Science.gov

Sample records for adversely affecting groundwater

  1. Hyperinsulinemia adversely affects lung structure and function.

    PubMed

    Singh, Suchita; Bodas, Manish; Bhatraju, Naveen K; Pattnaik, Bijay; Gheware, Atish; Parameswaran, Praveen Kolumam; Thompson, Michael; Freeman, Michelle; Mabalirajan, Ulaganathan; Gosens, Reinoud; Ghosh, Balaram; Pabelick, Christina; Linneberg, Allan; Prakash, Y S; Agrawal, Anurag

    2016-05-01

    There is limited knowledge regarding the consequences of hyperinsulinemia on the lung. Given the increasing prevalence of obesity, insulin resistance, and epidemiological associations with asthma, this is a critical lacuna, more so with inhaled insulin on the horizon. Here, we demonstrate that insulin can adversely affect respiratory health. Insulin treatment (1 μg/ml) significantly (P < 0.05) increased the proliferation of primary human airway smooth muscle (ASM) cells and induced collagen release. Additionally, ASM cells showed a significant increase in calcium response and mitochondrial respiration upon insulin exposure. Mice administered intranasal insulin showed increased collagen deposition in the lungs as well as a significant increase in airway hyperresponsiveness. PI3K/Akt mediated activation of β-catenin, a positive regulator of epithelial-mesenchymal transition and fibrosis, was observed in the lungs of insulin-treated mice and lung cells. Our data suggests that hyperinsulinemia may have adverse effects on airway structure and function. Insulin-induced activation of β-catenin in lung tissue and the contractile effects on ASM cells may be causally related to the development of asthma-like phenotype. PMID:26919895

  2. FACTORS ADVERSELY AFFECTING AMPHIBIAN POPULATIONS IN THE US

    EPA Science Inventory

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from species accounts written in a standardized format by multiple authors in a forthcoming book. Specific adverse factors were identified for 53 (58%) of...

  3. Adversity before Conception Will Affect Adult Progeny in Rats

    ERIC Educational Resources Information Center

    Shachar-Dadon, Alice; Schulkin, Jay; Leshem, Micah

    2009-01-01

    The authors investigated whether adversity in a female, before she conceives, will influence the affective and social behavior of her progeny. Virgin female rats were either undisturbed (controls) or exposed to varied, unpredictable, stressors for 7 days (preconceptual stress [PCS]) and then either mated immediately after the end of the stress…

  4. Adversity before conception will affect adult progeny in rats.

    PubMed

    Shachar-Dadon, Alice; Schulkin, Jay; Leshem, Micah

    2009-01-01

    The authors investigated whether adversity in a female, before she conceives, will influence the affective and social behavior of her progeny. Virgin female rats were either undisturbed (controls) or exposed to varied, unpredictable, stressors for 7 days (preconceptual stress [PCS]) and then either mated immediately after the end of the stress (PCS0) or 2 weeks after the stress ended (PCS2). Their offspring were raised undisturbed until tested in adulthood. PCS offspring showed reduced social interaction; in the acoustic startle test, PCS males were less fearful, whereas PCS females were more fearful; in the shuttle task, PCS0 males avoided shock better; and in the elevated maze, PCS0 females were more active and anxious. The 2-week interval between stress and mating assuaged the effects on offspring activity and shock avoidance but not the changes in social behavior and fear in male and female offspring. Hence, PCS to the dam, even well before pregnancy, influences affective and social behavior in her adult offspring, depending on how long before conception it occurred, the behavior tested, and sex. (PsycINFO Database Record (c) 2009 APA, all rights reserved). PMID:19209986

  5. The synthetic progestin megestrol acetate adversely affects zebrafish reproduction.

    PubMed

    Han, Jian; Wang, Qiangwei; Wang, Xianfeng; Li, Yonggang; Wen, Sheng; Liu, Shan; Ying, Guangguo; Guo, Yongyong; Zhou, Bingsheng

    2014-05-01

    Synthetic progestins contaminate the aquatic ecosystem, and may cause adverse health effects on aquatic organisms. Megestrol acetate (MTA) is present in the aquatic environment, but its possible effects on fish reproduction are unknown. In the present study, we investigated the endocrine disruption and impact of MTA on fish reproduction. After a pre-exposure period of 14 days, reproductively mature zebrafish (Danio rerio) (F0) were exposed to MTA at environmental concentrations (33, 100, 333, and 666 ng/L) for 21 days. Egg production was decreased in F0 fish exposed to MTA, with a significant decrease at 666 ng/L. The exposure significantly decreased the circulating concentrations of estradiol (E2) and testosterone (T) in female fish or 11-keto testosterone (11-KT) in male fish. MTA exposure significantly downregulated the transcription of certain genes along the hypothalamic-pituitary-gonadal (HPG) axis. MTA did not affect early embryonic development or hatching success in the F1 generation. The present study showed that MTA is a potent endocrine disruptor in fish, and short-term exposure to MTA could significantly affect reproduction in fish and negatively impact the fish population. PMID:24647012

  6. Factors affecting the development of adverse drug reactions (Review article)

    PubMed Central

    Alomar, Muaed Jamal

    2013-01-01

    Objectives To discuss the effect of certain factors on the occurrence of Adverse Drug Reactions (ADRs). Data Sources A systematic review of the literature in the period between 1991 and 2012 was made based on PubMed, the Cochrane database of systematic reviews, EMBASE and IDIS. Key words used were: medication error, adverse drug reaction, iatrogenic disease factors, ambulatory care, primary health care, side effects and treatment hazards. Summary Many factors play a crucial role in the occurrence of ADRs, some of these are patient related, drug related or socially related factors. Age for instance has a very critical impact on the occurrence of ADRs, both very young and very old patients are more vulnerable to these reactions than other age groups. Alcohol intake also has a crucial impact on ADRs. Other factors are gender, race, pregnancy, breast feeding, kidney problems, liver function, drug dose and frequency and many other factors. The effect of these factors on ADRs is well documented in the medical literature. Taking these factors into consideration during medical evaluation enables medical practitioners to choose the best drug regimen. Conclusion Many factors affect the occurrence of ADRs. Some of these factors can be changed like smoking or alcohol intake others cannot be changed like age, presence of other diseases or genetic factors. Understanding the different effects of these factors on ADRs enables healthcare professionals to choose the most appropriate medication for that particular patient. It also helps the healthcare professionals to give the best advice to patients. Pharmacogenomics is the most recent science which emphasizes the genetic predisposition of ADRs. This innovative science provides a new perspective in dealing with the decision making process of drug selection. PMID:24648818

  7. Does Ramadan Fasting Adversely Affect Cognitive Function in Young Females?

    PubMed Central

    Ghayour Najafabadi, Mahboubeh; Rahbar Nikoukar, Laya; Memari, Amir; Ekhtiari, Hamed; Beygi, Sara

    2015-01-01

    We examined the effects of Ramadan fasting on cognitive function in 17 female athletes. Data were obtained from participants of two fasting (n = 9) and nonfasting (n = 8) groups at three periods of the study (before Ramadan, at the third week in Ramadan, and after Ramadan). Digit span test (DST) and Stroop color test were employed to assess short-term memory and inhibition/cognitive flexibility at each time point. There were no significant changes for DST and Stroop task 1 in both groups, whereas Stroop task 2 and task 3 showed significant improvements in Ramadan condition (p < 0.05). Interference indices did not change significantly across the study except in post-Ramadan period of fasting group (p < 0.05). Group × week interaction was significant only for error numbers (p < 0.05). Athletes in nonfasting showed a significant decrease in number of errors in Ramadan compared to baseline (p < 0.05). The results suggest that Ramadan fasting may not adversely affect cognitive function in female athletes. PMID:26697263

  8. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  9. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  10. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  11. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  12. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  13. Geospatial association between adverse birth outcomes and arsenic in groundwater in New Hampshire, USA

    USGS Publications Warehouse

    Xun Shi; Ayotte, Joseph; Akikazu Onda; Stephanie Miller; Judy Rees; Diane Gilbert-Diamond; Onega, Tracy L; Gui, Jiang; Karagas, Margaret R.; Moeschler, John B

    2015-01-01

    There is increasing evidence of the role of arsenic in the etiology of adverse human reproductive outcomes. Because drinking water can be a major source of arsenic to pregnant women, the effect of arsenic exposure through drinking water on human birth may be revealed by a geospatial association between arsenic concentration in groundwater and birth problems, particularly in a region where private wells substantially account for water supply, like New Hampshire, USA. We calculated town-level rates of preterm birth and term low birth weight (term LBW) for New Hampshire, by using data for 1997–2009 stratified by maternal age. We smoothed the rates by using a locally weighted averaging method to increase the statistical stability. The town-level groundwater arsenic probability values are from three GIS data layers generated by the US Geological Survey: probability of local groundwater arsenic concentration >1 µg/L, probability >5 µg/L, and probability >10 µg/L. We calculated Pearson’s correlation coefficients (r) between the reproductive outcomes (preterm birth and term LBW) and the arsenic probability values, at both state and county levels. For preterm birth, younger mothers (maternal age <20) have a statewider = 0.70 between the rates smoothed with a threshold = 2,000 births and the town mean arsenic level based on the data of probability >10 µg/L; for older mothers, r = 0.19 when the smoothing threshold = 3,500; a majority of county level r values are positive based on the arsenic data of probability >10 µg/L. For term LBW, younger mothers (maternal age <25) have a statewide r = 0.44 between the rates smoothed with a threshold = 3,500 and town minimum arsenic concentration based on the data of probability >1 µg/L; for older mothers, r = 0.14 when the rates are smoothed with a threshold = 1,000 births and also adjusted by town median household income in 1999, and the arsenic values are the town minimum based on probability

  14. Geospatial association between adverse birth outcomes and arsenic in groundwater in New Hampshire, USA.

    PubMed

    Shi, Xun; Ayotte, Joseph D; Onda, Akikazu; Miller, Stephanie; Rees, Judy; Gilbert-Diamond, Diane; Onega, Tracy; Gui, Jiang; Karagas, Margaret; Moeschler, John

    2015-04-01

    There is increasing evidence of the role of arsenic in the etiology of adverse human reproductive outcomes. Because drinking water can be a major source of arsenic to pregnant women, the effect of arsenic exposure through drinking water on human birth may be revealed by a geospatial association between arsenic concentration in groundwater and birth problems, particularly in a region where private wells substantially account for water supply, like New Hampshire, USA. We calculated town-level rates of preterm birth and term low birth weight (term LBW) for New Hampshire, by using data for 1997-2009 stratified by maternal age. We smoothed the rates by using a locally weighted averaging method to increase the statistical stability. The town-level groundwater arsenic probability values are from three GIS data layers generated by the US Geological Survey: probability of local groundwater arsenic concentration >1 µg/L, probability >5 µg/L, and probability >10 µg/L. We calculated Pearson's correlation coefficients (r) between the reproductive outcomes (preterm birth and term LBW) and the arsenic probability values, at both state and county levels. For preterm birth, younger mothers (maternal age <20) have a statewide r = 0.70 between the rates smoothed with a threshold = 2,000 births and the town mean arsenic level based on the data of probability >10 µg/L; for older mothers, r = 0.19 when the smoothing threshold = 3,500; a majority of county level r values are positive based on the arsenic data of probability >10 µg/L. For term LBW, younger mothers (maternal age <25) have a statewide r = 0.44 between the rates smoothed with a threshold = 3,500 and town minimum arsenic concentration based on the data of probability >1 µg/L; for older mothers, r = 0.14 when the rates are smoothed with a threshold = 1,000 births and also adjusted by town median household income in 1999, and the arsenic values are the town minimum based on probability >10 µg/L. At the county level for

  15. Missing Out: Excessive Absenteeism Adversely Affects Elementary Reading Scores

    ERIC Educational Resources Information Center

    Hockert, Christine; Harrington, Sonja; Vaughn, Debra; Kelly, Kirk; Gooden, John

    2005-01-01

    This study was designed to answer the question "Does excessive absenteeism affect student academic achievement?" During the 2002-2003 academic year, 188 students attending grades 3 through 5 at an urban Tennessee elementary school with a high poverty level participated in the study. Demographic data were gathered to provide descriptive statistics…

  16. Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

    PubMed Central

    Saunders, Lyndsay E.; Koontz, Melissa B.; Pezeshki, Reza

    2013-01-01

    Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested. PMID:24833234

  17. Urban sprawl and you: how sprawl adversely affects worker health.

    PubMed

    Pohanka, Mary; Fitzgerald, Sheila

    2004-06-01

    Urban sprawl, once thought of as just an environmental issue, is currently gaining momentum as an emerging public health issue worthy of research and political attention. Characteristics seen in sprawling communities include increasing traffic volumes; inadequate public transportation; pedestrian unfriendly streets; and the division of businesses, shops, and homes. These characteristics can affect health in many ways. Greater air pollution contributes to higher asthma and other lung disorder rates. An increased dependence on the automobile encourages a more sedentary lifestyle and can potentially contribute to obesity. The increased danger and stress of long commutes can lead to more accidents, anxiety, and social isolation. Occupational health nurses can become involved by promoting physical activity in the workplace, creating programs for injury prevention and stress management, becoming involved in political smart growth measures, and educating and encouraging colleagues to become active in addressing this issue. PMID:15219110

  18. Factors Affecting the Sustainability of Groundwater-Source Cooling

    NASA Astrophysics Data System (ADS)

    Ferguson, G. A.; Woodbury, A. D.

    2004-12-01

    The use of groundwater in thermal applications has grown in popularity due to increases in environmental awareness and rising energy costs. While this source of energy is generally seen as beneficial to the environment, changes in subsurface temperatures resulting from thermal development and other factors may make this practice unsustainable. An example of such changes in subsurface temperatures has been observed in Winnipeg, Manitoba, where groundwater is extensively used for cooling applications. Temperatures in a regional aquifer beneath the city were found to be as much as ten degrees Celsius greater than those measured in surrounding rural areas. Numerical modeling indicates increases in temperature of up to 5 degrees Celsius can be attributed to downward heat flow originating in buildings in many cases. Areas where increases in temperature were found to be greater corresponded to areas where water is being injected into the aquifer. This water is being produced in the process of using groundwater for cooling applications, such as air conditioning and industrial cooling, and is being injected back into the aquifer to maintain hydraulic head and reduce the demand on Winnipeg's sewer system. In most cases, the heat introduced by injecting this water is significantly affecting temperatures at the production well of the same system and numerical modeling indicates that this is inevitable with the current method of development. The combination of heat loss from buildings and injection of heated water is largely responsible for a reduction in the efficiency of groundwater as a coolant and may eventually make the use of groundwater in cooling applications unsustainable.

  19. Processes Controlling Temporal Changes in Agriculturally-Affected Groundwater

    NASA Astrophysics Data System (ADS)

    Burow, K. R.; Belitz, K.; Jurgens, B. C.

    2014-12-01

    The National Water Quality Assessment (NAWQA) program of the U.S. Geological Survey includes assessment of groundwater-quality changes with time. To better understand changes at a national scale, NAWQA has implemented smaller scale flow-path studies to evaluate the processes affecting these changes. Flow path studies are designed to sample groundwater of different ages. Wells are sampled for a suite of constituents, including tracers of groundwater age. In the 1990s, a 4.6 km transect of monitoring wells was installed near Fresno in the southern Central Valley of California. The region is dominated by intensive agriculture. The wells were sampled in 1994-95, 2003, and 2013 to provide data on changes in water quality and groundwater age. In 2013, the flow path was extended to a regional scale (30 km) by using existing production wells. Preliminary interpretation of the local-scale flow path indicates that nitrate concentrations in the upper 25 m of the aquifer are higher than the USEPA Maximum Contaminant Level (MCL) for drinking water and variably increase or decrease with time. At intermediate depths (25-40 m), nitrate concentrations are lower and show small to moderate increases. The legacy pesticide 1,2-dibromo-3-chloropropane (DBCP) is degrading at a half-life of about 4-6 years. DBCP is present above the MCL at intermediate depths even though it is has been banned from use for more than 30 years. Both nitrate and DBCP appear to be moving vertically downward through the aquifer. Whereas uranium concentrations are generally below the MCL in the local-scale flow path, concentrations increase along the regional transect, with concentrations nearly an order of magnitude above the MCL in some wells. Further evaluation of processes affecting these constituents (such as source, redox, and mobilization factors) will provide important insight that can be applied to other regions and will assist local water managers.

  20. Obesity Adversely Affects Survival in Pancreatic Cancer Patients

    PubMed Central

    McWilliams, Robert R.; Matsumoto, Martha E.; Burch, Patrick A.; Kim, George P.; Halfdanarson, Thorvardur R.; de Andrade, Mariza; Reid-Lombardo, Kaye; Bamlet, William R.

    2010-01-01

    Purpose Higher body-mass index (BMI) has been implicated as a risk factor for developing pancreatic cancer, but its effect on survival has not been thoroughly investigated. We assessed the association of BMI with survival in a sample of pancreatic cancer patients and utilized epidemiologic and clinical information to understand the contribution of diabetes and hyperglycemia. Methods A survival analysis using Cox proportional hazards by usual adult BMI was performed on 1,861 unselected patients with pancreatic adenocarcinoma; analyses were adjusted for covariates that included clinical stage, age, and sex. Secondary analyses incorporated self reported diabetes and fasting blood glucose in the survival model. Results BMI as a continuous variable was inversely associated with survival from pancreatic adenocarcinoma [hazard ratio 1.019 for each increased unit of BMI (kg/m2), p < 0.001] after adjustment for age, stage, and sex. In analysis by National Institutes of Health BMI category, BMI of 30–34.99 kg/m2 (HR 1.14, 95% confidence interval 0.98–1.33), 35–39.99 kg/m2 (HR 1.32, 95% CI 1.08–1.62), and ≥40 (HR 1.60, 95% CI 1.26–2.04) were associated with decreased survival compared to normal BMI of 18,5–24.99 kg/m2 (overall trend test p<0.001). Fasting blood glucose and diabetes did not affect the results. Conclusions Higher BMI is associated with decreased survival in pancreatic cancer. Although the mechanism of this association remains undetermined, diabetes and hyperglycemia do not appear to account for the observed association. PMID:20665496

  1. Groundwater flow and hydrochemistry in mountain areas affected by DSGSDs

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni B.; Frattini, Paolo; Pena Reyes, Fredy; Riva, Federico

    2014-05-01

    Large slope instabilities such as DSGSD and rockslides locally affect the groundwater flow at the slope scale. These phenomena present morphostructures (scarps, counterscarps and trenches) parallel to the slope direction that control the surface water runoff, directing it transversal to the slope dip and favouring its percolation within the slope through the more conductive materials aligned with the trench . This also affects the slope hydrochemistry, locally controlling the solute transport and circulation. The upper Valtellina (Central European Alps, Northern Italy) is characterize by a high density of DSGSD phenomena, with 29 DSGSDs within an area of about 900 km2 (Crosta et al, 2013). The study area ranges from 1150 to 3500 m in altitude, and shows a clear glacial imprint, which significantly influenced the geomorphology and water distribution in the study area. In order to characterize the groundwater flow and the hydrochemistry of the area, we collected historical data analysis (4070 samples from springs, wells, lakes, rivers and public fountains), and we performed four seasonal campaigns, from summer 2012 to spring 2013, to complete a hydrologic year. During these campaigns, we measured the spring discharge, and we collected samples for chemical (anions and cations) and isotopic (tritium, deuterium and O18) analyses in more almost 40 selected spring located throughout the study area. These springs were selected because representative of main spring clusters, with a particular attention to problems related to the presence of Arsenic in high concentration. In this study, we analyze the effect of DSGSD phenomena on the aquifers of upper Valtellina through the quantitative analysis of hydro-chemical and isotopic data. We show how these phenomena affect the ground water flow also in relation to the presence of geological structures that are associated and locally reactivated by DSGSDs.

  2. Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality

    SciTech Connect

    Torbert, H.A.; Prior, S.A.; Rogers, H.H.; Schlesinger, W.H.; Mullins, G.L.; Runion, G.B.

    1996-07-01

    Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

  3. 41 CFR 102-78.40 - What responsibilities do Federal agencies have when an undertaking adversely affects a historic...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... guidance on the protection of historic and cultural properties in 36 CFR part 800. ... Federal agencies have when an undertaking adversely affects a historic or cultural property? 102-78.40...-78.40 What responsibilities do Federal agencies have when an undertaking adversely affects a...

  4. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45... habitat. (a) Consultation obligations for FIFRA actions that are not likely to adversely affect listed species or critical habitat when alternative consultation agreement is in effect. If EPA and the...

  5. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45... habitat. (a) Consultation obligations for FIFRA actions that are not likely to adversely affect listed species or critical habitat when alternative consultation agreement is in effect. If EPA and the...

  6. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45... habitat. (a) Consultation obligations for FIFRA actions that are not likely to adversely affect listed species or critical habitat when alternative consultation agreement is in effect. If EPA and the...

  7. Genetic polymorphisms affect efficacy and adverse drug reactions of DMARDs in rheumatoid arthritis.

    PubMed

    Zhang, Ling Ling; Yang, Sen; Wei, Wei; Zhang, Xue Jun

    2014-11-01

    Disease-modifying antirheumatic drugs (DMARDs) and biological agents are critical in preventing the severe complications of rheumatoid arthritis (RA). However, the outcome of treatment with these drugs in RA patients is quite variable and unpredictable. Drug-metabolizing enzymes (dihydrofolate reductase, cytochrome P450 enzymes, N-acetyltransferases, etc.), drug transporters (ATP-binding cassette transporters), and drug targets (tumor necrosis factor-α receptors) are coded for by variant alleles. These gene polymorphisms may influence the pharmacokinetics, pharmacodynamics, and side effects of medicines. The cause for differences in efficacy and adverse drug reactions may be genetic variation in drug metabolism among individuals. Polymorphisms in drug transporter genes may change the distribution and excretion of medicines, and the sensitivity of the targets to drugs is strongly influenced by genetic variations. In this article, we review the genetic polymorphisms that affect the efficacy of DMARDs or the occurrence of adverse drug reactions associated with DMARDs in RA. PMID:25144752

  8. Family Adversity and Autonomic Reactivity Association With Immune Changes in HIV-Affected School Children

    PubMed Central

    Thomas, Melanie; Wara, Diane; Saxton, Katherine; Truskier, Mary; Chesney, Margaret; Boyce, W. Thomas

    2013-01-01

    Objective To explore whether primary school entry is associated with changes in immune system parameters in HIV-affected children. HIV-affected children are vulnerable to psychosocial stressors, regardless of their own HIV serological status. Methods Data from 38 HIV+ and 29 HIV− children born to seropositive women were obtained before and after school entry. Measures included family adversity questionnaires, autonomic nervous system (ANS) reactivity (based on mean arterial responses to challenge tasks), and enumerative and functional changes in peripheral blood immune parameters. Results In comparison to children who were HIV−, children who were HIV+ at baseline had fewer CD4+ T lymphocytes (M = 916 vs. 1206 cells/mm3 × 103; F = 7.8, p = .007), more CD8+ cells (M = 1046 vs. 720 cells/mm3 ×103; F = 7.98, p = .006), and diminished NK cell cytotoxicity (M =−.29 vs. .41; F = 8.87, p = .004). School entry was associated with changes in immune parameters, but HIV status was not associated with the magnitude of changes. Changes in immune parameters following school entry were associated with family stress and pre school entry ANS reactivity. Highly ANS reactive children had either the greatest increase in CD8+ cells following school entry or the greatest decrease, depending upon reported levels of family adversity (B = 215.35; t = 3.74, p < .001). Changes in functional immune assays were significantly associated with the interactions between HIV status and ANS reactivity. Conclusions These results suggest that autonomic reactivity is associated with increased immunological sensitivity to adverse or challenging social contexts among children affected by HIV. PMID:23766380

  9. Soil-aquifer phenomena affecting groundwater under vertisols: a review

    NASA Astrophysics Data System (ADS)

    Kurtzman, D.; Baram, S.; Dahan, O.

    2015-09-01

    Vertisols are cracking clayey soils that: (i) usually form in alluvial lowlands where normally, groundwater pools into aquifers, (ii) have different types of voids (due to cracking) which make flow and transport of water, solutes and gas complex, and (iii) are regarded as fertile soils in many areas. The combination of these characteristics results in the unique soil-aquifer phenomena that are highlighted and summarized in this review. The review is divided into the following four sections: (1) soil cracks as preferential pathways for water and contaminants; in this section lysimeter- to basin-scale observations that show the significance of cracks as preferential flow paths in vertisols which bypass matrix blocks in the unsaturated zone are summarized. Relatively fresh-water recharge and groundwater contamination from these fluxes and their modeling are reviewed, (2) soil cracks as deep evaporators and unsaturated-zone salinity; deep sediment samples under uncultivated vertisols in semiarid regions reveal a dry (immobile), saline matrix, partly due to enhanced evaporation through soil cracks. Observations of this phenomenon are compiled in this section and the mechanism of evapoconcentration due to air flow in the cracks is discussed, (3) impact of cultivation on flushing of the unsaturated zone and aquifer salinization; the third section examines studies reporting that land-use change of vertisols from native land to cropland promotes greater fluxes through the saline unsaturated-zone matrix, eventually flushing salts to the aquifer. Different degrees of salt flushing are assessed as well as aquifer salinization on different scales, and a comparison is made with aquifers under other soils, (4) relatively little nitrate contamination in aquifers under vertisols; In this section we turn the light on observations showing that aquifers under cultivated vertisols are somewhat resistant to groundwater contamination by nitrate (the major agriculturally related

  10. Soil-aquifer phenomena affecting groundwater under vertisols: a review

    NASA Astrophysics Data System (ADS)

    Kurtzman, D.; Baram, S.; Dahan, O.

    2016-01-01

    Vertisols are cracking clayey soils that (i) usually form in alluvial lowlands where, normally, groundwater pools into aquifers; (ii) have different types of voids (due to cracking), which make flow and transport of water, solutes and gas complex; and (iii) are regarded as fertile soils in many areas. The combination of these characteristics results in the unique soil-aquifer phenomena that are highlighted and summarized in this review. The review is divided into the following four sections: (1) soil cracks as preferential pathways for water and contaminants: in this section lysimeter-to basin-scale observations that show the significance of cracks as preferential-flow paths in vertisols, which bypass matrix blocks in the unsaturated zone, are summarized. Relatively fresh-water recharge and groundwater contamination from these fluxes and their modeling are reviewed; (2) soil cracks as deep evaporators and unsaturated-zone salinity: deep sediment samples under uncultivated vertisols in semiarid regions reveal a dry (immobile), saline matrix, partly due to enhanced evaporation through soil cracks. Observations of this phenomenon are compiled in this section and the mechanism of evapoconcentration due to air flow in the cracks is discussed; (3) impact of cultivation on flushing of the unsaturated zone and aquifer salinization: the third section examines studies reporting that land-use change of vertisols from native land to cropland promotes greater fluxes through the saline unsaturated-zone matrix, eventually flushing salts to the aquifer. Different degrees of salt flushing are assessed as well as aquifer salinization on different scales, and a comparison is made with aquifers under other soils; (4) relatively little nitrate contamination in aquifers under vertisols: in this section we turn the light on observations showing that aquifers under cultivated vertisols are somewhat resistant to groundwater contamination by nitrate (the major agriculturally related

  11. 42 CFR 137.435 - Will an appeal adversely affect the Indian Tribe's rights in other compact, funding negotiations...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... rights in other compact, funding negotiations, or construction project agreement? 137.435 Section 137.435... another compact, funding agreement, or construction project agreement. ... appeal adversely affect the Indian Tribe's rights in other compact, funding negotiations, or...

  12. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  13. Biogeochemical factors affecting the presence of 210Po in groundwater

    USGS Publications Warehouse

    Seiler, R.L.; Stillings, L.L.; Cutler, N.; Salonen, L.; Outola, I.

    2011-01-01

    The discovery of natural 210Po enrichment at levels exceeding 500 mBq/L in numerous domestic wells in northern Nevada, USA, led to a geochemical investigation of the processes responsible for its mobilization. 210Po activities in 63 domestic and public-supply wells ranged from below 1 mBq/L to 6590 ± 590 mBq/L, among the highest reported levels in the USA. There is little spatial or depth variability in 210Pb activity in study-area sediments and mobilization of a few percent of the 210Po in the sediments would account for all of the 210Po in water. Stable-isotope measurements indicate SO4 reduction has occurred in all 210Po contaminated wells. Sulfide species are not accumulating in the groundwater in much of Lahontan Valley, probably because of S cycling involving microbial SO4 reduction, abiotic oxidation of H2S to S0 by Mn(IV), followed by microbial disproportionation of S0 to H2S and SO4. The high pH, Ca depletion, MnCO3 saturation, and presence of S0 in Lahontan Valley groundwater may be consequences of the anaerobic S cycling. Consistent with data from naturally-enriched wells in Florida, 210Po activities begin to decrease when aqueous sulfide species begin to accumulate. This may be due to formation and precipitation of PoS, however, Eh–pH diagrams suggest PoS would not be stable in study-area groundwater. An alternative explanation for the study area is that H2S accumulation begins when anaerobic S cycling stops because Mn oxides are depleted and their reduction is no longer releasing 210Po. Common features of 210Po-enriched groundwater were identified by comparing the radiological and geochemical data from Nevada with data from naturally-enriched wells in Finland, and Florida and Maryland in the USA. Values of pH ranged from 9 in Nevada wells, indicating that pH is not critical in determining whether 210Po is present. Where U is present in the sediments, the data suggest 210Po levels may be elevated in aquifers with (1) SO4-reducing waters with low H2S

  14. Cannula implantation into the lateral ventricle does not adversely affect recognition or spatial working memory.

    PubMed

    Seyer, Benjamin; Pham, Vi; Albiston, Anthony L; Chai, Siew Yeen

    2016-08-15

    Indwelling cannulas are often used to deliver pharmacological agents into the lateral ventricles of the brain to study their effects on memory and learning, yet little is known about the possible adverse effects of the cannulation itself. In this study, the effect of implanting an indwelling cannula into the right lateral ventricle was examined with respect to cognitive function and tissue damage in rats. Specifically, the cannula passed through sections of the primary motor (M1) and somatosensory hind limb (S1HL) cortices. One week following implantation, rats were impaired on the rotarod task, implying a deficit in fine motor control, likely caused by the passage of the cannula through the aforementioned cortical regions. Importantly, neither spatial working nor recognition memory was adversely affected. Histological examination showed immune cell activation only in the area immediately surrounding the cannulation site and not spreading to other brain regions. Both GFAP and CD-11b mRNA expression was elevated in the area immediately surrounding the cannulation site, but not in the contralateral hemisphere or the hippocampus. Neither of the inflammatory cytokines, TNF-α or IL-6, were upregulated in any region. These results show that cannulation into the lateral ventricle does not impair cognition and indicates that nootropic agents delivered via this method are enhancing normal memory rather than rescuing deficits caused by the surgery procedure. PMID:27345383

  15. Dietary restriction does not adversely affect bone geometry and mechanics in rapidly growing male wistar rats.

    PubMed

    Lambert, Jennifer; Lamothe, Jeremy M; Zernicke, Ronald F; Auer, Roland N; Reimer, Raylene A

    2005-02-01

    The present study assessed the effects of dietary restriction on tibial and vertebral mechanical and geometrical properties in 2-mo-old male Wistar rats. Two-month-old male Wistar rats were randomized to the ad libitum (n=8) or the 35% diet-restricted (DR) feeding group (n=9) for 5 mo. Tibiae and L6 vertebrae were dissected out for microcomputed tomography (microCT) scanning and subsequently fractured in biomechanical testing to determine geometrical and mechanical properties. The DR group had significantly lower mean tibial length, mass, area, and cross-sectional moment of inertia, as well as vertebral energy to maximal load. After adjustment for body mass, however, DR tibial mean maximal load and stiffness, and DR vertebral area, height, volume, and maximal load were significantly greater, relative to ad libitum means. No significant differences were found between the DR and ad libitum mineral ash fractions. Because the material properties of the tibiae between the two groups were not significantly different, presumably the material integrity of the bones was not adversely affected as a consequence of DR. The similar material characteristics were consistent with mineral ash fractions that were not different between the two groups. Vertebral maximal load and stiffness were not significant between the DR and ad libitum animals. Importantly, we show that a level of dietary restriction (35%) that is less severe than many studies (40%), and without micronutrient compensation does not adversely affect tibial and vertebral mechanical properties in young growing male rats when normalized for body mass. PMID:15585686

  16. Factors Affecting the Timing of Signal Detection of Adverse Drug Reactions.

    PubMed

    Hashiguchi, Masayuki; Imai, Shungo; Uehara, Keiko; Maruyama, Junya; Shimizu, Mikiko; Mochizuki, Mayumi

    2015-01-01

    We investigated factors affecting the timing of signal detection by comparing variations in reporting time of known and unknown ADRs after initial drug release in the USA. Data on adverse event reactions (AERs) submitted to U.S. FDA was used. Six ADRs associated with 6 drugs (rosuvastatin, aripiprazole, teriparatide, telithromycin, exenatide, varenicline) were investigated: Changes in the proportional reporting ratio, reporting odds ratio, and information component as indexes of signal detection were followed every 3 months after each drugs release, and the time for detection of signals was investigated. The time for the detection of signal to be detected after drug release in the USA was 2-10 months for known ADRs and 19-44 months for unknown ones. The median lag time for known and unknown ADRs was 99.0-122.5 days and 185.5-306.0 days, respectively. When the FDA released advisory information on rare but potentially serious health risks of an unknown ADR, the time lag to report from the onset of ADRs to the FDA was shorter. This study suggested that one factor affecting signal detection time is whether an ADR was known or unknown at release. PMID:26641634

  17. Sexually Dimorphic Responses to Early Adversity: Implications for Affective Problems and Autism Spectrum Disorder

    PubMed Central

    Davis, Elysia Poggi; Pfaff, Donald

    2014-01-01

    During gestation, development proceeds at a pace that is unmatched by any other stage of the lifecycle. For these reason the human fetus is particularly susceptible not only to organizing influences, but also to pathogenic disorganizing influences. Growing evidence suggests that exposure to prenatal adversity leads to neurological changes that underlie lifetime risks for mental illness. Beginning early in gestation, males and females show differential developmental trajectories and responses to stress. It is likely that sex-dependent organization of neural circuits during the fetal period influences differential vulnerability to mental health problems. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two developmental disorders: affective problems (greater female prevalence) and autism spectrum disorder (greater male prevalence). Recent prospective studies illustrating the neurodevelopmental consequences of fetal exposure to stress and stress hormones for males and females are considered here. Plausible biological mechanisms including the role of the sexually differentiated placenta are discussed. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two sets of developmental disorders: affective problems (greater female prevalence) and autism spectrum disorders (greater male prevalence). PMID:25038479

  18. 42 CFR 137.445 - Will an immediate reassumption appeal adversely affect the Self-Governance Tribe's rights in...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... affect the Self-Governance Tribe's rights in other self-governance negotiations? 137.445 Section 137.445..., DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Appeals Appeals of An Immediate Reassumption of A Self-Governance Program § 137.445 Will an immediate reassumption appeal adversely affect...

  19. 42 CFR 137.445 - Will an immediate reassumption appeal adversely affect the Self-Governance Tribe's rights in...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... affect the Self-Governance Tribe's rights in other self-governance negotiations? 137.445 Section 137.445..., DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Appeals Appeals of An Immediate Reassumption of A Self-Governance Program § 137.445 Will an immediate reassumption appeal adversely affect...

  20. 42 CFR 137.445 - Will an immediate reassumption appeal adversely affect the Self-Governance Tribe's rights in...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... affect the Self-Governance Tribe's rights in other self-governance negotiations? 137.445 Section 137.445..., DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Appeals Appeals of An Immediate Reassumption of A Self-Governance Program § 137.445 Will an immediate reassumption appeal adversely affect...

  1. 42 CFR 137.445 - Will an immediate reassumption appeal adversely affect the Self-Governance Tribe's rights in...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... affect the Self-Governance Tribe's rights in other self-governance negotiations? 137.445 Section 137.445..., DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Appeals Appeals of An Immediate Reassumption of A Self-Governance Program § 137.445 Will an immediate reassumption appeal adversely affect...

  2. 42 CFR 137.445 - Will an immediate reassumption appeal adversely affect the Self-Governance Tribe's rights in...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... affect the Self-Governance Tribe's rights in other self-governance negotiations? 137.445 Section 137.445..., DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Appeals Appeals of An Immediate Reassumption of A Self-Governance Program § 137.445 Will an immediate reassumption appeal adversely affect...

  3. Early Life in a Barren Environment Adversely Affects Spatial Cognition in Laying Hens (Gallus gallus domesticus)

    PubMed Central

    Tahamtani, Fernanda M.; Nordgreen, Janicke; Nordquist, Rebecca E.; Janczak, Andrew M.

    2015-01-01

    Spatial cognition in vertebrates is adversely affected by a lack of environmental complexity during early life. However, to our knowledge, no previous studies have tested the effect of early exposure to varying degrees of environmental complexity on specific components of spatial cognition in chickens. There are two main rearing systems for laying hens in the EU: aviaries and cages. These two systems differ from one another in environmental complexity. The aim of the present study was to test the hypothesis that rearing in a barren cage environment relative to a complex aviary environment causes long-lasting deficits in the ability to perform spatial tasks. For this purpose, 24 white Dekalb laying hens, half of which had been reared in an aviary system and the other half in a conventional cage system, were tested in a holeboard task. Birds from both treatment groups learnt the task; however, the cage-reared hens required more time to locate rewards and had poorer levels of working memory. The latter finding supports the hypothesis that rearing in a barren environment causes long-term impairment of short-term memory in chickens. PMID:26664932

  4. Exposing physicians to reduced residency work hours did not adversely affect patient outcomes after residency.

    PubMed

    Jena, Anupam B; Schoemaker, Lena; Bhattacharya, Jay

    2014-10-01

    In 2003, work hours for physicians-in-training (residents) were capped by regulation at eighty hours per week, leading to the hotly debated but unexplored issue of whether physicians today are less well trained as a result of these work-hour reforms. Using a unique database of nearly all hospitalizations in Florida during 2000-09 that were linked to detailed information on the medical training history of the physician of record for each hospitalization, we studied whether hospital mortality and patients' length-of-stay varied according to the number of years a physician was exposed to the 2003 duty-hour regulations during his or her residency. We examined this database of practicing Florida physicians, using a difference-in-differences analysis that compared trends in outcomes of junior physicians (those with one-year post-residency experience) pre- and post-2003 to a control group of senior physicians (those with ten or more years of post-residency experience) who were not exposed to these reforms during their residency. We found that the duty-hour reforms did not adversely affect hospital mortality and length-of-stay of patients cared for by new attending physicians who were partly or fully exposed to reduced duty hours during their own residency. However, assessment of the impact of the duty-hour reforms on other clinical outcomes is needed. PMID:25288430

  5. Delay of Treatment Initiation Does Not Adversely Affect Survival Outcome in Breast Cancer

    PubMed Central

    Yoo, Tae-Kyung; Han, Wonshik; Moon, Hyeong-Gon; Kim, Jisun; Lee, Jun Woo; Kim, Min Kyoon; Lee, Eunshin; Kim, Jongjin; Noh, Dong-Young

    2016-01-01

    Purpose Previous studies examining the relationship between time to treatment and survival outcome in breast cancer have shown inconsistent results. The aim of this study was to analyze the overall impact of delay of treatment initiation on patient survival and to determine whether certain subgroups require more prompt initiation of treatment. Materials and Methods This study is a retrospective analysis of stage I-III patients who were treated in a single tertiary institution between 2005 and 2008. Kaplan-Meier survival analysis and Cox proportional hazards regression model were used to evaluate the impact of interval between diagnosis and treatment initiation in breast cancer and various subgroups. Results A total of 1,702 patients were included. Factors associated with longer delay of treatment initiation were diagnosis at another hospital, medical comorbidities, and procedures performed before admission for surgery. An interval between diagnosis and treatment initiation as a continuous variable or with a cutoff value of 15, 30, 45, and 60 days had no impact on disease-free survival (DFS). Subgroup analyses for hormone-responsiveness, triple-negative breast cancer, young age, clinical stage, and type of initial treatment showed no significant association between longer delay of treatment initiation and DFS. Conclusion Our results show that an interval between diagnosis and treatment initiation of 60 days or shorter does not appear to adversely affect DFS in breast cancer. PMID:26511801

  6. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.

    PubMed

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-11-12

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture. PMID:24145453

  7. Probabilities of adverse weather affecting transport in Europe: climatology and scenarios up to the 2050s

    NASA Astrophysics Data System (ADS)

    Vajda, A.; Tuomenvirta, H.; Jokinen, P.; Luomaranta, A.; Makkonen, L.; Tikanmäki, M.; Groenemeijer, P.; Saarikivi, P.; Michaelides, S.; Papadakis, M.; Tymvios, F.; Athanasatos, S.

    2012-04-01

    This paper provides the first comprehensive climatology of the adverse and extreme weather events affecting the European transport system by estimating the frequency (or probability) of phenomena for the present climate (1971-2000) and an overview of the projected changes in some of these extremes in the future climate until the 2050s. The research was carried out within the framework of the EWENT Project that addresses the European Union (EU) policies and strategies related to climate change, with a particular focus on extreme weather impacts on the EU transportation system. This project is funded by the Seventh Framework Programme (Transports, call ID FPT7-TPT-2008-RTD-1). The analyzed phenomena are wind, snow, blizzards, heavy precipitation, cold spells and heat waves. In addition, reduced visibility conditions determined by fog and dust events, small-scale phenomena affecting the transport system, such as thunderstorms, lightning, large hail and tornadoes and events damaging infrastructure of the transport system, have been considered. Frequency and probability analysis of past and present ex¬tremes were performed using observational and atmospheric reanalysis data. Future changes in the probability of severe events were assessed based on six regional climate model simulations produced in the FP6 ENSEMBLES project (http://www.ensembles-eu.org/). To facilitate the assessment of impacts and consequences of extreme phenomena on a continental level, the WP2 Deliverable introduces a regionalization of the European extreme phenomena, defining the climate zones with similarities in extreme phenomena. The projected changes as well as large natural variability in weather extremes on the transportation network will have impacts of both signs. The decline of extreme cold and snowfall over most of the continent implies a positive impact on road, rail, inland water and air transportation, e.g., by reducing snow removal. However, even with a general decreasing trend in

  8. 41 CFR 102-78.40 - What responsibilities do Federal agencies have when an undertaking adversely affects a historic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... guidance on the protection of historic and cultural properties in 36 CFR part 800. ... Federal agencies have when an undertaking adversely affects a historic or cultural property? 102-78.40... (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 78-HISTORIC PRESERVATION Historic Preservation §...

  9. 25 CFR 900.244 - Will an Indian tribe or tribal organization's retrocession adversely affect funding available for...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Will an Indian tribe or tribal organization's retrocession adversely affect funding available for the retroceded program? 900.244 Section 900.244 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR, AND INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES CONTRACTS UNDER THE...

  10. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section...

  11. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section...

  12. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  13. Monitoring the Remediation of Salt-Affected Soils and Groundwater

    NASA Astrophysics Data System (ADS)

    Bentley, L. R.; Callaghan, M. V.; Cey, E. E.

    2008-12-01

    Salt-affected soil is one of the most common environmental issues facing the petroleum hydrocarbon industry. Large quantities of brines are often co-produced with gas and oil and have been introduced into the environment through, for example, flare pits, drilling operations and pipe line breaks. Salt must be flushed from the soil and tile drain systems can be used to collect salt water which is then be routed for disposal. A flushing experiment over a 2 m deep tile drain system is being monitored by arrays of tensiometers, repeated soil coring, direct push electrical conductivity profiles (PTC), electromagnetic surveys and electrical resistivity tomography (ERT) surveys. Water table elevation is monitored with pressure transducers. Thermocouple arrays provide temperature profiles that are used to adjust electrical conductivity data to standard temperature equivalents. A 20 m by 20 m plot was deep tilled and treated with soil amendments. Numerous infiltration tests were conducted inside and outside the plot area using both a tension infiltrometer and Guelph permeameter to establish changes in soil hydraulic properties and macroporosity as a result of deep tillage. The results show that till greatly diminished the shallow macroporosity and increased the matrix saturated hydraulic conductivity. A header system is used to evenly flood the plot with 10 m3 of water on each of three consecutive days for an approximate total of 7.5 cm of water. The flood event is being repeated four times over a period of 6 weeks. Baseline PTC and ERT surveys show that the salt is concentrated in the upper 2 to 3 m of soil. Tensiometer data show that the soil at 30 cm depth responds within 2 to 3 hours to flooding events once the soil is wetted and begins to dry again after one week. Soil suction at 1.5 m does not show immediate response to the daily flooding events, but is steadily decreasing in response to the flooding and rainfall events. An ERT survey in October will provide the first

  14. Exposure to serotonin adversely affects oligodendrocyte development and myelination in vitro.

    PubMed

    Fan, Lir-Wan; Bhatt, Abhay; Tien, Lu-Tai; Zheng, Baoying; Simpson, Kimberly L; Lin, Rick C S; Cai, Zhengwei; Kumar, Praveen; Pang, Yi

    2015-05-01

    patterns of contactin-associated protein (Caspr) clustering were observed at the sites of Node of Ranvier, suggesting that 5-HT exposure may affect other axon-derived factors for myelination. In summary, this is the first study to demonstrate that manipulation of serotonin levels affects OL development and myelination, which may contribute to altered neural connectivity noted in SSRIs-treated animals. The current in vitro study demonstrated that exposure to high level of serotonin (5-HT) led to aberrant oligodendrocyte (OL) development, cell injury, and myelination deficit. We propose that elevated extracellular serotonin levels in the fetal brain, such as upon the use of selective serotonin reuptake inhibitors (SSRIs) during pregnancy, may adversely affect OL development and/or myelination, thus contributing to altered neural connectivity seen in Autism Spectrum Disorders. OPC = oligodendrocyte progenitor cell. PMID:25382136

  15. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: A retrospective evaluation

    PubMed Central

    ASTOLFI, LAURA; GHISELLI, SARA; GUARAN, VALERIA; CHICCA, MILVIA; SIMONI, EDI; OLIVETTO, ELENA; LELLI, GIORGIO; MARTINI, ALESSANDRO

    2013-01-01

    Cisplatin is the most common antineoplastic drug used for the therapy of solid tumours. To date, researchers have focused on the dosage to be administered for each specific tumour, mainly considering the local adverse effects. The aim of this study was to correlate the severity of the adverse effects with: i) the dosage of cisplatin; ii) the specific site of the tumour; iii) the association with other drugs; and iv) the symptoms. We analysed data from 123 patients with 11 different tumour classes undergoing therapy from 2007 to 2008 at St. Anna Hospital (Ferrara, Italy), using the Spearman non-parametric correlation index. Even though significant correlations were found among the variables, the overall results showed that the main factor influencing the severity of the adverse effects was the dosage of cisplatin administered. PMID:23404427

  16. Sensitivity analysis of hydrogeological parameters affecting groundwater storage change caused by sea level rise

    NASA Astrophysics Data System (ADS)

    Shin, J.; Kim, K.-H.; Lee, K.-K.

    2012-04-01

    Sea level rise, which is one of the representative phenomena of climate changes caused by global warming, can affect groundwater system. The rising trend of the sea level caused by the global warming is reported to be about 3 mm/year for the most recent 10 year average (IPCC, 2007). The rate of sea level rise around the Korean peninsula is reported to be 2.30±2.22 mm/yr during the 1960-1999 period (Cho, 2002) and 2.16±1.77 mm/yr (Kim et al., 2009) during the 1968-2007 period. Both of these rates are faster than the 1.8±0.5 mm/yr global average for the similar 1961-2003 period (IPCC, 2007). In this study, we analyzed changes in the groundwater environment affected by the sea level rise by using an analytical methodology. We tried to find the most effective parameters of groundwater amount change in order to estimate the change in fresh water amount in coastal groundwater. A hypothetical island model of a cylindrical shape in considered. The groundwater storage change is bi-directional as the sea level rises according to the natural and hydrogeological conditions. Analysis of the computation results shows that topographic slope and hydraulic conductivity are the most sensitive factors. The contributions of the groundwater recharge rate and the thickness of aquifer below sea level are relatively less effective. In the island with steep seashore slopes larger than 1~2 degrees or so, the storage amount of fresh water in a coastal area increases as sea level rises. On the other hand, when sea level drops, the storage amount decreases. This is because the groundwater level also rises with the rising sea level in steep seashores. For relatively flat seashores, where the slope is smaller than around 1-2 degrees, the storage amount of coastal fresh water decreases when the sea level rises because the area flooded by the rising sea water is increased. The volume of aquifer fresh water in this circumstance is greatly reduced in proportion to the flooded area with the sea

  17. Severe Affective and Behavioural Dysregulation Is Associated with Significant Psychosocial Adversity and Impairment

    ERIC Educational Resources Information Center

    Jucksch, Viola; Salbach-Andrae, Harriet; Lenz, Klaus; Goth, Kirstin; Dopfner, Manfred; Poustka, Fritz; Freitag, Christine M.; Lehmkuhl, Gerd; Lehmkuhl, Ulrike; Holtmann, Martin

    2011-01-01

    Background: Recently, a highly heritable behavioral phenotype of simultaneous deviance on the Anxious/Depressed, Attention Problems, and Aggressive Behavior syndrome scales has been identified on the Child Behavior Checklist (CBCL-Dysregulation Profile, CBCL-DP). This study aims to investigate psychosocial adversity and impairment of the CBCL-DP.…

  18. Non-intrusive characterization methods for wastewater-affected groundwater plumes discharging to an alpine lake.

    PubMed

    Roy, James W; Robillard, Jasen M; Watson, Susan B; Hayashi, Masaki

    2009-02-01

    Streams and lakes in rocky environments are especially susceptible to nutrient loading from wastewater-affected groundwater plumes. However, the use of invasive techniques such as drilling wells, installing piezometers or seepage meters, to detect and characterize these plumes can be prohibitive. In this work, we report on the use of four non-intrusive methods for this purpose at a site in the Rocky Mountains. The methods included non-invasive geophysical surveys of subsurface electrical conductivity (EC), in-situ EC measurement of discharging groundwater at the lake-sediment interface, shoreline water sampling and nutrient analysis, and shoreline periphyton sampling and analysis of biomass and taxa relative abundance. The geophysical surveys were able to detect and delineate two high-EC plumes, with capacitively coupled ERI (OhmMapper) providing detailed two-dimensional images. In situ measurements at the suspected discharge locations confirmed the presence of high-EC water in the two plumes and corroborated their spatial extent. The nutrient and periphyton results showed that only one of the two high-EC plumes posed a current eutrophication threat, with elevated nitrogen and phosphorus levels, high localized periphyton biomass and major shifts in taxonomic composition to taxa that are commonly associated with anthropogenic nutrient loading. This study highlights the need to use non-intrusive methods in combination, with geophysical and water EC-based methods used for initial detection of wastewater-affected groundwater plumes, and nutrient or periphyton sampling used to characterize their ecological effects. PMID:18253851

  19. 30 CFR 285.816 - What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility? 285.816 Section 285.816 Mineral Resources..., pipeline, or facility? If environmental or other conditions adversely affect a cable, pipeline, or...

  20. Does Maternal Prenatal Stress Adversely Affect the Child's Learning and Memory at Age Six?

    ERIC Educational Resources Information Center

    Gutteling, Barbara M.; de Weerth, Carolina; Zandbelt, Noortje; Mulder, Eduard J. H.; Visser, Gerard H. A.; Buitelaar, Jan K.

    2006-01-01

    Prenatal maternal stress has been shown to affect postnatal development in animals and humans. In animals, the morphology and function of the offspring's hippocampus is negatively affected by prenatal maternal stress. The present study prospectively investigated the influence of prenatal maternal stress on learning and memory of 112 children (50…

  1. Can aircraft noise less than or equal 115 to dBA adversely affect reproductive outcome in USAF women?

    NASA Astrophysics Data System (ADS)

    Brubaker, P. A.

    1985-06-01

    It has been suggested, mainly through animal studies, that exposure to high noise levels may be associated with lower birth weight, reduced gestational length and other adverse reproductive outcomes. Few studies have been done on humans to show this association. The Air Force employs pregnant women in areas where there is a high potential for exposure to high noise levels. This study proposes a method to determine if there is an association between high frequency noise levels or = 115 dBA and adverse reproductive outcomes through a review of records and self-administered questionnaires in a case-comparison design. Prevelance rates will be calculated and a multiple logistic regression analysis computed for the independent variables that can affect reproduction.

  2. Adverse childhood experiences associate to reduced glutamate levels in the hippocampus of patients affected by mood disorders.

    PubMed

    Poletti, Sara; Locatelli, Clara; Falini, Andrea; Colombo, Cristina; Benedetti, Francesco

    2016-11-01

    Adverse childhood experiences (ACE) can possibly permanently alter the stress response system, affect the glutamatergic system and influence hippocampal volume in mood disorders. The aim of the study is to investigate the association between glutamate levels in the hippocampus, measured through single proton magnetic resonance spectroscopy (1H-MRS), and ACE in patients affected by mood disorders and healthy controls. Higher levels of early stress associate to reduced levels of Glx/Cr in the hippocampus in depressed patients but not in healthy controls. Exposure to stress during early life could lead to a hypofunctionality of the glutamatergic system in the hippocampus of depressed patients. Abnormalities of glutamatergic signaling could then possibly underpin the structural and functional abnormalities observed in patients affected by mood disorders. PMID:27449360

  3. Elevated depressive affect is associated with adverse cardiovascular outcomes among African Americans with chronic kidney disease

    PubMed Central

    Fischer, Michael J.; Kimmel, Paul L.; Greene, Tom; Gassman, Jennifer J.; Wang, Xuelei; Brooks, Deborah H.; Charleston, Jeanne; Dowie, Donna; Thornley-Brown, Denyse; Cooper, Lisa A.; Bruce, Marino A.; Kusek, John W.; Norris, Keith C.; Lash, James P.

    2011-01-01

    This study was designed to examine the impact of elevated depressive affect on health outcomes among participants with hypertensive chronic kidney disease in the African-American Study of Kidney Disease and Hypertension (AASK) Cohort Study. Elevated depressive affect was defined by Beck Depression Inventory II (BDI-II) thresholds of 11 or more, above 14, and by 5-Unit increments in the score. Cox regression analyses were used to relate cardiovascular death/hospitalization, doubling of serum creatinine/end-stage renal disease, overall hospitalization, and all-cause death to depressive affect evaluated at baseline, the most recent annual visit (time-varying), or average from baseline to the most recent visit (cumulative). Among 628 participants at baseline, 42% had BDI-II scores of 11 or more and 26% had a score above 14. During a 5-year follow-up, the cumulative incidence of cardiovascular death/hospitalization was significantly greater for participants with baseline BDI-II scores of 11 or more compared with those with scores <11. The baseline, time-varying, and cumulative elevated depressive affect were each associated with a significant higher risk of cardiovascular death/hospitalization, especially with a time-varying BDI-II score over 14 (adjusted HR 1.63) but not with the other outcomes. Thus, elevated depressive affect is associated with unfavorable cardiovascular outcomes in African Americans with hypertensive chronic kidney disease. PMID:21633409

  4. Water pollution by Cu and Pb can adversely affect mallard embryonic development.

    PubMed

    Kertész, Virág; Bakonyi, Gábor; Farkas, Beáta

    2006-09-01

    The effects of heavy metal pollutants on aquatic birds have been widely studied in ecotoxicological investigations; however, the predominant focus has been on the postnatal period of life. Limited information on the adverse effects of metals to bird eggs is available. The possible toxic effects of lead and copper were studied in mallard eggs. After the accidental severe heavy metal pollution of the Tisa river (Hungary) in March 2000, these metals were detected in the highest concentration in both the water and the sediment, reaching far beyond acceptable concentrations. Pb treatment (2.9 mg/L) significantly increased the rate of mortality after a single immersion of the eggs into polluted water for 30 min. The rate of dead embryos significantly increased after the combined exposure to Cu and Pb (0.86 and 2.9 mg/L, respectively) both in the single- (once for 30 min) and in the multiple- (10s daily during first trimester of incubation) immersion groups. It was concluded that elevated metal concentrations similar to those found in the Tisa river after the tailing dam failure may cause toxic effects (mortality and teratogenicity) upon exposure of mallard eggs. PMID:16678261

  5. Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling

    PubMed Central

    Medzikovic, Lejla; Schumacher, Cees A.; Verkerk, Arie O.; van Deel, Elza D.; Wolswinkel, Rianne; van der Made, Ingeborg; Bleeker, Natascha; Cakici, Daniella; van den Hoogenhof, Maarten M. G.; Meggouh, Farid; Creemers, Esther E.; Ann Remme, Carol; Baartscheer, Antonius; de Winter, Robbert J.; de Vries, Carlie J. M.; Arkenbout, E. Karin; de Waard, Vivian

    2015-01-01

    Distinct stressors may induce heart failure. As compensation, β-adrenergic stimulation enhances myocardial contractility by elevating cardiomyocyte intracellular Ca2+ ([Ca2+]i). However, chronic β-adrenergic stimulation promotes adverse cardiac remodelling. Cardiac expression of nuclear receptor Nur77 is enhanced by β-adrenergic stimulation, but its role in cardiac remodelling is still unclear. We show high and rapid Nur77 upregulation in cardiomyocytes stimulated with β-adrenergic agonist isoproterenol. Nur77 knockdown in culture resulted in hypertrophic cardiomyocytes. Ventricular cardiomyocytes from Nur77-deficient (Nur77-KO) mice exhibited elevated diastolic and systolic [Ca2+]i and prolonged action potentials compared to wild type (WT). In vivo, these differences resulted in larger cardiomyocytes, increased expression of hypertrophic genes, and more cardiac fibrosis in Nur77-KO mice upon chronic isoproterenol stimulation. In line with the observed elevated [Ca2+]i, Ca2+-activated phosphatase calcineurin was more active in Nur77-KO mice compared to WT. In contrast, after cardiac pressure overload by aortic constriction, Nur77-KO mice exhibited attenuated remodelling compared to WT. Concluding, Nur77-deficiency results in significantly altered cardiac Ca2+ homeostasis and distinct remodelling outcome depending on the type of insult. Detailed knowledge on the role of Nur77 in maintaining cardiomyocyte Ca2+ homeostasis and the dual role Nur77 plays in cardiac remodelling will aid in developing personalized therapies against heart failure. PMID:26486271

  6. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.

    PubMed

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-01

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification. PMID:26740396

  7. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH

    PubMed Central

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-01

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification. PMID:26740396

  8. Weight Reduction in Athletes May Adversely Affect the Phagocytic Function of Monocytes.

    ERIC Educational Resources Information Center

    Kono, Ichiro; And Others

    1988-01-01

    Study of the monocyte phagocytic function in nine competitive athletes before and after a two-week weight reduction (through calorie restriction) program revealed that their pre-program phagocytic activity was higher than in sedentary controls but decreased significantly after the program. This suggests calorie restriction may affect the human…

  9. 30 CFR 585.816 - What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility? 585.816 Section 585.816 Mineral Resources BUREAU... corrective action to BOEM within 30 days of the discovery of the adverse effect. (b) Take remedial action...

  10. 30 CFR 285.816 - What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility? 285.816 Section 285.816 Mineral Resources BUREAU...: (a) Submit a plan of corrective action to MMS within 30 days of the discovery of the adverse...

  11. 30 CFR 585.816 - What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility? 585.816 Section 585.816 Mineral Resources BUREAU... corrective action to BOEM within 30 days of the discovery of the adverse effect. (b) Take remedial action...

  12. 30 CFR 585.816 - What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What must I do if environmental or other conditions adversely affect a cable, pipeline, or facility? 585.816 Section 585.816 Mineral Resources BUREAU... corrective action to BOEM within 30 days of the discovery of the adverse effect. (b) Take remedial action...

  13. Depressing Antidepressant: Fluoxetine Affects Serotonin Neurons Causing Adverse Reproductive Responses in Daphnia magna.

