have a conserved influence across cell-types and species. Validation via an independent dataset on A549 lung adenocarcinoma cells largely confirmed our findings. Network analysis suggested explanations, how TGF-β1 stimulation could lead to the observed effects. Conclusions The analysis of dynamical transcriptional response to TGF-β treatment experiments in different human and murine cell systems revealed commonly affected biological processes and pathways, which could be linked to TGF-β1 via network analysis. This helps to gain insights about TGF-β pathway activities in these cell systems and its conserved interactions between the species and tissue types. PMID:24886091

  16. Blood cell transcriptomic-based early biomarkers of adverse programming effects of gestational calorie restriction and their reversibility by leptin supplementation

    PubMed Central

    Konieczna, Jadwiga; Sánchez, Juana; Palou, Mariona; Picó, Catalina; Palou, Andreu

    2015-01-01

    The challenge of preventing major chronic diseases requires reliable, early biomarkers. Gestational mild undernutrition in rats is enough to program the offspring to develop later pathologies; the intake of leptin, a breastmilk component, during lactation may reverse these programming effects. We used these models to identify, in peripheral blood mononuclear cells (PBMCs), transcriptomic-based early biomarkers of programmed susceptibility to later disorders, and explored their response to neonatal leptin intake. Microarray analysis was performed in PBMCs from the offspring of control and 20% gestational calorie-restricted dams (CR), and CR-rats supplemented with physiological doses of leptin throughout lactation. Notably, leptin supplementation normalised 218 of the 224 mRNA-levels identified in PBMCs associated to undernutrition during pregnancy. These markers may be useful for early identification and subsequent monitoring of individuals who are at risk of later diseases and would specifically benefit from the intake of appropriate amounts of leptin during lactation. PMID:25766068

  17. Thunbergia laurifolia extract minimizes the adverse effects of toxicants by regulating P-glycoprotein activity, CYP450, and lipid metabolism gene expression in HepG2 cells.

    PubMed

    Rocejanasaroj, A; Tencomnao, T; Sangkitikomol, W

    2014-01-01

    Thunbergia laurifolia (TL) is widely used as an antidote in Thai traditional medicine against toxic substances such as alcohol, pesticides, arsenic, and strychnine. We found that the lyophilized form of TL in 80% ethanol possessed the antioxidant levels within the range 23,163.9 ± 1457.4 Trolox equivalents mM/kg dry mass and 899.8 ± 14.5 gallic acid equivalents mM/kg dry mass using the oxygen radical absorbance capacity assay and the Folin Ciocalteu phenol assay, respectively. TL extract (TLE) at a high dose (3000 mg/L) induced cytotoxicity according to the neutral red assay and the MTT assay. However, TLE doses of 800-3000 mg/L could reduce intracellular oxidative stress in a dose-dependent manner (P < 0.05) using the dichlorodihydrofluorescein diacetate assay. TLE significantly enhanced the mRNA expression of CYP1A1, CYP1A2, CYP2B6, CYP3A4, and PPARg, but it significantly inhibited the mRNA expression of CYP3A7, CYP2D6, and CYP2E1 (P < 0.05) by reverse transcription-polymerase chain reaction. Moreover, TLE could increase the activity of a multidrug transporter, P-glycoprotein, which accelerated the excretion of toxic substances from HepG2 cells. It is suggested that TLE may be beneficial for detoxification by reducing oxidative stress, minimizing toxicity by regulating the expression CYP450 mRNAs for suitable production of CYP450 isoenzymes, and increasing PPARγ mRNA expression and P-glycoprotein activity in HepG2 cells, thereby maintaining xenobiotic biotransformation balance. PMID:24446304

  18. Identifying a novel role for X-prolyl aminopeptidase (Xpnpep) 2 in CrVI-induced adverse effects on germ cell nest breakdown and follicle development in rats.

