Science.gov

Sample records for advisory team mission

  1. Workforce Development Advisory Team Mission, Goals, and Objectives

    SciTech Connect

    2008-03-31

    This report documents the creation of a mission, goals, and objectives for the New Mexico Workforce Development Advisory Team as part of the National Security Preparedness Project (NSPP), being performed by the Arrowhead Center of New Mexico State University under a DOE/NNSA grant. The goal of workforce development under the NSPP grant is to assess workforce needs in national security and implement strategies to develop the appropriate workforce. To achieve this goal, it will be necessary to involve the workforce development advisory team in determining the current status of the national security workforce and the educational efforts to train such a workforce. Strategies will be developed and implemented to address gaps and to make progress towards a strong, well-trained workforce available for current and future national security employers.

  2. Report from the Gravitational Observatory Advisory Team

    NASA Astrophysics Data System (ADS)

    Mueller, Guido; Gravitational Observatory Advisory Team

    2016-03-01

    As a response to the selection of the Gravitational Universe as the science theme for ESA's L3 mission, ESA formed the Gravitational-Wave Observatory Advisory Team (GOAT) to advise ESA on the scientific and technological approach for a gravitational wave observatory. NASA is participating with three US scientists and one NASA observer; JAXA was also invited and participates with one observer. The GOAT looked at a range of mission technologies and designs, discussed their technical readiness with respect to the ESA schedule, recommended technology development activities for selected technologies, and worked with the wider gravitational-wave community to analyze the impact on the science of the various mission designs. The final report is expected to be submitted to ESA early March and I plan to summarize its content.

  3. 77 FR 74828 - National Construction Safety Team Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... National Institute of Standards and Technology National Construction Safety Team Advisory Committee Meeting... meeting. SUMMARY: The National Construction Safety Team (NCST) Advisory Committee (Committee), will hold a... Advisory Committee was established pursuant to Section 11 of the National Construction Safety Team Act (15...

  4. 76 FR 72904 - National Construction Safety Team Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... National Institute of Standards and Technology National Construction Safety Team Advisory Committee Meeting... meeting. SUMMARY: The National Construction Safety Team (NCST) Advisory Committee (Committee), will hold a... established pursuant to Section 11 of the National Construction Safety Team Act (15 U.S.C. 7301 et seq.). The...

  5. The NASA/MSFC Coherent Lidar Technology Advisory Team

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    1999-01-01

    The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing.

  6. The NASA/MSFC Coherent Lidar Technology Advisory Team

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    1999-01-01

    The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing.

  7. New Mexico Workforce Development Advisory Team Report

    SciTech Connect

    None, None

    2007-12-31

    This report documents the creation of a Workforce Development Advisory Team as part of the National Security Preparedness Project (NSPP), being performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a description of the purpose of the advisory team and a list of team members with sector designations. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. Workforce development activities will facilitate the hiring of students to work with professionals in incubator companies, as well as assist in preparing a workforce for careers in national security. The goal of workforce development under the NSPP grant is to assess workforce needs in national security and implement strategies to develop the appropriate workforce. To achieve this goal, it will be necessary to determine the current state of the national security workforce and the educational efforts to train such a workforce. Strategies will be developed and implemented to address gaps and to make progress towards a strong, well-trained workforce available for current and future national security technology employers.

  8. Mission Reliability Estimation for Repairable Robot Teams

    NASA Technical Reports Server (NTRS)

    Trebi-Ollennu, Ashitey; Dolan, John; Stancliff, Stephen

    2010-01-01

    A mission reliability estimation method has been designed to translate mission requirements into choices of robot modules in order to configure a multi-robot team to have high reliability at minimal cost. In order to build cost-effective robot teams for long-term missions, one must be able to compare alternative design paradigms in a principled way by comparing the reliability of different robot models and robot team configurations. Core modules have been created including: a probabilistic module with reliability-cost characteristics, a method for combining the characteristics of multiple modules to determine an overall reliability-cost characteristic, and a method for the generation of legitimate module combinations based on mission specifications and the selection of the best of the resulting combinations from a cost-reliability standpoint. The developed methodology can be used to predict the probability of a mission being completed, given information about the components used to build the robots, as well as information about the mission tasks. In the research for this innovation, sample robot missions were examined and compared to the performance of robot teams with different numbers of robots and different numbers of spare components. Data that a mission designer would need was factored in, such as whether it would be better to have a spare robot versus an equivalent number of spare parts, or if mission cost can be reduced while maintaining reliability using spares. This analytical model was applied to an example robot mission, examining the cost-reliability tradeoffs among different team configurations. Particularly scrutinized were teams using either redundancy (spare robots) or repairability (spare components). Using conservative estimates of the cost-reliability relationship, results show that it is possible to significantly reduce the cost of a robotic mission by using cheaper, lower-reliability components and providing spares. This suggests that the

  9. Photopolarimetry team outer planets mission definition phase

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The work is reported of the Photopolarimetry Team in identifying scientific objectives for photometer/polarimeter experiments for outer planet flyby missions. A discussion of the scientific objectives which can be attained with a photometer/polarimeter experiment, and summaries of the special studies which were performed for the Photopolarimetry Team are presented along with a description of the photometer/polarimeter design which was developed for the Meteoroid Detection Team.

  10. STS-114 Mission Management Team Meeting

    NASA Image and Video Library

    2005-08-04

    JSC2005-E-32012 (4 August 2005) --- John Muratore, Manager of Space Shuttle Systems Engineering & Integration Office, discusses a key STS-114 issue during the Mission Management Team (MMT) session of the afternoon of August 4. The MMT meets daily in Houston's Mission Control Center.

  11. Advisory Boards and Higher Education's Urban Mission: Four Models.

    ERIC Educational Resources Information Center

    Feld, Marcia Marker

    2002-01-01

    Explores models of advisory boards and their relationship to the urban mission of colleges. Describes four models based on conceptual frameworks derived from two key articles on empowerment and citizen participation, and on the experience of "Implementing Urban Missions" grantees. Found that the Hybrid Model (all partners/stakeholders)…

  12. STS-121: Discovery Mission Management Team Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing opened with Bruce Buckingham (NASA Public Affairs) introducing John Shannon (Chairman, Mission Management Team, JSC), John Chapman (External Tank Project Manager), Mike Leinbach (Shuttle Launch Director), and 1st Lt. Kaleb Nordgren (USAF 45th Weather Squadron). John Shannon reported that the team for hydrogen loading was proceeding well and the external tank detanking was completed. During detanking the inspection team cracked foam caused by condensation and ice formation as the tank expanded and contracted. Aerothermal analysis and analysis fro ice formation will be completed before launch. John Chapman explained the mechanics of the external tank design, the foam cracking, bracket design, etc. Mike Leinbach discussed the inspection teams and their inspection final inspection for ice formation before and after external tank filling. The inspection team of eight very experienced personnel also use telescopes with cameras to find any problems before launch. Kaleb Nordgren discussed weather and said there was a 40% chance of weather prohibiting launch. The floor was the opened for questions from the press.

  13. STS-121: Discovery Mission Management Team Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing opened with Bruce Buckingham (NASA Public Affairs) introducing John Shannon (Chairman, Mission Management Team, JSC), John Chapman (External Tank Project Manager), Mike Leinbach (Shuttle Launch Director), and 1st Lt. Kaleb Nordgren (USAF 45th Weather Squadron). John Shannon reported that the team for hydrogen loading was proceeding well and the external tank detanking was completed. During detanking the inspection team cracked foam caused by condensation and ice formation as the tank expanded and contracted. Aerothermal analysis and analysis fro ice formation will be completed before launch. John Chapman explained the mechanics of the external tank design, the foam cracking, bracket design, etc. Mike Leinbach discussed the inspection teams and their inspection final inspection for ice formation before and after external tank filling. The inspection team of eight very experienced personnel also use telescopes with cameras to find any problems before launch. Kaleb Nordgren discussed weather and said there was a 40% chance of weather prohibiting launch. The floor was the opened for questions from the press.

  14. Introduction and Mission Response Team (MRT)

    NASA Technical Reports Server (NTRS)

    Pool, Sam

    2005-01-01

    On February 1, 2003 the Space Shuttle Columbia, returning to Earth with a crew of seven astronauts, disintegrated along a track extending from California to Louisiana. Observers on the ground filmed breakup of the spacecraft. Debris fell along a 567 statute mile track from Littlefield, Texas to Fort Polk, Louisiana; the largest ever recorded debris field. At the time of the accident the National Aeronautics and Space Administration (NASA) flight surgeon on-duty at the Mission Control Center (MCC) in Houston, Texas initiated the medical contingency response. The DOD surgeon at Patrick Air Force Base was notified, NASA medical personnel were recalled and the services of Armed Forces Institute of Pathology (AFIP) were requested. Subsequent to the accident the NASA flight surgeons that had supported the crew on orbit now provided medical support to the crewmember s families. Federal Emergency Management Agency (FEMA), the National Transportation Safety Board (NTSB), the Federal Bureau of Investigation (FBI) and numerous other federal, state and local agencies along with the citizens of Texas and Louisiana responded to the disaster. Search and recovery was managed from a Disaster Field Office (DFO) established in Lufkin, Texas. Mishap Investigation Team (MIT) medical operations were managed from Barksdale Air Force Base, Louisiana. Accident investigation teams (Columbia Accident Investigation Task Force (CAITF) and Columbia Accident Investigation Board (CAIB)) appointed immediately after the disaster included current and former authorities in space medicine. In August 2003, the CAIB concluded its investigation and released its findings in a report published in February 2004.

  15. Introduction and Mission Response Team (MRT)

    NASA Technical Reports Server (NTRS)

    Pool, Sam

    2005-01-01

    On February 1, 2003 the Space Shuttle Columbia, returning to Earth with a crew of seven astronauts, disintegrated along a track extending from California to Louisiana. Observers on the ground filmed breakup of the spacecraft. Debris fell along a 567 statute mile track from Littlefield, Texas to Fort Polk, Louisiana; the largest ever recorded debris field. At the time of the accident the National Aeronautics and Space Administration (NASA) flight surgeon on-duty at the Mission Control Center (MCC) in Houston, Texas initiated the medical contingency response. The DOD surgeon at Patrick Air Force Base was notified, NASA medical personnel were recalled and the services of Armed Forces Institute of Pathology (AFIP) were requested. Subsequent to the accident the NASA flight surgeons that had supported the crew on orbit now provided medical support to the crewmember s families. Federal Emergency Management Agency (FEMA), the National Transportation Safety Board (NTSB), the Federal Bureau of Investigation (FBI) and numerous other federal, state and local agencies along with the citizens of Texas and Louisiana responded to the disaster. Search and recovery was managed from a Disaster Field Office (DFO) established in Lufkin, Texas. Mishap Investigation Team (MIT) medical operations were managed from Barksdale Air Force Base, Louisiana. Accident investigation teams (Columbia Accident Investigation Task Force (CAITF) and Columbia Accident Investigation Board (CAIB)) appointed immediately after the disaster included current and former authorities in space medicine. In August 2003, the CAIB concluded its investigation and released its findings in a report published in February 2004.

  16. Grand mission versus small OPS team: Can we have both?

    NASA Technical Reports Server (NTRS)

    Garcia-Perez, Raul

    1994-01-01

    Space Missions are growing more ambitious, but resources are getting smaller. Is this is a contradiction in terms, or is it a healthy challenge? This paper offers the author's point of view as a member of a small Mission Operations Team that carries out an ambitious international mission (Ulysses ESA/NASA).

  17. Mission Status at Aura Science Team MOWG Meeting: EOS Aura

    NASA Technical Reports Server (NTRS)

    Fisher, Dominic

    2016-01-01

    Presentation at the 24797-16 Earth Observing System (EOS) Aura Science Team Meeting (Mission Operations Work Group (MOWG)) at Rotterdam, Netherlands August 29, 2016. Presentation topics include mission summary, spacecraft subsystems summary, recent and planned activities, spacecraft anomalies, data capture, propellant usage and lifetime estimates, spacecraft maneuvers and ground track history, mission highlights and past spacecraft anomalies and reliability estimates.

  18. Enhancing Team Performance for Long-Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith M.

    2009-01-01

    Success of exploration missions will depend on skilled performance by a distributed team that includes both the astronauts in space and Mission Control personnel. Coordinated and collaborative teamwork will be required to cope with challenging complex problems in a hostile environment. While thorough preflight training and procedures will equip creW'S to address technical problems that can be anticipated, preparing them to solve novel problems is much more challenging. This presentation will review components of effective team performance, challenges to effective teamwork, and strategies for ensuring effective team performance. Teamwork skills essential for successful team performance include the behaviors involved in developing shared mental models, team situation awareness, collaborative decision making, adaptive coordination behaviors, effective team communication, and team cohesion. Challenges to teamwork include both chronic and acute stressors. Chronic stressors are associated with the isolated and confined environment and include monotony, noise, temperatures, weightlessness, poor sleep and circadian disruptions. Acute stressors include high workload, time pressure, imminent danger, and specific task-related stressors. Of particular concern are social and organizational stressors that can disrupt individual resilience and effective mission performance. Effective team performance can be developed by training teamwork skills, techniques for coping with team conflict, intracrew and intercrew communication, and working in a multicultural team; leadership and teamwork skills can be fostered through outdoor survival training exercises. The presentation will conclude with an evaluation of the special requirements associated with preparing crews to function autonomously in long-duration missions.

  19. Apollo experience report: Mission evaluation team postflight documentation

    NASA Technical Reports Server (NTRS)

    Dodson, J. W.; Cordiner, D. H.

    1975-01-01

    The various postflight reports prepared by the mission evaluation team, including the final mission evaluation report, report supplements, anomaly reports, and the 5-day mission report, are described. The procedures for preparing each report from the inputs of the various disciplines are explained, and the general method of reporting postflight results is discussed. Recommendations for postflight documentation in future space programs are included. The official requirements for postflight documentation and a typical example of an anomaly report are provided as appendixes.

  20. Fifth Report of the NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking missions examine a number of specific issues related to the Shuttle-Mir program. Three teams composed of Task Force members and technical advisors were formed to address the follow issues: preliminary results from STS-71 and the status of preparations for STS-74; NASA's presence in Russia; and NASA's automated data processing and telecommunications (ADP/T) infrastructure in Russia. The three review team reports have been included in the fifth report of the Task Force.

  1. JAXA flight control team gave the Folding Paper Cranes to NASA ISS mission control team

    NASA Image and Video Library

    2011-03-25

    PHOTO DATE: 3-25-11 LOCATION: Bldg. 30M, FCR-1 SUBJECT: JAXA flight control team gave the Folding Paper Cranes to NASA ISS mission control team and now they are decorated on their consoles. The Folding Paper Cranes are for the people who suffer terrible pain from the earthquake in Japan. PHOTOGRAPHER: Lauren Harnett

  2. NASA's Decadal Planning Team Mars Mission Analysis Summary

    NASA Astrophysics Data System (ADS)

    Drake, Bret G.

    2007-02-01

    In June 1999 the NASA Administrator chartered an internal NASA task force, termed the Decadal Planning Team, to create new integrated vision and strategy for space exploration. The efforts of the Decadal Planning Team evolved into the Agency-wide team known as the NASA Exploration Team (NEXT). This team was also instructed to identify technology roadmaps to enable the science-driven exploration vision, established a cross-Enterprise, cross-Center systems engineering team with emphasis focused on revolutionary not evolutionary approaches. The strategy of the DPT and NEXT teams was to "Go Anywhere, Anytime" by conquering key exploration hurdles of space transportation, crew health and safety, human/robotic partnerships, affordable abundant power, and advanced space systems performance. Early emphasis was placed on revolutionary exploration concepts such as rail gun and electromagnetic launchers, propellant depots, retrograde trajectories, nano structures, and gas core nuclear rockets to name a few. Many of these revolutionary concepts turned out to be either not feasible for human exploration missions or well beyond expected technology readiness for near-term implementation. During the DPT and NEXT study cycles, several architectures were analyzed including missions to the Earth-Sun Libration Point (L2), the Earth-Moon Gateway and L1, the lunar surface, Mars (both short and long stays), one-year round trip Mars, and near-Earth asteroids. Common emphasis of these studies included utilization of the Earth-Moon Libration Point (L1) as a staging point for exploration activities, current (Shuttle) and near-term launch capabilities (EELV), advanced propulsion, and robust space power. Although there was much emphasis placed on utilization of existing launch capabilities, the team concluded that missions in near-Earth space are only marginally feasible and human missions to Mars were not feasible without a heavy lift launch capability. In addition, the team concluded that

  3. NASA's Decadal Planning Team Mars Mission Analysis Summary

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor)

    2007-01-01

    In June 1999 the NASA Administrator chartered an internal NASA task force, termed the Decadal Planning Team, to create new integrated vision and strategy for space exploration. The efforts of the Decadal Planning Team evolved into the Agency-wide team known as the NASA Exploration Team (NEXT). This team was also instructed to identify technology roadmaps to enable the science-driven exploration vision, established a cross-Enterprise, cross-Center systems engineering team with emphasis focused on revolutionary not evolutionary approaches. The strategy of the DPT and NEXT teams was to "Go Anywhere, Anytime" by conquering key exploration hurdles of space transportation, crew health and safety, human/robotic partnerships, affordable abundant power, and advanced space systems performance. Early emphasis was placed on revolutionary exploration concepts such as rail gun and electromagnetic launchers, propellant depots, retrograde trajectories, nano structures, and gas core nuclear rockets to name a few. Many of these revolutionary concepts turned out to be either not feasible for human exploration missions or well beyond expected technology readiness for near-term implementation. During the DPT and NEXT study cycles, several architectures were analyzed including missions to the Earth-Sun Libration Point (L2), the Earth-Moon Gateway and L1, the lunar surface, Mars (both short and long stays), one-year round trip Mars, and near-Earth asteroids. Common emphasis of these studies included utilization of the Earth-Moon Libration Point (L1) as a staging point for exploration activities, current (Shuttle) and near-term launch capabilities (EELV), advanced propulsion, and robust space power. Although there was much emphasis placed on utilization of existing launch capabilities, the team concluded that missions in near-Earth space are only marginally feasible and human missions to Mars were not feasible without a heavy lift launch capability. In addition, the team concluded that

  4. Marine Corps Transition Team Program in Iraq: Mission Accomplished

    DTIC Science & Technology

    2011-03-02

    to Mission Accomplishment.. .................................................................... 21 Figures Figure 1. MATIS Score Improvement...CORPS ADVISOR TRAINING IMPACT SYSTEM ( MATIS ) The Interaction Research Institute (IRI), a private company, conducted a study that measured advisor...study specifically focused on I Marine Expeditionary Force sourced transition teams who deployed to OIF from October 2007- September 2009. The : MATIS

  5. Superconducting gravity gradiometer mission. Volume 1: Study team executive summary

    NASA Technical Reports Server (NTRS)

    Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)

    1989-01-01

    An executive summary is presented based upon the scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis Superconducting Gravity Gradiometer integrated with a six-axis superconducting accelerometer. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objectives, such as navigation and tests of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.

  6. Superconducting gravity gradiometer mission. Volume 2: Study team technical report

    NASA Technical Reports Server (NTRS)

    Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)

    1988-01-01

    Scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis superconducting gravity gradiometer integrated with a six-axis superconducting accelerometer are examined. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objective, such as navigation and feats of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.

  7. Superconducting gravity gradiometer mission. Volume 1: Study team executive summary

    SciTech Connect

    Morgan, S.H.; Paik, H.J.

    1989-08-01

    An executive summary is presented based upon the scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis Superconducting Gravity Gradiometer integrated with a six-axis superconducting accelerometer. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objectives, such as navigation and tests of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.

  8. Genesis Science Team Report on Mission Status

    NASA Astrophysics Data System (ADS)

    Burnett, D. S.

    2005-12-01

    The Genesis Discovery Mission exposed pure materials to the solar wind at the L1 Lagrangian point for 27 months between December 2001 and April 2004. These were returned for analysis in terrestrial laboratories in Sept 2004. The general science objectives for Genesis are: (1) measure solar isotopic abundance ratios to the precision required for planetary science problems, (2) improve the accuracy of photospheric elemental abundances by a least a factor of three, (3) provide independent analyses of the 3 major solar wind regimes and (4) provide a reservoir of solar matter for subsequent studies. Based on these general objectives, we are working towards a list of 18 specific prioritized measurement objectives, the first 5 of which are isotopic measurements. The two highest priority objectives are the isotopic compositions of O and N; to obtain a higher signal to background ratio for these elements, a concentrator (focusing ion telescope) was built at LANL to provide a factor of 20 fluence enhancement for elements lighter than P on a 30 mm radius target. The concentrator performed well in flight. A variety of other collector materials, tailored to specific analytical approaches, were mounted in 5 arrays of 55 hexagons, 4 cm point to point. Three of the arrays were used to provide the independent regime (coronal hole, low speed interstream, and coronal mass ejection) samples. The solar wind regime was measured by LANL Solar Wind Monitors on the Genesis spacecraft and the appropriate array exposed while the inappropriate array remained shielded. Array switchouts were carried out flawlessly during flight. Sample analyses have been slowed considerably by a parachute deployment failure which caused a crash of the sample return capsule upon reentry and by the presence of an in-flight contamination film, affectionately referred to as the brown stain. The crash has led to major loss of collector materials, along with significant pitting and scratching of the surviving

  9. Space Missions Trade Space Generation and Assessment Using JPL Rapid Mission Architecture (RMA) Team Approach

    NASA Technical Reports Server (NTRS)

    Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert

    2011-01-01

    The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.

  10. Space Missions Trade Space Generation and Assessment Using JPL Rapid Mission Architecture (RMA) Team Approach

    NASA Technical Reports Server (NTRS)

    Moeller, Robert C.; Borden, Chester; Spilker, Thomas; Smythe, William; Lock, Robert

    2011-01-01

    The JPL Rapid Mission Architecture (RMA) capability is a novel collaborative team-based approach to generate new mission architectures, explore broad trade space options, and conduct architecture-level analyses. RMA studies address feasibility and identify best candidates to proceed to further detailed design studies. Development of RMA first began at JPL in 2007 and has evolved to address the need for rapid, effective early mission architectural development and trade space exploration as a precursor to traditional point design evaluations. The RMA approach integrates a small team of architecture-level experts (typically 6-10 people) to generate and explore a wide-ranging trade space of mission architectures driven by the mission science (or technology) objectives. Group brainstorming and trade space analyses are conducted at a higher level of assessment across multiple mission architectures and systems to enable rapid assessment of a set of diverse, innovative concepts. This paper describes the overall JPL RMA team, process, and high-level approach. Some illustrative results from previous JPL RMA studies are discussed.

  11. 78 FR 58521 - National Construction Safety Team Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Technology (NIST) Disaster and Failure Studies Program, receive NIST's response to the Committee's 2012 annual report recommendations, update the Committee on the progress of the NIST Technical Investigation... posted on the NIST Web site at http://www.nist.gov/el/disasterstudies/ncst/ . DATES: The NCST Advisory...

  12. Meeting the Needs of Young Adolescents: Advisory Groups, Interdisciplinary Teaching Teams, and School Transition Programs.

    ERIC Educational Resources Information Center

    Mac Iver, Douglas J.

    1990-01-01

    Reform advocates have often recommended using interdisciplinary teams, advisory groups, and transition activities to comprise appropriate educational programs for young adolescents. Using 1988 Johns Hopkins University middle grades survey data, researchers explored "real world" use of these components and gauged their effectiveness.…

  13. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility (SLF), the KSC response team removes a crew member from a mock Shuttle. The response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to drop emergency equipment and fire/rescue workers to prepare the 'crew' for preliminary triage. The helicopters later are used to remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise concluded with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  14. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility (SLF), the KSC response team practices lifting an injured crew member to an Air Force HH-60 helicopter for transport to a local hospital. The response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to reach and prepare the 'crew' five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker -- for preliminary triage. The exercise will conclude with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  15. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility, the KSC response team removes a Shuttle 'crew' member from the mock orbiter. The response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to drop emergency equipment and fire/rescue workers to prepare the 'crew' for preliminary triage. The helicopters later are used to remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise concluded with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  16. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility (SLF), the KSC response team practices carrying an injured crew member to an Air Force HH-60 helicopter for transport to a local hospital. The response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to reach the site, drop emergency equipment and later remove the 'crew' five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise will conclude with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  17. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility, the KSC response team removes a Shuttle 'crew' member from the mock orbiter. The response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to drop emergency equipment and fire/rescue workers to prepare the 'crew' for preliminary triage. The helicopters later are used to remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise concluded with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  18. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility (SLF), the KSC response team practices carrying an injured crew member to an Air Force HH-60 helicopter for transport to a local hospital. The response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to reach the site, drop emergency equipment and later remove the 'crew' five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise will conclude with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  19. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility (SLF), the KSC response team removes a crew member from a mock Shuttle. The response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to drop emergency equipment and fire/rescue workers to prepare the 'crew' for preliminary triage. The helicopters later are used to remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise concluded with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  20. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility (SLF), the KSC response team practices lifting an injured crew member to an Air Force HH-60 helicopter for transport to a local hospital. The response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to reach and prepare the 'crew' five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker -- for preliminary triage. The exercise will conclude with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  1. Mission Evaluation room team discuss 51-L accident at JSC

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mission Evaluation room team discuss the STS 51-L accident at JSC's engineering office facility. Seated left to right are Charles Walsh and David Camp. Standing left to right are Larry Meyers, James Mistrot and Travis Libby (011); (l.-r.) Walsh, Camp and Libby seated at table looking over paperwork (012); l.-r.) Walsh, Meyers, Camp, and Libby discuss 51-L (013); Wide angle view of conference room with (l.-r.) Meyers, Walsh, Camp, Libby and Walter Scott discussing STS 51-L accident (014).

  2. Quality interaction between mission assurance and project team members

    NASA Astrophysics Data System (ADS)

    Kwong-Fu, Helenann; Wilson, Robert K.