    PubMed

    Campos, Bruno; Rivetti, Claudia; Kress, Timm; Barata, Carlos; Dircksen, Heinrich

    2016-06-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants. As endocrine disruptive contaminants in the environment, SSRIs affect reproduction in aquatic organisms. In the water flea Daphnia magna, SSRIs increase offspring production in a food ration-dependent manner. At limiting food conditions, females exposed to SSRIs produce more but smaller offspring, which is a maladaptive life-history strategy. We asked whether increased serotonin levels in newly identified serotonin-neurons in the Daphnia brain mediate these effects. We provide strong evidence that exogenous SSRI fluoxetine selectively increases serotonin-immunoreactivity in identified brain neurons under limiting food conditions thereby leading to maladaptive offspring production. Fluoxetine increases serotonin-immunoreactivity at low food conditions to similar maximal levels as observed under high food conditions and concomitantly enhances offspring production. Sublethal amounts of the neurotoxin 5,7-dihydroxytryptamine known to specifically ablate serotonin-neurons markedly decrease serotonin-immunoreactivity and offspring production, strongly supporting the effect to be serotonin-specific by reversing the reproductive phenotype attained under fluoxetine. Thus, SSRIs impair serotonin-regulation of reproductive investment in a planktonic key organism causing inappropriately increased reproduction with potentially severe ecological impact. PMID:27128505

  14. Combining S-cone and luminance signals adversely affects discrimination of objects within backgrounds

    PubMed Central

    Jennings, Ben J.; Tsattalios, Konstantinos; Chakravarthi, Ramakrishna; Martinovic, Jasna

    2016-01-01

    The visual system processes objects embedded in complex scenes that vary in both luminance and colour. In such scenes, colour contributes to the segmentation of objects from backgrounds, but does it also affect perceptual organisation of object contours which are already defined by luminance signals, or are these processes unaffected by colour’s presence? We investigated if luminance and chromatic signals comparably sustain processing of objects embedded in backgrounds, by varying contrast along the luminance dimension and along the two cone-opponent colour directions. In the first experiment thresholds for object/non-object discrimination of Gaborised shapes were obtained in the presence and absence of background clutter. Contrast of the component Gabors was modulated along single colour/luminance dimensions or co-modulated along multiple dimensions simultaneously. Background clutter elevated discrimination thresholds only for combined S-(L + M) and L + M signals. The second experiment replicated and extended this finding by demonstrating that the effect was dependent on the presence of relatively high S-(L + M) contrast. These results indicate that S-(L + M) signals impair spatial vision when combined with luminance. Since S-(L + M) signals are characterised by relatively large receptive fields, this is likely to be due to an increase in the size of the integration field over which contour-defining information is summed. PMID:26856308

  15. Nutrient supplementation may adversely affect maternal oral health--a randomised controlled trial in rural Malawi.

    PubMed

    Harjunmaa, Ulla; Järnstedt, Jorma; Dewey, Kathryn G; Ashorn, Ulla; Maleta, Kenneth; Vosti, Stephen A; Ashorn, Per

    2016-01-01

    Nutritional supplementation during pregnancy is increasingly recommended especially in low-resource settings, but its oral health impacts have not been studied. Our aim was to examine whether supplementation with multiple micronutrients (MMN) or small-quantity lipid-based nutrient supplements affects dental caries development or periodontal health in a rural Malawian population. The study was embedded in a controlled iLiNS-DYAD trial that enrolled 1391 pregnant women <20 gestation weeks. Women were provided with one daily iron-folic acid capsule (IFA), one capsule with 18 micronutrients (MMN) or one sachet of lipid-based nutrient supplements (LNS) containing protein, carbohydrates, essential fatty acids and 21 micronutrients. Oral examination of 1024 participants was conducted and panoramic X-ray taken within 6 weeks after delivery. The supplement groups were similar at baseline in average socio-economic, nutritional and health status. At the end of the intervention, the prevalence of caries was 56.7%, 69.1% and 63.3% (P = 0.004), and periodontitis 34.9%, 29.8% and 31.2% (P = 0.338) in the IFA, MMN and LNS groups, respectively. Compared with the IFA group, women in the MMN group had 0.60 (0.18-1.02) and in the LNS group 0.59 (0.17-1.01) higher mean number of caries lesions. In the absence of baseline oral health data, firm conclusions on causality cannot be drawn. However, although not confirmatory, the findings are consistent with a possibility that provision of MMN or LNS may have increased the caries incidence in this target population. Because of the potential public health impacts, further research on the association between gestational nutrient interventions and oral health in low-income settings is needed. PMID:26194850

  16. Obesity/hyperleptinemic phenotype adversely affects hippocampal plasticity: effects of dietary restriction.

    PubMed

    Grillo, Claudia A; Piroli, Gerardo G; Evans, Ashlie N; Macht, Victoria A; Wilson, Steven P; Scott, Karen A; Sakai, Randall R; Mott, David D; Reagan, Lawrence P

    2011-08-01

    Epidemiological studies estimate that greater than 60% of the adult US population may be categorized as either overweight or obese and there is a growing appreciation that obesity affects the functional integrity of the central nervous system (CNS). We recently developed a lentivirus (LV) vector that produces an insulin receptor (IR) antisense RNA sequence (IRAS) that when injected into the hypothalamus selectively decreases IR signaling in hypothalamus, resulting in increased body weight, peripheral adiposity and plasma leptin levels. To test the hypothesis that this obesity/hyperleptinemic phenotype would impair hippocampal synaptic transmission, we examined short term potentiation (STP) and long term potentiation (LTP) in the hippocampus of rats that received the LV-IRAS construct or the LV-Control construct in the hypothalamus (hypo-IRAS and hypo-Con, respectively). Stimulation of the Schaffer collaterals elicits STP that develops into LTP in the CA1 region of hypo-Con rats; conversely, hypo-IRAS rats exhibit STP that fails to develop into LTP. To more closely examine the potential role of hyperleptinemia in these electrophysiological deficits, hypo-IRAS were subjected to mild food restriction paradigms that would either: 1) prevent the development of the obesity phenotype; or 2) reverse an established obesity phenotype in hypo-IRAS rats. Both of these paradigms restored LTP in the CA1 region and reversed the decreases in the phosphorylated/total ratio of GluA1 Ser845 AMPA receptor subunit expression observed in the hippocampus of hypo-IRAS rats. Collectively, these data support the hypothesis that obesity impairs hippocampal synaptic transmission and support the hypothesis that these deficits are mediated through the impairment of hippocampal leptin activity. PMID:21036186

  17. Ground-water heat pumps: an examination of hydrogeologic, environmental, legal, and economic factors affecting their use

    SciTech Connect

    Armitage, D M; Bacon, D J; Massey-Norton, J T; Miller, J D

    1980-11-12

    Groundwater is attractive as a potential low-temperature energy source in residential space-conditioning applications. When used in conjuncton with a heat pump, ground water can serve as both a heat source (for heating) and a heat sink (for cooling). Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground-water quality is considered as it affects the performance and life-expectancy of the water-side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface (usually via injection wells) is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and Federal levels. Although Federal regulations currently exist, the agencies are not equipped to regulate individual, domestic installations. Computer smulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life-cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  18. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China

    NASA Astrophysics Data System (ADS)

    Jiang, Yongjun; Wu, Yuexia; Groves, Chris; Yuan, Daoxian; Kambesis, Pat

    2009-10-01

    The Nandong Underground River System (NURS) is located in a typical karst agriculture dominated area in the southeast Yunnan Province, China. Groundwater plays an important role for social and economical development in the area. However, with the rapid increase in population and expansion of farm land, groundwater quality has degraded. 42 groundwater samples collected from springs in the NURS showed great variation of chemical compositions across the study basin. With increased anthropogenic contamination in the area, the groundwater chemistry has changed from the typical Ca-HCO 3 or Ca (Mg)-HCO 3 type in karst groundwater to the Ca-Cl (+ NO 3) or Ca (Mg)-Cl (+ NO 3), and Ca-Cl (+ NO 3 + SO 4) or Ca (Mg)-Cl (+ NO 3 + SO 4) type, indicating increases in NO 3-, Cl - and SO 42- concentrations that were caused most likely by human activities in the region. This study implemented the R-mode factor analysis to investigate the chemical characteristics of groundwater and to distinguish the natural and anthropogenic processes affecting groundwater quality in the system. The R-mode factor analysis together with geology and land uses revealed that: (a) contamination from human activities such as sewage effluents and agricultural fertilizers; (b) water-rock interaction in the limestone-dominated system; and (c) water-rock interaction in the dolomite-dominated system were the three major factors contributing to groundwater quality. Natural dissolution of carbonate rock (water-rock interaction) was the primary source of Ca 2+ and HCO 3- in groundwater, water-rock interaction in dolomite-dominated system resulted in higher Mg 2+ in the groundwater, and human activities were likely others sources. Sewage effluents and fertilizers could be the main contributor of Cl -, NO 3-, SO 42-, Na + and K + to the groundwater system in the area. This study suggested that both natural and anthropogenic processes contributed to chemical composition of groundwater in the NURS, human activities

  19. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    NASA Astrophysics Data System (ADS)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-10-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse herbicide and nitrate pollution. Based on the Shannon-Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one water sample. However, only nine carbon sources were utilized by all water samples: D-Mannitol, N-acetyl-D-glucosamine, putrescine, D-galacturonic acid, itaconic acid, 4-hydroxy benzoic acid, tween 40, tween 80, and L-asparagine. In all water samples the microorganisms preferred D-mannitol, D-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-D-lactose, D,L-α-glycerol phosphate, α-ketobutyric acid, L-threonine and glycyl-L-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster.

  20. The Cultivation of Bt Corn Producing Cry1Ac Toxins Does Not Adversely Affect Non-Target Arthropods

    PubMed Central

    Guo, Yanyan; Feng, Yanjie; Ge, Yang; Tetreau, Guillaume; Chen, Xiaowen; Dong, Xuehui; Shi, Wangpeng

    2014-01-01

    Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The “sampling dates” had a significant effect on these indices, but no clear tendencies related to “Bt corn” or “sampling dates X corn variety” interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs. PMID:25437213

  1. ENVIRONMENTAL RESEARCH BRIEF: SPATIAL HETEROGENEITY OF GEOCHEMICAL AND HYDROLOGIC PARAMETERS AFFECTING METAL TRANSPORT IN GROUNDWATER

    EPA Science Inventory

    Reliable assessment of the hazards or risks arising from groundwater contamination and the design of effective means of rehabilitation of contaminated sites requires the capability to predict the movement and fate of dissolved solutes in groundwater. he modeling of metal transpor...

  2. Temporal dynamics of groundwater-dissolved inorganic carbon beneath a drought-affected braided stream: Platte River case study

    NASA Astrophysics Data System (ADS)

    Boerner, Audrey R.; Gates, John B.

    2015-05-01

    Impacts of environmental changes on groundwater carbon cycling are poorly understood despite their potentially high relevance to terrestrial carbon budgets. This study focuses on streambed groundwater chemistry during a period of drought-induced river drying and consequent disconnection between surface water and groundwater. Shallow groundwater underlying vegetated and bare portions of a braided streambed in the Platte River (Nebraska, USA) was monitored during drought conditions in summer 2012. Water temperature and dissolved inorganic carbon (dominated by HCO3-) in streambed groundwater were correlated over a 3 month period coinciding with a decline in river discharge from 35 to 0 m3 s-1. Physical, chemical, and isotopic parameters were monitored to investigate mechanisms affecting the HCO3- trend. Equilibrium thermodynamic modeling suggests that an increase of pCO2 near the water table, coupled with carbonate mineral weathering, can explain the trend. Stronger temporal trends in Ca2+ and Mg2+ compared to Cl- are consistent with carbonate mineral reequilibria rather than evaporative concentration as the primary mechanism of the increased HCO3-. Stable isotope trends are not apparent, providing further evidence of thermodynamic controls rather than evaporation from the water table. A combination of increased temperature and O2 in the dewatered portion of the streambed is the most likely driver of increased pCO2 near the water table. Results of this study highlight potential linkages between surface environmental changes and groundwater chemistry and underscore the need for high-resolution chemical monitoring of alluvial groundwater in order to identify environmental change impacts.

  3. Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling.

    PubMed

    Saito, Takeshi; Hamamoto, Shoichiro; Ueki, Takashi; Ohkubo, Satoshi; Moldrup, Per; Kawamoto, Ken; Komatsu, Toshiko

    2016-05-01

    Global warming and urbanization together with development of subsurface infrastructures (e.g. subways, shopping complexes, sewage systems, and Ground Source Heat Pump (GSHP) systems) will likely cause a rapid increase in the temperature of relatively shallow groundwater reservoirs (subsurface thermal pollution). However, potential effects of a subsurface temperature change on groundwater quality due to changed physical, chemical, and microbial processes have received little attention. We therefore investigated changes in 34 groundwater quality parameters during a 13-month enhanced-heating period, followed by 14 months of natural or enhanced cooling in a confined marine aquifer at around 17 m depth on the Saitama University campus, Japan. A full-scale GSHP test facility consisting of a 50 m deep U-tube for circulating the heat-carrying fluid and four monitoring wells at 1, 2, 5, and 10 m from the U-tube were installed, and groundwater quality was monitored every 1-2 weeks. Rapid changes in the groundwater level in the area, especially during the summer, prevented accurate analyses of temperature effects using a single-well time series. Instead, Dual-Well Analysis (DWA) was applied, comparing variations in subsurface temperature and groundwater chemical concentrations between the thermally-disturbed well and a non-affected reference well. Using the 1 m distant well (temperature increase up to 7 °C) and the 10 m distant well (non-temperature-affected), the DWA showed an approximately linear relationships for eight components (B, Si, Li, dissolved organic carbon (DOC), Mg(2+), NH4(+), Na(+), and K(+)) during the combined 27 months of heating and cooling, suggesting changes in concentration between 4% and 31% for a temperature change of 7 °C. PMID:26938497

  4. Evaluation of Geochemical Processes Affecting Uranium Sequestration and Longevity of Permeable Reactive Barriers for Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Fuller, C. C.; Webb, S.; Bargar, J.; Naftz, D. L.

    2009-12-01

    Development of effective remediation techniques for protecting existing drinking water supplies and for mitigating existing contamination problems requires evaluating both the contaminant sequestration processes and the secondary reactions affecting the long term stability of contaminant attenuation. Permeable reactive barriers (PRB) provide a means for passive remediation of dissolved groundwater contaminants and may be an effective strategy for remediation of uranium (U) groundwater contamination provided that long term stability of the sequestered U can be achieved for the geochemical conditions of the aquifer expected subsequent to remediation. Understanding the chemical reaction mechanisms resulting in U uptake and PRB performance are critical to evaluating the potential for release of sequestered U and for improved design of remediation devices. We are using synchrotron X-ray techniques to investigate U sequestration reaction mechanisms and biogeochemical processes in PRB materials recovered from a 9-year field demonstration of zero-valent iron (ZVI) and bone char apatite PRBs in a U contaminated aquifer near Fry Canyon, Utah. X-ray microprobe mapping of iron phases shows that extensive secondary precipitation of mackinawite, siderite and aragonite in the ZVI PRB has resulted from ZVI corrosion coupled with microbial sulfate reduction. Bulk U-EXAFS measurements and micron-scale U-oxidation state mapping indicates that U removal occurs largely by reduction and precipitation of a UO2-like U(IV) phase on the ZVI surfaces, and that the sequestered U is often buried by the secondary Fe precipitates. These findings are significant to the efficacy of ZVI PRBs for remediation of U and other contaminants in that the ongoing secondary phase precipitation cements grains and fills internal porosity resulting in the observed decreased PRB permeability and limits subsequent U removal, but likely limits oxidative remobilization of U. In the bone char apatite PRB, elevated

  5. Increased Fracture Collapse after Intertrochanteric Fractures Treated by the Dynamic Hip Screw Adversely Affects Walking Ability but Not Survival

    PubMed Central

    Fang, Christian; Gudushauri, Paata; Wong, Tak-Man; Lau, Tak-Wing; Pun, Terence; Leung, Frankie

    2016-01-01

    In osteoporotic hip fractures, fracture collapse is deliberately allowed by commonly used implants to improve dynamic contact and healing. The muscle lever arm is, however, compromised by shortening. We evaluated a cohort of 361 patients with AO/OTA 31.A1 or 31.A2 intertrochanteric fracture treated by the dynamic hip screw (DHS) who had a minimal follow-up of 3 months and an average follow-up of 14.6 months and long term survival data. The amount of fracture collapse and shortening due to sliding of the DHS was determined at the latest follow-up and graded as minimal (<1 cm), moderate (1-2 cm), or severe (>2 cm). With increased severity of collapse, more patients were unable to maintain their premorbid walking function (minimal collapse = 34.2%, moderate = 33.3%, severe = 62.8%, and p = 0.028). Based on ordinal regression of risk factors, increased fracture collapse was significantly and independently related to increasing age (p = 0.037), female sex (p = 0.024), A2 fracture class (p = 0.010), increased operative duration (p = 0.011), poor reduction quality (p = 0.000), and suboptimal tip-apex distance of >25 mm (p = 0.050). Patients who had better outcome in terms of walking function were independently predicted by younger age (p = 0.036), higher MMSE marks (p = 0.000), higher MBI marks (p = 0.010), better premorbid walking status (p = 0.000), less fracture collapse (p = 0.011), and optimal lag screw position in centre-centre or centre-inferior position (p = 0.020). According to Kaplan-Meier analysis, fracture collapse had no association with mortality from 2.4 to 7.6 years after surgery. In conclusion, increased fracture collapse after fixation of geriatric intertrochanteric fractures adversely affected walking but not survival. PMID:26955637

  6. Increased Fracture Collapse after Intertrochanteric Fractures Treated by the Dynamic Hip Screw Adversely Affects Walking Ability but Not Survival.

    PubMed

    Fang, Christian; Gudushauri, Paata; Wong, Tak-Man; Lau, Tak-Wing; Pun, Terence; Leung, Frankie

    2016-01-01

    In osteoporotic hip fractures, fracture collapse is deliberately allowed by commonly used implants to improve dynamic contact and healing. The muscle lever arm is, however, compromised by shortening. We evaluated a cohort of 361 patients with AO/OTA 31.A1 or 31.A2 intertrochanteric fracture treated by the dynamic hip screw (DHS) who had a minimal follow-up of 3 months and an average follow-up of 14.6 months and long term survival data. The amount of fracture collapse and shortening due to sliding of the DHS was determined at the latest follow-up and graded as minimal (<1 cm), moderate (1-2 cm), or severe (>2 cm). With increased severity of collapse, more patients were unable to maintain their premorbid walking function (minimal collapse = 34.2%, moderate = 33.3%, severe = 62.8%, and p = 0.028). Based on ordinal regression of risk factors, increased fracture collapse was significantly and independently related to increasing age (p = 0.037), female sex (p = 0.024), A2 fracture class (p = 0.010), increased operative duration (p = 0.011), poor reduction quality (p = 0.000), and suboptimal tip-apex distance of >25 mm (p = 0.050). Patients who had better outcome in terms of walking function were independently predicted by younger age (p = 0.036), higher MMSE marks (p = 0.000), higher MBI marks (p = 0.010), better premorbid walking status (p = 0.000), less fracture collapse (p = 0.011), and optimal lag screw position in centre-centre or centre-inferior position (p = 0.020). According to Kaplan-Meier analysis, fracture collapse had no association with mortality from 2.4 to 7.6 years after surgery. In conclusion, increased fracture collapse after fixation of geriatric intertrochanteric fractures adversely affected walking but not survival. PMID:26955637

  7. Neonatal and fetal exposure to trans-fatty acid retards early growth and adiposity while adversely affecting glucose in mice

    PubMed Central

    Kavanagh, Kylie; Sajadian, Soraya; Jenkins, Kurt A.; Wilson, Martha D.; Carr, J. Jeffery; Wagner, Janice D.; Rudel, Lawrence L.

    2010-01-01

    Industrially produced trans fatty acids (TFAs) consumed in western diets are incorporated into maternal and fetal tissues, and are passed linearly to offspring via breast milk. We hypothesized that TFA exposure in utero and during lactation in infants would promote obesity and poor glycemic control as compared to unmodified fatty acids. We further hypothesized that in utero exposure alone may program for these outcomes in adulthood. To test this hypothesis we fed female C57/BL6 mice identical western diets that differed only in cis- or trans-isomers of C18:1 and then aimed to determine whether maternal transfer of TFAs through pregnancy and lactation alters growth, body composition and glucose metabolism. Mice were unexposed, exposed during pregnancy, during lactation, or throughout pregnancy and lactation to TFA. Body weight and composition (by computed tomography), and glucose metabolism we assessed at weaning and adulthood. TFA exposure through breast milk caused significant early growth retardation (p<0.001) and higher fasting glucose (p=0.01) but insulin sensitivity was not different. Elevated plasma insulin-like growth factor-1 in mice consuming TFA-enriched milk (p=0.02) may contribute to later catch-up growth, leanness and preserved peripheral insulin sensitivity observed in these mice. Mice exposed to TFA in utero underwent rapid early neonatal growth with TFA-free breast milk and had significantly impaired insulin sensitivity (p<0.05) and greater abdominal fat (p=0.01). We conclude that very early catch-up growth resulted in impaired peripheral insulin sensitivity in this model of diet-related fetal and neonatal programming. TFA surprisingly retarded growth and adiposity while still adversely affecting glucose metabolism. PMID:20650350

  8. Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study.

    PubMed

    Brook, Robert D; Sun, Zhichao; Brook, Jeffrey R; Zhao, Xiaoyi; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Rao, Xiaoquan; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Sun, Qinghua; Fan, Zhongjie; Rajagopalan, Sanjay

    2016-01-01

    Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m(3) and 0.2 to 24.5 µg/m(3), respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3-3.7) to 2.7 (0.6-4.8) mm Hg per SD increase (67.2 µg/m(3)), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0-2.5) to 1.7 (0.3-3.2) mm Hg per SD increase (3.6 µg/m(3)). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01-0.36] and 0.22 [0.04-0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02-0.34] and 0.22 [0.08-0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today. PMID:26573709

  9. Do social disadvantage and early family adversity affect the diurnal cortisol rhythm in infants? The Generation R Study.

    PubMed

    Saridjan, Nathalie S; Huizink, Anja C; Koetsier, Jitske A; Jaddoe, Vincent W; Mackenbach, Johan P; Hofman, Albert; Kirschbaum, Clemens; Verhulst, Frank C; Tiemeier, Henning

    2010-02-01

    Dysregulation of diurnal cortisol secretion patterns may explain the link between adversities early in life and later mental health problems. However, few studies have investigated the influence of social disadvantage and family adversity on the hypothalamic-pituitary-adrenal (HPA) axis early in life. In 366 infants aged 12-20 months from the Generation R Study, a population-based cohort from fetal life onwards, parents collected saliva samples from their infant at 5 moments over the course of 1 day. The area under the curve (AUC), the cortisol awakening response (CAR) and the diurnal cortisol slope were calculated as different composite measures of the diurnal cortisol rhythm. Information about social disadvantage and early adversity was collected using prenatal and postnatal questionnaires. We found that older infants showed lower AUC levels; moreover, infants with a positive CAR were significantly older. Both the AUC and the CAR were related to indicators of social disadvantage and early adversity. Infants of low income families, in comparison to high income families, showed higher AUC levels and a positive CAR. Infants of mothers who smoked during pregnancy were also significantly more likely to show a positive CAR. Furthermore, infants of mothers experiencing parenting stress showed higher AUC levels. The results of our study show that effects of social disadvantage and early adversity on the diurnal cortisol rhythm are already observable in infants. This may reflect the influence of early negative life events on early maturation of the HPA axis. PMID:20006614

  10. Morbid obesity in liver transplant recipients adversely affects longterm graft and patient survival in a single-institution analysis

    PubMed Central

    Conzen, Kendra D; Vachharajani, Neeta; Collins, Kelly M; Anderson, Christopher D; Lin, Yiing; Wellen, Jason R; Shenoy, Surendra; Lowell, Jeffrey A; Doyle, M B Majella; Chapman, William C

    2015-01-01

    Objective The effects of obesity in liver transplantation remain controversial. Earlier institutional data demonstrated no significant difference in postoperative complications or 1-year mortality. This study was conducted to test the hypothesis that obesity alone has minimal effect on longterm graft and overall survival. Methods A retrospective, single-institution analysis of outcomes in patients submitted to primary adult orthotopic liver transplantation was conducted using data for the period from 1 January 2002 to 31 December 2012. Recipients were divided into six groups by pre-transplant body mass index (BMI), comprising those with BMIs of <18.0 kg/m2, 18.0–24.9 kg/m2, 25.0–29.9 kg/m2, 30.0–35.0 kg/m2, 35.1–40.0 kg/m2 and >40 kg/m2, respectively. Pre- and post-transplant parameters were compared. A P-value of <0.05 was considered to indicate statistical significance. Independent predictors of patient and graft survival were determined using multivariate analysis. Results A total of 785 patients met the study inclusion criteria. A BMI of >35 kg/m2 was associated with non-alcoholic steatohepatitis (NASH) cirrhosis (P < 0.0001), higher Model for End-stage Liver Disease (MELD) score, and longer wait times for transplant (P = 0.002). There were no differences in operative time, intensive care unit or hospital length of stay, or perioperative complications. Graft and patient survival at intervals up to 3 years were similar between groups. Compared with non-obese recipients, recipients with a BMI of >40 kg/m2 showed significantly reduced 5-year graft (49.0% versus 75.8%; P < 0.02) and patient (51.3% versus 78.8%; P < 0.01) survival. Conclusions Obesity increasingly impacts outcomes in liver transplantation. Although the present data are limited by the fact that they were sourced from a single institution, they suggest that morbid obesity adversely affects longterm outcomes despite providing similar short-term results. Further analysis is

  11. Minimum Pricing of Alcohol versus Volumetric Taxation: Which Policy Will Reduce Heavy Consumption without Adversely Affecting Light and Moderate Consumers?

    PubMed Central

    Sharma, Anurag; Vandenberg, Brian; Hollingsworth, Bruce

    2014-01-01

    Background We estimate the effect on light, moderate and heavy consumers of alcohol from implementing a minimum unit price for alcohol (MUP) compared with a uniform volumetric tax. Methods We analyse scanner data from a panel survey of demographically representative households (n = 885) collected over a one-year period (24 Jan 2010–22 Jan 2011) in the state of Victoria, Australia, which includes detailed records of each household's off-trade alcohol purchasing. Findings The heaviest consumers (3% of the sample) currently purchase 20% of the total litres of alcohol (LALs), are more likely to purchase cask wine and full strength beer, and pay significantly less on average per standard drink compared to the lightest consumers (A$1.31 [95% CI 1.20–1.41] compared to $2.21 [95% CI 2.10–2.31]). Applying a MUP of A$1 per standard drink has a greater effect on reducing the mean annual volume of alcohol purchased by the heaviest consumers of wine (15.78 LALs [95% CI 14.86–16.69]) and beer (1.85 LALs [95% CI 1.64–2.05]) compared to a uniform volumetric tax (9.56 LALs [95% CI 9.10–10.01] and 0.49 LALs [95% CI 0.46–0.41], respectively). A MUP results in smaller increases in the annual cost for the heaviest consumers of wine ($393.60 [95% CI 374.19–413.00]) and beer ($108.26 [95% CI 94.76–121.75]), compared to a uniform volumetric tax ($552.46 [95% CI 530.55–574.36] and $163.92 [95% CI 152.79–175.03], respectively). Both a MUP and uniform volumetric tax have little effect on changing the annual cost of wine and beer for light and moderate consumers, and likewise little effect upon their purchasing. Conclusions While both a MUP and a uniform volumetric tax have potential to reduce heavy consumption of wine and beer without adversely affecting light and moderate consumers, a MUP offers the potential to achieve greater reductions in heavy consumption at a lower overall annual cost to consumers. PMID:24465368

  12. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Einsiedl, Florian; Radke, Michael; Maloszewski, Piotr

    2010-09-01

    The occurrence of two pharmaceuticals, ibuprofen and diclofenac, in a vulnerable karst groundwater system was investigated. The hydrogeology of the karst system was identified by collecting 3H samples in groundwater over 27 years and by performing tracer tests. The isotopes and tracer data were interpreted by mathematical modeling to estimate the mean transit time of water and to characterize the hydrogeological flow paths in the groundwater system. By this approach, a mean 3H transit time of 4.6 years for the fissured-porous karst aquifer was determined, whereas the fast flowing water in the conduit system showed a mean transit time of days. Both pharmaceuticals which infiltrated along sinkholes and small streams into the karst system were detected in concentrations of up to approximately 1 μg/L in effluent water of the wastewater treatment plants. Diclofenac was present in most samples collected from four springs discharging the karst groundwater to the rivers Altmühl and Anlauter in concentrations between 3.6 and 15.4 ng/L. In contrast, ibuprofen was rarely detected in groundwater. The results of this study suggest that both pharmaceuticals move into the fractured system of the karst system and go into storage. Thus dilution processes are the dominant control on the concentrations of both pharmaceuticals in the fractured system, whereas biodegradation is likely less important.

  13. Benefits of adversity?! How life history affects the behavioral profile of mice varying in serotonin transporter genotype

    PubMed Central

    Bodden, Carina; Richter, S. Helene; Schreiber, Rebecca S.; Kloke, Vanessa; Gerß, Joachim; Palme, Rupert; Lesch, Klaus-Peter; Lewejohann, Lars; Kaiser, Sylvia; Sachser, Norbert

    2015-01-01

    Behavioral profiles are influenced by both positive and negative experiences as well as the genetic disposition. Traditionally, accumulating adversity over lifetime is considered to predict increased anxiety-like behavior (“allostatic load”). The alternative “mismatch hypothesis” suggests increased levels of anxiety if the early environment differs from the later-life environment. Thus, there is a need for a whole-life history approach to gain a deeper understanding of how behavioral profiles are shaped. The aim of this study was to elucidate the effects of life history on the behavioral profile of mice varying in serotonin transporter (5-HTT) genotype, an established mouse model of increased anxiety-like behavior. For this purpose, mice grew up under either adverse or beneficial conditions during early phases of life. In adulthood, they were further subdivided so as to face a situation that either matched or mismatched the condition experienced so far, resulting in four different life histories. Subsequently, mice were tested for their anxiety-like and exploratory behavior. The main results were: (1) Life history profoundly modulated the behavioral profile. Surprisingly, mice that experienced early beneficial and later escapable adverse conditions showed less anxiety-like and more exploratory behavior compared to mice of other life histories. (2) Genotype significantly influenced the behavioral profile, with homozygous 5-HTT knockout mice displaying highest levels of anxiety-like and lowest levels of exploratory behavior. Our findings concerning life history indicate that the absence of adversity does not necessarily cause lower levels of anxiety than accumulating adversity. Rather, some adversity may be beneficial, particularly when following positive events. Altogether, we conclude that for an understanding of behavioral profiles, it is not sufficient to look at experiences during single phases of life, but the whole life history has to be considered

  14. Hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction, San Joaquin Valley, California

    USGS Publications Warehouse

    Sneed, Michelle

    2001-01-01

    This report summarizes hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction in the San Joaquin Valley, a broad alluviated intermontane structural trough that constitutes the southern two-thirds of the Central Valley of California. These values will be used to constrain a coupled ground-water flow and aquifer-system compaction model of the western San Joaquin Valley called WESTSIM. A main objective of the WESTSIM model is to evaluate potential future land subsidence that might occur under conditions in which deliveries of imported surface water for agricultural use are reduced and ground-water pumping is increased. Storage values generally are components of the total aquifer-system storage and include inelastic and elastic skeletal storage values of the aquifers and the aquitards that primarily govern the potential amount of land subsidence. Vertical hydraulic conductivity values generally are for discrete thicknesses of sediments, usually aquitards, that primarily govern the rate of land subsidence. The data were compiled from published sources and include results of aquifer tests, stress-strain analyses of borehole extensometer observations, laboratory consolidation tests, and calibrated models of aquifer-system compaction.

  15. Leaching and primary biodegradation of sulfonated naphthalenes and their formaldehyde condensates from concrete superplasticizers in groundwater affected by tunnel construction.

    PubMed

    Ruckstuhl, Sabine; Suter, Marc J F; Kohler, Hans-Peter E; Giger, Walter

    2002-08-01

    Sulfonated naphthalenes and their formaldehyde condensates (SNFC) are used as concrete superplasticizers fortunnel construction through aquifers.This paperdiscusses their primary biodegradation in groundwater affected by construction activities. The analyses of groundwater samples collected 5 m away from a construction site clearly indicated that components of the applied SNFC product leached into the groundwater. A maximum total concentration of these compounds of 233 microg/L was found, and it was shown that only the monomeric sulfonated naphthalenes andthe condensates uptothetetramerleached in substantial amounts. The decrease in concentration of several monomeric components could not be explained by mere dispersion but rather indicates a biological transformation in the aquifer. This was confirmed at a second field site and by laboratory degradation experiments with piezometer material as inoculum. Lag phases for the individually degradable sulfonated naphthalenes ranged from 0 to 96 d. Naphthalene-1,5-disulfonate and the oligomeric components were neither degraded in the aquifer nor in the laboratory experiments within an observation time of up to 195 d. This clearly indicates their persistence in subsurface waters. PMID:12188355

  16. Determination of processes affecting groundwater quality in the coastal aquifer beneath Puri city, India: a multivariate statistical approach.

    PubMed

    Mohapatra, P K; Vijay, R; Pujari, P R; Sundaray, S K; Mohanty, B P

    2011-01-01

    Variability of groundwater quality parameters is linked to various processes such as weathering, organic matter degradation, aerobic respiration, iron reduction, mineral dissolution and precipitation, cation exchange and mixing of salt water with fresh water. Multivariate statistical analyses such as principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied to the standardized data set of eleven groundwater quality parameters (i.e. pH, Ca2+, Mg2+, Na+, K+, Fe3+, alkalinity, NO3-, Cl-, SO4(2-), TDS) collected during the post-monsoon and the summer seasons in order to elicit hydrologic and biogeochemical processes affecting water quality in the unconfined aquifer beneath Puri city in eastern India. The application of PCA resulted in four factors explaining 73% variance in post-monsoon and 81% variance in summer. The HCA using Ward's method and squared Euclidean distance measure classified the parameters into four clusters based on their similarities. PCA and HCA allowed interpretation of processes. During both post-monsoon and summer seasons, anthropogenic pollution and organic matter degradation/Fe(III) reduction were found dominant due to contribution from on-site sanitation in septic tanks and soak pits in the city. Cation exchange and mineral precipitation were possible causes for increase in Na+ and decrease in Ca2+ concentration in summer. Fresh water recharge during monsoon and Sea water intrusion in summer are attributed as significant hydrologic processes to variations of the groundwater quality at the study site. PMID:22097065

  17. Analysing Thermal Response Test Data Affected by Groundwater Flow and Surface Temperature Change

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Imitazione, Gianmario; Chiozzi, Paolo; Orsi, Marco; Armadillo, Egidio

    2014-05-01

    Tests that record the underground temperature variation due to a constant heat injected into a borehole (or extracted from it) by means of a carrier fluid are routinely performed to infer subsurface thermal conductivity and borehole thermal resistance, which are needed to size geothermal heat pump systems. The most popular model to analyse temperature-time curves obtained from these tests is the infinite line source (ILS). This model gives appropriate estimations of thermal parameters only if particular hydro-geological conditions are fulfilled. Several flaws can however affect data interpretation with ILS, which is based on strong assumptions like those of a purely conductive heat transfer regime in a homogeneous medium, no vertical heat flow and infinite length of the borehole. Other drawbacks can arise from the difficulty in the proper thermal insulation of the test equipment, and consequently with oscillations of the carrier fluid temperature due to surface temperature changes. In this paper, we focused on the treatment of thermal response test data when both advection and periodic changes of surface temperature occur. We used a moving line source model to simulate temperature-time signals under different hypothesis of Darcy velocity and thermal properties. A random noise was added to the signal in order to mimic high frequency disturbances, possibly caused by equipment operating conditions and/or geological variability. The subsurface thermal conductivity, the Darcy velocity and the borehole thermal resistance were inferred by minimising the root mean square error between the synthetic dataset and the theoretical model. The optimisation was carried out with the Nelder-Mead algorithm, and thermal and hydraulic properties were determined by iterative reprocessing according to a trial-and-error procedure. The inferred thermal and hydraulic parameters are well consistent with the 'a priory' values, and the presence of noise in the synthetic data does not produce

  18. Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States.

    PubMed

    Ayotte, Joseph D; Belaval, Marcel; Olson, Scott A; Burow, Karen R; Flanagan, Sarah M; Hinkle, Stephen R; Lindsey, Bruce D

    2015-02-01

    The occurrence of arsenic in groundwater is a recognized environmental hazard with worldwide importance and much effort has been focused on surveying and predicting where arsenic occurs. Temporal variability is one aspect of this environmental hazard that has until recently received less attention than other aspects. For this study, we analyzed 1245 wells with two samples per well. We suggest that temporal variability, often reported as affecting very few wells, is perhaps a larger issue than it appears and has been overshadowed by datasets with large numbers of non-detect data. Although there was only a slight difference in arsenic concentration variability among samples from public and private wells (p=0.0452), the range of variability was larger for public than for private wells. Further, we relate the variability we see to geochemical factors-primarily variability in redox-but also variability in major-ion chemistry. We also show that in New England there is a weak but statistically significant indication that seasonality may have an effect on concentrations, whereby concentrations in the first two quarters of the year (January-June) are significantly lower than in the second two quarters (July-December) (p<0.0001). In the Central Valley of California, the relation of arsenic concentration to season was not statistically significant (p=0.4169). In New England, these changes appear to follow groundwater levels. It is possible that this difference in arsenic concentrations is related to groundwater level changes, pumping stresses, evapotranspiration effects, or perhaps mixing of more oxidizing, lower pH recharge water in wetter months. Focusing on the understanding the geochemical conditions in aquifers where arsenic concentrations are concerns and causes of geochemical changes in the groundwater environment may lead to a better understanding of where and by how much arsenic will vary over time. PMID:24650751

  19. Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States

    USGS Publications Warehouse

    Ayotte, Joseph D.; Belaval, Marcel; Olson, Scott A.; Burow, Karen R.; Flanagan, Sarah M.; Hinkle, Stephen R.; Lindsey, Bruce D.

    2014-01-01

    The occurrence of arsenic in groundwater is a recognized environmental hazard with worldwide importance and much effort has been focused on surveying and predicting where arsenic occurs. Temporal variability is one aspect of this environmental hazard that has until recently received less attention than other aspects. For this study, we analyzed 1245 wells with two samples per well. We suggest that temporal variability, often reported as affecting very few wells, is perhaps a larger issue than it appears and has been masked by datasets with large numbers of non-detect data. Although there was only a slight difference in arsenic concentration variability among samples from public and private wells (p = 0.0452), the range of variability was larger for public than for private wells. Further, we relate the variability we see to geochemical factors—primarily variability in redox—but also variability in pH and major-ion chemistry. We also show that in New England there is a weak but statistically significant indication that seasonality may have an effect on concentrations, whereby concentrations in the first two quarters of the year (January–June) are significantly lower than in the second two quarters (July–December) (p < 0.0001). In the Central Valley of California, though not statistically significant (p = 0.4169), arsenic concentration is lower in the first quarter of the year but increases in subsequent quarters. In both regions, these changes appear to follow groundwater levels. It is possible that this difference in arsenic concentrations is related to groundwater level changes, pumping stresses, evapotranspiration effects, or perhaps mixing of more oxidizing, lower pH recharge water in wetter months. Focusing on the understanding the geochemical conditions in aquifers where arsenic concentrations are concerns and causes of geochemical changes in the groundwater environment may lead to a better understanding of where and by how much arsenic will vary over

  20. CT and MR imaging findings of systemic complications occurring during pregnancy and puerperal period, adversely affected by natural changes

    PubMed Central

    Himoto, Yuki; Kido, Aki; Moribata, Yusaku; Yamaoka, Toshihide; Okumura, Ryosuke; Togashi, Kaori

    2015-01-01

    Dynamic physiological and anatomical changes for delivery may adversely induce various specific non-obstetric complications during pregnancy and puerperal period. These complications can be fatal to both the mother and the fetus, thus a precise and early diagnosis ensued by an early treatment is essential. Along with ultrasonography, computed tomography (CT) and magnetic resonance imaging (MRI) have assumed an increasing role in the diagnosis. This article aims to discuss the pathophysiology of these complications, the indications for CT and MRI, and the imaging findings. PMID:26937442

  1. CT and MR imaging findings of systemic complications occurring during pregnancy and puerperal period, adversely affected by natural changes.

    PubMed

    Himoto, Yuki; Kido, Aki; Moribata, Yusaku; Yamaoka, Toshihide; Okumura, Ryosuke; Togashi, Kaori

    2015-01-01

    Dynamic physiological and anatomical changes for delivery may adversely induce various specific non-obstetric complications during pregnancy and puerperal period. These complications can be fatal to both the mother and the fetus, thus a precise and early diagnosis ensued by an early treatment is essential. Along with ultrasonography, computed tomography (CT) and magnetic resonance imaging (MRI) have assumed an increasing role in the diagnosis. This article aims to discuss the pathophysiology of these complications, the indications for CT and MRI, and the imaging findings. PMID:26937442

  2. Factors affecting the development of adverse drug reactions to β-blockers in hospitalized cardiac patient population

    PubMed Central

    Mugoša, Snežana; Djordjević, Nataša; Djukanović, Nina; Protić, Dragana; Bukumirić, Zoran; Radosavljević, Ivan; Bošković, Aneta; Todorović, Zoran

    2016-01-01

    The aim of the present study was to undertake a study on the prevalence of cytochrome P450 2D6 (CYP2D6) poor metabolizer alleles (*3, *4, *5, and *6) on a Montenegrin population and its impact on developing adverse drug reactions (ADRs) of β-blockers in a hospitalized cardiac patient population. A prospective study was conducted in the Cardiology Center of the Clinical Center of Montenegro and included 138 patients who had received any β-blocker in their therapy. ADRs were collected using a specially designed questionnaire, based on the symptom list and any signs that could point to eventual ADRs. Data from patients’ medical charts, laboratory tests, and other available parameters were observed and combined with the data from the questionnaire. ADRs to β-blockers were observed in 15 (10.9%) patients. There was a statistically significant difference in the frequency of ADRs in relation to genetically determined enzymatic activity (P<0.001), with ADRs’ occurrence significantly correlating with slower CYP2D6 metabolism. Our study showed that the adverse reactions to β-blockers could be predicted by the length of hospitalization, CYP2D6 poor metabolizer phenotype, and the concomitant use of other CYP2D6-metabolizing drugs. Therefore, in hospitalized patients with polypharmacy CYP2D6 genotyping might be useful in detecting those at risk of ADRs. PMID:27536078

  3. Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York.

    PubMed

    Phillips, P J; Schubert, C; Argue, D; Fisher, I; Furlong, E T; Foreman, W; Gray, J; Chalmers, A

    2015-04-15

    Septic-system discharges can be an important source of micropollutants (including pharmaceuticals and endocrine active compounds) to adjacent groundwater and surface water systems. Groundwater samples were collected from well networks tapping glacial till in New England (NE) and sandy surficial aquifer New York (NY) during one sampling round in 2011. The NE network assesses the effect of a single large septic system that receives discharge from an extended health care facility for the elderly. The NY network assesses the effect of many small septic systems used seasonally on a densely populated portion of Fire Island. The data collected from these two networks indicate that hydrogeologic and demographic factors affect micropollutant concentrations in these systems. The highest micropollutant concentrations from the NE network were present in samples collected from below the leach beds and in a well downgradient of the leach beds. Total concentrations for personal care/domestic use compounds, pharmaceutical compounds and plasticizer compounds generally ranged from 1 to over 20 μg/L in the NE network samples. High tris(2-butoxyethyl phosphate) plasticizer concentrations in wells beneath and downgradient of the leach beds (>20 μg/L) may reflect the presence of this compound in cleaning agents at the extended health-care facility. The highest micropollutant concentrations for the NY network were present in the shoreline wells and reflect groundwater that is most affected by septic system discharges. One of the shoreline wells had personal care/domestic use, pharmaceutical, and plasticizer concentrations ranging from 0.4 to 5.7 μg/L. Estradiol equivalency quotient concentrations were also highest in a shoreline well sample (3.1 ng/L). Most micropollutant concentrations increase with increasing specific conductance and total nitrogen concentrations for shoreline well samples. These findings suggest that septic systems serving institutional settings and densely

  4. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.

    PubMed

    Lee, Jin-Yong; Choi, Jung-Chan; Lee, Kang-Kun

    2005-09-01

    This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead-zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002-2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 microg L(-1), copper (Cu) 616 microg L(-1), cadmium (Cd) 223 microg L(-1) and lead (Pb) 10,590 microg L(-1), which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6-174 microg L(-1)), Cd (1-46 microg L(-1)) and Pb (2-26 microg L(-1)). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO(4)), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO(4) increased while those of bicarbonate (HCO(3)) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758

  5. Impaired Glucose Tolerance or Newly Diagnosed Diabetes Mellitus Diagnosed during Admission Adversely Affects Prognosis after Myocardial Infarction: An Observational Study

    PubMed Central

    George, Anish; Bhatia, Raghav T.; Buchanan, Gill L.; Whiteside, Anne; Moisey, Robert S.; Beer, Stephen F.; Chattopadhyay, Sudipta; Sathyapalan, Thozhukat; John, Joseph

    2015-01-01

    Objective To investigate the prognostic effect of newly diagnosed diabetes mellitus (NDM) and impaired glucose tolerance (IGT) post myocardial infarction (MI). Research Design and Methods Retrospective cohort study of 768 patients without preexisting diabetes mellitus post-MI at one centre in Yorkshire between November 2005 and October 2008. Patients were categorised as normal glucose tolerance (NGT n = 337), IGT (n = 279) and NDM (n = 152) on pre- discharge oral glucose tolerance test (OGTT). Primary end-point was the first occurrence of major adverse cardiovascular events (MACE) including cardiovascular death, non-fatal MI, severe heart failure (HF) or non-haemorrhagic stroke. Secondary end-points were all cause mortality and individual components of MACE. Results Prevalence of NGT, impaired fasting glucose (IFG), IGT and NDM changed from 90%, 6%, 0% and 4% on fasting plasma glucose (FPG) to 43%, 1%, 36% and 20% respectively after OGTT. 102 deaths from all causes (79 as first events of which 46 were cardiovascular), 95 non fatal MI, 18 HF and 9 non haemorrhagic strokes occurred during 47.2 ± 9.4 months follow up. Event free survival was lower in IGT and NDM groups. IGT (HR 1.54, 95% CI: 1.06–2.24, p = 0.024) and NDM (HR 2.15, 95% CI: 1.42–3.24, p = 0.003) independently predicted MACE free survival. IGT and NDM also independently predicted incidence of MACE. NDM but not IGT increased the risk of secondary end-points. Conclusion Presence of IGT and NDM in patients presenting post-MI, identified using OGTT, is associated with increased incidence of MACE and is associated with adverse outcomes despite adequate secondary prevention. PMID:26571120

  6. How geomorphology and groundwater level affect the spatio-temporal variability of riverine cold water patches?

    NASA Astrophysics Data System (ADS)

    Wawrzyniak, Vincent; Piégay, Hervé; Allemand, Pascal; Vaudor, Lise; Goma, Régis; Grandjean, Philippe

    2016-04-01

    Temperature is a key factor for river ecosystems. In summer, patches of cold water are formed in the river by groundwater seepage. These patches have strong ecological significance and extend to the surface water in a well-mixed riverine system. These patches can serve as thermal refuges for some fish species during summer. In this study, the temporal variability and spatial distribution of cold water patches were explored along a 50 km river reach (the lower Ain River, France) using thermal infrared airborne remote sensing. This study examines a new range of processes acting on cold water patches at different scales that have not previously been touched upon in the literature. Three airborne campaigns were conducted during the summers of 2010, 2011 and 2014. Based on these images, a large number of cold water patches were identified using an automated method. Four types of patches were observed: tributary plumes, cold side channels (former channels or point-bar backwater channels), side seeps (located directly in the river channel) and gravel bar seeps (occurring at the downstream end of gravel bars). Logistic regression was used to analyse the longitudinal distribution of cold water patches according to geomorphologic indicators reflecting current or past fluvial process. Side seeps were found to be related to the local geology. Cold side channels were correlated to contemporary and past lateral river mobility. Gravel bar seeps were related to the current development of bars and are more prevalent in wandering reaches than in single-bed incised and paved reaches. The logistic model was subsequently used to evaluate gravel bar seep variability in the past. The model suggests larger numbers of seeps in the mid-20th century when bar surface area was higher. Interannual variability in the occurrence and spatial extent of side seeps and gravel bar seeps appear to be related to groundwater level fluctuations. Cold side channels exhibited greater interannual stability

  7. Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities.

    PubMed

    Hutchins, Benjamin T; Engel, Annette Summers; Nowlin, Weston H; Schwartz, Benjamin F

    2016-06-01

    The prevailing paradigm in subterranean ecology is that below-ground food webs are simple, limited to one or two trophic levels, and composed of generalist species because of spatio-temporally patchy food resources and pervasive energy limitation. This paradigm is based on relatively few studies of easily accessible, air-filled caves. However, in some subterranean ecosystems, chemolithoautotrophy can subsidize or replace surface-based allochthonous inputs of photosynthetically derived organic matter (OM) as a basal food resource and promote niche specialization and evolution of higher trophic levels. Consequently, the current subterranean trophic paradigm fails to account for variation in resources, trophic specialization, and food chain length in some subterranean ecosystems. We reevaluated the subterranean food web paradigm by examining spatial variation in the isotopic composition of basal food resources and consumers, food web structure, stygobiont species diversity, and chromophoric organic matter (CDOM), across a geochemical gradient in a large and complex groundwater system, the Edwards Aquifer in Central Texas (USA). Mean δ13C values of stygobiont communities become increasingly more negative along the gradient of photosynthetic OM sources near the aquifer recharge zone to chemolithoautotrophic OM sources closer to the freshwater-saline water interface (FWSWI) between oxygenated freshwater and anoxic, sulfide-rich saline water. Stygobiont community species richness declined with increasing distance from the FWSWI. Bayesian mixing models were used to estimate the relative importance of photosynthetic OM and chemolithoautorophic OM for stygobiont communities at three biogeochemically distinct sites. The contribution of chemolithoautotrophic OM to consumers at these sites ranged between 25% and 69% of total OM utilized and comprised as much as 88% of the diet for one species. In addition, the food web adjacent to the FWSWI had greater trophic diversity when

  8. When the serotonin transporter gene meets adversity: the contribution of animal models to understanding epigenetic mechanisms in affective disorders and resilience.

    PubMed

    Lesch, Klaus-Peter

    2011-01-01

    Although converging epidemiological evidence links exposure to stressful life events with increased risk for affective spectrum disorders, there is extraordinary interindividual variability in vulnerability to adversity. The environmentally moderated penetrance of genetic variation is thought to play a major role in determining who will either develop disease or remain resilient. Research on genetic factors in the aetiology of disorders of emotion regulation has, nevertheless, been complicated by a mysterious discrepancy between high heritability estimates and a scarcity of replicable gene-disorder associations. One explanation for this incongruity is that at least some specific gene effects are conditional on environmental cues, i.e. gene-by-environment interaction (G × E) is present. For example, a remarkable number of studies reported an association of variation in the human serotonin (5-HT) transporter gene (SLC6A4, 5-HTT, SERT) with emotional and cognitive traits as well as increased risk for depression in interaction with psychosocial adversity. The results from investigations in non-human primate and mouse support the occurrence of G × E interaction by showing that variation of 5-HTT function is associated with a vulnerability to adversity across the lifespan leading to unfavourable outcomes resembling various neuropsychiatric disorders. The neural and molecular mechanisms by which environmental adversity in early life increases disease risk in adulthood are not known but may include epigenetic programming of gene expression during development. Epigenetic mechanisms, such as DNA methylation and chromatin modification, are dynamic and reversible and may also provide targets for intervention strategies (see Bountra et al., Curr Top Behav Neurosci, 2011). Animal models amenable to genetic manipulation are useful in the identification of molecular mechanisms underlying epigenetic programming by adverse environments and individual differences in

  9. The type B brevetoxin (PbTx-3) adversely affects development, cardiovascular function, and survival in Medaka (Oryzias latipes) embryos.

    PubMed Central

    Colman, Jamie R; Ramsdell, John S

    2003-01-01

    Brevetoxins are produced by the red tide dinoflagellate Karenia brevis. The toxins are lipophilic polyether toxins that elicit a myriad of effects depending on the route of exposure and the target organism. Brevetoxins are therefore broadly toxic to marine and estuarine animals. By mimicking the maternal route of exposure to the oocytes in finfish, we characterized the adverse effects of the type B brevetoxin brevetoxin-3 (PbTx-3) on embryonic fish development and survival. The Japanese rice fish, medaka (Oryzias latipes), was used as the experimental model in which individual eggs were exposed via microinjection to various known concentrations of PbTx-3 dissolved in an oil vehicle. Embryos injected with doses exceeding 1.0 ng/egg displayed tachycardia, hyperkinetic twitches in the form of sustained convulsions, spinal curvature, clumping of the erythrocytes, and decreased hatching success. Furthermore, fish dosed with toxin were often unable to hatch in the classic tail-first fashion and emerged head first, which resulted in partial hatches and death. We determined that the LD(50) (dose that is lethal to 50% of the fish) for an injected dose of PbTx-3 is 4.0 ng/egg. The results of this study complement previous studies of the developmental toxicity of the type A brevetoxin brevetoxin-1 (PbTx-1), by illustrating in vivo the differing affinities of the two congeners for cardiac sodium channels. Consequently, we observed differing cardiovascular responses in the embryos, wherein embryos exposed to PbTx-3 exhibited persistent tachycardia, whereas embryos exposed to PbTx-1 displayed bradycardia, the onset of which was delayed. PMID:14644667

  10. Lactate adversely affects the in vitro formation of endothelial cell tubular structures through the action of TGF-{beta}1

    SciTech Connect

    Schmid, Stephan A. . E-mail: leoni.kunz-schughart@oncoray.de; Gaumann, Andreas; Wondrak, Marit; Eckermann, Christoph; Schulte, Stephanie; Mueller-Klieser, Wolfgang; Wheatley, Denys N.; Kunz-Schughart, Leoni A.

    2007-07-15

    When lactate accumulation in a tumor microenvironment reaches an average concentration of 10-20 mM, it tends to reflect a high degree of malignancy. However, the hypothesis that tumor-derived lactate has a number of partially adverse biological effects on malignant and tumor-associated host cells requires further evidence. The present study attempted to evaluate the impact of lactate on the process of angiogenesis, in particular on the formation of tubular structures. The endothelial cell (EC) network in desmoplastic breast tumors is primarily located in areas of reactive fibroblastic stroma. We employed a fibroblast-endothelial cell co-culture model as in vitro angiogenesis system normally producing florid in vitro tubule formation to analyze this situation. In contrast to previous studies, we found that lactate significantly reduces EC network formation in a dose-dependent manner as quantified by semi-automated morphometric analyses following immunohistochemical staining. The decrease in CD31-positive tubular structures and the number of intersections was independent of VEGF supplementation and became more pronounced in the presence of protons. The number of cells, primarily of the fibroblast population, was reduced but cell loss could not be attributed to a decrease in proliferative activity or pronounced apoptotic cell death. Treatment with 10 mM lactate was accompanied by enhanced mRNA expression and release of TGF-{beta}1, which also shows anti-angiogenic activity in the model. Both TGF-{beta}1 and lactate induced myofibroblastic differentiation adjacent to the EC tubular structures. The lactate response on the EC network was diminished by TGF-{beta}1 neutralization, indicating a causal relationship between lactate and TGF-{beta}1 in the finely tuned processes of vessel formation and maturation which may also occur in vivo within tumor tissue.

  11. A Computational Study on the Effects of Dynamic Roughness Application to Separated Transitional Flows Affected by Adverse Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Campitelli, Gennaro

    The study of transitional flows is considered crucial for many practical engineering applications. In fact, a comprehensive understanding of the laminar-turbulent transition phenomenon often helps to improve the overall performance of apparatuses such as airfoils, wind turbines, hulls and turbomachinery blades. In addition to understanding and prediction of transitional flows, active research continues in the area of boundary layer control, which includes control of phenomena such as flow separation and transition. For instance, optimum geometrical shaping may be followed by the adoption on the wall-surface of riblets to adjust pressure gradient and reduce drag. Further "flow control" may also be acquired by introducing active devices able to modify the flow field in order to accomplish a desired aerodynamic task. Such flow manipulation is often achieved by using time-dependent forcing mechanisms which promote natural instabilities amplifying the control effectiveness. Localized energy inputs such as Lorentz-force actuator, piezoelectric flaps and synthetic jets all produce a consistent boundary layer mixing enhancement with lift increase and drag abatement. The current numerical study attempts to demonstrate the efficacy of dynamic roughness (DR) on altering separated-reattached transitional flows under adverse pressure gradient. It has already been proven how DR, acting on the boundary sublayer perturbation, is able to suppress (partially or completely) the typical leading edge separation for an airfoil at different angles of attack. This makes DR particularly suitable for separated flow control applications where the shear layer reattaches presenting the characteristic laminar separation bubble. A numerical sensitivity study has been conducted with an efficient orthogonal design taking into account four different control parameters on three levels (actuation frequency, humps height, rows displacement, synchronization) to provide an optimum DR setup which limits

  12. The skin tissue is adversely affected by TNF-alpha blockers in patients with chronic inflammatory arthritis: a 5-year prospective analysis

    PubMed Central

    Machado, Natalia P.; dos Reis Neto, Edgard Torres; Soares, Maria Roberta M. P.; Freitas, Daniele S.; Porro, Adriana; Ciconelli, Rozana M.; Pinheiro, Marcelo M.

    2013-01-01

    OBJECTIVE: We evaluated the incidence of and the main risk factors associated with cutaneous adverse events in patients with chronic inflammatory arthritis following anti-TNF-α therapy. METHODS: A total of 257 patients with active arthritis who were taking TNF-α blockers, including 158 patients with rheumatoid arthritis, 87 with ankylosing spondylitis and 12 with psoriatic arthritis, were enrolled in a 5-year prospective analysis. Patients with overlapping or other rheumatic diseases were excluded. Anthropometric, socioeconomic, demographic and clinical data were evaluated, including the Disease Activity Score-28, Bath Ankylosing Spondylitis Disease Activity Index and Psoriasis Area Severity Index. Skin conditions were evaluated by two dermatology experts, and in doubtful cases, skin lesion biopsies were performed. Associations between adverse cutaneous events and clinical, demographic and epidemiological variables were determined using the chi-square test, and logistic regression analyses were performed to identify risk factors. The significance level was set at p<0.05. RESULTS: After 60 months of follow-up, 71 adverse events (73.85/1000 patient-years) were observed, of which allergic and immune-mediated phenomena were the most frequent events, followed by infectious conditions involving bacterial (47.1%), parasitic (23.5%), fungal (20.6%) and viral (8.8%) agents. CONCLUSION: The skin is significantly affected by adverse reactions resulting from the use of TNF-α blockers, and the main risk factors for cutaneous events were advanced age, female sex, a diagnosis of rheumatoid arthritis, disease activity and the use of infliximab. PMID:24141833

  13. Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York

    USGS Publications Warehouse

    Phillips, Patrick J.; Schubert, Christopher E.; Argue, Denise M.; Fisher, Irene J.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; Chalmers, Ann T.

    2015-01-01

    The highest micropollutant concentrations for the NY network were present in the shoreline wells and reflect groundwater that is most affected by septic system discharges. One of the shoreline wells had personal care/domestic use, pharmaceutical, and plasticizer concentrations ranging from 0.4 to 5.7 μg/L. Estradiol equivalency quotient concentrations were also highest in a shoreline well sample (3.1 ng/L). Most micropollutant concentrations increase with increasing specific conductance and total nitrogen concentrations for shoreline well samples. These findings suggest that septic systems serving institutional settings and densely populated areas in coastal settings may be locally important sources of micropollutants to adjacent aquifer and marine systems.

  14. Groundwater Storage Dynamics in High Elevation Meadows Affected By Complex Aquifer Geometry

    NASA Astrophysics Data System (ADS)

    Ciruzzi, D.; Lowry, C.