    PubMed

    Banu, Sakhila K; Stanley, Jone A; Sivakumar, Kirthiram K; Arosh, Joe A; Barhoumi, Rola; Burghardt, Robert C

    2015-03-01

    Environmental exposure to endocrine-disrupting chemicals (EDCs) is one cause of premature ovarian failure (POF). Hexavalent chromium (CrVI) is a heavy metal EDC widely used in more than 50 industries, including chrome plating, welding, wood processing, and tanneries. Recent data from U.S. Environmental Protection Agency indicate increased levels of Cr in drinking water from several American cities, which potentially predispose residents to various health problems. Recently, we demonstrated that gestational exposure to CrVI caused POF in F1 offspring. The current study was performed to identify the molecular mechanism behind CrVI-induced POF. Pregnant rats were treated with 25 ppm of potassium dichromate from Gestational Day (GD) 9.5 to GD 14.5 through drinking water, and the fetuses were exposed to CrVI through transplacental transfer. Ovaries were removed from the fetuses or pups on Embryonic Day (ED) 15.5, ED 17.5, Postnatal Day (PND) 1, PND 4, or PND 25, and various analyses were performed. Results showed that gestational exposure to CrVI: 1) increased germ cell/oocyte apoptosis and advanced germ cell nest (GCN) breakdown; 2) increased X-prolyl aminopeptidase (Xpnpep) 2, a POF marker in humans, during GCN breakdown; 3) decreased Xpnpep2 during postnatal follicle development; and 4) increased colocalization of Xpnpep2 with Col3 and Col4. We also found that Xpnpep2 inversely regulated the expression of Col1, Col3, and Col4 in all the developmental stages studied. Thus, CrVI advanced GCN breakdown and increased follicle atresia in F1 female progeny by targeting Xpnpep2. PMID:25568306

  19. The science of evaluation of adverse events associated with vaccination.

    PubMed

    Halsey, Neal A

    2002-07-01

    All vaccines cause some adverse events; serious adverse events are rare. Causal associations between a vaccine and an adverse event rarely can be determined by specific tests such as identifying a vaccine agent in the affected tissue of patients. In the absence of such data, epidemiologic studies can be used to determine if the risk of the disorder is increased in vaccinated compared to unvaccinated individuals. Common mistakes include assuming a causal relationship based on a temporal association only or a series of affected patients. Careful studies have demonstrated that many hypothesized causal associations between vaccines and adverse events were not substantiated. False assumptions regarding causality are likely to occur for illnesses without a carefully defined etiology or pathogenesis. PMID:12199617

  20. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    PubMed

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-08-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond. PMID:23551936

  1. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    PubMed Central

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  2. Monosomal karyotype as an adverse prognostic factor in patients with acute myeloid leukemia treated with allogeneic hematopoietic stem-cell transplantation in first complete remission: a retrospective survey on behalf of the ALWP of the EBMT

    PubMed Central

    Brands-Nijenhuis, Angelique V.M.; Labopin, Myriam; Schouten, Harry C.; Volin, Liisa; Socié, Gérard; Cornelissen, Jan J.; Huynh, Anne; Ljungman, Per; Malard, Florent; Esteve, Jordi; Nagler, Arnon; Mohty, Mohamad

    2016-01-01

    Despite the overall benefit from allogeneic hematopoietic stem cell transplantation observed in patients with poor cytogenetic risk acute myeloid leukemia in first complete remission, the precise effect of this procedure for different poor-risk subtypes has not been fully analyzed. This retrospective analysis was performed to investigate whether allogeneic hematopoietic stem cell transplantation performed in first complete remission in patients with monosomal karyotype can overcome the adverse prognosis associated with these patients. Of the 4635 patients included in the study, 189 (4%) harbored a monosomal karyotype. The presence of a monosomal karyotype was associated with a worse outcome, with an inferior leukemia-free survival and overall survival (5-year leukemia-free survival and overall survival: 24±3% and 26±3% vs. 53±1% and 57±1% in monosomal-karyotype and non-monosomal-karyotype, respectively; P<0.0001) and higher relapse risk after transplantation (cumulative incidence of relapse at 5 years: 56±4% in monosomal-karyotype vs. 28±1% in non-monosomal-karyotype; P<0.0001). The adverse negative impact of monosomal karyotype cytogenetics was confirmed in the entire cohort in a multivariate analysis [Hazard Ratio (HR): 1.88, 95% Confidence Interval (CI):1.29–2.73, P=0.001 for relapse incidence; HR:1.71, 95%CI:1.27–2.32, P<0.0001 for leukemia-free survival; HR:1.81, 95%CI:1.32–2.48, P=0.0002 for overall survival], and was independent of the presence of other poor-risk cytogenetic subtypes. In summary, monosomal karyotype arises as a strong negative prognostic feature in acute myeloid leukemia also in patients who undergo allogeneic hematopoietic stem cell transplantation in first complete remission, stressing the need to develop additional pre- and post-transplantation strategies aimed at improving overall results. Nonetheless, allogeneic hematopoietic stem cell transplantation in early phase is currently the best therapy for this very poor-risk acute

  3. Regulation of the proliferation of colon cancer cells by compounds that affect glycolysis, including 3-bromopyruvate, 2-deoxyglucose and biguanides.