    2006-06-01

    Mission Assurance's independent assessments started during the SPITZER development cycle and continued through post-launch operations. During the operations phase, the health and safety of the observatory is of utmost importance. Therefore, Mission Assurance must ensure requirements compliance and focus on the process improvements required across the operational systems, including new/modified products, tools, and procedures. To avoid problem reoccurrences, an interactive model involving three areas was deployed: Team Member Interaction, Root Cause Analysis Practices, and Risk Assessment. In applying this model, a metric-based measurement process was found to have the most significant benefit. Considering a combination of root cause analysis and risk approaches allows project engineers to the ability to prioritize and quantify their corrective actions based on a well-defined set of root cause definitions (i.e., closure criteria for problem reports), success criteria, and risk rating definitions.

  3. Quality Interaction Between Mission Assurance and Project Team Members

    NASA Technical Reports Server (NTRS)

    Kwong-Fu, Helenann H.; Wilson, Robert K.

    2006-01-01

    Mission Assurance independent assessments started during the development cycle and continued through post launch operations. In operations, Health and Safety of the Observatory is of utmost importance. Therefore, Mission Assurance must ensure requirements compliance and focus on process improvements required across the operational systems including new/modified products, tools, and procedures. The deployment of the interactive model involves three objectives: Team member Interaction, Good Root Cause Analysis Practices, and Risk Assessment to avoid reoccurrences. In applying this model, we use a metric based measurement process and was found to have the most significant effect, which points to the importance of focuses on a combination of root cause analysis and risk approaches allowing the engineers the ability to prioritize and quantify their corrective actions based on a well-defined set of root cause definitions (i.e. closure criteria for problem reports), success criteria and risk rating definitions.

  4. Design Description for Team-Based Execution of Autonomous Missions (TEAM), Spiral 1

    DTIC Science & Technology

    2008-11-18

    countermeasures missions using the various assets available to it. TEAM seeks to combine these technologies using an open standard methodology to enhance...sset Scheduling / T ask A llocation U niform C overage Planning Cont ingency Managem ent Servic es V ehicle/S ensor M onitoring E nvironm ental M...to make to whole system come together. The use of third party, standards-based software facilitates openness . This openness enables future users

  5. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the simulated rescue mission, the KSC response team takes part in the unlikely scenario of a Shuttle mishap at the Shuttle Landing Facility. The Mode 7 simulation of an astronaut rescue exercised all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to drop emergency equipment and fire/rescue workers to prepare the 'crew' for preliminary triage. The helicopters later are used to remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise concluded with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.'

  6. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the simulated rescue mission, the KSC response team takes part in the unlikely scenario of a Shuttle mishap at the Shuttle Landing Facility. The Mode 7 simulation of an astronaut rescue exercised all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to drop emergency equipment and fire/rescue workers to prepare the 'crew' for preliminary triage. The helicopters later are used to remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise concluded with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.'

  7. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility (SLF), the KSC response team practices stabilizing an injured crew member before transport to a local hospital by helicopter. The response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to drop emergency equipment and fire/rescue workers who will prepare the 'crew' for preliminary triage. The helicopters later will help remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise will conclude with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  8. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility (SLF), the KSC response team practices stabilizing an injured crew member before transport to a local hospital by an Air Force HH-60 helicopter. The response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four HH-60 helicopters to drop emergency equipment and fire/rescue workers to prepare the 'crew' for preliminary triage. The helicopters are then used to remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise will conclude with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  9. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility (SLF), the KSC response team practices stabilizing an injured crew member before transport to a local hospital by helicopter. The response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to drop emergency equipment and fire/rescue workers who will prepare the 'crew' for preliminary triage. The helicopters later will help remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise will conclude with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  10. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility (SLF), the KSC response team practices stabilizing an injured crew member before transport to a local hospital by an Air Force HH-60 helicopter. The response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four HH-60 helicopters to drop emergency equipment and fire/rescue workers to prepare the 'crew' for preliminary triage. The helicopters are then used to remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise will conclude with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  11. NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking convened on May 24 and 25, 1994. Based on the meetings, the Task Force made the following recommendations: at a minimum, the mission commander and payload commander for all subsequent Shuttle-Mir missions should be named at least 18 months in advance of the scheduled launch date; in order to derive early operational experience in advance of the first Mir docking mission, the primary objective of STS-63 should be Mir rendezvous and proximity operations; and if at all possible, the launch date for STS-63 should be moved forward.

  12. Quality Interaction Between Mission Assurance and Project Team Members

    NASA Technical Reports Server (NTRS)

    Kwong-Fu, Helenann H.; Wilson, Robert K.

    2006-01-01

    This viewgraph presentation demonstrates the importance of value added Mission Assurance to flight operations in order to assure mission success and the Health and Safety of the mission, (i.e., the Spitzer space Telescope.)

  13. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility (SLF), a fire/rescue worker practices disembarking from an Air Force HH-60 helicopter. The KSC response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to drop emergency equipment and fire/rescue workers to prepare the 'crew' for preliminary traige. The helicopters are used later to remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise will conclude with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  14. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a simulated rescue mission in the woods near the Shuttle Landing Facility (SLF), a fire/rescue worker practices disembarking from an Air Force HH-60 helicopter. The KSC response team is training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to drop emergency equipment and fire/rescue workers to prepare the 'crew' for preliminary traige. The helicopters are used later to remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise will conclude with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  15. Mission Hospital's code stroke team: implications for an aging population.

    PubMed

    Taylor, Reid; Benton, Cindy; Buckner, Amy; Jones, Robin; Schneider, Alex

    2009-01-01

    To evaluate the success of an acute stroke program designed to streamline the evaluation and treatment of acute ischemic stroke patients, with particular regard to the risk of symptomatic intracerebral hemorrhage and discharge disposition based on age in those patients treated with acute stroke intervention. Retrospective review of patients at Mission Hospitals in Asheville, North Carolina from January 2006 to October 2007 with sudden neurological deficit identified within six hours of onset. Data were obtained from Mission Hospital's in-house spreadsheet database and the American Stroke Association's "Get With the Guidelines" (GWTG) database. Patients were evaluated by a code stroke protocol that included early involvement of stroke-treating neurologists. A chart review of all code stroke patients established the number of patients treated with acute intervention, disposition, and follow-up information. Over the 22-month study period, there were 568 code stroke evaluations. Of all code stroke patients, 27.1% (n=154) were treated with an acute intervention for stroke, usually intravenous thrombolysis. We analyzed treated patients on the basis of age, with the younger age group (YAG) being 79 years or younger and the older age group (OAG) being 80 years or older. Of the patients treated with acute intervention, 58 (37.7%) were OAG. Discharge disposition varied with age: 42.7% of YAG patients went home alone or with home health assistance, whereas only 20.7% of OAG patients went home alone or with home health assistance. The inhospital mortality rate was 10.4% for YAG patients and 22.4% for OAG patients. Symptomatic intracerebral hemorrhage was noted in one patient under age 80 and one patient over age 80. This is a symptomatic hemorrhage rate of 1.3%. This was a retrospective, observational, post hoc analysis without a standardized follow-up program. Our Code Stroke Team, with an inpatient neurology service, increased the proportion of stroke patients treated with

  16. Technical Advisory Team (TAT) report on the rocket sled test accident of October 9, 2008.

    SciTech Connect

    Stofleth, Jerome H.; Dinallo, Michael Anthony; Medina, Anthony J.

    2009-01-01

    This report summarizes probable causes and contributing factors that led to a rocket motor initiating prematurely while employees were preparing instrumentation for an AIII rocket sled test at SNL/NM, resulting in a Type-B Accident. Originally prepared by the Technical Advisory Team that provided technical assistance to the NNSA's Accident Investigation Board, the report includes analyses of several proposed causes and concludes that the most probable source of power for premature initiation of the rocket motor was the independent battery contained in the HiCap recorder package. The report includes data, evidence, and proposed scenarios to substantiate the analyses.

  17. Essentials for Team Based Rehearsals and the Differences Between Earth Orbiting and Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Gomez-Rosa, Carlos; Cifuentes, Juan; Wasiak, Francis; Alfonzo, Agustin

    2015-01-01

    The mission readiness environment is where spacecraft and ground systems converge to form the entire as built flight system for the final phase of operationally-themed testing. For most space missions, this phase starts between nine to twelve months prior to the planned launch. In the mission readiness environment, the goal is to perform sufficient testing to exercise the flight teams and systems through all mission phases in order to demonstrate that all elements are ready to support. As part of the maturation process, a mission rehearsal program is introduced to focus on team processes within the final flight system, in a more realistic operational environment. The overall goal for a mission rehearsal program is to: 1) ensure all flight system elements are able to meet mission objectives as a cohesive team; 2) reduce the risk in space based operations due to deficiencies in people, processes, procedures, or systems; and 3) instill confidence in the teams that will execute these first time flight activities. A good rehearsal program ensures critical events are exercised, discovers team or flight system nuances whose impact were previously unknown, and provides a real-time environment in which to interact with the various teams and systems. For flight team members, the rehearsal program provides experience and training in the event of planned (or unplanned) flight contingencies. To preserve the essence for team based rehearsals, this paper will explore the important elements necessary for a successful rehearsal program, document differences driven by Earth Orbiting (Aqua, Aura, Suomi-National Polar-orbiting Partnership (NPP)) and Deep Space missions (New Horizons, Mars Atmosphere and Volatile EvolutioN (MAVEN)) and discuss common challenges to both mission types. In addition, large scale program considerations and enhancements or additional steps for developing a rehearsal program will also be considered. For NASA missions, the mission rehearsal phase is a key

  18. [Role and missions of the mobile wound healing team].

    PubMed

    Barcos, Isabelle; Gautier, Yvonne; Jousselin, Christine; Benbrick, Maria; Barateau, Martine

    2015-09-01

    The actions carried out by the mobile wounds and cicatrisation team of Bordeaux university hospital help to harmonise professional practices, with benefits for the hospital, the caregivers and the patients. Within the team, this "mentoring system" also strengthens the expertise of individual nurses. The results obtained over the last two years show that the scheme provides real added value in terms of the quality of care, in a context of a constant search for efficiency.

  19. Space Station Redesign Team: Final report to the Advisory Committee on the Redesign of the Space Station

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report is the result of the Space Station Redesign Team's activity. Its purpose is to present without bias, and in appropriate detail, the characteristics and cost of three design and management approaches for the Space Station Freedom. It was presented to the Advisory Committee on the Redesign of the Space Station on 7 Jun. 1993, in Washington, D.C.

  20. A Formative Evaluation of the Team Advisory Program at Boston English High School from the Perspective of the Program's Advisors

    ERIC Educational Resources Information Center

    Cartin, Gregory Edward

    2012-01-01

    The purpose of this study was to conduct a formative evaluation of the efficacy of the Team Advisory program, an in-school intervention in an urban public high school using fitness to teach study skills and social responsibility, based on the perspective of its faculty (n = 9). The first research question asks what do Boston English Advisors…

  1. A Formative Evaluation of the Team Advisory Program at Boston English High School from the Perspective of the Program's Advisors

    ERIC Educational Resources Information Center

    Cartin, Gregory Edward

    2012-01-01

    The purpose of this study was to conduct a formative evaluation of the efficacy of the Team Advisory program, an in-school intervention in an urban public high school using fitness to teach study skills and social responsibility, based on the perspective of its faculty (n = 9). The first research question asks what do Boston English Advisors…

  2. Concurrent Mission and Systems Design at NASA Glenn Research Center: The Origins of the COMPASS Team

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Oleson, Steven R.; Sarver-Verhey, Timothy R.

    2012-01-01

    Established at the NASA Glenn Research Center (GRC) in 2006 to meet the need for rapid mission analysis and multi-disciplinary systems design for in-space and human missions, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team is a multidisciplinary, concurrent engineering group whose primary purpose is to perform integrated systems analysis, but it is also capable of designing any system that involves one or more of the disciplines present in the team. The authors were involved in the development of the COMPASS team and its design process, and are continuously making refinements and enhancements. The team was unofficially started in the early 2000s as part of the distributed team known as Team JIMO (Jupiter Icy Moons Orbiter) in support of the multi-center collaborative JIMO spacecraft design during Project Prometheus. This paper documents the origins of a concurrent mission and systems design team at GRC and how it evolved into the COMPASS team, including defining the process, gathering the team and tools, building the facility, and performing studies.

  3. Planning a pharmacy-led medical mission trip, part 2: servant leadership and team dynamics.

    PubMed

    Brown, Dana A; Brown, Daniel L; Yocum, Christine K

    2012-06-01

    While pharmacy curricula can prepare students for the cognitive domains of pharmacy practice, mastery of the affective aspects can prove to be more challenging. At the Gregory School of Pharmacy, medical mission trips have been highly effective means of impacting student attitudes and beliefs. Specifically, these trips have led to transformational changes in student leadership capacity, turning an act of service into an act of influence. Additionally, building team unity is invaluable to the overall effectiveness of the trip. Pre-trip preparation for teams includes activities such as routine team meetings, team-building activities, and implementation of committees, as a means of promoting positive team dynamics. While in the field, team dynamics can be fostered through activities such as daily debriefing sessions, team disclosure times, and provision of medical services.

  4. ETF Mission Statement document. ETF Design Center team

    SciTech Connect

    Not Available

    1980-04-01

    The Mission Statement document describes the results, activities, and processes used in preparing the Mission Statement, facility characteristics, and operating goals for the Engineering Test Facility (ETF). Approximately 100 engineers and scientists from throughout the US fusion program spent three days at the Knoxville Mission Workshop defining the requirements that should be met by the ETF during its operating life. Seven groups were selected to consider one major category each of design and operation concerns. Each group prepared the findings of the assigned area as described in the major sections of this document. The results of the operations discussed must provide the data, knowledge, experience, and confidence to continue to the next steps beyond the ETF in making fusion power a viable energy option. The results from the ETF mission (operations are assumed to start early in the 1990's) are to bridge the gap between the base of magnetic fusion knowledge at the start of operations and that required to design the EPR/DEMO devices.

  5. Discrete Event Command & Control for Networked Teams with Multiple Missions

    DTIC Science & Technology

    2009-03-16

    of the key ideas responsible for our DEC formulation, which allows formal computations for efficient on- line real-time task sequencing and dynamic...effectively and fairly sequences the tasks of all programmed missions and assigns the required resources on- line in real time as events occur and as...Harris, B., Lewis, F. L., and Cook, D. J., “Machine planning for manufacturing: dynamic resource allocation and on- line supervisory control,” Journal

  6. A university team approach to regenerative concepts. [in space missions

    NASA Technical Reports Server (NTRS)

    Nicks, Oran W.; Chullen, Cinda

    1987-01-01

    An interdisciplinary team of university-affiliated scientists and engineers has undertaken the design of a controlled ecological life support system that employs physical, chemical, and biological components to supply and efficiently recycle food, atmospheric gases, water, and waste products. An Integrated Waste and Water Management System furnishes the basic capabilities for waste product preprocessing and for the establishment of baseline comparisons with proven physical and chemical systems. Attention is given to the relationships between food and oxygen supply and the mass fraction of algae in food, as well as to the potential for O2 production.

  7. Exploring Mission Concepts with the JPL Innovation Foundry A-Team

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Ervin, Joan; Lang, Jared

    2013-01-01

    The JPL Innovation Foundry has established a new approach for exploring, developing, and evaluating early concepts called the A-Team. The A-Team combines innovative collaborative methods with subject matter expertise and analysis tools to help mature mission concepts. Science, implementation, and programmatic elements are all considered during an A-Team study. Methods are grouped by Concept Maturity Level (CML), from 1 through 3, including idea generation and capture (CML 1), initial feasibility assessment (CML 2), and trade space exploration (CML 3). Methods used for each CML are presented, and the key team roles are described from two points of view: innovative methods and technical expertise. A-Team roles for providing innovative methods include the facilitator, study lead, and assistant study lead. A-Team roles for providing technical expertise include the architect, lead systems engineer, and integration engineer. In addition to these key roles, each A-Team study is uniquely staffed to match the study topic and scope including subject matter experts, scientists, technologists, flight and instrument systems engineers, and program managers as needed. Advanced analysis and collaborative engineering tools (e.g. cost, science traceability, mission design, knowledge capture, study and analysis support infrastructure) are also under development for use in A-Team studies and will be discussed briefly. The A-Team facilities provide a constructive environment for innovative ideas from all aspects of mission formulation to eliminate isolated studies and come together early in the development cycle when they can provide the biggest impact. This paper provides an overview of the A-Team, its study processes, roles, methods, tools and facilities.

  8. Exploring Mission Concepts with the JPL Innovation Foundry A-Team

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Ervin, Joan; Lang, Jared

    2013-01-01

    The JPL Innovation Foundry has established a new approach for exploring, developing, and evaluating early concepts called the A-Team. The A-Team combines innovative collaborative methods with subject matter expertise and analysis tools to help mature mission concepts. Science, implementation, and programmatic elements are all considered during an A-Team study. Methods are grouped by Concept Maturity Level (CML), from 1 through 3, including idea generation and capture (CML 1), initial feasibility assessment (CML 2), and trade space exploration (CML 3). Methods used for each CML are presented, and the key team roles are described from two points of view: innovative methods and technical expertise. A-Team roles for providing innovative methods include the facilitator, study lead, and assistant study lead. A-Team roles for providing technical expertise include the architect, lead systems engineer, and integration engineer. In addition to these key roles, each A-Team study is uniquely staffed to match the study topic and scope including subject matter experts, scientists, technologists, flight and instrument systems engineers, and program managers as needed. Advanced analysis and collaborative engineering tools (e.g. cost, science traceability, mission design, knowledge capture, study and analysis support infrastructure) are also under development for use in A-Team studies and will be discussed briefly. The A-Team facilities provide a constructive environment for innovative ideas from all aspects of mission formulation to eliminate isolated studies and come together early in the development cycle when they can provide the biggest impact. This paper provides an overview of the A-Team, its study processes, roles, methods, tools and facilities.

  9. The KSC response team takes part in simulated rescue mission.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the woods next to the Shuttle Landing Facility (SLF), the KSC response team takes part in training for the unlikely scenario of a Shuttle mishap at the SLF. The Mode 7 simulation of an astronaut rescue exercises all aspects of command and control, search and rescue, and medical procedures required for a successful rescue. The remote location of the mock-up prevents a totally land-based crew rescue, and calls on a NASA UH-1 helicopter to locate the site and four Air Force HH-60 helicopters to drop emergency equipment and fire/rescue workers to prepare the 'crew' for preliminary triage. The helicopters later are used to remove the crew five astronaut candidates, one representative from the Vehicle Integration Test office, and one fire/rescue worker. The exercise concluded with airlifted 'patients' arriving safely in the emergency rooms of participating area hospitals.

  10. Mission Design Considerations for Mars Cargo of the Human Spaceflight Architecture Team's Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Sjauw, Waldy K.; McGuire, Melissa L.; Freeh, Joshua E.

    2016-01-01

    Recent NASA interest in human missions to Mars has led to an Evolvable Mars Campaign by the agency's Human Architecture Team. Delivering the crew return propulsion stages and Mars surface landers, SEP based systems are employed because of their high specific impulse characteristics enabling missions requiring less propellant although with longer transfer times. The Earth departure trajectories start from an SLS launch vehicle delivery orbit and are spiral shaped because of the low SEP thrust. Previous studies have led to interest in assessing the divide in trip time between the Earth departure and interplanetary legs of the mission for a representative SEP cargo vehicle.

  11. President Richard Nixon visits MSC to award Apollo 13 Mission Operations team

    NASA Image and Video Library

    1970-04-18

    S70-35601 (18 April 1970) --- A wide-angle, overall view of the large crowd of people who were on hand to see President Richard M. Nixon present the Presidential Medal of Freedom to the Apollo 13 Mission Operations Team. The honor is the nation's highest civilian award. A temporary speaker's platform was erected beside Building 1 for the occasion.

  12. The Importance of Team Leadership Development to the Urban University's Mission.

    ERIC Educational Resources Information Center

    Maio, Eugene A.; Buchtel, Foster S.

    Perspectives on the role of the urban university and the development and implementation of team leadership programs are presented. It is suggested that the urban metropolis is a part of the university's mission, and is an extremely complex network of institutional structures, and human resources. The university can respond to urban needs by…

  13. Report on a preliminary survey by the WHO Bilharziasis Advisory Team in Upper Volta

    PubMed Central

    McMullen, Donald B.; Francotte, Jean

    1962-01-01

    The WHO Bilharziasis Advisory Team made a survey in Upper Volta during May and June 1960. Data available indicate that S. haematobium is widely scattered throughout the country and that about 50% of the population, or more than 1.5 million people, are infected at some time during their lives. The examination of faeces is not a common practice, and it is therefore impossible to estimate the prevalence of S. mansoni and the intestinal helminths. The available evidence indicates, however, that S. mansoni is more prevalent in the country than is generally suspected. The distribution of the known snail habitats and the bilharziasis foci indicate that most of the major watersheds are infested, but that transmission sites may be rather sharply defined. It will be necessary to take this and various seasonal factors into consideration in planning a bilharziasis control programme. An analysis of the various public health problems in the country indicated that a programme of bilharziasis control would not be of practical value unless it was combined with a general attack on filth- and vector-borne diseases, and that it was essential to consider such a programme in conneixon with plans for the development of water and soil resources. PMID:20604120

  14. Flight Team Development in Support of LCROSS - A Class D Mission

    NASA Technical Reports Server (NTRS)

    Tompkins, Paul D.; Hunt, Rusty; Bresina, John; Galal, Ken; Shirley, Mark; Munger, James; Sawyer, Scott

    2010-01-01

    The LCROSS (Lunar Crater Observation and Sensing Satellite) project presented a number of challenges to the preparation for mission operations. A class D mission under NASA s risk tolerance scale, LCROSS was governed by a $79 million cost cap and a 29 month schedule from "authority to proceed" to flight readiness. LCROSS was NASA Ames Research Center s flagship mission in its return to spacecraft flight operations after many years of pursuing other strategic goals. As such, ARC needed to restore and update its mission support infrastructure, and in parallel, the LCROSS project had to newly define operational practices and to select and train a flight team combining experienced operators and staff from other arenas of ARC research. This paper describes the LCROSS flight team development process, which deeply involved team members in spacecraft and ground system design, implementation and test; leveraged collaborations with strategic partners; and conducted extensive testing and rehearsals that scaled in realism and complexity in coordination with ground system and spacecraft development. As a testament to the approach, LCROSS successfully met its full mission objectives, despite many in-flight challenges, with its impact on the lunar south pole on October 9, 2009.

  15. Final Report of the NASA Office of Safety and Mission Assurance Agile Benchmarking Team

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha

    2016-01-01

    To ensure that the NASA Safety and Mission Assurance (SMA) community remains in a position to perform reliable Software Assurance (SA) on NASAs critical software (SW) systems with the software industry rapidly transitioning from waterfall to Agile processes, Terry Wilcutt, Chief, Safety and Mission Assurance, Office of Safety and Mission Assurance (OSMA) established the Agile Benchmarking Team (ABT). The Team's tasks were: 1. Research background literature on current Agile processes, 2. Perform benchmark activities with other organizations that are involved in software Agile processes to determine best practices, 3. Collect information on Agile-developed systems to enable improvements to the current NASA standards and processes to enhance their ability to perform reliable software assurance on NASA Agile-developed systems, 4. Suggest additional guidance and recommendations for updates to those standards and processes, as needed. The ABT's findings and recommendations for software management, engineering and software assurance are addressed herein.

  16. President Richard Nixon visits MSC to award Apollo 13 Mission Operations team

    NASA Technical Reports Server (NTRS)

    1970-01-01

    President Richard M. Nixon introduces Sigurd A. Sjoberg (far right), Director of Flight Operations at Manned Spacecraft Center (MSC), and the four Apollo 13 Flight Directors during the Presidnet's post-mission visit to MSC. The Flight Directors are (l.-r.) Glynn S. Lunney, Eugene A. Kranz, Gerald D. Griffin and Milton L. Windler. Dr. Thomas O. Paine, NASA Administrator, is seated at left. President Nixon was on the site to present the Presidential Medal of Freedom -- the nation's highest civilian honor -- to the Apollo 13 Mission Operations Team (35600); A wide-angle, overall view of the large crowd that was on hand to see President Richard M. Nixon present the Presidnetial Medal of Freedom to the Apollo 13 Mission Operations Team. A temporary speaker's platform was erected beside bldg 1 for the occasion (35601).

  17. President Richard Nixon visits MSC to award Apollo 13 Mission Operations team

    NASA Technical Reports Server (NTRS)

    1970-01-01

    President Richard M. Nixon introduces Sigurd A. Sjoberg (far right), Director of Flight Operations at Manned Spacecraft Center (MSC), and the four Apollo 13 Flight Directors during the Presidnet's post-mission visit to MSC. The Flight Directors are (l.-r.) Glynn S. Lunney, Eugene A. Kranz, Gerald D. Griffin and Milton L. Windler. Dr. Thomas O. Paine, NASA Administrator, is seated at left. President Nixon was on the site to present the Presidential Medal of Freedom -- the nation's highest civilian honor -- to the Apollo 13 Mission Operations Team (35600); A wide-angle, overall view of the large crowd that was on hand to see President Richard M. Nixon present the Presidnetial Medal of Freedom to the Apollo 13 Mission Operations Team. A temporary speaker's platform was erected beside bldg 1 for the occasion (35601).

  18. NASA's Venus Science and Technology Definition Team: A Flagship Mission to Venus

    NASA Astrophysics Data System (ADS)

    Bullock, Mark Alan; Senske, D. A.; Balint, T. S.; Campbell, B. A.; Chassefiere, E.; Colaprete, A.; Cutts, J. A.; Glaze, L.; Gorevan, S.; Grinspoon, D. H.; Hall, J.; Hartford, W.; Hashimoto, G. L.; Head, J. W.; Hunter, G.; Johnson, N.; Kiefer, W. S.; Kolawa, E. A.; Kremic, T.; Kwok, J.; Limaye, S. S.; Mackwell, S. J.; Marov, M. Y.; Ocampo, A.; Schubert, G.; Stofan, E. R.; Svedhem, H.; Titov, D. V.; Treiman, A. H.