    2014-12-01

    The Sierra Nevada represents a cascading hydrologic cycle where snowpack, meadow aquifers, and streams are all hydrologically connected. Monitoring the water balance within high elevation meadows is vital in order to effectively quantify watershed scale storage dynamics, which support meadow ecological communities as well as downstream users. In this case, much of the San Francisco, CA water supply originates from the seasonally released snowmelt from high elevation meadows to downstream reservoirs. In previous studies of high elevation meadows, the water mass balance was closed under the assumption that the meadow sediment was spatially uniform in thickness. Here, complex aquifer geometry was identified in Tuolumne Meadows, CA from a high-resolution ground-penetrating radar survey. This new geometry was compared to the previous geologic model of high elevation meadow aquifers using numerical models simulating both current and future snowmelt scenarios. In addition, the impact of variability in meadow sediment and slope were evaluated to quantify storage properties of representative Sierra Nevada meadow types. Results demonstrate that the previous aquifer geometry model significantly overestimates both the spatial and temporal volumetric storage and release of groundwater to streams. These implications are noteworthy for ecosystem restoration and water supply strategies that aim to rectify water supply to and from these meadows especially when considering drought scenarios. In order to move forward and effectively and efficiently monitor the seasonal volume of water stored within the Sierra Nevada, complex aquifer geometry within high elevation meadows must be considered.

  15. Processes affecting the transport of nitrogen in groundwater and factors related to slope position

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate (NO3-) pollution of water resources has been a major problem for years, causing contaminated water supplies, harmful effects on human health, and widespread eutrophication of fresh water resources. The main objectives of this study were to: 1) understand the processes affecting NO3- transpor...

  16. Hoe Creek groundwater restoration, 1989

    SciTech Connect

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  17. Groundwater contamination from stormwater infiltration

    SciTech Connect

    Pitt, R.; Clark, S.; Parmer, K.

    1995-10-01

    The research summarized here was conducted during the first year of a 3-yr cooperative agreement (CR819573) to identify and control stormwater toxicants, especially those adversely affecting groundwater. The purpose of this research effort was to review the groundwater contamination literature as it relates to stormwater. Prior to urbanization groundwater is recharged by rainfall-runoff and snowmelt infiltrating through pervious surfaces including grasslands and woods. This infiltrating water is relatively uncontaminated. Urbanization, however, reduces the permeable soil surface area through which recharge by infiltration occurs. This results in much less groundwater recharge and greatly increased surface runoff. In addition the waters available for recharge carry increased quantities of pollutants. With urbanization, waters having elevated contaminant concentrations also recharge groundwater including effluent from domestic septic tanks, wastewater from percolation basins and industrial waste injection wells, infiltrating stormwater, and infiltrating water from agricultural irrigation. The areas of main concern that are covered by this paper are: the source of the pollutants, stormwater constituents having a high potential to contaminate groundwater, and the treatment necessary for stormwater.

  18. Task-Oriented and Bottle Feeding Adversely Affect the Quality of Mother-Infant Interactions Following Abnormal Newborn Screens

    PubMed Central

    Tluczek, Audrey; Clark, Roseanne; McKechnie, Anne Chevalier; Orland, Kate Murphy; Brown, Roger L.

    2010-01-01

    Objective Examine effects of newborn screening (NBS) and neonatal diagnosis on the quality of mother-infant interactions in the context of feeding. Methods Study compared the quality of mother-infant feeding interactions among four groups of infants classified by severity of NBS and diagnostic results: cystic fibrosis (CF), congenital hypothyroidism, heterozygote CF carrier, and healthy with normal NBS. The Parent-Child Early Relational Assessment and a task-oriented item measured the quality of feeding interactions for 130 dyads, infant ages 3–19 weeks (M=9.19, SD=3.28). The Center for Epidemiologic Studies Depression Scale and State-Trait Anxiety Inventory measured maternal depression and anxiety. Results Composite Indicator Structure Equation Modeling showed that infant diagnostic status and, to a lesser extent, maternal education predicted feeding method. Mothers of infants with CF were most likely to bottle feed, which was associated with more task-oriented maternal behavior than breastfeeding. Mothers with low task-oriented behavior showed more sensitivity and responsiveness to infant cues, as well as less negative affect and behavior in their interactions with their infants than mothers with high task-oriented scores. Mothers of infants with CF were significantly more likely to have clinically significant anxiety and depression than the other groups. However, maternal psychological profile did not predict feeding method or interaction quality. Conclusions Mothers in the CF group were the least likely to breastfeed. Research is needed to explicate long-term effects of feeding methods on quality of mother-child relationship and ways to promote continued breastfeeding following a neonatal CF diagnosis. PMID:20495477

  19. Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater.

    PubMed

    Kobryn, H T; Lantzke, R; Bell, R; Admiraal, R

    2015-03-01

    The installation of deep drains is an engineering approach to remediate land salinised by the influence of shallow groundwater. It is a costly treatment and its economic viability is, in part, dependent on the lateral extent to which the drain increases biological productivity by lowering water tables and soil salinity (referred to as the drains' zone of benefit). Such zones may be determined by assessing the biological productivity response of adjacent vegetation over time. We tested a multi-temporal satellite remote sensing method to analyse temporal and spatial changes in vegetation condition surrounding deep drainage sites at five locations in the Western Australian wheatbelt affected by dryland salinity-Morawa, Pithara, Beacon, Narembeen and Dumbleyung. Vegetation condition as a surrogate for biological productivity was assessed by Normalised Difference Vegetation Index (NDVI) during the peak growing season. Analysis was at the site scale within a 1000 m buffer zone from the drains. There was clear evidence of NDVI increasing with elevation, slope and distance from the drain. After accounting for elevation, slope and distance from the drain, there was a significant increase in NDVI across the five locations after installation of deep drains. Changes in NDVI after drainage were broadly consistent with measured changes at each site in groundwater levels after installation of the deep drains. However, this study assessed the lateral extent of benefit for biological productivity and gave a measure of the area of benefit along the entire length of the drain. The method demonstrated the utility of spring NDVI images for rapid and relatively simple assessment of the change in site condition after implementation of drainage, but approaches for further improvement of the procedure were identified. PMID:25481499

  20. Assessing potential toxicity of chloride-affected groundwater discharging to an urban stream using juvenile freshwater mussels (Lampsilis siliquoidea).

    PubMed

    Roy, James W; McInnis, Rodney; Bickerton, Greg; Gillis, Patricia L

    2015-11-01

    Groundwater contaminants, such as chloride from road salt, pose a threat to aquatic ecosystems when and where they discharge to surface waters. Here we study the application of a laboratory toxicity bioassay to field-collected samples from contaminated groundwater discharging to an urban stream. The objectives were to assess the potential toxicity of the discharging groundwater, while also exploring the suitability of such standard tests to site groundwater. Juvenile freshwater mussels were chosen as a groundwater-appropriate (endobenthic) test organism. Groundwater was sampled from 6 sites at approximate depths of 0, 10, and 50 cm below the sediment. Concentrations of chloride and several metals were above aquatic life guidelines in some samples. Exposure (96-h) to site groundwater resulted in survival of 90-100% and 80-100% for the 0-cm and deeper samples, respectively, indicating that groundwater may pose a toxicological threat to freshwater mussels. Several samples with high chloride had a survival rate of 80%, but generally there was poor correlation between survival and individual contaminants. Parallel juvenile mussel exposures using reconstituted water and NaCl predicted survival in the natural groundwater below 50% based on chloride concentrations. This indicates some protective ability of groundwater, possibly associated with water hardness. Finally, some technical issues with performing bioassays with groundwater were noted. First, aeration of previously anoxic groundwater samples caused marked changes in water quality (especially metal concentrations). Second, calcite crystals formed on the mussel shells in samples with elevated chloride and water hardness, though with no apparent negative effects. PMID:26081733

  1. International Studies of Hazardous Groundwater/Surface Water Exchange in the Volcanic Eruption and Tsunami Affected Areas of Kamchatka

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Gusiakov, V. K.; Izbekov, P. E.; Gordeev, E.; Titov, V. V.; Verstraeten, I. M.; Pinegina, T. K.; Tsadikovsky, E. I.; Heilweil, V. M.; Gingerich, S. B.

    2012-12-01

    During the US-Russia Geohazards Workshop held July 17-19, 2012 in Moscow, Russia the international research effort was asked to identify cooperative actions for disaster risk reduction, focusing on extreme geophysical events. As a part of this recommendation the PIRE project was developed to understand, quantify, forecast and protect the coastal zone aquifers and inland water resources of Kamchatka (Russia) and its ecosystems affected by the November 4, 1952 Kamchatka tsunami (Khalatyrka Beach near Petropavlovsk-Kamchatskiy) and the January 2, 1996 Karymskiy volcano eruption and the lake tsunami. This project brings together teams from U.S. universities and research institutions located in Russia. The research consortium was briefed on recent technical developments and will utilize samples secured via major international volcanic and tsunami programs for the purpose of advancing the study of submarine groundwater discharge (SGD) in the volcanic eruption and tsunami affected coastal areas and inland lakes of Kamchatka. We plan to accomplish this project by developing and applying the next generation of field sampling, remote sensing, laboratory techniques and mathematical tools to study groundwater-surface water interaction processes and SGD. We will develop a field and modeling approach to define SGD environment, key controls, and influence of volcano eruption and tsunami, which will provide a framework for making recommendations to combat contamination. This is valuable for politicians, water resource managers and decision-makers and for the volcano eruption and tsunami affected region water supply and water quality of Kamchatka. Data mining and results of our field work will be compiled for spatial modeling by Geo-Information System (GIS) using 3-D Earth Systems Visualization Lab. The field and model results will be communicated to interested stakeholders via an interactive web site. This will allow computation of SGD spatial patterns. In addition, thanks to the

  2. Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Eamus, Derek; Cleverly, James; Boulain, Nicolas; Cook, Peter; Zhang, Lu; Cheng, Lei; Yu, Qiang

    2014-11-01

    For efficient and sustainable utilisation of limited groundwater resources, improved understanding of how vegetation water-use responds to climate variation and the corresponding controls on recharge is essential. This study investigated these responses using a modelling approach. The biophysically based model WAVES was calibrated and validated with more than two years of field experimental data conducted in Mulga (Acacia aneura) in arid central Australia. The validated model was then applied to simulate vegetation growth (as changes in overstory and understory leaf area index; LAI), vegetation water-use and groundwater recharge using observed climate data for the period 1981-2012. Due to large inter-annual climatic variability, especially precipitation, simulated annual mean LAI ranged from 0.12 to 0.35 for the overstory and 0.07 to 0.21 for the understory. These variations in simulated LAI resulted in vegetation water-use varying greatly from year-to-year, from 64 to 601 mm pa. Simulated vegetation water-use also showed distinct seasonal patterns. Vegetation dynamics affected by climate variability exerted significant controls on simulated annual recharge, which was greatly reduced to 0-48 mm compared to that (58-672 mm) only affected by climate. Understanding how climate variability and land use/land cover change interactively impact on groundwater recharge significantly improves groundwater resources management in arid and semi-arid regions.

  3. Genetically-induced Estrogen Receptor Alpha mRNA (Esr1) Overexpression Does Not Adversely Affect Fertility or Penile Development in Male Mice

    PubMed Central

    Heath, John; Abdelmageed, Yazeed; Braden, Tim D.; Williams, Carol S.; Williams, John W.; Paulose, Tessie; Hernandez-Ochoa, Isabel; Gupta, Rupesh; Flaws, Jodi A.; Goyal, Hari O.

    2011-01-01

    Previously, we reported that estrogen receptor alpha mRNA (Esr1) or protein (ESR1) overexpression resulting from neonatal exposure to estrogens in rats was associated with infertility and mal-developed penis characterized by reduced length and weight and abnormal accumulation of fat cells. The objective of this study was to determine if mutant male mice overexpressing Esr1 are naturally infertile or have reduced fertility and/or develop abnormal penis. The fertility parameters, including fertility and fecundity indices, numbers of days from the day of cohabitation to the day of delivery, and numbers of pups per female, were not altered from controls, as a result of Esr1 overexpression. Likewise, penile morphology, including the length, weight, and diameter and os penis development, was not altered from controls. Conversely, weights of the seminal vesicles and bulbospongiosus and levator ani (BS/LA) muscles were significantly (P < 0.05) lower as compared to controls; however, the weight of the testis, the morphology of the testis and epididymis, and the plasma and testicular testosterone concentration were not different from controls. Hence, the genetically-induced Esr1 overexpression alone, without an exogenous estrogen exposure during the neonatal period, is unable to adversely affect the development of the penis as well as other male reproductive organs, except limited, but significant, reductions in weights of the seminal vesicles and BS/LA muscles. PMID:20930192

  4. High fat diet enriched with saturated, but not monounsaturated fatty acids adversely affects femur, and both diets increase calcium absorption in older female mice.

    PubMed

    Wang, Yang; Dellatore, Peter; Douard, Veronique; Qin, Ling; Watford, Malcolm; Ferraris, Ronaldo P; Lin, Tiao; Shapses, Sue A

    2016-07-01

    Diet induced obesity has been shown to reduce bone mineral density (BMD) and Ca absorption. However, previous experiments have not examined the effect of high fat diet (HFD) in the absence of obesity or addressed the type of dietary fatty acids. The primary objective of this study was to determine the effects of different types of high fat feeding, without obesity, on fractional calcium absorption (FCA) and bone health. It was hypothesized that dietary fat would increase FCA and reduce BMD. Mature 8-month-old female C57BL/6J mice were fed one of three diets: a HFD (45% fat) enriched either with monounsaturated fatty acids (MUFAs) or with saturated fatty acids (SFAs), and a normal fat diet (NFD; 10% fat). Food consumption was controlled to achieve a similar body weight gain in all groups. After 8wk, total body bone mineral content and BMD as well as femur total and cortical volumetric BMD were lower in SFA compared with NFD groups (P<.05). In contrast, femoral trabecular bone was not affected by the SFAs, whereas MUFAs increased trabecular volume fraction and thickness. The rise over time in FCA was greater in mice fed HFD than NFD and final FCA was higher with HFD (P<.05). Intestinal calbindin-D9k gene and hepatic cytochrome P450 2r1 protein levels were higher with the MUFA than the NFD diet (P<.05). In conclusion, HFDs elevated FCA overtime; however, an adverse effect of HFD on bone was only observed in the SFA group, while MUFAs show neutral or beneficial effects. PMID:27262536

  5. Factors Affecting Temporal Variability of Arsenic in Groundwater Used for Drinking Water Supply in the United States

    EPA Science Inventory

    The occurrence of arsenic in groundwater is a recognized environmental hazard with worldwide importance and much effort has been focused on surveying and predicting where arsenic occurs. Temporal variability is one aspect of this environmental hazard that has until recently recei...

  6. Groundwater arsenic contamination affecting different geologic domains in India - a review: influence of geological setting, fluvial geomorphology and Quaternary stratigraphy

    SciTech Connect

    Acharyya, S.K.; Shah, B.A.

    2007-10-15

    Arsenic contamination in groundwater is pervasive within lowland organic-rich Bengal Delta and narrow entrenched channels in the Middle Ganga floodplains. Local areas of Damodar fan-delta and isolated areas within the Dongargarh Proterozoic rift-zone in central India are also contaminated. In this rift-zone, arsenic is enriched in felsic magmatic rocks and weathered rocks and soils from local areas are enriched further in arsenic and iron. Late Quaternary stratigraphy, geomorphology and sedimentation have influenced groundwater arsenic contamination in alluvium that aggraded during the Holocene sea-level rise. No specific source of arsenic could be identified, although Himalaya is the main provenance for the Ganga floodplain and the Bengal Delta. Gondwana coal seams and other Peninsular Indian rocks might be sources for arsenic in the Damodar fan-delta. As-bearing pyrite or any As-mineral is nearly absent in the aquifer sediments. Arsenic mainly occurs adsorbed on hydrated-iron-oxide (HFO), which coat sediment grains and minerals. Arsenic and iron are released to groundwater by bio-mediated reductive dissolution of HFO with corresponding oxidation of organic matter.

  7. Vaccenic acid and trans fatty acid isomers from partially hydrogenated oil both adversely affect LDL cholesterol: a double-blind, randomized controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence of the adverse effects of industrially-produced trans fatty acids (iTFA) on risk of cardiovascular disease is consistent and well documented in the scientific literature; however, the cardiovascular effects of naturally-occurring TFA synthesized in ruminant animals (rTFA), such as vaccenic ...

  8. Ground-water concerns for the Eastern Shore, Virginia

    USGS Publications Warehouse

    Richardson, D.L.

    1993-01-01

    The Eastern Shore of Virginia is a peninsula that is surrounded on three sides by salty water and has no major fresh surface-water sources; groundwater provides the sole freshwater supply. Beginning in about 1965, increases in groundwater withdrawals for agricultural, commercial, urban, and industrial uses have caused water-level declines and have created cone-like depressions in the water-level surface around major pumping centers near the Towns of Accomac, Cape Charles, Cheriton, Chincoteague, Exmore, and Hallwood, Virginia. Increased water withdrawals could adversely affect the supply of fresh groundwater on the Eastern Shore. In 1992, the U.S. Geological Survey, in cooperation with the Virginia Department of Environmental Quality and the counties of Accomack and Northampton, completed a comprehensive study of the groundwater resources of the Eastern Shore. This report highlights the major results of that study. (USGS)

  9. Groundwater manual for the electric utility industry. Volume 3. Groundwater investigation and mitigation techniques. Final report

    SciTech Connect

    Redwine, J.

    1985-05-01

    The leaching of fly ash, bottom ash, coal piles, and other materials has recently developed into an area of major environmental concern. Federal, state, and local regulations require various degrees of leachate monitoring. Land subsidence and sinkhole development can adversely affect power-generating facilities and frequently result in substantial property losses. Seepage from impoundments of all sorts (for example, ash ponds or hydroelectric facilities) may results in substantial water losses, lost generation, reduced stability of structures, and in extreme cases, abandonment or failure of dikes and dams. The groundwater manual is organized into three volumes. Volume 1 provides basic background geological and hydrogeological material. Volume 2 describes specific electric utility industry groundwater related problems. Volume 3 discusses the techniques and instrumentation necessary to detect, evaluate, monitor, remedy, or prevent groundwater related problems experienced by the electric utility industry.

  10. Evaluation of alternative groundwater-management strategies for the Bureau of Reclamation Klamath Project, Oregon and California

    USGS Publications Warehouse

    Wagner, Brian J.; Gannett, Marshall W.

    2014-01-01

    The water resources of the upper Klamath Basin, in southern Oregon and northern California, are managed to achieve various complex and interconnected purposes. Since 2001, irrigators in the Bureau of Reclamation Klamath Irrigation Project (Project) have been required to limit surface-water diversions to protect habitat for endangered freshwater and anadromous fishes. The reductions in irrigation diversions have led to an increased demand for groundwater by Project irrigators, particularly in drought years. The potential effects of sustained pumping on groundwater and surface-water resources have caused concern among Federal and state agencies, Indian tribes, wildlife groups, and groundwater users. To aid in the development of a viable groundwater-management strategy for the Project, the U.S. Geological Survey, in collaboration with the Klamath Water and Power Agency and the Oregon Water Resources Department, developed a groundwater-management model that links groundwater simulation with techniques of constrained optimization. The overall goal of the groundwater-management model is to determine the patterns of groundwater pumping that, to the extent possible, meet the supplemental groundwater demands of the Project. To ensure that groundwater development does not adversely affect groundwater and surface-water resources, the groundwater-management model includes constraints to (1) limit the effects of groundwater withdrawal on groundwater discharge to streams and lakes that support critical habitat for fish listed under the Endangered Species Act, (2) ensure that drawdowns do not exceed limits allowed by Oregon water law, and (3) ensure that groundwater withdrawal does not adversely affect agricultural drain flows that supply a substantial portion of water for irrigators and wildlife refuges in downslope areas of the Project. Groundwater-management alternatives were tested and designed within the framework of the Klamath Basin Restoration Agreement (currently [2013

  11. Hydrological modelling in small, semi-arid catchments of south-eastern Australia: reforestation affects groundwater but not streamflow

    NASA Astrophysics Data System (ADS)

    Dean, Joshua; Camporese, Matteo; Grover, Samantha; Webb, John; Dresel, Evan; Daly, Edoardo

    2015-04-01

    Land use has a strong influence on evapotranspiration (ET) and thus a large effect on catchment hydrology. The dearth of data from arid and semi-arid catchments limits the understanding of the possible effects of land-use and land-use change on water resources in these environments. Here we use three years of rainfall, streamflow, and groundwater level measurements to estimate the water balance components in two small, adjacent ephemeral Australian catchments, one predominantly covered with a young eucalypt plantation and the other primarily dedicated to grazing pasture. The average annual rainfall for the study area is ~670 mm, with ET greatly exceeding rainfall for most of the year, excepting the winter months of May through September. The paired catchments are similar in size and are situated on the same Devonian granitic geology. Land-use is the most striking difference between the catchments; this allows for a strong hydrological comparison of the eucalypt catchment (planted in 2008) with the pasture catchment. The majority of data is available from 2009 until present, although historical bi-monthly groundwater level data exists back to 1986. We focus on 2010-2012, and we have maximum data for 2012, including eddy covariance and sap flow measurements. The integrated hydrological model CATHY was calibrated and validated against the data in the two catchments for 2011 and 2012. The water balances estimated from both data and model show a significant increase in ET in the eucalypt plantation catchment at the expense of groundwater storage: ET accounted for 95-97% of rainfall in the pasture catchment and 104-110% in the eucalypt catchment across the three years studied. Direct measurements of ET in 2012 confirm the water balance values. However, streamflow was more or less constant at 3-4% of rainfall in both catchments for the study period. The model results suggest that this is because streamflow is generated primarily from surface runoff, showing that land use

  12. Assessment of toxic metals in groundwater and saliva in an arsenic affected area of West Bengal, India: A pilot scale study.

    PubMed

    Bhowmick, Subhamoy; Kundu, Amit Kumar; Adhikari, Jishnu; Chatterjee, Debankur; Iglesias, Monica; Nriagu, Jerome; Guha Mazumder, Debendra Nath; Shomar, Basem; Chatterjee, Debashis

    2015-10-01

    Communities in many parts of the world are unintentionally exposed to arsenic (As) and other toxic metals through ingestion of local drinking water and foods. The concentrations of individual toxic metals often exceed their guidelines in drinking water but the health risks associated with such multiple-metal exposures have yet to receive much attention. This study examines the co-occurrence of toxic metals in groundwater samples collected from As-rich areas of Nadia district, West Bengal, India. Arsenic in groundwater (range: 12-1064 µg L(-1); mean ± S.D: 329±294 µg L(-1)) was the most important contaminant with concentrations well above the WHO guideline of 10 µg L(-1). Another important toxic metal in the study area was manganese (Mn) with average concentration of 202±153 µg L(-1), range of 18-604 µg L(-1). The average concentrations (µg L(-1)) of other elements in groundwater were: Cr (5.6±5.9), Mo (3.5±2.1), Ni (8.3±8.7), Pb (2.9±1.3), Ba (119±43), Zn (56±40), Se (0.60±0.33), U (0.50±0.74). Saliva collected from the male participants of the area had mean concentrations of 6.3±7.0 µg As L(-1) (0.70-29 µg L(-1)), 5.4±5.5 µg Mn L(-1) (0.69-22 µg L(-1)), 2.6±3.1 µg Ni L(-1) (0.15-13 µg L(-1)), 0.78±1.0µg Cr L(-1) (groundwater. The clustering of salivary As and Mn in principal component analysis further indicated influence of the common exposure source. Zinc and selenium comprised a separate component presumably reflecting the local deficiencies in intakes of these essential elements from drinking water and foodstuff. Thus the study reveals that the concentration of other metals beside As must be monitored in drinking water before implementation of any policies to provide safe water to the

  13. High d(+)-fructose diet adversely affects testicular weight gain in weaning rats─protection by moderate d(+)-glucose diet.

    PubMed

    Shibata, Katsumi; Fukuwatari, Tsutomu

    2013-01-01

    The use of high D(+)-fructose corn syrup has increased over the past several decades in the developed countries, while overweight and obesity rates and the related diseases have risen dramatically. However, we found that feeding a high D(+)-fructose diet (80% D(+)-fructose as part of the diet) to weaning rats for 21 days led to reduced food intake (50% less, P < 0.0001) and thus delayed the weight gains in the body (40% less, P < 0.0001) and testes (40% less, P < 0.0001) compared to the no D(+)-fructose diet. We also challenged a minimum requirement of dietary D(+)-glucose for preventing the adverse effects of D(+)-fructose, such as lower food intake and reduction of body weight and testicular weight; the minimum requirement of D(+)-glucose was ≈23% of the diet. This glucose amount may be the minimum requirement of exogenous glucose for reducing weight gain. PMID:23935370

  14. Arsenic in groundwater: a summary of sources and the biogeochemical and hydrogeologic factors affecting arsenic occurrence and mobility

    USGS Publications Warehouse

    Barringer, Julia L.; Reilly, Pamela A.

    2013-01-01

    Arsenic (As) is a metalloid element (atomic number 33) with one naturally occurring isotope of atomic mass 75, and four oxidation states (-3, 0, +3, and +5) (Smedley and Kinniburgh, 2002). In the aqueous environment, the +3 and +5 oxidation states are most prevalent, as the oxyanions arsenite (H3AsO3 or H2AsO3- at pH ~9-11) and arsenate (H2AsO4- and HAsO42- at pH ~4-10) (Smedley and Kinniburgh, 2002). In soils, arsine gases (containing As3-) may be generated by fungi and other organisms (Woolson, 1977). The different forms of As have different toxicities, with arsine gas being the most toxic form. Of the inorganic oxyanions, arsenite is considered more toxic than arsenate, and the organic (methylated) arsenic forms are considered least toxic (for a detailed discussion of toxicity issues, the reader is referred to Mandal and Suzuki (2002)). Arsenic is a global health concern due to its toxicity and the fact that it occurs at unhealthful levels in water supplies, particularly groundwater, in more than 70 countries (Ravenscroft et al., 2009) on six continents.

  15. Migration, neighborhoods, and networks: approaches to understanding how urban environmental conditions affect syndemic adverse health outcomes among gay, bisexual and other men who have sex with men.

    PubMed

    Egan, James E; Frye, Victoria; Kurtz, Steven P; Latkin, Carl; Chen, Minxing; Tobin, Karin; Yang, Cui; Koblin, Beryl A

    2011-04-01

    Adopting socioecological, intersectionality, and lifecourse theoretical frameworks may enhance our understanding of the production of syndemic adverse health outcomes among gay, bisexual and other men who have sex with men (MSM). From this perspective, we present preliminary data from three related studies that suggest ways in which social contexts may influence the health of MSM. The first study, using cross-sectional data, looked at migration of MSM to the gay resort area of South Florida, and found that amount of time lived in the area was associated with risk behaviors and HIV infection. The second study, using qualitative interviews, observed complex interactions between neighborhood-level social environments and individual-level racial and sexual identity among MSM in New York City. The third study, using egocentric network analysis with a sample of African American MSM in Baltimore, found that sexual partners were more likely to be found through face-to-face means than the Internet. They also observed that those who co-resided with a sex partner had larger networks of people to depend on for social and financial support, but had the same size sexual networks as those who did not live with a partner. Overall, these findings suggest the need for further investigation into the role of macro-level social forces on the emotional, behavioral, and physical health of urban MSM. PMID:21369730

  16. Trans-generational exposure to low levels of rhodamine B does not adversely affect litter size or liver function in murine mucopolysaccharidosis type IIIA.

    PubMed

    Roberts, Ainslie L K; Fletcher, Janice M; Moore, Lynette; Byers, Sharon

    2010-01-01

    MPS IIIA is a lysosomal storage disorder caused by mutations in the sulphamidase gene, resulting in the accumulation of heparan sulphate glycosaminoglycans (HS GAGs). Symptoms predominantly manifest in the CNS and there is no current therapy that effectively addresses neuropathology in MPS IIIA patients. Recent studies in MPS IIIA mice have shown that rhodamine B substrate deprivation therapy (SDT) (also termed substrate reduction therapy/SRT) inhibits GAG biosynthesis and, improves both somatic and CNS disease pathology. Acute overexposure to high doses of rhodamine B results in liver toxicity and is detrimental to reproductive ability. However, the long-term effects of decreasing GAG synthesis, at the low dose sufficient to alter neurological function are unknown. A trans-generational study was therefore initiated to evaluate the continuous exposure of rhodamine B treatment in MPS IIIA mice over 4 generations, including treatment during pregnancy. No alterations in litter size, liver histology or liver function were observed. Overall, there are no long-term issues with the administration of rhodamine B at the low dose tested and no adverse effects were noted during pregnancy in mice. PMID:20650670

  17. Rock Glacier Outflows May Adversely Affect Lakes: Lessons from the Past and Present of Two Neighboring Water Bodies in a Crystalline-Rock Watershed

    PubMed Central

    2014-01-01

    Despite the fact that rock glaciers are one of the most common geomorphological expressions of mountain permafrost, the impacts of their solute fluxes on lakes still remain largely obscure. We examined water and sediment chemistry, and biota of two neighboring water bodies with and without a rock glacier in their catchments in the European Alps. Paleolimnological techniques were applied to track long-term temporal trends in the ecotoxicological state of the water bodies and to establish their baseline conditions. We show that the active rock glacier in the mineralized catchment of Lake Rasass (RAS) represents a potent source of acid rock drainage that results in enormous concentrations of metals in water, sediment, and biota of RAS. The incidence of morphological abnormalities in the RAS population of Pseudodiamesa nivosa, a chironomid midge, is as high as that recorded in chironomid populations inhabiting sites heavily contaminated by trace metals of anthropogenic origin. The incidence of morphological deformities in P. nivosa of ∼70% persisted in RAS during the last 2.5 millennia and was ∼40% in the early Holocene. The formation of RAS at the toe of the rock glacier most probably began at the onset of acidic drainage in the freshly deglaciated area. The present adverse conditions are not unprecedented in the lake’s history and cannot be associated exclusively with enhanced thawing of the rock glacier in recent years. PMID:24804777

  18. Rock glacier outflows may adversely affect lakes: lessons from the past and present of two neighboring water bodies in a crystalline-rock watershed.

    PubMed

    Ilyashuk, Boris P; Ilyashuk, Elena A; Psenner, Roland; Tessadri, Richard; Koinig, Karin A

    2014-06-01

    Despite the fact that rock glaciers are one of the most common geomorphological expressions of mountain permafrost, the impacts of their solute fluxes on lakes still remain largely obscure. We examined water and sediment chemistry, and biota of two neighboring water bodies with and without a rock glacier in their catchments in the European Alps. Paleolimnological techniques were applied to track long-term temporal trends in the ecotoxicological state of the water bodies and to establish their baseline conditions. We show that the active rock glacier in the mineralized catchment of Lake Rasass (RAS) represents a potent source of acid rock drainage that results in enormous concentrations of metals in water, sediment, and biota of RAS. The incidence of morphological abnormalities in the RAS population of Pseudodiamesa nivosa, a chironomid midge, is as high as that recorded in chironomid populations inhabiting sites heavily contaminated by trace metals of anthropogenic origin. The incidence of morphological deformities in P. nivosa of ∼70% persisted in RAS during the last 2.5 millennia and was ∼40% in the early Holocene. The formation of RAS at the toe of the rock glacier most probably began at the onset of acidic drainage in the freshly deglaciated area. The present adverse conditions are not unprecedented in the lake's history and cannot be associated exclusively with enhanced thawing of the rock glacier in recent years. PMID:24804777

  19. Plasmid load adversely affects growth and gluconic acid secretion ability of mineral phosphate-solubilizing rhizospheric bacterium Enterobacter asburiae PSI3 under P limited conditions.

    PubMed

    Sharma, Vikas; Archana, G; Naresh Kumar, G

    2011-01-20

    Effect of the metabolic load caused by the presence of plasmids on mineral phosphate-solubilizing (MPS) Enterobacter asburiae PSI3, was monitored with four plasmid cloning vectors and one native plasmid, varying in size, nature of the replicon, copy number and antibiotic resistance genes. Except for one plasmid, the presence of all other plasmids in E. asburiae PSI3 resulted in the loss of the MPS phenotype as reflected by the failure to bring about a drop in pH and release soluble P when grown in media containing rock phosphate (RP) as the sole P source. When 100 μM soluble P was supplemented along with RP, the adverse effects of plasmids on MPS phenotype and on growth parameters was reduced for some plasmid bearing derivatives, as monitored in terms of specific growth rates, glucose consumed, gluconic acids yields and P released. When 10 mM of soluble P as the only P source, was added to the medium all transformants showed growth and pH drop comparable with native strain. It may be concluded that different plasmids impose, to varying extents, a metabolic load in the phosphate-solubilizing bacterium E. asburiae PSI3 and results in diminishing its growth and P-solubilizing ability in P deficient conditions. PMID:20171856

  20. Migration, Neighborhoods, and Networks: Approaches to Understanding How Urban Environmental Conditions Affect Syndemic Adverse Health Outcomes Among Gay, Bisexual and Other Men Who Have Sex with Men

    PubMed Central

    Egan, James E.; Kurtz, Steven P.; Latkin, Carl; Chen, Minxing; Tobin, Karin; Yang, Cui; Koblin, Beryl A.

    2011-01-01

    Adopting socioecological, intersectionality, and lifecourse theoretical frameworks may enhance our understanding of the production of syndemic adverse health outcomes among gay, bisexual and other men who have sex with men (MSM). From this perspective, we present preliminary data from three related studies that suggest ways in which social contexts may influence the health of MSM. The first study, using cross-sectional data, looked at migration of MSM to the gay resort area of South Florida, and found that amount of time lived in the area was associated with risk behaviors and HIV infection. The second study, using qualitative interviews, observed complex interactions between neighborhood-level social environments and individual-level racial and sexual identity among MSM in New York City. The third study, using egocentric network analysis with a sample of African American MSM in Baltimore, found that sexual partners were more likely to be found through face-to-face means than the Internet. They also observed that those who co-resided with a sex partner had larger networks of people to depend on for social and financial support, but had the same size sexual networks as those who did not live with a partner. Overall, these findings suggest the need for further investigation into the role of macro-level social forces on the emotional, behavioral, and physical health of urban MSM. PMID:21369730

  1. Groundwater manual for the electric utility industry. Volume 1. Geological formations and groundwater aquifers. Final report

    SciTech Connect

    Barton, A.R. Jr.; Redwine, J.C.

    1985-03-01

    Major areas of concern to power companies include the leaching of both solid wastes and stored coal, land subsidence and sinkhole development, and seepage away from all types of impoundments. These groundwater considerations can produce substantial increases in the cost of generating electricity. The leaching of fly ash, bottom ash, coal piles, and other materials has recently developed into an area of major environmental concern. Federal, state, and local regulations require various degrees of leachate monitoring. Land subsidence and sinkhole development can adversely affect power-generating facilities and frequently result in substantial property losses. Seepage from impoundments of all sorts (for example, ash ponds or hydroelectric facilities) may result in substantial water losses, lost generation, reduced stability of structures, and in extreme cases, abandonment or failure of dikes and dams. The groundwater manual is organized into three volumes. Volume 1 explains hydrogeologic concepts basic to understanding the occurrence, availability, and importance of underground waters and aquifers. It also contains a glossary of terms on subsurface hydrology and discusses such topics as the hydrologic cycle, groundwater quality in the 12 major US groundwater regions, and groundwater regulation. (ACR)

  2. Groundwater: A Community Action Guide.

    ERIC Educational Resources Information Center

    Boyd, Susan, Ed.; And Others

    Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…

  3. Groundwater sustainability strategies

    USGS Publications Warehouse

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  4. Groundwater in times of droughts

    NASA Astrophysics Data System (ADS)

    Attinger, Sabine; Kumar, Rohini; Musuuza, Jude; Samaniego, Luis

    2014-05-01

    Droughts are characterized as sustained and regionally extensive occurrences of below-average natural water availability. They affect all components of the water cycle: from deficits in soil moisture (agricultural droughts) through reduced groundwater recharge and groundwater levels to low streamflows or dried-up rivers (hydrological droughts). Groundwater discharge is a significant component of streamflow, with groundwater contributing as much as 90 percent of annual streamflow volume in some parts of the U.S., Canada and Europe (Beck et al., 2013). And groundwater systems strongly control the hydrological drought characteristics all over the world (van Lanen et al., 2013). Making use of large scale hydrological models van Lanen demonstrated that groundwater systems substantially affect the duration, particularly of the more extreme drought events. The responsiveness of the groundwater system is as important as climate for hydrological drought development. This urges for an improvement of subsurface modules in conceptual hydrological models to be more useful for water resources assessments. In this talk, we will discuss different subsurface modeling approaches ranging from spatially distributed groundwater models to simpler reservoir-type modeling approaches and the implications the chosen model has on modelled groundwater droughts and base flow characteristics. In particular, we discuss a standardized groundwater drought index (SGI) to characterize the groundwater deficit and the groundwater head anomalies. Based on SGI, we investigate different statistics (severity, area and duration) of individual drought events for the different model approaches. These results will be related to locally measured groundwater data.

  5. Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse.

    PubMed

    Harrison, Jordan L; Rowe, Rachel K; O'Hara, Bruce F; Adelson, P David; Lifshitz, Jonathan

    2014-09-01

    Following mild traumatic brain injury (TBI), patients may self-treat symptoms of concussion, including post-traumatic headache, taking over-the-counter (OTC) analgesics. Administering one dose of OTC analgesics immediately following experimental brain injury mimics the at-home treated population of concussed patients and may accelerate the understanding of the relationship between brain injury and OTC pharmacological intervention. In the current study, we investigate the effect of acute administration of OTC analgesics on neurological function and cortical cytokine levels after experimental diffuse TBI in the mouse. Adult, male C57BL/6 mice were injured using a midline fluid percussion (mFPI) injury model of concussion (6-10 min righting reflex time for brain-injured mice). Experimental groups included mFPI paired with either ibuprofen (60 mg/kg, i.p.; n = 16), acetaminophen (40 mg/kg, i.p.; n = 9), or vehicle (15% ethanol (v/v) in 0.9% saline; n = 13) and sham injury paired OTC medicine or vehicle (n = 7-10 per group). At 24 h after injury, functional outcome was assessed using the rotarod task and a modified neurological severity score. Following behavior assessment, cortical cytokine levels were measured by multiplex ELISA at 24 h post-injury. To evaluate efficacy on acute inflammation, cortical cytokine levels were measured also at 6 h post-injury. In the diffuse brain-injured mouse, immediate pharmacological intervention did not attenuate or exacerbate TBI-induced functional deficits. Cortical cytokine levels were affected by injury, time, or their interaction. However, levels were not affected by treatment at 6 or 24 h post-injury. These data indicate that acute administration of OTC analgesics did not exacerbate or attenuate brain-injury deficits which may inform clinical recommendations for the at-home treated mildly concussed patient. PMID:24760409

  6. Ground-water heat pumps: An examination of hydrogeologic, environmental, legal, and economic factors affecting their use

    NASA Astrophysics Data System (ADS)

    Armitage, D. M.; Bacon, D. J.; Massey-Norton, J. T.; Miller, J. M.

    1980-11-01

    Factors affecting the use of ground water (well) are presented. First is the well cost and the availability of an adequate supply of suitable quality of well water. Second, the removal of significant quantities of well water without suitable recharge may deplete the underground aquifer. Plans to reinject or return the water underground may be precluded by legal restrictions. It could entail additional costs for the disposal well. Special provisions to prevent thermal alterations of the underground source may be required. These issues are addressed in the study and other questions are answered relating to ground water quality and availability, potential environmental effects, legal restrictions, and energy use and economics of ground water heat pump use. The main elements of the study and conclusions are summarized. Other topics briefly discussed are: ground water resources in the US; water source heat pump equipment; and energy use comparisons. Some data on heat pump in Atlanta, Birmingham, Cleveland, Columbus, Concord, Houston, Philadelphia, Seattle, and Tulsa are tabulated and graphically presented. Data of ground water heat pump water use and effluent disposal regulations by states are summarized.

  7. Early pregnancy vitamin D status and risk for adverse maternal and infant outcomes in a bi-ethnic cohort: the Behaviors Affecting Baby and You (B.A.B.Y.) Study.

    PubMed

    Nobles, Carrie J; Markenson, Glenn; Chasan-Taber, Lisa

    2015-12-28

    Vitamin D deficiency is common during pregnancy and higher in Hispanic as compared with non-Hispanic white women. However, the association between vitamin D deficiency and adverse pregnancy outcomes remains unclear and may vary across ethnic groups, in part because of genetic variation in the metabolism of vitamin D. Few studies have included Hispanic women. Therefore, we investigated this association among 237 participants in the Behaviors Affecting Baby and You Study, a randomised trial of an exercise intervention among ethnically diverse prenatal care patients in Massachusetts. Baseline serum 25-hydroxyvitamin D (25(OH)D) was measured at 15·2 (sd 4·7) weeks' gestation. Information on adverse pregnancy outcomes was abstracted from medical records. Mean 25(OH)D was 30·4 (sd 12·0) ng/ml; 53·2 % of participants had insufficient (<30 ng/ml) and 20·7 % had deficient (<20 ng/ml) 25(OH)D levels. After adjusting for month of blood draw, gestational age at blood draw, gestational age at delivery, age, BMI and Hispanic ethnicity, women with insufficient and deficient vitamin D had infants with birth weights 139·74 (se 69·16) g (P=0·045) and 175·52 (se 89·45) g (P=0·051) lower compared with women with sufficient vitamin D levels (≥30 ng/ml). Each 1 ng/ml increase in 25(OH)D was associated with an increased risk for gestational diabetes mellitus among Hispanic women only (relative risk 1·07; 95 % CI 1·03, 1·11) in multivariable analysis. We did not observe statistically significant associations between maternal vitamin D status and other pregnancy outcomes. Our findings provide further support for an adverse impact of vitamin D deficiency on birth weight in Hispanic women. PMID:26507186

  8. Development of sustainable groundwater extraction practices for a major superficial aquifer supporting a groundwater dependent ecosystem

    NASA Astrophysics Data System (ADS)

    Smettem, K. R.; Froend, R.; Davies, M.; Stock, B.; Martin, M.; Robertson, C.; Eamus, D.

    2010-12-01

    Throughout Australia many groundwater dependent ecosystems have been adversely affected by unsympathetic water abstraction practices. In Western Australia, the largest single supply of drinking water for the city of Perth is a superficial aquifer known as the Gnangara Groundwater Mound, located over an area of approximately 2200 km2 within and to the north of the city on the coastal plain. The groundwater resource supplies 60% of Perth’s pubic drinking water supply and 85% of total water demand for all users. Much of the mound is overlain by phreatophytic Banksia woodland that is susceptible to drought stress and death if the root system is separated from the unconfined aquifer for prolonged periods over the hot, dry Mediterranean summer. Drought stress has been exacerbated by diminished rainfall due to a changing climate regime. The aim of this research is to develop guidelines for sustainable groundwater abstraction (timing and volume) that will maintain the long term integrity of the ecosystem and recover up to 5GL/yr from existing borefields. We seek to investigate whether a change in abstraction regime, from ‘peak demand’ summer pumping to winter pumping allows groundwater levels to recover sufficiently prior to summer, thereby maintaining a healthy vegetation system. Hydrological and plant water status parameters were monitored over two winters at research sites with an initial depth to groundwater of less than 5m. During winter and spring, groundwater abstraction at a reduced capacity resulted in a 0.75m drawdown. Operation of the bores did not adversely impact the water status of phreatophytic Banksia at the study sites relative to control sites. Analysis of plant water source partitioning indicated that plants exposed to the winter drawdown were sustained by unsaturated zone soil moisture storage replenished by winter rainfall. When pumping ceased, the water table rose rapidly and plants utilised more groundwater during late spring and summer as the

  9. Adverse ocular reactions to drugs.

    PubMed Central

    Spiteri, M. A.; James, D. G.

    1983-01-01

    Drugs acting on various parts of the body may also affect the eye insidiously. Increased awareness of such drug toxicity by the prescribing doctor should encourage him to consider effects on the cornea, lens, retina, optic nerve and elsewhere when checking the patient's progress. The following review concerns adverse ocular effects of systemic drug administration. PMID:6356101

  10. Proposed work plan for the study of hydrologic effects of ground-water development in the Wet Mountain Valley, Colorado

    USGS Publications Warehouse

    Robson, S.G.

    1985-01-01

    Large-scale development of groundwater resources in the Wet Mountain Valley, Colorado, could adversely affect other water rights in the valley or in the Arkansas River Basin. Such infringement on senior water rights could severely limit development of additional water supplies in the valley. A work plan is presented for a study that is intended to define the hydrologic system in the valley better, and to determine the extent that the quantity and chemical quality of both surface and groundwater in the valley might be affected by proposed development. (USGS)

  11. Investigation of groundwater seepage from the Hanford shoreline of the Columbia River

    SciTech Connect

    McCormack, W.D.; Carlile, J.M.V.

    1984-11-01

    Groundwater discharges to the Columbia River are evaluated by the Hanford Environmental Surveillance and Groundwater Surveillance Programs via monitoring of the Columbia River and Hanford groundwater. Both programs concluded that Hanford groundwater has not adversely affected Columbia River water quality. This report supplements the above programs by investigating the general characteristics of groundwater entering the Columbia River from the Hanford Site. Specific objectives of the investigation were to identify general shoreline areas where Hanford-related materials were entering the river, and to evaluate qualitatively the physical characteristics and relative magnitudes of those discharges. The study was conducted in two phases. Phase 1 involved visual inspection of Columbia River shoreline, within the Hanford Site, for indications of groundwater seepage. As a result of that inspection, 115 springs suspected of discharging groundwater were recorded. During Phase 2, water samples were collected from these springs and analyzed for Hanford-related materials known to be present in the groundwater. The specific materials used as indicators for the majority of samples were tritium or uranium and nitrate. The magnitude and distribution of concentrations measured in the spring samples were consistent with concentrations of these materials measured in groundwater near the sampled spring locations. Water samples were also collected from the Columbia River to investigate the localized effects of groundwater discharges occurring above and below river level. These samples were collected within 2 to 4 m of the Hanford shoreline and analyzed for tritium, nitrate, and uranium. Elevated concentrations were measured in river samples collected near areas where groundwater and spring concentrations were elevated. All concentrations were below applicable DOE Concentration Guides. 8 references, 6 figures, 7 tables.

  12. Sirtuin Inhibition Adversely Affects Porcine Oocyte Meiosis

    PubMed Central

    Zhang, Liang; Ma, Rujun; Hu, Jin; Ding, Xiaolin; Xu, Yinxue

    2015-01-01

    Sirtuins have been implicated in diverse biological processes, including oxidative stress, energy metabolism, cell migration, and aging. Here, we employed Sirtuin inhibitors, nicotinamide (NAM) and Sirtinol, to investigate their effects on porcine oocyte maturation respectively. The rate of polar body extrusion in porcine oocytes decreased after treatment with NAM and Sirtinol, accompanied with the failure of cumulus cell expansion. We further found that NAM and Sirtinol significantly disrupted oocyte polarity, and inhibited the formation of actin cap and cortical granule-free domain (CGFD). Moreover, the abnormal spindles and misaligned chromosomes were readily detected during porcine oocyte maturation after treatment with NAM and Sirtinol. Together, these results suggest that Sirtuins are involved in cortical polarity and spindle organization in porcine oocytes. PMID:26176547

  13. Fluoride in groundwater: toxicological exposure and remedies.

    PubMed

    Jha, S K; Singh, R K; Damodaran, T; Mishra, V K; Sharma, D K; Rai, Deepak

    2013-01-01

    Fluoride is a chemical element that is found most frequently in groundwater and has become one of the most important toxicological environmental hazards globally. The occurrence of fluoride in groundwater is due to weathering and leaching of fluoride-bearing minerals from rocks and sediments. Fluoride when ingested in small quantities (<0.5 mg/L) is beneficial in promoting dental health by reducing dental caries, whereas higher concentrations (>1.5 mg/L) may cause fluorosis. It is estimated that about 200 million people, from among 25 nations the world over, may suffer from fluorosis and the causes have been ascribed to fluoride contamination in groundwater including India. High fluoride occurrence in groundwaters is expected from sodium bicarbonate-type water, which is calcium deficient. The alkalinity of water also helps in mobilizing fluoride from fluorite (CaF2). Fluoride exposure in humans is related to (1) fluoride concentration in drinking water, (2) duration of consumption, and (3) climate of the area. In hotter climates where water consumption is greater, exposure doses of fluoride need to be modified based on mean fluoride intake. Various cost-effective and simple procedures for water defluoridation techniques are already known, but the benefits of such techniques have not reached the rural affected population due to limitations. Therefore, there is a need to develop workable strategies to provide fluoride-safe drinking water to rural communities. The study investigated the geochemistry and occurrence of fluoride and its contamination in groundwater, human exposure, various adverse health effects, and possible remedial measures from fluoride toxicity effects. PMID:23573940

  14. Vaccine Adverse Events

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Vaccines, Blood & Biologics Home Vaccines, Blood & Biologics Safety & Availability ( ... Center for Biologics Evaluation & Research Vaccine Adverse Events Vaccine Adverse Events Share Tweet Linkedin Pin it More ...

  15. Permafrost thaw in a nested groundwater-flow system

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  16. Biologics in dermatology: adverse effects.

    PubMed

    Sehgal, Virendra N; Pandhi, Deepika; Khurana, Ananta

    2015-12-01

    Biologics are a group of drugs that precisely affect certain specific steps in the immune response and are an extremely useful group when used in an appropriate setting. However, their use can often be a double-edged sword. Careful patient selection and thorough knowledge of adverse effects is a key to their successful use in various disorders. The initial enthusiasm has gradually given way to a more cautious approach wherein a balance is sought between clinical usefulness and expected side effects. The adverse effects of the biologics most commonly used in dermatology have been carefully listed for ready reference. The plausible causes of the adverse reactions are succinctly outlined along with their incriminating factor(s). Besides, in brief, the attention has been focused on their management. The content should provide an essential didactic content for educating the practitioner. PMID:26147909

  17. Evaluation of alternatives for lowering the groundwater table in a village in upper Egypt affected by the construction of the New Naga Hammadi barrage

    NASA Astrophysics Data System (ADS)

    Mageed, Neveen B. Abd El; Ansary, Amgad S. El; Ghanem, Ashraf M.; Elsaeed, Gamal H.

    2009-03-01

    The Egyptian government is replacing the existing Naga Hammadi barrage, located across the Nile River some 450 km south of Cairo, with the New Naga Hammadi barrage (NNHB) to incorporate a hydropower plant and to improve conditions for river traffic. The new structure will lead to an increase in river water levels, both locally near the new barrage and upstream. The rise in river water levels will in turn result in changes in groundwater levels in the aquifer system up and downstream of the barrages. In this paper, an area is chosen, which is expected to suffer from a high groundwater table after the construction of the NNHB, to investigate the problem and propose alternatives for lowering the groundwater levels. The study area is a village called Bakhaness, with an area of 588 ha. It is located some 1.5 km upstream of the NNHB. A computer model (MicroFEM) has been used to simulate the groundwater conditions before and after construction of the NNHB. Alternatives for lowering the groundwater table are proposed, simulated and evaluated. The systems, which are assessed are a municipal sewer system, a system of perforated pipes in urban areas, and tile drainage with different values of efficiency in agricultural areas.

  18. Spatial Variations of Soil Microbial Activities in Saline Groundwater-Irrigated Soil Ecosystem

    NASA Astrophysics Data System (ADS)

    Chen, Li-Juan; Feng, Qi; Li, Chang-Sheng; Song, You-Xi; Liu, Wei; Si, Jian-Hua; Zhang, Bao-Gui

    2016-05-01

    Spatial variations of soil microbial activities and its relationship with environmental factors are very important for estimating regional soil ecosystem function. Based on field samplings in a typical saline groundwater-irrigated region, spatial variations of soil microbial metabolic activities were investigated. Combined with groundwater quality analysis, the relationship between microbial activities and water salinity was also studied. The results demonstrated that moderate spatial heterogeneity of soil microbial activities presented under the total dissolved solids (TDS) of groundwater ranging from 0.23 to 12.24 g L-1. Groundwater salinity and microbial activities had almost opposite distribution characteristics: slight saline water was mainly distributed in west Baqu and south Quanshan, while severe saline and briny water were dominant in east Baqu and west Huqu; however, total AWCD was higher in the east-center and southwest of Baqu and east Huqu, while it was lower in east Baqu and northwest Huqu. The results of correlation analyses demonstrated that high-salinity groundwater irrigation had significantly adverse effects on soil microbial activities. Major ions Ca2+, Mg2+, Cl_, and SO4 2- in groundwater decisively influenced the results. Three carbon sources, carbohydrates, amines, and phenols, which had minor utilization rates in all irrigation districts, were extremely significantly affected by high-salinity groundwater irrigation. The results presented here offer an approach for diagnosing regional soil ecosystem function changes under saline water irrigation.

  19. Human health risk assessment of groundwater in Hetao Plain (Inner Mongolia Autonomous Region, China).

    PubMed

    Zhang, Yilong; Ma, Rong; Li, Zhenghong

    2014-08-01

    Groundwater quality significantly affects public health. In order to better understand groundwater suitability, a total of 887 shallow groundwater samples were collected from the Hetao Plain (HP), Inner Mongolia, China; the maximum and minimum health guideline values of each element were established in this work. Subsequently, the desirability functions (DFs) theory was employed to evaluate the human health risk of groundwater. The results indicate that 780 of the samples were unsuitable for drinking purposes due to the iron, total dissolved solids (TDS), arsenic, strontium, fluoride, and manganese concentrations present, all of which exceeded their maximum guideline value (MaGV). Only 107 samples were suitable for drinking use; however, these samples also have adverse effects on human health to some extent, due to the extremely lower concentrations of nutrient elements and existence of non-nutrient elements. Based on the observed results, groundwater that is unsuitable for drinking use must undergo bacteriological treatment prior to consumption. It was necessary for residents in the western, central, and northeastern parts of the study area are required to be supplied with certain nutrient elements, such as iron, iodine, molybdenum, manganese, and lithium. According to the human health risk assessment of groundwater, the general public can safely and reasonably consume the groundwater for drinking, agriculture irrigation, and industrial purposes. PMID:24705813

  20. Spatial Variations of Soil Microbial Activities in Saline Groundwater-Irrigated Soil Ecosystem.

    PubMed

    Chen, Li-Juan; Feng, Qi; Li, Chang-Sheng; Song, You-Xi; Liu, Wei; Si, Jian-Hua; Zhang, Bao-Gui

    2016-05-01

    Spatial variations of soil microbial activities and its relationship with environmental factors are very important for estimating regional soil ecosystem function. Based on field samplings in a typical saline groundwater-irrigated region, spatial variations of soil microbial metabolic activities were investigated. Combined with groundwater quality analysis, the relationship between microbial activities and water salinity was also studied. The results demonstrated that moderate spatial heterogeneity of soil microbial activities presented under the total dissolved solids (TDS) of groundwater ranging from 0.23 to 12.24 g L(-1). Groundwater salinity and microbial activities had almost opposite distribution characteristics: slight saline water was mainly distributed in west Baqu and south Quanshan, while severe saline and briny water were dominant in east Baqu and west Huqu; however, total AWCD was higher in the east-center and southwest of Baqu and east Huqu, while it was lower in east Baqu and northwest Huqu. The results of correlation analyses demonstrated that high-salinity groundwater irrigation had significantly adverse effects on soil microbial activities. Major ions Ca(2+), Mg(2+), Cl(_), and SO4 (2-) in groundwater decisively influenced the results. Three carbon sources, carbohydrates, amines, and phenols, which had minor utilization rates in all irrigation districts, were extremely significantly affected by high-salinity groundwater irrigation. The results presented here offer an approach for diagnosing regional soil ecosystem function changes under saline water irrigation. PMID:26872886

  1. Incorporating Watershed-Scale Groundwater/Surface Water Interactions to Better Understand How ENSO/PDO Teleconnections Affect Streamflow Variability in Geologically Complex, Semiarid, Snow-Dominated Mountainous Watersheds

    NASA Astrophysics Data System (ADS)

    Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.

    2014-12-01

    In the Southwestern U.S., warm anomalies in the El Nino-Southern Oscillation (ENSO) are associated with increased probability of wetter than normal winter precipitation. For semiarid, snow-dominated mountainous watersheds, teleconnections, such as ENSO, may strongly affect the magnitude and timing of snowmelt pulses in streamflow. In examining stream-gage data, an implicit assumption is made that all the streamflow generation processes operative within the watershed are captured by the stream gage. However, zones of strong groundwater discharge to the stream alternating with zones of strong recharge from the stream may emerge in geologically complex watersheds. The spatial complexity of these groundwater/surface water interactions may not be captured in the stream-gage discharge data. This may not be a problem in watersheds where streamflow is generated primarily by shallow, fast runoff processes. In that case, changes associated with ENSO can be quickly apparent in streamflow (i.e., an increase in snowpack associated with warm ENSO anomalies will quickly translate to increases in daily and peak streamflow). However, the spatial complexity of groundwater/surface water interactions creates a problem in geologically complex watersheds where interactions with deep, regional groundwater are present. In this case, we test the hypothesis that the combined effect of complex geology and deep groundwater interactions creates phase shifts between peak snowpack, onset and peak of snowmelt pulses, and teleconnection indices. Using time-series analysis, the relationships between teleconnections, and metrics for snowpack and streamflow are evaluated for selected watersheds in New Mexico, Arizona, and Colorado. A phase shift (lag) is observed between the Oceanic Nino Index (ONI) and onset and peak of snowmelt pulses in streamflow in snow-dominated watersheds with complex geology across scales of 50 to 1600 km2. Additionally, strong relationships between teleconnections and

  2. Groundwater bills

    NASA Astrophysics Data System (ADS)

    U.S. lawmakers have become concerned about groundwater problems in the United States, and thus the contamination of groundwater is rapidly becoming one of the hottest issues of 1987 and probably for many years into the future. The 100th Congress has seen a proliferation of bills relating to various problems involving groundwater: need for more data, funding of research, and development of standards for groundwater quality. Because round 50% of the nation's drinking water is obtained from groundwater, the available support is dependent not only upon the available quantity but also on the quality of that supply.Because groundwater quality in general and groundwater contamination in particular provides such complex problems, final legislation probably will emphasize more research and more data collection. At present, a bill, the National Ground Water Contamination Research Act, has been introduced in the House of Representatives by Rep. Sam Gejdenson (D-Conn.), and a companion bill has been introduced in the Senate by Sen. David Durenberger (R-Minn.). These bills renew action on a groundwater research bill that passed the House but not the Senate near the end of the 99th Congress. The bills address not only research but also promote a national program for the assessment of groundwater quality and a national clearinghouse for groundwater information.

  3. Climate impact on groundwater systems: the past is the key to the future

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; Cendón, Dioni; Haldorsen, Sylvi; Chen, Jinyao; Gurdak, Jason; Tujchneider, Ofelia; Vaikmäe, Rein; Purtschert, Roland; Chkir Ben Jemâa, Najiba

    2013-04-01

    Groundwater is a significant part of the global hydrological cycle and supplies fresh drinking water to almost half of the world's population. While groundwater supplies are buffered against short-term effects of climate variability, they can be impacted over longer time scales through changes in precipitation, ,evaporation, recharge rate, melting of glaciers or permafrost, vegetation, and land-use. Moreover, uncontrolled groundwater extraction has and will lead to irreversible depletion of fresh water resources in many areas. The impact of climate variability and groundwater extraction on the resilience of groundwater systems is still not fully understood (Green et al. 2011). Groundwater stores environmental and climatic information acquired during the recharge process, which integrates different signals, like recharge temperature, origin of precipitation, and dissolved constituents. This information can be used to estimate palaeo recharge temperatures, palaeo atmospheric dynamics and residence time of groundwater within the aquifer (Stute et al. 1995, Clark and Fritz 1997, Collon et al. 2000, Edmunds et al. 2003, Cartwright et al. 2007, Kreuzer et al. 2009, Currell et al. 2010, Raidla et al. 2012, Salem et al. 2012). The climatic signals incorporated by groundwater during recharge have the potential to provide a regionally integrated proxy of climatic variations at the time of recharge. Groundwater palaeoclimate information is affected by diffusion-dispersion processes (Davison and Airey, 1982) and/or water-rock interaction (Clark and Fritz, 1997), making palaeoclimate information deduced from groundwater inherently a low resolution record. While the signal resolution can be limited, recharge follows major climatic events, and more importantly, shows how those aquifers and their associated recharge varies under climatic forcing. While the characterization of groundwater resources, surface-groundwater interactions and their link to the global water cycle are an

  4. The Competitive Interplay between Allosteric HIV-1 Integrase Inhibitor BI/D and LEDGF/p75 during the Early Stage of HIV-1 Replication Adversely Affects Inhibitor Potency.