    PubMed

    Lea, Michael A; Qureshi, Mehreen S; Buxhoeveden, Michael; Gengel, Nicolette; Kleinschmit, Jessica; Desbordes, Charles

    2013-02-01

    In previous studies performed by our group, we observed that 2-deoxyglucose blocked the acidification of the medium used for culture of colon cancer cells caused by incubation with biguanides and it had an additive inhibitory effect on growth. In the present work, we found that 3-bromopyruvate can also prevent the lowering of pH caused by biguanide treatment. 3-Bromopyruvate inhibited colonic cancer cell proliferation, but the effect was not always additive to that of biguanides and an additive effect was more notable in combined treatment with 3-bromopyruvate and 2-deoxyglucose. The induction of alkaline phosphatase activity by butyrate was not consistently affected by combination with other agents that modified glucose metabolism. The drug combinations that were examined inhibited proliferation of wild-type and p53-null cells and affected colonic cancer lines with different growth rates. PMID:23393330

  4. The Development and Application of Affective Assessment in an Upper-Level Cell Biology Course

    ERIC Educational Resources Information Center

    Kitchen, Elizabeth; Reeve, Suzanne; Bell, John D.; Sudweeks, Richard R.; Bradshaw, William S.

    2007-01-01

    This study exemplifies how faculty members can develop instruments to assess affective responses of students to the specific features of the courses they teach. Means for assessing three types of affective responses are demonstrated: (a) student attitudes towards courses with differing instructional objectives and methodologies, (b) student…

  5. Tissue microarray-based screening for chromosomal breakpoints affecting the T-cell receptor gene loci in mature T-cell lymphomas.

    PubMed

    Leich, E; Haralambieva, E; Zettl, A; Chott, A; Rüdiger, T; Höller, S; Müller-Hermelink, H-K; Ott, G; Rosenwald, A

    2007-09-01

    The pathogenesis of mature T-cell non-Hodgkin lymphomas (T-NHLs) is poorly understood. Analogous to B-cell lymphomas, in which the immunoglobulin (IgH) receptor loci are frequently targeted by chromosomal translocations, the T-cell receptor (TCR) gene loci are affected by translocations in a subset of precursor T-cell malignancies. In a large-scale analysis of 245 paraffin-embedded mature T-NHLs, arranged in a tissue microarray format and using improved FISH assays for the detection of breakpoints in the TCRalpha/delta, TCRbeta, and TCRgamma loci, we provide evidence that mature T-NHLs other than T-cell prolymphocytic leukaemia (T-PLL) also occasionally show a chromosomal rearrangement that involves the TCRalpha/delta locus. In particular, one peripheral T-cell lymphoma (not otherwise specified, NOS) with the morphological variant of Lennert lymphoma displayed a chromosomal translocation t(14;19) involving the TCRalpha/delta and the BCL3 loci. A second case, an angio-immunoblastic T-cell lymphoma (AILT), carried an inv(14)(q11q32) affecting the TCRalpha/delta and IgH loci. FISH signal constellations as well as concomitant comparative genomic hybridization (CGH) data were also suggestive of the occurrence of an isochromosome 7, previously described to be pathognomonic for hepatosplenic T-cell lymphomas, in rare cases of enteropathy-type T-cell lymphoma. PMID:17582237

  6. Parents' Psychiatric Issues May Adversely Affect Some Children

    MedlinePlus

    ... attempted suicide, or who had struggled with antisocial personality disorder or marijuana abuse, were found to face ... and mood disorders, schizophrenia, anxiety, Alzheimer's-related dementia, personality disorders, substance abuse and attempted suicide. Parental histories ...