    2008-09-01

    The Venus Science and Technology Definition Team (STDT) was formed by NASA to look at science objectives, mission architecture, science investigations, and instrument payload for a Flagship-class mission to Venus. This $3-4B mission, to launch in the 2020-2025 timeframe, should revolutionize our understanding of how climate works on terrestrial planets, including the close relationship between volcanism, tectonism, the interior, and the atmosphere. It would also be capable of resolving the geologic history of Venus, including the existence and persistence of an ancient ocean. Achieving all these objectives will be necessary to understand the habitability of extrasolar terrestrial planets that should be detected in the next few years. The Venus STDT is comprised of scientists and engineers from the United States, the Russian Federation, France, Germany, the Netherlands, and Japan. The team began work in January 2008, gave an interim report at NASA headquarters in May, and will deliver a final report in December 2008. The Venus STDT will also produce a technology roadmap to identify crucial investments to meet the unique challenges of in situ Venus exploration. We will discuss the mission architecture and payload that have been designed to address the science objectives, and the methods we used. Most of the science objectives in the latest VEXAG white paper can be addressed by a Venus Flagship mission, and equally importantly, NASA can fly a large mission to another Earth-sized planet with the explicit intention of better understanding our own.

  19. Effective teamwork and communication mitigate task saturation in simulated critical care air transport team missions.

    PubMed

    Davis, Bradley; Welch, Katherine; Walsh-Hart, Sharon; Hanseman, Dennis; Petro, Michael; Gerlach, Travis; Dorlac, Warren; Collins, Jocelyn; Pritts, Timothy

    2014-08-01

    Critical Care Air Transport Teams (CCATTs) are a critical component of the United States Air Force evacuation paradigm. This study was conducted to assess the incidence of task saturation in simulated CCATT missions and to determine if there are predictable performance domains. Sixteen CCATTs were studied over a 6-month period. Performance was scored using a tool assessing eight domains of performance. Teams were also assessed during critical events to determine the presence or absence of task saturation and its impact on patient care. Sixteen simulated missions were reviewed and 45 crisis events identified. Task saturation was present in 22/45 (49%) of crisis events. Scoring demonstrated that task saturation was associated with poor performance in teamwork (odds ratio [OR] = 1.96), communication (OR = 2.08), and mutual performance monitoring (OR = 1.9), but not maintenance of guidelines, task management, procedural skill, and equipment management. We analyzed the effect of task saturation on adverse patient outcomes during crisis events. Adverse outcomes occurred more often when teams were task saturated as compared to non-task-saturated teams (91% vs. 23%; RR 4.1, p < 0.0001). Task saturation is observed in simulated CCATT missions. Nontechnical skills correlate with task saturation. Task saturation is associated with worsening physiologic derangements in simulated patients. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  20. Discrete event command and control for networked teams with multiple missions

    NASA Astrophysics Data System (ADS)

    Lewis, Frank L.; Hudas, Greg R.; Pang, Chee Khiang; Middleton, Matthew B.; McMurrough, Christopher

    2009-05-01

    During mission execution in military applications, the TRADOC Pamphlet 525-66 Battle Command and Battle Space Awareness capabilities prescribe expectations that networked teams will perform in a reliable manner under changing mission requirements, varying resource availability and reliability, and resource faults. In this paper, a Command and Control (C2) structure is presented that allows for computer-aided execution of the networked team decision-making process, control of force resources, shared resource dispatching, and adaptability to change based on battlefield conditions. A mathematically justified networked computing environment is provided called the Discrete Event Control (DEC) Framework. DEC has the ability to provide the logical connectivity among all team participants including mission planners, field commanders, war-fighters, and robotic platforms. The proposed data management tools are developed and demonstrated on a simulation study and an implementation on a distributed wireless sensor network. The results show that the tasks of multiple missions are correctly sequenced in real-time, and that shared resources are suitably assigned to competing tasks under dynamically changing conditions without conflicts and bottlenecks.

  1. President Richard Nixon visits MSC to award Apollo 13 Mission Operations team

    NASA Image and Video Library

    1970-04-18

    S70-35600 (18 April 1970) --- President Richard M. Nixon introduces Sigurd A. Sjoberg (far right), director of Flight Operations at Manned Spacecraft Center, and the four Apollo 13 flight directors during the President?s post-mission visit to the Manned Spacecraft Center. The flight directors are, from left to right, Glynn S. Lunney, Eugene A. Kranz, Gerald D. Griffin and Milton L. Windler. Dr. Thomas O. Paine, Administrator, National Aeronautics and Space Administration, is seated at left. President Nixon was on the site to present the Presidential Medal of Freedom - the nation?s highest civilian honor -to the Apollo 13 Mission Operations Team.

  2. Orbiter data reduction complex data processing requirements for the OFT mission evaluation team (level C)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This document addresses requirements for post-test data reduction in support of the Orbital Flight Tests (OFT) mission evaluation team, specifically those which are planned to be implemented in the ODRC (Orbiter Data Reduction Complex). Only those requirements which have been previously baselined by the Data Systems and Analysis Directorate configuration control board are included. This document serves as the control document between Institutional Data Systems Division and the Integration Division for OFT mission evaluation data processing requirements, and shall be the basis for detailed design of ODRC data processing systems.

  3. Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) Final Report

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Reeves, David M.; Abell, Paul A.; Asphaug, Erik; Abreu, Neyda M.; Bell, James F.; Bottke, William F.; Britt, Daniel T.; Campins, Humberto; Chodas, Paul W.; Ernst, Carolyn M.; Fries, Marc D.; Gertsch, Leslie S.; Glavin, Daniel P.; Hartzell, Christine M.; Hendrix, Amanda R.; Nuth, Joseph A.; Scheeres, Daniel J.; Sercel, Joel C.; Takir, Driss; Zacny, Kris

    2016-01-01

    The Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015, to assist in developing an initial list of potential mission investigations, and to provide input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads were also investigated. Potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource utilization, and capability and technology demonstrations. This report represents the FASTâ€"TM"s final product for the ARM.

  4. The SMART Theory and Modeling Team: an Integrated Element of Mission Development and Science Analysis

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Birn, J.; Denton, R.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.

    2005-12-01

    When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored

  5. The SMART Theory and Modeling Team: An Integrated Element of Mission Development and Science Analysis

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, J.; Denton, Richard E.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.

    2005-01-01

    When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored

  6. The SMART Theory and Modeling Team: An Integrated Element of Mission Development and Science Analysis

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, J.; Denton, Richard E.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.

    2005-01-01

    When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored

  7. ATV Engineering Support Team Safety Console Preparation for the Johannes Kepler Mission

    NASA Astrophysics Data System (ADS)

    Chase, R.; Oliefka, L.

    2010-09-01

    This paper describes the improvements to be implemented in the Safety console position of the Engineering Support Team(EST) at the Automated Transfer Vehicle(ATV) Control Centre(ATV-CC) for the upcoming ATV Johannes Kepler mission. The ATV missions to the International Space Station are monitored and controlled from the ATV-CC in Toulouse, France. The commanding of ATV is performed by the Vehicle Engineering Team(VET) in the main control room under authority of the Flight Director. The EST performs a monitoring function in a room beside the main control room. One of the EST positions is the Safety console, which is staffed by safety engineers from ESA and the industrial prime contractor, Astrium. The function of the Safety console is to check whether the hazard controls are available throughout the mission as required by the Hazard Reports approved by the ISS Safety Review Panel. Safety console preparation activities were limited prior to the first ATV mission due to schedule constraints, and the safety engineers involved have been working to improve the readiness for ATV 2. The following steps have been taken or are in process, and will be described in this paper: • review of the implementation of Operations Control Agreement Documents(OCADs) that record the way operational hazard controls are performed to meet the needs of the Hazard Reports(typically in Flight Rules and Crew Procedures), • crosscheck of operational control needs and implementations with respect to ATV's first flight observations and post flight evaluations, with a view to identifying additional, obsolete or revised operational hazard controls, • participation in the Flight Rule review and update process carried out between missions, • participation in the assessment of anomalies observed during the first ATV mission, to ensure that any impacts are addressed in the ATV 2 safety documentation, • preparation of a Safety console handbook to provide lists of important safety aspects to be

  8. Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Mazanek, Daniel D.; Abell, Paul; Reeves, David M.; NASA Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST)

    2016-10-01

    The Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015. Additionally, the FAST was tasked with developing an initial list of potential mission investigations and providing input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads that could be provided by domestic and international partners were also investigated. The ARM FAST final report was publicly released on February 18, 2016 and represents the FAST's final product. The report and associated public comments are being used to support mission requirements formulation and serve as an initial inquiry to the science and engineering communities relating to the characteristics of the ARRM reference target asteroid. This report also provides a suggested list of potential investigations sorted and grouped based on their likely benefit to ARM and potential relevance to NASA science and exploration goals. These potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource

  9. STS-121: Discovery Pre-Launch Mission Management Team Press Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing began with Allard Buetel (NASA Public Affairs) introducing Bill Gerstenmaier (Associate Administrator for Space Operations) who provided an update of the Mission Management team meeting. The 3 criteria reviewed by the team were: a) ascent heating; b) ice formation and c) remaining foam still intact. The ascent heating had a safety factor of 5 and posed no concern. Ice formation was not a concern. In order to insure there was no damage to the remaining foam, an 8ft. pipe with a camera attached was used to provide pictures. The boroscope pictures showed there was no damage to the brackets or foam. The inspection went very well and the foam was acceptable and ready to fly. Then the floor was open to questions from the press.

  10. Creating a Team Archive During Fast-Paced Anomaly Response Activities in Space Missions

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Hicks, LaDessa; Overland, David; Thronesbery, Carroll; Christofferesen, Klaus; Chow, Renee

    2002-01-01

    This paper describes a Web-based system to support the temporary Anomaly Response Team formed from distributed subteams in Space Shuttle and International Space Station missions. The system was designed for easy and flexible creation of small collections of files and links associated with work on a particular anomaly. The system supports privacy and levels of formality for the subteams. First we describe the supported groups and an anomaly response scenario. Then we describe the support system prototype, the Anomaly Response Tracking and Integration System (ARTIS). Finally, we describe our evaluation approach and the results of the evaluation.

  11. A Data-Based Console Logger for Mission Operations Team Coordination

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Jenks, Kenneth; Overland, David; Oliver, Patrick; Zhang, Jiajie; Gong, Yang; Zhang, Tao

    2005-01-01

    Concepts and prototypes1,2 are discussed for a data-based console logger (D-Logger) to meet new challenges for coordination among flight controllers arising from new exploration mission concepts. The challenges include communication delays, increased crew autonomy, multiple concurrent missions, reduced-size flight support teams that include multidisciplinary flight controllers during quiescent periods, and migrating some flight support activities to flight controller offices. A spiral development approach has been adopted, making simple, but useful functions available early and adding more extensive support later. Evaluations have guided the development of the D-Logger from the beginning and continue to provide valuable user influence about upcoming requirements. D-Logger is part of a suite of tools designed to support future operations personnel and crew. While these tools can be used independently, when used together, they provide yet another level of support by interacting with one another. Recommendations are offered for the development of similar projects.

  12. Living With a Star, the Geospace Mission Definition Team and Aeronomy

    NASA Technical Reports Server (NTRS)

    Kintner, Paul M., Jr.; Meier, R. R.; Spann, Jim; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To gain an understanding of the Sun-Earth system, including how and why the sun varies, how the earth responds, and the impacts on humanity, research is needed that has a integrated and systematic approach. The Living With a Star (LWS) program represents an important element in this regard both to continued progress in space science in general and in Aeronomy in particular. A fundamental question in Aeronomy is how the variable sun affects the ionosphere, thermosphere, and mesosphere. The LWS program focuses on those areas of scientific understanding that promote progress in areas that have human impact and can be investigated with space borne instruments. The Geospace Mission Definition Team is charged with investigating the science priorities identified by the LWS Science Architecture Team and developing an approach to making the necessary measurements in concert with other missions and programs. An important aspect of this approach is that all LWS measurement programs are operating simultaneously for several years. We will review some of the areas that the LWS SAT have emphasized in Aeronomy, including understanding the effects of solar variability on ionospheric density and irregularities, the effects of solar variability on the mass density of the atmosphere at LEO altitudes, and the effects of solar variability on near-surface temperatures and on ozone distribution.

  13. Living With a Star, the Geospace Mission Definition Team and Aeronomy

    NASA Technical Reports Server (NTRS)

    Kintner, Paul M., Jr.; Meier, R. R.; Spann, Jim; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To gain an understanding of the Sun-Earth system, including how and why the sun varies, how the earth responds, and the impacts on humanity, research is needed that has a integrated and systematic approach. The Living With a Star (LWS) program represents an important element in this regard both to continued progress in space science in general and in Aeronomy in particular. A fundamental question in Aeronomy is how the variable sun affects the ionosphere, thermosphere, and mesosphere. The LWS program focuses on those areas of scientific understanding that promote progress in areas that have human impact and can be investigated with space borne instruments. The Geospace Mission Definition Team is charged with investigating the science priorities identified by the LWS Science Architecture Team and developing an approach to making the necessary measurements in concert with other missions and programs. An important aspect of this approach is that all LWS measurement programs are operating simultaneously for several years. We will review some of the areas that the LWS SAT have emphasized in Aeronomy, including understanding the effects of solar variability on ionospheric density and irregularities, the effects of solar variability on the mass density of the atmosphere at LEO altitudes, and the effects of solar variability on near-surface temperatures and on ozone distribution.

  14. Report of the Joint Scientific Mission Definition Team for an infrared astronomical satellite

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The joint effort is reported of scientists and engineers from the Netherlands, the United Kingdom, and the United States working as a team for the purpose of exploring the possibility of a cooperative venture. The proposed mission builds upon experience gained from the successful Astronomical Netherlands Satellite (ANS). This satellite will be in a polar orbit at an altitude of 900 km. It will carry an 0.6 m diameter telescope cooled with helium to a temperature near 10K. An array of approximately 100 detectors will be used to measure the infrared flux in four wavelength bands centered at 10, 20, 50, and 100 microns. Sources will be located on the sky with positional accuracy of 1/2 arcminute. The instrument should be able to investigate the structure of extended sources with angular scales up to 1.0 deg. The entire sky will be surveyed and the full lifetime of the mission of about one year will be necessary to complete the survey. Special observational programs will also be incorporated into the mission.

  15. Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor)

    1998-01-01

    This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

  16. Recommendations to the Columbus Board of Education on Problems Facing the Columbus Public Schools; Including the Recommendations of the Ohio State University Advisory Commission and a Report of the Study Team.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus.

    The Ohio State University Advisory Commission on Problems Facing the Columbus Public Schools began its labors in March 1968. A study team was appointed that provided the advisory commission with an extensive report on problems of the Columbus school system and recommendations related to each. Steps were suggested to assist with implementation.…

  17. Historical Trends of Participation of Women Scientists in Robotic Spacecraft Mission Science Teams: Effect of Participating Scientist Programs

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie A.; Castillo-Rogez, Julie; Diniega, Serina; Hurley, Dana; New, Michael; Pappalardo, Robert T.; Prockter, Louise; Sayanagi, Kunio M.; Schug, Joanna; Turtle, Elizabeth P.; Vasavada, Ashwin R.

    2016-10-01

    Many planetary scientists consider involvement in a robotic spacecraft mission the highlight of their career. We have searched for names of science team members and determined the percentage of women on each team. We have limited the lists to members working at US institutions at the time of selection. We also determined the year each team was selected. The gender of each team member was limited to male and female and based on gender expression. In some cases one of the authors knew the team member and what pronouns they use. In other cases, we based our determinations on the team member's name or photo (obtained via a google search, including institution). Our initial analysis considered 22 NASA planetary science missions over a period of 41 years and only considered NASA-selected PI and Co-Is and not participating scientists, postdocs, or graduate students. We found that there has been a dramatic increase in participation of women on spacecraft science teams since 1974, from 0-2% in the 1970s - 1980s to an average of 14% 2000-present. This, however, is still lower than the recent percentage of women in planetary science, which 3 different surveys found to be ~25%. Here we will present our latest results, which include consideration of participating scientists. As in the case of PIs and Co-Is, we consider only participating scientists working at US institutions at the time of their selection.

  18. TEAM.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This document presents materials covering the television campaign against drunk driving called "TEAM" (Techniques for Effective Alcohol Management). It is noted that TEAM's purpose is to promote effective alcohol management in public facilities and other establishments that serve alcoholic beverages. TEAM sponsors are listed, including…

  19. Vapor Crystal Growth System (VCGS) Team in the SL POCC During the STS-42 IML-1 Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Vapor Crystal Growth System (VCGS) team in SL POCC), during STS-42, IML-1 mission.

  20. Vapor Crystal Growth System (VCGS) Team in the SL POCC During the STS-42 IML-1 Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Vapor Crystal Growth System (VCGS) team in SL POCC), during STS-42, IML-1 mission.

  1. A comprehensive mission to planet Earth: Woods Hole Space Science and Applications Advisory Committee Planning Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA program Mission to Planet Earth (MTPE) is described in this set of visuals presented in Massachusetts on July 29, 1991. The problem presented in this document is that the earth system is changing and that human activity accelerates the rate of change resulting in increased greenhouse gases, decreasing levels of stratospheric ozone, acid rain, deforestation, decreasing biodiversity, and overpopulation. Various national and international organizations are coordinating global change research. The complementary space observations for this activity are sun-synchronous polar orbits, low-inclination, low altitude orbits, geostationary orbits, and ground measurements. The Geostationary Earth Observatory is the major proposed mission of MTPE. Other proposed missions are EOS Synthetic Aperture Radar, ARISTOTELES Magnetic Field Experiment, and the Global Topography Mission. Use of the NASA DC-8 aircraft is outlined as carrying out the Airborne Science and Applications Program. Approved Earth Probes Program include the Total Ozone Mapping Spectrometer (TOMS). Other packages for earth observation are described.

  2. Ethological analysis of a polar team in the French Antarctic station Dumont d'Urville as simulation of space teams for future interplanetary missions.

    PubMed

    Tafforin, Carole

    2004-07-01

    This new ethological study focuses on the co-adaptation of the crew's spatial behavior to social isolation in a polar base thus simulating long-term living and working of a space team. The method consisted in drawing the subjects' position (n=13) on an observation map at the midday and evening meals at the Dumont d'Urville French station in Antarctica, daily during the summer campaigns and weekly during the winter-over of the TA46 mission. Quantitative data are presented in geocentric (positions), allocentric (distances) and egocentric (orientations) analyses with an emphasis on three adaptative periods (first 3 months, intermediary 2 months and last 3 months of isolation). Results show a large space occupancy during the first week after arrival and the last week before departure from the polar base, and a team-members' grouping during the winter-over. On the over-all time, the inter-individual distances increase. The social orientations are higher at the beginning than at the end of the mission. Discussion underlies the pertinent use of such ethological indicators collected from polar stations as predictors of well-being and optimal-working of the future orbital and planetary stations users.

  3. 77 FR 57085 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital... Communications Commission's (FCC) Advisory Committee on Diversity for Communications in the Digital Age (``Diversity Committee''). The Committee's mission is to provide recommendations to the Commission...

  4. 76 FR 64348 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital... Communications Commission's (FCC) Advisory Committee on Diversity for Communications in the Digital Age (``Diversity Committee''). The Committee's mission is to provide recommendations to the Commission...

  5. 78 FR 21354 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital... Communications Commission's (FCC) Advisory Committee on Diversity for Communications in the Digital Age (``Diversity Committee''). The Committee's mission is to provide recommendations to the Commission...

  6. 77 FR 6113 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital... Communications Commission's (FCC's) Advisory Committee on Diversity for Communications in the Digital Age (``Diversity Committee''). The Committee's mission is to provide recommendations to the Commission...

  7. 77 FR 70482 - Notice of Establishment of a NASA Federal Advisory Committee; Applied Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... SPACE ADMINISTRATION Notice of Establishment of a NASA Federal Advisory Committee; Applied Sciences... the establishment of the Applied Sciences Advisory Committee as a Federal advisory committee under... Integration and Management Division, Science Mission Directorate, NASA Headquarters, 300 E Street...

  8. Fundamentals for Team Based Rehearsals and the Differences Between Low Earth and Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Gomez-Rosa, Carlos; Alfonzo, Agustin; Cifuentes, Juan; Wasiak, Francis

    2015-01-01

    Presentation to be presented at the 2015 IEEE Aerospace Conference, Big Sky, Montana, March 7-14-2015.Rehearsals are mission level readiness tests that exercise personnel, operational process, and flight products, in a near flight like environment. The program is started 6-9 months prior to launch and is used to ensure the final as built system will meet mission goals (i.e. validation). On Deep Space missions you rehearse cruise activities post launch!Focus on critical activities to the mission, (i.e. propulsive maneuvers, instrument commissioning and any first time events or coordinating activities that involve major stakeholders).

  9. Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J. (Editor); Kaplan, David I. (Editor)

    1997-01-01

    Personnel representing several NASA field centers have formulated a "Reference Mission" addressing human exploration of Mars. This report summarizes their work and describes a plan for the first human missions to Mars, using approaches that are technically feasible, have reasonable risks, and have relatively low costs. The architecture for the Mars Reference Mission builds on previous work of the Synthesis Group (1991) and Zubrin's (1991) concepts for the use of propellants derived from the Martian Atmosphere. In defining the Reference Mission, choices have been made. In this report, the rationale for each choice is documented; however, unanticipated technology advances or political decisions might change the choices in the future.

  10. Mission control team structure and operational lessons learned from the 2009 and 2010 NASA desert RATS simulated lunar exploration field tests

    NASA Astrophysics Data System (ADS)

    Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall

    2013-10-01

    The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations

  11. Making surgical missions a joint operation: NGO experiences of visiting surgical teams and the formal health care system in Guatemala.

    PubMed

    Roche, Stephanie; Hall-Clifford, Rachel

    2015-01-01

    Each year, thousands of Guatemalans receive non-emergent surgical care from short-term medical missions (STMMs) hosted by local non-governmental organizations (NGOs) and staffed by foreign visiting medical teams (VMTs). The purpose of this study was to explore the perspectives of individuals based in NGOs involved in the coordination of surgical missions to better understand how these missions articulate with the larger Guatemalan health care system. During the summers of 2011 and 2013, in-depth interviews were conducted with 25 representatives from 11 different Guatemalan NGOs with experience with surgical missions. Transcripts were analysed for major themes using an inductive qualitative data analysis process. NGOs made use of the formal health care system but were limited by several factors, including cost, issues of trust and current ministry of health policy. Participants viewed the government health care system as a potential resource and expressed a desire for more collaboration. The current practices of STMMs are not conducive to health system strengthening. The role of STMMs must be defined and widely understood by all stakeholders in order to improve patient safety and effectively utilise health resources. Priority should be placed on aligning the work of VMTs with that of the larger health care system.

  12. Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team

    NASA Technical Reports Server (NTRS)

    Connolly, John

    1998-01-01

    The Reference Mission was developed over a period of several years and was published in NASA Special Publication 6107 in July 1997. The purpose of the Reference Mission was to provide a workable model for the human exploration of Mars, which is described in enough detail that alternative strategies and implementations can be compared and evaluated. NASA is continuing to develop the Reference Mission and expects to update this report in the near future. It was the purpose of the Reference Mission to develop scenarios based on the needs of scientists and explorers who want to conduct research on Mars; however, more work on the surface-mission aspects of the Reference Mission is required and is getting under way. Some aspects of the Reference Mission that are important for the consideration of the surface mission definition include: (1) a split mission strategy, which arrives at the surface two years before the arrival of the first crew; (2) three missions to the outpost site over a 6-year period; (3) a plant capable of producing rocket propellant for lifting off Mars and caches of water, O, and inert gases for the life-support system; (4) a hybrid physico-chemical/bioregenerative life-support system, which emphasizes the bioregenerative system more in later parts of the scenario; (5) a nuclear reactor power supply, which provides enough power for all operations, including the operation of a bioregenerative life-support system as well as the propellant and consumable plant; (6) capability for at least two people to be outside the habitat each day of the surface stay; (7) telerobotic and human-operated transportation vehicles, including a pressurized rover capable of supporting trips of several days' duration from the habitat; (7) crew stay times of 500 days on the surface, with six-person crews; and (8) multiple functional redundancies to reduce risks to the crews on the surface. New concepts are being sought that would reduce the overall cost for this exploration

  13. Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team

    NASA Astrophysics Data System (ADS)

    Connolly, John

    1998-01-01

    The Reference Mission was developed over a period of several years and was published in NASA Special Publication 6107 in July 1997. The purpose of the Reference Mission was to provide a workable model for the human exploration of Mars, which is described in enough detail that alternative strategies and implementations can be compared and evaluated. NASA is continuing to develop the Reference Mission and expects to update this report in the near future. It was the purpose of the Reference Mission to develop scenarios based on the needs of scientists and explorers who want to conduct research on Mars; however, more work on the surface-mission aspects of the Reference Mission is required and is getting under way. Some aspects of the Reference Mission that are important for the consideration of the surface mission definition include: (1) a split mission strategy, which arrives at the surface two years before the arrival of the first crew; (2) three missions to the outpost site over a 6-year period; (3) a plant capable of producing rocket propellant for lifting off Mars and caches of water, O, and inert gases for the life-support system; (4) a hybrid physico-chemical/bioregenerative life-support system, which emphasizes the bioregenerative system more in later parts of the scenario; (5) a nuclear reactor power supply, which provides enough power for all operations, including the operation of a bioregenerative life-support system as well as the propellant and consumable plant; (6) capability for at least two people to be outside the habitat each day of the surface stay; (7) telerobotic and human-operated transportation vehicles, including a pressurized rover capable of supporting trips of several days' duration from the habitat; (7) crew stay times of 500 days on the surface, with six-person crews; and (8) multiple functional redundancies to reduce risks to the crews on the surface. New concepts are being sought that would reduce the overall cost for this exploration

  14. Mission possible: Building an effective business continuity team in seven steps.

    PubMed

    Porter, David

    2016-01-01

    Several books and studies exist on the creation, development and benefits of high-performing teams; many others offer insights into the business continuity management (BCM) discipline, crisis response and planning. Very rarely, however, do they cover both. This paper will explore the seven main development areas that helped build the foundation for a successful and high-performing BCM team in the Australian Taxation Office. Practical, actionable advice will be provided, recognising that the task for those starting out can be quite daunting and complex.