    PubMed

    Feng, Lei; Dharmarajan, Venkatasubramanian; Serrao, Erik; Hoyte, Ashley; Larue, Ross C; Slaughter, Alison; Sharma, Amit; Plumb, Matthew R; Kessl, Jacques J; Fuchs, James R; Bushman, Frederic D; Engelman, Alan N; Griffin, Patrick R; Kvaratskhelia, Mamuka

    2016-05-20

    Allosteric HIV-1 integrase inhibitors (ALLINIs) have recently emerged as a promising class of antiretroviral agents and are currently in clinical trials. In infected cells, ALLINIs potently inhibit viral replication by impairing virus particle maturation but surprisingly exhibit a reduced EC50 for inhibiting HIV-1 integration in target cells. To better understand the reduced antiviral activity of ALLINIs during the early stage of HIV-1 replication, we investigated the competitive interplay between a potent representative ALLINI, BI/D, and LEDGF/p75 with HIV-1 integrase. While the principal binding sites of BI/D and LEDGF/p75 overlap at the integrase catalytic core domain dimer interface, we show that the inhibitor and the cellular cofactor induce markedly different multimerization patterns of full-length integrase. LEDGF/p75 stabilizes an integrase tetramer through the additional interactions with the integrase N-terminal domain, whereas BI/D induces protein-protein interactions in C-terminal segments that lead to aberrant, higher-order integrase multimerization. We demonstrate that LEDGF/p75 binds HIV-1 integrase with significantly higher affinity than BI/D and that the cellular protein is able to reverse the inhibitor induced aberrant, higher-order integrase multimerization in a dose-dependent manner in vitro. Consistent with these observations, alterations of the cellular levels of LEDGF/p75 markedly affected BI/D EC50 values during the early steps of HIV-1 replication. Furthermore, genome-wide sequencing of HIV-1 integration sites in infected cells demonstrate that LEDGF/p75-dependent integration site selection is adversely affected by BI/D treatment. Taken together, our studies elucidate structural and mechanistic details of the interplay between LEDGF/p75 and BI/D during the early stage of HIV-1 replication. PMID:26910179

  5. Linking climate change and groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Projected global change includes groundwater systems, which are linked with changes in climate over space and time. Consequently, global change affects key aspects of subsurface hydrology (including soil water, deeper vadose zone water, and unconfined and confined aquifer waters), surface-groundwat...

  6. Steroid estrogens, nonylphenol ethoxylate metabolites, and other wastewater contaminants in groundwater affected by a residential septic system on cape cod, MA

    USGS Publications Warehouse

    Swartz, C.H.; Reddy, S.; Benotti, M.J.; Yin, H.; Barber, L.B.; Brownawell, Bruce J.; Rudel, R.A.

    2006-01-01

    Septic systems serve approximately 25% of U.S. households and may be an important source of estrogenic and other organic wastewater contaminants (OWC) to groundwater. We monitored several estrogenic OWC, including nonylphenol (NP), nonylphenol mono- and diethoxycarboxylates (NP1EC and NP2EC), the steroid hormones 17??-estradiol (E2), estrone (E1) and their glucuronide and sulfate conjugates, and other OWC such as methylene blue active substances (MBAS), caffeine and its degradation product paraxanthine, and two fluorescent whitening agents in a residential septic system and in downgradient groundwater. E1 and E2 were present predominantly as free estrogens in groundwater, and near-source groundwater concentrations of all OWC were highest in the suboxic to anoxic portion of the wastewater plume, where concentrations of most OWC were similar to those observed in the septic tank on the same day. NP and NP2EC were up to 6- to 30-fold higher, and caffeine and paraxanthine were each 60-fold lower than septic tank concentrations, suggesting net production and removal, respectively, of these constituents. At the most shallow, oxic depth, concentrations of all OWC except for NP2EC were substantially lower than in the tank and in deeper wells. Yet boron, specific conductance, and the sum of nitrate-and ammonia-nitrogen were highest at this shallow depth, suggesting preferential losses of OWC along the more oxic flow lines. As far as 6.0 m downgradient, concentrations of many OWC were within a factor of 2 of near-source concentrations. The results suggest that there is the potential for migration of these OWC, which are unregulated and not routinely monitored, in groundwater. ?? 2006 American Chemical Society.

  7. Steroid estrogens, nonylphenol ethoxylate metabolites, and other wastewater contaminants in groundwater affected by a residential septic system on Cape Cod, MA.

    PubMed

    Swartz, Christopher H; Reddy, Sharanya; Benotti, Mark J; Yin, Haifei; Barber, Larry B; Brownawell, Bruce J; Rudel, Ruthann A

    2006-08-15

    Septic systems serve approximately 25% of U.S. households and may be an important source of estrogenic and other organic wastewater contaminants (OWC) to groundwater. We monitored several estrogenic OWC, including nonylphenol (NP), nonylphenol mono- and diethoxycarboxylates (NP1EC and NP2EC), the steroid hormones 17beta-estradiol (E2), estrone (E1) and their glucuronide and sulfate conjugates, and other OWC such as methylene blue active substances (MBAS), caffeine and its degradation product paraxanthine, and two fluorescent whitening agents in a residential septic system and in downgradient groundwater. E1 and E2 were present predominantly as free estrogens in groundwater, and near-source groundwater concentrations of all OWC were highest in the suboxic to anoxic portion of the wastewater plume, where concentrations of most OWC were similar to those observed in the septic tank on the same day. NP and NP2EC were up to 6- to 30-fold higher, and caffeine and paraxanthine were each 60-fold lower than septic tank concentrations, suggesting net production and removal, respectively, of these constituents. At the most shallow, oxic depth, concentrations of all OWC except for NP2EC were substantially lower than in the tank and in deeper wells. Yet boron, specific conductance, and the sum of nitrate-and ammonia-nitrogen were highest at this shallow depth, suggesting preferential losses of OWC along the more oxic flow lines. As far as 6.0 m downgradient, concentrations of many OWC were within a factor of 2 of near-source concentrations. The results suggest that there is the potential for migration of these OWC, which are unregulated and not routinely monitored, in groundwater. PMID:16955883

  8. Adverse antibiotic drug interactions.

    PubMed

    Bint, A J; Burtt, I

    1980-07-01

    There is enormous potential for drug interactions in patients who, today, often receive many drugs. Antibiotics are prominent amongst the groups of drugs commonly prescribed. Many interactions take place at the absorption stage. Antacids and antidiarrhoeal preparations, in particular, can delay and reduce the absorption of antibiotics such as tetracyclines and clindamycin, by combining with them in the gastrointestinal tract to form chelates or complexes. Other drugs can affect gastric motility, which in turn often controls the rate at which antibiotics are absorbed. Some broad spectrum antibiotics can alter the bacterial flora of the gut which may be related to malabsorption states. The potentiation of toxic side effects of one drug by another is a common type of interaction. Antibiotics which are implicated in this type of interaction are those which themselves possess some toxicity such as aminoglycosides, some cephalosporins, tetracyclines and colistin. Some of the most important adverse interactions with antibiotics are those which involve other drugs which have a low toxicity/efficacy ratio. These include anticoagulants such as warfarin, anticonvulsants such as phenytoin and phenobarbitone and oral antidiabetic drugs like tolbutamide. Risk of interaction arises when the metabolism of these drugs is inhibited by liver microsomal enzyme inhibitors such as some sulphonamides and chloramphenicol, or is enhanced by enzyme inducers such as rifampicin. PMID:6995091

  9. Integrated groundwater quality management in urban areas

    NASA Astrophysics Data System (ADS)

    Swartjes, F. A.; Otte, P. F.

    2012-04-01

    Traditionally, groundwater assessments and remediations are approached at the scale of individual groundwater plumes. In urban areas, however, this management of individual groundwater plumes is often problematic for technical, practical or financial reasons, since the groundwater quality is often affected by a combination of sources, including (former) industrial activities, spills and leachate from uncontrolled landfills and building materials. As a result, often a whole series of intermingling contamination plumes is found in large volumes of groundwater. In several countries in the world, this led to stagnation of groundwater remediation in urban areas. Therefore, in the Netherlands there is a tendency managing groundwater in urban areas from an integrated perspective and on a larger scale. This so-called integrated groundwater quality management is often more efficient and hence, cheaper, since the organisation of the management of a cluster of groundwater plumes is much easier than it would be if all individual groundwater plumes were managed at different points in time. Integrated groundwater quality management should follow a tailor-made approach. However, to facilitate practical guidance was developed. This guidance relates to the delineation of the domain, the management of sources for groundwater contamination, procedures for monitoring, and (risk-based) assessment of the groundwater quality. Function-specific risk-based groundwater quality criteria were derived to support the assessment of the groundwater quality.

  10. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

  11. Urbanicity, social adversity and psychosis

    PubMed Central

    Heinz, Andreas; Deserno, Lorenz; Reininghaus, Ulrich

    2013-01-01

    In recent years, there has been increasing interest in research on geographical variation in the incidence of schizophrenia and other psychoses. In this paper, we review the evidence on variation in incidence of schizophrenia and other psychoses in terms of place, as well as the individual- and area-level factors that account for this variation. We further review findings on potential mechanisms that link adverse urban environment and psychosis. There is evidence from earlier and more recent studies that urbanicity is associated with an increased incidence of schizophrenia and non-affective psychosis. In addition, considerable variation in incidence across neighbourhoods has been observed for these disorders. Findings suggest it is unlikely that social drift alone can fully account for geographical variation in incidence. Evidence further suggests that the impact of adverse social contexts – indexed by area-level exposures such as population density, social fragmentation and deprivation – on risk of psychosis is explained (confounding) or modified (interaction) by environmental exposures at the individual level (i.e., cannabis use, social adversity, exclusion and discrimination). On a neurobiological level, several studies suggest a close link between social adversity, isolation and stress on the one hand, and monoamine dysfunction on the other, which resembles findings in schizophrenia patients. However, studies directly assessing correlations between urban stress or discrimination and neurobiological alterations in schizophrenia are lacking to date. PMID:24096775

  12. Groundwater Science

    NASA Astrophysics Data System (ADS)

    McKenna, Sean A.

    A good introductory groundwater textbook must strike a delicate balance in presenting the basics of the physical, chemical, geological, mathematical, and engineering aspects of the groundwater field without being too lengthy or overly detailed. Charles Fitts states that his motivation for writing Groundwater Science was to be able to “…teach concepts and quantitative analyses with a clear, lean, but thorough book.” He has succeeded in striking this balance of having just the right amount of information, and has met his goals of producing a concise book that can be used to teach the concepts and analyses necessary for the study of groundwater.Overall, Groundwater Science would serve well as the text for an introductory groundwater course at the college senior or first-year graduate level. The author and the publisher have made excellent use of two-color, gray and blue-scale images throughout the book. The graphics are crisp and explanatory. Data sets needed to work some of the problems in the book are available as text files from its Web site (http://www.academicpress.com/groundwater). I found these files to be complete and easy to understand. The references are up to date and point the reader to additional information across a wide range of groundwater issues, and also provide a number of examples to illustrate different points made in the book.

  13. Groundwater impact assessment report for the 100-D Ponds

    SciTech Connect

    Alexander, D.J.

    1993-07-01

    The 183-D Water Treatment Facility (WTF) discharges effluent to the 120-0-1 Ponds (100-D Ponds) located north of the 100-D Area perimeter fence. This report satisfies one of the requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-17-00B as agreed by the US Department of Energy, Washington State Department of Ecology, and the US Environmental Protection Agency. Tri-Party Agreement Milestone M-17-00B includes a requirement to assess impacts to groundwater from disposal of the 183-D WTF effluent to the 100-D Ponds. In addition, the 100-D Ponds are a Resource Conservation and Recovery Act of 1976 treatment, storage, and disposal facility covered by the 100-D Ponds Closure Plan (DOE-RL 1993a). There is evidence of groundwater contamination, primarily nitrate, tritium, and chromium, in the unconfined aquifer beneath the 100-D Area and 100 Areas in general. The contaminant plumes are area wide and are a result of past-practice reactor and disposal operations in the 100-D Area currently being investigated as part of the 100-DR-1 and 100-HR-3 Operable Units (DOE-RL 1992b, 1992a). Based on current effluent conditions, continued operation of the 100-D Ponds will not adversely affect the groundwater quality in the 100-D Area. Monitoring wells near the pond have slightly higher alkaline pH values than wells in the rest of the area. Concentrations of known contaminants in these wells are lower than ambient 100-D Area groundwater conditions and exhibit a localized dilution effect associated with discharges to the pond. Hydraulic impact to the local groundwater system from these discharges is minor. The groundwater monitoring well network for the 100-D Ponds is adequate.

  14. Detection of Septic System Waste in the Groundwaters of Southern California Using Emerging Contaminants and Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Huang, W.; Conkle, J.; Sickman, J. O.; Lucero, D.; Pang, F.; Gan, J.

    2011-12-01

    In California, groundwater supplies 30-40% of the State's water and in rapidly growing regions like the Inland Empire, groundwater makes up 80-90% of the municipal water supply. However, anthropogenic contamination could adversely affect groundwater quality and thereby reduce available supplies. Appropriate tracers are needed to identify groundwater contamination and protect human health. Stable isotopes δ15N and δ 18O offer unique information about the importance of nitrate sources and processes affecting nitrate in aquifers. We investigated the influence of septic systems on groundwater quality in and around the city of Beaumont, CA during 2010-11. Groundwater samples were collected from 38 active wells and 10 surface water sites in the region (urban and natural streams, agricultural drainage and groundwater recharge basins supplied by the California State Water Project). Stable isotopes and pharmaceuticals and personal care products (PPCPs) were analyzed for all the water samples. The variations of δ15N and δ 18O of nitrate were 2 - 21 per mil and -4 - 9 per mil respectively. δ15N-NO3 values greater than 10 per mil have been associated with nitrate inputs from sewage and animal waste, but in the Beaumont wells, PPCP concentrations were at or below the detection limit in most wells with high isotope ratios. We also observed a strong linear relationship between δ15N and δ 18O of nitrate (slope of~ 0.5) in the vast majority of our samples including those with high isotope ratios. Our results suggest that denitrification was widespread in the Beaumont aquifer and strongly affected the isotope composition of nitrate. In some wells, PPCPs (carbamazepine, sulfamethoxazole, primidone, meprobamate and diuron) and isotope measurements indicated inputs from human waste, but these sites were affected primarily by local waste-water treatment plant effluent. A mixing model was developed using multiple tracers to determine sources and contributions of groundwater

  15. Susceptibility to acidification of groundwater-dependent wetlands affected by water level declines, and potential risk to an early-breeding amphibian species.

    PubMed

    Serrano, L; Díaz-Paniagua, C; Gómez-Rodríguez, C; Florencio, M; Marchand, M-A; Roelofs, J G M; Lucassen, E C H E T

    2016-11-15

    Eggs of the Western spadefoot toad (Pelobates cultripes) reached a 100% mortality in all 29 clutches deposited at a pH below 5.0 in a temporary pond of the Doñana National Park (SW Spain) throughout the wet season of 2006-2007. A similar trend was detected in a neighbouring pond. The proximity of these two ponds to a groundwater pumping area (<1.5km), prompted us to elucidate the possible links between the reduction in pond hydroperiod over past decades (1989-2008) and the decrease of groundwater pH-buffering capacity. The average hydroperiod had decreased by 4months since 1998-99 in the pond where the extensive egg mortality had occurred. The total alkalinity, and the Mg(2+)concentration had also significantly declined in the shallow water-table since 1998-99, from an average of 8.56 to 0.32meql(-1), and of 3.57 to 1.15meql(-1), respectively. This decline of the shallow groundwater buffering capacity could turn this pond more susceptible to the inorganic acidity associated with pyrite oxidation as the sediment S content was often above 0.03%. The initial ratio of S/Ca+Mg in the summer dry sediment was a good predictor of pore-water pH on re-wetting after desiccation (r(2)=0.802, p<0.01). Therefore, this ratio can give some anticipation to mitigate the impact of acidity on toad hatching before these temporary ponds are reflooded on the next wet season. Our results suggest that the long-term damage to pond water levels can trigger a potential risk of soil acidification in the presence of iron-sulphide minerals. PMID:27476729

  16. New Insights into the Influence of Structural Controls Affecting Groundwater Flow and Storage Within an Ocean Island Volcano, Mauna Kea, Hawaii

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Haskins, E.; Wallin, E.; Pierce, H. A.

    2015-12-01

    The Humu'ula Groundwater Research Project was undertaken on the Island of Hawaii in an effort to characterize the hydrologic structures controlling groundwater movement and storage within Saddle region between Mauna Loa and Mauna Kea volcanoes. In 2013, the project drilled a 1764 m, continuously-cored, borehole from an elevation of 1946 m amsl near the center of the Saddle, and has now completed a second borehole at an elevation of 1645 m on the western edge of the Saddle. Although the stratigraphy of the rocks is similar, dominantly pahoehoe lava flows with somewhat fewer a'a lavas and occasional dike rock intervals, the hydrologic character of the formation in the latter is distinctly different from the former. Whereas the former test hole encountered a few high elevation perched aquifers that were underlain by an inferred regional, dike-impounded, water table at an elevation of 1390 m amsl, the latter bore encountered a sequence of confined aquifers with heads substantially higher than depth of entry. The shallowest of the confined aquifers was encountered at an elevation of 1340 m and showed a hydrostatic head of >160 m when the capping formation was breached. Deeper confined aquifers showed initial heads of > 400 m although none had heads sufficient to discharge at the surface. Most of the confined aquifers were associated with clay-rich ash beds that mantled the more permeable lavas however one of the deeper confined zones, that showed the highest head, was associated with a highly compacted breccia zone that has tentatively been ascribed to an explosive deposit. Chemical analysis of the clasts within this layer is underway to determine whether this deposit is associated with explosive activity of Mauna Kea or with another volcano on the island. Previous geophysical surveys have suggested that these confined aquifers may extend well down the leeward slopes of Mauna Kea. Evidence of multiple confining layers within the flanks of Mauna Kea suggest that its

  17. Managing adverse effects of glaucoma medications

    PubMed Central

    Inoue, Kenji

    2014-01-01

    Glaucoma is a chronic, progressive disease in which retinal ganglion cells disappear and subsequent, gradual reductions in the visual field ensues. Glaucoma eye drops have hypotensive effects and like all other medications are associated with adverse effects. Adverse reactions may either result from the main agent or from preservatives used in the drug vehicle. The preservative benzalkonium chloride, is one such compound that causes frequent adverse reactions such as superficial punctate keratitis, corneal erosion, conjunctival allergy, and conjunctival injection. Adverse reactions related to main hypotensive agents have been divided into those affecting the eye and those affecting the entire body. In particular, β-blockers frequently cause systematic adverse reactions, including bradycardia, decrease in blood pressure, irregular pulse and asthma attacks. Prostaglandin analogs have distinctive local adverse reactions, including eyelash bristling/lengthening, eyelid pigmentation, iris pigmentation, and upper eyelid deepening. No systemic adverse reactions have been linked to prostaglandin analog eye drop usage. These adverse reactions may be minimized when they are detected early and prevented by reducing the number of different eye drops used (via fixed combination eye drops), reducing the number of times eye drops are administered, using benzalkonium chloride-free eye drops, using lower concentration eye drops, and providing proper drop instillation training. Additionally, a one-time topical medication can be given to patients to allow observation of any adverse reactions, thereafter the preparation of a topical medication with the fewest known adverse reactions can be prescribed. This does require precise patient monitoring and inquiries about patient symptoms following medication use. PMID:24872675

  18. Groundwater exposed

    NASA Astrophysics Data System (ADS)

    2016-02-01

    Groundwater flow meddles with hydrological, environmental and geological processes. As water scarcity issues mount for people living above ground, the vast stores of freshwater in the subsurface require research attention.

  19. Identification of the influencing factors on groundwater drought in Bangladesh

    NASA Astrophysics Data System (ADS)

    Touhidul Mustafa, Syed Md.; Huysmans, Marijke

    2015-04-01

    Groundwater drought is a specific type of drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of response different climatic and manmade factors on groundwater drought provides essential information for sustainable planning and management of water resources. The aim of this study is to identify the influencing factors on groundwater drought in a drought prone region in Bangladesh to understand the forcing mechanisms. The Standardised Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere. The influence of land use patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land use. The result shows that drought intensity is more severe during the dry season (November to April) compared to the rainy season (May to October). The evapotranspiration and rainfall deficit has a significant effect on meteorological drought which has a direct relation with groundwater drought. Urbanization results in a decrease of groundwater recharge which increases groundwater drought severity. Overexploitation of groundwater for irrigation and recurrent meteorological droughts are the main causes of groundwater drought in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management. More detailed studies on climate change and land use change effects on groundwater drought are recommended. Keywords: Groundwater drought, SPI & RDI, Spatially distributed groundwater recharge, Irrigation, Bangladesh

  20. Adverse reactions to sulfites

    PubMed Central

    Yang, William H.; Purchase, Emerson C.R.

    1985-01-01

    Sulfites are widely used as preservatives in the food and pharmaceutical industries. In the United States more than 250 cases of sulfite-related adverse reactions, including anaphylactic shock, asthmatic attacks, urticaria and angioedema, nausea, abdominal pain and diarrhea, seizures and death, have been reported, including 6 deaths allegedly associated with restaurant food containing sulfites. In Canada 10 sulfite-related adverse reactions have been documented, and 1 death suspected to be sulfite-related has occurred. The exact mechanism of sulfite-induced reactions is unknown. Practising physicians should be aware of the clinical manifestations of sulfite-related adverse reactions as well as which foods and pharmaceuticals contain sulfites. Cases should be reported to health officials and proper advice given to the victims to prevent further exposure to sulfites. The food industry, including beer and wine manufacturers, and the pharmaceutical industry should consider using alternative preservatives. In the interim, they should list any sulfites in their products. PMID:4052897

  1. Is It Working? Lysimeter Monitoring in the Southern Willamette Valley Groundwater Management Area

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater ...

  2. Scientists Trace Adversity's Toll

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2012-01-01

    The stress of a spelling bee or a challenging science project can enhance a student's focus and promote learning. But the stress of a dysfunctional or unstable home life can poison a child's cognitive ability for a lifetime, according to new research. Those studies show that stress forms the link between childhood adversity and poor academic…

  3. Impact Of Groundwater Discharge On Contaminant Behavior In Sediments

    EPA Science Inventory

    The discharge of groundwater into surface water may influence the concentrations and availability of contaminants in sediments. There are three predominant pathways by which groundwater may affect the characteristics of contaminated sediments: 1) direct contribution of contamin...

  4. Recrystallization and stability of Zn and Pb minerals on their migration to groundwater in soils affected by Acid Mine Drainage under CO2 rich atmospheric waters.

    PubMed

    Goienaga, N; Carrero, J A; Zuazagoitia, D; Baceta, J I; Murelaga, X; Fernández, L A; Madariaga, J M

    2015-01-01

    The extent of vertical contamination is intimately related to the soil solution and surface chemistry of the soil matrix with reference to the metal and waste matrix in question. The present research demonstrated the impact that the dissolved CO2 of the meteoric waters, which acidify the environment with pH values below 4, has in the increase of the metal mobility. Although under the given conditions the Zn remains mainly dissolved, the initial PbS and ZnS have evolved into newly formed secondary carbonates and sulphates (i.e., hydrozincite, gunningite, hydrocerussite) that can be found in the efflorescences. The chemical simulation done on the weathering of the original sulphide ores for the formation of these secondary minerals has proved the transient storage mainly of Pb. Nonetheless, many of the minerals formed inside the galleries will be easily dissolved in the next rains and release in an ionic form to the groundwater. The analytical procedure exposed has been proved to be useful not only for the characterization of AMD but also for the prediction of the mobility of metals. PMID:25180824

  5. Groundwater Screen

    1993-11-09

    GWSCREEN was developed for assessment of the groundwater pathway from leaching of radioactive and non radioactive substances from surface or buried sources and release to percolation ponds. The code calculates the limiting soil concentration or effluent release concentration such that, after leaching and transport to the aquifer, regulatory contaminant levels in groundwater are not exceeded. The code uses a mass conservation approach to model three processes: Contaminant release from a source volume, contaminant transport inmore » the unsaturated zone, and contaminant transport in the saturated zone. The source model considers the sorptive properties and solubility of the contaminant. Transport in the unsaturated zone is described by a plug flow model. Transport in the saturated zone is calculated with a semi-analytical solution to the advection dispersion equation in groundwater. Concentration as a function of time at a user specified receptor point and maximum concentration averaged over the exposure interval are also calculated. In addition, the code calculates transport and impacts of radioactive progeny. Input to GWSCREEN is through one, free format ASCII file. This code was designed for assessment and screening of the groundwater pathway when field data is limited. It was not intended to be a predictive tool.« less

  6. Global Palaeoclimate Signals in Climate in groundwater: the past is the key to the future

    NASA Astrophysics Data System (ADS)

    van der Ploeg, M. J.; Cendon, D. I.; Haldorsen, S.; Chen, J.; Gurdak, J. J.; Tujchneider, O.; Vaikmae, R.; Purtschert, R.; Chkir Ben Jemâa, N.

    2013-12-01

    The impact of climate variability and groundwater extraction on the resilience of groundwater systems is still not fully understood (Green et al. 2011). Groundwater stores environmental and climatic information acquired during the recharge process, which integrates different signals, like recharge temperature, origin of precipitation, and dissolved constituents. This information can be used to estimate palaeo recharge temperatures, palaeo atmospheric dynamics and residence time of groundwater within the aquifer (Stute et al. 1995, Clark and Fritz 1997, Collon et al. 2000, Edmunds et al. 2003, Cartwright et al. 2007, Kreuzer et al. 2009, Currell et al. 2010, Raidla et al. 2012, Salem et al. 2012). The climatic signals incorporated by groundwater during recharge have the potential to provide a regionally integrated proxy of climatic variations at the time of recharge. Groundwater palaeoclimate information is affected by diffusion-dispersion processes (Davison and Airey, 1982) and/or water-rock interaction (Clark and Fritz, 1997), making palaeoclimate information deduced from groundwater inherently a low resolution record. While the signal resolution can be limited, recharge follows major climatic events, and more importantly, shows how those aquifers and their associated recharge varies under climatic forcing. While the characterization of groundwater resources, surface-groundwater interactions and their link to the global water cycle are an important focus, little attention has been given to groundwater as a potential record of past climate variations. A groundwater system's history is vital to forecast its vulnerability under future and potentially adverse climatic changes. By processing groundwater information from vast regions and different continents, recharge and palaeoclimate can be correlated at a global scale. To address the identified lack of palaeoclimatic data available from groundwater studies, a global collaboration has been set-up in 2011 called

  7. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    /uranium plumes. ''Resource Conservation and Recovery Act'' groundwater monitoring continued at 24 waste management areas during fiscal year 2003: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater; 7 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. During calendar year 2003, drillers completed seven new RCRA monitoring wells, nine wells for CERCLA, and two wells for research on chromate bioremediation. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2003. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. Soil vapor also was sampled to locate carbon tetrachloride sites with the potential to impact groundwater in the future. DOE uses geophysical methods to monitor potential movement of contamination beneath single-shell tank farms. During fiscal year 2003, DOE monitored selected boreholes within each of the 12 single-shell tank farms. In general, the contaminated areas appeared to be stable over time. DOE drilled new boreholes at the T Tank Farm to characterize subsurface contamination near former leak sites. The System Assessment Capability is a set of computer modules simulating movement of contaminants from waste sites through the vadose zone and groundwater. In fiscal year 2003, it was updated with the addition of an atmospheric transport module and with newer versions of models including an updated groundwater flow and transport model.

  8. Comparison of groundwater flow in Southern California coastal aquifers

    USGS Publications Warehouse

    Hanson, Randall T.; Izbicki, John A.; Reichard, Eric G.; Edwards, Brian D.; Land, Michael; Martin, Peter

    2009-01-01

    mitigates or exacerbates the potential adverse effects of resource development, such as declining water levels, sea-water intrusion, land subsidence, and mixing of different waters. Streamflow also has been affected by development of coastal aquifer systems and related conjunctive use. Saline water is the largest water-quality problem in Southern California coastal aquifer systems. Seawater intrusion is a significant source of saline water, but saline water is also known to come from other sources and processes. Seawater intrusion is typically restricted to the coarse-grained units at the base of fining-upward sequences of terrestrial deposits, and at the top of coarsening upward sequences of marine deposits. This results in layered and narrow intrusion fronts. Maintaining the sustainability of Southern California coastal aquifers requires joint management of surface water and groundwater (conjunctive use). This requires new data collection and analyses (including research drilling, modern geohydrologic investigations, and development of detailed computer groundwater models that simulate the supply and demand components separately), implementation of new facilities (including spreading and injection facilities for artificial recharge), and establishment of new institutions and policies that help to sustain the water resources and better manage regional development.

  9. [Adverse reaction of pseudoephedrine].

    PubMed

    López Lois, G; Gómez Carrasco, J A; García de Frías, E

    2005-04-01

    We present a case of a 7 years old girl who developed an episode of myoclonic movements and tremors after being medicated with a not well quantified amount of a pseudoephedrine/antihistamine combination. We want to highlight the potential toxicity of pseudoephedrine, usually administered as part of cold-syrup preparations which are used for symptomatic treatment of upper respiratory tract cough and congestion associated with the common cold and allergic rhinitis. Although these products are generally considered to be safe either by physicians and parents, we can't underestimate the potential adverse events and toxic effects that can occur when administering these medications. PMID:15826569

  10. Groundwater workshops

    NASA Astrophysics Data System (ADS)

    The Interstate Conference on Water Policy has released an Executive Report of the 1989 Ground Water Information Management Workshops. The report summarizes workgroup findings and recommendations for action as identified at the four workshops conducted in the winter and spring of 1989 in Little Rock, Ark.; Sacramento, Calif.; Harrisburg, Pa.; and Omaha, Nebr. The workshops, cosponsored by ICWP and the U.S. Geological Survey, attracted over 200 participants from local, state, and federal government, academia, and the private sector.The two primary objectives of the workshop series were to provide participants with information about groundwater data management initiatives at all levels of government, and to elicit information and ideas from participants about improving data management and exchange. The report states that although the individual workshops reflected regional concerns and experiences, collectively they provide a solid foundation for developing a national perspective on groundwater information management needs.

  11. Balancing Ground-Water Withdrawals and Streamflow in the Hunt-Annaquatucket-Pettaquamscutt Basin, Rhode Island

    USGS Publications Warehouse

    Barlow, Paul M.; Dickerman, David C.

    2001-01-01

    Ground water withdrawn for water supply reduces streamflow in the Hunt-Annaquatucket-Pettaquamscutt Basin in Rhode Island. These reductions may adversely affect aquatic habitats. A hydrologic model was prepared by the U.S. Geological Survey in cooperation with the Rhode Island Water Resources Board, Town of North Kingstown, Rhode Island Department of Environmental Management, and Rhode Island Economic Development Corporation to aid water-resource planning in the basin. Results of the model provide information that helps water suppliers and natural-resource managers evaluate strategies for balancing ground-water development and streamflow reductions in the basin.

  12. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    PubMed

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site

  13. Screening for adverse events.

    PubMed

    Karson, A S; Bates, D W

    1999-02-01

    Adverse events (AEs) in medical patients are common, costly, and often preventable. Development of quality improvement programs to decrease the number and impact of AEs demands effective methods for screening for AEs on a routine basis. Here we describe the impact, types, and potential causes of AEs and review various techniques for identifying AEs. We evaluate the use of generic screening criteria in detail and describe a recent study of the sensitivity and specificity of individual generic screening criteria and combinations of these criteria. In general, the most sensitive screens were the least specific and no small sub-set of screens identified a large percentage of adverse events. Combinations of screens that were limited to administrative data were the least expensive, but none were particularly sensitive, although in practice they might be effective since routine screening is currently rarely done. As computer systems increase in sophistication sensitivity will improve. We also discuss recent studies that suggest that programs that screen for and identify AEs can be useful in reducing AE rates. While tools for identifying AEs have strengths and weaknesses, they can play an important role in organizations' quality improvement portfolios. PMID:10468381

  14. COMPILATION OF GROUND-WATER MODELS

    EPA Science Inventory

    Ground-water modeling is a computer-based methodology for mathematical analysis of the mechanisms and controls of ground-water systems for the evaluation of policies, action, and designs that may affect such systems. n addition to satisfying scientific interest in the workings of...

  15. Adverse Drug Reactions of the Lower Extremities.

    PubMed

    Adigun, Chris G

    2016-07-01

    Adverse drug reactions (ADRs) are a common cause of dermatologic consultation, involving 2 to 3 per 100 medical inpatients in the United States. Female patients are 1.3 to 1.5 times more likely to develop ADRs, except in children less than 3 years of age, among whom boys are more often affected. Certain drugs are more frequent causes, including aminopenicillins, trimethoprim-sulfamethoxazole, and nonsteroidal antiinflammatory drugs. Chemotherapeutic agents commonly cause adverse reactions to the skin and nails, with certain agents causing particular patterns of reactions. ADRs can involve any area of the skin; the appendages, including hair and nails; as well as mucosa. PMID:27215159

  16. Is it working? A look at the changing nutrient practices in the Southern Willamette Valley's Groundwater Management Area

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater ...

  17. Summary of Hanford Site Groundwater Monitoring for Fiscal Year 2005

    SciTech Connect

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-03-01

    Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

  18. ISMP Adverse Drug Reactions

    PubMed Central

    2013-01-01

    The purpose of this feature is to heighten awareness of specific adverse drug reactions (ADRs), discuss methods of prevention, and promote reporting of ADRs to the US Food and Drug Administration’s (FDA’s) MedWatch program (800-FDA-1088). If you have reported an interesting, preventable ADR to MedWatch, please consider sharing the account with our readers. Write to Dr. Mancano at ISMP, 200 Lakeside Drive, Suite 200, Horsham, PA 19044 (phone: 215-707-4936; e-mail: mmancano@temple.edu). Your report will be published anonymously unless otherwise requested. This feature is provided by the Institute for Safe Medication Practices (ISMP) in cooperation with the FDA’s MedWatch program and Temple University School of Pharmacy. ISMP is an FDA MedWatch partner. PMID:24421544

  19. [Cutaneous adverse drug reactions].

    PubMed

    Lebrun-Vignes, B; Valeyrie-Allanore, L

    2015-04-01

    Cutaneous adverse drug reactions (CADR) represent a heterogeneous field including various clinical patterns without specific features suggesting drug causality. Exanthematous eruptions, urticaria and vasculitis are the most common forms of CADR. Fixed eruption is uncommon in western countries. Serious reactions (fatal outcome, sequelae) represent 2% of CADR: bullous reactions (Stevens-Johnson syndrome, toxic epidermal necrolysis), DRESS (drug reaction with eosinophilia and systemic symptoms or drug-induced hypersensitivity syndrome) and acute generalized exanthematous pustulosis (AGEP). These forms must be quickly diagnosed to guide their management. The main risk factors are immunosuppression, autoimmunity and some HLA alleles in bullous reactions and DRESS. Most systemic drugs may induce cutaneous adverse reactions, especially antibiotics, anticonvulsivants, antineoplastic drugs, non-steroidal anti-inflammatory drugs, allopurinol and contrast media. Pathogenesis includes immediate or delayed immunologic mechanism, usually not related to dose, and pharmacologic/toxic mechanism, commonly dose-dependent or time-dependent. In case of immunologic mechanism, allergologic exploration is possible to clarify drug causality, with a variable sensitivity according to the drug and to the CADR type. It includes epicutaneous patch testing, prick test and intradermal test. However, no in vivo or in vitro test can confirm the drug causality. To determine the cause of the eruption, a logical approach based on clinical characteristics, chronologic factors and elimination of differential diagnosis is required, completed with a literature search. A reporting to pharmacovigilance network is essential in case of a serious CADR whatever the suspected drug and in any case if the involved drug is a newly marketed one or unusually related to cutaneous reactions. PMID:25458866

  20. Adverse childhood experiences and health anxiety in adulthood.

    PubMed

    Reiser, Sarah J; McMillan, Katherine A; Wright, Kristi D; Asmundson, Gordon J G

    2014-03-01

    Childhood experiences are thought to predispose a person to the development of health anxiety later in life. However, there is a lack of research investigating the influence of specific adverse experiences (e.g., childhood abuse, household dysfunction) on this condition. The current study examined the cumulative influence of multiple types of childhood adversities on health anxiety in adulthood. Adults 18-59 years of age (N=264) completed a battery of measures to assess adverse childhood experiences, health anxiety, and associated constructs (i.e., negative affect and trait anxiety). Significant associations were observed between adverse childhood experiences, health anxiety, and associated constructs. Hierarchical multiple regression analysis indicted that adverse childhood experiences were predictive of health anxiety in adulthood; however, the unique contribution of these experience were no longer significant following the inclusion of the other variables of interest. Subsequently, mediation analyses indicated that both negative affect and trait anxiety independently mediated the relationship between adverse childhood experiences and health anxiety in adulthood. Increased exposure to adverse childhood experiences is associated with higher levels of health anxiety in adulthood; this relationship is mediated through negative affect and trait anxiety. Findings support the long-term negative impact of cumulative adverse childhood experiences and emphasize the importance of addressing negative affect and trait anxiety in efforts to prevent and treat health anxiety. PMID:24011493

  1. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.

    2014-05-01

    Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolution. In this study we present a global scale groundwater model (run at 6' as dynamic steady state) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The aquifer schematization and properties were based on available global datasets of lithology and transmissivities combined with estimated aquifer thickness of an upper unconfined aquifer. The model is forced with outputs from the land-surface model PCR-GLOBWB, specifically with net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed variation in saturated conductivity causes most of the groundwater level variations. Simulated groundwater heads were validated against reported piezometer observations. The validation showed that groundwater depths are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional scale groundwater patterns and flowpaths confirm the relevance of taking lateral groundwater flow into account in GHMs. Flowpaths show inter-basin groundwater flow that can be a significant part of a basins water budget and helps to sustain river baseflow, explicitly during times of droughts. Also important aquifer systems are recharged by inter-basin groundwater flows that positively affect water

  2. Groundwater ecohydrology: phreatophyte root uptake of groundwater

    NASA Astrophysics Data System (ADS)

    Steward, D. R.

    2008-12-01

    An analytic solution is presented for groundwater uptake by phreatophytes. This solution is developed for individual phreatophytes with prescribed mathematical forms of groundwater uptake beneath the plant. As this function is linear, mathematical solutions may be superimposed to simulate groundwater uptake by a field of phreatophytes. A simpler representation of groundwater uptake by a field of phreatophytes is developed through aid of the Analytic Element Method. This, too, may be superimposed as the functions are linear to simulate groundwater flow associated with fields of phreatophytes. Together, this provides a computationally effective means to simulate the detailed local groundwater flow field associated with uptake by a phreatophyte within a regional groundwater flow field. Results illustrate the spatial patterns that emerge from localized groundwater extractions within fields of phreatophytes.

  3. Evaluation of processes affecting 1,2-dibromo-3-chloropropane (DBCP) concentrations in ground water in the eastern San Joaquin Valley, California : analysis of chemical data and ground-water flow and transport simulations

    USGS Publications Warehouse

    Burow, Karen R.; Panshin, Sandra Y.; Dubrovsky, Neil H.; Vanbrocklin, David; Fogg, Graham E.

    1999-01-01

    A conceptual two-dimensional numerical flow and transport modeling approach was used to test hypotheses addressing dispersion, transformation rate, and in a relative sense, the effects of ground- water pumping and reapplication of irrigation water on DBCP concentrations in the aquifer. The flow and transport simulations, which represent hypothetical steady-state flow conditions in the aquifer, were used to refine the conceptual understanding of the aquifer system rather than to predict future concentrations of DBCP. Results indicate that dispersion reduces peak concentrations, but this process alone does not account for the apparent decrease in DBCP concentrations in ground water in the eastern San Joaquin Valley. Ground-water pumping and reapplication of irrigation water may affect DBCP concentrations to the extent that this process can be simulated indirectly using first-order decay. Transport simulation results indicate that the in situ 'effective' half-life of DBCP caused by processes other than dispersion and transformation to BAA could be on the order of 6 years.

  4. System-Level Analysis Modeling of Impacts of Operation Schemes of Geologic Carbon Dioxide Storage on Deep Groundwater and Carbon Dioxide Leakage Risk

    NASA Astrophysics Data System (ADS)

    Park, S.; Lee, S.; Park, J.; Kim, J.; Kihm, J.

    2013-12-01

    The objectives of this study are to predict quantitatively groundwater and carbon dioxide flow in deep saline sandstone aquifers under various carbon dioxide injection schemes (injection rate, injection period) and to analyze integratively impacts of such carbon dioxide injection schemes on deep groundwater (brine) and carbon dioxide leakage risk through abandoned wells or faults. In order to achieve the first objective, a series of process-level prediction modeling of groundwater and carbon dioxide flow in a deep saline sandstone aquifer under several carbon dioxide injection schemes was performed using a multiphase thermo-hydrological numerical model TOUGH2 (Pruess et al., 1999). The prediction modeling results show that the extent of carbon dioxide plume is significantly affected by such carbon dioxide injection schemes. In order to achieve the second objective, a series of system-level analysis modeling of deep groundwater and carbon dioxide leakage risk through an abandoned well or a fault under several carbon dioxide injection schemes was then performed using a brine and carbon dioxide leakage risk analysis model CO2-LEAK (Kim, 2012). The analysis modeling results show that the rates and amounts of deep groundwater and carbon dioxide leakage through an abandoned well or a fault increase as the carbon dioxide injection rate increases. However, the rates and amounts of deep groundwater and carbon dioxide leakage through an abandoned well or a fault decrease as the carbon dioxide injection period increases. These system-level analysis modeling results for deep groundwater and carbon dioxide leakage risk can be utilized as baseline data for establishing guidelines to mitigate anticipated environmental adverse effects on shallower groundwater systems (aquifers) when deep groundwater and carbon dioxide leakage occur. This work was supported by the Geo-Advanced Innovative Action (GAIA) Program funded by the Korea Environmental Industry and Technology Institute

  5. Contamination of nitrate in groundwater and its potential human health: a case study of lower Mae Klong river basin, Thailand.

    PubMed

    Wongsanit, Jaturong; Teartisup, Piyakarn; Kerdsueb, Prapeut; Tharnpoophasiam, Prapin; Worakhunpiset, Suwalee

    2015-08-01

    Nitrate contamination in groundwater is a worldwide problem especially in agricultural countries. Environmental factors, such as land-use pattern, type of aquifer, and soil-drainage capacity, affect the level of contamination. Exposure to high levels of nitrate in groundwater may contribute to adverse health effects among residents who use groundwater for consumption. This study aimed to determine the relationship between nitrate levels in groundwater with land-use pattern, type of aquifer, and soil-drainage capacity, in Photharam District, Ratchaburi Province, lower Mae Klong basin, Thailand. Health risk maps were created based on hazard quotient to quantify the potential health risk of the residents using US Environmental Protection Agency (U.S. EPA) health risk assessment model. The results showed the influence of land-use patterns, type of aquifer, and soil-drainage capacity on nitrate contamination. It was found that most of the residents in the studied area were not at risk; however, a groundwater nitrate monitoring system should be implemented. PMID:25874425

  6. ADVERSE CUTANEOUS DRUG REACTION

    PubMed Central

    Nayak, Surajit; Acharjya, Basanti

    2008-01-01

    In everyday clinical practice, almost all physicians come across many instances of suspected adverse cutaneous drug reactions (ACDR) in different forms. Although such cutaneous reactions are common, comprehensive information regarding their incidence, severity and ultimate health effects are often not available as many cases go unreported. It is also a fact that in the present world, almost everyday a new drug enters market; therefore, a chance of a new drug reaction manifesting somewhere in some form in any corner of world is unknown or unreported. Although many a times, presentation is too trivial and benign, the early identification of the condition and identifying the culprit drug and omit it at earliest holds the keystone in management and prevention of a more severe drug rash. Therefore, not only the dermatologists, but all practicing physicians should be familiar with these conditions to diagnose them early and to be prepared to handle them adequately. However, we all know it is most challenging and practically difficult when patient is on multiple medicines because of myriad clinical symptoms, poorly understood multiple mechanisms of drug-host interaction, relative paucity of laboratory testing that is available for any definitive and confirmatory drug-specific testing. Therefore, in practice, the diagnosis of ACDR is purely based on clinical judgment. In this discussion, we will be primarily focusing on pathomechanism and approach to reach a diagnosis, which is the vital pillar to manage any case of ACDR. PMID:19967009

  7. Evaluation of groundwater chemistry and its impact on drinking and irrigation water quality in the eastern part of the Central Arabian graben and trough system, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Zaidi, Faisal K.; Mogren, Saad; Mukhopadhyay, Manoj; Ibrahim, Elkhedr

    2016-08-01

    The present study deals with the assessment of groundwater with respect to the main hydrological processes controlling its chemistry and its subsequent impact on groundwater quality for drinking and irrigation purposes in the eastern part of the Central Arabian graben and trough system. Groundwater samples were collected from 73 bore wells tapping the Cretaceous Biyadh and Wasia sandstone aquifers. The main groundwater facies in the area belong to the mixed Casbnd Mgsbnd SO4/Cl type and the SO4sbnd Cl type. Prolonged rock water interaction has resulted in high TDS (average of 2131 mg/l) and high EC (average of 2725 μS/cm) of the groundwater. The average nitrate (56.38 mg/l) value in the area is higher than the WHO prescribed limits of 50 mg/l in drinking water and is attributed to agricultural activities. The Drinking Water Quality Index (DWQI) shows that 33% of the water samples fall within the excellent to good category whereas the remaining samples fall in the poor to unsuitable for drinking category. In terms of Sodium Adsorption Ratio (SAR), Sodium percentage (Na %) and Residual Sodium Carbonate (RSC) the groundwater is suitable for irrigation however the high salinity values can adversely affect the plant physiology.

  8. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    SciTech Connect

    Hartman, M.J.

    1999-03-24

    wells; they are believed to represent natural components of groundwater. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during FY 1998: 17 under detection programs and data indicate that they are not adversely affecting groundwater, 6 under interim-status groundwater-quality-assessment programs to assess possible contamination, and 2 under final-status corrective-action programs. Groundwater remediation in the 100 Areas continued to reduce the amount of strontium-90 (100-N) and chromium (100-K, D, and H) reaching the Columbia River. Two systems in the 200-West Area operated to prevent the spread of carbon tetrachloride and technetide uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. A three-dimensional, numerical groundwater model was applied to simulate radionuclide movement from sources in the 200 Areas following site closure in 2050. Contaminants will continue to move toward the southeast and north (through Gable Gap), but the areas with levels exceeding drinking water standards will diminish.

  9. Characteristics of groundwater recharge on the North China Plain.

    PubMed

    Tan, Xiu-Cui; Wu, Jing-Wei; Cai, Shu-Ying; Yang, Jin-Zhong

    2014-01-01

    Groundwater recharge is an important component of the groundwater system. On the North China Plain (NCP), groundwater is the main water supply. Because of large-scale overexploitation, the water table has declined, which has produced severe adverse effects on the environment and ecosystem. In this article, tracer experiment and watershed model were used to calculate and analyze NCP groundwater recharge. In the tracer experiment, average recharge was 108 mm/year and recharge coefficient 0.16. With its improved irrigation, vegetation coverage and evapotranspiration modules, the INFIL3.0 model was used for calculation of groundwater recharge. Regional modeling results showed an average recharge of 102 mm/year and recharge coefficient 0.14, for 2001-2009. These values are very similar to those from the field tracer experiment. Influences in the two methods were analyzed. The results can provide an important reference for NCP groundwater recharge. PMID:24032445

  10. The adverse health effects of chronic cannabis use.

    PubMed

    Hall, Wayne; Degenhardt, Louisa

    2014-01-01

    This paper summarizes the most probable of the adverse health effects of regular cannabis use sustained over years, as indicated by epidemiological studies that have established an association between cannabis use and adverse outcomes; ruled out reverse causation; and controlled for plausible alternative explanations. We have also focused on adverse outcomes for which there is good evidence of biological plausibility. The focus is on those adverse health effects of greatest potential public health significance--those that are most likely to occur and to affect a substantial proportion of regular cannabis users. These most probable adverse effects of regular use include a dependence syndrome, impaired respiratory function, cardiovascular disease, adverse effects on adolescent psychosocial development and mental health, and residual cognitive impairment. PMID:23836598

  11. Evidence Of Rapid Localized Groundwater Transport In Volcanic Tuffs Beneath Yucca Mountain, Nevada

    SciTech Connect

    B. Freifeld; C. Doughty; J. Walker; L. Kryder; K. Gilmore; S. Finsterle; J. Sampson

    2006-09-07

    At Yucca Mountain, Nevada-the proposed location for a national high-level nuclear waste repository-radionuclides, if released from breached waste storage canisters, could make their way down through the unsaturated zone (where the repository would be located) into the underlying groundwater and eventually back to the biosphere (i.e., where they could adversely affect human health). The compliance boundary, 18 km south of the proposed repository, is defined as the location where a human being using groundwater would be maximally exposed to radionuclides outside of an exclusion zone set around the repository. It is thus important to predict how these radionuclides would be transported by the groundwater flow, and to predict both the concentration of and the rate at which any leaked radionuclides would arrive at the compliance boundary. We recently conducted a study of groundwater flux in the saturated zone through the Crater Flat Group, in a wellbore 15 km south of the proposed repository. The Crater Flat Group, a sequence of ash-flow tuff formations, is laterally extensive beneath the footprint of the proposed repository. Because of its intense fracturing and high permeabilities, the Bullfrog tuff is the primary unit within the Cratei Flat Group through which radionuclides would be transported, as indicated by groundwater models. In a new wellbore, NC-EWDP-24PB, we conducted flowing electrical conductivity logging (FEC), an open-wellbore logging technique, to identify flowing fractures prior to wellbore completion. While the FEC logs have identified transmissive zones, quantitative interpretation of the FEC results was difficult because differences in hydraulic heads in different flowing intervals created significant intraborehole fluid flow. The well was subsequently backfilled and completed with a distributed thermal perturbation sensor (DTPS), which introduces a thermal pulse to the wellbore and uses the thermal transient to estimate groundwater flux

  12. Sustainability of ground-water resources

    USGS Publications Warehouse

    Alley, William M.; Reilly, Thomas E.; Franke, O. Lehn

    1999-01-01

    The pumpage of fresh ground water in the United States in 1995 was estimated to be approximately 77 billion gallons per day (Solley and others, 1998), which is about 8 percent of the estimated 1 trillion gallons per day of natural recharge to the Nation's ground-water systems (Nace, 1960). From an overall national perspective, the ground-water resource appears ample. Locally, however, the availability of ground water varies widely. Moreover, only a part of the ground water stored in the subsurface can be recovered by wells in an economic manner and without adverse consequences.

  13. Review: groundwater in Alaska (USA)

    USGS Publications Warehouse

    Callegary, J.B.; Kikuchi, C.P.; Koch, J.C.; Lilly, M.R.; Leake, S.A.

    2013-01-01

    Groundwater in the US state of Alaska is critical to both humans and ecosystems. Interactions among physiography, ecology, geology, and current and past climate have largely determined the location and properties of aquifers as well as the timing and magnitude of fluxes to, from, and within the groundwater system. The climate ranges from maritime in the southern portion of the state to continental in the Interior, and arctic on the North Slope. During the Quaternary period, topography and rock type have combined with glacial and periglacial processes to develop the unconsolidated alluvial aquifers of Alaska and have resulted in highly heterogeneous hydrofacies. In addition, the long persistence of frozen ground, whether seasonal or permanent, greatly affects the distribution of aquifer recharge and discharge. Because of high runoff, a high proportion of groundwater use, and highly variable permeability controlled in part by permafrost and seasonally frozen ground, understanding groundwater/surface-water interactions and the effects of climate change is critical for understanding groundwater availability and the movement of natural and anthropogenic contaminants.

  14. Groundwater recharge and agricultural contamination

    USGS Publications Warehouse

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  15. Trend Analysis for Groundwater Quality at Different Depths for National Groundwater Quality Monitoring Network of Korea

    NASA Astrophysics Data System (ADS)

    An, Hyeonsil; Jeen, Sung-Wook; Hyun, Yunjung; Lee, Soo Jae; Yoon, Heesung; Kim, Rak-Hyeon

    2015-04-01

    Continuous groundwater monitoring is necessary to investigate the changes of groundwater quality with time, and trend analysis using a statistical method can be used to evaluate if the changes are significant. While groundwater quality is typically monitored and evaluated at one depth, in many cases groundwater quality can be different with depths; thus it is required that monitoring and assessment of trends of groundwater quality should be performed at different depths. In this study, we carried out trend analysis for groundwater quality data of National Groundwater Quality Monitoring Network of Korea to investigate the changes of groundwater quality between 2007 and 2013. The monitoring network has wells with different depths at each site, of which screens are located at about 10 m, 30 m, and 80 m. We analyzed three of the groundwater quality parameters that have sufficient time series data: pH, nitrate-nitrogen, and chloride ion. Sen's test, a non-parametric statistical method for trend analysis, was used to determine the linear trend of groundwater quality data. The trend analyses were conducted at different confidence levels (i.e., at 70, 80, 90, 95, and 99 % confidence levels). The results of groundwater monitoring and trend analysis at each location were compared with groundwater quality management standards and were classified to establish a new groundwater quality management framework of Korea. The results were further plotted in a regional scale to identify whether the trends, if any, can be grouped regionally. The results showed that wells with significant increasing or decreasing trends are far less than wells with no trends, and chloride ion has more wells with significant trends compared to pH and nitrate-nitrogen. The trends were more or less affected by local characteristics rather than reflecting a regional trend. The number of wells with trends decreased as the confidence level increased as expected, indicating that it is necessary to set an

  16. Adverse Reactions to Hallucinogenic Drugs.

    ERIC Educational Resources Information Center

    Meyer, Roger E. , Ed.

    This reports a conference of psychologists, psychiatrists, geneticists and others concerned with the biological and psychological effects of lysergic acid diethylamide and other hallucinogenic drugs. Clinical data are presented on adverse drug reactions. The difficulty of determining the causes of adverse reactions is discussed, as are different…

  17. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal.

    PubMed

    Jadhav, Sachin V; Bringas, Eugenio; Yadav, Ganapati D; Rathod, Virendra K; Ortiz, Inmaculada; Marathe, Kumudini V

    2015-10-01

    Chronic contamination of groundwaters by both arsenic (As) and fluoride (F) is frequently observed around the world, which has severely affected millions of people. Fluoride and As are introduced into groundwaters by several sources such as water-rock interactions, anthropogenic activities, and groundwater recharge. Coexistence of these pollutants can have adverse effects due to synergistic and/or antagonistic mechanisms leading to uncertain and complicated health effects, including cancer. Many developing countries are beset with the problem of F and As laden waters, with no affordable technologies to provide clean water supply. The technologies available for the simultaneous removal are akin to chemical treatment, adsorption and membrane processes. However, the presence of competing ions such as phosphate, silicate, nitrate, chloride, carbonate, and sulfate affect the removal efficiency. Highly efficient, low-cost and sustainable technology which could be used by rural populations is of utmost importance for simultaneous removal of both pollutants. This can be realized by using readily available low cost materials coupled with proper disposal units. Synthesis of inexpensive and highly selective nanoadsorbents or nanofunctionalized membranes is required along with encapsulation units to isolate the toxicant loaded materials to avoid their re-entry in aquifers. A vast number of reviews have been published periodically on removal of As or F alone. However, there is a dearth of literature on the simultaneous removal of both. This review critically analyzes this important issue and considers strategies for their removal and safe disposal. PMID:26265600

  18. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  19. Monitoring Groundwater Contaminant Plumes Using Airborne Geophysical Data

    NASA Astrophysics Data System (ADS)

    Robinson, Martin; Oftendinger, Ulrich; Ruffell, Alastair; Cowan, Marie; Cassidy, Rachel; Comte, Jean-Christophe; Wilson, Christopher; Desissa, Mohammednur

    2013-04-01

    airborne data for the detection of groundwater contaminant plumes. This will provide a basis for assessing the influence that drift and bedrock geology exert on the feasibility of using Tellus airborne data as a plume monitoring tool. This research will facilitate a conjunctive approach for the detection and monitoring of pollution sources adversely affecting water bodies, as well as improve the targeting of costly intrusive monitoring and restoration efforts.

  20. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    SciTech Connect

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds, was clean closed in

  1. Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta.

    PubMed

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2008-10-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl(-) concentration and delta(18)O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3(-)-N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas. PMID:18804843

  2. Erratum to "Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta".

    PubMed

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2009-04-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl- concentration and delta18O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3--N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas. PMID:19437605

  3. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  4. Factors determining the economic value of groundwater

    NASA Astrophysics Data System (ADS)

    Qureshi, M. Ejaz; Reeson, Andrew; Reinelt, Peter; Brozović, Nicholas; Whitten, Stuart

    2012-08-01

    Increasing groundwater extraction threatens aquifer sustainability for future generations. Making the best use of limited groundwater resources requires knowledge of its alternative extractive and non-extractive values, as well as the cost of extraction and the hydrological interlinkages between alternative uses. Groundwater value is driven by a number of factors including its supply and demand and institutional and policy factors. These factors and how they affect value of groundwater are described. Also described are the various components relevant to the economic valuation of groundwater and there is discussion on the potential difficulties in their practical estimation. It is argued that groundwater management is essential when there are large potential spatial and temporal externalities related to groundwater pumping. Maintaining non-extractive and option values is likely to require trade-offs with current extractive uses. Well-informed management will be required to allocate groundwater efficiently between different users such as agriculture, industry and the environment, while also balancing the needs of current and future generations.

  5. Costs of groundwater contamination

    SciTech Connect

    O'Neil, W.B.; Raucher, R.S. )

    1990-01-01

    Two factors determine the cost of groundwater contamination: (1) the ways in which water was being used or was expected to be used in the future and (2) the physical characteristics of the setting that constrain the responses available to regain lost uses or to prevent related damages to human health and the environment. Most contamination incidents can be managed at a low enough cost that uses will not be foreclosed. It is important to take into account the following when considering costs: (1) natural cleansing through recharge and dilution can take many years; (2) it is difficult and costly to identify the exact area and expected path of a contamination plume; and (3) treatment or replacement of contaminated water often may represent the cost-effective strategy for managing the event. The costs of contamination include adverse health effects, containment and remediation, treatment and replacement costs. In comparing the costs and benefits of prevention programs with those of remediation, replacement or treatment, it is essential to adjust the cost/benefit numbers by the probability of their actual occurrence. Better forecasts of water demand are needed to predict more accurately the scarcity of new supply and the associated cost of replacement. This research should include estimates of the price elasticity of water demand and the possible effect on demand of more rational cost-based pricing structures. Research and development of techniques for in situ remediation should be encouraged.

  6. Adverse possession of subsurface minerals

    SciTech Connect

    Bowles, P.N.

    1983-01-01

    Concepts applicable to adverse possession of subsurface minerals are generally the same as those that apply to adverse possession of all real estate. However, special requirements must be satisfied in order to perfect title to subsurface minerals by adverse possession, particularly when there has been a severance of the true title between surface and subsurface minerals. In those jurisdictions where senior and junior grants came from the state or commonwealth covering the same or some of the same land and in those areas where descriptions of land were vague or not carefully drawn, adverse possession serves to solidify land and mineral ownership. There may be some public, social, and economic justification in rewarding, with good title, those who take possession and use real estate for its intended use, including the extraction of subsurface minerals. 96 refernces.