  7. Molecular mechanism of extrinsic factors affecting anti-aging of stem cells

    PubMed Central

    Wong, Tzyy Yue; Solis, Mairim Alexandra; Chen, Ying-Hui; Huang, Lynn Ling-Huei

    2015-01-01

    Scientific evidence suggests that stem cells possess the anti-aging ability to self-renew and maintain differentiation potentials, and quiescent state. The objective of this review is to discuss the micro-environment where stem cells reside in vivo, the secreted factors to which stem cells are exposed, the hypoxic environment, and intracellular factors including genome stability, mitochondria integrity, epigenetic regulators, calorie restrictions, nutrients, and vitamin D. Secreted tumor growth factor-β and fibroblast growth factor-2 are reported to play a role in stem cell quiescence. Extracellular matrices may interact with caveolin-1, the lipid raft on cell membrane to regulate quiescence. N-cadherin, the adhesive protein on niche cells provides support for stem cells. The hypoxic micro-environment turns on hypoxia-inducible factor-1 to prevent mesenchymal stem cells aging through p16 and p21 down-regulation. Mitochondria express glucosephosphate isomerase to undergo glycolysis and prevent cellular aging. Epigenetic regulators such as p300, protein inhibitors of activated Stats and H19 help maintain stem cell quiescence. In addition, calorie restriction may lead to secretion of paracrines cyclic ADP-ribose by intestinal niche cells, which help maintain intestinal stem cells. In conclusion, it is crucial to understand the anti-aging phenomena of stem cells at the molecular level so that the key to solving the aging mystery may be unlocked. PMID:25815136

  8. Adverse Fat Depots and Marrow Adiposity Are Associated With Skeletal Deficits and Insulin Resistance in Long-Term Survivors of Pediatric Hematopoietic Stem Cell Transplantation.

    PubMed

    Mostoufi-Moab, Sogol; Magland, Jeremy; Isaacoff, Elizabeth J; Sun, Wenli; Rajapakse, Chamith S; Zemel, Babette; Wehrli, Felix; Shekdar, Karuna; Baker, Joshua; Long, Jin; Leonard, Mary B

    2015-09-01

    Allogeneic hematopoietic stem-cell transplantation (alloHSCT) survivors treated with total body irradiation (TBI) exhibit bone deficits and excess adiposity, potentially related to altered mesenchymal stem cell differentiation into osteoblasts or adipocytes. We examined associations among fat distribution, bone microarchitecture, and insulin resistance in alloHSCT survivors after TBI. This was a cross-sectional observational study of 25 alloHSCT survivors (aged 12 to 25 years) a median of 9.7 (4.3 to 19.3) years after alloHSCT compared to 25 age-, race-, and sex-matched healthy controls. Vertebral MR spectroscopic imaging and tibia micro-MRI were used to quantify marrow adipose tissue (MAT) and trabecular microarchitecture. Additional measures included DXA whole-body fat mass (WB-FM), leg lean mass (Leg-LM), trunk visceral adipose tissue (VAT), and CT calf muscle density. Insulin resistance in alloHSCT survivors was estimated by HOMA-IR. AlloHSCT survivors had lower Leg-LM (p < 0.001) and greater VAT (p < 0.01), MAT (p < 0.001), and fat infiltration of muscle (p = 0.04) independent of WB-FM, versus matched controls; BMI did not differ. Survivors had lower bone volume fraction and abnormal microarchitecture including greater erosion and more rod-like structure versus controls (all p = 0.04); 14 had vertebral deformities and two had compression fractures. Greater WB-FM, VAT, MAT, and muscle fat infiltration were associated with abnormal trabecular microarchitecture (p < 0.04 for all). AlloHSCT HOMA-IR was elevated, associated with younger age at transplantation (p < 0.01), and positively correlated with WB-FM and VAT (both p < 0.01). In conclusion, the markedly increased marrow adiposity, abnormal bone microarchitecture, and abnormal fat distribution highlight the risks of long-term treatment-related morbidity and mortality in alloHSCT recipients after TBI. Trabecular deterioration was associated with marrow and visceral adiposity. Furthermore, long-term survivors

  9. Adverse Fat Depots and Marrow Adiposity Are Associated with Skeletal Deficits and Insulin Resistance in Long-Term Survivors of Pediatric Hematopoietic Stem Cell Transplantation

    PubMed Central

    Mostoufi-Moab, Sogol; Magland, Jeremy; Isaacoff, Elizabeth J.; Sun, Wenli; Rajapakse, Chamith S.; Zemel, Babette; Wehrli, Felix; Shekdar, Karuna; Baker, Joshua; Long, Jin; Leonard, Mary B.

    2015-01-01

    Allogeneic hematopoietic stem-cell transplantation (alloHSCT) survivors treated with total body irradiation (TBI) exhibit bone deficits and excess adiposity, potentially related to altered mesenchymal stem cell differentiation into osteoblasts or adipocytes. We examined associations among fat distribution, bone microarchitecture, and insulin resistance in alloHSCT survivors after TBI. This was a cross-sectional observational study of 25 alloHSCT survivors (aged 12–25 years) a median of 9.7 (4.3–19.3) years after allo