  15. The European Medical Corps: first Public Health Team mission and future perspectives.

    PubMed

    Haussig, Joana M; Severi, Ettore; Baum, Jonathan Hj; Vanlerberghe, Veerle; Laiseca, Amparo; Defrance, Laurent; Brailescu, Cristina; Coulombier, Denis; Jansa, Josep

    2017-09-14

    The 2013-2016 Ebola epidemic in West Africa challenged traditional international mechanisms for public health team mobilisation to control outbreaks. Consequently, in February 2016, the European Union (EU) launched the European Medical Corps (EMC), a mechanism developed in collaboration with the World Health Organization (WHO) to rapidly deploy teams and equipment in response to public health emergencies inside and outside the EU. Public Health Teams (PHTs), a component of the EMC, consist of experts in communicable disease prevention and control from participating countries and the European Centre for Disease Prevention and Control (ECDC), to support affected countries and WHO in risk assessment and outbreak response. The European Commission's Directorate-General European Civil Protection and Humanitarian Aid Operations and Directorate-General Health and Food Safety, and ECDC, plan and support deployments. The first EMC-PHT deployment took place in May 2016, with a team sent to Angola for a yellow fever outbreak. The aims were to evaluate transmission risks to local populations and EU citizens in Angola, the risk of regional spread and importation into the EU, and to advise Angolan and EU authorities on control measures. International actors should gain awareness of the EMC, its response capacities and the means for requesting assistance. This article is copyright of The Authors, 2017.

  16. Automation and Process Improvement Enables a Small Team to Operate a Low Thrust Mission in Orbit Around the Asteroid Vesta

    NASA Technical Reports Server (NTRS)

    Weise, Timothy M

    2012-01-01

    NASA's Dawn mission to the asteroid Vesta and dwarf planet Ceres launched September 27, 2007 and arrived at Vesta in July of 2011. This mission uses ion propulsion to achieve the necessary delta-V to reach and maneuver at Vesta and Ceres. This paper will show how the evolution of ground system automation and process improvement allowed a relatively small engineering team to transition from cruise operations to asteroid operations while maintaining robust processes. The cruise to Vesta phase lasted almost 4 years and consisted of activities that were built with software tools, but each tool was open loop and required engineers to review the output to ensure consistency. Additionally, this same time period was characterized by the evolution from manually retrieved and reviewed data products to automatically generated data products and data value checking. Furthermore, the team originally took about three to four weeks to design and build about four weeks of spacecraft activities, with spacecraft contacts only once a week. Operations around the asteroid Vesta increased the tempo dramatically by transitioning from one contact a week to three or four contacts a week, to fourteen contacts a week (every 12 hours). This was accompanied by a similar increase in activity complexity as well as very fast turn around activity design and build cycles. The design process became more automated and the tools became closed loop, allowing the team to build more activities without sacrificing rigor. Additionally, these activities were dependent on the results of flight system performance, so more automation was added to analyze the flight data and provide results in a timely fashion to feed the design cycle. All of this automation and process improvement enabled up the engineers to focus on other aspects of spacecraft operations, including spacecraft health monitoring and anomaly resolution.

  17. EPA’s Role in Emergency Response - Special Teams

    EPA Pesticide Factsheets

    The Environmental Response Team; Radiological Response Team; Chemical, Biological, Radiological, and Nuclear Consequence Management Advisory Division; and National Criminal Enforcement Response Team provide specialized support.

  18. Deep Space Mission Trend Analyses: A Briefing to the Next Generation EBRE Study Team

    NASA Technical Reports Server (NTRS)

    Abraham, Douglas S.

    2012-01-01

    Determination of stakeholder needs for next generation implementations necessitates a multi ]pronged approach. . Future mission set analyses provide a lower gbound h for some of these needs. . Earth ]based analogies provide an upper gbound h for some of these needs. . Interpreting the results requires being mindful of both the near ]term contextual factors and long ]term factors that are in play. . In the context of last year fs analyses, the current budget environment, the potential Pu ]238 shortage, and SMD fs gsingle 34m only h policy may, collectively, create a future deep space mission set that, from a capacity and end ]to ]end link difficulty standpoint, is no more challenging than it is today. . Nonetheless, data rates and volumes continue to increase, suggesting capability and spectrum challenges ahead. These results agree with the results from the Earthbased analogies. . Emerging developments such as smallsats and distributed spacecraft could significantly change the capacity and end ]to ]end link difficulty picture.

  19. Deep Space Mission Trend Analyses: A Briefing to the Next Generation EBRE Study Team

    NASA Technical Reports Server (NTRS)

    Abraham, Douglas S.

    2012-01-01

    Determination of stakeholder needs for next generation implementations necessitates a multi ]pronged approach. . Future mission set analyses provide a lower gbound h for some of these needs. . Earth ]based analogies provide an upper gbound h for some of these needs. . Interpreting the results requires being mindful of both the near ]term contextual factors and long ]term factors that are in play. . In the context of last year fs analyses, the current budget environment, the potential Pu ]238 shortage, and SMD fs gsingle 34m only h policy may, collectively, create a future deep space mission set that, from a capacity and end ]to ]end link difficulty standpoint, is no more challenging than it is today. . Nonetheless, data rates and volumes continue to increase, suggesting capability and spectrum challenges ahead. These results agree with the results from the Earthbased analogies. . Emerging developments such as smallsats and distributed spacecraft could significantly change the capacity and end ]to ]end link difficulty picture.

  20. Losing Ground on the Afghanistan Provincial Reconstruction Team Mission and Recommendations for Regaining It

    DTIC Science & Technology

    2011-12-05

    Cultural norms may also explain how it is possible that potentially unqualified U.S. hires from MEP have been able to continue their employment...role. For the PRT commander and the civil affairs officer, this meant conducting a face-to-face meeting with a “local leader” typically in a...mistrust and miscommunication. Selection. As of September 2010, Ohio based Mission Essential Personnel ( MEP ) employed “the majority of linguists in

  1. 62 FR 9455 - NASA Advisory Council (NAC), Space Science Advisory Committee (SScAC), Structure and Evolution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-03-03

    ... and Evolution of the Universe Advisory Subcommittee; Meeting AGENCY: National Aeronautics and Space... of the NASA Advisory Council, Space Science Advisory Committee, Structure and Evolution of the... following topics: --Status of Ongoing Missions --Structure and Evolution of Universe (SEU) Strategic...

  2. Strategies for Information Retrieval and Virtual Teaming to Mitigate Risk on NASA's Missions

    NASA Technical Reports Server (NTRS)

    Topousis, Daria; Williams, Gregory; Murphy, Keri

    2007-01-01

    Following the loss of NASA's Space Shuttle Columbia in 2003, it was determined that problems in the agency's organization created an environment that led to the accident. One component of the proposed solution resulted in the formation of the NASA Engineering Network (NEN), a suite of information retrieval and knowledge sharing tools. This paper describes the implementation of this set of search, portal, content management, and semantic technologies, including a unique meta search capability for data from distributed engineering resources. NEN's communities of practice are formed along engineering disciplines where users leverage their knowledge and best practices to collaborate and take informal learning back to their personal jobs and embed it into the procedures of the agency. These results offer insight into using traditional engineering disciplines for virtual teaming and problem solving.

  3. Strategies for Information Retrieval and Virtual Teaming to Mitigate Risk on NASA's Missions

    NASA Technical Reports Server (NTRS)

    Topousis, Daria; Williams, Gregory; Murphy, Keri

    2007-01-01

    Following the loss of NASA's Space Shuttle Columbia in 2003, it was determined that problems in the agency's organization created an environment that led to the accident. One component of the proposed solution resulted in the formation of the NASA Engineering Network (NEN), a suite of information retrieval and knowledge sharing tools. This paper describes the implementation of this set of search, portal, content management, and semantic technologies, including a unique meta search capability for data from distributed engineering resources. NEN's communities of practice are formed along engineering disciplines where users leverage their knowledge and best practices to collaborate and take informal learning back to their personal jobs and embed it into the procedures of the agency. These results offer insight into using traditional engineering disciplines for virtual teaming and problem solving.

  4. Team play with a powerful and independent agent: a full-mission simulation study.

    PubMed

    Sarter, N B; Woods, D D

    2000-01-01

    One major problem with pilot-automation interaction on modern flight decks is a lack of mode awareness; that is, a lack of knowledge and understanding of the current and future status and behavior of the automation. A lack of mode awareness is not simply a pilot problem; rather, it is a symptom of a coordination breakdown between humans and machines. Recent changes in automation design can therefore be expected to have an impact on the nature of problems related to mode awareness. To examine how new automation properties might affect pilot-automation coordination, we performed a full-mission simulation study on one of the most advanced automated aircraft, the Airbus A-320. The results of this work indicate that mode errors and "automation surprises" still occur on these advanced aircraft. However, there appear to be more opportunities for delayed or missing interventions with undesirable system activities, possibly because of higher system autonomy and coupling.

  5. Thermosphere-ionosphere-mesosphere energetics and dynamics (TIMED). The TIMED mission and science program report of the science definition team. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A Science Definition Team was established in December 1990 by the Space Physics Division, NASA, to develop a satellite program to conduct research on the energetics, dynamics, and chemistry of the mesosphere and lower thermosphere/ionosphere. This two-volume publication describes the TIMED (Thermosphere-Ionosphere-Mesosphere, Energetics and Dynamics) mission and associated science program. The report outlines the scientific objectives of the mission, the program requirements, and the approach towards meeting these requirements.

  6. Pre-Mission Input Requirements to Enable Successful Sample Collection by A Remote Field/EVA Team

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Lim, D. S. S.; Young, K. E.; Brunner, A.; Elphic, R. E.; Horne, A.; Kerrigan, M. C.; Osinski, G. R.; Skok, J. R.; Squyres, S. W.; hide

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team, part of the Solar System Exploration Virtual Institute (SSERVI), is a field-based research program aimed at generating strategic knowledge in preparation for human and robotic exploration of the Moon, near-Earth asteroids, Phobos and Deimos, and beyond. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused and, moreover, is sampling-focused with the explicit intent to return the best samples for geochronology studies in the laboratory. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. We examined the in situ sample characterization and real-time decision-making process of the astronauts, with a guiding hypothesis that pre-mission training that included detailed background information on the analytical fate of a sample would better enable future astronauts to select samples that would best meet science requirements. We conducted three tests of this hypothesis over several days in the field. Our investigation was designed to document processes, tools and procedures for crew sampling of planetary targets. This was not meant to be a blind, controlled test of crew efficacy, but rather an effort to explicitly recognize the relevant variables that enter into sampling protocol and to be able to develop recommendations for crew and backroom training in future endeavors.

  7. Youth in Progress: New York State Foster Care Youth Leadership Advisory Team. Need to Know Series: College and Vocational Planning

    ERIC Educational Resources Information Center

    New York State Office of Children and Family Services, 2009

    2009-01-01

    The mission of Youth In Progress is to enhance and advance the lives of today's and tomorrow's youth by supporting their sense of self and responsibility. To do this, they pledge to educate everyone involved in the various systems Youth In Progress members represent to the realities of this experience. Contents of this paper include: (1) Planning…

  8. Quality Work Teams.

    ERIC Educational Resources Information Center

    Oswald, Lori Jo

    1995-01-01

    A growing number of schools and districts are considering using teams to handle all types of decision making and advisory activities. The term "teams" can be applied to a wide spectrum of groups with various purposes or powers. This bulletin was designed to assist those who want to create efficient, successful teams. It provides…

  9. A Team Approach to the Development of Gamma Ray and x Ray Remote Sensing and in Situ Spectroscopy for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Floyd, S.; Ruitberg, A.; Evans, L.; Starr, R.; Metzger, A.; Reedy, R.; Drake, D.; Moss, C.; Edwards, B.

    1993-01-01

    An important part of the investigation of planetary origin and evolution is the determination of the surface composition of planets, comets, and asteroids. Measurements of discrete line X-ray and gamma ray emissions from condensed bodies in space can be used to obtain both qualitative and quantitative elemental composition information. The Planetary Instrumentation Definition and Development Program (PIDDP) X-Ray/Gamma Ray Team has been established to develop remote sensing and in situ technologies for future planetary exploration missions.

  10. Humanitarian Assistance and Disaster Relief mission by a tripartite medical team led by the Singapore Armed Forces after the 2015 Nepal earthquake.

    PubMed

    Ho, Ming Li Leonard; Lim, Jonathan Zhao Min; Tan, Mark Zhong Wei; Kok, Wai Leong; Zhang, Jun Ren; Tan, Mian Yi; Tan, Adrian Chong Beng

    2016-08-01

    This study aimed to report the injury or disease patterns, challenges, key observations, and recommendations by the Singapore Armed Forces (SAF) team that embarked on an Humanitarian Assistance and Disaster Relief (HADR) mission in the aftermath of the April 2015 Nepal earthquake. The SAF medical team that provided HADR assistance to Nepal consisted of personnel from the SAF, Singapore¢s Ministry of Health and the Royal Brunei Armed Forces. Upon arrival in Kathmandu, Nepal, the SAF medical team was assigned to the Gokarna district by the local health authorities. In addition to providing primary healthcare, the medical facility was equipped to perform resuscitation and minor procedures. We also assembled mobile medical teams (MMTs) that travelled to various remote areas of the country to deliver medical aid. A total of 3,014 patients were managed by the SAF medical team. Of these patients, 1,286 (42.7%) were men. 574 (19.0%) patients sustained earthquake-related injuries or illnesses, while 2,440 (81.0%) sustained non-earthquake-related injuries or illnesses. The team treated a total of 447 (77.9%) adults and 127 (22.1%) paediatric patients with earthquake-related injuries or illnesses. A significant number of patients developed exacerbations of underlying medical conditions. 2,161 (71.7%) patients were treated in our main facility in Gokarna, while 853 patients (28.3%) were treated by our MMTs. The ability to transport healthcare personnel and essential medical equipment within a short time allowed the SAF medical team to provide crucial medical care in the aftermath of the 2015 Nepal earthquake. Copyright: © Singapore Medical Association.

  11. Humanitarian Assistance and Disaster Relief mission by a tripartite medical team led by the Singapore Armed Forces after the 2015 Nepal earthquake

    PubMed Central

    Ho, Ming Li Leonard; Lim, Jonathan Zhao Min; Tan, Mark Zhong Wei; Kok, Wai Leong; Zhang, Jun Ren; Tan, Mian Yi; Tan, Adrian Chong Beng

    2016-01-01

    INTRODUCTION This study aimed to report the injury or disease patterns, challenges, key observations, and recommendations by the Singapore Armed Forces (SAF) team that embarked on an Humanitarian Assistance and Disaster Relief (HADR) mission in the aftermath of the April 2015 Nepal earthquake. METHODS The SAF medical team that provided HADR assistance to Nepal consisted of personnel from the SAF, Singapore¢s Ministry of Health and the Royal Brunei Armed Forces. Upon arrival in Kathmandu, Nepal, the SAF medical team was assigned to the Gokarna district by the local health authorities. In addition to providing primary healthcare, the medical facility was equipped to perform resuscitation and minor procedures. We also assembled mobile medical teams (MMTs) that travelled to various remote areas of the country to deliver medical aid. RESULTS A total of 3,014 patients were managed by the SAF medical team. Of these patients, 1,286 (42.7%) were men. 574 (19.0%) patients sustained earthquake-related injuries or illnesses, while 2,440 (81.0%) sustained non-earthquake-related injuries or illnesses. The team treated a total of 447 (77.9%) adults and 127 (22.1%) paediatric patients with earthquake-related injuries or illnesses. A significant number of patients developed exacerbations of underlying medical conditions. 2,161 (71.7%) patients were treated in our main facility in Gokarna, while 853 patients (28.3%) were treated by our MMTs. CONCLUSION The ability to transport healthcare personnel and essential medical equipment within a short time allowed the SAF medical team to provide crucial medical care in the aftermath of the 2015 Nepal earthquake. PMID:27549187

  12. Experience of the Air Medical Evacuation Team of Serbian Armed Forces in the United Nations Mission in the Democratic Republic of Congo--Deployment stress and psychological adaptation.

    PubMed

    Joković, Danilo B; Krstić, Dragan; Stojanović, Zvezdana; Spirić, Zeljko

    2016-02-01

    Wars of the nineties in former Yugoslavia, Somalia, Rwanda imposed new tasks to the United Nations (UN) forces, such as providing humanitarian aid, protection of civilians, peacekeeping, and in many instances providing armed enforcement of peace. The aim of this study was an observational analysis of Serbian participation in the UNs Mission in the Democratic Republic of Congo with the emphasis on stress and coping techniques. Serbian contribution in this mission dates back to April 2003 till the present days with a military contingent consisting of six members as a part of Air Medical Evacuation Team. The observed stressogenous factors acted before arrival to the mission area and in the mission area. In this paper we analysed ways to overcome them. The productive ways of overwhelming stress used in this mission were: honesty and openness in interpersonal communications, dedication to work, maintaining discipline and order, strict following of appropriate regime of work, diet, rest and recreation; regular communication with family and organizing and participation in various social, cultural and sports manifestations. This analysis indicates that out of all the observed factors, the most important is appropriate selection of personnel.

  13. The Gravitational Universe - ESA's L3 mission

    NASA Astrophysics Data System (ADS)

    Mueller, Guido; Ando, Masaki; Binetruy, Pierre; Bouyer, Philippe; Cacciapuoti, Luigi; Cruise, Mike; Favata, Fabio; Gehler, Martin; Genzel, Reinhard; Jennrich, Oliver; Kasevich, Mark; Klipstein, Bill; Perryman, Michael; Safa, Frederic; Schutz, Bernard; Stebbins, Robin; Vitale, Stefano

    2015-04-01

    Following the advice of ESA's Senior Survey Committee (SSC) the Science Programme Committee (SPC) decided in November 2013 to select the science theme ``The Gravitational Universe'' for their L3 mission. The Director of Science and Robotic Exploration (D/SRE) has established a Gravitational Observatory Advisory Team (GOAT) to advise on the scientific and technological approaches for a gravitational wave observatory with a planned launch date in 2034. Our team is comprised of scientists from Europe and the US as well as scientists and engineers from ESA and observers from NASA and JAXA. We meet about every ten weeks, evaluate the technical readiness of all necessary technologies, study the science impact of different mission designs, and will advise ESA on the required future technology development. We will report on our progress and plans forward to a future space-based gravitational-wave observatory. For JAXA.

  14. 75 FR 22560 - Federal Advisory Committee; U.S. Air Force Scientific Advisory Board; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... of the Secretary Federal Advisory Committee; U.S. Air Force Scientific Advisory Board; Charter... that it is renewing the charter for the U.S. Air Force Scientific Advisory Board (hereafter referred to... of science and technology relating to the Air Force mission. The Board shall: a. Provide independent...

  15. Five Years of NASA Science and Engineering in the Classroom: The Integrated Product Team/NASA Space Missions Course

    NASA Astrophysics Data System (ADS)

    Hakkila, Jon; Runyon, Cassndra; Benfield, M. P. J.; Turner, Matthew W.; Farrington, Phillip A.

    2015-08-01

    We report on five years of an exciting and successful educational collaboration in which science undergraduates at the College of Charleston work with engineering seniors at the University of Alabama in Huntsville to design a planetary science mission in response to a mock announcement of opportunity. Alabama high schools are also heavily involved in the project, and other colleges and universities have also participated. During the two-semester course students learn about scientific goals, past missions, methods of observation, instrumentation, and component integration, proposal writing, and presentation. More importantly, students learn about real-world communication and teamwork, and go through a series of baseline reviews before presenting their results at a formal final review for a panel of NASA scientists and engineers. The project is competitive, with multiple mission designs competing with one another for the best review score. Past classes have involved missions to Venus, Europa, Titan, Mars, asteroids, comets, and even the Moon. Classroom successes and failures have both been on epic scales.

  16. Team Cognition in Experienced Command-and-Control Teams

    ERIC Educational Resources Information Center

    Cooke, Nancy J.; Gorman, Jamie C.; Duran, Jasmine L.; Taylor, Amanda R.

    2007-01-01

    Team cognition in experienced command-and-control teams is examined in an UAV (Uninhabited Aerial Vehicle) simulation. Five 3-person teams with experience working together in a command-and-control setting were compared to 10 inexperienced teams. Each team participated in five 40-min missions of a simulation in which interdependent team members…

  17. Team Cognition in Experienced Command-and-Control Teams

    ERIC Educational Resources Information Center

    Cooke, Nancy J.; Gorman, Jamie C.; Duran, Jasmine L.; Taylor, Amanda R.

    2007-01-01

    Team cognition in experienced command-and-control teams is examined in an UAV (Uninhabited Aerial Vehicle) simulation. Five 3-person teams with experience working together in a command-and-control setting were compared to 10 inexperienced teams. Each team participated in five 40-min missions of a simulation in which interdependent team members…

  18. Pre-Mission Input Requirements to Enable Successful Sample Collection by a Remote Field/EVA Team

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Young, K. E.; Lim, D. S.

    2015-01-01

    This paper is intended to evaluate the sample collection process with respect to sample characterization and decision making. In some cases, it may be sufficient to know whether a given outcrop or hand sample is the same as or different from previous sampling localities or samples. In other cases, it may be important to have more in-depth characterization of the sample, such as basic composition, mineralogy, and petrology, in order to effectively identify the best sample. Contextual field observations, in situ/handheld analysis, and backroom evaluation may all play a role in understanding field lithologies and their importance for return. For example, whether a rock is a breccia or a clast-laden impact melt may be difficult based on a single sample, but becomes clear as exploration of a field site puts it into context. The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is a new activity focused on a science and exploration field based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused, and moreover, is sampling-focused, with the explicit intent to return the best samples for geochronology studies in the laboratory. This specific objective effectively reduces the number of variables in the goals of the field test and enables a more controlled investigation of the role of the crewmember in selecting samples. We formulated one hypothesis to test: that providing details regarding the analytical fate of the samples (e.g. geochronology, XRF/XRD, etc.) to the crew prior to their traverse will result in samples that are more likely to meet specific analytical

  19. A preliminary study of Mars rover/sample return missions

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Solar System Exploration Committee (SSEC) of the NASA Advisory Council recommends that a Mars Sample Return mission be undertaken before the year 2000. Comprehensive studies of a Mars Sample Return mission have been ongoing since 1984. The initial focus of these studies was an integrated mission concept with the surface rover and sample return vehicle elements delivered to Mars on a single launch and landed together. This approach, to be carried out as a unilateral U.S. initiative, is still a high priority goal in an Augmented Program of exploration, as the SSEC recommendation clearly states. With this background of a well-understood mission concept, NASA decided to focus its 1986 study effort on a potential opportunity not previously examined; namely, a Mars Rover/Sample Return (MRSR) mission which would involve a significant aspect of international cooperation. As envisioned, responsibility for the various mission operations and hardware elements would be divided in a logical manner with clearly defined and acceptable interfaces. The U.S. and its international partner would carry out separately launched but coordinated missions with the overall goal of accomplishing in situ science and returning several kilograms of surface samples from Mars. Important considerations for implementation of such a plan are minimum technology transfer, maximum sharing of scientific results, and independent credibility of each mission role. Under the guidance and oversight of a Mars Exploration Strategy Advisory Group organized by NASA, a study team was formed in the fall of 1986 to develop a preliminary definition of a flight-separable, cooperative mission. The selected concept assumes that the U.S. would undertake the rover mission with its sample collection operations and our international partner would return the samples to Earth. Although the inverse of these roles is also possible, this study report focuses on the rover functions of MRSR because rover operations have not

  20. 75 FR 69698 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    .... The full ISAC will also consider a white paper entitled, Invasive Species and Climate Change, as drafted by the ISAC Task Team on Climate Change. DATES: Meeting of the Invasive Species Advisory Committee...

  1. 61 FR 67576 - NASA Advisory Council (NAC), Space Science Advisory Committee (SScAC), Structure and Evolution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1996-12-23

    ... and Evolution of the Universe Advisory Subcommittee; Meeting AGENCY: National Aeronautics and Space... of the NASA Advisory Council, Space Science Advisory Committee, Structure and Evolution of the... includes the following topics: --Status of Ongoing Missions --Structure and Evolution of the Universe (SEU...

  2. Cyber Network Mission Dependencies

    DTIC Science & Technology

    2015-09-18

    to secure network assets and assure the capabilities they enable will pose a fundamental risk to any defense mission. The impact of a cyber attack is...Science Advisory Board Report on Defending and Operating in a Contested Cyber Domain [3] that “The full range of possible mission effects of cyber attacks ...is not well understood by warfighters.” Ironically, a cyber attack frequently actuates a far greater mission impact than the attacker’s direct intent

  3. 78 FR 20356 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... following topics: --Astrophysics Division Update --Report from Astrophysics Roadmap Team --James Webb Space...

  4. An Air Force Guide to Team Building.

    DTIC Science & Technology

    1995-09-01

    mission and goals. In his book, The Team Handbook, Peter Scholtes describes the ideal team as one in which its members agree on the team’s mission and...tasks. Consequently, the ideal team has formally designated roles and responsibilities. Its members understand which roles belong to one individual...decisions affect all other subsequent team decisions and actions (1:1-2). In his book, The Team Handbook, Peter Scholtes describes the ideal team as one

  5. 77 FR 19006 - Threat Reduction Advisory Committee; Notice of Federal Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Secretary of Defense (Acquisition, Technology and Logistics). ACTION: Federal Advisory Committee Meeting... and evaluate classified information related to the Committee's mission to advise on technology security, combating weapons of mass destruction (C-WMD), counter terrorism and counter proliferation...

  6. The Venera-D Mission Concept: Evaluation by a Joint Science Definition Team of a Means for the Comprehensive Scientific Exploration of Venus

    NASA Astrophysics Data System (ADS)

    Senske, D.; Zasova, L. V.; Economou, T.; Eismont, N.; Esposito, L. W.; Gerasimov, M.; Ignatiev, N. I.; Ivanov, M.; Jessup, K. L.; Korablev, O.; Tibor, K.; Limaye, S. S.; Martynov, A.; Ocampo, A.