  7. Spatial variations of groundwater background concentrations in coastal aquifers, Korea

    NASA Astrophysics Data System (ADS)

    Hyun, Yunjung; Lee, Soojae

    2014-05-01

    In coastal aquifers the mixing between fresh terrestrial water and seawater occurs, which influences groundwater quality. Due to mixing elevated chloride concentrations are often observed in coastal aquifers. In coastal areas terrestrial water-seawater mixing can be caused by anthropogenic activities or natural factors such as tides and sea level changes. Therefore, it is difficult or even impossible to characterize groundwater background concentrations in coastal aquifers. Although it is usual to exclude coastal aquifer when characterizing background concentrations, it is essential to accurately characterize naturally-affected groundwater quality in coastal areas because groundwater is a major water resource for potable, irrigation, domestic uses. So in this work we define groundwater background concentrations as naturally occurring ambient concentrations with excluding groundwater abstraction. Based on this definition, we evaluate groundwater background concentrations in various geologic formations and analyze characteristics of groundwater quality in coastal aquifers by utilizing Groundwater Quality Monitoring System (GQMS) data. The results show that high concentrations of chloride are observed in some coastal areas but not always. Tidal effects and topographical characteristics are thought to be as factors affecting such spatial variations. In some coastal areas high concentrations of chloride are observed with high nitrate concentrations. This means that agricultural practices can attribute to anthropogenic background, leading to elevated concentrations of nitrate. These results provide some essential information for groundwater resources management in coastal areas. Further data collection and analysis is required for evaluating the effect of tide and sea level changes on groundwater quality.

  8. Reverse Engineering Adverse Outcome Pathways

    SciTech Connect

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  9. The science of evaluation of adverse events associated with vaccination.

    PubMed

    Halsey, Neal A

    2002-07-01

    All vaccines cause some adverse events; serious adverse events are rare. Causal associations between a vaccine and an adverse event rarely can be determined by specific tests such as identifying a vaccine agent in the affected tissue of patients. In the absence of such data, epidemiologic studies can be used to determine if the risk of the disorder is increased in vaccinated compared to unvaccinated individuals. Common mistakes include assuming a causal relationship based on a temporal association only or a series of affected patients. Careful studies have demonstrated that many hypothesized causal associations between vaccines and adverse events were not substantiated. False assumptions regarding causality are likely to occur for illnesses without a carefully defined etiology or pathogenesis. PMID:12199617

  10. Future of groundwater modeling

    USGS Publications Warehouse

    Langevin, Christian D.; Panday, Sorab

    2012-01-01

    With an increasing need to better manage water resources, the future of groundwater modeling is bright and exciting. However, while the past can be described and the present is known, the future of groundwater modeling, just like a groundwater model result, is highly uncertain and any prediction is probably not going to be entirely representative. Thus we acknowledge this as we present our vision of where groundwater modeling may be headed.

  11. The quality of our Nation's waters: groundwater quality in the Columbia Plateau and Snake River Plain basin-fill and basaltic-rock aquifers and the Hawaiian volcanic-rock aquifers, Washington, Idaho, and Hawaii, 1993-2005

    USGS Publications Warehouse

    Rupert, Michael G.; Hunt, Charles D., Jr.; Skinner, Kenneth D.; Frans, Lonna M.; Mahler, Barbara J.

    2015-01-01

    The Columbia Plateau, Snake River Plain, and Hawaii are large volcanic areas in the western United States and mid-Pacific ocean that contain extensive regional aquifers of a hard, gray, volcanic rock called basalt. Residents of the Columbia Plateau, the Snake River Plain, and the island of Oahu depend on groundwater as their primary source of drinking water. Although the depth to the water table can be several hundred feet, the groundwater is highly vulnerable to contamination because the permeable sediments and rocks allow contaminants to move readily down to the water table. Intense agricultural and urban activities occur above the drinking-water supply and are increasing in some areas. Contaminants, such as nitrate, pesticides, and volatile organic compounds, associated with agricultural and urban activities, have adversely affected groundwater quality.

  12. Parents' Psychiatric Issues May Adversely Affect Some Children

    MedlinePlus

    ... attempted suicide, or who had struggled with antisocial personality disorder or marijuana abuse, were found to face ... and mood disorders, schizophrenia, anxiety, Alzheimer's-related dementia, personality disorders, substance abuse and attempted suicide. Parental histories ...

  13. Evaluating Adult Groundwater Education.

    ERIC Educational Resources Information Center

    Gerakis, Argyrios

    1998-01-01

    One-day groundwater education workshops held to educate soil conservation personnel were assessed for effect on participant knowledge using a quasiexperimental design. Participants were tested on their groundwater knowledge and attitude toward groundwater conservation before and after the training. Participant scores improved significantly in only…

  14. Assessment of groundwater input and water quality changes impacting natural vegetation in the Loxahatchee River and floodplain ecosystem, Florida

    USGS Publications Warehouse

    Orem, William H.; Swarzenski, Peter W.; McPherson, Benjamin F.; Hedgepath, Marion; Lerch, Harry E.; Reich, Christopher; Torres, Arturo E.; Corum, Margo D.; Roberts, Richard E.

    2007-01-01

    The Loxahatchee River and Estuary are small, shallow, water bodies located in southeastern Florida. Historically, the Northwest Branch (Fork) of the Loxahatchee River was primarily a freshwater system. In 1947, the river inlet at Jupiter was dredged for navigation and has remained permanently open since that time. Drainage patterns within the basin have also been altered significantly due to land development, road construction (e.g., Florida Turnpike), and construction of the C-18 and other canals. These anthropogenic activities along with sea level rise have resulted in significant adverse impacts on the ecosystem over the last several decades, including increased saltwater encroachment and undesired vegetation changes in the floodplain. The problem of saltwater intrusion and vegetation degradation in the Loxahatchee River may be partly induced by diminished freshwater input, from both surface water and ground water into the River system. The overall objective of this project was to assess the seasonal surface water and groundwater interaction and the influence of the biogeochemical characteristics of shallow groundwater and porewater on vegetation health in the Loxahatchee floodplain. The hypothesis tested are: (1) groundwater influx constitutes a significant component of the overall flow of water into the Loxahatchee River; (2) salinity and other chemical constituents in shallow groundwater and porewater of the river floodplain may affect the distribution and health of the floodplain vegetation.

  15. LAND AND WATER USE EFFECTS ON GROUND-WATER QUALITY IN LAS VEGAS VALLEY

    EPA Science Inventory

    The hydrogeologic study of the shallow ground-water zone in Las Vegas Valley, Nevada determined the sources and extent of ground-water contamination to develop management alternatives and minimize adverse effects. An extensive, computerized data base utilizing water analyses, wel...

  16. Assessment of groundwater contamination by nitrates associated with wastewater irrigation: A case study in Shijiazhuang region, China

    NASA Astrophysics Data System (ADS)

    Tang, C.; Chen, J.; Shindo, S.; Sakura, Y.; Zhang, W.; Shen, Y.

    2004-08-01

    In arid and semi-arid regions there is usually a shortage of irrigation water; thus, wastewater water, as well as other low-quality water resources, may become an important source of water and nutrients. However, (pre)treated wastewater may contain elements and compounds that can damage the environment. It also has the potential to affect water quality adversely in an aquifer that may be the source of drinking water in the area. In order to assess the impacts of wastewater on the environment, groundwater samples were taken and analysed in typical croplands in the North China Plain, where urban wastewater or groundwater have been used for irrigation for several decades. Concentrations of nitrate (NO3-) in groundwater in the study area varied from 50 to 130 mg l-1 in the croplands irrigated by wastewater, but in the croplands irrigated by pumping wells, away from the Dongming Canal, NO3- concentrations are less than 35 mg l-1. It was found that values of 15N ranged from +5 to +13, and dominantly from +7 to +11, and the NO3- concentration in most wells with depths of less than 40 m was higher than the drinking water standard set by the WHO. Cluster analysis was used to classify the spatial distribution of nitrates resulting from the wastewater. Identification of chemical patterns is found to be effective for the comprehensive assessment of the spatial distribution of groundwater quality. It is also emphasized that the wastewater in this area controls the NO3- distribution in the groundwater, and should be used carefully to protect both soil and groundwater from NO3- pollution.

  17. Neuropsychiatric Adverse Effects of Amphetamine and Methamphetamine.

    PubMed

    Harro, Jaanus

    2015-01-01

    Administration of amphetamine and methamphetamine can elicit psychiatric adverse effects at acute administration, binge use, withdrawal, and chronic use. Most troublesome of these are psychotic states and aggressive behavior, but a large variety of undesirable changes in cognition and affect can be induced. Adverse effects occur more frequently with higher dosages and long-term use. They can subside over time but some persist long-term. Multiple alterations in the gray and white matter of the brain assessed as changes in tissue volume or metabolism, or at molecular level, have been associated with amphetamine and methamphetamine use and the psychiatric adverse effects, but further studies are required to clarify their causal role, specificity, and relationship with preceding states and traits and comorbidities. The latter include other substance use disorders, mood and anxiety disorders, attention deficit hyperactivity disorder, and antisocial personality disorder. Amphetamine- and methamphetamine-related psychosis is similar to schizophrenia in terms of symptomatology and pathogenesis, and these two disorders share predisposing genetic factors. PMID:26070758

  18. Influence of perched groundwater on base flow

    USGS Publications Warehouse

    Niswonger, R.G.; Fogg, G.E.

    2008-01-01

    Analysis with a three-dimensional variably saturated groundwater flow model provides a basic understanding of the interplay between streams and perched groundwater. A simplified, layered model of heterogeneity was used to explore these relationships. Base flow contribution from perched groundwater was evaluated with regard to varying hydrogeologic conditions, including the size and location of the fine-sediment unit and the hydraulic conductivity of the fine-sediment unit and surrounding coarser sediment. Simulated base flow was sustained by perched groundwater with a maximum monthly discharge in excess of 15 L/s (0.6 feet3/s) over the length of the 2000-m stream reach. Generally, the rate of perched-groundwater discharge to the stream was proportional to the hydraulic conductivity of sediment surrounding the stream, whereas the duration of discharge was proportional to the hydraulic conductivity of the fine-sediment unit. Other aspects of the perched aquifer affected base flow, such as the depth of stream penetration and the size of the fine-sediment unit. Greater stream penetration decreased the maximum base flow contribution but increased the duration of contribution. Perched groundwater provided water for riparian vegetation at the demand rate but reduced the duration of perched-groundwater discharge nearly 75%. Copyright 2008 by the American Geophysical Union.

  19. Environmental implementation plan: Chapter 7, Groundwater protection

    SciTech Connect

    Wells, D.

    1994-08-10

    The Savannah River Site (SRS) uses large quantities of groundwater for drinking, processing, and non-contact cooling. Continued industrial and residential growth along with additional agricultural irrigation in areas adjacent to SRS will increase the demand for groundwater. This increasing demand will require a comprehensive management system to ensure the needed quality and quantity of groundwater is available for all users. The Groundwater Protection Program and the Waste Management Program establish the overall framework for protecting this resource. Ground water under SRS is monitored extensively for radiological, hazardous, and water quality constituents. Groundwater quality is known to have been affected at 33 onsite locations, but none of the contaminant plumes have migrated offsite. Onsite and offsite drinking water supplies are monitored to ensure they are not impacted. The site has more than 1800 monitoring wells from which groundwater samples are analyzed for radiological and non-radiological constituents. SRS is complying with all applicable regulations related to groundwater protection, waste treatment, and waste disposal. The existing waste storage facilities are permitted or are being permitted. Existing hazardous- and mixed-waste storage facilities are being included in the site Resource Conservation and Recovery Act (RCRA) Part B Permit. Part B permitting has been initiated for many of the planned hazardous- and mixed-waste treatment and disposal facilities.

  20. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia.

    PubMed

    Zaidi, Faisal K; Nazzal, Yousef; Jafri, Muhammad Kamran; Naeem, Muhammad; Ahmed, Izrar

    2015-10-01

    negative impact on the crop production by adversely affecting the crop physiology. Cultivation of high-salinity-resistant varieties of crops is recommended for maximum agricultural productivity. PMID:26329266

  1. Geohydrology, water quality, and estimation of ground-water recharge in San Francisco, California, 1987-92

    USGS Publications Warehouse

    Phillips, S.P.; Hamlin, S.N.; Yates, E.B.

    1993-01-01

    The city of San Francisco is considering further development of local groundwater resources as a supplemental source of water for potable or nonpotable use. By the year 2010, further water demand is projected to exceed the delivery capacity of the existing supply system, which is fed by surface-water sources; thus supplies are susceptible to drought conditions and damage to conveyance lines by earthquakes. The primary purpose of this study is to describe local geohydrology and water quality and to estimate groundwater recharge in the area of the city of San Francisco. Seven groundwater basins were identified in San Francisco on the basis of geologic and geophysical data. Basins on the east side of the city are relatively thin and contain a greater percentage of fine-grained sediments than those on the west side. The relatively small capacity of the basins and greater potential for contamination from sewer sources may limit the potential for groundwater development on the east side. Basins on the west side of the city have a relatively large capacity and low density sewer network. Water-level data indicate that the southern part of the largest basin on the west side of the city (Westside basin) probably cannot accommodate additional groundwater development without adversely affecting water levels and water quality in Lake Merced; however, the remainder of the basin, which is largely undeveloped, could be developed further. A hydrologic routing model was developed for estimating groundwater recharge throughout San Francisco. The model takes into account climatic factors, land and water use, irrigation, leakage from underground pipes, rainfall runoff, evapotranspiration, and other factors associated with an urban environment. Results indicate that area recharge rates for water years 1987-88 for the 7 groundwater basins ranged from 0.32 to 0.78 feet per year. Recharge for the Westside basin was estimated at 0.51 feet per year. Average annual groundwater recharge

  2. Temperature-driven groundwater convection in cold climates

    NASA Astrophysics Data System (ADS)

    Engström, Maria; Nordell, Bo

    2016-08-01

    The aim was to study density-driven groundwater flow and analyse groundwater mixing because of seasonal changes in groundwater temperature. Here, density-driven convection in groundwater was studied by numerical simulations in a subarctic climate, i.e. where the water temperature was <4 °C. The effects of soil permeability and groundwater temperature (i.e. viscosity and density) were determined. The influence of impermeable obstacles in otherwise homogeneous ground was also studied. An initial disturbance in the form of a horizontal groundwater flow was necessary to start the convection. Transient solutions describe the development of convective cells in the groundwater and it took 22 days before fully developed convection patterns were formed. The thermal convection reached a maximum depth of 1.0 m in soil of low permeability (2.71 · 10-9 m2). At groundwater temperature close to its density maximum (4 °C), the physical size (in m) of the convection cells was reduced. Small stones or frost lenses in the ground slightly affect the convective flow, while larger obstacles change the size and shape of the convection cells. Performed simulations show that "seasonal groundwater turnover" occurs. This knowledge may be useful in the prevention of nutrient leakage to underlying groundwater from soils, especially in agricultural areas where no natural vertical groundwater flow is evident. An application in northern Sweden is discussed.

  3. Temperature-driven groundwater convection in cold climates

    NASA Astrophysics Data System (ADS)

    Engström, Maria; Nordell, Bo

    2016-05-01

    The aim was to study density-driven groundwater flow and analyse groundwater mixing because of seasonal changes in groundwater temperature. Here, density-driven convection in groundwater was studied by numerical simulations in a subarctic climate, i.e. where the water temperature was <4 °C. The effects of soil permeability and groundwater temperature (i.e. viscosity and density) were determined. The influence of impermeable obstacles in otherwise homogeneous ground was also studied. An initial disturbance in the form of a horizontal groundwater flow was necessary to start the convection. Transient solutions describe the development of convective cells in the groundwater and it took 22 days before fully developed convection patterns were formed. The thermal convection reached a maximum depth of 1.0 m in soil of low permeability (2.71 · 10-9 m2). At groundwater temperature close to its density maximum (4 °C), the physical size (in m) of the convection cells was reduced. Small stones or frost lenses in the ground slightly affect the convective flow, while larger obstacles change the size and shape of the convection cells. Performed simulations show that "seasonal groundwater turnover" occurs. This knowledge may be useful in the prevention of nutrient leakage to underlying groundwater from soils, especially in agricultural areas where no natural vertical groundwater flow is evident. An application in northern Sweden is discussed.

  4. Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility.

    PubMed

    Chae, Gi-Tak; Kim, Kangjoo; Yun, Seong-Taek; Kim, Kyoung-Ho; Kim, Soon-Oh; Choi, Byoung-Young; Kim, Hyoung-Soo; Rhee, Chul Woo

    2004-04-01

    Alluvial groundwaters in the area where intensive agricultural activity takes place were geochemically investigated to evaluate factors regulating groundwater quality of alluvial aquifers. For this study, 55 groundwater samples were taken from the uniformly distributed irrigation wells and were classified into three distinct groups according to their geochemical characteristics. This study reveals that the groundwater quality and the geochemical characteristics of the clustered groups are consistent with the geology of the area. The samples collected from the area where a thick silt bed overlies the sand aquifer are clustered into Group II and show water quality that is only slightly affected by the contaminants originating from the land surface. However, groundwaters of this group are very high in Fe and Mn levels due to strong anoxic condition caused by the thick silt bed. In contrast, Group I shows water quality largely influenced by agricultural activities (i.e., fertilization, liming) and occurs in the area adjacent to the river where the silt bed is not observed and the sand aquifer is covered with sandy soils. Group III mostly occurs in the upgradient of Group I where a thin, silty soil covers the sand aquifer. In overall, the results show that the clustered groups closely reflect the groundwater susceptibility to the contaminants originated from the land surface. This suggests that groundwater clustering based on water chemistry could be applied to the contamination susceptibility assessment for groundwaters in the agricultural area. PMID:14987935

  5. Adversity and advancing nursing knowledge.

    PubMed

    Reed, Pamela G

    2008-04-01

    This column reports the theme of adversity addressed in reference to theoretical and metatheoretical considerations for advancing nursing knowledge. The development and content of three classic nursing theories are presented by Neuman representatives, and by theorists King and Roy. Topics for continued dialogue are identified as derived from the interface between philosophy of science issues and these theories. PMID:18378823

  6. Adverse Childhood Experiences and Hallucinations

    ERIC Educational Resources Information Center

    Whitfield, C.L.; Dube, S.R.; Felitti, V.J.; Anda, R.F.

    2005-01-01

    Objective:: Little information is available about the contribution of multiple adverse childhood experiences (ACEs) to the likelihood of reporting hallucinations. We used data from the ACE study to assess this relationship. Methods:: We conducted a survey about childhood abuse and household dysfunction while growing up, with questions about health…

  7. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence.

    PubMed

    Lapworth, D J; Baran, N; Stuart, M E; Ward, R S

    2012-04-01

    Emerging organic contaminants (EOCs) detected in groundwater may have adverse effects on human health and aquatic ecosystems. This paper reviews the existing occurrence data in groundwater for a range of EOCs including pharmaceutical, personal care, 'life-style' and selected industrial compounds. The main sources and pathways for organic EOCs in groundwater are reviewed, with occurrence data for EOCs in groundwater included from both targeted studies and broad reconnaissance surveys. Nanogram-microgram per litre concentrations are present in groundwater for a large range of EOCs as well as metabolites and transformation products and under certain conditions may pose a threat to freshwater bodies for decades due to relatively long groundwater residence times. In the coming decades, more of these EOCs are likely to have drinking water standards, environmental quality standards and/or groundwater threshold values defined, and therefore a better understanding of the spatial and temporal variation remains a priority. PMID:22306910

  8. Health Risk Assessment for Groundwater Resource Used for Drinking Water in Pingtung Plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Liang, Ching-Ping; Wang, Shen-Wei

    2014-05-01

    Groundwater has been massively used for drinking by local residents due to deficiency in surface water in Pingtung Plain, Taiwan. A long-term survey of groundwater quality revealed that concentrations of water quality items in some of the monitoring wells exceeded the Taiwanese standards for drinking water quality. Water of poor quality can have an adverse health impact. Effective health risk-based groundwater management typically faces great challenges because of the inherent spatial variability in groundwater quality. In this study, we target to spatially analyze the health hazard and risk from consumption of groundwater for drinking. We computed the hazard quotient and health risk using exposure and risk model and hydrochemical data surveyed by Taiwan Water Resource Agency and Environmental Protection Agency. The zone suitable for groundwater used is delineated based on the results of the spatial health risk map. The results of the analysis can help government administrator in managing groundwater used for drinking in Pingtung Plain in Taiwan.

  9. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    USGS Publications Warehouse

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    -reduction reactions, which are important processes affecting water quality. Major-ion chemistry generally evolved from a calcium-bicarbonate to calcium-sulfate composition, with some sodium-bicarbonate and sodium-sulfate facies in the deeper bedrock aquifers, likely resulting from longer residence times and more extensive water-rock interaction. Oxidation-reduction conditions generally evolved from oxic at the water table to anoxic with increasing depth in the bedrock aquifers. Most samples from the bedrock aquifers were anoxic. Exceedances of drinking-water standards and water-quality benchmarks for the bedrock aquifers occurred in 1 percent or less of samples for nitrate, selenium, or arsenic; there were no exceedances for uranium. Exceedances for total dissolved solids, sulfate, manganese, and iron were generally between about 10 and 20 percent for the bedrock-aquifer samples. Radon concentrations, which were only measured in samples collected from two of the bedrock aquifers, exceeded the lower proposed drinking-water standard for more than 90 percent of samples but exceeded the higher alternative standard for less than 5 percent of samples. Pesticide compounds and volatile organic compounds were detected in 3 and 22 percent, respectively, of bedrock-aquifer samples, all at concentrations that were that were much less than drinking-water standards. Water-quality data were synthesized to evaluate factors that affect spatial and depth variability in water quality and to assess aquifer vulnerability to contaminants from geologic materials and those of human origin. The quality of shallow groundwater in the alluvial aquifer and shallow bedrock aquifer system has been adversely affected by development of agricultural and urban areas. Land use has altered the pattern and composition of recharge. Increased recharge from irrigation water has mobilized dissolved constituents and increased concentrations in the shallow groundwater. Concentrations of most constituents associated with poor

  10. Groundwater contamination field methods

    NASA Astrophysics Data System (ADS)

    Johnson, Ivan

    Half of the drinking water in the United States comes from groundwater; 75% of the nation's cities obtain all or part of their supplies from groundwater; and the rural areas are 95% dependent upon groundwater. Therefore it is imperative that every possible precaution be taken to protect the purity of the groundwater.Because of the increasing interest in prevention of groundwater contamination and the need for nationally recognized methods for investigation of contamination, a symposium entitled “Field Methods for Groundwater Contamination Studies and Their Standardization” was held February 2-7, 1986, in Cocoa Beach, Fla. The symposium was sponsored and organized by the American Society for Testing and Materials (ASTM) Committee D18 on Soil and Rock and Committee D19 on Water. Gene Collins of the National Institute for Petroleum and Energy Research (Bartlesville, Okla.) was symposium chair, and Ivan Johnson (A. Ivan Johnson, Inc., Consulting, Arvada, Colo.) was vice chair.

  11. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    NASA Astrophysics Data System (ADS)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  12. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated

  13. Cardiovascular adverse effects of phenytoin.

    PubMed

    Guldiken, B; Rémi, J; Noachtar, Soheyl

    2016-05-01

    Phenytoin is an established drug in the treatment of acute repetitive seizures and status epilepticus. One of its main advantages over benzodiazepines is the less sedative effect. However, the possibility of cardiovascular adverse effects with the intravenous use of phenytoin cause a reluctance to its usage, and this has lead to a search for safer anticonvulsant drugs. In this study, we aimed to review the studies which evaluated the safety of phenytoin with respect to cardiovascular adverse effects. The original clinical trials and case reports listed in PUBMED in English language between the years of 1946-2014 were evaluated. As the key words, "phenytoin, diphenylhydantoin, epilepsy, seizure, cardiac toxicity, asystole, arrhythmia, respiratory arrest, hypotension, death" were used. Thirty-two clinical trials and ten case reports were identified. In the case reports, a rapid infusion rate (>50 mg/min) of phenytoin appeared as the major cause of increased mortality. In contrast, no serious cardiovascular adverse effects leading to death were met in the clinical trials which applied the recommended infusion rate and dosages. An infusion rate of 50 mg/min was reported to be safe for young patients. For old patients and patients with a cardiovascular co-morbidity, a slower infusion rate was recommended with a careful follow-up of heart rhythm and blood pressure. No cardiovascular adverse effect was reported in oral phenytoin overdoses except one case with a very high serum phenytoin level and hypoalbuminemia. Phenytoin is an effective and well tolerated drug in the treatment of epilepsy. Intravenous phenytoin is safe when given at recommended infusion rates and doses. PMID:26645393

  14. [Adverse events of psychotropic drugs].

    PubMed

    Watanabe, Koichiro; Kikuchi, Toshiaki

    2014-01-01

    The authors discuss adverse events which are often missed but clinicians should pay attention to in order to preserve patients'quality of life(QOL). Among mood stabilizers, lithium may cause a urinary volume increase, hyperparathyroidism, and serum calcium elevation; sodium valproate possibly increases androgenic hormone levels and the risk of polycystic ovary syndrome (PCOS) as well as hypothyroidism. Moreover, in addition to teratogenesis, it has been reported that fetal exposure to a higher dose of valproate is associated with a lower intelligence quotient and higher incidence of autism spectrum disorders in children. Antidepressants with a higher affinity for serotonin transporters might induce gastrointestinal bleeding, and some antidepressants cause sexual dysfunction more frequently than others. Activation syndrome is still a key side effect which should be noted. Regarding the adverse events of antipsychotics, subjective side effects unpleasant to patients such as dysphoria and a lower subjective well-being should not be overlooked. We clinicians have to cope with adverse events worsening the QOL of patients with psychiatric disorders and, therefore, we need to adopt appropriate counter-measures. PMID:24864567

  15. Nitrate in groundwater of the United States, 1991-2003

    USGS Publications Warehouse

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  16. Pharmacogenetics of idiosyncratic adverse drug reactions.

    PubMed

    Pirmohamed, Munir

    2010-01-01

    Idiosyncratic adverse drug reactions are unpredictable and thought to have an underlying genetic etiology. With the completion of the human genome and HapMap projects, together with the rapid advances in genotyping technologies, we have unprecedented capabilities in identifying genetic predisposing factors for these relatively rare, but serious, reactions. The main roadblock to this is the lack of sufficient numbers of well-characterized samples from patients with such reactions. This is now beginning to be solved through the formation of international consortia, including developing novel ways of identifying and recruiting patients affected by these reactions, both prospectively and retrospectively. This has been led by the research on abacavir hypersensitivity - its association with HLA-B*5701 forms the gold standard of how we need to identify associations and implement them in clinical practice. Strong genetic predisposing factors have also been identified for hypersensitivity reactions such as are associated with carbamazepine, allopurinol, flucloxacillin, and statin-induced myopathy. However, for most other idiosyncratic adverse drug reactions, the genetic effect sizes have been low to moderate, although this may partly be due to the fact that only small numbers have been investigated and limited genotyping strategies have been utilized. It may also indicate that genetic predisposition will be dependent on multiple genes, with complex interactions with environmental factors. Irrespective of the strength of the genetic associations identified with individual idiosyncratic adverse drug reactions, it is important to undertake functional investigations to provide insights into the mechanism(s) of how the drug interacts with the gene variant to lead to a phenotype, which can take a multitude of clinical forms with variable severity. Such investigations will be essential in preventing the burden caused by idiosyncratic reactions, both in healthcare and in industry

  17. Six-year trajectories of post-traumatic stress and severe psychological distress symptoms and associations with timing of trauma exposure, ongoing adversity and sense of injustice: a latent transition analysis of a community cohort in conflict-affected Timor-Leste

    PubMed Central

    Rees, S; Steel, Z; Tam, N; Soares, Z; Soares, C; Silove, DM

    2016-01-01

    Objectives To identify the 6-year trajectories of post-traumatic stress symptoms (PTSS) and psychological distress symptoms, and examine for associations with timing of trauma exposure, ongoing adversity and with the sense of injustice in conflict-affected Timor-Leste. Setting A whole-of-household survey was conducted in 2004 and 2010 in Dili, the capital of Timor-Leste. Participants 1022 adults were followed up over 6 years (retention rate 84.5%). Interviews were conducted by field workers applying measures of traumatic events (TEs), ongoing adversity, a sense of injustice, PTS symptoms and psychological distress. Results Latent transition analysis supported a 3-class longitudinal model (psychological distress, comorbid symptoms and low symptoms). We derived 4 composite trajectories comprising recovery (20.8%), a persisting morbidity trajectory (7.2%), an incident trajectory (37.2%) and a low-symptom trajectory (34.7%). Compared with the low-symptom trajectory, the persistent and incident trajectories reported greater stress arising from poverty and family conflict, higher TE exposure for 2 historical periods, and a sense of injustice for 2 historical periods. The persistent trajectory was unique in reporting greater TE exposure in the Indonesian occupation, whereas the incident trajectory reported greater TE exposure during the later internal conflict that occurred between baseline and follow-up. Compared with the low-symptom trajectory, the incident trajectory reported a greater sense of injustice relating to the periods of the Indonesian occupation and independence. The persistent trajectory was characterised by a sense of injustice relating to the internal conflict and contemporary times. The recovery trajectory was characterised by the absence of these risk factors, the only difference from the low-symptom trajectory being that the former reported a sense of injustice for the period surrounding independence. Conclusions Our findings suggest that the timing

  18. Groundwater management institutions to protect riparian habitat

    NASA Astrophysics Data System (ADS)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  19. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    USGS Publications Warehouse

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  20. AFBC Roadbed Project groundwater data

    SciTech Connect

    Carpenter, W.

    1992-08-21

    TVA permitted the use of AFBC material in a section of roadbed at Paducah, Kentucky, for the purpose of demonstrating its usability as a roadbed base. To determine if the material would leach and contaminate groundwater, four wells and seven lysimeters were installed beside and in the roadbed base material. In August 1991, TVA Field Engineering visited the AFBC Roadbed Project to collect samples and water quality data. The goal was to collect samples and data from four wells and seven lysimeters. All attempts to collect samples from the lysimeters failed with one exemption. All attempts to collect samples from the groundwater wells were successful. The analytical data from the four wells and one lysimeter are also attached. The well data is typical of groundwater in the Paducah, Kentucky area indicating that it was not affected by the AFBC roadbed material. The analysis of the lysimeter shows concentrations for iron and manganese above normal background levels, however, the data do not reflect significant concentrations of these heavy metals. Also, the difficulty in obtaining the lysimeter samples and the fact that the samples had to be composited to obtain sufficient quantity to analyze would make a qualitative evaluation of the data questionable.

  1. Halon-1301, a new Groundwater Age Tracer

    NASA Astrophysics Data System (ADS)

    Beyer, Monique; van der Raaij, Rob; Morgenstern, Uwe; Jackson, Bethanna

    2015-04-01

    Groundwater dating is an important tool to assess groundwater resources in regards to direction and time scale of groundwater flow and recharge and to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However ambiguous age interpretations are often faced, due to a limited set of available tracers and limitations of each tracer method when applied alone. There is a need for additional, complementary groundwater age tracers. We recently discovered that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate [Beyer et al, 2014]. Halon-1301 can be determined along with SF6, SF5CF3 and CFC-12 in groundwater using a gas chromatography setup with attached electron capture detector developed by Busenberg and Plummer [2008]. Halon-1301 has not been assessed in groundwater. This study assesses the behaviour of Halon-1301 in water and its suitability as a groundwater age tracer. We determined Halon-1301 in 17 groundwater and various modern (river) waters sites located in 3 different groundwater systems in the Wellington Region, New Zealand. These waters have been previously dated with tritium, CFC-12, CFC-11 and SF6 with mean residence times ranging from 0.5 to over 100 years. The waters range from oxic to anoxic and some show evidence of CFC contamination or degradation. This allows us to assess the different properties affecting the suitability of Halon-1301 as groundwater age tracer, such as its conservativeness in water and local contamination potential. The samples are analysed for Halon-1301 and SF6simultaneously, which allows identification of issues commonly faced when using gaseous tracers such as contamination with modern air during sampling. Overall we found in the assessed groundwater samples Halon-1301 is a feasible new groundwater tracer. No sample indicated significantly elevated

  2. Evaluation of groundwater droughts in Austria

    NASA Astrophysics Data System (ADS)

    Haas, Johannes Christoph; Birk, Steffen

    2015-04-01

    Droughts are abnormally dry periods that affect various aspects of human life on earth, ranging from negative impacts on agriculture or industry, to being the cause for conflict and loss of human life. The changing climate reinforces the importance of investigations into this phenomenon. Various methods to analyze and classify droughts have been developed. These include drought indices such as the Standard Precipitation Index SPI, the Palmer Drought Severity Index PDSI or the Crop Moisture Index CMI. These and other indices consider meteorological parameters and/or their effects on soil moisture. A depletion of soil moisture triggered by low precipitation and high evapotranspiration may also cause reduced groundwater recharge and thus decreasing groundwater levels and reduced groundwater flow to springs, streams, and wetlands. However, the existing indices were generally not designed to address such drought effects on groundwater. Thus, a Standardized Groundwater level Index has recently been proposed by Bloomfied and Marchant (2013). Yet, to our knowledge, this approach has only been applied to consolidated aquifers in the UK. This work analyzes time series of groundwater levels from various, mostly unconsolidated aquifers in Austria in order to characterize the effects of droughts on aquifers in different hydrogeologic and climatic settings as well as under different usage scenarios. In particular, comparisons are made between the water rich Alpine parts of Austria, and the dryer parts situated in the East. The time series of groundwater levels are compared to other data, such as meteorological time series and written weather records about generally accepted phenomena, such as the 2003 European drought and heat wave. Thus, valuable insight is gained into the propagation of meteorological droughts through the soil and the aquifer in different types of hydrogeologic and climatic settings, which provides a prerequisite for the assessment of the aquifers' drought

  3. 15 CFR 970.701 - Significant adverse environmental effects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... under a license of scale-model mining systems which simulate commercial recovery could adversely affect... setting of instruments; (7) Sampling by box core, small diameter core or grab sampler, to determine seabed... mining tests under exploration licenses will be extremely small. (ii) Blanketing of benthic fauna...

  4. 15 CFR 970.701 - Significant adverse environmental effects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... under a license of scale-model mining systems which simulate commercial recovery could adversely affect... setting of instruments; (7) Sampling by box core, small diameter core or grab sampler, to determine seabed... mining tests under exploration licenses will be extremely small. (ii) Blanketing of benthic fauna...

  5. Windows of Opportunity for Groundwater Management

    NASA Astrophysics Data System (ADS)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2015-12-01

    To date, there has been little attention focused on how the value and effectiveness of groundwater management is influenced by the timing of regulatory intervention relative to aquifer depletion. To address this question, we develop an integrated framework that couples an agro-economic model of farmers' field-level irrigation decision-making with a model of a groundwater abstraction borehole. Unlike existing models that only consider the impact of aquifer depletion on groundwater extraction costs, our model also captures the dynamic changes in well productivity and how these in turn affect crop yields and farmer incomes. We use our model to analyze how the value of imposing groundwater quotas is affected by the prior level of depletion before regulations are introduced. Our results demonstrate that there is a range of aquifer conditions within which regulating groundwater use will deliver long-term economic benefits for farmers. In this range, restricting abstraction rates slows the rate of change in well yields and, as a result, increases agricultural production over the simulated planning horizon. Contrastingly, when current saturated thickness is outside this range, regulating groundwater use will provide negligible social benefits and will impose large negative impacts on farm-level profits. We suggest that there are 'windows of opportunity' for managing aquifer depletion that are a function of local hydrology as well as economic characteristics. Regulation that is too early will harm the rural economy needlessly, while regulation that is too late will be unable to prevent aquifer exhaustion. The insights from our model can be a valuable tool to help inform policy decisions about when, and at what level, regulations should be implemented in order to maximize the benefits obtained from limited groundwater resources.

  6. A high-resolution global-scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.

    2015-02-01

    Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying basic needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global-scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics, a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolutions. In this study we present a global-scale groundwater model (run at 6' resolution) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The used aquifer schematization and properties are based on available global data sets of lithology and transmissivities combined with the estimated thickness of an upper, unconfined aquifer. This model is forced with outputs from the land-surface PCRaster Global Water Balance (PCR-GLOBWB) model, specifically net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed that variation in saturated conductivity has the largest impact on the groundwater levels simulated. Validation with observed groundwater heads showed that groundwater heads are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional-scale groundwater patterns and flow paths demonstrate the relevance of lateral groundwater flow in GHMs. Inter-basin groundwater flows can be a significant part of a basin's water budget and help to sustain river baseflows, especially during droughts. Also, water availability of larger aquifer systems can be positively affected by additional recharge from inter-basin groundwater flows.

  7. Detecting Adverse Events Using Information Technology

    PubMed Central

    Bates, David W.; Evans, R. Scott; Murff, Harvey; Stetson, Peter D.; Pizziferri, Lisa; Hripcsak, George

    2003-01-01

    Context: Although patient safety is a major problem, most health care organizations rely on spontaneous reporting, which detects only a small minority of adverse events. As a result, problems with safety have remained hidden. Chart review can detect adverse events in research settings, but it is too expensive for routine use. Information technology techniques can detect some adverse events in a timely and cost-effective way, in some cases early enough to prevent patient harm. Objective: To review methodologies of detecting adverse events using information technology, reports of studies that used these techniques to detect adverse events, and study results for specific types of adverse events. Design: Structured review. Methodology: English-language studies that reported using information technology to detect adverse events were identified using standard techniques. Only studies that contained original data were included. Main Outcome Measures: Adverse events, with specific focus on nosocomial infections, adverse drug events, and injurious falls. Results: Tools such as event monitoring and natural language processing can inexpensively detect certain types of adverse events in clinical databases. These approaches already work well for some types of adverse events, including adverse drug events and nosocomial infections, and are in routine use in a few hospitals. In addition, it appears likely that these techniques will be adaptable in ways that allow detection of a broad array of adverse events, especially as more medical information becomes computerized. Conclusion: Computerized detection of adverse events will soon be practical on a widespread basis. PMID:12595401

  8. Groundwater in Science Education

    ERIC Educational Resources Information Center

    Dickerson, Daniel L.; Penick, John E.; Dawkins, Karen R.; Van Sickle, Meta

    2007-01-01

    Although clean, potable groundwater constitutes one of our most valuable resources, few students or science educators hold complete and appropriate understandings regarding the concept. Recent studies that focus on secondary students' and preservice science teachers' understandings of groundwater found little difference between the groups'…

  9. Groundwater and Distribution Workbook.

    ERIC Educational Resources Information Center

    Ekman, John E.

    Presented is a student manual designed for the Wisconsin Vocational, Technical and Adult Education Groundwater and Distribution Training Course. This program introduces waterworks operators-in-training to basic skills and knowledge required for the operation of a groundwater distribution waterworks facility. Arranged according to the general order…

  10. Is it working? A look at the changing nutrient practices in the Southern Willamette Valley’s Groundwater Management Area

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 to address the occurrence of high groundw...

  11. Groundwater and organic chemicals

    SciTech Connect

    Dawson, H.E.

    1995-12-01

    Groundwater is a major source of drinking water for many communities. Unfortunately, organic chemicals such as dry cleaning fluids, solvent, fuels, and pesticides have contaminated groundwater in many areas, rendering the groundwater useless as a drinking water resource. In many cases, the groundwater cannot be cleaned up with current technologies, particularly if the groundwater has been contaminated with immiscible (low solubility) organic liquids. In this talk, I will describe the path I have followed from geologist to geochemist and finally to environmental engineer. As a geologist, I studied the chemistry of rock metamorphosis. As a geochemist, I explored for gold and other metals. Now as an environmental engineer, I investigate the behavior of organic liquids in the subsurface. While these fields all appear very different, in reality I have always focused on the interaction of rocks or sediments with the fluids with which they come in contact.

  12. Impact of agriculture on groundwater in Ireland

    NASA Astrophysics Data System (ADS)

    Aldwell, C. R.; Burdon, D. J.; Sherwood, M.

    1983-03-01

    Ireland has large water resources. Only 5.3% of developable waters are as yet developed, to supply some 650 I/day/per capita to the population of some 3.37 million people. State of development varies in each of the seven water resources regions. Precipitation is fairly evenly distributed over the year, but the percentage infiltrating to form groundwater varies quite sharply. Some 61% of infiltration occurs in the four winter months November to February, when agricultural activities are low. Only 10% infiltrates in the four summer months, May to August, when agricultural activities are high. In all, annual groundwater amounts to some 24.8 km3, of which 50% is considered to be recoverable. Capital groundwater reserves must be large, but are unquantified. Under these conditions, the impact of agriculture on groundwater quantities is negligible. Of the annual extraction of some 170 × 106m3 of groundwater, some 66 × 106m3/year are used in different agricultural activities. Drainage operations, however, have effects on Irish groundwater. Such lands may overlie impermeable strata or pans, or may receive concealed or visible groundwater discharge. Their drainage will affect the groundwater in various ways. There has been a considerable impact of agriculture on groundwater quality. The effects on the atmosphere and on precipitation are not identifiable. Effects of diffuse infiltration are treated with respect to: (a) application of ground limestone (lime); (b) application of K.N.P. inorganic fertilizer; (c) spreading of organic slurries; (d) development of organic nitrogen in soils, mainly after ploughing of grasslands; and (e) residues from herbicides, fungicides, and pesticides. The infiltration of these substances spread on the land is closely related to the interaction between times of ground-water recharge and times of fertilizer application. Effects of concentrated infiltration are treated under seven sub-heads: (a) infiltration of polluted surface waters; (b

  13. Cutaneous Adverse Effects of Neurologic Medications.

    PubMed

    Bahrani, Eman; Nunneley, Chloe E; Hsu, Sylvia; Kass, Joseph S

    2016-03-01

    Life-threatening and benign drug reactions occur frequently in the skin, affecting 8 % of the general population and 2-3 % of all hospitalized patients, emphasizing the need for physicians to effectively recognize and manage patients with drug-induced eruptions. Neurologic medications represent a vast array of drug classes with cutaneous side effects. Approximately 7 % of the United States (US) adult population is affected by adult-onset neurological disorders, reflecting a large number of patients on neurologic drug therapies. This review elucidates the cutaneous reactions associated with medications approved by the US Food and Drug Administration (FDA) to treat the following neurologic pathologies: Alzheimer disease, amyotrophic lateral sclerosis, epilepsy, Huntington disease, migraine, multiple sclerosis, Parkinson disease, and pseudobulbar affect. A search of the literature was performed using the specific FDA-approved drug or drug classes in combination with the terms 'dermatologic,' 'cutaneous,' 'skin,' or 'rash.' Both PubMed and the Cochrane Database of Systematic Reviews were utilized, with side effects ranging from those cited in randomized controlled trials to case reports. It behooves neurologists, dermatologists, and primary care physicians to be aware of the recorded cutaneous adverse reactions and their severity for proper management and potential need to withdraw the offending medication. PMID:26914914

  14. [Adverse ocular effects of vaccinations].

    PubMed

    Ness, T; Hengel, H

    2016-07-01

    Vaccinations are very effective measures for prevention of infections but are also associated with a long list of possible side effects. Adverse ocular effects following vaccination have been rarely reported or considered to be related to vaccinations. Conjunctivitis is a frequent sequel of various vaccinations. Oculorespiratory syndrome and serum sickness syndrome are considered to be related to influenza vaccinations. The risk of reactivation or initiation of autoimmune diseases (e. g. uveitis) cannot be excluded but has not yet been proven. Overall the benefit of vaccination outweighs the possible but very low risk of ocular side effects. PMID:27357302

  15. Adverse Effects of Electroconvulsive Therapy.

    PubMed

    Andrade, Chittaranjan; Arumugham, Shyam Sundar; Thirthalli, Jagadisha

    2016-09-01

    Electroconvulsive therapy (ECT) is an effective treatment commonly used for depression and other major psychiatric disorders. We discuss potential adverse effects (AEs) associated with ECT and strategies for their prevention and management. Common acute AEs include headache, nausea, myalgia, and confusion; these are self-limiting and are managed symptomatically. Serious but uncommon AEs include cardiovascular, pulmonary, and cerebrovascular events; these may be minimized with screening for risk factors and by physiologic monitoring. Although most cognitive AEs of ECT are short-lasting, troublesome retrograde amnesia may rarely persist. Modifications of and improvements in treatment techniques minimize cognitive and other AEs. PMID:27514303

  16. Adverse drug reactions in dermatology.

    PubMed

    Ferner, R E

    2015-03-01

    Adverse drug reactions (ADRs) - that is, unintended and harmful responses to medicines - are important to dermatologists because many present with cutaneous signs and because dermatological treatments can cause serious ADRs. The detection of ADRs to new drugs is often delayed because they have a long latency or are rare or unexpected. This means that ADRs to newer agents emerge only slowly after marketing. ADRs are part of the differential diagnosis of unusual rashes. A good drug history that includes details of drug dose, time-course of the reaction and factors that may make the patient more susceptible, will help. For example, Stevens-Johnson syndrome with abacavir is much commoner in patients with HLA-B*5701, and has a characteristic time course. Newer agents have brought newer reactions; for example, acneiform rashes associated with epidermal growth factor receptor inhibitors such as erlotinib. Older systemic agents used to treat skin disease, including corticosteroids and methotrexate, cause important ADRs. The adverse effects of newer biological agents used in dermatology are becoming clearer; for example, hypersensitivity reactions or loss of efficacy from antibody formation and progressive multifocal leucoencephalopathy due to reactivation of latent JC (John Cunningham) virus infections during efalizumab treatment. Unusual or serious harm from medicines, including ADRs, medication errors and overdose, should be reported. The UK Yellow Card scheme is online, and patients can report their own ADRs. PMID:25622648

  17. [Recipients adverse reactions: guidance supports].

    PubMed

    Bazin, A

    2010-12-01

    Since 1994, adverse effects of transfusion transmitted to the French haemovigilance network are registered on "e-fit", the database of the French agency for the safety of health products (Afssaps). In order to improve their analysis, guidance supports have been made by Afssaps working groups. Each support deals with a blood transfusion side effect and is composed of five parts including pathophysiological mechanisms, diagnostic criteria, management recommendations, etiologic investigations and rules of filing the notification form on e-fit. The major characteristics of sheets published or soon-to-be published are presented: transfusion-related acute lung injury, transfusion-transmitted bacterial infection, non-haemolytic febrile reaction, allergic reaction, transfusion-associated circulatory overload, hypotensive transfusion reaction, alloimmunization, erythrocyte incompatibility reaction and hemosiderosis. These new supports give relevant guidelines allowing a better analysis and evaluation of recipients' adverse reactions, particularly their diagnosis, gravity and accountability. They could also initiate studies in European and international haemovigilance and transfusion networks. PMID:21051267

  18. Adverse effects of plasma transfusion.

    PubMed

    Pandey, Suchitra; Vyas, Girish N

    2012-05-01

    Plasma utilization has increased over the past two decades, and there is a growing concern that many plasma transfusions are inappropriate. Plasma transfusion is not without risk, and certain complications are more likely with plasma than other blood components. Clinical and laboratory investigations of the patients suffering reactions after infusion of fresh-frozen plasma (FFP) define the etiology and pathogenesis of the panoply of adverse effects. We review here the pathogenesis, diagnosis, and management of the risks associated with plasma transfusion. Risks commonly associated with FFP include: 1) transfusion-related acute lung injury, 2) transfusion-associated circulatory overload, and 3) allergic and/or anaphylactic reactions. Other less common risks include 1) transmission of infections, 2) febrile nonhemolytic transfusion reactions, 3) red blood cell alloimmunization, and 4) hemolytic transfusion reactions. The effects of pathogen inactivation or reduction methods on these risks are also discussed. Fortunately, a majority of the adverse effects are not lethal and are adequately treated in clinical practice. PMID:22578374

  19. "Adversative Conjunction": The Poetics of Linguistic Opposition.

    ERIC Educational Resources Information Center

    Wallerstein, Nicholas

    1992-01-01

    The general use of adversative conjunction in (primarily) English and U.S. poetry is outlined. The contention is that the adversative is not merely a grammatical convenience but sometimes a highly functional tool of rhetorical strategy. (36 references) (LB)

  20. Evaluation for Early Life Stage Fall Chinook Salmon Exposed to Hexavalent Chromium from a Contaminated Groundwater Source

    SciTech Connect

    Patton, Gregory W.; Dauble, Dennis D.; McKinstry, Craig A.

    2007-09-01

    We conducted a laboratory evaluation to assess the risk to early life stage (i.e., eyed egg to swim up) fall Chinook salmon (Oncorhynchus tshawytscha) for exposure to hexavalent chromium from a contaminated groundwater source. Local populations of fall Chinook salmon were exposed to Hanford Site source groundwater that was diluted with Columbia River water. Specific endpoints included survival, development rate, and growth. Tissue burdens of fish were also measured to estimate uptake and elimination rates of chromium. Survival, development, and growth of early life stage fall Chinook salmon were not adversely affected by extended exposures (i.e., 98 day) to hexavalent chromium ranging from 0.79 to 260 μg/L. Survival for all treatment levels and controls exceeded 98% at termination of the test. In addition, there were no differences among the mean lengths and weights of fish among all treatment groups. Whole-body concentrations of chromium in early life stage fall Chinook salmon had a typical dose-response pattern; i.e., those subjected to highest exposure concentrations and longest exposure intervals had higher tissue concentrations. Given the spatial extent of chromium concentrations at the Hanford Site, and the dynamics of the groundwater - river water interface, the current cleanup criterion of 10 µg/L chromium appear adequate to protect fall Chinook salmon populations.

  1. Groundwater quality in the San Francisco Bay groundwater basins, California

    USGS Publications Warehouse

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins of the San Francisco Bay area constitute one of the study units being evaluated.

  2. Groundwater contamination in Japan

    NASA Astrophysics Data System (ADS)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  3. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    NASA Astrophysics Data System (ADS)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  4. Fiber optics in adverse environments

    SciTech Connect

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations.

  5. Adverse reactions to food additives.

    PubMed

    Simon, R A

    1986-01-01

    There are thousands of agents that are intentionally added to the food that we consume. These include preservatives, stabilizers, conditioners, thickeners, colorings, flavorings, sweeteners, antioxidants, etc. etc. Yet only a surprisingly small number have been associated with hypersensitivity reactions. Amongst all the additives, FD&C dyes have been most frequently associated with adverse reactions. Tartrazine is the most notorious of them all; however, critical review of the medical literature and current Scripps Clinic studies would indicate that tartrazine has been confirmed to be at best only occasionally associated with flares of urticaria or asthma. There is no convincing evidence in the literature of reactivity to the other azo or nonazo dyes. This can also be said of BHA/BHT, nitrites/nitrates and sorbates. Parabens have been shown to elicit IgE mediated hypersensitivity reactions when used as pharmaceutical preservatives; however, as with the other additives noted above, ingested parabens have only occasionally been associated with adverse reactions. MSG, the cause of the 'Chinese restaurant syndrome' has only been linked to asthma in one report. Sulfiting agents used primarily as food fresheners and to control microbial growth in fermented beverages have been established as the cause of any where from mild to severe and even fatal reactions in at least 5% of the asthmatic population. Other reactions reported to follow sulfite ingestion include anaphylaxis, gastro intestinal complaints and dermatological eruptions. The prevalence of these non asthmatic reactions is unknown. The mechanism of sulfite sensitive asthma is also unknown but most likely involves hyperreactivity to inhale SO2 in the great majority of cases; however, there are reports of IgE mediated reactions and other sulfite sensitive asthmatics have been found with low levels of sulfite oxidase; necessary to oxidize endogenous sulfite to sulfate. PMID:3302664

  6. The High Plains Aquifer, USA: Groundwater development and sustainability

    USGS Publications Warehouse

    Dennehy, K.F.; Litke, D.W.; McMahon, P.B.

    2002-01-01

    The High Plains Aquifer, located in the United States, is one of the largest freshwater aquifers in the world and is threatened by continued decline in water levels and deteriorating water quality. Understanding the physical and cultural features of this area is essential to assessing the factors that affect this groundwater resource. About 27% of the irrigated land in the United States overlies this aquifer, which yields about 30% of the nation's groundwater used for irrigation of crops including wheat, corn, sorghum, cotton and alfalfa. In addition, the aquifer provides drinking water to 82% of the 2.3 million people who live within the aquifer boundary. The High Plains Aquifer has been significantly impacted by human activities. Groundwater withdrawals from the aquifer exceed recharge in many areas, resulting in substantial declines in groundwater level. Residents once believed that the aquifer was an unlimited resource of high-quality water, but they now face the prospect that much of the water may be gone in the near future. Also, agricultural chemicals are affecting the groundwater quality. Increasing concentrations of nitrate and salinity can first impair the use of the water for public supply and then affect its suitability for irrigation. A variety of technical and institutional measures are currently being planned and implemented across the aquifer area in an attempt to sustain this groundwater resource for future generations. However, because groundwater withdrawals remain high and water quality impairments are becoming more commonplace, the sustainability of the High Plains Aquifer is uncertain.

  7. Assessment of factors influencing groundwater-level change using groundwater flow simulation, considering vertical infiltration from rice-planted and crop-rotated paddy fields in Japan

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yumi; Nakamura, Kimihito; Horino, Haruhiko; Kawashima, Shigeto

    2014-12-01

    Assessing factors that influence groundwater levels such as land use and pumping strategy, is essential to adequately manage groundwater resources. A transient numerical model for groundwater flow with infiltration was developed for the Tedori River alluvial fan (140 km2), Japan. The main water input into the groundwater body in this area is irrigation water, which is significantly influenced by land use, namely paddy and upland fields. The proposed model consists of two models, a one-dimensional (1-D) unsaturated-zone water flow model (HYDRUS-1D) for estimating groundwater recharge and a 3-D groundwater flow model (MODFLOW). Numerical simulation of groundwater flow from October 1975 to November 2009 was performed to validate the model. Simulation revealed seasonal groundwater level fluctuations, affected by paddy irrigation management. However, computational accuracy was limited by the spatiotemporal data resolution of the groundwater use. Both annual groundwater levels and recharge during the irrigation periods from 1975 to 2009 showed long-term decreasing trends. With the decline in rice-planted paddy field area, groundwater recharge cumulatively decreased to 61 % of the peak in 1977. A paddy-upland crop-rotation system could decrease groundwater recharge to 73-98 % relative to no crop rotation.

  8. Estimating groundwater recharge

    USGS Publications Warehouse

    Stonestrom, David A.

    2011-01-01

    Groundwater recharge is the entry of fresh water into the saturated portion of the subsurface part of the hydrologic cycle, the modifier "saturated" indicating that the pressure of the pore water is greater than atmospheric.

  9. Treatment of Perchlorate-Contaminated Groundwater Using Highly-Selective, Regenerable Anion-Exchange Resins at Edwards Air Force Base

    SciTech Connect

    Gu, B.

    2003-05-30

    Selective ion exchange is one of the most effective treatment technologies for removing low levels of perchlorate (ClO{sub 4}{sup -}) from contaminated water because of its high efficiency without adverse impacts on the water quality caused by adding or removing any chemicals or nutrients. This report summarizes both the laboratory and a field pilot-scale studies to determine the ability and efficiency of the bifunctional synthetic resins to remove ClO{sub 4}{sup -} from the contaminated groundwater at the Edwards Air Force Base in California. Regeneration of the resins after groundwater treatment was also evaluated using the FeCl{sub 3}-HCl regeneration technique recently developed at Oak Ridge National Laboratory. On the basis of this study, the bifunctional resin, D-3696 was found to be highly selective toward ClO{sub 4}{sup -} and performed much better than one of the best commercial nitrate-selective resins (Purolite A-520E) and more than an order of magnitude better than the Purolite A-500 resin (with a relatively low selectivity). At an influent concentration of {approx} 450 {micro}g/L ClO{sub 4}{sup -} in groundwater, the bifunctional resin bed treated {approx} 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO{sub 4}{sup -} occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO{sub 4}{sup -}. However, the presence of high iron or iron oxyhydroxides and/or biomass in groundwater caused a significant fouling of the resin beds and greatly influenced the effectiveness in regenerating the resins sorbed with ClO{sub 4}{sup -}. Under such circumstances, a prefilter ({approx} 0.5-1 {micro}m) was found to be necessary to remove these particulates and to reduce the risk of fouling of the resin beds. Without significant fouling, the resin bed could be effectively regenerated by the FeCl{sub 3} displacement technique

  10. Adverse events in healthcare: learning from mistakes.

    PubMed

    Rafter, N; Hickey, A; Condell, S; Conroy, R; O'Connor, P; Vaughan, D; Williams, D

    2015-04-01

    Large national reviews of patient charts estimate that approximately 10% of hospital admissions are associated with an adverse event (defined as an injury resulting in prolonged hospitalization, disability or death, caused by healthcare management). Apart from having a significant impact on patient morbidity and mortality, adverse events also result in increased healthcare costs due to longer hospital stays. Furthermore, a substantial proportion of adverse events are preventable. Through identifying the nature and rate of adverse events, initiatives to improve care can be developed. A variety of methods exist to gather adverse event data both retrospectively and prospectively but these do not necessarily capture the same events and there is variability in the definition of an adverse event. For example, hospital incident reporting collects only a very small fraction of the adverse events found in retrospective chart reviews. Until there are systematic methods to identify adverse events, progress in patient safety cannot be reliably measured. This review aims to discuss the need for a safety culture that can learn from adverse events, describe ways to measure adverse events, and comment on why current adverse event monitoring is unable to demonstrate trends in patient safety. PMID:25078411

  11. Bioremediation of contaminated groundwater

    SciTech Connect

    Hazen, T.C.; Fliermans, C.B.

    1992-12-31

    The present invention relates to a method for in situ bioremediation of contaminated soil and groundwater. In particular, the invention relates to remediation of contaminated soil and groundwater by the injection of nutrients to stimulate growth of pollutant-degrading microorganisms. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  12. Life adversity is associated with smoking relapse after a quit attempt.

    PubMed

    Lemieux, Andrine; Olson, Leif; Nakajima, Motohiro; Schulberg, Lauren; al'Absi, Mustafa

    2016-09-01

    Multiple cross-sectional studies have linked adverse childhood events and adult adversities to current smoking, lifetime smoking, and former smoking. To date, however, there have been no direct observational studies assessing the influence of adversities on smoking relapse. We prospectively followed 123 participants, 86 of whom were habitual smokers, from pre-quit ad libitum smoking to four weeks post-quit. Thirty-seven non-smokers were also tested in parallel as a comparison group. Subjects provided biological samples for confirmation of abstinence status and self-report history of adversities such as abuse, neglect, family dysfunction, incarceration, and child-parent separation. They also completed mood and smoking withdrawal symptom measures. The results indicated that within non-smokers and smokers who relapsed within the first month of a quit attempt, but not abstainers, females had significantly higher adversity scores than males. Cigarette craving, which was independent from depressive affect, increased for low adversity participants, but not those with no adversity nor high adversity. These results demonstrate that sex and relapse status interact to predict adversity and that craving for nicotine may be an important additional mediator of relapse. These results add further support to the previous cross-sectional evidence of an adversity and smoking relationship. Further studies to clarify how adversity complicates smoking cessation and impacts smoking behaviors are warranted. PMID:27100471

  13. Applications of Groundwater Helium

    USGS Publications Warehouse

    Kulongoski, Justin T.; Hilton, David R.

    2011-01-01

    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  14. The impact on students of adverse experiences during medical school.

    PubMed

    Wilkinson, Tim J; Gill, Denzil J; Fitzjohn, Julie; Palmer, Claire L; Mulder, Roger T

    2006-03-01

    This study aimed to determine the consequences for, and coping method used by, medical students who experienced adverse experiences during their training. A nationwide questionnaire based census of all current medical students in New Zealand. The response rate was 83% (1384/1660). Two-thirds of students had at least one adverse experience, with humiliation being the most common and having the greatest adverse impact. Unwanted sexual advances, unfair treatment on the basis of gender or race had a lesser impact for most students. Most students took several hours or several days to get over an adverse episode and most commonly they then avoided that person or department. Around one half sought help. Only one-quarter felt it motivated their learning while one-sixth felt it made them consider leaving medical school. The most common perpetrators were senior doctors or nurses. Unwanted sexual advances were most common from other students or from patients. Humiliation is the experience that affected students the most and had a significant adverse effect on learning. There is a disturbing rate of unacceptable practice within medical schools, not all of which is from doctors. PMID:16707293

  15. Predicting groundwater arsenic contamination in Southeast Asia from surface parameters

    NASA Astrophysics Data System (ADS)

    Winkel, Lenny; Berg, Michael; Amini, Manouchehr; Hug, Stephan J.; Annette Johnson, C.

    2008-08-01

    Arsenic contamination of groundwater resources threatens the health of millions of people worldwide, particularly in the densely populated river deltas of Southeast Asia. Although many arsenic-affected areas have been identified in recent years, a systematic evaluation of vulnerable areas remains to be carried out. Here we present maps pinpointing areas at risk of groundwater arsenic concentrations exceeding 10μgl-1. These maps were produced by combining geological and surface soil parameters in a logistic regression model, calibrated with 1,756 aggregated and geo-referenced groundwater data points from the Bengal, Red River and Mekong deltas. We show that Holocene deltaic and organic-rich surface sediments are key indicators for arsenic risk areas and that the combination of surface parameters is a successful approach to predict groundwater arsenic contamination. Predictions are in good agreement with the known spatial distribution of arsenic contamination, and further indicate elevated risks in Sumatra and Myanmar, where no groundwater studies exist.

  16. Hanford Site groundwater monitoring: Setting, sources and methods

    SciTech Connect

    M.J. Hartman

    2000-04-11

    Groundwater monitoring is conducted on the Hanford Site to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA); Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA); U.S. Department of Energy (DOE) orders; and the Washington Administrative Code. Results of monitoring are published annually (e.g., PNNL-11989). To reduce the redundancy of these annual reports, background information that does not change significantly from year to year has been extracted from the annual report and published in this companion volume. This report includes a description of groundwater monitoring requirements, site hydrogeology, and waste sites that have affected groundwater quality or that require groundwater monitoring. Monitoring networks and methods for sampling, analysis, and interpretation are summarized. Vadose zone monitoring methods and statistical methods also are described. Whenever necessary, updates to information contained in this document will be published in future groundwater annual reports.

  17. Spatial assessment of animal manure spreading and groundwater nitrate pollution.

    PubMed

    Infascelli, Roberta; Pelorosso, Raffaele; Boccia, Lorenzo

    2009-11-01

    Nitrate concentration in groundwater has frequently been linked to non-point pollution. At the same time the existence of intensive agriculture and extremely intensive livestock activity increases the potential for nitrate pollution in shallow groundwater. Nitrate used in agriculture could cause adverse effects on human and animal health. In order to evaluate the groundwater nitrate pollution, and how it might evolve in time, it is essential to develop control systems and to improve policies and incentives aimed at controlling the amount of nitrate entering downstream water systems. The province of Caserta in southern Italy is characterized by high levels of animal manure loading. A comparison between manure nitrogen production and nitrate concentration in groundwater was carried out in this area, using geostatistical tools and spatial statistics. The results show a discrepancy between modelling of nitrate leaching and monitoring of the groundwater and, moreover, no spatial correlation between nitrogen production in livestock farms and nitrate concentration in groundwater, suggesting that producers are not following the regulatory procedures for the agronomic use of manure. The methodology developed in this paper could be applied also in other regions in which European Union fertilization plans are not adequately followed. PMID:19908188

  18. The High Plains Groundwater Availability Study: Abundant Groundwater Doesn't Necessarily Mean Abundant Surface Water

    NASA Astrophysics Data System (ADS)

    Peterson, S. M.; Stanton, J. S.; Flynn, A. T.

    2013-12-01

    The U.S. Geological Survey's Groundwater Resources Program is conducting an assessment of groundwater availability to gain a clearer understanding of the status of the Nation's groundwater resources and the natural and human factors that can affect those resources. Additional goals are to better estimate availability and suitability of those resources in the future for various uses. The High Plains aquifer is a nationally important water resource that underlies about 174,000 square miles in parts of eight western states. The aquifer serves as a primary source of drinking water for approximately 2.3 million people and also sustains more than one quarter of the Nation's agricultural production. In 2000, total water withdrawals of 17.5 billion gallons per day from the aquifer accounted for 20 percent of all groundwater withdrawn in the United States, making it the most intensively pumped aquifer in the Nation. In the Central and Southern High Plains, the aquifer historically had less saturated thickness, and current resource management issues are focused on the availability of water, and reduced ability to irrigate as water levels and well productivity have declined. In contrast, the Northern High Plains aquifer includes the thickest part of the aquifer and a larger saturated thickness than the other parts of the aquifer, and current water resource management issues are related to the interaction of groundwater with surface water and resource management triggered primarily by the availability of surface water. The presentation will cover major components of the High Plains Groundwater Availability Study, including estimating water budget components for the entire High Plains aquifer, building a refined groundwater model for the Northern High Plains aquifer, and using that model to better understand surface- and groundwater interaction and characterize water availability.

  19. Thyroid-Disrupting Chemicals: Interpreting Upstream Biomarkers of Adverse Outcomes

    PubMed Central

    Miller, Mark D.; Crofton, Kevin M.; Rice, Deborah C.; Zoeller, R. Thomas

    2009-01-01

    Background There is increasing evidence in humans and in experimental animals for a relationship between exposure to specific environmental chemicals and perturbations in levels of critically important thyroid hormones (THs). Identification and proper interpretation of these relationships are required for accurate assessment of risk to public health. Objectives We review the role of TH in nervous system development and specific outcomes in adults, the impact of xenobiotics on thyroid signaling, the relationship between adverse outcomes of thyroid disruption and upstream causal biomarkers, and the societal implications of perturbations in thyroid signaling by xenobiotic chemicals. Data sources We drew on an extensive body of epidemiologic, toxicologic, and mechanistic studies. Data synthesis THs are critical for normal nervous system development, and decreased maternal TH levels are associated with adverse neuropsychological development in children. In adult humans, increased thyroid-stimulating hormone is associated with increased blood pressure and poorer blood lipid profiles, both risk factors for cardiovascular disease and death. These effects of thyroid suppression are observed even within the “normal” range for the population. Environmental chemicals may affect thyroid homeostasis by a number of mechanisms, and multiple chemicals have been identified that interfere with thyroid function by each of the identified mechanisms. Conclusions Individuals are potentially vulnerable to adverse effects as a consequence of exposure to thyroid-disrupting chemicals. Any degree of thyroid disruption that affects TH levels on a population basis should be considered a biomarker of adverse outcomes, which may have important societal outcomes. PMID:19654909

  20. Evidence of Rapid Localized Groundwater Transport in Volcanic Tuffs Beneath Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Freifeld, B.; Walker, J.; Doughty, C.; Kryder, L.; Gilmore, K.; Finsterle, S.; Sampson, J.

    2006-12-01

    At Yucca Mountain, Nevada, the proposed location for a national high-level nuclear waste repository radionuclides, if released from breached waste storage canisters, could make their way down through the unsaturated zone (where the repository would be located) into the underlying groundwater and eventually back to the biosphere (i.e., where they could adversely affect human health). The compliance boundary, 18 km south of the proposed repository, is defined as the location where a human being using groundwater would be maximally exposed to radionuclides outside of an exclusion zone set around the repository. It is thus important to predict how these radionuclides would be transported by the groundwater flow, and to predict both the concentration of and the rate at which any leaked radionuclides would arrive at the compliance boundary. We recently conducted a study of groundwater flux in the saturated zone through the Crater Flat Group, in a wellbore 15 km south of the proposed repository. The Crater Flat Group, a sequence of ash-flow tuff formations, is laterally extensive beneath the footprint of the proposed repository. Because of its intense fracturing and high permeabilities, the Bullfrog tuff is the primary unit within the Crater Flat Group through which radionuclides would be transported, as indicated by groundwater models. In a new wellbore, NC-EWDP- 24PB, we conducted flowing electrical conductivity logging (FEC), an open-wellbore logging technique, to identify flowing fractures prior to wellbore completion. While the FEC logs have identified transmissive zones, quantitative interpretation of the FEC results was difficult because differences in hydraulic heads in different flowing intervals created significant intraborehole fluid flow. The well was subsequently backfilled and completed with a distributed thermal perturbation sensor (DTPS), which introduces a thermal pulse to the wellbore and uses the thermal transient to estimate groundwater flux

  1. Exercise hypertension: an adverse prognosis?

    PubMed

    Smith, Ryan G; Rubin, Stanley A; Ellestad, Myrvin H

    2009-01-01

    We sought to clarify the prognostic importance of an "exaggerated" or "hypertensive" systolic blood pressure response to exercise during an exercise test. Studies evaluating the prognosis for cardiovascular events and cardiovascular mortality in those with hypertension during exercise testing were systematically reviewed. Fourteen studies were identified. Six studies were of healthy volunteers or hypertensives. Eight studies were in subjects with known or suspected heart disease. Without established heart disease, exercise hypertension predicted cardiovascular events and cardiovascular death. However, two of the six studies included a multivariate analysis; both demonstrated no independent association. Studies in subjects with known or suspected heart disease demonstrated that exercise hypertension predicted fewer cardiac events and lesser mortality or, after multivariate adjustment, no associated risk. In a healthy population, a higher exercise blood pressure may indicate hypertension or prehypertension, instead of normal vascular function, and an associated long-term adverse prognosis. In a population with a high burden of heart disease, the highest risk subjects with the most extensive cardiac disease may not be capable of generating pressure or workload to allow the manifestation of exercise systolic hypertension. By comparison, therefore, those with exercise hypertension have a better prognosis. PMID:20409979

  2. OAE: The Ontology of Adverse Events

    PubMed Central

    2014-01-01

    Background A medical intervention is a medical procedure or application intended to relieve or prevent illness or injury. Examples of medical interventions include vaccination and drug administration. After a medical intervention, adverse events (AEs) may occur which lie outside the intended consequences of the intervention. The representation and analysis of AEs are critical to the improvement of public health. Description The Ontology of Adverse Events (OAE), previously named Adverse Event Ontology (AEO), is a community-driven ontology developed to standardize and integrate data relating to AEs arising subsequent to medical interventions, as well as to support computer-assisted reasoning. OAE has over 3,000 terms with unique identifiers, including terms imported from existing ontologies and more than 1,800 OAE-specific terms. In OAE, the term ‘adverse event’ denotes a pathological bodily process in a patient that occurs after a medical intervention. Causal adverse events are defined by OAE as those events that are causal consequences of a medical intervention. OAE represents various adverse events based on patient anatomic regions and clinical outcomes, including symptoms, signs, and abnormal processes. OAE has been used in the analysis of several different sorts of vaccine and drug adverse event data. For example, using the data extracted from the Vaccine Adverse Event Reporting System (VAERS), OAE was used to analyse vaccine adverse events associated with the administrations of different types of influenza vaccines. OAE has also been used to represent and classify the vaccine adverse events cited in package inserts of FDA-licensed human vaccines in the USA. Conclusion OAE is a biomedical ontology that logically defines and classifies various adverse events occurring after medical interventions. OAE has successfully been applied in several adverse event studies. The OAE ontological framework provides a platform for systematic representation and analysis of

  3. Changing Medicine and Building Community: Maine’s Adverse Childhood Experiences Momentum

    PubMed Central

    Forstadt, Leslie; Cooper, Sally; Andrews, Sue Mackey

    2015-01-01

    Physicians are instrumental in community education, prevention, and intervention for adverse childhood experiences. In Maine, a statewide effort is focusing on education about adverse childhood experiences and ways that communities and physicians can approach childhood adversity. This article describes how education about adversity and resilience can positively change the practice of medicine and related fields. The Maine Resilience Building Network brings together ongoing programs, supports new ventures, and builds on existing resources to increase its impact. It exemplifies the collective impact model by increasing community knowledge, affecting medical practice, and improving lives. PMID:25902346

  4. Groundwater flooding in an urbanised floodplain

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Peach, D.; Dixon, A.

    2009-12-01

    In recent years, risk management associated with groundwater flooding has been recognised as an area requiring improved understanding in the United Kingdom. Government figures suggest as many as 1.6 million properties may be at risk from this form of flooding. Further, the recently enforced EU Floods Directive requires hazard mapping associated with groundwater flooding to be undertaken. The city of Oxford is situated within a narrow valley in the upper reaches of the River Thames in the south of the United Kingdom. Although much of the city sits above the current floodplain of the River Thames, approximately 3600 properties are located within the 1 in 100 year return flood envelope. The floodplain is underlain by a shallow alluvial aquifer in good hydraulic connection with the River Thames and its tributaries. The city suffers from recurrent floods, most recently in July 2007, when a 1 in 20 year event impacted over 200 properties. A significant number of these properties were affected by flooding from rising groundwater which was either the sole cause of flooding or the initial cause prior to inundation from fluvial waters. A study has been undertaken by the British Geological Survey, in collaboration with the environment regulator and linked with the local flood risk management scheme, to assess the role of groundwater in flooding in Oxford. The study has shown that groundwater flooding in the city occurs in low-lying areas protected from direct fluvial flooding, at least in the early stages of an event, by high ground associated with urbanisation. Although direct rainfall recharge associated with extreme events can cause significant groundwater level rise in these low-lying areas, the primary mechanism for groundwater flooding is the movement of water through the permeable subsurface from fluvial flooded zones. Groundwater flooding is often the only form of flooding for the isolated low-lying areas for medium-to-high probability flood events. As a result

  5. Hydrogeology and groundwater ecology: Does each inform the other?

    NASA Astrophysics Data System (ADS)

    Humphreys, W. F.

    2009-02-01

    The known, perceived and potential relationships between hydrogeology and groundwater ecology are explored, along with the spatial and temporal scale of these relations, the limit of knowledge and areas in need of research. Issues concerned with the subterranean part of the water cycle are considered from the perspective of the biology of those invertebrate animals that live, of necessity, in groundwater and the microbiological milieu essential for their survival. Groundwater ecosystems are placed in a hydrogeological context including the groundwater evolution along a flowpath, the significance of the biodiversity and of the ecosystem services potentially provided. This is considered against a background of three major components essential to the functioning of groundwater ecosystems, each of which can be affected by activities over which hydrogeologists often have control, and each, in turn, may have implications for groundwater management; these are, a place to live, oxygen and food (energy). New techniques and increasing awareness amongst hydrogeologists of the diversity and broad distribution of groundwater ecosystems offer new opportunities to develop cross disciplinary work between hydrogeologists and groundwater ecologists, already demonstrated to be a field for collaboration with broad benefits.

  6. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Appreciating when and how groundwater affects surface temperature and energy fluxes is important for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To explore the shallow groundwater effect, we numerically exposed two soil profiles – one havi...

  7. Groundwater Trends and Availability Under Current and Future Groundwater Withdrawals and Climate Scenarios in Semi-arid India

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Sishodia, R. P.; Graham, W. D.; Jones, J. W.; Wani, S.; Heaney, J.

    2015-12-01

    Irrigation withdrawals have caused groundwater depletion, decreased surface flows and water quality problems in many parts of the world including India. Anticipated increase in groundwater demand and climate change is likely to exacerbate the problem. This study investigated long term (1990-2012) groundwater level trends in hard rock aquifers of semi-arid south India and used an integrated hydrologic model MIKE SHE/MIKE 11 to analyze the effects of changes in groundwater withdrawals and climate on groundwater and surface water flow and levels. Contrary to the common perception of widespread groundwater declines, statistical trend test results showed significant declines in only 22-36% of the wells in a three district region (3.15 million ha). Free electricity policy for farmers, implemented in 2004, and increased irrigated area were the two main causal factors. Groundwater levels in up to 76% of these wells showed significant decline after the subsidy (2005-2012) indicating the nexus between energy and groundwater. An integrated hydrologic model, developed using long-term monitoring data for a watershed (320 ha) in the region, performed well in simulating surface and groundwater levels. Compared to the current withdrawal scenario, prolonged hydrologic drought and decreased surface flows were predicted under future withdrawal scenarios. Future (2040-2069) climate scenarios from five General Circulation Models (GCMs), showed increased rainfall and flooding in the watershed. Although, projected increase in rainfall under the climate change scenarios is likely to provide opportunities for capture and reuse of surface flows, earlier well drying, and increased frequency and duration of hydrologic drought is likely to affect livelihoods of millions of small-scale farmers in this hard rock aquifer region. Several management options including changes in power subsidy and implementation of efficient irrigation systems, effective institutional mechanism to regulate

  8. Severe cutaneous adverse drug reactions.

    PubMed

    Chung, Wen-Hung; Wang, Chuang-Wei; Dao, Ro-Lan

    2016-07-01

    The clinical manifestations of drug eruptions can range from mild maculopapular exanthema to severe cutaneous adverse drug reactions (SCAR), including drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms, Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) which are rare but occasionally fatal. Some pathogens may induce skin reactions mimicking SCAR. There are several models to explain the interaction of human leukocyte antigen (HLA), drug and T-cell receptor (TCR): (i) the "hapten/prohapten" theory; (ii) the "p-i concept"; (iii) the "altered peptide repertoire"; and (iv) the "altered TCR repertoire". The checkpoints of molecular mechanisms of SCAR include specific drug antigens interacting with the specific HLA loci (e.g. HLA-B*15:02 for carbamazepine-induced SJS/TEN and HLA-B*58:01 for allopurinol-induced SCAR), involvement of specific TCR, induction of T-cell-mediated responses (e.g. granulysin, Fas ligand, perforin/granzyme B and T-helper 1/2-associated cytokines) and cell death mechanism (e.g. miR-18a-5p-induced apoptosis; annexin A1 and formyl peptide receptor 1-induced necroptosis in keratinocytes). In addition to immune mechanism, metabolism has been found to play a role in the pathogenesis of SCAR, such as recent findings of strong association of CYP2C9*3 with phenytoin-induced SCAR and impaired renal function with allopurinol SCAR. With a better understanding of the mechanisms, effective therapeutics and prevention for SCAR can be improved. PMID:27154258

  9. Assessment of Halon-1301 as a groundwater age tracer

    NASA Astrophysics Data System (ADS)

    Beyer, M.; van der Raaij, R.; Morgenstern, U.; Jackson, B.

    2015-06-01

    Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and timescale of groundwater flow and recharge, contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their individual restricted application ranges. For more robust groundwater dating multiple tracers need to be applied complementarily (or other characterisation methods need to be used to complement tracer information). It is important that additional, groundwater age tracers are found to ensure robust groundwater dating in future. We have recently suggested that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate, but its behaviour in water and suitability as a groundwater age tracer had not yet been assessed in detail. In this study, we determined Halon-1301 and inferred age information in 17 New Zealand groundwater samples and various modern (river) water samples. The samples were simultaneously analysed for Halon-1301 and SF6, which allowed for identification of issues such as contamination of the water with modern air during sampling. All analysed groundwater sites had also been previously dated with tritium, CFC-12, CFC-11 and SF6, and exhibited mean residence times ranging from modern (close to 0 years) to over 100 years. The investigated groundwater samples ranged from oxic to highly anoxic. All samples with available CFC data were degraded and/or contaminated in one or both of CFC-11 and CFC-12. This allowed us to make a first attempt of assessing the conservativeness of Halon-1301 in water, in terms of presence of local sources and its sensitivity towards degradation, which could affect the suitability of Halon-1301 as groundwater age tracer. Overall we found Halon-1301

  10. Age Distribution of Groundwater

    NASA Astrophysics Data System (ADS)

    Morgenstern, U.; Daughney, C. J.

    2012-04-01

    Groundwater at the discharge point comprises a mixture of water from different flow lines with different travel time and therefore has no discrete age but an age distribution. The age distribution can be assessed by measuring how a pulse shaped tracer moves through the groundwater system. Detection of the time delay and the dispersion of the peak in the groundwater compared to the tracer input reveals the mean residence time and the mixing parameter. Tritium from nuclear weapons testing in the early 1960s resulted in a peak-shaped tritium input to the whole hydrologic system on earth. Tritium is the ideal tracer for groundwater because it is an isotope of hydrogen and therefore is part of the water molecule. Tritium time series data that encompass the passage of the bomb tritium pulse through the groundwater system in all common hydrogeologic situations in New Zealand demonstrate a semi-systematic pattern between age distribution parameters and hydrologic situation. The data in general indicate high fraction of mixing, but in some cases also indicate high piston flow. We will show that still, 45 years after the peak of the bomb tritium, it is possible to assess accurately the parameters of age distributions by measuring the tail of the bomb tritium.

  11. Effects of Timing of Adversity on Adolescent and Young Adult Adjustment

    PubMed Central

    Kiff, Cara J.; Cortes, Rebecca; Lengua, Lilana; Kosterman, Rick; Hawkins, J. David; Mason, W. Alex

    2012-01-01

    Effects of Timing of Adversity on Adolescent and Young Adult Adjustment Abstract Exposure to adversity during childhood and adolescence predicts adjustment across development. Further, adolescent adjustment problems persist into young adulthood. This study examined relations of contextual adversity with concurrent adolescent adjustment and prospective mental health and health outcomes in young adulthood. A longitudinal sample (N = 808) was followed from age 10 through 27. Perceptions of neighborhood in childhood predicted depression, alcohol use disorders, and HIV risk in young adulthood. Further, the timing of adversity was important in determining the type of problem experienced in adulthood. Youth adjustment predicted adult outcomes, and in some cases, mediated the relation between adversity and outcomes. These findings support the importance of adversity in predicting adjustment and elucidate factors that affect outcomes into young adulthood. PMID:22754271

  12. Effects of Timing of Adversity on Adolescent and Young Adult Adjustment.

    PubMed

    Kiff, Cara J; Cortes, Rebecca; Lengua, Lilana; Kosterman, Rick; Hawkins, J David; Mason, W Alex

    2012-06-01

    Effects of Timing of Adversity on Adolescent and Young Adult Adjustment Abstract Exposure to adversity during childhood and adolescence predicts adjustment across development. Further, adolescent adjustment problems persist into young adulthood. This study examined relations of contextual adversity with concurrent adolescent adjustment and prospective mental health and health outcomes in young adulthood. A longitudinal sample (N = 808) was followed from age 10 through 27. Perceptions of neighborhood in childhood predicted depression, alcohol use disorders, and HIV risk in young adulthood. Further, the timing of adversity was important in determining the type of problem experienced in adulthood. Youth adjustment predicted adult outcomes, and in some cases, mediated the relation between adversity and outcomes. These findings support the importance of adversity in predicting adjustment and elucidate factors that affect outcomes into young adulthood. PMID:22754271

  13. Limits to Global Groundwater Consumption

    NASA Astrophysics Data System (ADS)

    Graaf, I. D.; Van Beek, R.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2015-12-01

    In regions with frequent water stress and large aquifer systems, groundwater is often used as an additional fresh water source. For many regions of the world groundwater abstraction exceeds groundwater recharge and persistent groundwater depletion occurs. The most direct effect of groundwater depletion is declining of water tables, leading to reduced groundwater discharge needed to sustain base-flow to e.g. rivers. Next to that, pumping costs increase, wells dry up and land subsidence occurs. These problems are expected to increase in the near future due to growing population and climate changes. This poses the urgent question of what the limits are of groundwater consumption worldwide. We simulate global water availability (5 arc-minute resolution, for 1960-2050) using the hydrological model PCR-GLOBWB (van Beek et al. 2011), coupled to a groundwater model based on MODFLOW (de Graaf et al. 2015), allowing for groundwater - surface water interactions. The groundwater model includes a parameterization of world's confined and unconfined aquifer systems needed for a realistic simulation of groundwater head dynamics. Water demands are included (from Wada et al. 2014). We study the limits to water consumption, focusing on locally attainable groundwater and groundwater levels critical to rivers to sustain low flows. We show an increasing trend (1960-2050) in groundwater head declines, due to increase in groundwater demand. Also, stream flow will decrease and low flow conditions will occur more frequent and will be longer in duration in the near future, especially for irrigated areas. Next to that, we provide a global overview of the years it takes until groundwater gets unattainable for e.g. a local farmer (100 m below land-surface used as a proxy), and estimate the increase in pumping cost for the near future. The results show where and when limits of groundwater consumption are reached globally.

  14. Groundwater availability as constrained by hydrogeology and environmental flows

    USGS Publications Warehouse

    Watson, Katelyn A.; Mayer, Alex S.; Reeves, Howard W.

    2014-01-01

    Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.

  15. Basin wide Nitrate-Nitrogen pollution of groundwater, Miyakonojo, Japan, with the relation of the regional Groundwater flow system

    NASA Astrophysics Data System (ADS)

    Mikami, K.; Shimada, J.; Zikuzono, Y.

    2006-12-01

    Miyakonojo basin is well-known agriculture area in Southern Kyushu, Japan and highly depends on groundwater resources for their everyday use. Local unconfined groundwater aquifer is widely polluted by Nitrate-Nitrogen originated from agriculture. It will become serious problem if this unconfined Nitrate pollution enlarges into the confined aquifer system which is used for local city water source. However, the detailed groundwater flow system between unconfined and confined aquifer system has not been cleared yet. The detailed three dimensional groundwater flow system study has been done by using existing wells in a basin to understand the three dimensional distribution pattern of Nitrate-Nitrogen in the aquifer. The field sampling for unconfined, intermediate and confined groundwater was done in July, 2005 and February, 2006 for about 200 wells to analyze inorganic water chemistry, hydrogen / oxygen stable isotopes and tritium. For the unconfined groundwater, there exists clear difference for the groundwater flow pattern between the eastern and western basin, which is mostly affected by the surface topography. The unconfined groundwater flowed into the confined aquifer at the eastern part of a basin, while in the western part of a basin the unconfined groundwater on a plateau flowed into the confined aquifer somehow, but most part of the unconfined groundwater has been discharge out to small river valleys between plateaus. While for the confined groundwater, the topographic effect has been disappeared and basin scale groundwater flow from the basin margin toward the basin center is dominated. In the unconfined aquifer, basin wide distribution of Nitrate-Nitrogen content has been recognized and it is relatively higher in the western basin where the cattle farming are dominated. While in the confined aquifer, there are some high Nitrate-Nitrogen spots but do not have regional trend. It is considered that some part of the basin has not distributed the welded tuff

  16. Hydrogeochemical, multiple isotopic approaches to investigate seawater mixing of groundwater in volcanic Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Koh, E. H.; Kaown, D.; Lee, S. H.; Lee, K. K.

    2014-12-01

    Groundwater is a sole resource for water supply in Jeju Island which is composed of various formations of porous volcanic rocks. Therefore, preservation of the groundwater resource is an essential issue. Due to its geological features of the island, seawater has been intruded landward, mainly in the eastern region, which restricts groundwater use in the area. In the western region, severe nitrate contaminations of groundwater have been occurred by heavily performed agricultural activities, and moreover deterioration of groundwater quality by seawater intrusion has been observed in recent years. In this study, to delineate the mixing process related to seawater intrusion into groundwater from Gosan (western region) and Pyoseon (eastern region) of Jeju Island, hydrogeochemical and multiple isotopic approaches were applied. Also, fractionation ratios of each factors (fresh groundwater, nitrate contaminated groundwater, and seawater) which affect the groundwater quality from the study areas were estimated by using the MIX_PROGRAM. The effect of seawater was observed at the groundwater wells located inland up to 1.5 km from the coast and showed to be enlarged landward during a dry season. The fractionation ratios of seawater had the minor range (0.1~1.2%) for the Pyoseon area and 0.4~3.7% of seawater was mixed with fresh groundwater in the Gosan area. Differences in hydrogeological properties between Gosan and Pyoseon areas made dissimilar occurrences of seawater mixing into groundwater in the island.

  17. Effects of Climate Variability and Change on Groundwater Resources of the United States

    USGS Publications Warehouse

    Gurdak, Jason S.; Hanson, Randall T.; Green, Timothy R.

    2009-01-01

    Groundwater is an important part of the global fresh water supply and is affected by climate. U.S. Geological Survey (USGS) scientists are working with local, State, Federal, and international partners to understand how the availability and sustainability of groundwater resources in the United States will be affected by climate variability and change. This fact sheet describes climate variability and change, important groundwater resources of the Nation, and how USGS research is helping to answer critical questions about the effects of climate on groundwater.

  18. [Acute adverse effects of dialysis].

    PubMed

    Opatrný, K

    2003-02-01

    Adverse reactions to dialyzers are a not very frequent, but because of the serious, sometimes fatal course, a dreaded complication of haemodialysis treatment. Most important among these reactions are hypersensitive reactions (anaphylactoid, reaction type A to dialyzer), which develop as a rule within the 10th minute of the procedure, and the reaction caused by the action of perfluorohydrocarbon which develop hours after onset or even completion of haemodialysis. Explanation of the development of hypersensitive reactions (HSR) by complement activation and formation of anaphylatoxins C3a and C5a during contact of blood with the bioincompatible dialysis membrane has been abandoned. Evidence of the etiological role of ethylene oxide (ETO) in the development of HSR influenced the selection of materials for the production of dialyzers and sterilization during manufacture, it emphasized the importance of rinsing of the dialyzer in the dialysis centre and led to the wide application of alternative methods of sterilization by gamma radiation and steam. HSR may be also caused by overproduction of bradykinin and inhibition of its degradation or degradation of its metabolites. Excessive bradykinin production caused by dialysis membranes with a negative charge is potentiated e.g. by a lower pH and increased plasma dilution in the initial stage of haemodialysis. Inhibition of bradykinin degradation develops during treatment with angiotensin converting enzyme inhibitors (ACEI). In prevention of HSR associated with bradykinin in addition to elimination of a combination of a negatively charged dialysis membrane and ACEI treatment a part is played also by rinsing of the dialyzer before haemodialysis with a bicarbonate solution and the modification of the membrane surface (implemented by the manufacturer) which reduces its negative charge. The first reaction to the dialyzer in conjunction with perfluorohydrocarbon (PF-5070), used in production of some dialyzers for testing the

  19. In situ groundwater bioremediation

    SciTech Connect

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  20. Groundwater-Seepage Meter

    NASA Technical Reports Server (NTRS)

    Walthall, Harry G.; Reay, William G.

    1993-01-01

    Instrument measures seepage of groundwater into inland or coastal body of water. Positioned at depth as great as 40 meters, and measures flow at low rate and low pressure differential. Auxiliary pressure meter provides data for correlation of flow of groundwater with tides and sea states. Seepage meter operates independently for several weeks. Its sampling rate adjusted to suit hydrologic conditions; to measure more frequently when conditions changing rapidly. Used in water-quality management and for biological and geological research. Potential industrial uses include measurement of seepage of caustic and corrosive liquids.

  1. Groundwater Resources of Ribeira Faja Basin, Island of Sao Nicolau, Cape Verde, West Africa

    USGS Publications Warehouse

    Heilweil, Victor M.; Gingerich, Stephen B.; Plummer, L. Niel; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  2. Groundwater Resources of Ribeira Paul Basin, Island of Santo Antao, Cape Verde, West Africa

    USGS Publications Warehouse

    Heilweil, Victor M.; Gingerich, Stephen B.; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  3. Groundwater Resources of Mosteiros Basin, Island of Fogo, Cape Verde, West Africa

    USGS Publications Warehouse

    Heilweil, Victor M.; Gingerich, Stephen B.; Plummer, L. Niel; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  4. Association of Arsenic with Adverse Pregnancy Outcomes/Infant Mortality: A Systematic Review and Meta-Analysis

    PubMed Central

    Armah, Frederick Ato; Essumang, David Kofi; Luginaah, Isaac; Clarke, Edith; Marfoh, Kissinger; Cobbina, Samuel Jerry; Nketiah-Amponsah, Edward; Namujju, Proscovia Bazanya; Obiri, Samuel; Dzodzomenyo, Mawuli

    2015-01-01

    Background Exposure to arsenic is one of the major global health problems, affecting > 300 million people worldwide, but arsenic’s effects on human reproduction are uncertain. Objectives We conducted a systematic review and meta-analysis to examine the association between arsenic and adverse pregnancy outcomes/infant mortality. Methods We searched PubMed and Ovid MEDLINE (from 1946 through July 2013) and EMBASE (from 1988 through July 2013) databases and the reference lists of reviews and relevant articles. Studies satisfying our a priori eligibility criteria were evaluated independently by two authors. Results Our systematic search yielded 888 articles; of these, 23 were included in the systematic review. Sixteen provided sufficient data for our quantitative analysis. Arsenic in groundwater (≥ 50 μg/L) was associated with increased risk of spontaneous abortion (6 studies: OR = 1.98; 95% CI: 1.27, 3.10), stillbirth (9 studies: OR = 1.77; 95% CI: 1.32, 2.36), moderate risk of neonatal mortality (5 studies: OR = 1.51; 95% CI: 1.28, 1.78), and infant mortality (7 studies: OR = 1.35; 95% CI: 1.12, 1.62). Exposure to environmental arsenic was associated with a significant reduction in birth weight (4 studies: β = –53.2 g; 95% CI: –94.9, –11.4). There was paucity of evidence for low-to-moderate arsenic dose. Conclusions Arsenic is associated with adverse pregnancy outcomes and infant mortality. The interpretation of the causal association is hampered by methodological challenges and limited number of studies on dose response. Exposure to arsenic continues to be a major global health issue, and we therefore advocate for high-quality prospective studies that include individual-level data to quantify the impact of arsenic on adverse pregnancy outcomes/infant mortality. Citation Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, Cobbina SJ, Nketiah-Amponsah E, Namujju PB, Obiri S, Dzodzomenyo M. 2015. Association of arsenic with adverse pregnancy

  5. Technical framework for groundwater restoration

    SciTech Connect

    Not Available

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled ``Preplanning Guidance Document for Groundwater Restoration``. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration.

  6. Groundwater storage variations in Madrid (Central Spain) from InSAR data

    NASA Astrophysics Data System (ADS)

    Béjar-Pizarro, Marta; Ezquerro, Pablo; Herrera, Gerardo; Tomás, Roberto; Guardiola-Albert, Carolina; Ruiz-Hernandez, Jose M.; Fernandez-Merodo, Jose A.; Marchamalo, Miguel; Martinez, Ruben

    2016-04-01

    Groundwater resources are decreasing in many regions of the world and the future water supply for many populations is threatened. Future climatic conditions and population growth are expected to intensify the problem. Identifying where groundwater storage loss is occurring and understanding the factors that control this process is crucial to mitigate its adverse consequences. In this work, we apply satellite-based measurements of ground deformation over the Tertiary detritic aquifer of Madrid (TDAM), Central Spain, to infer the spatio-temporal evolution of water levels and identify areas vulnerable to groundwater storage loss. Using Interferometric Synthetic Aperture Radar (InSAR) data during the period 1992-2010 and piezometric time series on 19 well sites covering the period 1997-2010, we model groundwater levels and estimate reservoir capacity variations during the study period. This information is used to quantify groundwater storage loss and identify vulnerable areas. Our results reveal a region of ~200 km² where groundwater storage loss occurred in two different periods, 1991-1999 and 2005-2010. A combination of factors including the occurrence of two severe droughts and the existence of multiple private wells exploited by local entities and individuals for water supply, are probably controlling the inferred groundwater storage loss. This study illustrates how InSAR data can be used to detect vulnerable areas with a tendency to loss storage so that measures can be implemented to mitigate its adverse consequences in future drought periods.

  7. Strategic approaches to adverse outcome pathway development

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are conceptual frameworks for organizing biological and toxicological knowledge in a manner that supports extrapolation of data pertaining to the initiation or early progression of toxicity to an apical adverse outcome that occurs at a level of org...

  8. Adverse Drug Reactions in Dental Practice

    PubMed Central

    Becker, Daniel E.

    2014-01-01

    Adverse reactions may occur with any of the medications prescribed or administered in dental practice. Most of these reactions are somewhat predictable based on the pharmacodynamic properties of the drug. Others, such as allergic and pseudoallergic reactions, are less common and unrelated to normal drug action. This article will review the most common adverse reactions that are unrelated to drug allergy. PMID:24697823

  9. Adverse drug reactions and organ damage: The skin.

    PubMed

    Marzano, Angelo V; Borghi, Alessandro; Cugno, Massimo

    2016-03-01

    Cutaneous adverse drug reactions are frequent, affecting 2-3% of hospitalized patients and in one twentieth of them are potentially life-threatening. Almost any pharmacologic agent can induce skin reactions, and certain drug classes, such as non-steroidal anti-inflammatory drugs, antibiotics and antiepileptics, have drug eruption rates ranging from 1% to 5%. Cutaneous drug reactions recognize several different pathomechanisms: some skin manifestations are immune-mediated like allergic reactions while others are the result of non immunological causes such as cumulative toxicity, photosensitivity, interaction with other drugs or different metabolic pathways. Cutaneous adverse drug reactions can be classified into two groups: common non-severe and rare life-threatening adverse drug reactions. Non-severe reactions are often exanthematous or urticarial whereas life-threatening reactions typically present with skin detachment or necrosis of large areas of the body and mucous membrane involvement, as in the Stevens-Johnson syndrome or toxic epidermal necrolysis. Clinicians should carefully evaluate the signs and symptoms of all cutaneous adverse drug reactions thought to be due to drugs and immediately discontinue drugs that are not essential. Short cycles of systemic corticosteroids in combination with antihistamines may be necessary for widespread exanthematous rashes, while more aggressive corticosteroid regimens or intravenous immunoglobulins associated with supportive treatment should be used for patients with Stevens-Johnson syndrome or toxic epidermal necrolysis. PMID:26674736

  10. Current Magnitude and Mechanisms of Groundwater Discharge in the Arctic: Case Study from Alaska.

    PubMed

    Dimova, Natasha T; Paytan, Adina; Kessler, John D; Sparrow, Katy J; Garcia-Tigreros Kodovska, Fenix; Lecher, Alanna L; Murray, Joseph; Tulaczyk, Slawomir M

    2015-10-20

    To better understand groundwater-surface water dynamics in high latitude areas, we conducted a field study at three sites in Alaska with varying permafrost coverage. The natural groundwater tracer ((222)Rn, radon) was used to evaluate groundwater discharge, and electrical resistivity tomography (ERT) was used to examine subsurface mixing dynamics. Different controls govern groundwater discharge at these sites. In areas with sporadic permafrost (Kasitsna Bay), the major driver of submarine groundwater discharge is tidal pumping, due to the large tidal oscillations, whereas at Point Barrow, a site with continuous permafrost and small tidal amplitudes, fluxes are mostly affected by seasonal permafrost thawing. Extended areas of low resistivity in the subsurface alongshore combined with high radon in surface water suggests that groundwater-surface water interactions might enhance heat transport into deeper permafrost layers promoting permafrost thawing, thereby enhancing groundwater discharge. PMID:26372173

  11. Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh

    NASA Astrophysics Data System (ADS)

    Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke

    2016-04-01

    Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater

  12. Nurses must report adverse drug reactions.

    PubMed

    Griffith, Richard

    There is renewed determination throughout the European Union (EU) to reduce the economic cost and high death rate associated with adverse drug reactions through better pharmacovigilance. Timely reporting and sharing of information concerning adverse drug reactions is vital to the success of this initiative. In the UK, the reporting of serious adverse drug reactions is facilitated by the Yellow Card Scheme, yet despite being well placed to monitor the effect of medicines on patients, nurses do not make full use of the scheme. This article sets out the impact of adverse drug reactions in the EU and argues that it is essential that nurses must be at the vanguard of adverse reaction reporting if the EU's pharmacovigilance initiative is to be a success. PMID:23905231

  13. Adulthood personality correlates of childhood adversity

    PubMed Central

    Carver, Charles S.; Johnson, Sheri L.; McCullough, Michael E.; Forster, Daniel E.; Joormann, Jutta

    2014-01-01

    Objective: Childhood adversity has been linked to internalizing and externalizing disorders and personality disorders in adulthood. This study extends that research by examining several personality measures as correlates of childhood adversity. Method: In a college sample self-reports were collected of childhood adversity, several scales relating to personality, and current depression symptoms as a control variable. The personality-related scales were reduced to four latent variables, which we termed anger/aggression, extrinsic focus, agreeableness, and engagement. Results: Controlling for concurrent depressive symptoms and gender, higher levels of reported childhood adversity related to lower agreeableness and to higher anger/aggression and extrinsic focus. Conclusions: Findings suggest that early adversity is linked to personality variables relevant to the building of social connection. PMID:25484874

  14. Understanding adverse events: human factors.

    PubMed Central

    Reason, J

    1995-01-01

    (1) Human rather than technical failures now represent the greatest threat to complex and potentially hazardous systems. This includes healthcare systems. (2) Managing the human risks will never be 100% effective. Human fallibility can be moderated, but it cannot be eliminated. (3) Different error types have different underlying mechanisms, occur in different parts of the organisation, and require different methods of risk management. The basic distinctions are between: Slips, lapses, trips, and fumbles (execution failures) and mistakes (planning or problem solving failures). Mistakes are divided into rule based mistakes and knowledge based mistakes. Errors (information-handling problems) and violations (motivational problems) Active versus latent failures. Active failures are committed by those in direct contact with the patient, latent failures arise in organisational and managerial spheres and their adverse effects may take a long time to become evident. (4) Safety significant errors occur at all levels of the system, not just at the sharp end. Decisions made in the upper echelons of the organisation create the conditions in the workplace that subsequently promote individual errors and violations. Latent failures are present long before an accident and are hence prime candidates for principled risk management. (5) Measures that involve sanctions and exhortations (that is, moralistic measures directed to those at the sharp end) have only very limited effectiveness, especially so in the case of highly trained professionals. (6) Human factors problems are a product of a chain of causes in which the individual psychological factors (that is, momentary inattention, forgetting, etc) are the last and least manageable links. Attentional "capture" (preoccupation or distraction) is a necessary condition for the commission of slips and lapses. Yet, its occurrence is almost impossible to predict or control effectively. The same is true of the factors associated with

  15. 20th Century Groundwater in the Northeast United States: A case study quantifying the impact of groundwater policies in New Jersey

    NASA Astrophysics Data System (ADS)

    Kanwar, P. S.; Arrigo, J. S.; Thomas, B.; Vogel, R. M.; Hoover, J. H.

    2010-12-01

    Groundwater is a vital resource throughout the Northeast corridor and is an important water source for domestic, industrial and irrigation purposes. During the 20th century, suburban groundwater withdrawals intensified with increasing population growth, the advent of rural electrification and sophisticated pumping technologies, thus, the need for effective groundwater management becomes increasingly important in the region. Data from the Unites States Geological Survey National Water-Use Information Program documents this concentrated use of groundwater in suburban areas, and is particularly prominent across the majority of New Jersey. Focusing on New Jersey as an area of significant groundwater use and increasing demand, this project investigates total groundwater withdrawals in conjunction with a policy-based framework, facilitating an awareness of groundwater impacts as informed through existing policy during the 20th century. The objectives of this study are to identify the relevant federal, statewide and municipal policies that evolved in the state of New Jersey during the 20th century, and examine the groundwater withdrawal trends for the state of New Jersey between 1950 - 2005. Preliminary results revealed that increased restrictions on groundwater policy between 1982 and 1997 had an observable affect on reducing total groundwater withdrawals. Multivariate regression analyses using indicator variables, i.e. mixed effects model, will be used to explore relationships between county specific withdrawals and significant policy that may have influenced groundwater usage. It is anticipated to observe a strong correlation between groundwater withdrawals and the effectiveness of the implemented groundwater policies. Future collaborative work will further investigate the effectiveness of policy as hydrologically evidenced by alterations in baseflow contribution to streamflow, and groundwater persistence.

  16. Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater

    USGS Publications Warehouse

    Meliker, J.R.; Slotnick, M.J.; Avruskin, G.A.; Haack, S.K.; Nriagu, J.O.

    2009-01-01

    Arsenic concentrations exceeding 10 ??g/l, the United States maximum contaminant level and the World Health Organization guideline value, are frequently reported in groundwater from bedrock and unconsolidated aquifers of southeastern Michigan. Although arsenic-bearing minerals (including arsenian pyrite and oxide/hydroxide phases) have been identified in Marshall Sandstone bedrock of the Mississippian aquifer system and in tills of the unconsolidated aquifer system, mechanisms responsible for arsenic mobilization and subsequent transport in groundwater are equivocal. Recent evidence has begun to suggest that groundwater recharge and characteristics of well construction may affect arsenic mobilization and transport. Therefore, we investigated the relationship between dissolved arsenic concentrations, reported groundwater recharge rates, well construction characteristics, and geology in unconsolidated and bedrock aquifers. Results of multiple linear regression analyses indicate that arsenic contamination is more prevalent in bedrock wells that are cased in proximity to the bedrock-unconsolidated interface; no other factors were associated with arsenic contamination in water drawn from bedrock or unconsolidated aquifers. Conditions appropriate for arsenic mobilization may be found along the bedrock-unconsolidated interface, including changes in reduction/oxidation potential and enhanced biogeochemical activity because of differences between geologic strata. These results are valuable for understanding arsenic mobilization and guiding well construction practices in southeastern Michigan, and may also provide insights for other regions faced with groundwater arsenic contamination. ?? Springer-Verlag 2008.

  17. Trends in groundwater quality

    NASA Astrophysics Data System (ADS)

    Loftis, Jim C.

    1996-02-01

    The term trend takes on a variety of meanings for groundwater quality in both a temporal and spatial context. Most commonly, trends are thought of as changes over time at either a regional or localized spatial scale. Generally water quality managers are most interested in changes associated with some form of human activity. Carefully defining what is meant by trend is a critical step in trend analysis and may be accomplished by formulating a statistical model which includes a trend component. Although there are a great many regional groundwater studies which provide a snapshot description of water quality conditions over an area at one point in time, there are relatively few which consider changes over time and fewer still which include a statistical analysis of long-term trend. This review covers both regional and localized studies of groundwater quality around the world, including a few snapshots, but focusing primarily on those studies which include an evaluation of temporal changes in groundwater quality. The studies include national assessments, agricultural case studies (the largest group, mostly regional in scope), urban case studies, and point source and hazardous waste case studies.

  18. PATHS groundwater hydrologic model

    SciTech Connect

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  19. Automated Groundwater Screening

    SciTech Connect

    Taylor, Glenn A.; Collard, Leonard, B.

    2005-10-31

    The Automated Intruder Analysis has been extended to include an Automated Ground Water Screening option. This option screens 825 radionuclides while rigorously applying the National Council on Radiation Protection (NCRP) methodology. An extension to that methodology is presented to give a more realistic screening factor for those radionuclides which have significant daughters. The extension has the promise of reducing the number of radionuclides which must be tracked by the customer. By combining the Automated Intruder Analysis with the Automated Groundwater Screening a consistent set of assumptions and databases is used. A method is proposed to eliminate trigger values by performing rigorous calculation of the screening factor thereby reducing the number of radionuclides sent to further analysis. Using the same problem definitions as in previous groundwater screenings, the automated groundwater screening found one additional nuclide, Ge-68, which failed the screening. It also found that 18 of the 57 radionuclides contained in NCRP Table 3.1 failed the screening. This report describes the automated groundwater screening computer application.

  20. HANFORD GROUNDWATER REMEDIATION

    SciTech Connect

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and geographically dispersed community is

  1. Hanford Groundwater Remediation

    SciTech Connect

    Charboneau, B.; Thompson, K. M.; Wilde, R.; Ford, B.; Gerber, M.

    2006-07-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70 E+12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and geographically dispersed community is

  2. Assessment of nitrogen ceilings for Dutch agricultural soils to avoid adverse environmental impacts.

    PubMed

    de Vries, W; Kros, H; Oenema, O; Erisman, J W

    2001-11-01

    In the Netherlands, high traffic density and intensive animal husbandry have led to high emissions of reactive nitrogen (N) into the environment. This leads to a series of environmental impacts, including: (1) nitrate (NO3) contamination of drinking water, (2) eutrophication of freshwater lakes, (3) acidification and biodiversity impacts on terrestrial ecosystems, (4) ozone and particle formation affecting human health, and (5) global climate change induced by emissions of N2O. Measures to control reactive N emissions were, up to now, directed towards those different environmental themes. Here we summarize the results of a study to analyse the agricultural N problem in the Netherlands in an integrated way, which means that all relevant aspects are taken into account simultaneously. A simple N balance model was developed, representing all crucial processes in the N chain, to calculate acceptable N inputs to the farm (so-called N ceiling) and to the soil surface (application in the field) by feed concentrates, organic manure, fertiliser, deposition, and N fixation. The N ceilings were calculated on the basis of critical limits for NO 3 concentrations in groundwater, N concentrations in surface water, and ammonia (NH3) emission targets related to the protection of biodiversity of natural areas. Results show that in most parts of the Netherlands, except the western and the northern part, the N ceilings are limited by NH 3 emissions, which are derived from critical N loads for nature areas, rather than limits for both ground- and surface water. On the national scale, the N ceiling ranges between 372 and 858 kton year(-1) depending on the choice of critical limits. The current N import is 848 kton year(-1). A decrease of nearly 60% is needed to reach the ceilings that are necessary to protect the environment against all adverse impacts of N pollution from agriculture. PMID:12805837

  3. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament.

    PubMed

    Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A; Münsterkötter, Anna L; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter; Lonsdorf, Tina B

    2016-04-01

    Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. PMID:26568620

  4. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament

    PubMed Central

    Kuhn, Manuel; Scharfenort, Robert; Schümann, Dirk; Schiele, Miriam A.; Münsterkötter, Anna L.; Deckert, Jürgen; Domschke, Katharina; Haaker, Jan; Kalisch, Raffael; Pauli, Paul; Reif, Andreas; Romanos, Marcel; Zwanzger, Peter

    2016-01-01

    Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences. PMID:26568620

  5. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface- and shallow ground-water hydrology - A literature review

    USGS Publications Warehouse

    Andersen, Douglas C.

    2007-01-01

    A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife Refuge, Colorado, in understanding factors potentially influencing refuge ecology. Few studies were found that addressed hydrological effects of roads on a comparable area of shallow slope in a semiarid region. No study dealt with road effects on surface- and ground-water supplies to ephemeral wetlands, which on the refuge are sustained by seasonal snowmelt in neighboring mountains. Road surfaces increase runoff, reduce infiltration, and serve as a sediment source. Roadbeds can interfere with normal surface- and ground-water flows and thereby influence the quantity, timing, and duration of water movement both across landscapes and through the soil. Hydrologic effects can be localized near the road as well as widespread and distant. The number, arrangement, and effectiveness of road-drainage structures (culverts and other devices) largely determine the level of hydrologic alteration produced by a road. Undesirable changes to natural hydrologic patterns can be minimized by considering potential impacts during road design, construction, and maintenance. Road removal as a means to restore desirable hydrologic conditions to landscapes adversely affected by roads has yet to be rigorously evaluated.

  6. Drugs of abuse in urban groundwater. A case study: Barcelona.

    NASA Astrophysics Data System (ADS)

    Jurado, A.; Mastroianni, N.; Vazquez-Suñe, E.; Carrera, J.; Tubau, I.; Pujades, E.; Postigo, C.; Lopez de Alda, M.; Barceló, D.

    2012-04-01

    This study is concerned with drugs of abuse (DAs) and their metabolites in urban groundwater at field scale in relation to (1) the spatial distribution of the groundwater samples, (2) the depth of the groundwater sample, (3) the presence of DAs in recharge sources, and (4) the identification of processes affecting the fate of DAs in groundwater. To this end, urban groundwater samples were collected in the city of Barcelona and a total of 21 drugs were analyzed including cocainics, amphetamine-like compounds, opioids, lysergics and cannabinoids and the prescribed drugs benzodiazepines. Overall, the highest groundwater concentrations and the largest number of detected DAs were found in zones basically recharged by a river that receives large amounts of effluents from waste water treatment plants (WWTPs). In contrast, the urbanized areas yielded not only lower concentrations but also a much smaller number of drugs, which suggests a local origin. In fact, cocaine and its metabolite were dominant in more prosperous neighbourhoods, whereas the cheaper (MDMA) was the dominant DA in poorer districts. Concentrations of DAs estimated mainly from the waste water fraction in groundwater samples were consistently higher than the measured ones, suggesting that DAs undergo removal processes in both reducing and oxidizing conditions.

  7. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia).

    PubMed

    Koroša, A; Auersperger, P; Mali, N

    2016-11-15

    Micro-organic (MO) contaminants in groundwater can have adverse effects on both the environment and on human health. They enter the natural environment as a result of various processes, their presence in groundwater is the result of current anthropogenic activity and pollution loads from the past. A study on the occurrence and concentrations levels of selected contaminants in water was performed in the city of Maribor, Slovenia. A total of 56 groundwater and 4 surface water samples were collected in together four rounds in different hydrogeological periods (dry and wet seasons), and a total of 13 selected contaminants were analysed in this study. Carbamazepine, propyphenazone, caffeine, 2-methyl-2H-benzotriazole (2-MBT) and 2.4-dimethyl-2H-benzotriazole (2.4-DMBT) were determined as indicators of urban pollution, while pesticides and their metabolites (atrazine, desethylatrazine, deisopropylatrazine, terbuthylazine, desethylterbuthylazine, metolachlor, simazine, propazine) were mainly defined as indicators of crop production. All of the selected MO contaminants were detected both in the aquifer and Drava River. The most frequently detected MO compounds in groundwater were desethylatrazine (frequency of detection 98.2%; max. concentration 103.0ngL(-1)), atrazine (94.6%; 229ngL(-1)), 2.4-DMBT (92.9%; 273ngL(-1)), carbamazepine (80.4%; 88.00ngL(-1)), desethylterbuthylazine (76.8%; 7.0ngL(-1)) and simazine (76.8%; 29.6ngL(-1)), whereas propyphenazone (14.3%; 10.7ngL(-1)) was the least frequently detected. Detected MO concentrations in the study were compared with results published elsewhere around the world. Concentrations in groundwater indicate specific land use in their recharge areas. On the basis of correlations and the spatial distribution of selected MOs, groundwater origin for every sampling point was determined. Sampling sites were divided into three different groups for which indicative groundwater quality properties were defined. PMID:27395079

  8. Collateral Adverse Outcomes After Lumbar Spine Surgery.

    PubMed

    Daniels, Alan H; Gundle, Kenneth; Hart, Robert A

    2016-01-01

    Collateral adverse outcomes are the expected or unavoidable results of a procedure that is performed in a standard manner and typically experienced by the patient. Collateral adverse outcomes do not result from errors, nor are they rare. Collateral adverse outcomes occur as the direct result of a surgical procedure and must be accepted as a trade-off to attain the intended benefits of the surgical procedure. As such, collateral adverse outcomes do not fit into the traditional definition of a complication or adverse event. Examples of collateral adverse outcomes after lumbar spine arthrodesis include lumbar stiffness, postoperative psychological stress, postoperative pain, peri-incisional numbness, paraspinal muscle denervation, and adjacent-level degeneration. Ideally, a comparison of interventions for the treatment of a clinical condition should include information on both the negative consequences (expected and unexpected) and potential benefits of the treatment options. The objective evaluation and reporting of collateral adverse outcomes will provide surgeons with a more complete picture of invasive interventions and, thus, the improved ability to assess alternative treatment options. PMID:27049197

  9. Adverse event recording post hip fracture surgery.

    PubMed

    Doody, K; Mohamed, K M S; Butler, A; Street, J; Lenehan, B

    2013-01-01

    Accurate recording of adverse events post hip fracture surgery is vital for planning and allocating resources. The purpose of this study was to compare adverse events recorded prospectively at point of care with adverse recorded by the Hospital In-Patient Enquiry (HIPE) System. The study examined a two month period from August to September 2011 at University Hospital Limerick. Out of a sample size of 39, there were 7 males (17.9%) and 32 females (82.1%) with an age range of between 53 and 98 years. The mean age was 80.5 years. 55 adverse events were recorded, in contrast to the HIPE record of 13 (23.6%) adverse events. The most common complications included constipation 10 (18.2%), anaemia 8 (14.5%), urinary retention 8 (14.50%), pneumonia 5 (9.1%) and delirium 5 (9.1%). Of the female cohort, 24 (68.8%) suffered an adverse event, while only 4 (57%) males suffered an adverse event. PMID:24579408

  10. Groundwater Recharge and Flow Processes in Taihang Mountains, a Semi-humid Region, North China

    NASA Astrophysics Data System (ADS)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2015-04-01

    Groundwater flow/recharge variations in time and space are crucial for effective water management especially in semi-arid and semi-humid regions. In order to reveal comprehensive groundwater flow/recharge processes in a catchment with a large topographical relief and seasonal hydrological variations, intensive field surveys were undertaken at 4 times in different seasons (June 2011, August 2012, November 2012, February 2014) in the Wangkuai watershed, Taihang mountains, which is a main groundwater recharge area of the North China Plain. The groundwater, spring, stream water and reservoir water were taken, and inorganic solute constituents and stable isotopes of oxygen-18 and deuterium were determined on all water samples. Also, the stream flow rate and the depth of groundwater table were observed. The stable isotopic compositions and inorganic solute constituents in the groundwater are depleted and shown similar values as those of the surface water at the mountain-plain transitional area. Additionally, the groundwater in the vicinity of the Wangkuai Reservoir presents clearly higher stable isotopic compositions and lower d-excess than those of the stream water, indicating the groundwater around the reservoir is affected by evaporation same as the Wangkuai Reservoir itself. Hence, the surface water in the mountain-plain transitional area and Wangkuai Reservoir are principal groundwater recharge sources. An inversion analysis and simple mixing model were applied in the Wangkuai watershed using stable isotopes of oxygen-18 and deuterium to construct a groundwater flow model. The model shows that multi-originated groundwater flows from upstream to downstream along topography with certain mixing. In addition, the groundwater recharge occurs dominantly at the altitude from 421 m to 953 m, and the groundwater recharge rate by the Wangkuai Reservoir is estimated to be 2.4 % of the total groundwater recharge in the Wangkuai watershed. Therefore, the stream water and

  11. Adverse childhood event experiences, fertility difficulties, and menstrual cycle characteristics

    PubMed Central

    Jacobs, Marni B.; Boynton-Jarrett, Renee D.; Harville, Emily W.

    2016-01-01

    Introduction Increased childhood adversity may be affect adult fertility, however, the mechanism through which this occurs is unclear. Menstrual cycle abnormalities are predictive of fertility difficulties, and stress influences menstrual cycle characteristics. Here, we assesses whether adverse childhood experiences (ACEs) are associated with fertility difficulties and menstrual cycle dysregulation, offering a plausible mechanism for the link between lifetime stress and fertility. Methods From April 2012 – February 2014, 742 pregnant and non-pregnant women aged 18–45 years residing in southeastern Louisiana provided information on childhood adversity and reproductive history. Associations between ACEs and fertility difficulties and menstrual cycle patterns were evaluated. Results As the number of ACEs increased, risk of fertility difficulties and amenorrhea increased (RR = 1.09, 95% CI 1.05 – 1.13 and RR = 1.07, 95% CI 1.04 – 1.10, respectively), while fecundability decreased (FR = 0.97, 95% CI 0.95 – 1.00). Compared to women with no adversity, women in the high adversity group were more likely to experience both infertility and amenorrhea (RR = 2.75, 95% CI 1.45 – 5.21 and RR = 2.54, 95% CI 1.52 – 4.25, respectively), and reduced fecundability (FR = 0.75, 95% CI 0.56 – 1.00). Although similar patterns were seen for menstrual cycle irregularity, associations were diminished. Associations did not materially change following adjustment for age, BMI, race, education, smoking, and income. Results are constrained by the self-report nature of the study and the limited generalizability of the study population. Discussion To our knowledge, this is the first study to present evidence of a link between childhood stressors, menstrual cycle disruption, and fertility difficulties. The effect of childhood stress on fertility may be mediated through altered functioning of the HPA axis, acting to suppress fertility in response to less than optimal reproductive

  12. Learning from adverse incidents involving medical devices.

    PubMed

    Amoore, John; Ingram, Paula

    While an adverse event involving a medical device is often ascribed to either user error or device failure, the causes are typically multifactorial. A number of incidents involving medical devices are explored using this approach to investigate the various causes of the incident and the protective barriers that minimised or prevented adverse consequences. User factors, including mistakes, omissions and lack of training, conspired with background factors--device controls and device design, storage conditions, hidden device damage and physical layout of equipment when in use--to cause the adverse events. Protective barriers that prevented or minimised the consequences included staff vigilance, operating procedures and alarms. PMID:12715578

  13. Hydrogeochemical Indicators of Groundwater Flow Systems in the Yangwu River Alluvial Fan, Xinzhou Basin, Shanxi, China

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Liang, Xing; Jin, Menggui; Currell, Matthew J.; Han, Ying; Song, Xianfang

    2009-08-01

    Based on analysis of groundwater hydrochemical and isotopic indicators, this article aims to identify the groundwater flow systems in the Yangwu River alluvial fan, in the Xinzhou Basin, China. Groundwater δ2H and δ18O values indicate that the origin of groundwater is mainly from precipitation, with local evaporative influence. d-excess values lower than 10% in most groundwaters suggest a cold climate during recharge in the area. Major ion chemistry, including rCa/rMg and rNa/rCl ratios, show that groundwater salinization is probably dominated by water-rock interaction (e.g., silicate mineral weathering, dissolution of calcite and dolomite and cation exchange) in the Yangwu River alluvial fan, and locally by intensive evapotranspiration in the Hutuo River valley. Cl and Sr concentrations follow an increasing trend in shallow groundwater affected by evaporation, and a decreasing trend in deep groundwater. 87Sr/86Sr ratios reflect the variety of lithologies encountered during throughflow. The groundwater flow systems (GFS) of the Yangwu River alluvial fan include local and intermediate flow systems. Hydrogeochemical modeling results, simulated using PHREEQC, reveal water-rock interaction processes along different flow paths. This modeling method is more effective for characterizing flow paths in the intermediate system than in the local system. Artificial exploitation on groundwater in the alluvial fan enhances mixing between different groundwater flow systems.