    2016-12-01

    Located in the same part of the solar system and formed out of the same protoplanetary material, Venus is Earth's twin. Although these siblings have nearly the same size, mass, and density, the climate of Venus, fueled by a massive CO2 atmosphere has an enormous greenhouse effect with a surface pressure of 90 atm. and a temperature of 470°C. Shrouded in clouds of sulfuric acid, the surface lacks water and has been sculpted by volcanism and deformed by faulting and folding forming rifts and belts of mountains. The lack of an intrinsic magnetic field suggests the planet's interior structure may be different than that of the earth. The study of Venus will aid in better understanding our own world and the possible future evolution of our climate. In particular, the instability of our climate and the increase in amount of greenhouse gases-can our climate be slowly going in Venus' direction? Despite the advancement in understanding achieved from previous and ongoing missions, the key questions concerning the origin and evolution of Venus and its climate cannot be solved by observations from orbit alone. Direct measurements in the atmosphere and on the surface are required. In this regard, a Joint Science Definition Team (JSDT) chartered by NASA and IKI/Roscosmos has been studying a concept for the comprehensive investigation of Venus that would consist of an orbiter (>3 yr. of operation) and a lander (2 hrs. on the surface). The scientific goals of the concept are tied closely to the key objectives established by VEXAG and the NASA Planetary Decadal Survey and include: investigation of the thermal structure and chemical composition of the atmosphere and clouds, abundances and isotopic ratios of the light and noble gases; study of the thermal balance, dynamics, and super-rotation of the atmosphere; determination of the surface mineralogy and elemental composition including key radioactive isotopes; study of potential current volcanic and electrical activity; and study of

  7. Army National Guard Brigade Combat Teams: Future Structure and Roles

    DTIC Science & Technology

    2012-04-12

    Operational Mentor and Liaison Teams (OMLT) and the Agribusiness Development Teams (ADT). The OMLTs are international advisory teams deployed to...teams, Agribusiness Development Teams, and Provincial Reconstruction Teams from within its BCTs.74 The IBCTs would be available for rotational...Bureau, “ Agribusiness Development Team,” March 2011, http://www.ng.mil/media/default.aspx#factsheets (accessed November 8, 2011); Peter Geren and

  8. Europa Geophysical Explorer Mission Concept Studies

    NASA Astrophysics Data System (ADS)

    Green, J. R.; Abelson, R. D.; Smythe, W.; Spilker, T. R.; Shirley, J. H.

    2005-12-01

    -Group Advisory Team, JPL's Team X, and parametric modeling and simulation tools. We explored the system impacts of selecting different science payloads, power systems, mission durations, Deep Space Network (DSN) architectures, trajectory types, and launch vehicles. The comparisons show that there are feasible mission options that provide potentially available mass for enhanced spacecraft margins and science return, in addition to a 150-kg orbiter science instrument payload mass. This presentation describes high-priority science objectives for an EGE mission, results of the recent studies, and implementation options.

  9. [Team and team work].

    PubMed

    Richer, E

    1990-01-01

    The coordinator draws conclusions on the symposium day devoted to the teams. After defining "team" he gives several thoughts on the team's work its advantages and its difficulties. During this day the teams talked about their questions and their certainties in the various fields of their work. They also discussed their hard ships and their need of psychological support which the hospital departments do not have the means to satisfy.

  10. Train Undergraduate and Graduate Students in the Spacecraft Design Lifecycle Through the Bandit-D Mission: Collaborative Situational Awareness Using a Team of Four Deployable Spacecraft

    DTIC Science & Technology

    2011-06-30

    view of COPPER-Cube’s imaging system o Relay images to the ground for analysis • The secondary, non-flight mission was to transition...the mission was de-scoped to fit inside a 3U ejector , resulting in the COPPER- Cube/Tube iteration. Hardware for this version was carried to

  11. 77 FR 68152 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Meeting AGENCY: National Aeronautics and...) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to... 20546. FOR FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA...

  12. 77 FR 46428 - Chief of Engineers Environmental Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... Department of the Army; Corps of Engineers Chief of Engineers Environmental Advisory Board; Meeting AGENCY... forthcoming meeting. Name of Committee: Chief of Engineers Environmental Advisory Board (EAB). Date: August 28... environmental policy, identification and resolution of environmental issues and missions, and addressing...

  13. 78 FR 4138 - Chief of Engineers Environmental Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ..., identification and resolution of environmental issues and missions, and addressing challenges, problems and... Department of the Army; Corps of Engineers Chief of Engineers Environmental Advisory Board; Meeting AGENCY... forthcoming meeting. Name of Committee: Chief of Engineers Environmental Advisory Board (EAB). Date: February...

  14. 75 FR 20428 - National Research Advisory Council; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... AFFAIRS National Research Advisory Council; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that the National Research...'s research mission. The agenda will include a review of the VA research portfolio, ethics training...

  15. Mission X Introduction

    NASA Image and Video Library

    Expedition 26 Flight Engineer Cady Coleman delivers a message to student teams participating in the Mission X: Train Like An Astronaut international education and fitness challenge. To learn more, ...

  16. NASA Advisory Council visits Stennis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA Advisory Council members visited Stennis Space Center April 15 and 16, touring facilities and participating in various presentations. They also viewed a space shuttle main engine test on the A-2 Test Stand. The council of accomplished citizens advises NASA on major policy and program issues. The council includes former Apollo 17 astronaut Harrison Hagan Schmitt as chair, as well as former astronaut Eileen Collins, the first woman to command a space shuttle mission.

  17. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  18. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-03

    Teams of scientists set up equipment on sea ice not far from the U.S. Coast Guard icebreaker Healy in the Chukchi Sea on July 4, 2010, where they spent the day collecting data. The research is part of NASA's ICESCAPE oceanographic mission to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  19. Asteroid team

    NASA Technical Reports Server (NTRS)

    Matson, D. L.

    1988-01-01

    The purpose of this task is to support asteroid research and the operation of an Asteroid Team within the Earth and Space Sciences Division at the Jet Propulsion Laboratory (JPL). The Asteroid Team carries out original research on asteroids in order to discover, better characterize and define asteroid properties. This information is needed for the planning and design of NASA asteroid flyby and rendezvous missions. The asteroid Team also provides scientific and technical advice to NASA and JPL on asteroid related programs. Work on asteroid classification continued and the discovery of two Earth-approaching M asteroids was published. In the asteroid photometry program researchers obtained N or Q photometry for more than 50 asteroids, including the two M-earth-crossers. Compositional analysis of infrared spectra (0.8 to 2.6 micrometer) of asteroids is continuing. Over the next year the work on asteroid classification and composition will continue with the analysis of the 60 reduced infrared spectra which we now have at hand. The radiometry program will continue with the reduction of the N and Q bandpass data for the 57 asteroids in order to obtain albedos and diameters. This year the emphasis will shift to IRAS follow-up observations; which includes objects not observed by IRAS and objects with poor or peculiar IRAS data. As in previous year, we plan to give top priority to any opportunities for observing near-Earth asteroids and the support (through radiometric lightcurve observations from the IRTF) of any stellar occultations by asteroids for which occultation observation expeditions are fielded. Support of preparing of IRAS data for publication and of D. Matson for his participation in the NASA Planetary Astronomy Management and Operations Working Group will continue.

  20. What is Team X?

    NASA Technical Reports Server (NTRS)

    Warfield, Keith

    2012-01-01

    Team X is a concurrent engineering team for rapid design and analysis of space mission concepts. It was developed in 1995 by JPL to reduce study time and cost. More than 1100 studies have been completed It is institutionally endorsed and it has been emulated by many institutions. In Concurrent Engineering (i.e., Parallel) diverse specialists work in real time, in the same place, with shared data, to yield an integrated design

  1. What is Team X?

    NASA Technical Reports Server (NTRS)

    Warfield, Keith

    2012-01-01

    Team X is a concurrent engineering team for rapid design and analysis of space mission concepts. It was developed in 1995 by JPL to reduce study time and cost. More than 1100 studies have been completed It is institutionally endorsed and it has been emulated by many institutions. In Concurrent Engineering (i.e., Parallel) diverse specialists work in real time, in the same place, with shared data, to yield an integrated design

  2. Juno Mission Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard J.

    2008-01-01

    The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.

  3. Juno Mission Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard J.

    2008-01-01

    The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.

  4. 78 FR 69853 - Meeting of the Advisory Group on Prevention, Health Promotion, and Integrative and Public Health

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... HUMAN SERVICES Meeting of the Advisory Group on Prevention, Health Promotion, and Integrative and Public... Advisory Group on Prevention, Health Promotion, and Integrative and Public Health (the ``Advisory Group... established to assist in carrying out the mission of the National Prevention, Health Promotion, and...

  5. Fourth Report of the Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1995-01-01

    On December 6, 1994, the NASA Administrator, Mr. Daniel Goldin, requested that Lt. Gen. Thomas P. Stafford, in his role as the Chairman of the NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions, lead a team composed of several Task Force members and technical advisors' to Russia with the goal of reviewing preparations and readiness for the upcoming international Space Station Phase 1 missions. In his directions to Gen. Stafford, Mr. Goldin requested that the review team focus its initial efforts on safety of flight issues for the following Phase 1A missions: the Soyuz TM-21 mission which will carry U.S. astronaut Dr. Norman Thagard and cosmonauts Lt. Col. Vladimir Dezhurov and Mr. Gennady Strekalov aboard a Soyuz spacecraft to the Mir Station; the Mir 18 Main Expedition during which Thagard and his fellow cosmonauts, Dezhurov and Strokalov, will spend approximately three months aboard the Mir Station; the STS-71 Space Shuttle mission which will perform the first Shuttle-Mir docking, carry cosmonauts Col. Anatoly SoloViev and Mr. Nikolai Budarin to the Mir Station, and return Thagard, Dezhurov, and Strekalov to Earth.

  6. 12 CFR 1291.4 - Advisory Councils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and Banking FEDERAL HOUSING FINANCE AGENCY HOUSING GOALS AND MISSION FEDERAL HOME LOAN BANKS' AFFORDABLE HOUSING PROGRAM § 1291.4 Advisory Councils. (a) Appointment. (1) Each Bank's board of directors... low- and moderate-income housing, and community and not-for-profit organizations that are actively...

  7. [Teams working at the heart of precarity].

    PubMed

    Jabelot, Chrystel; Khénifer, Fabienne; Le Gal, Dominique; Masson, Thierry; Voisin, Véronique

    2011-05-01

    The specific mission of the Nanterre hospital and nursing home (CASH) is to welcome, care for and accommodate people in situations of precarity. To fulfil this mission, multi-professional teams from the healthcare and social sector work there.

  8. Aerospace Safety Advisory Panel

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The Aerospace Safety Advisory Panel (ASAP) provided oversight on the safety aspects of many NASA programs. In addition, ASAP undertook three special studies. At the request of the Administrator, the panel assessed the requirements for an assured crew return vehicle (ACRV) for the space station and reviewed the organization of the safety and mission quality function within NASA. At the behest of Congress, the panel formed an independent, ad hoc working group to examine the safety and reliability of the space shuttle main engine. Section 2 presents findings and recommendations. Section 3 consists of information in support of these findings and recommendations. Appendices A, B, C, and D, respectively, cover the panel membership, the NASA response to the findings and recommendations in the March 1992 report, a chronology of the panel's activities during the reporting period, and the entire ACRV study report.

  9. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aerospace Safety Advisory Panel (ASAP) provided oversight on the safety aspects of many NASA programs. In addition, ASAP undertook three special studies. At the request of the Administrator, the panel assessed the requirements for an assured crew return vehicle (ACRV) for the space station and reviewed the organization of the safety and mission quality function within NASA. At the behest of Congress, the panel formed an independent, ad hoc working group to examine the safety and reliability of the space shuttle main engine. Section 2 presents findings and recommendations. Section 3 consists of information in support of these findings and recommendations. Appendices A, B, C, and D, respectively, cover the panel membership, the NASA response to the findings and recommendations in the March 1992 report, a chronology of the panel's activities during the reporting period, and the entire ACRV study report.

  10. The Terrestrial Planet Finder and Darwin Missions

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2004-01-01

    Both in the United States and in Europe, teams of scientists and engineers are exploring the feasibility of the Terrestrial Planet Finder (TPF) and Darwin missions, which are designed to search for Earth-like planets in the habitable zone of nearby stars. In the US, the TPF Science Working Group is studying four options - small (4m by 6 m primary mirror) and large (4m by 10 m primary mirror) coronagraphs for planet detection at visible wavelengths, and structurally connected and free-flyer interferometers at thermal infrared wavelengths. The US TPF-SWG is charged with selecting an option for NASA by the end of 2006. In Europe the Darwin Terrestrial Exo-planet Advisory Team (TE- SAT) is exploring the free-flyer interferometer option only at this time. I will discuss the vurtures and difficulties of detecting and characterizing extra-solar planets in both wavelength regions as well as some of the technical challenges and progress in the past year.

  11. NEAR Shoemaker spacecraft mission operations

    NASA Astrophysics Data System (ADS)

    Holdridge, Mark E.

    2002-01-01

    On 12 February 2001, Near Earth Asteroid Rendezvous (NEAR) Shoemaker became the first spacecraft to land on a small body, 433 Eros. Prior to that historic event, NEAR was the first-ever orbital mission about an asteroid. The mission presented general challenges associated with other planetary space missions as well as challenges unique to an inaugural mission around a small body. The NEAR team performed this operations feat with processes and tools developed during the 4-year-long cruise to Eros. Adding to the success of this historic mission was the cooperation among the NEAR science, navigation, guidance and control, mission design, and software teams. With clearly defined team roles, overlaps in responsibilities were minimized, as were the associated costs. This article discusses the processes and systems developed at APL that enabled the success of NEAR mission operations.

  12. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    A jar of peanuts is seen sitting on a console in mission control of the Space Flight Operations Center as the Cassini mission team await the final downlink of the spacecraft's data recorder, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, watches monitors in mission control of the Space Flight Operations Center as the Cassini spacecraft begins downlink data through NASA's Deep Space Network, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. Hydrogen Storage Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  15. Hipparcos: mission accomplished

    NASA Astrophysics Data System (ADS)

    1993-08-01

    During the last few months of its life, as the high radiation environment to which the satellite was exposed took its toll on the on-board system, Hipparcos was operated with only two of the three gyroscopes normally required for such a satellite, following an ambitious redesign of the on-board and on-ground systems. Plans were in hand to operate the satellite without gyroscopes at all, and the first such "gyro- less" data had been acquired, when communication failure with the on-board computers on 24 June 1993 put an end to the relentless flow of 24000 bits of data that have been sent down from the satellite each second, since launch. Further attempts to continue operations proved unsuccessful, and after a short series of sub-systems tests, operations were terminated four years and a week after launch. An enormous wealth of scientific data was gathered by Hipparcos. Even though data analysis by the scientific teams involved in the programme is not yet completed, it is clear that the mission has been an overwhelming success. "The ESA advisory bodies took a calculated risk in selecting this complex but fundamental programme" said Dr. Roger Bonnet, ESA's Director of Science, "and we are delighted to have been able to bring it to a highly successful conclusion, and to have contributed unique information that will take a prominent place in the history and development of astrophysics". Extremely accurate positions of more than one hundred thousand stars, precise distance measurements (in most cases for the first time), and accurate determinations of the stars' velocity through space have been derived. The resulting HIPPARCOS Star Catalogue, expected to be completed in 1996, will be of unprecedented accuracy, achieving results some 10-100 times more accurate than those routinely determined from ground-based astronomical observatories. A further star catalogue, the Thyco Star Catalogue of more than a million stars, is being compiled from additional data accumulated by the

  16. Team Teaching.

    ERIC Educational Resources Information Center

    Cunningham, David C.

    1963-01-01

    A study was designed to evaluate the effectiveness of principals in structuring teaching teams; to assess background and personality characteristics appearing essential to successful individual and team performance; and to select personality factor scores which would predict individual and team success. Subjects were 31 teaching teams (99…

  17. Landsat science team meeting summary

    USGS Publications Warehouse

    Loveland, Thomas R.; Maiersperger, Tom; Irons, James R.; Woodcock, C.E.

    2011-01-01

    The Landsat Science Team sponsored by the U.S. Geo- logical Survey (USGS) and NASA met in Mesa, AZ, from March 1-3, 2011. The team met in Mesa so that they could receive briefings and tours of the Landsat Data Continuity Mission (LDCM) spacecraft that is being developed by Orbital Sciences Corporation in nearby Gilbert, AZ.

  18. Landsat science team meeting summary

    USGS Publications Warehouse

    Loveland, Thomas R.; Maiersperger, Tom; Irons, James R.; Woodcock, C.E.

    2011-01-01

    The Landsat Science Team sponsored by the U.S. Geo- logical Survey (USGS) and NASA met in Mesa, AZ, from March 1-3, 2011. The team met in Mesa so that they could receive briefings and tours of the Landsat Data Continuity Mission (LDCM) spacecraft that is being developed by Orbital Sciences Corporation in nearby Gilbert, AZ.

  19. L3 Study Team Activities

    NASA Astrophysics Data System (ADS)

    Shoemaker, David; L3ST Team

    2017-01-01

    The NASA-Chartered L3 Study Team is working to develop the US community participation and to support NASA's contribution to the ESA-led LISA mission to observe gravitational waves via space-based detectors. The present activities of the L3ST will be described, and the next steps for the Study Team will also be given. NASA supports travel activities and support for the Study Team activities.

  20. Discovery Planetary Mission Operations Concepts

    NASA Technical Reports Server (NTRS)

    Coffin, R.

    1994-01-01

    The NASA Discovery Program of small planetary missions will provide opportunities to continue scientific exploration of the solar system in today's cost-constrained environment. Using a multidisciplinary team, JPL has developed plans to provide mission operations within the financial parameters established by the Discovery Program. This paper describes experiences and methods that show promise of allowing the Discovery Missions to operate within the program cost constraints while maintaining low mission risk, high data quality, and reponsive operations.

  1. ESA’s L3 mission: A space-based gravitational-wave observatory

    NASA Astrophysics Data System (ADS)

    Mueller, Guido

    2016-04-01

    ESA selected the Gravitational Universe as the science theme for one of its future L-class missions. L3 will measure gravitational waves in the 10µHz to 100mHz window; probably the richest of all gravitational wave windows. Expected sources in this frequency band range from massive black hole mergers to extreme mass ratio inspirals to compact galactic binary systems.The L3 mission is expected to be based on the eLISA/LISA design which was submitted by the eLISA consortium as a notional mission concept. NASA started discussions with ESA how to join L3 and participates in ESA’s Gravitational Observatory Advisory Team. NASA is also in the process of setting up its own L3-Study team to look at potential US contributions to L3. This group will also act as the US partner for the eLISA consortium. In summary, the space component of the GW community has gained significant momentum over the last 12 months and a successful pathfinder mission and potential GW discoveries by Advanced LIGO and/or pulsar timing arrays should further strengthen the case for LISA.

  2. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, embrace after the Cassini spacecraft plunged into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, standing, watches telemetry come in from Cassini with Julie Bellerose, left, Duane Roth, second from left, and Mar Vaquero of the Cassini navigation team in the mission control room, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Aseel Anabtawi, of Cassini's radio science team, monitors her console in mission control during Cassini's final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. Advisory Council Member.

    ERIC Educational Resources Information Center

    Illinois State Board of Vocational Education and Rehabilitation, Springfield. Div. of Vocational and Technical Education.

    The pamphlet is directed toward the new member of a career education advisory council. It explains why advisory councils are needed and why an individual should join one. An advisory council is defined as a group of persons selected to collectively advise regarding career education efforts within the community, whose members are predominantly from…

  6. Atmospheric tether mission analyses

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA is considering the use of tethered satellites to explore regions of the atmosphere inaccessible to spacecraft or high altitude research balloons. This report summarizes the Lockheed Martin Astronautics (LMA) effort for the engineering study team assessment of an Orbiter-based atmospheric tether mission. Lockheed Martin responsibilities included design recommendations for the deployer and tether, as well as tether dynamic analyses for the mission. Three tether configurations were studied including single line, multistrand (Hoytether) and tape designs.

  7. 43 CFR 1784.6-2 - Resource advisory councils-optional features.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... plans. The councils will also assist in establishing other long-range plans and resource management priorities in an advisory capacity, including providing advice on the development of plans for range... allotment. These teams may be formed by a resource advisory council on its own motion or in response to a...

  8. 43 CFR 1784.6-2 - Resource advisory councils-optional features.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... plans. The councils will also assist in establishing other long-range plans and resource management priorities in an advisory capacity, including providing advice on the development of plans for range... allotment. These teams may be formed by a resource advisory council on its own motion or in response to a...

  9. 43 CFR 1784.6-2 - Resource advisory councils-optional features.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... plans. The councils will also assist in establishing other long-range plans and resource management priorities in an advisory capacity, including providing advice on the development of plans for range... allotment. These teams may be formed by a resource advisory council on its own motion or in response to a...

  10. Team Work.

    ERIC Educational Resources Information Center

    Frank, David

    1999-01-01

    Explains how a team cleaning approach can be cost-effective and efficient means of school maintenance. Assigning staffing responsibilities and work schedules are addressed and the advantages of using a team system are explained. (GR)

  11. Team Management.

    ERIC Educational Resources Information Center

    Lindelow, John

    Chapter 5 of a volume on school leadership, this chapter reviews the literature to define and explain management teams and to describe several successful management team arrangements. The author begins by noting that team management has recently enjoyed a resurgence as a response to collective negotiations, but beyond this function can have value…

  12. Team Development of Virtual Teams

    ERIC Educational Resources Information Center

    Kim, Sooyoung

    2004-01-01

    Advanced technologies, globalization, the competitiveness of business, flexible working practices, and other rapid changes in the nature of work have all led to the booming of "virtual teams." This paper will provide an overview of virtual teams, including a description of their emergence, a definition and typology of the term "virtual team," an…

  13. Mars Surface Mission Workshop

    NASA Technical Reports Server (NTRS)

    Duke, M. B. (Editor)

    1997-01-01

    A workshop was held at the Lunar and Planetary Institute on September 4-5, 1997, to address the surface elements of the Mars Reference Mission now being reviewed by NASA. The workshop considered the current reference mission and addressed the types of activities that would be expected for science and resource exploration and facilities operations. A set of activities was defined that can be used to construct "vignettes" of the surface mission. These vignettes can form the basis for describing the importance of the surface mission, for illustrating aspects of the surface mission, and for allowing others to extend and revise these initial ideas. The topic is rich with opportunities for additional conceptualization. It is recommended that NASA consider supporting university design teams to conduct further analysis of the possibilities.

  14. Catalog of Viking mission data

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W. (Editor)

    1978-01-01

    This catalog announces the present/expected availability of scientific data acquired by the Viking missions and contains descriptions of the Viking spacecraft, experiments, and data sets. An index is included listing the team leaders and team members for the experiments. Information on NSSDC facilities and ordering procedures, and a list of acronyms and abbreviations are included in the appendices.

  15. 78 FR 70963 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... SPACE ADMINISTRATION NASA Advisory Council; Technology and Innovation Committee; Meeting AGENCY... and Space Administration (NASA) announces a meeting of the Technology and Innovation Committee (TIC... Technology Roadmapping efforts; status of the Space Technology Mission Directorate programs with an...

  16. 78 FR 41115 - NASA Advisory Council; Technology and Innovation Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... SPACE ADMINISTRATION NASA Advisory Council; Technology and Innovation Committee; Meeting. AGENCY... and Space Administration (NASA) announces a meeting of the Technology and Innovation Committee of the... Technology Mission Directorate programs; status of activities within the Office of the Chief...

  17. 76 FR 69292 - NASA Advisory Council Science Committee Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... SPACE ADMINISTRATION NASA Advisory Council Science Committee Planetary Science Subcommittee; Meeting... Aeronautics and Space Administration (NASA) announces that the meeting of the Planetary Science Subcommittee... FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters, Washington...

  18. 77 FR 6825 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY... Exploration and Operations Mission Directorate, National Aeronautics and Space Administration Headquarters... Operations Exploration Technology Development International Space Station and Robotics Status of...

  19. 76 FR 41307 - NASA Advisory Council; Space Operations Committee and Exploration Committee; Joint Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee and Exploration Committee; Joint... and Space Administration announces a joint meeting of the Space Operations Committee and Exploration... CONTACT: Dr. Bette Siegel, Exploration Systems Mission Directorate, National Aeronautics and...

  20. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini team members embrace after the spacecraft was deliberately plunged into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT) The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini team members monitor data from the spacecraft as it makes its final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. Team cohesiveness, team size and team performance in team-based learning teams.

    PubMed

    Thompson, Britta M; Haidet, Paul; Borges, Nicole J; Carchedi, Lisa R; Roman, Brenda J B; Townsend, Mark H; Butler, Agata P; Swanson, David B; Anderson, Michael P; Levine, Ruth E

    2015-04-01

    The purpose of this study was to explore the relationships among variables associated with teams in team-based learning (TBL) settings and team outcomes. We administered the National Board of Medical Examiners (NBME) Psychiatry Subject Test first to individuals and then to teams of Year three students at four medical schools that used TBL in their psychiatry core clerkships. Team cohesion was analysed using the Team Performance Scale (TPS). Bivariate correlation and linear regression analysis were used to analyse the relationships among team-level variables (mean individual TPS scores for each team, mean individual NBME scores of teams, team size, rotation and gender make-up) and team NBME test scores. A hierarchical linear model was used to test the effects of individual TPS and individual NBME test scores within each team, as well as the effects of the team-level variables of team size, team rotation and gender on team NBME test scores. Individual NBME test and TPS scores were nested within teams and treated as subsampling units. Individual NBME test scores and individual TPS scores were positively and statistically significantly (p < 0.01) associated with team NBME test scores, when team rotation, team size and gender make-up were controlled for. Higher team NBME test scores were associated with teams rotating later in the year and larger teams (p < 0.01). Gender make-up was not significantly associated. The results of an NBME Psychiatry Subject Test administered to TBL teams at four medical schools suggest that larger teams on later rotations score higher on a team NBME test. Individual NBME test scores and team cohesion were positively and significantly associated with team NBME test scores. These results suggest the need for additional studies focusing on team outcomes, team cohesion, team size, rotation and other factors as they relate to the effective and efficient performance of TBL teams in health science education. © 2015 John Wiley & Sons Ltd.

  3. Imagery Integration Team

    NASA Technical Reports Server (NTRS)

    Calhoun, Tracy; Melendrez, Dave

    2014-01-01

    The Human Exploration Science Office (KX) provides leadership for NASA's Imagery Integration (Integration 2) Team, an affiliation of experts in the use of engineering-class imagery intended to monitor the performance of launch vehicles and crewed spacecraft in flight. Typical engineering imagery assessments include studying and characterizing the liftoff and ascent debris environments; launch vehicle and propulsion element performance; in-flight activities; and entry, landing, and recovery operations. Integration 2 support has been provided not only for U.S. Government spaceflight (e.g., Space Shuttle, Ares I-X) but also for commercial launch providers, such as Space Exploration Technologies Corporation (SpaceX) and Orbital Sciences Corporation, servicing the International Space Station. The NASA Integration 2 Team is composed of imagery integration specialists from JSC, the Marshall Space Flight Center (MSFC), and the Kennedy Space Center (KSC), who have access to a vast pool of experience and capabilities related to program integration, deployment and management of imagery assets, imagery data management, and photogrammetric analysis. The Integration 2 team is currently providing integration services to commercial demonstration flights, Exploration Flight Test-1 (EFT-1), and the Space Launch System (SLS)-based Exploration Missions (EM)-1 and EM-2. EM-2 will be the first attempt to fly a piloted mission with the Orion spacecraft. The Integration 2 Team provides the customer (both commercial and Government) with access to a wide array of imagery options - ground-based, airborne, seaborne, or vehicle-based - that are available through the Government and commercial vendors. The team guides the customer in assembling the appropriate complement of imagery acquisition assets at the customer's facilities, minimizing costs associated with market research and the risk of purchasing inadequate assets. The NASA Integration 2 capability simplifies the process of securing one

  4. CSS Teams -- Effective Practice of Mission Command

    DTIC Science & Technology

    2013-04-01

    of and adapts to the rapidly changing environment we expect to face in the future.ŗ Regardless of the definition, each provides a useful framework ...Kim Cameron and Robert Quinn developed a framework shown in Figure 1 that helps define and understand culture in military units. Their model is...command effectively, a brief look at research done by Geert Hofstede on power distance reinforces the idea. Flexibility Discretion Control

  5. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, rips up the final contingency plan for the Cassini mission, Friday, Sept. 15, 2017 in mission control at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. NASA's Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Mazanek, Dan; Reeves, David; Naasz, Bo; Cichy, Benjamin

    2015-11-01

    The National Aeronautics and Space Administration (NASA) is developing a robotic mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, and redirect it into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA’s plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. In order to maximize the knowledge return from the mission, NASA is organizing an ARM Investigation Team, which is being preceded by the Formulation Assessment and Support Team. These teams will be comprised of scientists, technologists, and other qualified and interested individuals to help plan the implementation and execution of ARM. An overview of robotic and crewed segments of ARM, including the mission requirements, NEA targets, and mission operations, will be provided along with a discussion of the potential opportunities associated with the mission.

  7. The Asteroid Redirect Mission (ARM)

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2015-01-01

    The National Aeronautics and Space Administration (NASA) is developing a robotic mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, and redirect it into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA's plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. In order to maximize the knowledge return from the mission, NASA is organizing an ARM Investigation Team, which is being preceded by the Formulation Assessment and Support Team. These teams will be comprised of scientists, technologists, and other qualified and interested individuals to help plan the implementation and execution of ARM. An overview of robotic and crewed segments of ARM, including the mission requirements, NEA targets, and mission operations, will be provided along with a discussion of the potential opportunities associated with the mission.

  8. Yea, Team.

    ERIC Educational Resources Information Center

    Rinn, Fauneil J.; Weir, Sybil B.

    1984-01-01

    Four problems in higher education are identified: hardening curriculum, graying faculty, shrinking budget, and disappearing students. Team teaching is suggested as one solution. A conceptual framework for types of team teaching is presented and practical suggestions to those who want to work within that framework are provided. (Author/MLW)

  9. Yea, Team.

    ERIC Educational Resources Information Center

    Rinn, Fauneil J.; Weir, Sybil B.

    1984-01-01

    Four problems in higher education are identified: hardening curriculum, graying faculty, shrinking budget, and disappearing students. Team teaching is suggested as one solution. A conceptual framework for types of team teaching is presented and practical suggestions to those who want to work within that framework are provided. (Author/MLW)

  10. Team Teaching.

    ERIC Educational Resources Information Center

    Fisher, Stephen

    2003-01-01

    Recounts one Montessori teacher's experience team teaching in a secondary Montessori classroom. Illustrates how a conflict over decision making with a co-teacher helped to create better relationships with students in the classroom and better communication on the teaching team. Contends that resolving issues of conflict between teachers is vital…

  11. Team Handbook.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    Experience shows that teamwork produces powerful results. Working in a team environment, however, presents its own set of challenges. This handbook provides U.S. Department of Education managers and employees with guidance to develop high-performing teams. Based on input from agency employees throughout the country, the handbook was designed to…

  12. The Rosetta mission

    NASA Astrophysics Data System (ADS)

    Taylor, Matt; Altobelli, Nicolas; Martin, Patrick; Buratti, Bonnie J.; Choukroun, Mathieu

    2016-10-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to examine its environment insitu and its evolution in the inner solar system. The lander Philae is the first device to land on a comet and perform in-situ science on the surface. Following its launch in March 2004, Rosetta underwent 3 Earth and 1 Mars flybys to achieve the correct trajectory to capture the comet, including flybys of asteroid on 2867 Steins and 21 Lutetia. For June 2011- January 2014 the spacecraft passed through a period of hibernation, due to lack of available power for full payload operation and following successful instrument commissioning, successfully rendezvoused with the comet in August 2014. Following an intense period of mapping and characterisation, a landing site for Philae was selected and on 12 November 2014, Philae was successfully deployed. Rosetta then embarked on the main phase of the mission, observing the comet on its way into and away from perihelion in August 2015. At the time of writing the mission is planned to terminate with the Rosetta orbiter impacting the comet surface on 30 September 2016. This presentation will provide a brief overview of the mission and its science. The first author is honoured to give this talk on behalf of all Rosetta mission science, instrument and operations teams, for it is they who have worked tirelessly to make this mission the success it is.

  13. 78 FR 40144 - Governmentwide Travel Advisory Committee (GTAC); Upcoming Public Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... ADMINISTRATION Governmentwide Travel Advisory Committee (GTAC); Upcoming Public Advisory Committee Meeting AGENCY... Governmentwide Travel Advisory Committee (GTAC) (the Committee), is a Federal Advisory Committee established in..., Designated Federal Officer (DFO), Governmentwide Travel Advisory Committee (GTAC), Office of...

  14. Manned Mars mission and planetary quarantine considerations

    NASA Technical Reports Server (NTRS)

    Sharp, Joseph C.

    1986-01-01

    A short review of the history of planetary quarantine, the issues, and changes in official advisory groups' pronouncements are presented. Then a discussion of the current situation and some ideas on how best to address them are outlined. Both manned and unmanned or automatic missions are discussed and their advantages and impediments outlined.

  15. 77 FR 74099 - Reestablishment of Advisory Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    .... Reestablishing the Advisory Group on Prevention, Health Promotion, and Integrative and Public Health. The Advisory Group on Prevention, Health Promotion, and Integrative and Public Health (Advisory Group), as...

  16. The Learning Organization Implemented in Education through Advisory Committees

    ERIC Educational Resources Information Center

    Davis, Jason Lee; Davis, Harley

    2009-01-01

    Advisory committees have an established history as effective leadership components to assist in planning and evaluating vocational programs and in establishing communication links between institutions and communities. Authorities in the concepts of learning teams, such as Massachusetts Institute of Technology's Peter Senge, Harvard Business…

  17. 66 FR 10498 - Meeting of the Small Community Advisory Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2001-02-15

    ... Government Advisory Committee (LGAC) team to address issues regarding how the two groups work together--intra-committee management issues. The Work Groups of the SCAS will update the full Subcommittee on their progress since the previous meeting and will reconvene to work on their Small Community Funding Inventory,...

  18. The Learning Organization Implemented in Education through Advisory Committees

    ERIC Educational Resources Information Center

    Davis, Jason Lee; Davis, Harley

    2009-01-01

    Advisory committees have an established history as effective leadership components to assist in planning and evaluating vocational programs and in establishing communication links between institutions and communities. Authorities in the concepts of learning teams, such as Massachusetts Institute of Technology's Peter Senge, Harvard Business…

  19. A Taxonomy for Composing Effective Naval Teams. Final Report.

    ERIC Educational Resources Information Center

    Driskell, James E.; And Others

    Since teams perform a majority of mission-critical Navy tasks, a significant applied research problem is how to compose maximally effective task teams. Two problems have traditionally hindered the attainment of this goal: how to compose teams on bases other than ability or technical skill and how to classify team tasks, so that predictions can be…

  20. White Label Space GLXP Mission

    NASA Astrophysics Data System (ADS)

    Barton, A.

    2012-09-01

    This poster presents a lunar surface mission concept and corresponding financing approach developed by the White Label Space team, an official competitor in the Google Lunar X PRIZE. The White Label Space team's origins were in the European Space Agency's ESTEC facility in the Netherlands. Accordingly the team's technical headquarters are located just outside ESTEC in the Space Business Park. The team has active partners in Europe, Japan and Australia. The team's goal is to provide a unique publicity opportunity for global brands to land on the moon and win the prestigious Google Lunar X PRIZE. The poster presents the main steps to achieve this goal, the cost estimates for the mission, describes the benefits to the potential sponsors and supporters, and details the progress achieved to date.

  1. Cassini's Solstice Mission

    NASA Technical Reports Server (NTRS)

    Seal, David; Mitchell, Robert

    2010-01-01

    With the recent approval of NASA's flagship Cassini mission for seven more years of continued operations, dozens more Titan, Enceladus and other icy moon flybys await, as well as many occultations and multiple close passages to Saturn. Seasonal change is the principal scientific theme as Cassini extends its survey of the target-rich system over one full half-season, from just after northern winter solstice at arrival back in 2004, to northern summer solstice at the end of mission in 2017. The new seven-year mission extension requires careful propellant management as well as streamlined operations strategies with smaller spacecraft, sequencing and science teams. Cassini's never-before-envisioned end of mission scenario also includes nearly two dozen high-inclination orbits which pass between the rings and the planet allowing thrilling and unique science opportunities before entry into Saturn's atmosphere.

  2. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    The Cassini Mission Ace console is seen inside the Space Flight Operations Center at NASA's Jet Propulsion Laboratory, Thursday, Sept. 14, 2017 in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, center row, calls out the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Cassini program manager at JPL, Earl Maize, watches monitors in mission control of the Space Flight Operations Center as the Cassini spacecraft begins downlink data through NASA's Deep Space Network, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, is seen in mission control as he monitors the Cassini spacecraft, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    A monitor in the mission control room shows a visualization of Cassini as it makes its final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    A monitor in mission control shows the time remaining until Cassini makes its final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    A monitor shows the status of NASA's Deep Space Network as it receives data from the Cassini spacecraft, Friday, Sept. 15, 2017 in the Charles Elachi Mission Control Center in the Space Flight Operation Center at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Monitors in mission control of the Space Flight Operations Center display the status of NASA's Deep Space Network as the Cassini spacecraft begins the final playback of its data recorder, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Cassini's Solstice Mission

    NASA Technical Reports Server (NTRS)

    Seal, David; Mitchell, Robert

    2010-01-01

    With the recent approval of NASA's flagship Cassini mission for seven more years of continued operations, dozens more Titan, Enceladus and other icy moon flybys await, as well as many occultations and multiple close passages to Saturn. Seasonal change is the principal scientific theme as Cassini extends its survey of the target-rich system over one full half-season, from just after northern winter solstice at arrival back in 2004, to northern summer solstice at the end of mission in 2017. The new seven-year mission extension requires careful propellant management as well as streamlined operations strategies with smaller spacecraft, sequencing and science teams. Cassini's never-before-envisioned end of mission scenario also includes nearly two dozen high-inclination orbits which pass between the rings and the planet allowing thrilling and unique science opportunities before entry into Saturn's atmosphere.

  11. Apollo 15 Mission Report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  12. 32 CFR 202.5 - Creating a mission statement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Creating a mission statement. 202.5 Section 202.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS RESTORATION ADVISORY BOARDS Operating Requirements § 202.5 Creating a mission statement. The...

  13. 32 CFR 202.5 - Creating a mission statement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Creating a mission statement. 202.5 Section 202.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS RESTORATION ADVISORY BOARDS Operating Requirements § 202.5 Creating a mission statement. The...

  14. 32 CFR 202.5 - Creating a mission statement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Creating a mission statement. 202.5 Section 202.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS RESTORATION ADVISORY BOARDS Operating Requirements § 202.5 Creating a mission statement....

  15. 32 CFR 202.5 - Creating a mission statement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Creating a mission statement. 202.5 Section 202.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS RESTORATION ADVISORY BOARDS Operating Requirements § 202.5 Creating a mission statement....

  16. 32 CFR 202.5 - Creating a mission statement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Creating a mission statement. 202.5 Section 202.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS RESTORATION ADVISORY BOARDS Operating Requirements § 202.5 Creating a mission statement....

  17. Advisory Committee Handbook.

    ERIC Educational Resources Information Center

    Black Hawk Coll., Moline, IL.

    An advisory committee is generally comprised of persons outside the education profession who have specialized knowledge in a given area. The committee advises, makes recommendations, and gives service to the college and its students, instructors, and administrators. At Black Hawk College, there are four types of advisory committees: community,…

  18. Scheduling Advisory. Research Brief

    ERIC Educational Resources Information Center

    Muir, Mike

    2005-01-01

    More and more high schools are implementing Advisory programs for a variety of reasons: personalization, academics & study skills, life success skills, self-knowledge, addressing the concern about students feeling "lost" in the high school setting, first line of contact for the parents, and portfolios. But finding a way to schedule advisory can…

  19. Virtuoso teams.

    PubMed

    Fischer, Bill; Boynton, Andy

    2005-01-01

    Managing a traditional team seems pretty straightforward: Gather up whoever's available, give them time and space to do their jobs, and make sure they all play nicely together. But these teams produce results that are often as unremarkable as the teams themselves. When big change and high performance are required, a virtuoso team is far more likely to deliver outstanding and innovative results. Virtuoso teams are fundamentally different from the garden-variety work groups that most organizations form to pursue more modest goals. They comprise the top experts in their particular fields, are specially convened for ambitious projects, work with frenetic rhythm, and emanate a discernible energy. Not surprisingly, however, the superstars who make up these teams are renowned for being elitist, temperamental, egocentric, and difficult to work with. As a result, many managers fear that if they force such people to interact on a high-stakes project, the group just might implode. In this article, Bill Fischer and Andy Boynton put the inner workings of highly successful virtuoso teams on full display through three examples: the creative group behind West Side Story, the team of writers for Sid Caesar's 1950s-era television hit Your Show of Shows, and the high-powered technologists who averted an investor-relations crisis for Norsk Hydro, the Norwegian energy giant. Each of these teams accomplished enormous goals and changed their businesses, their customers, even their industries. And they did so by breaking all the conventional rules of collaboration--from the way they recruited the best members to the way they enforced their unusual processes, and from the high expectations they held to the exceptional results they produced.

  20. Mission engineering

    NASA Technical Reports Server (NTRS)

    Ondrus, Paul; Fatig, Michael

    1993-01-01

    Goddard Space Flight Center's projects are facing new challenges with respect to the cost effective development and operation of spaceflight missions. Challenges, such as cost limits, compression of schedules, rapidly changing technology, and increasing mission complexity are making the mission development process more dynamic. A concept of 'Mission Engineering' as a means of addressing these challenges is proposed. It is an end-to-end, multimission development methodology that seeks to integrate the development processes between the space, ground, science, and operations segments of a mission. It thereby promotes more mission-oriented system solutions, within and across missions.

  1. Signficance of Science-Tactical Liaison Role in Mission Control for the Krash Lunar Analogue Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Abou-Aly, S.; Mader, M. M.; McCullough, E.; Preston, L. J.; Moore, J.; Tornebene, L. L.; Osinski, G. R.; Ilsr Team

    2012-03-01

    Our team carried out an analogue mission at the Mistastin Lake. Mission Control was divided into a tactical team and a science team. The science liaison is responsible for relaying the aims and motivations of the science room to the tactical room.

  2. Precursor missions to interstellar exploration.

    NASA Astrophysics Data System (ADS)

    Wallace, R. A.

    This paper summarizes material developed over a three-month period by a JPL team of mission architects/analysts and advanced technology developers for presentation to NASA Headquarters in the summer of 1998. A preliminary mission roadmap is suggested that leads to the exploration of star systems within 40 light years of our Solar System. The precursor missions include technology demonstrations as well as missions that return significant new knowledge about the space environment reached. Three propulsion technology candidates are selected on the basis of allowing eventual travel to the nearest star taking 10 years. One of the three propulsion technologies has a near term version applicable to early missions (prior to 2010) - the solar sail. Using early sail missions other critical supporting technologies can be developed that will later enable Interstellar travel. Example precursor missions are sail demonstration missions, including a solar storm warning mission demonstrating a simple sail, a solar polar imaging mission using an intermediate sail, and a 200-AU Heliosphere Explorer mission using an advanced solar sail. Mission and technology strategy, science return, and potential mission spin-offs are described.

  3. Mission Operations Control Room (MOCR) activities during STS-6 mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Flight director Jay H. Greene (center) talks with Eugene F. Kranz, director of mission operations, in the mission operations control room (MOCR) of JSC's mission control center. Challenger was beginning to fly over Africa in Day 3 of this mission (30136); Flight director Brock R. (Randy) Stone, at the FD console in the MOCR studies the list of activities scheduled for the Challenger on that day (30137); Granvil A. (Al) Pennington waits for the launch of STS-6 as he begins his duties as ascent team integrated communication system officer (INCO) at the INCO console in the MOCR (30138).

  4. Mission Operations Control Room (MOCR) activities during STS-6 mission

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Flight director Jay H. Greene (center) talks with Eugene F. Kranz, director of mission operations, in the mission operations control room (MOCR) of JSC's mission control center. Challenger was beginning to fly over Africa in Day 3 of this mission (30136); Flight director Borck R. (Randy) Stone, at the FD console in the MOCR studies the list of activities scheduled for the Challenger on that day (30137); Granvil A. (Al) Pennington waits for the launch of STS-6 as he begins his duties as ascent team integrated communication system officer (INCO) at the INCO console in the MOCR (30138).

  5. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  6. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster is seen after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster is seen in mission control as the Cassini spacecraft makes its final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Duane Roth, of Cassini's navigation team, left, speaks with director of NASA's Jet Propulsion Laboratory, Michael Watkins, right, after Cassini's mission was declared over, Friday, Sept. 15, 2017 in mission control at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. A State Guard/State Defense Force Advisory Reserve

    DTIC Science & Technology

    2005-01-01

    necessary material and equipment to carry out all its desired missions or even to conduct the necessary exercises in preparation for those missions...intense activity , completing tasks in a shorter period of time. An additional benefit of establishing a Minutemen-like Advisory Reserve is that...to provide service would permit the SDF Command to actively seek those specialists needed for a variety of tasks for which the expertise or

  10. Virtual Teams.

    ERIC Educational Resources Information Center

    Geber, Beverly

    1995-01-01

    Virtual work teams scattered around the globe are becoming a feature of corporate workplaces. Although most people prefer face-to-face meetings and interactions, reality often requires telecommuting. (JOW)

  11. 76 FR 39859 - Notice of Federal Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... evaluate classified information related to the Committee's mission to advise on technology security... of the Under Secretary of Defense (Acquisition, Technology and Logistics). ACTION: Federal Advisory... related national security matters. 3. Meeting Accessibility: Pursuant to 5 U.S.C. 552b, as amended, and 41...

  12. 78 FR 36793 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... Development Commercial Crew Program International Space Station Mars Program Technologies and Asteroid Mission... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space..., Public Law 92-463, as amended, the National Aeronautics and Space Administration announce a forthcoming...

  13. Aerobraking Teams

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Group and team photos of Langely's Aerobraking teams. These photo's were taken right after the 75 day aerobraking phase. People in the photographs include: Paul V. Tartabini, Mary Kae Lockwood, Richard W. Powell, Eric M. Queen, Bob Tolson, Alicia Dwyer, Jill Hanna, Michelle Munk, Zack Q. Chavis, dick Wilmoth, Naru Takashima, Ruth Amundsen, John Aguirre, Allison Roberts, Loreyna Young, Charles W. Davis, John Dec, Joe Gasbarre, Scott Striepe, Paul Escalera and G. M. Keating.

  14. STS-106 WFCR Planning Flight Team

    NASA Image and Video Library

    2000-09-14

    JSC2000-06247 (September 2000)--- Flight director Bill Reeves, at right foreground, and the fifty-odd flight controllers who support his STS-106 planning team pose for their group portrait in Houston's Mission Control Center.

  15. 76 FR 8715 - Technology Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... COMMISSION Technology Advisory Committee AGENCY: Commodity Futures Trading Commission (``CFTC''). ACTION: Notice of meeting of Technology Advisory Committee. SUMMARY: The Technology Advisory Committee will hold...: Office of the Secretary. Please use the title ``Technology Advisory Committee'' in any written...

  16. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This annual report is based on the activities of the Aerospace Safety Advisory Panel in calendar year 2000. During this year, the construction of the International Space Station (ISS) moved into high gear. The launch of the Russian Service Module was followed by three Space Shuttle construction and logistics flights and the deployment of the Expedition One crew. Continuous habitation of the ISS has begun. To date, both the ISS and Space Shuttle programs have met or exceeded most of their flight objectives. In spite of the intensity of these efforts, it is clear that safety was always placed ahead of cost and schedule. This safety consciousness permitted the Panel to devote more of its efforts to examining the long-term picture. With ISS construction accelerating, demands on the Space Shuttle will increase. While Russian Soyuz and Progress spacecraft will make some flights, the Space Shuttle remains the primary vehicle to sustain the ISS and all other U.S. activities that require humans in space. Development of a next generation, human-rated vehicle has slowed due to a variety of technological problems and the absence of an approach that can accomplish the task significantly better than the Space Shuttle. Moreover, even if a viable design were currently available, the realities of funding and development cycles suggest that it would take many years to bring it to fruition. Thus, it is inescapable that for the foreseeable future the Space Shuttle will be the only human-rated vehicle available to the U.S. space program for support of the ISS and other missions requiring humans. Use of the Space Shuttle will extend well beyond current planning, and is likely to continue for the life of the ISS.

  17. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a 5-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASAs safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are "one deep." The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting "brain drain" could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has little flexibility to begin long lead-time items for upgrades or contingency planning.

  18. Grid Interaction Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  19. Hydrogen Delivery Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  20. Learning about teams by participating in teams.

    PubMed

    Magrane, Diane; Khan, Omar; Pigeon, Yvette; Leadley, Jennifer; Grigsby, R Kevin

    2010-08-01

    As the work of academic health centers becomes increasingly oriented toward teams and collaboration, professional development in effective team skills becomes increasingly important. The authors sought to determine whether a transdisciplinary program for enhancing teamwork was effective in educating individual team members to translate lessons into productive outcomes of their own institutions' teams. Between 2006 and 2008, the authors used the Learning in Teams model of collaborative team development to design and implement two applications of a national professional development program for members of academic organizations' teams. The purpose of the program was to foster individual skill development in collaborative teamwork. Using pre/post surveys to determine changes in team functioning over the course of the program, the authors evaluated participants' perceptions of the effectiveness of their professional development programs' learning teams and of their home institutions' teams. They analyzed narrative reports of participants' institutional teams' progress for elements including team task management, member dynamics, and institutional outcomes. Pre/post self-assessments of team performance and participants' progress reports on their home teams revealed enhancement of team skills, including clarifying team charge, exploring team purpose, and evaluating team process. Program participants improved their team skills and enhanced productivity of their institutions' teams. The Learning in Teams model can support individual team skills development, enhance institutional team performance in academic health centers, and provide a basis for research in team skills development and team process improvement. It can be adapted to various programs to enhance skills in teamwork.

  1. 77 FR 13131 - Advisory Committees; Filing of Closed Meeting Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... Research Allergenic Products Advisory Committee Blood Products Advisory Committee Cellular, Tissue and Gene Therapies Advisory Committee Vaccines and Related Biological Products Advisory Committee Center for Drug...

  2. Creating Teams Increases Extension Educator Productivity

    ERIC Educational Resources Information Center

    Chalker-Scott, Linda; Daniels, Catherine H.; Martini, Nicole

    2016-01-01

    The Garden Team at Washington State University is a transdisciplinary group of faculty, staff, and students with expertise in applied plant and soil sciences and an interest in Extension education. The team's primary mission is to create current, relevant, and peer-reviewed materials as Extension publications for home gardeners. The average yearly…

  3. Creating Teams Increases Extension Educator Productivity

    ERIC Educational Resources Information Center

    Chalker-Scott, Linda; Daniels, Catherine H.; Martini, Nicole

    2016-01-01

    The Garden Team at Washington State University is a transdisciplinary group of faculty, staff, and students with expertise in applied plant and soil sciences and an interest in Extension education. The team's primary mission is to create current, relevant, and peer-reviewed materials as Extension publications for home gardeners. The average yearly…

  4. Report: EPA Has Adequate Controls to Manage Advice From Science and Research Federal Advisory Committees, but Transparency Could Be Improved

    EPA Pesticide Factsheets

    Report #17-P-0124, March 13, 2017. Science plays an integral role in the EPA's mission. The EPA has an adequate system of controls to manage recommendations from its science and research federal advisory committees.