  14. Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China.

    PubMed

    Han, Dongmei; Liang, Xing; Jin, Menggui; Currell, Matthew J; Han, Ying; Song, Xianfang

    2009-08-01

    Based on analysis of groundwater hydrochemical and isotopic indicators, this article aims to identify the groundwater flow systems in the Yangwu River alluvial fan, in the Xinzhou Basin, China. Groundwater delta(2)H and delta(18)O values indicate that the origin of groundwater is mainly from precipitation, with local evaporative influence. d-excess values lower than 10% in most groundwaters suggest a cold climate during recharge in the area. Major ion chemistry, including rCa/rMg and rNa/rCl ratios, show that groundwater salinization is probably dominated by water-rock interaction (e.g., silicate mineral weathering, dissolution of calcite and dolomite and cation exchange) in the Yangwu River alluvial fan, and locally by intensive evapotranspiration in the Hutuo River valley. Cl and Sr concentrations follow an increasing trend in shallow groundwater affected by evaporation, and a decreasing trend in deep groundwater. (87)Sr/(86)Sr ratios reflect the variety of lithologies encountered during throughflow. The groundwater flow systems (GFS) of the Yangwu River alluvial fan include local and intermediate flow systems. Hydrogeochemical modeling results, simulated using PHREEQC, reveal water-rock interaction processes along different flow paths. This modeling method is more effective for characterizing flow paths in the intermediate system than in the local system. Artificial exploitation on groundwater in the alluvial fan enhances mixing between different groundwater flow systems. PMID:19548025

  15. Groundwater flooding vulnerability assessment in riverside alluviums of Nakdong River, South Korea

    NASA Astrophysics Data System (ADS)

    Chang, kwangsoo; Lee, Seunghyun; Kwon, Mijin; Kim, Deoggeun

    2016-04-01

    Soil wetting or inundation due to rising groundwater table can cause groundwater flooding in the riverside alluvium and also affect the scale of surface water flooding. There is possible to occur the flooding of lowland by falling the groundwater level at heavy rain and is important to evaluate the vulnerability and the prediction of groundwater problem. Three groups (safe, intermediate, and vulnerable) are classified by using groundwater flooding vulnerability index(FVI) which is calculated using groundwater level's time series measured at each monitoring well. A prediction model for the classification is developed by using a discriminant analysis based on the correlation between the original groups and physical features (topography, soil, sediment layer distribution, soil drainage, and groundwater level-related features). And we have created a groundwater flooding vulnerability GIS Map. This research results is possible to policy support of establishment of flooding providing the flooding vulnerability technique using the groundwater occurring the damage came from the fluctuation of groundwater level by the water level change of river and the effect of rainfall. Also, in conjunction with the existing flooding/drought map, it improve the accuracy of groundwater flooding/drought prediction, and it becomes possible to respond the water sources, water level down by using the evaluation system in flooding/drought.

  16. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget- derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  17. Evaluation of hydrologic data obtained from a local groundwater monitoring network in a metropolitan city, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Yong; Choi, Mi-Jung; Kim, Yoon-Young; Lee, Kang-Kun

    2005-08-01

    In the late 1980s, dramatic increases in water use caused over-exploitation of groundwater resources and deterioration of water quality in Seoul metropolitan city. To monitor changes in quantity of groundwater resources and their quality, the metropolitan government established a local groundwater monitoring network in 1997 consisting of 119 monitoring wells. Groundwater resources in the urban area were affected by various human activities, including underground construction such as subways, pumping for public or private water use, leaky sewer systems and pavements. The variation patterns of the groundwater levels were mainly classified into four types, reflecting natural recharge due to rainfall events during the wet season, artificial recharge from leaky sewer or water supply systems, and heavy groundwater pumping for drainage or flood control purposes at underground construction sites. Significantly decreasing trends of groundwater levels in the suburbs of Seoul indicate groundwater use for various agricultural activities. Subway construction lowered the water level by an average of 25 m. Electrical conductivity values showed a wide range, from 100 to 1800 μS/cm (mean 470 μS/cm). Groundwater temperature generally showed a stable pattern, except for some sensitive increases at relatively shallow monitoring wells. Detailed analysis of the monitored groundwater data would provide some helpful implications for optimal and efficient management of groundwater resources in this metropolitan city.

  18. Evaluation of groundwater dynamic regime with groundwater depth evaluation indexes.

    PubMed

    Genxu, Wang; Jian, Zhou; Kubota, Jumpei; Jianping, Su

    2008-06-01

    An accurate quantitative evaluation of anthropogenic effects on regional groundwater dynamics is critical to the rational planning, management, and use of such resources and in maintaining the sustainability of groundwater-dependent ecosystems. Based on groundwater dynamics, a series of groundwater depth evaluation indexes were created to quantitatively evaluate the effects of anthropogenic activities on the groundwater system. These indexes were based on mathematical relationships relating groundwater depth to surface runoff (gammat), precipitation (rhot), and extraction (deltat). The anthropogenic effects on these relationships were evaluated statistically, with respect to both temporal and spatial variation. The anthropogenic effects on groundwater dynamics within the arid Zhangye Basin, located in the middle reaches of northwest China's Heihe River, were investigated. River valley plains in the western portion of the basin excepted, anthropogenic activities have, since 1995, dramatically altered the basin's groundwater dynamics; in particular, in the mid-upper and lower portions of alluvial-diluvial fans and in localized northerly fine-soil plains regions, the relationship of groundwater to surface runoff and atmospheric precipitation has shifted. This and other changes indicate that anthropogenic effects on groundwater systems in this region show clear spatiotemporal variation. PMID:18686930

  19. Uncertainty Comparison of Visual Sensing in Adverse Weather Conditions.

    PubMed

    Lo, Shi-Wei; Wu, Jyh-Horng; Chen, Lun-Chi; Tseng, Chien-Hao; Lin, Fang-Pang; Hsu, Ching-Han

    2016-01-01

    This paper focuses on flood-region detection using monitoring images. However, adverse weather affects the outcome of image segmentation methods. In this paper, we present an experimental comparison of an outdoor visual sensing system using region-growing methods with two different growing rules-namely, GrowCut and RegGro. For each growing rule, several tests on adverse weather and lens-stained scenes were performed, taking into account and analyzing different weather conditions with the outdoor visual sensing system. The influence of several weather conditions was analyzed, highlighting their effect on the outdoor visual sensing system with different growing rules. Furthermore, experimental errors and uncertainties obtained with the growing rules were compared. The segmentation accuracy of flood regions yielded by the GrowCut, RegGro, and hybrid methods was 75%, 85%, and 87.7%, respectively. PMID:27447642

  20. Uncertainty Comparison of Visual Sensing in Adverse Weather Conditions†

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Chen, Lun-Chi; Tseng, Chien-Hao; Lin, Fang-Pang; Hsu, Ching-Han

    2016-01-01

    This paper focuses on flood-region detection using monitoring images. However, adverse weather affects the outcome of image segmentation methods. In this paper, we present an experimental comparison of an outdoor visual sensing system using region-growing methods with two different growing rules—namely, GrowCut and RegGro. For each growing rule, several tests on adverse weather and lens-stained scenes were performed, taking into account and analyzing different weather conditions with the outdoor visual sensing system. The influence of several weather conditions was analyzed, highlighting their effect on the outdoor visual sensing system with different growing rules. Furthermore, experimental errors and uncertainties obtained with the growing rules were compared. The segmentation accuracy of flood regions yielded by the GrowCut, RegGro, and hybrid methods was 75%, 85%, and 87.7%, respectively. PMID:27447642

  1. Chemical research on red pigments after adverse reactions to tattoo.

    PubMed

    Tammaro, A; Toniolo, C; Giulianelli, V; Serafini, M; Persechino, S

    2016-03-01

    Currently, the incidence of tattooing is on the rise compared to the past, especially among adolescents, and it leads to the urgency of monitoring the security status of tattooing centers, as well as to inform people about the risks of tattoo practice. In our clinical experience, 20% of tattooed patients presented adverse reactions, like allergic contact dermatitis, psoriasis with Koebner's phenomena and granulomatous reactions, with the latter most prevalent and most often related to red pigment. Adverse reactions to tattoo pigments, especially the red one, are well known and described in literature. Great attention has to be focused on the pigments used, especially for the presence of new substances, often not well known. For this reason, we decided to perform a study on 12 samples of red tattoo ink, obtained by patients affected by different cutaneous reactions in the site of tattoo, to analyze their chemical composition. PMID:26934738

  2. Tracing man's impact on groundwater dependent ecosystem using geochemical an isotope tools combined with 3D flow and transport modeling: case study from southern Poland

    NASA Astrophysics Data System (ADS)

    Zurek, Anna; Witczak, Stanislaw; Kania, Jaroslaw; Wachniew, Przemyslaw; Rozanski, Kazimierz; Dulinski, Marek; Jench, Olga

    2013-04-01

    Thorough understanding of the link between terrestrial ecosystems and underlying groundwater reservoirs is an important element of sustainable management of groundwater resources in the light of ever growing anthropogenic pressure on groundwater reserves, both with respect to quantity and quality of this vital resource. While association of terrestrial ecosystems with surface water (rivers, streams, lakes, etc.) is visible and recognized, their link to underground components of the hydrological cycle is often forgotten and not appreciated. The presented study was aimed at investigating possible adverse effects of intensive exploitation of porous sandy aquifer on groundwater dependent terrestrial ecosystem (GDTE) consisting of a valuable forest stand and associated wetlands. The Bogucice Sands aquifer and the associated GDTE (Niepolomice Forest) are located in the south of Poland. The principal economic role of the aquifer, consisting of two water-bearing strata is to provide potable water for public and private users. Eastern part of the shallow phreatic aquifer is occupied by Niepolomice Forest. The Niepolomice Forest is a lowland forest covering around 110 km2. It is protected as a Natura 2000 Special Protection Area "Puszcza Niepołomicka" (PLB120002) which supports bird populations of European importance. Additionally, a fen in the western part of the forest comprises a separate Natura 2000 area "Torfowisko Wielkie Bloto" (PLH120080), a significant habitat of endangered butterfly species associated with wet meadows. Dependence of the Niepolomice Forest stands on groundwater is enhanced by low available water capacity and low capillary rise of soils. Groundwater conditions in the Niepolomice Forest, including Wielkie Bloto fen have been affected by meliorations carried out mostly after the Second World War and by forest management. In September 2009 a cluster of new pumping wells (Wola Batorska well-field) has been set up close to the northern boundary of

  3. Adverse Effects of Wheat Gluten.

    PubMed

    Koning, Frits

    2015-01-01

    Man began to consume cereals approximately 10,000 years ago when hunter-gatherers settled in the fertile golden crescent in the Middle East. Gluten has been an integral part of the Western type of diet ever since, and wheat consumption is also common in the Middle East, parts of India and China as well as Australia and Africa. In fact, the food supply in the world heavily depends on the availability of cereal-based food products, with wheat being one of the largest crops in the world. Part of this is due to the unique properties of wheat gluten, which has a high nutritional value and is crucial for the preparation of high-quality dough. In the last 10 years, however, wheat and gluten have received much negative attention. Many believe that it is inherently bad for our health and try to avoid consumption of gluten-containing cereals; a gluten-low lifestyle so to speak. This is fueled by a series of popular publications like Wheat Belly; Lose the Wheat, Lose the Weight, and Find Your Path Back to Health. However, in reality, there is only one condition where gluten is definitively the culprit: celiac disease (CD), affecting approximately 1% of the population in the Western world. Here, I describe the complexity of the cereals from which gluten is derived, the special properties of gluten which make it so widely used in the food industry, the basis for its toxicity in CD patients and the potential for the development of safe gluten and alternatives to the gluten-free diet. PMID:26606684

  4. Groundwater flow and solute movement to drain laterals, western San Joaquin Valley, California: 2. Quantitative hydrologic assessment

    USGS Publications Warehouse

    Fio, John L.; Deverel, S.J.

    1991-01-01

    Groundwater flow modeling was used to quantitatively assess the hydrologic processes affecting ground water and solute movement to drain laterals. Modeling results were used to calculate the depth distribution of groundwater flowing into drain laterals at 1.8 m (drain lateral 1) and 2.7 m (drain lateral 2) below land surface. The simulations indicated that under nonirrigated conditions about 89% of the flow in drain lateral 2 was from groundwater originating from depths greater than 6 m below land surface. The deep groundwater has higher selenium concentrations than shallow groundwater. Simulation of irrigated conditions indicates that as recharge (deep percolation) increases, the proportional contribution of deep groundwater to drain lateral flow decreases. Groundwater flow paths and travel times estimated from the simulation results indicate that groundwater containing high concentrations of selenium (greater than 780 μg L−1) probably will continue to enter drain lateral 2 for decades.

  5. Adverse Outcome Pathways: From Definition to Application

    EPA Science Inventory

    A challenge for both human health and ecological toxicologists is the transparent application of mechanistic (e.g., molecular, biochemical, histological) data to risk assessments. The adverse outcome pathway (AOP) is a conceptual framework designed to meet this need. Specifical...

  6. Adverse cutaneous drug eruptions: current understanding.

    PubMed

    Hoetzenecker, W; Nägeli, M; Mehra, E T; Jensen, A N; Saulite, I; Schmid-Grendelmeier, P; Guenova, E; Cozzio, A; French, L E

    2016-01-01

    Adverse cutaneous drug reactions are recognized as being major health problems worldwide causing considerable costs for health care systems. Most adverse cutaneous drug reactions follow a benign course; however, up to 2% of all adverse cutaneous drug eruptions are severe and life-threatening. These include acute generalized exanthematous pustulosis (AGEP), drug reaction with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). Physicians should be aware of specific red flags to rapidly identify these severe cutaneous drug eruptions and initiate appropriate treatment. Besides significant progress in clinical classification and treatment, recent studies have greatly enhanced our understanding in the pathophysiology of adverse cutaneous drug reactions. Genetic susceptibilities to certain drugs have been identified in SJS/TEN patients, viral reactivation in DRESS has been elucidated, and the discovery of tissue resident memory T cells helps to better understand the recurrent site-specific inflammation in patients with fixed drug eruption. PMID:26553194

  7. Childhood adversities and psychosis: evidence, challenges, implications

    PubMed Central

    Morgan, Craig; Gayer‐Anderson, Charlotte

    2016-01-01

    There is a substantial body of research reporting evidence of associations between various forms of childhood adversity and psychosis, across the spectrum from experiences to disorder. This has been extended, more recently, to include studies of cumulative effects, of interactions with other factors, of specific effects, and of putative biological and psychological mechanisms. In this paper we evaluate this research and highlight the remaining methodological issues and gaps that temper, but do not dismiss, conclusions about the causal role of childhood adversity. We also consider the emerging work on cumulative, synergistic, and specific effects and on mechanisms; and discuss the broader implications of this line of research for our understanding of psychosis. We conclude that the current balance of evidence is that childhood adversities – particularly exposure to multiple adversities involving hostility and threat – do, in some people, contribute to the onset of psychotic experiences and psychotic disorders. PMID:27265690

  8. RACIAL RESIDENTIAL SEGREGATION AND ADVERSE BIRTH OUTCOMES

    EPA Science Inventory

    INTRODUCTION. The disparity between black and white women's adverse birth outcomes has been subject to much investigation, yet the factors underlying its persistence remain elusive, which has encouraged research on neighborhood-level influences, including racial residential segr...

  9. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect

    Washington Regulatory and Environmental Services

    2005-07-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  10. Resolving hyporheic and groundwater components of streambed water flux

    USGS Publications Warehouse

    Bhaskar, Aditi S.; Harvey, Judson W.; Henry, Eric J.

    2012-01-01

    Hyporheic and groundwater fluxes typically occur together in permeable sediments beneath flowing stream water. However, streambed water fluxes quantified using the thermal method are usually interpreted as representing either groundwater or hyporheic fluxes. Our purpose was to improve understanding of co-occurring groundwater and hyporheic fluxes using streambed temperature measurements and analysis of one-dimensional heat transport in shallow streambeds. First, we examined how changes in hyporheic and groundwater fluxes affect their relative magnitudes by reevaluating previously published simulations. These indicated that flux magnitudes are largely independent until a threshold is crossed, past which hyporheic fluxes are diminished by much larger (1000-fold) groundwater fluxes. We tested accurate quantification of co-occurring fluxes using one-dimensional approaches that are appropriate for analyzing streambed temperature data collected at field sites. The thermal analytical method, which uses an analytical solution to the one-dimensional heat transport equation, was used to analyze results from a numerical heat transport model, in which hyporheic flow was represented as increased thermal dispersion at shallow depths. We found that co-occurring groundwater and hyporheic fluxes can be quantified in streambeds, although not always accurately. For example, using a temperature time series collected in a sandy streambed, we found that hyporheic and groundwater flow could both be detected when thermal dispersion due to hyporheic flow was significant compared to thermal conduction. We provide guidance for when thermal data can be used to quantify both hyporheic and groundwater fluxes, and we show that neglecting thermal dispersion may affect accuracy and interpretation of estimated streambed water fluxes.

  11. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    USGS Publications Warehouse

    : Belcher, Wayne R., (Edited By); Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  12. Oahu Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  13. Groundwater monitoring system

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.; Eschbach, Eugene A.; Kelley, Roy C.; Myers, David A.

    1987-01-01

    A groundwater monitoring system includes a bore, a well casing within and spaced from the bore, and a pump within the casing. A water impermeable seal between the bore and the well casing prevents surface contamination from entering the pump. Above the ground surface is a removable operating means which is connected to the pump piston by a flexible cord. A protective casing extends above ground and has a removable cover. After a groundwater sample has been taken, the cord is disconnected from the operating means. The operating means is removed for taking away, the cord is placed within the protective casing, and the cover closed and locked. The system is thus protected from contamination, as well as from damage by accident or vandalism.

  14. GROUNDWATER FLOW IN LOW-PERMEABILITY ENVIRONMENTS.

    USGS Publications Warehouse

    Neuzil, C.E.

    1986-01-01

    Certain geologic media are known to have small permeability; subsurface environments composed of these media and lacking well developed secondary permeability have groundwater flow systems with many distinctive characteristics. Moreover, groundwater flow in these environments appears to influence the evolution of certain hydrologic, geologic, and geochemical systems, may affect the accumulation of petroleum and ores, and probably has a role in the structural evolution of parts of the crust. Such environments are also important in the context of waste disposal. This review attempts to synthesize the diverse contributions of various disciplines to the problem of flow in low-permeability environments. Problems hindering analysis are enumerated together with suggested approaches to overcoming them. A common thread running through the discussion is the significance of size- and time-scale limitations of the ability to directly observe flow behavior and make significance of size- and time-scale limitations of the ability to directly observe flow behavior and make measurements of parameters.

  15. Evaluation of drought impact on groundwater recharge rate using SWAT and Hydrus models on an agricultural island in western Japan

    NASA Astrophysics Data System (ADS)

    Jin, G.; Shimizu, Y.; Onodera, S.; Saito, M.; Matsumori, K.

    2015-06-01

    Clarifying the variations of groundwater recharge response to a changing non-stationary hydrological process is important for efficiently managing groundwater resources, particularly in regions with limited precipitation that face the risk of water shortage. However, the rate of aquifer recharge is difficult to evaluate in terms of large annual-variations and frequency of flood events. In our research, we attempt to simulate related groundwater recharge processes under variable climate conditions using the SWAT Model, and validate the groundwater recharge using the Hydrus Model. The results show that annual average groundwater recharge comprised approximately 33% of total precipitation, however, larger variation was found for groundwater recharge and surface runoff compared to evapotranspiration, which fluctuated with annual precipitation variations. The annual variation of groundwater resources is shown to be related to precipitation. In spatial variations, the upstream is the main surface water discharge area; the middle and downstream areas are the main groundwater recharge areas. Validation by the Hydrus Model shows that the estimated and simulated groundwater levels are consistent in our research area. The groundwater level shows a quick response to the groundwater recharge rate. The rainfall intensity had a great impact on the changes of the groundwater level. Consequently, it was estimated that large spatial and temporal variation of the groundwater recharge rate would be affected by precipitation uncertainty in future.

  16. Contain contaminated groundwater

    SciTech Connect

    Mutch, R.D. Jr.; Caputi, J.R.; Ash, R.E. IV

    1997-05-01

    Despite recent progress in innovative treatment technologies, many problems with contaminated groundwater still require the use of barrier walls, typically in combination with extraction and treatment systems. New technologies for subsurface barrier walls, mostly based on geomembranes, advancements in self-hardening slurries and permeation grouts with materials such as colloidal silica gel and montan wax emulsions, are being developed at an unprecedented pace. The paper discusses deep soil mixing, jet grouting, slurry trenches, and permeation grouting.

  17. Groundwater Under Vertisols

    NASA Astrophysics Data System (ADS)

    Kurtzman, D.; Baram, S.; Dahan, O.

    2015-12-01

    Vertisols are cracking clayey soils that: i) usually form in alluvial lowlands where normally, groundwater pools into aquifers; ii) have different types of voids (due to cracking) which make flow and transport of water and gas complex, and iii) are regarded as fertile soils in many areas. The combination of these characteristics results in the unique soil-aquifer phenomena that are highlighted and summarized in this review work. The following four vertisols-aquifer topics will be discussed: 1) Soil cracks as preferential pathways for water and contaminants - Lysimeter to basin-scale observations show the significance of cracks as preferential flow paths in vertisols that bypass matrix blocks in the unsaturated zone. Fresh recharge and groundwater contamination from these fluxes will be reviewed; 2) Soil cracks as deep evaporators and unsaturated-zone salinity - Deep soil samples under uncultivated vertisols in semiarid regions reveal a dry (immobile), saline matrix, partly due to enhanced evaporation through soil cracks. Observations of this phenomenon will be compared and the mechanism of evapoconcentration due to air flow in the cracks is discussed; 3) Impact of cultivation on flushing of the unsaturated zone and aquifer salinization - Land-use change of vertisols from native land to cropland promotes greater fluxes through the saline unsaturated-zone matrix, eventually flushing salts to the aquifer. Different degrees of salt flushing will be presented as well as aquifer salinization on different scales, and a comparison is made with aquifers under other soils; 4) Relatively little nitrate contamination in aquifers under vertisols - A number of observations show that aquifers under cultivated vertisols are somewhat resistant to groundwater contamination by nitrate (the major agriculturally related groundwater problem). Denitrification is probably the main mechanism supporting this resistance, whereas a certain degree of anion-exchange capacity may have a

  18. SSCL groundwater model

    SciTech Connect

    Romero, V.; Bull, J.; Stapleton, G.; Baker, S.; Goss, D.; Coulson, L.

    1994-02-01

    Activation of groundwater due to accelerator operations has been a consideration since the conceptual stages of the SSC. Prior to site selection, an elementary hydrological model assuming a porous medium with a shallow well in proximity to the tunnel was used to determine the radionuclide concentrations in the water pumped from a well. The model assumed that radionuclides produced within a few feet of the tunnel would migrate to the shallow well and be diluted as the well drew water from a conically symmetric region. After the Ellis County site was selected, the compatibility of this model with the site specific geology was evaluated. The host geology at the selected site is low permeability rock, Austin chalk, shale, and marl, however, vertical fractures do exist. Since the host rock has a low permeability, groundwater in proximity to the tunnel would have to travel primarily through fractures. This hydrology is not compatible with the above mentioned model since water does not percolate uniformly from the surrounding rock into local wells. The amount of dilution of activated water will vary significantly depending on the specific relationship of the well to the activation zone. A further complication in the original model is that it assumes the high energy particles escaping from the accelerator enclosure are localized. The model does not provide for particles being lost over a large area as will happen with routine operational losses. These losses will be distributed along the accelerator over the life of the project. The SSCL groundwater model has been recast to account for the site specific hydrology and both point and distributed losses. Using the new groundwater model, the SSC accelerators are designed to limit the activation concentration in the water located one meter outside the accelerator enclosure to meet the federal drinking water standards. This technical note provides the details of this model.

  19. Developing robust crop plants for sustaining growth and yield under adverse climatic changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production and quality are expected to suffer from adverse changes in climatic conditions, including global warming, and this will affect worldwide human and animal food security. Global warming has been shown to negatively impact crop yield and therefore will affect sustainability of a...

  20. Challenging a trickle-down view of climate change on agriculture and groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change is largely viewed as affecting ecohydrology of the Earth’s surface, but various studies are showing deeper effects on groundwater. Agricultural systems may be studied at the land surface and into the root zone with deeper effects of water and chemical movement to groundwater. ...

  1. Colloid characterization and quantification in groundwater samples

    SciTech Connect

    K. Stephen Kung

    2000-06-01

    should be analyzed for colloid size and concentration shortly after they have been collected. A prolonged waiting period after sampling will affect the colloid size distribution as well as colloid concentration resulting from the changes of water chemical properties. The data also shows that sample containers, filter materials, and labware that are used for colloid analyses should be cleaned by specially treated low-colloid-containing water. Water used for sample dilution should be verified for total colloidal particle concentration. They then analyzed freshly collected groundwater from NTS wells ER-20-5{number_sign}1 and {number_sign}3. Results show that these groundwater samples have similar colloid concentrations and particle size distributions. For the particle size range between 50- and 200-nm, about ten trillion (1E10) colloidal particles per liter are present in these water samples. Most of these colloidal particles are less than 100 mm in size. For example, more than 98% of the colloids are smaller than 100 nm in size in the ER-20-5 {number_sign}1 sample. Furthermore, it was found that the smaller the sizes of colloid, the higher the colloid concentration present in the water. For another site at NTS, Cheshire, they had analyzed two zones of groundwater samples. For water samples collected from the lower water zone (near the underground detonation cavity about 3,700 feet of slanted depth from the surface), the colloid concentration was about 5E12 particles per liter. About 20 times less than the lower zone of total colloids was found in water samples collected from the upper aquifer (around 2,511 feet of slanted depth), although colloid size distributions from these two zones appear to be rather similar.

  2. Airborne electromagnetic surveys in support of groundwater models in western Nebraska

    NASA Astrophysics Data System (ADS)

    Abraham, J. D.; Viezzoli, A.; Cannia, J. C.; Smith, B. D.; Brown, W.; Peterson, S. M.

    2010-12-01

    The USGS, SkyTEM, Aarhus Geophysics, North Platte, South Platte and Twin Platte Natural Resource Districts have collaborated to collect airborne time domain geophysical surveys over selected of areas of western Nebraska. The objective of the surveys was to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater-surface water relations to be used in water management decisions. The base of aquifer in many of these areas is in excess of 100 meters deep and little detailed information of the configuration of the bedrock exits. Many of the aquifers exist as alluvial fills in paleochannels upon complex bedrock topography. Controlling factors for groundwater flow are the variations of the hydraulic properties of the fill and the boundary geometry of the paleochannels. Results from groundwater modeling efforts prior to the addition of the airborne data revealed the hydrogeologic framework was sufficient for the regional scale models, but when these models were reduced to 40 acres cell size, the lack of detail adversely affected model results. The SkyTEM system is a helicopter-borne time-domain electromagnetic system capable of detecting small changes in resistivity from the near-surface down to depths of up to 300 m and is well-suited for aquifer mapping. An innovative design of the receiver coils and transmitter pattern eliminates the self response that is characteristic of airborne systems and spatial measurement sensors mounted on a rigid frame enable rigorous quantitative interpretation of the EM data. The ability to quickly collect and deliver high quality, high resolution geophysical data contributes significantly to modeling efforts and further understanding of subsurface hydrological systems. The raw AEM data have to be edited to exclude data that have been affected by coupling with man made infrastructures. For resistivity data to be related to lithologic information to refine groundwater model inputs, and to make the

  3. Adverse effects of common medications on male fertility.

    PubMed

    Samplaski, Mary K; Nangia, Ajay K

    2015-07-01

    An increasing number of patients require long-term medication regimens at a young age, but the adverse effects of medications on male reproduction are often inadequately considered, recognized and investigated. Medications can affect male reproduction through central hormonal effects, direct gonadotoxic effects, effects on sperm function or on sexual function. For example, exogenous testosterone inhibits spermatogenesis through central suppression of the hypothalamic-pituitary-gonadal hormonal axis. 5α-reductase inhibitors can impair sexual function, decrease semen volume and negatively affect sperm parameters, depending on dose and treatment duration. α-Blockers might decrease seminal emission and cause retrograde ejaculation, depending on the receptor specificity and dose of the agent. Phosphodiesterase inhibitors seem to have variable effects based on the isoform inhibited and evidence is conflicting. Antihypertensive and psychotropic agents can affect sperm, sexual function and hormonal parameters. For antibiotics, the literature on effects on sperm and sperm function is limited and dated. Many chemotherapeutic agents have a direct gonadotoxic effect, depending on agents used, dosing and number of treatment cycles. Overall, many medications commonly used in urology can have effects on male fertility (mostly reversible) but conclusive evidence in humans is often limited. Men should be counselled appropriately about potential drug-related adverse effects on their fertility. PMID:26101108

  4. Interventions designed to prevent adverse programming outcomes resulting from exposure to maternal obesity during development

    PubMed Central

    Nathanielsz, PW; Ford, SP; Long, NM; Vega, CC; Reyes-Castro, LA; Zambrano, E

    2013-01-01

    Maternal obesity is a global epidemic affecting the developed and developing world. Human and animal studies indicate that maternal obesity programs development predisposing offspring to later-life chronic diseases. Several mechanisms act together to produce these adverse health problems. There is a need for effective interventions that prevent these outcomes and guide management in human pregnancy. We report here dietary and exercise intervention studies in both altricial and precocial species, rats and sheep, designed to prevent adverse offspring outcomes. Both interventions present exciting opportunities to at least in part prevent adverse metabolic and other outcomes in mother and offspring. PMID:24147928

  5. Ecological risk assessment of Tomsk region groundwater used for drinking purposes

    NASA Astrophysics Data System (ADS)

    Konchakova, N. V.; Ushakova, N. S.; Aikina, T. Yu

    2016-03-01

    The present paper is devoted to the chemical composition analysis of Neogene-quaternary and Paleogene groundwater widely used for drinking in the territory of Tomsk region. It has been shown that groundwater under study contains iron and manganese in excessive concentration. Consequently, this water can negatively affect human health. The ecological and human health risk assessment of Tomsk region groundwater used for drinking has been conducted. According to the calculations, it has been defined that in the overwhelming majority of cases there is a great risk to use groundwater of Tomsk region for drinking purposes.

  6. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    SciTech Connect

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  7. Trace elements in groundwater used for water supply in Latvia

    NASA Astrophysics Data System (ADS)

    Retike, Inga; Kalvans, Andis; Babre, Alise; Kalvane, Gunta; Popovs, Konrads

    2014-05-01

    Latvia is rich with groundwater resources of various chemical composition and groundwater is the main drinking source. Groundwater quality can be easily affected by pollution or overexploitation, therefore drinking water quality is an issue of high importance. Here the first attempt is made to evaluate the vast data base of trace element concentrations in groundwater collected by Latvian Environment, Geology and Meteorology Centre. Data sources here range from National monitoring programs to groundwater resources prospecting and research projects. First available historical records are from early 1960, whose quality is impossible to test. More recent systematic research has been focused on the agricultural impact on groundwater quality (Levins and Gosk, 2007). This research was mainly limited to Quaternary aquifer. Monitoring of trace elements arsenic, cadmium and lead was included in National groundwater monitoring program of Latvia in 2008 and 2009, but due to lack of funding the monitoring was suspended until 2013. As a result there are no comprehensive baseline studies regarding the trace elements concentration in groundwater. The aim of this study is to determine natural major and trace element concentration in aquifers mainly used for water supply in Latvia and to compare the results with EU potable water standards. A new overview of artesian groundwater quality will be useful for national and regional planning documents. Initial few characteristic traits of trace element concentration have been identified. For example, elevated fluorine, strontium and lithium content can be mainly associated with gypsum dissolution, but the highest barium concentrations are found in groundwaters with low sulphate content. The groundwater composition data including trace element concentrations originating from heterogeneous sources will be processed and analyzed as a part of a newly developed geologic and hydrogeological data management and modeling system with working name

  8. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    : Belcher, Wayne R., (Edited By)

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  9. Preliminary report on coal pile, coal pile runoff basins, and ash basins at the Savannah River Site: effects on groundwater

    SciTech Connect

    Palmer, E.

    1997-04-28

    Coal storage piles, their associated coal pile runoff basins and ash basins could potentially have adverse environmental impacts, especially on groundwater. This report presents and summarizes SRS groundwater and soil data that have been compiled. Also, a result of research conducted on the subject topics, discussions from noted experts in the field are cited. Recommendations are made for additional monitor wells to be installed and site assessments to be conducted.

  10. Arkansas Groundwater-Quality Network

    USGS Publications Warehouse

    Pugh, Aaron L.; Jackson, Barry T.; Miller, Roger

    2014-01-01

    Arkansas is the fourth largest user of groundwater in the United States, where groundwater accounts for two-thirds of the total water use. Groundwater use in the State increased by 510 percent between 1965 and 2005 (Holland, 2007). The Arkansas Groundwater-Quality Network is a Web map interface (http://ar.water.usgs.gov/wqx) that provides rapid access to the U.S. Geological Survey’s (USGS) National Water Information System (NWIS) and the U.S. Environmental Protection Agency’s (USEPA) STOrage and RETrieval (STORET) databases of ambient water information. The interface enables users to perform simple graphical analysis and download selected water-quality data.

  11. Renal function trajectory over time and adverse clinical outcomes.

    PubMed

    Sohel, Badrul Munir; Rumana, Nahid; Ohsawa, Masaki; Turin, Tanvir Chowdhury; Kelly, Martina Ann; Al Mamun, Mohammad

    2016-06-01

    The growing burden of chronic kidney disease (CKD), with its associated morbidity and mortality, is recognized as a major public health problem globally and causing substantial load on health care systems. The current framework for the definition and staging of CKD, based on eGFR levels or presence of kidney damage, is useful for clinical classification of patients, but identifies a huge number of people as having CKD which is too many to target for intervention. The ability to identify a subset of patients, at high risk for adverse outcomes, would be useful to inform clinical management. The current staging system applies static definitions of kidney function that fail to capture the dynamic nature of the kidney disease over time. Now-a-days, it is possible to capture multiple measurements of different laboratory test results for an individual including eGFR values. A new possibility for identifying individuals at higher risk of adverse outcomes is being explored through assessment and consideration of the rate of change in kidney function over time, and this approach will be feasible in the current context of digitalization of health record keeping system. On the basis of the existing evidence, this paper summarizes important findings that support the concept of dynamic changes in kidney function over time, and discusses how the magnitude of these changes affect the future adverse outcomes of kidney disease, particularly the End Stage Renal Disease (ESRD), CVD and mortality. PMID:26728745

  12. Sublacustrine groundwater discharge in esker aquifers; fully integrated groundwater flow modeling compared with novel field techniques

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Rossi, Pekka M.; Isokangas, Elina; Kløve, Bjørn

    2015-04-01

    Groundwater (GW) discharge to surface water bodies such as streams, lakes and wetlands can greatly affect their water quantity, quality and related aquatic ecology. Therefore better understanding of GW - surface water interaction is needed in integrated management of water resources. Sublacustrine groundwater discharge (SGD) to lakes was studied in a complex unconfined Rokua esker aquifer system. SGD was studied for 12 lakes in the area to better understand water and solute inputs through lake beds and thereby the role of GW on lake water budget and solute concentrations. The locations and fluxes of SGD were simulated using a fully integrated groundwater flow model HydroGeoSphere. The used hydrological simulator allows water to flow and partition into overland and stream flow, evaporation, infiltration, and subsurface discharge into surface water features in a physically-based way, which was needed in simulating SGD of the complex aquifer system. The model was first calibrated for subsurface hydraulic conductivity in steady state using data of measured long-term average groundwater and lake levels and stream baseflow. The model performance in transient simulations was then examined against recorded hydrographs for lake and groundwater levels and stream flow. After model performance was verified, the simulated locations and fluxes of SGD were extracted from the model and compared with results from three independent field methods: airborne thermal imaging, stable isotope water balance and seepage meter measurements. Airborne thermal imaging was used to infer locations of SGD into lakes based on temperature anomalies at lakes shorelines due to discharging cold groundwater. Isotopic composition (H2 and O18) was analysed for lake water, groundwater and the data was used to estimate SGD flux into lakes. Finally, seepage meter measurements were conducted for one of the lakes to establish both locations and fluxes of SGD in detail. The simulated and field-based estimated

  13. Adverse events temporally associated with meningococcal vaccines.

    PubMed Central

    Yergeau, A; Alain, L; Pless, R; Robert, Y

    1996-01-01

    OBJECTIVE: To determine the incidence of severe adverse events temporally associated with meningococcal vaccines administered as part of a mass vaccination program. DESIGN: Retrospective descriptive study of events reported to a passive provincial surveillance system. SETTING: The province of Quebec. PARTICIPANTS: The 1,198,751 individuals aged 6 months to 20 years who were vaccinated against meningococcal disease between Dec. 27, 1992, and Mar. 31, 1993. OUTCOME MEASURES: Total numbers and rates of severe adverse events, including allergic reactions, anaphylactic reactions, neurological events (other than abnormal crying and screaming) and other serious or unusual events. RESULTS: A total of 118 reports of severe adverse events were selected from the surveillance system. The most frequent were allergic reactions (9.2 per 100,000 doses). Few anaphylactic or neurologic reactions were reported (0.1 and 0.5 per 100,000 doses respectively). There were no reports of sequelae or of encephalopathy, meningitis or encephalitis. CONCLUSION: Meningococcal vaccines seem to be associated with fewer adverse events than have previously been reported. Existing surveillance programs are useful for determining the incidence of adverse events temporally associated with vaccines. PMID:8630839

  14. The complement system and adverse pregnancy outcomes.

    PubMed

    Regal, Jean F; Gilbert, Jeffrey S; Burwick, Richard M

    2015-09-01

    Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the fetal allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child. PMID:25802092

  15. Estimating residents' willingness to pay for groundwater protection in the Vietnamese Mekong Delta

    NASA Astrophysics Data System (ADS)

    Vo, Danh Thanh; Huynh, Khai Viet

    2014-11-01

    Groundwater in the Vietnamese Mekong Delta is facing the pollution and it needs to be protected. Searching literature reviews on economic valuation techniques, the contingent valuation method (CVM) has been popularly applied to estimate the economic value of water protection. This approach is based on a hypothetical scenario in which respondents are requested through questionnaires to reveal their maximum willingness to pay (WTP) for the water protection project. The study used the approach of CVM to analyze the households' motivations and their WTP for the program of groundwater protection in the Mekong Delta. The study performed that the residents in the delta were willing to pay approximately 141,730 VND (US6.74) per household a year. Groundwater could be an inferior good with the negative income effect found in the demanding for clean groundwater. Respondent's gender and groundwater-related health risk consideration were factors sensitively affecting the probability of demanding for groundwater protection.

  16. Linking riparian dynamics and groundwater: an ecohydrologic approach to modeling groundwater and riparian vegetation.

    PubMed

    Baird, Kathryn J; Stromberg, Juliet C; Maddock, Thomas

    2005-10-01

    , these can be used to predict vegetation response to water allocation decisions. The different evapotranspiration outcomes produced by traditional and RIP-ET approaches affect resulting interpretations of hydro-vegetation dynamics, including the effects of groundwater pumping stress on existing habitats, and thus affect subsequent policy decisions. PMID:16222461

  17. Optimizing the monitoring scheme for groundwater quality in the Lusatian mining region

    NASA Astrophysics Data System (ADS)

    Zimmermann, Beate; Hildmann, Christian; Haubold-Rosar, Michael

    2014-05-01

    Opencast lignite mining always requires the lowering of the groundwater table. In Lusatia, strong mining activities during the GDR era were associated with low groundwater levels in huge parts of the region. Pyrite (iron sulfide) oxidation in the aerated sediments is the cause for a continuous regional groundwater pollution with sulfates, acids, iron and other metals. The contaminated groundwater poses danger to surface water bodies and may also affect soil quality. Due to the decline of mining activities after the German reunification, groundwater levels have begun to recover towards the pre-mining stage, which aggravates the environmental risks. Given the relevance of the problem and the need for effective remediation measures, it is mandatory to know the temporal and spatial distribution of potential pollutants. The reliability of these space-time models, in turn, relies on a well-designed groundwater monitoring scheme. So far, the groundwater monitoring network in the Lusatian mining region represents a purposive sample in space and time with great variations in the density of monitoring wells. Moreover, groundwater quality in some of the areas that face pronounced increases in groundwater levels is currently not monitored at all. We therefore aim to optimize the monitoring network based on the existing information, taking into account practical aspects such as the land-use dependent need for remedial action. This contribution will discuss the usefulness of approaches for optimizing spatio-temporal mapping with regard to groundwater pollution by iron and aluminum in the Lusatian mining region.

  18. Groundwater dynamics in a coastal aquifer: combined effects of tides and beach morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, L.; Erler, D.

    2013-12-01

    The interaction between fresh groundwater and seawater, driven by oceanic oscillations and the inland hydraulic head gradient, has been shown to affect the pore water characteristics, which in turn influence the fate of contaminants in coastal aquifers. We show here that beach morphology interacting with the tidal force can also modulate nearshore groundwater flow and solute transport. Detailed field investigations were combined with numerical simulations to examine the groundwater dynamics in a carbonate-sandy intertidal aquifer on the tropical island of Rarotonga, Cook Islands. Groundwater salinity values revealed different salinity distributions under conditions of different beach profiles, inland heads and tidal signals. Fresh groundwater was also found to discharge around an intertidal beach slope break (located in the middle region of intertidal zone). This suggests that the interplay of beach morphology and tidal forcing may play an important role in groundwater flow and solute transport near the shore. The numerical models enabled quantitatively analysis of the effects of beach morphology on groundwater circulations and solute pathway. We found that (1) the groundwater discharge location is largely controlled by beach morphology in connection with the tidal force; (2) under particular conditions, the groundwater flow pattern is very sensitive to the beach slope breaks. In particular, the beach slope break combined with the tidal oscillation can induce local circulation cells. These results further demonstrate the complexity of nearshore groundwater systems and have implications for future studies of nutrients transport and transformations associated with SGD.

  19. Evaluating the risk to aquatic ecosystems posed by leachate from tire shred fill in roads using toxicity tests, toxicity identification evaluations, and groundwater modeling.

    PubMed

    Sheehan, Patrick J; Warmerdam, John M; Ogle, Scott; Humphrey, Dana N; Patenaude, Stacey M

    2006-02-01

    The risk to adjacent aquatic systems posed by leachates from scrap tires used in engineering applications has not been characterized adequately. Toxicity testing, toxicity identification evaluation (TIE), and groundwater modeling were used to determine the circumstances under which tire shreds could be used as roadbed fill with negligible risk to aquatic organisms in adjacent water bodies. Elevated levels of iron, manganese, and several other chemicals were found in tire shred leachates. However, chronic toxicity tests with Ceriodaphnia dubia and fathead minnows (Pimephales promelas) showed no adverse effects caused by leachates collected from tire shreds installed above the water table. Exposure to leachates collected from tire shreds installed below the water table resulted in significant reductions to both survival and reproduction in C. dubia. The TIE results indicated that exposure to soluble metals (likely ferrous iron primarily) and the formation of iron hydroxide precipitates on this invertebrate species likely were the causes of the observed effects. The available chemistry data show that iron concentrations in the affected groundwater decreased substantially within a short distance (0.61 m) downgradient of tire shred fill. Based on geochemical modeling, the use of tire shreds in applications below the water table is appropriate in settings where dissolved oxygen is greater than 2.0 mg/L, pH is greater than 5.8, and a downgradient buffer of approximately 3.0 m exists between the fill and the surface water. For settings with lower dissolved oxygen concentrations or lower pH, results of groundwater modeling indicate that a greater buffer distance (approximately 11 m) is needed to dilute the leachate to nontoxic levels under various soil and groundwater conditions solely through advection and dispersion processes. PMID:16519300

  20. Groundwater inventory and monitoring technical guide: Remote sensing of groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of remotely sensed data in conjunction with in situ data greatly enhances the ability of the USDA Forest Service to meet the demands of field staff, customers, and others for groundwater information. Generally, the use of remotely sensed data to inventory and monitor groundwater reso...

  1. The groundwater subsidy to vegetation: groundwater exchanges between landcover patches

    NASA Astrophysics Data System (ADS)

    Steven, L. I.; Gimenez, R.; Jobbagy, E. G.

    2015-12-01

    The Gran Chaco is a hot, dry plain, that spans over 60 million hectares across Bolivia, Paraguay, Brazil and Argentina. It supports high biodiversity in its dry forest and savannahs, but is rapidly being converted to agriculture in response to growing soy demand and technology including genetic modification and zero-till, that has made cultivation in drier landscapes more viable. Under natural conditions, the deep-rooted, native vegetation of the Chaco effectively captured all rainfall for evapotranspiration resulting in near zero groundwater recharge under the dry forest. Conversion to shallower rooted soy and corn, combined with the fallow period prior to the growing season, reduces evapotranspiration and allows some water to percolate through the root zone and recharge the groundwater system. When this groundwater recharge occurs, it creates groundwater mounding and a hydraulic gradient that drives flow to adjacent landcover patches where recharge does not occur. As the watertable rises, groundwater becomes available to the deep-rooted, dry forest vegetation. We develop a soil and groundwater flow model to simulate infiltration, percolation, evaporation, rootwater uptake, groundwater recharge and the lateral transfer of water between adjacent landcover patches to quantify this groundwater subsidy from converted agricultural lands to remnant patches of dry forest.

  2. Inexact Socio-Dynamic Modeling of Groundwater Contamination Management

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Zhang, X.

    2015-12-01

    Groundwater contamination may alter the behaviors of the public such as adaptation to such a contamination event. On the other hand, social behaviors may affect groundwater contamination and associated risk levels such as through changing ingestion amount of groundwater due to the contamination. Decisions should consider not only the contamination itself, but also social attitudes on such contamination events. Such decisions are inherently associated with uncertainty, such as subjective judgement from decision makers and their implicit knowledge on selection of whether to supply water or reduce the amount of supplied water under the scenario of the contamination. A socio-dynamic model based on the theories of information-gap and fuzzy sets is being developed to address the social behaviors facing the groundwater contamination and applied to a synthetic problem designed based on typical groundwater remediation sites where the effects of social behaviors on decisions are investigated and analyzed. Different uncertainties including deep uncertainty and vague/ambiguous uncertainty are effectively and integrally addressed. The results can provide scientifically-defensible decision supports for groundwater management in face of the contamination.

  3. Identifying Adverse Drug Events by Relational Learning

    PubMed Central

    Page, David; Costa, Vítor Santos; Natarajan, Sriraam; Barnard, Aubrey; Peissig, Peggy; Caldwell, Michael

    2013-01-01

    The pharmaceutical industry, consumer protection groups, users of medications and government oversight agencies are all strongly interested in identifying adverse reactions to drugs. While a clinical trial of a drug may use only a thousand patients, once a drug is released on the market it may be taken by millions of patients. As a result, in many cases adverse drug events (ADEs) are observed in the broader population that were not identified during clinical trials. Therefore, there is a need for continued, post-marketing surveillance of drugs to identify previously-unanticipated ADEs. This paper casts this problem as a reverse machine learning task, related to relational subgroup discovery and provides an initial evaluation of this approach based on experiments with an actual EMR/EHR and known adverse drug events. PMID:24955289

  4. Standardizing drug adverse event reporting data.

    PubMed

    Wang, Liwei; Jiang, Guoqian; Li, Dingcheng; Liu, Hongfang

    2013-01-01

    Normalizing data in the Adverse Event Reporting System (AERS), an FDA database, would improve the mining capacity of AERS for drug safety signal detection. In this study, we aim to normalize AERS and build a publicly available normalized Adverse drug events (ADE) data source.he drug information in AERS is normalized to RxNorm, a standard terminology source for medication. Drug class information is then obtained from the National Drug File - Reference Terminology (NDF-RT). Adverse drug events (ADE) are aggregated through mapping with the PT (Preferred Term) and SOC (System Organ Class) codes of MedDRA. Our study yields an aggregated knowledge-enhanced AERS data mining set (AERS-DM). The AERS-DM could provide more perspectives to mine AERS database for drug safety signal detection and could be used by research community in the data mining field. PMID:23920875

  5. A revised inventory of Adverse Childhood Experiences.

    PubMed

    Finkelhor, David; Shattuck, Anne; Turner, Heather; Hamby, Sherry

    2015-10-01

    This study examines whether the items from the original Adverse Childhood Experiences (ACE) scale can be improved in their prediction of health outcomes by adding some additional widely recognized childhood adversities. The analyses come from the National Survey of Children's Exposure to Violence 2014, a telephone survey conducted from August 2013 through April 2014 with a nationally representative sample of 1,949 children and adolescents aged 10-17 and their caregivers who were asked about adversities, physical health conditions and mental health symptoms. The addition of measures of peer victimization, peer isolation/rejection, and community violence exposure added significantly to the prediction of mental health symptoms, and the addition of a measure of low socioeconomic status (SES) added significantly to the prediction of physical health problems. A revised version of the ACES scale is proposed. PMID:26259971

  6. Adverse health consequences of the Iraq War.

    PubMed

    Levy, Barry S; Sidel, Victor W

    2013-03-16

    The adverse health consequences of the Iraq War (2003-11) were profound. We conclude that at least 116,903 Iraqi non-combatants and more than 4800 coalition military personnel died over the 8-year course. Many Iraqi civilians were injured or became ill because of damage to the health-supporting infrastructure of the country, and about 5 million were displaced. More than 31,000 US military personnel were injured and a substantial percentage of those deployed suffered post-traumatic stress disorder, traumatic brain injury, and other neuropsychological disorders and their concomitant psychosocial problems. Many family members of military personnel had psychological problems. Further review of the adverse health consequences of this war could help to minimise the adverse health consequences of, and help to prevent, future wars. PMID:23499043

  7. Adverse events related to blood transfusion

    PubMed Central

    Sahu, Sandeep; Hemlata; Verma, Anupam

    2014-01-01

    The acute blood transfusion reactions are responsible for causing most serious adverse events. Awareness about various clinical features of acute and delayed transfusion reactions with an ability to assess the serious reactions on time can lead to a better prognosis. Evidence-based medicine has changed today's scenario of clinical practice to decrease adverse transfusion reactions. New evidence-based algorithms of transfusion and improved haemovigilance lead to avoidance of unnecessary transfusions perioperatively. The recognition of adverse events under anaesthesia is always challenging. The unnecessary blood transfusions can be avoided with better blood conservation techniques during surgery and with anaesthesia techniques that reduce blood loss. Better and newer blood screening methods have decreased the infectious complications to almost negligible levels. With universal leukoreduction of red blood cells (RBCs), selection of potential donors such as use of male donors only plasma and restriction of RBC storage, most of the non-infectious complications can be avoided. PMID:25535415

  8. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  9. Solutions Remediate Contaminated Groundwater

    NASA Technical Reports Server (NTRS)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  10. Multiphase groundwater flow near cooling plutons

    USGS Publications Warehouse

    Hayba, D.O.; Ingebritsen, S.E.

    1997-01-01

    We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

  11. Groundwater suitability recharge zones modelling - A GIS application

    NASA Astrophysics Data System (ADS)

    Dabral, S.; Bhatt, B.; Joshi, J. P.; Sharma, N.

    2014-11-01

    Groundwater quality in Gujarat state is highly variable and due to multiplicity of factors viz. influenced by direct sea water encroachment, inherent sediment salinity, water logging, overexploitation leading to overall deterioration in ground water quality, coupled with domestic and industrial pollution etc. The groundwater scenario in the state is not very encouraging due to imbalance between recharge and groundwater exploitation. Further, the demand for water has increased manifold owing to agricultural, industrial and domestic requirement and this has led to water scarcity in many parts of the state, which is likely to become more severe in coming future due to both natural and manmade factors. Therefore, sustainable development of groundwater resource requires precise quantitative assessment based on reasonably valid scientific principles. Hence, delineation of groundwater potential zones (GWPZ), has acquired great significance. The present study focuses on the integrated Geospatial and Multi-Criteria Decision Making (MCDM) techniques to determine the most important contributing factors that affect the groundwater resources and also to delineate the potential zones for groundwater recharge. The multiple thematic layers of influencing parameters viz. geology, geomorphology, soil, slope, drainage density and land use, weightages were assigned to the each factor according to their relative importance as per subject experts opinion owing to the natural setup of the region. The Analytical Hierarchy Process (AHP) was applied to these factors and potential recharge zones were identified. The study area for the assessment of groundwater recharge potential zones is Mahi-Narmada inter-stream region of Gujarat state. The study shows that around 28 % region has the excellent suitability of the ground water recharge.

  12. Hanford Site groundwater monitoring for fiscal year 1996

    SciTech Connect

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V.

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  13. Carbonate ions and arsenic dissolution by groundwater

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    solutions. The effects of pH and redox conditions on As dissolution were examined. Results showed that As was not leached significantly out of the Marshall Sandstone samples after 3 d using either deionized water or groundwater, but As was leached efficiently by sodium bicarbonate, potassium bicarbonate, and ferric chloride solutions. The leaching rate with sodium bicarbonate was about 25% higher than that with potassium bicarbonate. The data indicated that bicarbonate ion was involved primarily in As dissolution and that hydroxyl radical ion did not affect As dissolution to any significant degree. The amount of As leached was dependent upon the sodium bicarbonate concentration, increasing with reaction time for each concentration. Significant As leaching was found in the extreme pH ranges of <1.9 and 8.0-10.4. The resulting arseno-carbonate complexes formed were stable in groundwater.

  14. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational...

  15. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational...

  16. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational...

  17. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational...

  18. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational...

  19. WORKSHOP ON MONITORING OXIDATION-REDUCTION PROCESSES FOR GROUND-WATER RESTORATION

    EPA Science Inventory

    Redox conditions are among the most important parameters for controlling contaminant transport and fate in ground-water systems. Oxidation-reduction (redox) reactions mediate the chemical behavior of both inorganic and organic chemical constituents by affecting solubility, rea...

  20. Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Heng; Lo, Min-Hui; Chou, Chia

    2016-02-01

    Adding a groundwater component to land surface models affects modeled precipitation. The additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focuses on how groundwater dynamics affect atmospheric convection in the Amazon River basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. Additionally, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation that results from downwelling transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, with implications for precipitation changes during the dry season, observed in most current climate models.

  1. The apparent groundwater age rejuvenation caused by the human activity in Jakarta area, Indonesia

    NASA Astrophysics Data System (ADS)

    Kagabu, M.; Shimada, J.; Nakamura, T.; Delinom, R.; Taniguchi, M.

    2010-12-01

    The rapid urbanization in Jakarta area has become a serious subsurface environmental issues such as groundwater level decline and land subsidence due to excessive groundwater pumping. These problems began to emerge recently by some hydrological studies. The comparison of 14C activity between 1985 and 2008 shows the apparent groundwater age rejuvenation in the deep aquifer under the DKI Jakarta. We discussed by using a numerical groundwater flow model to evaluate the process of this rejuvenation in the urbanized area. Since the groundwater pumping was not performed intensely, the groundwater discharge flow toward the sea coast was dominant until 1983, however, this outward flux switched to intrusion flux into deeper aquifer after mid-1980s because of over-pumping in the urban area. The most largest flux among six flux directions toward the deep aquifer under the DKI Jakarta became “vertical downward flux” which means the shallower groundwater intrude into the deep one due to the excessive groundwater pumping from mid-1980s and this flux grows about 50% in 2000s. This result is consistent with the detection of chlorofluorocarbon (CFC)-12, which works as an indicator of young groundwater even in the deep groundwater. As the rejuvenation ratio “R” was determined by using 14C activity in the groundwater, R increase with the CFC-12 concentration and boths have good correlation. Besides, we estimated the “vertical downward flux” at each well's screen depth by the model estimation. The result shows that this flux has larger in the urban groundwater depression area and especially at shallower part of the deep aquifer, and it affects the magnitude of the shallow groundwater intrusion. Relationship between R and CFC-12 concentration. The diameter of cube shows the magnitude of the “vertical downward flux”

  2. Role of Climate Variability in Modulating Surface Water and Groundwater Interaction over the Southeast United States

    NASA Astrophysics Data System (ADS)

    Almanaseer, N.; Arumugam, S.; Bales, J. D.

    2010-12-01

    We investigate the role of climatic variability on interannual groundwater variability in the Southeast U.S. For this purpose, streamflow and associated groundwater levels are analyzed for 20 basins that are minimally affected by reservoirs and groundwater pumping. Using the spatially-averaged monthly precipitation time series obtained from the Precipitation Regressions on Independent Slope Model (PRISM), we identify the recharge and discharge periods that influence the groundwater levels during the winter (January-February-March, JFM) and summer (July-August-September, JAS) seasons. Recharge-discharge dependency analyses indicate that precipitation during the previous three months influence the groundwater level in a given month. Streamflow in any given month depends on the groundwater level during the previous three months. Singular spectrum analysis (SSA) on the precipitation, temperature, streamflow and groundwater data indicate that groundwater levels and streamflow are the two dominant variables influencing the basin hydroclimatology. Further, relating the percentage variance explained from the SSA to baseflow index (BFI) clearly show that basins with high BFI have higher eigenvalues indicating groundwater being a spatial integrator of hydroclimatic processes. Relating the groundwater levels with El Nino Southern Oscillation (ENSO) index, Nino3.4, show that interannual variability in JFM groundwater levels could be partially explained by the ENSO conditions, but the relationship between JAS groundwater levels and JAS Nino3.4 is statistically not significant. Investigating the ability of precipitation forecasts from ECHAM4.5 General Circulation Model shows that there is potential to quantify groundwater availability during the winter season based on the forecasted precipitation and ENSO conditions.

  3. Dissolution rate of alpha-doped UO2 in natural groundwater

    NASA Astrophysics Data System (ADS)

    Ollila, Kaija; Myllykylä, Emmi; Tanhua-Tyrkkö, Merja; Lavonen, Tiina

    2013-11-01

    The objective of this work is to determine whether the presence of trace elements in natural groundwaters affects the dissolution rate of uranium dioxide in the presence of alpha radiation that causes radiolysis of water. The study is a part of the project Reducing Uncertainty in Performance Prediction (REDUPP) under the Seventh Framework Programme of the European Atomic Energy Community (EURATOM). The project aims to reduce uncertainties related to the extrapolation of the results of laboratory experiments to the conditions expected under geologic disposal. Thus far, synthetic groundwater has been normally used in the experiments. The synthetic groundwaters used do not contain all of the chemical elements that occur in natural groundwaters. Three natural groundwaters were chosen for the dissolution experiments with 0%, 5%, and 10% 233U-doped UO2 samples. These include a brackish groundwater, a saline groundwater and a low ionic strength groundwater. At the time of writing this paper, the dissolution experiments have been finished in the first groundwater, which was a moderately saline, brackish groundwater. The groundwater samples for the experiments were taken from a borehole in the Olkiluoto site in Finland. The measurements for dissolution rates were conducted under reducing conditions established using metallic iron in solution and an argon atmosphere in the glove box. The isotope dilution method was used to decrease uncertainties due to precipitation and sorption effects. The resulting dissolution rates in OL-KR6 natural groundwater were generally somewhat higher than the rates measured previously in synthetic groundwaters under similar redox conditions. No clear effect of alpha radiolysis could be seen for tests with lower SA/V, while those for higher SA/V indicated that the dissolution rate was higher for the 10% 233U-doped UO2, suggesting the effect of alpha radiolysis under these conditions.

  4. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

    NASA Astrophysics Data System (ADS)

    Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2016-08-01

    Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as

  5. Reading the water table: The interaction between literacy practices and groundwater management training in preparing farmers for climate change in South India

    NASA Astrophysics Data System (ADS)

    Chavva, Konda Reddy; Smith, Cristine A.