  5. Team Learning and Team Composition in Nursing

    ERIC Educational Resources Information Center

    Timmermans, Olaf; Van Linge, Roland; Van Petegem, Peter; Elseviers, Monique; Denekens, Joke

    2011-01-01

    Purpose: This study aims to explore team learning activities in nursing teams and to test the effect of team composition on team learning to extend conceptually an initial model of team learning and to examine empirically a new model of ambidextrous team learning in nursing. Design/methodology/approach: Quantitative research utilising exploratory…

  6. Team Learning and Team Composition in Nursing

    ERIC Educational Resources Information Center

    Timmermans, Olaf; Van Linge, Roland; Van Petegem, Peter; Elseviers, Monique; Denekens, Joke

    2011-01-01

    Purpose: This study aims to explore team learning activities in nursing teams and to test the effect of team composition on team learning to extend conceptually an initial model of team learning and to examine empirically a new model of ambidextrous team learning in nursing. Design/methodology/approach: Quantitative research utilising exploratory…

  7. Mariner Missions

    NASA Astrophysics Data System (ADS)

    Snyder, C.; Murdin, P.

    2000-11-01

    Mariner was the name given to the earliest set of American space missions to explore the planets and to the spacecraft developed to carry them out. The missions were planned and executed by the JET PROPULSION LABORATORY (JPL) of the California Institute of Technology, which had been designated by the National Aeronautics and Space Administration (NASA) as its lead center for planetary missions....

  8. The Role of Teams in Implementing School Improvement Plans. The School Improvement Leader: Four Perspectives on Change in Schools.

    ERIC Educational Resources Information Center

    Eiseman, Jeffrey W.; And Others

    School improvement teams are assembled to share leadership responsibility with the principal. Differing from advisory councils in that they have more involvement in decision making, and differing from management teams in that they include role groups other than administrators, school improvement teams may be composed of teachers and the principal…

  9. OSMA Research and Technology Strategy Team Summary

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha

    2010-01-01

    This slide presentation reviews the work of the Office of Safety and Mission Assurance (OSMA), and the OSMA Research and Technology Strategy (ORTS) team. There is discussion of the charter of the team, Technology Readiness Levels (TRLs) and how the teams responsibilities are related to these TRLs. In order to improve the safety of all levels of the development through the TRL phases, improved communication, understanding and cooperation is required at all levels, particularly at the mid level technologies development.

  10. 76 FR 22395 - Federal Advisory Committee Act; Open Internet Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... COMMISSION Federal Advisory Committee Act; Open Internet Advisory Committee AGENCY: Federal Communications... ``Open Internet Advisory Committee'' (hereinafter ``the Committee''), is being established. FOR FURTHER... Internet rules (available at...

  11. The Voyager Interstellar Mission

    NASA Technical Reports Server (NTRS)

    Rudd, R. P.; Hall, J. C.; Spradlin, G. L.

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed.

  12. The Voyager Interstellar Mission.

    PubMed

    Rudd, R P; Hall, J C; Spradlin, G L

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed.

  13. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Cassini program manager at JPL, Earl Maize, is seen in mission control of the Space Flight Operations Center as the Cassini team wait for the spacecraft to establish a connection with NASA's Deep Space Network to begin the final playback of its data recorder, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. The Employee Diversity Team Needs You! | Poster

    Cancer.gov

    By Andrea Frydl, Guest Writer The Employee Diversity Team (EDT) is looking for bright, talented, and committed Frederick National Laboratory for Cancer Research (FNL) employees—both government and contractor—who want to share in the team’s mission. EDT’s mission is to create opportunities, sponsor activities, and develop outreach and educational initiatives to:

  15. STS-132 Flight Control Team in WFCR

    NASA Image and Video Library

    2010-05-25

    JSC2010-E-087358 (25 May 2010) --- The members of the STS-132 Entry flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Tony Ceccacci holds the STS-132 mission logo. Photo credit: NASA or National Aeronautics and Space Administration

  16. The Employee Diversity Team Needs You! | Poster

    Cancer.gov

    By Andrea Frydl, Guest Writer The Employee Diversity Team (EDT) is looking for bright, talented, and committed Frederick National Laboratory for Cancer Research (FNL) employees—both government and contractor—who want to share in the team’s mission. EDT’s mission is to create opportunities, sponsor activities, and develop outreach and educational initiatives to:

  17. Environmental Laboratory Advisory Board

    EPA Pesticide Factsheets

    The Environmental Laboratory Advisory Board (ELAB) was established to provide consensus advice, information and recommendations on issues related to EPA measurement programs, and operation of the national accreditation program

  18. Rockford's Remarkable Advisory Council

    ERIC Educational Resources Information Center

    Mitchell, Brad

    1977-01-01

    Describes the cooperative relationship between the Rockford, Illinois, advisory council and the Comprehensive Employment and Training Act (CETA) staff for Winnebago and Boone Counties and credits this cooperation and community input with CETA's success. (MF)

  19. FIFRA Scientific Advisory Panel

    EPA Pesticide Factsheets

    Experts on the Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel provide independent scientific advice to the EPA on a wide range of health and safety issues related to pesticides.

  20. Overview of a Preliminary Destination Mission Concept for a Human Orbital Mission to the Martian Moons

    NASA Astrophysics Data System (ADS)

    Mazanek, D. D.; Abell, P. A.; Antol, J.; Barbee, B. W.; Beaty, D. W.; Bass, D. S.; Castillo-Rogez, J. C.; Coan, D. A.; Colaprete, A.; Daugherty, K. J.; Drake, B. G.; Earle, K. D.; Graham, L. D.; Hembree, R. M.; Hoffman, S. J.; Jefferies, S. A.; Lewis, R.; Lupisella, M. L.; Reeves, D. M.

    2012-06-01

    NASA’s Human Spaceflight Architecture Team has been developing a preliminary mission concept to assess how a human orbital mission to the martian moons might be conducted as a follow-on to an asteroid mission and possibly prior to landing on Mars.

  1. 78 FR 33092 - Federal Advisory Committee Act; Technological Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications..., this notice advises interested persons that the Federal Communications Commission's (FCC)...

  2. 77 FR 70434 - Federal Advisory Committee Act; Technological Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications..., this notice advises interested persons that the Federal Communications Commission's (FCC) Technological...

  3. 78 FR 67362 - Federal Advisory Committee Act; Technological Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications..., this notice advises interested persons that the Federal Communications Commission's (FCC) Technological...

  4. 77 FR 30289 - Federal Advisory Committee Act; Technological Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications..., this notice advises interested persons that the Federal Communications Commission's (FCC) Technological...

  5. 76 FR 58513 - Federal Advisory Committee Act; Technological Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications..., this notice advises interested persons that the Federal Communications Commission's (FCC) Technological...

  6. Automated Pilot Advisory System

    NASA Technical Reports Server (NTRS)

    Parks, J. L., Jr.; Haidt, J. G.

    1981-01-01

    An Automated Pilot Advisory System (APAS) was developed and operationally tested to demonstrate the concept that low cost automated systems can provide air traffic and aviation weather advisory information at high density uncontrolled airports. The system was designed to enhance the see and be seen rule of flight, and pilots who used the system preferred it over the self announcement system presently used at uncontrolled airports.

  7. Spacelab life sciences 2 post mission report

    NASA Technical Reports Server (NTRS)

    Buckey, Jay C.

    1994-01-01

    Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.

  8. Team Building

    ERIC Educational Resources Information Center

    Begg, Roddy

    2005-01-01

    A personal reminiscence of the events surrounding the establishment of Tertiary Education and Management (TEAM), the journal of the European Association for Institutional Research EAIR, the European Higher Education Society--and its development over its first decade, by the founding Editor, at the time of his retirement from the post.

  9. Team building

    SciTech Connect

    Kane, C.

    1993-04-01

    Power plants are particularly complicated projects with abundant opportunities for disputes. Efforts are beginning in the power industry to change the way the industry does business. Key elements of a comprehensive team-building approach include partnering, constructability, use of incentives, and the disputes review board.

  10. [The mission].

    PubMed

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense.

  11. The First Joint Report of the General Thomas P. Stafford Task Force and the Academician Vladimir F. Utkin Advisory Expert Council on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In October 1992, the National Aeronautics and Space Administration (NASA) and the Russian Space Agency (RSA) formally agreed to conduct a fundamentally new program of human cooperation in space. The 'Shuttle-Mir Program' encompassed combined astronaut-cosmonaut activities on the Shuttle, Soyuz Test Module(TM), and Mir station spacecraft. At that time, NASA and RSA limited the project to: the STS-60 mission carrying the first Russian cosmonaut to fly on the U.S. Space Shuttle; the launch of the first U.S. astronaut on the Soyuz vehicle for a multi-month mission as a member of a Mir crew; and the change-out of the U.S.-Russian Mir crews with a Russian crew during a Shuttle rendezvous and docking mission with the Mir Station. The objectives of the Phase 1 Program are to provide the basis for the resolution of engineering and technical problems related to the implementation of the ISS and future U.S.-Russian cooperation in space. This, combined with test data generated during the course of the Shuttle flights to the Mir station and extended joint activities between U.S. astronauts and Russian cosmonauts aboard Mir, is expected to reduce the technical risks associated with the construction and operation of the ISS. Phase 1 will further enhance the ISS by combining space operations and joint space technology demonstrations. Phase 1 also provides early opportunities for extended U.S. scientific and research activities, prior to utilization of the ISS.

  12. 78 FR 69991 - Advisory Committee; Veterinary Medicine Advisory Committee; Termination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 14 Advisory Committee; Veterinary Medicine... Food and Drug Administration (FDA) is announcing the termination of the Veterinary Medicine Advisory Committee. This document removes the Veterinary Advisory Committee from the Agency's list of...

  13. 75 FR 30002 - Federal Advisory Committee; Threat Reduction Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Office of the Secretary Federal Advisory Committee; Threat Reduction Advisory Committee AGENCY... the charter for the Threat Reduction Advisory Committee (hereafter referred to as the Committee). FOR... Acquisition, Technology and Logistics and the Director of the Defense Threat Reduction Agency on the following...

  14. Team-based Service Delivery for Students with Disabilities: Practice Options and Guidelines for Success.

    ERIC Educational Resources Information Center

    Ogletree, Billy T.; Bull, Jeannette; Drew, Ruby; Lunnen, Karen Y.

    2001-01-01

    This article reviews the assessment procedures, treatment procedures, and the advantages and disadvantages of three professional-family team models: multidisciplinary teams, interdisciplinary teams, and transdisciplinary teams. Guidelines for optimal team participation are provided. The importance of mission statements, communication, trust,…

  15. Aerospace Safety Advisory Panel report to the NASA acting administrator

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The level of activity of the Aerospace Safety Advisory Panel was increased smewhat during 1985 in concert with the increased mission rate of the National Space Transportation System, the evolutionary changes in management and operation of that program, and the preparation of the Vandenberg Launch Site; the implementation of the Program Definition Phase of the Space Station Program; and the actual flight testing of the X-29 research aircraft. Impending payload STS missions and NASA's overall aircraft operations are reviewed. The safety aspects of the LEASAT salvage mission were assessed. The findings and recommendation of the committee are summerized.

  16. STS-61 mission director's post-mission report

    NASA Technical Reports Server (NTRS)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  17. Ethical considerations in targeted pediatric neurosurgery missions

    PubMed Central

    Hughes, SA; Jandial, R

    2013-01-01

    Within the context of global health development approaches, surgical missions to provide care for underserved populations remain the least studied interventions with regard to their methodology. Because of the unique logistical needs of delivering operative care surgical missions are often described solely in terms of cases performed, with a paucity of discourse on medical ethics. Within surgery, subspecialties that serve patients on a non-elective basis should, it could be argued, create mission strategies that involve a didactic approach and the propagation of sustainable surgical care. The ethical considerations have yet to be described for pediatric neurosurgical outreach missions. We present here the perspectives of neurosurgeons who have participated in surgical outreach missions in Central America, South America, Eastern Europe, and Sub-Saharan Africa from the vantage point of both the visiting mission team and the host team that accommodates the mission efforts. PMID:23001919

  18. Explorations Precursor Robotic Missions (xPRM)

    NASA Image and Video Library

    Jay Jenkins delivers a presentation from the Exploration Precursor Robotic Missions (xPRM) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose...

  19. NASA's Kepler Mission Announces Latest Discoveries

    NASA Image and Video Library

    Scientists from NASA's Kepler mission have been busy recently. The team has announced the discovery of Kepler-22b, its first confirmed planet in the habitable zone of its solar system, 600 light ye...

  20. Mission description

    NASA Technical Reports Server (NTRS)

    Baldwin, R. R.

    1972-01-01

    The Apollo 15 manned lunar-landing mission is discussed. As compared with previous Apollo manned lunar-landing missions, the mission 15 is characterized by increased hardware capability, a larger scientific payload, and a battery-powered lunar roving vehicle (Rover). Benefits resulting from these additions to Apollo 15 were a mission duration of 12-1/3 days, a lunar stay time of nearly 67 hr, a lunar-surface traverse distance of 27.9 km traveled at an average speed of 9.6 km/hr, and a scientific instrument module (SIM) containing equipment for orbital experiments and photographic tasks not performed on previous missions. The primary scientific objectives of the mission were to perform selenological inspection, survey, and sampling of materials and surface features in a preselected area of the Hadley-Apennine region; to emplace and activate surface experiments; and to conduct inflight experiments and photographic tasks from lunar orbit.

  1. NICER Mission

    NASA Image and Video Library

    2017-09-28

    This video previews the Neutron star Interior Composition Explorer (NICER). NICER is an Astrophysics Mission of Opportunity within NASA’s Explorer program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supports the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation. NICER is an upcoming International Space Station payload scheduled to launch in June 2017. Learn more about the mission at nasa.gov/nicer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. 76 FR 18757 - Monthly Public Meetings of the Local Government Advisory Committee's Small Community Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Monthly Public Meetings of the Local Government Advisory Committee's Small Community Advisory... Advisory Committee Act, the U.S. Environmental Protection Agency's Local Government Advisory...

  3. 76 FR 29752 - The President's Management Advisory Board (PMAB); Notification of Upcoming Public Advisory Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... Technology Management in the Federal Government, and Senior Executive Service (SES) Development and... ADMINISTRATION The President's Management Advisory Board (PMAB); Notification of Upcoming Public Advisory Meeting.... SUMMARY: The President's Management Advisory Board, a Federal Advisory Committee established in...

  4. 67 FR 12587 - NASA Advisory Council, Space Science Advisory Committee, Structure and Evolution of the Universe...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2002-03-19

    ... SPACE ADMINISTRATION NASA Advisory Council, Space Science Advisory Committee, Structure and Evolution of... Advisory Council, Space Science Advisory Committee, Structure and Evolution of the Universe Subcommittee... Science Enterprise --Structure and Evolution of the Universe Overview: --Budget, Ongoing Programs, Future...

  5. Advisory Technical Skills Committee Manual

    ERIC Educational Resources Information Center

    Barbee, Jim R.

    2005-01-01

    The use of advisory committees is well established in the public school system. The purpose of advisory committees is to provide leadership, guidance and technical assistance to maintain, improve and develop quality career and technical education programs. This manual is written for those planning to form new advisory technical skills committees,…

  6. Cassini Mission

    SciTech Connect

    Mitchell, Robert

    2005-08-10

    The Cassini/Huygens mission is a joint NASA/European Space Agency/Italian Space Agency project which has a spacecraft currently in orbit about Saturn, and has successfully sent an atmospheric probe through the atmosphere of Saturn's largest moon Titan and down to its previously hidden surface. This presentation will describe the overall mission, how it got a rather massive spacecraft to Saturn, and will cover some of the scientific results of the mission to date.

  7. UAV team behaviors in operational scenarios

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.; Garbarino, Joseph E.

    2004-09-01

    The Behavior Enhanced Heterogeneous Autonomous Vehicle Environment (BEHAVE) is a distributed system for the command and control of multiple Unmanned Vehicle Systems (UVS) with various sensor payloads (EO, infrared and radar) and mission roles (combat, reconnaissance, penetrator, relay) working in cooperation to fulfill mission goals in light of encountered threats, vehicle damage, and mission redirects. In its current form, BEHAVE provides UVS dynamic route planning/replanning, autonomous vehicle control, platform self-awareness, autonomous threat response, and muti-vehicle cooperation. This paper focuses on BEHAVE's heterogeneous autonomous UVS team cooperation achieved through the transformation of UVS operational doctrine into UVS team behaviors. This level of tactics provides the initial high-level cooperative control guidance and plans for multiple UVSs operating to achieve specific mission goal. BEHAVE's heterogeneous UVS behaviors include inter-vehicle cueing capability on coupled missions based on new threats, targets, and foreshadowing changes in environments, optimizing individual UVS mission roles, enhanced reassignment of mission goals based upon resources consumed and threats encountered, and multi UVS team threat behavior. Threat behaviors include logic incorporated for team scenarios such as drawing out or confusing threats.

  8. Rosetta Mission Status update

    NASA Astrophysics Data System (ADS)

    Taylor, Matthew

    2015-04-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to ex-amine its environment insitu and its evolution in the inner solar system. The lander Philae is the first device to land on a comet and perform in-situ science on the surface. Nearly 10 years after launch in 2004, on 20th January 2014 at 10:00 UTC the spacecraft woke up from hibernation. Following successful instrument commissioning, Rosetta successfully rendezvoused with the comet. Following an intense period of map-ping and characterisation, a landing site for Philae was selected and on 12 November 2014, Philae was suc-cessfully deployed. This presentation will provide a brief overview of the mission up to date and where we stand in main science phase, which began with Philae's separation. It will also provide a look forward. IT is given on behalf of ALL Rosetta mission science, in-strument and operations teams.

  9. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    A computer screen in mission control displays mission elapsed time for Cassini minutes after the spacecraft plunged into Saturn's atmosphere, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Autonomous mission operations

    NASA Astrophysics Data System (ADS)

    Frank, J.; Spirkovska, L.; McCann, R.; Wang, Lui; Pohlkamp, K.; Morin, L.

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time delay on today's mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crewmembers and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  11. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize packs up his workspace in mission control after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen, left, Cassini project scientist at JPL, Linda Spilker, second from left, director of NASA's Jet Propulsion Laboratory, Michael Watkins, center, director of NASA's Planetary Science Division, Jim Green, second from right, and director of the interplanetary network directorate at NASA's Jet Propulsion Laboratory, Keyur Patel, left, are seen in mission control, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. Korean Military Advisory Group: Insights for Future Security Force Assistance Efforts

    DTIC Science & Technology

    2011-06-10

    Constabulary in Seoul and told him to focus on expanding the advisory 18 mission.53 Peter Clemens writes that Hausman, ―dominated the small advisory...blogs, and doctrine writing such as the counterinsurgency field manual. Significantly, advisors to the Iraqi Army, unlike in Korea, experienced near real...Advisor, 30. 72Ibid., 25-26. 73Michelle Zbylut, Kimberly Metcalf, Brandon McGowen, Michael Beemer, Christopher Vowels , and Jason Brunner, Raw Comments

  14. DOE's Computer Incident Advisory Capability (CIAC)

    SciTech Connect

    Schultz, E.

    1990-09-01

    Computer security is essential in maintaining quality in the computing environment. Computer security incidents, however, are becoming more sophisticated. The DOE Computer Incident Advisory Capability (CIAC) team was formed primarily to assist DOE sites in responding to computer security incidents. Among CIAC's other responsibilities are gathering and distributing information to DOE sites, providing training workshops, coordinating with other agencies, response teams, and vendors, creating guidelines for incident handling, and developing software tools. CIAC has already provided considerable assistance to DOE sites faced with virus infections and worm and hacker attacks, has issued over 40 information bulletins, and has developed and presented a workshop on incident handling. CIAC's experience in helping sites has produced several lessons learned, including the need to follow effective procedures to avoid virus infections in small systems and the need for sound password management and system administration in networked systems. CIAC's activity and scope will expand in the future. 4 refs.

  15. Kepler Mission: Current Status

    NASA Astrophysics Data System (ADS)

    Borucki, William J.; Koch, D. G.; Lissauer, J. J.; Bryson, S.; Natalie, B.; Caldwell, D. A.; DeVore, E.; Jenkins, J. M.; Christensen-Dalsgaard, J.; Cochran, W. D.; Dunham, E. W.; Gautier, T. N.; Geary, J. C.; Latham, D. W.; Sasselov, D.; Gilliland, R. L.; Gould, A.; Howell, S. B.; Monet, D. G.

    2007-12-01

    Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a high precision photometer with Schmidt-type optics and a focal plane containing 95 million pixels to monitor over 100,000 stars to search for patterns of transits generated by planets as small as Mars. The recent reduction in the mission duration is discussed with regard to the impact on the expected science product and null statistics. Both terrestrial and giant planets discoveries will be followed up with ground-based Doppler-velocity observations to determine mass and density. The first meeting of Kepler Asteroseismic Science Consortium was held in Paris to organize an international team to analyze the Kepler data to determine the characteristics of the brighter target stars including their size and age. Stellar size determinations accurate to a few percent are expected. These will allow very accurate planet sizes to be determined from the depth of the transit signals. NASA HQ received thirty six proposals for the Participating Scientist Program and chose several new members to join the Science Team. Both the 0.95 m Schmidt corrector and 1.4 m aperture primary mirror have been completed and delivered for integration into the photometer. The focal plane with forty-two science CCD detectors and their processing electronics has been assembled and tested. The spacecraft assembly has begun with the mounting of the reaction control system, reaction wheels, attitude determination & control system, and power systems. Both the photometer and spacecraft are nearing final assembly with all subsystems having passed their environmental and performance testing. The photometer to spacecraft integration will begin this spring. The Mission is on schedule for a launch in February 2009. The Kepler Mission is funded by the NASA Astrophysics Division, Science Mission Directorate.

  16. Low Cost Missions Operations on NASA Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.

    2014-12-01

    The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.

  17. IMP mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.

  18. Rosetta mission operations for landing

    NASA Astrophysics Data System (ADS)

    Accomazzo, Andrea; Lodiot, Sylvain; Companys, Vicente

    2016-08-01

    The International Rosetta Mission of the European Space Agency (ESA) was launched on 2nd March 2004 on its 10 year journey to comet Churyumov-Gerasimenko and has reached it early August 2014. The main mission objectives were to perform close observations of the comet nucleus throughout its orbit around the Sun and deliver the lander Philae to its surface. This paper describers the activities at mission operations level that allowed the landing of Philae. The landing preparation phase was mainly characterised by the definition of the landing selection process, to which several parties contributed, and by the definition of the strategy for comet characterisation, the orbital strategy for lander delivery, and the definition and validation of the operations timeline. The definition of the landing site selection process involved almost all components of the mission team; Rosetta has been the first, and so far only mission, that could not rely on data collected by previous missions for the landing site selection. This forced the teams to include an intensive observation campaign as a mandatory part of the process; several science teams actively contributed to this campaign thus making results from science observations part of the mandatory operational products. The time allocated to the comet characterisation phase was in the order of a few weeks and all the processes, tools, and interfaces required an extensive planning an validation. Being the descent of Philae purely ballistic, the main driver for the orbital strategy was the capability to accurately control the position and velocity of Rosetta at Philae's separation. The resulting operations timeline had to merge this need of frequent orbit determination and control with the complexity of the ground segment and the inherent risk of problems when doing critical activities in short times. This paper describes the contribution of the Mission Control Centre (MOC) at the European Space Operations Centre (ESOC) to this

  19. Lunar Prospector Extended Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  20. Lunar Prospector Extended Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning, and

  1. Future Venus Exploration: Mission Venera-D

    NASA Astrophysics Data System (ADS)

    Zasova, L. V.; Ignatiev, N. I.; Gerasimov, M. V.

    2014-05-01

    Venera-D is a strategic mission to explore Venus, included in the Russian Federal Space Program 2016-2025. Venera-D mission is in the phase A now. The Venera-D Roscosmos/IKI - NASA Joint Science Definition Team has been formed in February 2014.

  2. Mars integrated transportation system multistage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.

  3. Team and Collective Performance Measurement

    DTIC Science & Technology

    2007-07-01

    missions with specific as well as general questions. Relationships between the indices have been analyzed by means of structural equation modeling [21... equation modeling with the SIMPLIS command language’. Hillsdale: Lawrence Erlbaum Associates. 1993. [17] Berggren, P. (2000). ‘Situational awareness...2004. TEAM AND COLLECTIVE PERFORMANCE MEASUREMENT RTO-TR-HFM-121-Part-II 7 - 15 [16] Jöreskog, K.G. and Sörbom, D. ‘LISREL8: Structural

  4. Mars curiosity mission

    NASA Image and Video Library

    2012-08-04

    NASA welcomed hundreds of children and accompanying adults to its INFINITY visitor center on Aug. 4, offering Mars-related activities that focused attention on the space agency's Curiosity mission to the Red Planet. Among other things, students from Gulfport High School, who field a team each year in the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, offered young visitors a firsthand look at how robots work Hundreds of persons visited the INFINITY facility during the day, including media representatives from surrounding communities.

  5. IMAGE Mission Science

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Fok, M.-C.; Fuselier, S.; Gladstone, G. R.; Green, J. L.; Fung, S. F.; Perez, J.; Reiff, P.; Roelof, E. C.; Wilson, G.

    1998-01-01

    Simultaneous, global measurement of major magnetospheric plasma systems will be performed for the first time with the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Mission. The ring current, plasmasphere, and auroral systems will be imaged using energetic neutral and ultraviolet cameras. Quantitative remote measurement of the magnetosheath, plasmaspheric, and magnetospheric densities will be obtained through radio sounding by the Radio Plasma Imager. The IMAGE Mission will open a new era in global magnetospheric physics, while bringing with it new challenges in data analysis. An overview of the IMAGE Theory and Modeling team efforts will be presented, including the state of development of Internet tools that will be available to the science community for access and analysis of IMAGE observations.

  6. Adaptive heterogeneous multi-robot teams

    SciTech Connect

    Parker, L.E.