    2012-06-01

    This article focuses on farmers' use of literacy for individual decision-making on crop-water management and crop choices and investigates how farmer participants perceive the usefulness of Farmer Water School (FWS) training. It draws upon a study conducted with farmers of Kurnool district of Andhra Pradesh, India. This study has demonstrated that literacy skills, while valued, are not a prerequisite for all farmers to improve their groundwater and crop management, as long as training includes (1) the presence of at least some literate farmers, (2) activities that involve learning by doing, and (3) learning in small mixed groups of literate and non-literate participants. The study outcomes are of increasing relevance in the context of climate change and variability, as small and marginal farmers constitute over 87 per cent of Indian farmers. Their inability to cope with consequences of climate change could adversely affect the food security in the country.

  6. Chemistry of trace elements in soils and groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present information about sources of processes that affect trace elements in soils and groundwater; precipitation and dissolution, surface interactions and absorption and oxidation-reduction reactions. For each element or group of elements, we provide a review of mode of occurrence, sources and ...

  7. Sustainable groundwater management in California

    USGS Publications Warehouse

    Phillips, Steven P.; Rogers, Laurel Lynn; Faunt, Claudia

    2016-01-01

    The U.S. Geological Survey (USGS) uses data collection, modeling tools, and scientific analysis to help water managers plan for, and assess, hydrologic issues that can cause “undesirable results” associated with groundwater use. This information helps managers understand trends and investigate and predict effects of different groundwater-management strategies.

  8. Groundwater hydrology--coastal flow

    USGS Publications Warehouse

    Sanford, Ward E.

    2010-01-01

    How groundwater flow varies when long-term external conditions change is little documented. Geochemical evidence shows that sea-level rise at the end of the last glacial period led to a shift in the flow patterns of coastal groundwater beneath Florida.

  9. Groundwater protection management program plan

    SciTech Connect

    Not Available

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ``Groundwater Protection Management Program Plan`` (groundwater protection plan) of sufficient scope and detail to reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1.

  10. Promoting local management in groundwater

    NASA Astrophysics Data System (ADS)

    van Steenbergen, Frank

    2006-03-01

    There is a strong case for making greater effort to promote local groundwater management—in addition to other measures that regulate groundwater use. Though scattered, there are several examples—from India, Pakistan, Yemen and Egypt—where groundwater users effectively self-imposed restrictions on the use of groundwater. There are a number of recurrent themes in such spontaneously-developed examples of local regulation: the importance of not excluding potential users; the importance of simple, low transaction cost rules; the power of correct and accessible hydrogeological information; the possibility of making more use of demand and supply management strategies; and the important supportive role of local governments. The case is made, using examples, for actively promoting local groundwater management as an important element in balancing groundwater uses. Two programmes for promoting local groundwater management in South India are described—one focussing on participatory hydrological monitoring, and one focussing on micro-resource planning and training. In both cases the response was very positive and the conclusion is that promoting local groundwater regulation is not difficult, costly or sensitive and can reach the necessary scale quickly.

  11. SUPERFUND GROUNDWATER ISSUE - FACILITATED TRANSPORT

    EPA Science Inventory

    The Regional Superfund Ground Water Forum is a group of ground-water scientists representing EPA's Regional Superfund Offices, organized to exchange up to date information related to ground-water remediation at Superfund sites. Facilitated transport is an issue identified by the ...

  12. ORGANIC CHEMICAL TRANSPORT TO GROUNDWATER

    EPA Science Inventory

    The use of pesticides in the production of agricultural commodities is widespread. Since nearly one-half of the U.S. population relies on groundwater as their source for drinking water, contamination potential of groundwater, because of pesticide manufacture and use, must be unde...

  13. Groundwater: Contamination from Nitrogen Fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High nitrate-nitrogen concentrations in water pose problems for human health and the environment. Groundwater is a major source for human water supplies and for contributing to surface water bodies. Leaching of N fertilizers is a major factor for high NO3-N concentrations in groundwater. Current ...

  14. Emotion Dysregulation Mediates the Relationship between Lifetime Cumulative Adversity and Depressive Symptomatology

    PubMed Central

    Abravanel, Benjamin T.; Sinha, Rajita

    2014-01-01

    Repeated exposure to stressful events across the lifespan, referred to as cumulative adversity, is a potent risk factor for depression. Research indicates that cumulative adversity detrimentally affects emotion regulation processes, which may represent a pathway linking cumulative adversity to vulnerability to depression. However, empirical evidence that emotion dysregulation mediates the relationship between cumulative adversity and depression is limited, particularly in adult populations. We examined the direct and indirect effects of cumulative adversity on depressive symptomatology in a large community sample of adults (n = 745) who were further characterized by risk status: never-depressed (n = 638) and “at-risk” remitted mood-disordered (n = 107). All participants completed the Cumulative Adversity Inventory (CAI), the Difficulties in Emotion Regulation Scale (DERS), and the Center for Epidemiologic Studies Depression Scale (CES-D). Bootstrapped confidence intervals were computed to estimate the indirect effect of emotion dysregulation on the relationship between cumulative adversity and depressive symptomatology and to test whether this indirect effect was moderated by risk status. Emotion dysregulation partially and significantly mediated the relationship between cumulative adversity and depressive symptomatology independent of risk status. Overall, cumulative adversity and emotion dysregulation accounted for 50% of the variance in depressive symptomatology. These findings support the hypothesis that disruption of adaptive emotion regulation processes associated with repeated exposure to stressful life events represents an intrapersonal mechanism linking the experience of adverse events to depression. Our results support the utility of interventions that simultaneously emphasize stress reduction and emotion regulation to treat and prevent depressive vulnerability and pathology. PMID:25528603

  15. Identification and Tracing Groundwater Contamination by Livestock Burial Sites

    NASA Astrophysics Data System (ADS)

    Ko, K.; Ha, K.; Park, S.; Kim, Y.; Lee, K.

    2011-12-01

    Foot-and-mouth disease (FMD) or hoof-and-mouth disease is a severe plague for animal farming that affects cloven-hoofed animals such as cattle, pigs, sheep, and goats. Since it is highly infectious and can be easily proliferated by infected animals, contaminated equipments, vehicles, clothing, people, and predators. It is widely known that the virus responsible for FMD is a picornavirus, the prototypic member of the genus Aphthovirus. A serious outbreak of foot-and-mouth disease, leading to the stamping out of 3.53 millions of pigs and cattle and the construction of 4,538 burial sites until 15th March, 2011. The build-up of carcass burial should inevitably produce leachate by the decomposition of buried livestock affecting the surround environment such as air, soil, groundwater, and surface water. The most important issues which are currently raised by scientists are groundwater contamination by leachate from the livestock burial sites. This study examined the current status of FMD outbreak occurred in 2010-2011 and the issues of groundwater contamination by leachate from livestock burial sites. The hydrogeochemical, geophysical, and hydrogeological studies were executed to identify and trace groundwater contamination by leachate from livestock burial sites. Generally livestock mortality leachate contains high concentrations of NH3-N, HCO3-, Cl-, SO42-, K+, Na+, P along with relative lesser amounts of iron, calcium, and magnesium. The groundwater chemical data around four burial sites showed high NH3-N, HCO3-, and K+ suggesting the leachate leakage from burial sites. This is also proved by resistivity monitoring survey and tracer tests. The simulation results of leachate dispersion showed the persistent detrimental impacts for groundwater environment for a long time (~50 years). It is need to remove the leachate of burial sites to prevent the dispersion of leachate from livestock burial to groundwater and to monitor the groundwater quality. The most important

  16. A groundwater management plan for Stuttgart.

    PubMed

    Vasin, Sandra; Carle, Achim; Lang, Ulrich; Kirchholtes, Hermann Josef

    2016-09-01

    In general, groundwater in urban areas is exposed to anthropogenic influence and suffers from concentrations of contaminants. Stuttgart, as a highly industrialized city, has more than 5000 contaminated sites which might influence the Stuttgart's mineral water quality. Despite tremendous efforts and intensive single site orientated remediation since 1984 in downtown, the mineral springs were still affected with chlorinated hydrocarbons at low concentrations. Therefore, the applied practices of environmental management and measures for mitigation of pollution sources were not sufficient and had to be adjusted. The main goal of this study is to define an integral remediation plan (a groundwater management plan), focusing on the key sources of chlorinated solvents which are relevant for the mineral springs. For the large-scale investigated area of 26.6km(2) and eight aquifers, an extensive investigation and characterization methods were used in order to delineate the contamination plumes. By means of a 3D numerical model, the prioritization of the contaminated sites could be performed. Five contaminated sites with high remediation priority and need for optimized or additional remediation efforts were determined. For those five contaminated sites feasibility studies were performed which resulted in recommendation of remediation measures with total costs of more than 12.5 million euros. The proposed strategy and approach are suitable for multiple sources of contamination. Only in this way, the contributions of single contaminated sites to the total groundwater contamination can be identified and local remediation measures with their spatial impact simulated. Due to very complex geological conditions, technically there is no alternative to this strategy in order to achieve the contamination reduction in groundwater. PMID:26524995

  17. Exposure to multiple metals from groundwater-a global crisis: geology, climate change, health effects, testing, and mitigation.

    PubMed

    Mitchell, Erika; Frisbie, Seth; Sarkar, Bibudhendra

    2011-09-01

    This paper presents an overview of the global extent of naturally occurring toxic metals in groundwater. Adverse health effects attributed to the toxic metals most commonly found in groundwater are reviewed, as well as chemical, biochemical, and physiological interactions between these metals. Synergistic and antagonistic effects that have been reported between the toxic metals found in groundwater and the dietary trace elements are highlighted, and common behavioural, cultural, and dietary practices that are likely to significantly modify health risks due to use of metal-contaminated groundwater are reviewed. Methods for analytical testing of samples containing multiple metals are discussed, with special attention to analytical interferences between metals and reagents. An overview is presented of approaches to providing safe water when groundwater contains multiple metallic toxins. PMID:21766119

  18. Issues in groundwater management

    SciTech Connect

    Smerdon, E.T.; Jordon, W.R.

    1985-01-01

    It is now widely recognized that the solution to future water problems in Texas will require more effective management of the water resources. New supplies to meet future needs are not without limit; therefore, the solution to the problem will have to come from better water conservation as well as by providing new supplies. In some cases, conservation and reuse may be the only feasible answer. To accomplish what is needed will require the best efforts of all Texans. And good research programs will be required to discover ways to improve on what has been done in the past. This publication contains the proceedings of a symposium entitled ''Groundwater--Crisis or Opportunity,'' which was held in San Antonio October 29-31, 1984. It was one of several efforts related to water resources undertaken cooperatively in recent years by The University of Texas at Austin and The Texas A and M University System. The papers in this proceedings discuss the groundwater problems of the future in Texas.

  19. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    SciTech Connect

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.

  20. Adverse effects of drugs on the immature kidney.

    PubMed

    Guignard, J P; Gouyon, J B

    1988-01-01

    The immature kidney may be adversely affected by a variety of vasoactive or diuretic drugs, either administered to the mother during pregnancy, or to the neonate. Inhibitors of the angiotensin-converting enzyme administered to the hypertensive pregnant woman can severely and sometimes definitely impair renal function in the fetus, leading to postnatal anuria. Pathogenesis involves interference with the renin-angiotensin system and the prostaglandins. Beta-adrenergic agents administered during labor depress glomerular filtration rate transiently. Tolazoline, an alpha-adrenergic blocking agent useful in the treatment of persistent pulmonary hypertension of the neonate induces intense renal vasoconstriction with consequent hypoperfusion. Indomethacin, a prostaglandin synthetase inhibitor used for the pharmacological closure of a patent ductus arteriosus, also increases renal vascular resistance, and decreases urine output. Furosemide, the drug most often used in oliguric neonates, may also adversely affect the newborn infant. Its use has been associated with an increase in the incidence of patent ductus arteriosus, hypercalciuria, nephrocalcinosis and secondary hyperparathyroidism. These observations demonstrate that the proper use of drugs requires that the therapeutic endpoint be clearly defined and the predictable side effects be anticipated. PMID:2901276

  1. Hepatic drug metabolism and adverse hepatic drug reactions.

    PubMed

    Schaffner, F

    1975-01-01

    Drugs and other chemicals are usually metabolized in the liver in the drug-metabolizing enzyme system. The metabolites sometimes bind with cellular macromolecules and injure the cell directly or serve as new antigens to create immunologic injury in a delayed fashion. The immediate or toxic injury is dose-dependent, predictable and zonal in the liver lobule, usually in the central region. Carbon tetrachloride intoxication and acetaminophen overdose are examples of injury resulting from microsomal metabolism. Other injuries related to microsomal metabolism are those produced by vinyl chloride in polymerization plant workers and by methotrexate in psoriatics or leukemic children. Most adverse drug reactions affecting the liver and producing jaundice are unpredictable, delayed in onset, and only hypothetically related to microsomal metabolism in some instances. The two main types are cholestasis and viral-hepatitis-like. The former may be in a pure form, in which case it may be partly dose-dependent, or in a form mixed with hepatitis. Many drugs produce cholestasis in a small percentage of persons, and because the reaction is benign, albeit prolonged at times, such drugs continue to be used. The viral-hepatitis-like reaction involves few drugs and affects few persons, but can be fatal. The recognition that chronic hepatitis can be caused by drugs such as oxyphenisatin, alpha-methyldopa, and isoniazid has added a new dimension to the clinical problem of adverse drug reactions, which may extend to widely used and commonly available agents like aspirin. PMID:171822

  2. [Analgesics in geriatric patients. Adverse side effects and interactions].

    PubMed

    Gosch, Markus

    2015-07-01

    Pain is a widespread symptom in clinical practice. Older adults and chronically ill patients are particularly affected. In multimorbid geriatric patients, pharmacological pain treatment is an extension of a previously existing multimedication. Besides the efficacy of pain treatment, drug side effects and drug-drug interactions have to be taken into account to minimize the health risk for these patients. Apart from the number of prescriptions, the age-related pharmacokinetic and pharmacodynamic changes significantly increase the risk among older adults. The use of non-steroidal anti-inflammatory drugs (NSAID) is widespread but NSAIDs have the highest risk of adverse drug reactions and drug interactions. In particular, the gastrointestinal, cardiovascular, renal and coagulation systems are affected. Apart from the known toxic effect on the liver (in high doses), paracetamol (acetaminophen) has similar risks although to a lesser degree. According to current data, metamizol is actually better than its reputation suggests. The risk of potential drug interactions seems to be low. Apart from the risk of sedation in combination with other drugs, tramadol and other opioids can induce the serotonin syndrome. Among older adults, especially in the case of polypharmacy, an individualized approach should be considered instead of sticking to the pain management recommended by the World Health Organization (WHO) in order to minimize drug-drug interactions and adverse drug reactions. PMID:26152872

  3. Monitoring probe for groundwater flow

    DOEpatents

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  4. Monitoring probe for groundwater flow

    DOEpatents

    Looney, Brian B.; Ballard, Sanford

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  5. Bacterial Community Structure Response to Petroleum Concentration in Groundwater

    NASA Astrophysics Data System (ADS)

    Kitts, C. L.; Wrighton, K. C.; Phillips, W. A.; Cano, R. J.; Lundegard, P. D.

    2004-12-01

    the site. While the particulate methane monooxygenase gene (pmoA) was not detected in all samples, the specific type of pmoA gene present in a sample correlated directly to methane concentration, indicating that different types of methanotrophic bacteria are affected by changes in groundwater chemistry. In contrast to the methanotroph data, the presence of different types of the methyl coenzyme M reductase gene (mcrA) specific for methanogens did not correlate to physical and chemical groundwater parameters.

  6. Sustainability of groundwater supplies in the Northern Atlantic Coastal Plain aquifer system

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.

    2016-01-01

    The U.S. Geological Survey (USGS) is conducting large-scale multidisciplinary regional studies of groundwater availability as part of its ongoing assessments of the principal aquifers of the Nation. These regional studies are intended to provide citizens, communities, and natural resource managers with knowledge of the status of the Nation’s groundwater resources and how changes in land use, water use, and climate have affected and are likely to affect those resources now and in the future.

  7. The adverse outcome pathway knowledge base

    EPA Science Inventory

    The rapid advancement of the Adverse Outcome Pathway (AOP) framework has been paralleled by the development of tools to store, analyse, and explore AOPs. The AOP Knowledge Base (AOP-KB) project has brought three independently developed platforms (Effectopedia, AOP-Wiki, and AOP-X...

  8. Adverse Effects of Psychotropic Medications on Sleep.

    PubMed

    Doghramji, Karl; Jangro, William C

    2016-09-01

    Psychotropic medications such as antidepressants, antipsychotics, stimulants, and benzodiazepines are widely prescribed. Most of these medications are thought to exert their effects through modulation of various monoamines as well as interactions with receptors such as histamine and muscarinic cholinergic receptors. Through these interactions, psychotropics can also have a significant impact on sleep physiology, resulting in both beneficial and adverse effects on sleep. PMID:27514301

  9. Resilience in the Face of Adversity.

    ERIC Educational Resources Information Center

    Patterson, Jerry

    2001-01-01

    "Resilience" is the capacity for moving ahead under adverse circumstances. School superintendents are advised to stay upbeat and mindful of "both-and" opportunities; stay focused on what they care about; remain flexible and tolerant of ambiguity; be proactive, not reactive; and apply resilience-conserving strategies during tough times. (MLH)

  10. Adverse effects of fillers and their histopathology.

    PubMed

    Haneke, Eckart

    2014-12-01

    Injectable fillers nowadays represent a pillar in facial rejuvenation and make a significant contribution to the success of the treatment. Despite their obvious benefits, a wide range of possible complications such as immediate, late, delayed, temporary, or irreversible adverse effects have to be respected. Differentiating the various filler materials, these effects are assigned to histopathology findings and currently available treatment options. PMID:25536126

  11. Helping Student Teachers Avoid Adverse Legal Actions.

    ERIC Educational Resources Information Center

    Peach, Larry; Reddick, Thomas L.

    1984-01-01

    Discusses five areas of the school environment lending themselves to the possibility of teacher and student teacher liability: negligence, malpractice, rights to privacy, field trips, and search of students and school property. Suggests specific guidelines for decreasing the possibility of adverse legal action. (NEC)

  12. Pharmacogenomics and adverse drug reactions in children

    PubMed Central

    Rieder, Michael J.; Carleton, Bruce

    2014-01-01

    Adverse drug reactions are a common and important complication of drug therapy in children. Over the past decade it has become increasingly apparent that genetically controlled variations in drug disposition and response are important determinants of adverse events for many important adverse events associated with drug therapy in children. While this research has been difficult to conduct over the past decade technical and ethical evolution has greatly facilitated the ability of investigators to conduct pharmacogenomic studies in children. Some of this research has already resulted in changes in public policy and clinical practice, for example in the case of codeine use by mothers and children. It is likely that the use of pharmacogenomics to enhance drug safety will first be realized among selected groups of children with high rates of drug use such as children with cancer, but it also likely that this research will be extended to other groups of children who have high rates of drug utilization and as well as providing insights into the mechanisms and pathophysiology of adverse drug reactions in children. PMID:24795743

  13. [Analysis of Spontaneously Reported Adverse Events].

    PubMed

    Nakamura, Mitsuhiro

    2016-01-01

    Observational study is necessary for the evaluation of drug effectiveness in clinical practice. In recent years, the use of spontaneous reporting systems (SRS) for adverse drug reactions has increased and they have become an important resource for regulatory science. SRS, being the largest and most well-known databases worldwide, are one of the primary tools used for postmarketing surveillance and pharmacovigilance. To analyze SRS, the US Food and Drug Administration Adverse Event Reporting System (FAERS) and the Japanese Adverse Drug Event Report Database (JADER) are reviewed. Authorized pharmacovigilance algorithms were used for signal detection, including the reporting odds ratio. An SRS is a passive reporting database and is therefore subject to numerous sources of selection bias, including overreporting, underreporting, and a lack of a denominator. Despite the inherent limitations of spontaneous reporting, SRS databases are a rich resource and data mining index that provide powerful means of identifying potential associations between drugs and their adverse effects. Our results, which are based on the evaluation of SRS databases, provide essential knowledge that could improve our understanding of clinical issues. PMID:27040337

  14. Adverse outcome pathway (AOP) development and evaluation

    EPA Science Inventory

    The Adverse Outcome Pathway provides a construct for assembling mechanistic information at different levels of biological organization in a form designed to support regulatory decision making. In particular, it frames the link between molecular and cellular events that can be mea...

  15. Reducing Adverse Impact: One City's Efforts.

    ERIC Educational Resources Information Center

    Prewitt, Jeff

    Following a workshop on "Innovations in Employment Testing that Improve Validity and Reduce Adverse Impact," the City of Louisville (Kentucky) implemented a strategy to develop a comprehensive testing and recruiting program for police recruits. To improve candidate expectations and preparation, the following activities were undertaken: intense…

  16. Enduring psychobiological effects of childhood adversity.

    PubMed

    Ehlert, Ulrike

    2013-09-01

    This mini-review refers to recent findings on psychobiological long-term consequences of childhood trauma and adverse living conditions. The continuum of trauma-provoked aftermath reaches from healthy adaptation with high resilience, to severe maladjustment with co-occurring psychiatric and physical pathologies in children, adolescents and adults. There is increasing evidence of a strong interconnectivity between genetic dispositions, epigenetic processes, stress-related hormonal systems and immune parameters in all forms of (mal)-adjustment to adverse living conditions. Unfavorable constellations of these dispositions and systems, such as low cortisol levels and elevated markers of inflammation in maltreated children, seem to promote the (co)-occurrence of psychiatric and physical pathologies such as posttraumatic stress disorder, obesity, or diabetes. Although findings from prospective study designs support a deepened understanding of causal relations between adverse living conditions, including traumatic experiences, during childhood and its psychobiological effects, so far, little is known about the temporal coincidence of stress-sensitive developmental stages during childhood and adolescence and trauma consequences. Taken together, childhood adversity is a severe risk factor for the onset of psychobiological (mal)-adjustment, which has to be explained under consideration of diverse physiological systems and developmental stages of childhood and adolescence. PMID:23850228

  17. Groundwater: from mystery to management

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    2009-07-01

    Groundwater has been used for domestic and irrigation needs from time immemorial. Yet its nature and occurrence have always possessed a certain mystery because water below the land surface is invisible and relatively inaccessible. The influence of this mystery lingers in some tenets that govern groundwater law. With the birth of modern geology during the late nineteenth century, groundwater science became recognized in its own right. Over the past two centuries, groundwater has lost its shroud of mystery, and its scientific understanding has gradually grown hand-in-hand with its development for human use. Groundwater is a component of the hydrological cycle, vital for human sustenance. Its annual renewability from precipitation is limited, and its chemical quality is vulnerable to degradation by human action. In many parts of the world, groundwater extraction is known to greatly exceed its renewability. Consequently, its rational management to benefit present and future generations is a matter of deep concern for many nations. Groundwater management is a challenging venture, requiring an integration of scientific knowledge with communal will to adapt to constraints of a finite common resource. As scientists and policy makers grapple with the tasks of groundwater management, it is instructive to reflect on the evolution of groundwater knowledge from its initial phase of demystification at the beginning of the nineteenth century, through successive phases of technological conquest, scientific integration, discovery of unintended consequences and the present recognition of an imperative for judicious management. The following retrospective provides a broad context for unifying the technical contributions that make up this focus issue on groundwater resources, climate and vulnerability.

  18. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.

    2014-03-01

    This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.

  19. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    NASA Astrophysics Data System (ADS)

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  20. Analysis of adverse events of sunitinib in patients treated for advanced renal cell carcinoma

    PubMed Central

    Cedrych, Ida; Jasiówka, Marek; Niemiec, Maciej; Skotnicki, Piotr

    2016-01-01

    Introduction Treatment of the metastatic stage of renal cell carcinoma is specific because classical chemotherapy is not applicable here. The treatment is mainly based on molecularly targeted drugs, including inhibitors of tyrosine kinases. In many cases the therapy takes many months, and patients often report to general practitioners due to adverse events. In this article, the effectiveness and side effects of one of these drugs are presented. The aim of the study was to analyse of the toxicity and safety of treatment with sunitinib malate in patients with clear cell renal cell carcinoma in the metastatic stage. Material and methods Adverse events were analyzed using retrospective analysis of data collected in a group of 39 patients treated in the Department of Systemic and Generalized Malignancies in the Cancer Center in Krakow, Poland. Results Toxicity of treatment affected 50% of patients. The most common side effects observed were hypertension, thrombocytopenia, stomatitis, diarrhea and weakness. Grade 3 serious adverse events according to Common Terminology Criteria for Adverse Events (CTCAE) version 4 affected up to 10% of patients. The most common serious adverse events were hypertension and fatigue. Conclusions Sunitinib malate is characterized by a particular type of toxicity. Knowledge of the types and range of adverse events of this drug is an important part of oncological and internal medicine care. PMID:27186181

  1. The nature and role of physical models in enhancing sixth grade students' mental models of groundwater and groundwater processes

    NASA Astrophysics Data System (ADS)

    Duffy, Debra Lynne Foster

    Through a non-experimental descriptive and comparative mixed-methods approach, this study investigated the experiences of sixth grade earth science students with groundwater physical models through an extended SE learning cycle format. The data collection was based on a series of quantitative and qualitative research tools intended to investigate students' ideas and changes in ideas rather than measure their achievement. The measures included a groundwater survey, classroom observations, and one-on-one follow-up student interviews for triangulation of data sources. The research was carried out at a K-12 independent school in eastern Virginia using two classes of sixth grade earth science students (n=30). The findings suggest that physical models help students identify the components porosity and permeability with respect to water flow in groundwater systems. Higher levels of system thinking were best demonstrated in model components that allowed students to experience groundwater pollution activities and pumping groundwater wells. However, the results also indicated that due to model constraints, students can develop misconceptions during the use of physical models, specifically more complex physical models as in the Groundwater Exploration Activity Model. A pure discovery learning format while using physical models without guidance or formative assessment probes can lead to misconceptions about groundwater processes as well as confusion between model attributes and real world groundwater systems. The implications of this study relate directly to the inclusion of groundwater in the new national science standards released in 2011; A Framework for K-12 Science Standard; Practices, Crosscutting Concepts, and Core Ideas (NRC, 2011). The new national standards, as in other educational reform efforts, will have the ability to affect curricular and instructional strategies in science education. From the results of this study, it was concluded that best practices for using

  2. Reconstruction of Groundwater Depletion Using a Global Scale Groundwater Model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.; Van Beek, L. P.; Bierkens, M. F.

    2014-12-01

    Groundwater is a crucial part of the global water cycle. It is the world's largest accessible source of fresh water to satisfy human water needs. During times of droughts it sustains river flows and evaporation in areas with shallow water tables. However, most global scale hydrological models do not include a lateral groundwater flow component due to a lack of consistent global-scale hydrogeological information. Such data is needed to arrive at a more realistic physical representation of the groundwater system allowing for the simulation of groundwater head dynamics and lateral flows including abstractions in confined and unconfined aquifers. This improved process description is indispensable to understand the effects of past and future climate variations and human dependence on global water resources. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model presenting confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR-GLOBWB (van Beek et al. 2011) via recharge and surface water levels. The aquifer parameterization is based on available global data-sets on lithology (Hartmann and Moosdorf 2011) and permeability (Gleeson et al. 2011) and newly derived estimates of aquifer depth and thickness of confining layers from an integration of lithological and topographical information. In a sensitivity analysis the model is run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and recharge (Wada et al 2012) are evaluated. Trends and fluctuations of groundwater head and streamflow are studied in response to human groundwater use and climate variability, as well as revealing hotspots and magnitude of global groundwater depletion.

  3. A longitudinal perspective on childhood adversities and onset risk of various psychiatric disorders.

    PubMed

    Oldehinkel, Albertine J; Ormel, Johan

    2015-06-01

    It is well-known that childhood adversities can have long-term effects on mental health, but a lot remains to be learned about the risk they bring about for a first onset of various psychiatric disorders, and how this risk develops over time. In the present study, which was based on a Dutch longitudinal population survey of adolescents TRAILS (N = 1,584), we investigated whether and how childhood adversities, as assessed with three different measures, affected the risk of developing an incident depressive, anxiety, or disruptive behavior in childhood and adolescence. In addition, we tested gender differences in any of the effects under study. The results indicated that depressive, anxiety and disruptive behavior disorders each had their own, characteristic, pattern of associations with childhood adversities across childhood and adolescence, which was maintained after adjustment for comorbid disorders. For depressive disorders, the overall pattern suggested a high excess risk of incidence during childhood, which decreased during adolescence. Anxiety disorders were characterized by a moderately increased incident risk during childhood, which remained approximately stable over time. Disruptive behavior disorders took an intermediate position. Of the three childhood adversities tested, an overall rating of the stressfulness of the childhood appeared to predict onset of psychiatric disorders best. To conclude, the risk of developing a psychiatric disorder after exposure to adversities early in life depends on the nature of the adversities, the nature of the outcome, and the time that has passed since the adversities without disorder onset. PMID:24723042

  4. Simulation of Groundwater Mounding Beneath Hypothetical Stormwater Infiltration Basins

    USGS Publications Warehouse

    Carleton, Glen B.

    2010-01-01

    Groundwater mounding occurs beneath stormwater management structures designed to infiltrate stormwater runoff. Concentrating recharge in a small area can cause groundwater mounding that affects the basements of nearby homes and other structures. Methods for quantitatively predicting the height and extent of groundwater mounding beneath and near stormwater Finite-difference groundwater-flow simulations of infiltration from hypothetical stormwater infiltration structures (which are typically constructed as basins or dry wells) were done for 10-acre and 1-acre developments. Aquifer and stormwater-runoff characteristics in the model were changed to determine which factors are most likely to have the greatest effect on simulating the maximum height and maximum extent of groundwater mounding. Aquifer characteristics that were changed include soil permeability, aquifer thickness, and specific yield. Stormwater-runoff variables that were changed include magnitude of design storm, percentage of impervious area, infiltration-structure depth (maximum depth of standing water), and infiltration-basin shape. Values used for all variables are representative of typical physical conditions and stormwater management designs in New Jersey but do not include all possible values. Results are considered to be a representative, but not all-inclusive, subset of likely results. Maximum heights of simulated groundwater mounds beneath stormwater infiltration structures are the most sensitive to (show the greatest change with changes to) soil permeability. The maximum height of the groundwater mound is higher when values of soil permeability, aquifer thickness, or specific yield are decreased or when basin depth is increased or the basin shape is square (and values of other variables are held constant). Changing soil permeability, aquifer thickness, specific yield, infiltration-structure depth, or infiltration-structure shape does not change the volume of water infiltrated, it changes the

  5. Groundwater dynamics and surface water-groundwater interactions in a prograding delta island, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    O'Connor, Michael T.; Moffett, Kevan B.

    2015-05-01

    Deltas in coastal environments are assumed to function as chemical "buffers", filtering nutrient-rich terrestrial runoff through the island structures and aquatic ecosystems as it travels to the sea, but the magnitude of this effect cannot be accurately quantified without understanding the physical relationships between the surface water and groundwater. The groundwater hydrology of young, prograding delta systems and its relationship to surrounding surface water dynamics are poorly understood. This study developed a new conceptual model of the hydrology of a prograding delta island groundwater system. The study was based on field data collected at Pintail Island, a 2 km2 island within the Wax Lake Delta in Louisiana. Hydraulic properties and processes were quantified at multiple depths and locations spanning the island elevation gradient. Groundwater and surface water levels were monitored. A weather station recorded precipitation, air, and wind conditions. The groundwater within Pintail Island was both spatially and temporally dynamic throughout the study period of 9-September-2013 to 4-February-2014. The aquifer within the distal limbs of the island responded to surface water dynamics as a connected, saturated unconfined aquifer would, and its groundwater was controlled by the surrounding surface water fluctuations of semi-diurnal winds and tides. The aquifer within the older, higher elevation island apex was a lower-permeability system with subaerial fine sediments overlying deeper, sandier sediments. In contrast to the more bayward zone of the island, this more interior zone was controlled by storm recharge, low-permeability sediments, and low head gradients, but little affected by diurnal surface water fluctuations. Groundwater flow was directed outward from the interior of the island apex and the levees toward the delta channels and the central island lagoon, but storms and high tides temporarily reversed flow directions at some locations and times, likely

  6. Reconstruction of groundwater depletion using a global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, Inge; van Beek, Rens; Sutanudjaja, Edwin; Wada, Yoshi; Bierkens, Marc

    2015-04-01

    Groundwater forms an integral part of the global hydrological cycle and is the world's largest accessible source of fresh water to satisfy human water needs. It buffers variable recharge rates over time, thereby effectively sustaining river flows in times of drought as well as evaporation in areas with shallow water tables. Moreover, although lateral groundwater flows are often slow, they cross topographic and administrative boundaries at appreciable rates. Despite the importance of groundwater, most global scale hydrological models do not consider surface water-groundwater interactions or include a lateral groundwater flow component. The main reason of this omission is the lack of consistent global-scale hydrogeological information needed to arrive at a more realistic representation of the groundwater system, i.e. including information on aquifer depths and the presence of confining layers. The latter holds vital information on the accessibility and quality of the global groundwater resource. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model comprising confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR GLOBWB (van Beek et al., 2011) via recharge and surface water levels. Aquifers properties were based on newly derived estimates of aquifer depths (de Graaf et al., 2014b) and thickness of confining layers from an integration of lithological and topographical information. They were further parameterized using available global datasets on lithology (Hartmann and Moosdorf, 2011) and permeability (Gleeson et al., 2014). In a sensitivity analysis the model was run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and corresponding recharge (Wada et al., 2012, de Graaf et al. 2014a) were evaluated. The resulting estimates of groundwater depletion are lower than

  7. Groundwater ''fast paths'' in the Snake River plain aquifer: Radiogenic isotope ratios as natural groundwater tracers

    SciTech Connect

    Johnson, Thomas M.; Roback, Robert C.; McLing, Travis L.; Bullen, Thomas D.; DePaolo, Donald J.; Doughty, Christine; Hunt, Randall J.; Smith, Robert W.; Cecil, L. DeWayne; Murrell, Michael T.

    2000-09-01

    Preferential flow paths are expected in many groundwater systems and must be located because they can greatly affect contaminant transport. The fundamental characteristics of radiogenic isotope ratios in chemically evolving waters make them highly effective as preferential flow path indicators. These ratios tend to be more easily interpreted than solute-concentration data because their response to water-rock interaction is less complex. We demonstrate this approach with groundwater {sup 87}Sr/{sup 86}Sr ratios in the Snake River Plain aquifer within and near the Idaho National Engineering and Environmental Laboratory. These data reveal slow-flow zones as lower {sup 87}Sr/{sup 86}Sr areas created by prolonged interaction with the host basalts and a relatively fast flowing zone as a high {sup 87}Sr/{sup 86}Sr area.

  8. Metallurgical Laboratory (HWMF) Groundwater Monitoring Report, Fourth Quarter 1994

    SciTech Connect

    Chase, J.A.

    1995-03-01

    Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Units were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab Hazardous Waste Management Facility. This project began in July 1994 and is complete; however, analytical data from these wells are not yet available.

  9. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  10. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  11. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  12. Kauai Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  13. 21 CFR 606.170 - Adverse reaction file.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Adverse reaction file. 606.170 Section 606.170... Adverse reaction file. (a) Records shall be maintained of any reports of complaints of adverse reactions... thorough investigation of each reported adverse reaction shall be made. A written report of...

  14. 21 CFR 606.170 - Adverse reaction file.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Adverse reaction file. 606.170 Section 606.170... Adverse reaction file. (a) Records shall be maintained of any reports of complaints of adverse reactions... thorough investigation of each reported adverse reaction shall be made. A written report of...

  15. 21 CFR 606.170 - Adverse reaction file.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Adverse reaction file. 606.170 Section 606.170... Adverse reaction file. (a) Records shall be maintained of any reports of complaints of adverse reactions... thorough investigation of each reported adverse reaction shall be made. A written report of...

  16. Numerical simulation approaches to evaluate nitrate contamination of groundwater through leakage well in layered aquifer system

    NASA Astrophysics Data System (ADS)

    Koh, E.; Lee, E.; Lee, K.

    2013-12-01

    The layered aquifer system (i.e. perched and regional aquifers) is locally observed in Gosan area of Jeju Island, Korea due to scattered distributions of an impermeable clay layer. In the Gosan area, farming is actively performed and nitrate contamination has been frequently reported in groundwater of regional aquifer which is sole water resource in the island. Water quality of the regional groundwater is impacted by inflows of the nitrate-rich perched groundwater, which is located above the impermeable layer and directly affected by surface contaminants. A poorly grouted well penetrating the impermeable layer provides a passage of contaminated groundwater through the impermeable layer. Such a hydrogeological characteristic consequently induces nitrate contamination of the regional aquifer in this region. To quantify the inflows of the perched groundwater via leakage wells, a numerical model was developed to calculate leakage amounts of the perched groundwater into the regional groundwater. This perched groundwater leakages were applied as point and time-variable contamination sources during the solute transport simulation process for the regional aquifer. This work will provide useful information to suggest effective ways to control nitrate contamination of groundwater in the agricultural field.

  17. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand

    PubMed Central

    Radloff, K.A.; Zheng, Y.; Michael, H.A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M.W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.

    2011-01-01

    Drinking shallow groundwater with naturally elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, growing reliance on deep (>150 m) groundwater has lowered exposure. In the most affected districts of Bangladesh, shallow groundwater concentrations average 100 to 370 μg L−1, while deep groundwater is typically < 10 μg L−1. Groundwater flow simulations have suggested that, even when deep pumping is restricted to domestic use, deep groundwater in some areas of the Bengal Basin is at risk of contamination. However, these simulations have neglected the impedance of As migration by adsorption to aquifer sediments. Here we quantify for the first time As sorption on deeper sediments in situ by replicating the intrusion of shallow groundwater through injection of 1,000 L of deep groundwater modified with 200 μg L−1 of As into a deeper aquifer. Arsenic concentrations in the injected water were reduced by 70% due to adsorption within a single day. Basin-scale modelling indicates that while As adsorption extends the sustainable use of deep groundwater, some areas remain vulnerable; these areas can be prioritized for management and monitoring. PMID:22308168

  18. Positive and negative impacts of five Austrian gravel pit lakes on groundwater quality.

    PubMed

    Muellegger, Christian; Weilhartner, Andreas; Battin, Tom J; Hofmann, Thilo

    2013-01-15

    Groundwater-fed gravel pit lakes (GPLs) affect the biological, organic, and inorganic parameters of inflowing groundwater through combined effects of bank filtration at the inflow, reactions within the lake, and bank filtration at the outflow. GPLs result from wet dredging for sand and gravel and may conflict with groundwater protection programs by removing the protective soil cover and exposing groundwater to the atmosphere. We have investigated the impact on groundwater of five GPLs with different sizes, ages, and mean residence times, and all having low post-excavation anthropogenic usage. The results revealed highly active biological systems within the lake water, in which primary producers significantly reduced inflowing nitrate concentrations. Decalcification also occurred in lake water, reducing water hardness, which could be beneficial for waterworks in hard groundwater areas. Downgradient groundwater nitrate and calcium concentrations were found to be stable, with only minor seasonal variations. Biological degradation of organic material and organic micropollutants was also observed in the GPLs. For young GPLs adequate sediment deposits may not yet have formed and degradation processes at the outflow may consequently not yet be well established. However, our results showed that within 5 years from the cessation of excavation a protective sediment layer is established that is sufficient to prevent the export of dissolved organic carbon to downgradient groundwater. GPLs can improve groundwater quality in anthropogenically (e.g., pesticides and nitrate) or geologically (e.g., hardness) challenging situations. However, post-excavation usage of GPLs is often dominated by human activities such as recreational activities, water sports, or fish farming. These activities will affect lake and groundwater quality and the risks involved are difficult to predict and monitor and can lead to overall negative impacts on groundwater quality. PMID:23178886

  19. Global scale groundwater flow model

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  20. Estimating global groundwater withdrawal and depletion using an integrated hydrological model, GRACE, and in situ observations

    NASA Astrophysics Data System (ADS)

    Pokhrel, Y. N.; Koirala, S.; Hanasaki, N.; Yeh, P. J.; Kanae, S.; Oki, T.

    2012-12-01

    In the past several decades extensive use of groundwater, particularly for irrigation, has led to rapid groundwater depletion in many regions. This has not only affected the terrestrial water cycle but also resulted in global sea level rise because a large portion of unsustainably pumped groundwater eventually ends up in the ocean. Therefore, monitoring groundwater resources and their use has become increasingly important. While in situ observations are invaluable for assessing and monitoring groundwater availability, global models and satellite-based observations provide further insights into groundwater dynamics in regions where observations are scarce. In this study, we highlight the major hotspots of global groundwater depletion and the consequent sea level change by using an integrated modeling framework. The model was developed by incorporating a dynamic groundwater scheme and a pumping scheme into a global land surface model (MATSIRO: Minimal Advanced Treatments of Surface Interaction and Runoff) which also accounts for the effects of major human activities (e.g., reservoir operation, irrigation, and water withdrawal) on the terrestrial water cycle. All components of the model are fully coupled and the model tracks the flow of water taking into account the withdrawals of water for agricultural, domestic, and industrial uses from various sources such as river networks, medium-sized reservoirs, and groundwater reservoir. Using model results, GRACE measurement, and ground-based observations by the United States Geological Survey, we demonstrate that groundwater has been declining in many regions with a particular focus on the major aquifers in the United States. In the region overlying the High Plains aquifer, which is extensively irrigated mainly by using groundwater, the simulated groundwater withdrawal of ~23 km3/yr agrees well with the observational record of ~24 km3/yr for circa 2000. Moreover, corresponding closely with the USGS water level observations

  1. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2012-01-01

    Groundwater is a vital resource and also a dynamic component of the water cycle. Unconfined aquifer storage is less responsive to short term weather conditions than the near surface terrestrial water storage (TWS) components (soil moisture, surface water, and snow). However, save for the permanently frozen regions, it typically exhibits a larger range of variability over multi-annual periods than the other components. Groundwater is poorly monitored at the global scale, but terrestrial water storage (TWS) change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are a reasonable proxy for unconfined groundwater at climatic scales.

  2. Mining's impact on groundwater assessed

    NASA Astrophysics Data System (ADS)

    Detailed studies have indicated that groundwater is contaminated in the immediate vicinity of many mines in the eastern United States. However, no underground mines and very few refuse disposal areas have monitoring systems that can provide adequate warning of impending threats to groundwater quality.This was one of the conclusions of a 3-year study by Geraghty & Miller, Inc., a firm of consulting groundwater geologists and hydrologists based in Syosset, New York. The study focused on mines east of the 100th meridian. These mines will produce an estimated 1.1 billion tons of coal and 200 million tons of waste by 1985.

  3. Global Quick Scan of the Vulnerability of Groundwater systems to Tsunamis

    NASA Astrophysics Data System (ADS)

    Oude Essink, Gualbert; Faneca Sànchez, Marta; Zamrsky, Daniel

    2014-05-01

    Fresh groundwater resources in deltaic areas are used for domestic, agricultural and industrial purposes. These resources in the coastal zone are threatened by salinization of the aquifers due to global change (increase of groundwater extraction due to population growth), climate change (including sea level rise), as well as natural disasters such as floods and tsunamis. Studies of how the coastal fresh groundwater resources are affected by the latter phenomena are often done a posteriori, especially the studies related to tsunami effects (e.g. the 2003 Sumatra Tsunami). Then it is often too late to take appropriated measures to counteract the negative effects (e.g. on drinking water supply). These complex studies are time consuming, and need data which might not be available at the time of the disaster when a fast reaction of the water authorities is needed, e.g. to facilitate a quick and easy to access fresh water supply system. In our study we present a Global Quick Scan of the vulnerability of the deltaic fresh groundwater resources to tsunamis. We created a global database including the data needed to generate fast and simple models on the salinization of groundwater systems in the coastal zone. These quantifications give water manager a first approximation of the effects that a tsunami would have on the salinization of the fresh groundwater. The data collected in this database has been used to generate a map showing the areas with coastal groundwater systems vulnerable to tsunami effects, as well as a dataset of 500 2D models representing the physical characteristics of the most frequent coastal groundwater systems in tsunami vulnerable areas. These 2D models simulate the loss in fresh groundwater volume of the system and the characteristic time of a system before it recovers 90% of the fresh groundwater that was available previous to the tsunami event. A similar approach could be adopted for assessing the effect of sea level rise and future increased

  4. Adverse events during intrahospital transport of critically ill patients: incidence and risk factors

    PubMed Central

    2013-01-01

    Background Transport of critically ill patients for diagnostic or therapeutic procedures is at risk of complications. Adverse events during transport are common and may have significant consequences for the patient. The objective of the study was to collect prospectively adverse events that occurred during intrahospital transports of critically ill patients and to determine their risk factors. Methods This prospective, observational study of intrahospital transport of consecutively admitted patients with mechanical ventilation was conducted in a 38-bed intensive care unit in a university hospital from May 2009 to March 2010. Results Of 262 transports observed (184 patients), 120 (45.8%) were associated with adverse events. Risk factors were ventilation with positive end-expiratory pressure >6 cmH2O, sedation before transport, and fluid loading for intrahospital transports. Within these intrahospital transports with adverse events, 68 (26% of all intrahospital transports) were associated with an adverse event affecting the patient. Identified risk factors were: positive end-expiratory pressure >6 cmH2O, and treatment modification before transport. In 44 cases (16.8% of all intrahospital transports), adverse event was considered serious for the patient. In our study, adverse events did not statistically increase ventilator-associated pneumonia, time spent on mechanical ventilation, or length of stay in the intensive care unit. Conclusions This study confirms that the intrahospital transports of critically ill patients leads to a significant number of adverse events. Although in our study adverse events have not had major consequences on the patient stay, efforts should be made to decrease their incidence. PMID:23587445

  5. Glaucoma eye drops adverse skin reactions.

    PubMed

    Cantisani, Carmen; Ambrifi, Marina; Frascani, Federica; Fazia, Gilda; Paolino, Giovanni; Lisi, Roberto; Calvieri, Stefano

    2014-01-01

    The term "Glaucoma" is used to describe a number of diseases of the eye characterized by a particular form of optic nerve damage that is often associated with high intraocular pressure (IOP). The open-angle glaucoma is the most common form that is also referred to as chronic glaucoma. This is described as an optic neuropathy with multifactorial nature in which there is a loss of characteristics of the optic nerve fibers. Therapeutic options for the treatment of this disease are different, you can take advantage of eye drops, laser therapy and conventional surgery or more combined treatments. Medicated eye drops are the most common way to treat glaucoma. Although eye drops are widely used, adverse reactions are not frequently observed and described. In particular, the adverse skin reactions are not frequently described in the literature, but often seen in dermatologic clinic, we reported their skin reactions and possible alternative treatments described in literature and their patent applications. PMID:25487259

  6. Effects of temperature changes on groundwater ecosystems

    NASA Astrophysics Data System (ADS)

    Griebler, Christian; Kellermann, Claudia; Schreglmann, Kathrin; Lueders, Tillmann; Brielmann, Heike; Schmidt, Susanne; Kuntz, David; Walker-Hertkorn, Simone

    2014-05-01

    The use of groundwater as a carrier of thermal energy is becoming more and more important as a sustainable source of heating and cooling. At the same time, the present understanding of the effects of aquifer thermal usage on geochemical and biological aquifer ecosystem functions is extremely limited. Recently we started to assess the effects of temperature changes in groundwater on the ecological integrity of aquifers. In a field study, we have monitored hydrogeochemical, microbial, and faunal parameters in groundwater of an oligotrophic aquifer in the vicinity of an active thermal discharge facility. The observed seasonal variability of abiotic and biotic parameters between wells was considerable. Yet, due to the energy-limited conditions no significant temperature impacts on bacterial or faunal abundances and on bacterial productivity were observed. In contrast, the diversity of aquifer bacterial communities and invertebrate fauna was either positively or negatively affected by temperature, respectively. In follow-up laboratory experiments temperature effects were systematically evaluated with respect to energy limitation (e.g. establishment of unlimited growth conditions), geochemistry (e.g. dynamics of DOC and nutrients), microbiology (e.g. survival of pathogens), and fauna (temperature preference and tolerance). First, with increased nutrient and organic carbon concentrations even small temperature changes revealed microbiological dynamics. Second, considerable amounts of adsorbed DOC were mobilized from sediments of different origin with an increase in temperatures. No evidence was obtained for growth of pathogenic bacteria and extended survival of viruses at elevated temperatures. Invertebrates clearly preferred natural thermal conditions (10-12°C), where their highest frequency of appearance was measured in a temperature gradient. Short-term incubations (48h) of invertebrates in temperature dose-response tests resulted in LT50 (lethal temperature) values

  7. Hierarchically nanotextured surfaces maintaining superhydrophobicity under severely adverse conditions

    NASA Astrophysics Data System (ADS)

    Maitra, Tanmoy; Antonini, Carlo; Auf der Mauer, Matthias; Stamatopoulos, Christos; Tiwari, Manish K.; Poulikakos, Dimos

    2014-07-01

    Superhydrophobic surfaces are highly desirable for a broad range of technologies and products affecting everyday life. Despite significant progress in recent years in understanding the principles of hydrophobicity, mostly inspired by surface designs found in nature, many man-made surfaces employ readily processable materials, ideal to demonstrate principles, but with little chance of survivability outside a very limited range of well-controlled environments. Here we focus on the rational development of robust, hierarchically nanostructured, environmentally friendly, metal-based (aluminum) superhydrophobic surfaces, which maintain their performance under severely adverse conditions. Based on their functionality, we superpose selected hydrophobic layers (i.e. self-assembled monolayers, thin films, or nanofibrous coatings) on hierarchically textured aluminum surfaces, collectively imparting high level robustness of superhydrophobicity under adverse conditions. These surfaces simultaneously exhibit chemical stability, mechanical durability and droplet impalement resistance. They impressively maintained their superhydrophobicity after exposure to severely adverse chemical environments like strong alkaline (pH ~ 9-10), acidic (pH ~ 2-3), and ionic solutions (3.5 weight% of sodium chloride), and could simultaneously resist water droplet impalement up to an impact velocity of 3.2 m s-1 as well as withstand standard mechanical durability tests.Superhydrophobic surfaces are highly desirable for a broad range of technologies and products affecting everyday life. Despite significant progress in recent years in understanding the principles of hydrophobicity, mostly inspired by surface designs found in nature, many man-made surfaces employ readily processable materials, ideal to demonstrate principles, but with little chance of survivability outside a very limited range of well-controlled environments. Here we focus on the rational development of robust, hierarchically

  8. Groundwater intensive exploitation and mining in Gran Canaria and Tenerife, Canary Islands, Spain: Hydrogeological, environmental, economic and social aspects.

    PubMed

    Custodio, Emilio; Cabrera, María Del Carmen; Poncela, Roberto; Puga, Luis-Olavo; Skupien, Elzbieta; Del Villar, Alberto

    2016-07-01

    Intensive exploitation and continuous consumption of groundwater reserves (groundwater mining) have been real facts for decades in arid and semiarid areas. A summary of experience in the hydrogeological, economic, social and ethical consequences of groundwater intensive and mining exploitation in Gran Canaria and Tenerife Islands, in the Canarian Archipelago, is presented. Groundwater abstraction is less than recharge, but a significant outflow of groundwater to the sea cannot be avoided, especially in Tenerife, due to its younger volcanic coastal formations. Consequently, the intensive aquifer groundwater development by means of wells and water galleries (tunnels) has produced a groundwater reserve depletion of about 2km(3). Should current groundwater abstraction cease, the recovery time to close-to-natural conditions is from decades to one century, except in the mid and high elevations of Tenerife, where this recovery is not possible as aquifer formations will remain permanently drained by the numerous long water galleries. The socio-economic circumstances are complex due to a long standing history of water resources exploitation, successive social changes on each island, and well-established groundwater water trading, with complex relationships that affect water governance and the resulting ethical concerns. Gran Canaria and Tenerife are in an advanced groundwater exploitation stage and have a large water demand. They are good examples that allow drawing guidelines to evaluate groundwater development on other small high islands. After presenting the hydrogeological background, the socio-economic results are discussed to derive general knowledge to guide on water governance. PMID:27017075

  9. Effect of Particles on Fenton Oxidation of Organic Contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, Y.; Gwak, J.; Lee, C.; Ha, J.

    2009-12-01

    Fenton oxidation has been widely applied for a variety of water treatment due to non-selectively oxidative capability at a high reaction rate and cost effectiveness. Even though wide and deep range of studies were conducted for understanding the Fenton reaction with various contaminants, effect of particles on Fenton reaction has been little studied. This study explored the performance of Fenton oxidation for organic contaminated groundwater treatment in the presence of particles. The contaminated groundwater was a free oil separated groundwater obtained from a pilot scale bioslurping process for LNAPL treatment. The groundwater was characterized by a high suspended solid (SS) concentration relative to total organic carbon (TOC) concentration varying from 4 to 7.3. It was found that the optimum ratio of Fenton’s reagent (Fe2+:H2O2) was 1:10 in terms of TOC removal efficiency. Presence of solid particles significantly affected the TOC removal efficiency by Fenton’s reaction accounting for 37% for raw groundwater and 61% for soluble groundwater. Particles larger than 5 µm could be effectively settled out by a quiescent settling for 3 hr based on particle size distribution analysis. The TOC removal efficiency for the supernatant after settling was a similar to that of soluble sample. Total petroleum hydrocarbon (TPH) was mostly present in the adsorbed form to the particles in the groundwater and was potentially persistent to Fenton oxidation. TPH removal efficiency by Fenton oxidation was 24% which was less than that of the total groundwater indicating that hydroxyl radicals generated from Fenton oxidation did not directly attack the adsorbed organic carbon and removal of the adsorbed organic carbon was dependent on its mass transfer to bulk region. The concept for particle effect on Fenton oxidation was confirmed in another experiment spiking washed soil to the soluble groundwater. TOC removal efficiency was lowered by addition of the soil probably because the

  10. Anaphylactoid and adverse reactions to radiocontrast agents.

    PubMed

    Hagan, John B

    2004-08-01

    Over the past 75 years, radiocontrast agents have provided numerous diagnostic and therapeutic advances. The benefits of these agents must be weighed against the potential risks for each individual undergoing radiologic tests. This summary is intended to be a guide for the allergy and immunology specialist to direct him or her to the current literature regarding adverse reactions to traditional and less commonly used radiologic contrast agents. PMID:15242724

  11. An Ss Model with Adverse Selection.

    ERIC Educational Resources Information Center

    House, Christopher L.; Leahy, John V.

    2004-01-01

    We present a model of the market for a used durable in which agents face fixed costs of adjustment, the magnitude of which depends on the degree of adverse selection in the secondary market. We find that, unlike typical models, the sS bands in our model contract as the variance of the shock increases. We also analyze a dynamic version of the model…

  12. The use of groundwater age as a calibration target

    USGS Publications Warehouse

    Konikow, L.F.; Hornberger, G.Z.; Putnam, L.D.; Shapiro, A.M.; Zinn, B.A.

    2008-01-01

    Groundwater age (or residence time), as estimated on the basis of concentrations of one or more environmental tracers, can provide a useful and independent calibration target for groundwater models. However, concentrations of environmental tracers are affected by the complexities and mixing inherent in groundwater flow through heterogeneous media, especially in the presence of pumping wells. An analysis of flow and age distribution in the Madison aquifer in South Dakota, USA, illustrates the additional benefits and difficulties of using age as a calibration target. Alternative numerical approaches to estimating travel time and age with backward particle tracking are assessed, and the resulting estimates are used to refine estimates of effective porosity and to help assess the adequacy and credibility of the flow model.

  13. Geologic effects on groundwater salinity and discharge into an estuary

    USGS Publications Warehouse

    Russonielloa, Christopher J.; Fernandeza, Cristina; Brattonb, John F.; Banaszakc, Joel F.; Krantzc, David E.; Andresd, Scott; Konikowe, Leonard F.; Michaela, Holly A.

    2013-01-01

    Submarine groundwater discharge (SGD) can be an important pathway for transport of nutrients and contaminants to estuaries. A better understanding of the geologic and hydrologic controls on these fluxes is critical for their estimation and management. We examined geologic features, porewater salinity, and SGD rates and patterns at an estuarine study site. Seismic data showed the existence of paleovalleys infilled with estuarine mud and peat that extend hundreds of meters offshore. A low-salinity groundwater plume beneath this low-permeability fill was mapped with continuous resistivity profiling. Extensive direct SGD measurements with seepage meters (n = 551) showed fresh groundwater discharge patterns that correlated well with shallow porewater salinity and the hydrogeophysical framework. Small-scale variability in fresh and saline discharge indicates influence of meter-scale geologic heterogeneity, while site-scale discharge patterns are evidence of the influence of the paleovalley feature. Beneath the paleovalley fill, fresh groundwater flows offshore and mixes with saltwater before discharging along paleovalley flanks. On the adjacent drowned interfluve where low-permeability fill is absent, fresh groundwater discharge is focused at the shoreline. Shallow saltwater exchange was greatest across sandy sediments and where fresh SGD was low. The geologic control of groundwater flowpaths and discharge salinity demonstrated in this work are likely to affect geochemical reactions and the chemical loads delivered by SGD to coastal surface waters. Because similar processes are likely to exist in other estuaries where drowned paleovalleys commonly cross modern shorelines, the existence and implications of complex hydrogeology are important considerations for studies of groundwater fluxes and related management decisions.

  14. Classification of groundwater at the Nevada Test Site

    SciTech Connect

    Chapman, J.B.

    1994-08-01

    Groundwater occurring at the Nevada Test Site (NTS) has been classified according to the ``Guidelines for Ground-Water Classification Under the US Environmental Protection Agency (EPA) Ground-Water Protection Strategy`` (June 1988). All of the groundwater units at the NTS are Class II, groundwater currently (IIA) or potentially (IIB) a source of drinking water. The Classification Review Area (CRA) for the NTS is defined as the standard two-mile distance from the facility boundary recommended by EPA. The possibility of expanding the CRA was evaluated, but the two-mile distance encompasses the area expected to be impacted by contaminant transport during a 10-year period (EPA,s suggested limit), should a release occur. The CRA is very large as a consequence of the large size of the NTS and the decision to classify the entire site, not individual areas of activity. Because most activities are located many miles hydraulically upgradient of the NTS boundary, the CRA generally provides much more than the usual two-mile buffer required by EPA. The CRA is considered sufficiently large to allow confident determination of the use and value of groundwater and identification of potentially affected users. The size and complex hydrogeology of the NTS are inconsistent with the EPA guideline assumption of a high degree of hydrologic interconnection throughout the review area. To more realistically depict the site hydrogeology, the CRA is subdivided into eight groundwater units. Two main aquifer systems are recognized: the lower carbonate aquifer system and the Cenozoic aquifer system (consisting of aquifers in Quaternary valley fill and Tertiary volcanics). These aquifer systems are further divided geographically based on the location of low permeability boundaries.

  15. Glaciation and regional groundwater flow in the Fennoscandian shield

    USGS Publications Warehouse

    Provost, A.M.; Voss, C.I.; Neuzil, C.E.

    2012-01-01

    Regional-scale groundwater flow modeling of the Fennoscandian shield suggests that groundwater flow can be strongly affected by future climate change and glaciation. We considered variable-density groundwater flow in a 1500-km-long and approximately 10-km-deep cross-section through southern Sweden. Groundwater flow and shield brine transport in the cross-sectional model were analyzed under projected surface conditions for the next 140 ka. Simulations suggest that blockage of recharge and discharge by low-permeability permafrost or cold-based ice causes sinking of brine and consequent freshening of near-surface water in areas of natural discharge. Although recharge of basal meltwater is limited by the requirement that water pressure at the base of the ice sheet not exceed the pressure exerted by the weight of the ice, warm-based ice with basal melting creates a potential for groundwater recharge rates much larger than those of present, ice-free conditions. In the simulations, regional-scale redistribution of recharged water by subsurface flow is minor over the duration of a glacial advance (approximately 10 ka). During glacial retreat, significant upward flow of groundwater may occur below the ice sheet owing to pressure release. If the mechanical loading efficiency of the rocks is high, both subsurface penetration of meltwater during glacial advance and up-flow during glacial retreat are reduced because of loading-induced pressure changes. The maximum rate of groundwater discharge in the simulations occurs at the receding ice margin, and som