    1998-11-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail the experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  7. Cammp Team

    NASA Technical Reports Server (NTRS)

    Evertt, Shonn F.; Collins, Michael; Hahn, William

    2008-01-01

    The International Space Station (ISS) Configuration Analysis Modeling and Mass Properties (CAMMP) Team is presenting a demo of certain CAMMP capabilities at a Booz Allen Hamilton conference in San Antonio. The team will be showing pictures of low fidelity, simplified ISS models, but no dimensions or technical data. The presentation will include a brief description of the contract and task, description and picture of the Topology, description of Generic Ground Rules and Constraints (GGR&C), description of Stage Analysis with constraints applied, and wrap up with description of other tasks such as Special Studies, Cable Routing, etc. The models include conceptual Crew Exploration Vehicle (CEV) and Lunar Lander images and animations created for promotional purposes, which are based entirely on public domain conceptual images from public NASA web sites and publicly available magazine articles and are not based on any actual designs, measurements, or 3D models. Conceptual Mars rover and lander are completely conceptual and are not based on any NASA designs or data. The demonstration includes High Fidelity Computer Aided Design (CAD) models of ISS provided by the ISS 3D CAD Team which will be used in a visual display to demonstrate the capabilities of the Teamcenter Visualization software. The demonstration will include 3D views of the CAD models including random measurements that will be taken to demonstrate the measurement tool. A 3D PDF file will be demonstrated of the Blue Book fidelity assembly complete model with no vehicles attached. The 3D zoom and rotation will be displayed as well as random measurements from the measurement tool. The External Configuration Analysis and Tracking Tool (ExCATT) Microsoft Access Database will be demonstrated to show its capabilities to organize and track hardware on ISS. The data included will be part numbers, serial numbers, historical, current, and future locations, of external hardware components on station. It includes dates of

  8. 78 FR 65689 - Technical Mapping Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... SECURITY Federal Emergency Management Agency Technical Mapping Advisory Council AGENCY: Federal Emergency... Emergency Management Agency's Technical Mapping Advisory Council. SUMMARY: The Federal Emergency Management Agency (FEMA) is requesting qualified individuals interested in serving on the Technical Mapping Advisory...

  9. 75 FR 42080 - Agricultural Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... COMMISSION Agricultural Advisory Committee Meeting AGENCY: Commodity Futures Trading Commission (``CFTC''). ACTION: Notice of Meeting of Agricultural Advisory Committee. SUMMARY: The CFTC's Agricultural Advisory.... Written statements and requests to make oral statements should be sent to the attention of Agricultural...

  10. 77 FR 51512 - Allegheny Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Forest Service Allegheny Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Allegheny Resource Advisory Committee will meet in Warren, Pennsylvania. The... conducted: Allegheny Resource Advisory Committee members will solicit and consider project proposals...

  11. 76 FR 12317 - Shoshone Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Forest Service Shoshone Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Shoshone Resource Advisory Committee (Committee) will meet in Thermopolis, Wyoming... Broadway, Thermopolis, Wyoming. FOR FURTHER INFORMATION CONTACT: Olga Troxel, Resource Advisory...

  12. 76 FR 22672 - Shoshone Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Forest Service Shoshone Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Shoshone Resource Advisory Committee (Committee) will meet in Thermopolis, Wyoming... CONTACT: Olga Troxel, Resource Advisory Committee Coordinator, Shoshone National Forest...

  13. 76 FR 2081 - Ketchikan Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Ketchikan Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Ketchikan Resource Advisory Committee will meet in Ketchikan..., 3031 Tongass Avenue, Ketchikan, Alaska. Send written comments to Ketchikan Resource Advisory...

  14. 76 FR 41196 - Shoshone Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Forest Service Shoshone Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Shoshone Resource Advisory Committee (Committee) will meet in Thermopolis, Wyoming...: Olga Troxel, Resource Advisory Committee Coordinator, Shoshone National Forest Supervisor's...

  15. 76 FR 3081 - Shoshone Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Forest Service Shoshone Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Shoshone Resource Advisory Committee (Committee) will hold a conference call on.... FOR FURTHER INFORMATION CONTACT: Olga Troxel, Resource Advisory Committee Coordinator,...

  16. 77 FR 43064 - Meeting; Technology Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... COMMISSION Meeting; Technology Advisory Committee AGENCY: Commodity Futures Trading Commission (CFTC). ACTION: Notice of emergency meeting of technology advisory committee. SUMMARY: The CFTC announces that on Thursday, July 26, 2012, the CFTC's Technology Advisory Committee (``TAC'') will hold an emergency...

  17. 75 FR 58367 - Technology Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... COMMISSION Technology Advisory Committee Meeting AGENCY: Commodity Futures Trading Commission (``CFTC''). ACTION: Notice of meeting of Technology Advisory Committee. SUMMARY: The Technology Advisory Committee...., Washington, DC 20581, attention: Office of the Secretary. Please use the title ``Technology...

  18. 76 FR 776 - Technology Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... COMMISSION Technology Advisory Committee AGENCY: Commodity Futures Trading Commission (``CFTC''). ACTION: Notice of meeting of Technology Advisory Committee. SUMMARY: The Technology Advisory Committee will hold...., Washington, DC 20581, attention: Office of the Secretary. Please use the title ``Technology...

  19. 77 FR 47360 - Shoshone Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... Forest Service Shoshone Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Shoshone Resource Advisory Committee (Committee) will hold a conference call on.... FOR FURTHER INFORMATION CONTACT: Olga Troxel, Resource Advisory Committee Coordinator, Shoshone...

  20. Team Tune-Up: Examining Team Transcripts

    ERIC Educational Resources Information Center

    Journal of Staff Development, 2010

    2010-01-01

    This article presents a worksheet that can be used to examine documentation of team meetings in light of goals the team has established. Materials for this worksheet include copies of team transcripts, yellow and pink highlighters, and pencils. Directions for examining team transcripts are presented.

  1. Team Tune-Up: Examining Team Transcripts

    ERIC Educational Resources Information Center

    Journal of Staff Development, 2010

    2010-01-01

    This article presents a worksheet that can be used to examine documentation of team meetings in light of goals the team has established. Materials for this worksheet include copies of team transcripts, yellow and pink highlighters, and pencils. Directions for examining team transcripts are presented.

  2. Inspiration is "Mission Critical"

    NASA Astrophysics Data System (ADS)

    McCarthy, D. W.; DeVore, E.; Lebofsky, L.

    2014-07-01

    In spring 2013, the President's budget proposal restructured the nation's approach to STEM education, eliminating ˜$50M of NASA Science Mission Directorate (SMD) funding with the intent of transferring it to the Dept. of Education, National Science Foundation, and Smithsonian Institution. As a result, Education and Public Outreach (EPO) would no longer be a NASA mission requirement and funds that had already been competed, awarded, and productively utilized were lost. Since 1994, partnerships of scientists, engineers, and education specialists were required to create innovative approaches to EPO, providing a direct source of inspiration for today's youth that may now be lost. Although seldom discussed or evaluated, "inspiration" is the beginning of lasting education. For decades, NASA's crewed and robotic missions have motivated students of all ages and have demonstrated a high degree of leverage in society. Through personal experiences we discuss (1) the importance of inspiration in education, (2) how NASA plays a vital role in STEM education, (3) examples of high-leverage educational materials showing why NASA should continue embedding EPO specialists within mission teams, and (4) how we can document the role of inspiration. We believe that personal histories are an important means of assessing the success of EPO. We hope this discussion will lead other people to document similar stories of educational success and perhaps to undertake longitudinal studies of the impact of inspiration.

  3. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  4. Geospace Missions

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Geospace Missions - Understanding and being able to predict the behavior of the Earth's near space environment, called Geospace, is important for several reasons. These include the fact that most of the space-based commercial, military, and space research assets are exposed to this environment and that investigating fundamental plasma processes at work through out the solar system can most readily be accomplished in Geospace, the only place we can access the processes. NASA missions that are directed toward understanding, characterizing, and predicting the Geospace environment are described in this presentation. Emphasis is placed on those missions that investigate those phenomena that most affect life and society. The significance of investigating ionospheric irregularities, the radiation belt dynamics with the LWS Geospace Mission will be discussed.

  5. The Venus Express Mission

    NASA Astrophysics Data System (ADS)

    Svedhem, H.; Titov, D.; McCoy, D.; Rodriguez-Canabal, J.; Fabrega, J.

    The Venus Express Mission H. Svedhem (1), D. Titov (2), D. McCoy (1), J. Rodríguez-Canabal (3) and J. Fabrega (4) (1) ESA/ESTEC, Noordwijk, The Netherlands (Hakan.Svedhem@esa.int), (2) MPS, Katlenburg-Lindau, Germany, (3) ESA/ESOC, Darmstadt, Germany, (4) ASTRIUM-SAS, Toulouse, France The Venus Express mission was launched from Baikonur, Kazakhstan, on 9 November 2005. After a 5 months cruise phase, the spacecraft was inserted in a Venus orbit 11 April 2006. After another two months of testing and commissioning activities the nominal operational phase started 4 June. The mission main objective is to study the atmosphere and the plasma environment and some properties of the surface of Venus, both on a global level and on a detailed regional level. The nominal duration of the mission is two Venus sidereal days (486 earth days) and there is a possibility for extending the mission for a period of at least another two Venus days. The orbit is a highly elliptical polar orbit. It is optimised for remote observations at a global scale from high altitude, and for detailed studies of the northern hemisphere from low altitude, both at varying solar aspect angles. It will also allow for in-situ plasma measurements covering a large range of distances from the planet. The payload is selected for studies of the physics and chemistry of the atmosphere and the clouds and the related circulation at accuracy and a coverage presently not achieved. The interaction of the upper atmosphere with the solar wind will be investigated by dedicated instruments. With a time from the mission approval to the launch of just above three years this mission by far is the fastest scientific mission undertaken by ESA until now. This has been possible due to the re-build, with only minor modifications, of the Mars Express spacecraft, which in turn re-uses many of the Rosetta subsystems, and by using largely the same experienced teams from ESA and the industry. The scientific instruments are, in most

  6. A Placement Advisory Test

    ERIC Educational Resources Information Center

    Hughes, Chris

    2010-01-01

    The primary method of placement at Portland CC (PCC) is the Compass Placement test. For the most part, students are placed correctly, but there are cases when students feel that they have been placed too low. In such cases we use our newly created Placement Advisory Test (PAT) to help us place them appropriately. (Contains 2 figures.)

  7. A Placement Advisory Test

    ERIC Educational Resources Information Center

    Hughes, Chris

    2010-01-01

    The primary method of placement at Portland CC (PCC) is the Compass Placement test. For the most part, students are placed correctly, but there are cases when students feel that they have been placed too low. In such cases we use our newly created Placement Advisory Test (PAT) to help us place them appropriately. (Contains 2 figures.)

  8. The UKCIS Advisory Service.

    ERIC Educational Resources Information Center

    Bingham, Archie

    1979-01-01

    Describes the free advisory service available to both users and potential users of chemical and biological databases in the United Kingdom and Ireland. Three specific areas are discussed in which queries about Chemical Abstracts Service (CAS) Registry Numbers have been received: isomers, replacing registry numbers, and mixed compounds. (JD)

  9. Citizen Advisory Committees.

    ERIC Educational Resources Information Center

    Miller, Leann R.

    This guide, describing community involvement through citizen advisory committees, is a summary of the literature on such committees. Its main concern is district committees created by school boards. Citations in the bibliography contain all points of view on committees and present many alternatives on most of the topics covered in the guide.…

  10. The UKCIS Advisory Service.

    ERIC Educational Resources Information Center

    Bingham, Archie

    1979-01-01

    Describes the free advisory service available to both users and potential users of chemical and biological databases in the United Kingdom and Ireland. Three specific areas are discussed in which queries about Chemical Abstracts Service (CAS) Registry Numbers have been received: isomers, replacing registry numbers, and mixed compounds. (JD)

  11. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    NASA Technical Reports Server (NTRS)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; hide

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  12. Desert Research and Technology Studies (DRATS) 2010 science operations: Operational approaches and lessons learned for managing science during human planetary surface missions

    NASA Astrophysics Data System (ADS)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; Garry, Brent; Graff, Trevor; Gruener, John; Heldmann, Jennifer; Hodges, Kip; Hörz, Friedrich; Hurtado, Jose; Hynek, Brian; Isaacson, Peter; Juranek, Catherine; Klaus, Kurt; Kring, David; Lanza, Nina; Lederer, Susan; Lofgren, Gary; Marinova, Margarita; May, Lisa; Meyer, Jonathan; Ming, Doug; Monteleone, Brian; Morisset, Caroline; Noble, Sarah; Rampe, Elizabeth; Rice, James; Schutt, John; Skinner, James; Tewksbury-Christle, Carolyn M.; Tewksbury, Barbara J.; Vaughan, Alicia; Yingst, Aileen; Young, Kelsey

    2013-10-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space. The results from the RATS tests allow selection of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  13. 75 FR 28542 - Superior Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... orient the new Superior Resource Advisory Committee members on their roles and responsibilities. DATES... of the roles and responsibilities of the Superior Resource Advisory Committee members; Election of...

  14. National and Governmental Advisory Committees: Meetings

    EPA Pesticide Factsheets

    Meetings and Teleconference Information for the National Advisory Committee and Governmental Advisory Committee to the United States Representative to the North American Commission for Environmental Cooperation,

  15. 75 FR 26918 - Siuslaw Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Siuslaw Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Siuslaw Resource Advisory Committee will meet in Corvallis,...

  16. 75 FR 39910 - Dixie Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Dixie Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meetings. SUMMARY: The Dixie Resource Advisory Committee will meet in Cedar City,...

  17. 78 FR 22842 - Nicolet Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Nicolet Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Nicolet Resource Advisory Committee will meet in Crandon, WI....

  18. 76 FR 45504 - Virginia Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Virginia Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Virginia Resource Advisory Committee will meet in Roanoke...

  19. Liquid Effluents Program mission analysis

    SciTech Connect

    Lowe, S.S.

    1994-09-27

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ``capstone`` team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan.

  20. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has

  1. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Principle investigator for the Ion and Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, points to the location of the INMS during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize, center, answers questions from members of the media during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker, right, looks on as Cassini program manager at JPL, Earl Maize speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize, speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Preston Dyches, media relations specialist at NASA's Jet Propulsion Laboratory, during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    director of NASA's Planetary Science Division, Jim Green answers questions a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Director of NASA's Planetary Science Division, Jim Green, is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waites, peaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker answers questions from members of the media during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini-Huygens spacecraft is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini-Huygens spacecraft is seen in the von Kármán Auditorium during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  15. Day 4 activities in the MOCR during STS-5 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Day 4 activities in the mission operations control room (MOCR) during STS-5 mission. Scott Thomas, a freshman at Utah State University, watches the television monitor in front of him in the mission operations control room (MOCR) at JSC's mission control center. Astronaut Joseph P. Allen, STS-5 mission specialist, conducts an experiment - a study of convection in zero gravity - onboard the Columbia. The experiment is part of the student experiments program and was conceived by Thomas. Also at the payloads console with Thomas is Robert M. Kelso, of the Flight Operations Directorate. The stuffed mascot for the payloads team, a kangaroo, sits atop the payloads team console.

  16. Day 4 activities in the MOCR during STS-5 mission

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Day 4 activities in the mission operations control room (MOCR) during STS-5 mission. Scott Thomas, a freshman at Utah State University, watches the television monitor in front of him in the mission operations control room (MOCR) at JSC's mission control center. Astronaut Joseph P. Allen, STS-5 mission specialist, conducts an experiment - a study of convection in zero gravity - onboard the Columbia. The experiment is part of the student experiments program and was conceived by Thomas. Also at the payloads console with Thomas is Robert M. Kelso, of the Flight Operations Directorate. The stuffed mascot for the payloads team, a kangaroo, sits atop the payloads team console.

  17. A mission to Mercury and a mission to the moons of Mars

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Two Advanced Design Projects were completed this academic year at Penn State - a mission to the planet Mercury and a mission to the moons of Mars (Phobos and Deimos). At the beginning of the fall semester the students were organized into six groups and given their choice of missions. Once a mission was chosen, the students developed conceptual designs. These designs were then evaluated at the end of the fall semester and combined into two separate mission scenarios. To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form two mission teams. An integration team consisting of two members from each group was formed for each mission team so that communication and exchange of information would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Lewis Research Center Advanced Projects Office. Robotic planetary missions throughout the solar system can be considered valuable precursors to human visits and test beds for innovative technology. For example, by studying the composition of the Martian moons, scientists may be able to determine if their resources may be used or synthesized for consumption during a first human visit.

  18. Flying Cassini with Virtual Operations Teams

    NASA Technical Reports Server (NTRS)

    Dodd, Suzanne; Gustavson, Robert

    1998-01-01

    The Cassini Program's challenge is to fly a large, complex mission with a reduced operations budget. A consequence of the reduced budget is elimination of the large, centrally located group traditionally used for uplink operations. Instead, responsibility for completing parts of the uplink function is distributed throughout the Program. A critical strategy employed to handle this challenge is the use of Virtual Uplink Operations Teams. A Virtual Team is comprised of a group of people with the necessary mix of engineering and science expertise who come together for the purpose of building a specific uplink product. These people are drawn from throughout the Cassini Program and participate across a large geographical area (from Germany to the West coast of the USA), covering ten time zones. The participants will often split their time between participating in the Virtual Team and accomplishing their core responsibilities, requiring significant planning and time management. When the particular uplink product task is complete, the Virtual Team disbands and the members turn back to their home organization element for future work assignments. This time-sharing of employees is used on Cassini to build mission planning products, via the Mission Planning Virtual Team, and sequencing products and monitoring of the sequence execution, via the Sequence Virtual Team. This challenging, multitasking approach allows efficient use of personnel in a resource constrained environment.

  19. Clifford Charlesworth seated at his console in Mission Control Room

    NASA Image and Video Library

    1968-12-21

    S68-55742 (21 Dec. 1968) --- Clifford E. Charlesworth, Apollo 8 "Green Team" flight director, is seated at his console in the Mission Operations Control Room in the Mission Control Center, Building 30, during the launch of the Apollo 8 (Spacecraft 103/Saturn 503) manned lunar orbit space mission.

  20. STS-105 Flight Control Team Photo

    NASA Image and Video Library

    2001-08-16

    JSC2001-02228 (16 August 2001) --- The members of the STS-105/ISS 7A.1 Planning team pose for a group portrait in the shuttle flight control room (WFCR) in Houston’s Mission Control Center (MCC). Astronaut Robert L. Curbeam, Jr., spacecraft communicator (CAPCOM), stands behind the STS-105 mission logo. Flight director Bryan Austin is visible in the front row on the far right.

  1. Mission Planning and Scheduling System for NASA's Lunar Reconnaissance Mission

    NASA Technical Reports Server (NTRS)

    Garcia, Gonzalo; Barnoy, Assaf; Beech, Theresa; Saylor, Rick; Cosgrove, Sager; Ritter, Sheila

    2009-01-01

    In the framework of NASA's return to the Moon efforts, the Lunar Reconnaissance Orbiter (LRO) is the first step. It is an unmanned mission to create a comprehensive atlas of the Moon's features and resources necessary to design and build a lunar outpost. LRO is scheduled for launch in April, 2009. LRO carries a payload comprised of six instruments and one technology demonstration. In addition to its scientific mission LRO will use new technologies, systems and flight operations concepts to reduce risk and increase productivity of future missions. As part of the effort to achieve robust and efficient operations, the LRO Mission Operations Team (MOT) will use its Mission Planning System (MPS) to manage the operational activities of the mission during the Lunar Orbit Insertion (LOI) and operational phases of the mission. The MPS, based on GMV's flexplan tool and developed for NASA with Honeywell Technology Solutions (prime contractor), will receive activity and slew maneuver requests from multiple science operations centers (SOC), as well as from the spacecraft engineers. flexplan will apply scheduling rules to all the requests received and will generate conflict free command schedules in the form of daily stored command loads for the orbiter and a set of daily pass scripts that help automate nominal real-time operations.

  2. Mission Planning and Scheduling System for NASA's Lunar Reconnaissance Mission

    NASA Technical Reports Server (NTRS)

    Garcia, Gonzalo; Barnoy, Assaf; Beech, Theresa; Saylor, Rick; Cosgrove, Jennifer Sager; Ritter, Sheila

    2009-01-01

    In the framework of NASA's return to the Moon efforts, the Lunar Reconnaissance Orbiter (LRO) is the first step. It is an unmanned mission to create a comprehensive atlas of the Moon's features and resources necessary to design and build a lunar outpost. LRO is scheduled for launch in April, 2009. LRO carries a payload comprised of six instruments and one technology demonstration. In addition to its scientific mission LRO will use new technologies, systems and flight operations concepts to reduce risk and increase productivity of future missions. As part of the effort to achieve robust and efficient operations, the LRO Mission Operations Team (MOT) will use its Mission Planning System (MPS) to manage the operational activities of the mission during the Lunar Orbit Insertion (LOI) and operational phases of the mission. The MPS, based on GMV's flexplan tool and developed for NASA with Honeywell Technology Solutions (prime contractor), will receive activity and slew maneuver requests from multiple science operations centers (SOC), as well as from the spacecraft engineers. flexplan will apply scheduling rules to all the requests received and will generate conflict free command schedules in the form of daily stored command loads for the orbiter and a set of daily pass scripts that help automate nominal real-time operations.

  3. Comet nucleus and asteroid sample return missions

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  4. Comet nucleus and asteroid sample return missions

    NASA Astrophysics Data System (ADS)

    1992-06-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  5. Distribution of ESA's planetary mission data via the Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Heather, David; Barthelemy, Maud; Arviset, Christophe; Osuna, Pedro; Ortiz, Inaki

    interaction with the end-user to input and control the relevant search parameters. - The Map-based Interface is currently operational only for Mars Express HRCS and OMEGA data. This interface allows an end-user to specify a region-of-interest by dragging a box onto a base map of Mars. From this interface, it is possible to directly visualize query results. The Map-based and Classical interfaces are linked and cross-compatible. If a user defines a region-ofinterest in the Map-based interface, the results can be refined by entering more detailed search parameters in the Classical interface. - The Dataset Browser Interface is designed for more experienced users, and allows for direct browsing and access of the data set content through ftp-tree search. Each dataset contains documentation and calibration information in addition to the scientific or engineering data. All data are prepared by the corresponding instrument teams, mostly located in Europe. PSA staff supports the instrument teams in the full archiving process, starting from the definition of the data products, definition of data labels towards the validation and ingestion of the products into the archive. To ensure a common archiving approach for all of ESA's planetary missions as well as to provide a similar data quality and standard for end users, a dataset validation tool was developed supporting the instrument teams in syntactically validating their datasets before delivering to the PSA. In future, a further validation step is envisaged at the PSA to ensure correctness, completeness and cross correlation of all information, label and data content, within a data set. A PSA advisory body has been established in order to assess the continuing development of the PSA. The advisory panel aims to meet regularly, reviewing the progress on defined requirements and providing feedback on our activities.

  6. TRMM (Tropical Rainfall Measuring Mission): A satellite mission to measure tropical rainfall

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne (Editor)

    1988-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is presented. TRMM is a satellite program being studied jointly by the United States and Japan which would carry out the systematic study of tropical rainfall required for major strides in weather and climate research. The scientific justification for TRMM is discussed. The implementation process for the scientific community, NASA management, and the other decision-makers and advisory personnel who are expected to evaluate the priority of the project is outlined.

  7. The Darwin Mission

    NASA Astrophysics Data System (ADS)

    Fridlund, C.

    The Infra Red Space Interferometer Darwin was studied, by the European Space Agency (ESA), at system level, between 1997 and 2000. The study, carried out by Alcatel space division in Cannes, France has focused on developing a system that could carry out two main scientific objectives:1)The detection and characterisation of Earth-like planets orbiting other stars2)The imaging of astrophysical objects with unprecedented spatial resolution. The most challenging of these objectives consist of the recording of infrared spectra of Terrestrial exo -planets that could detect signs of biological activity at distances up to 20pc. In order to do this, the Darwin project is constructed around the new technique of `nulling interferometry', which exploits the wave nature of light to extinguish the light from a bright object (the central star in this case). At the same time the light from a nearby source (the planet) is enhanced. The contrast between planets and stars being the least in the infrared wavelength region, that has been chosen for this mission. The result of the study was presented to the community in September of 2000 in Paris, France. A conference discussing the scientific issues was also held in Stockholm in November 1999. The exo -biological issues were presented at the first European Exo/AstroBiology workshop held in Frascati, Italy in May 2001.Darwin is intended to be carried out in a joint scenario with NASA's TerrestrialPlanet Finder (TPF) mission. To this end, a joint undertaking, leading to a finalarchitecture decision in 2006 has been implemented. This first phase between nowand 2006 includes:1. Parallel NASA &ESA concept studies2. Joint ESA and NASA Science Advisory Group/Science Working Group3. Parallel ESA &NASA technology development4. Final Architecture Decision

  8. 78 FR 51191 - Government-wide Travel Advisory Committee (GTAC); Public Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... ADMINISTRATION Government-wide Travel Advisory Committee (GTAC); Public Advisory Committee Meeting AGENCY: Office... Government-wide Travel Advisory Committee (GTAC) (the Committee), is a Federal Advisory Committee established in accordance with the Federal Advisory Committee Act (FACA), 5 U.S.C., App 2. This ] notice...

  9. 78 FR 56231 - Government-Wide Travel Advisory Committee (GTAC); Public Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... ADMINISTRATION Government-Wide Travel Advisory Committee (GTAC); Public Advisory Committee Meeting AGENCY: Office... Government-wide Travel Advisory Committee (GTAC) (the Committee), is a Federal Advisory Committee established... CONTACT: Ms. Marcerto Barr, Designated Federal Officer (DFO), Government-wide Travel Advisory Committee...

  10. 76 FR 64326 - National Construction Safety Team Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... interface fires, and earthquakes. The agenda may change to accommodate Committee business. The final agenda... following recent tornados, wildland-urban interface fires, and earthquakes. The final agenda will be posted...

  11. 2013 Consequence Management Advisory Team (CMAT) Annual Report

    EPA Pesticide Factsheets

    Chemical, Biological, Radiological and Nuclear CMAT reviews use of data tools such as Airborne Spectral Photometric Environmental Collection Technology, new sampling and decontamination techniques, new response technologies, and improvement potential.

  12. 77 FR 68103 - National Construction Safety Team Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... update the Committee on the status of the National Institute of Standards and Technology (NIST) Disaster and Failure Studies Program, receive NIST's response to the Committee's 2011 annual report recommendations, update the Committee on the progress of the NIST Technical Investigation of the May 22, 2011...

  13. 78 FR 67120 - National Construction Safety Team Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... status of the National Institute of Standards and Technology (NIST) Disaster and Failure Studies Program, receive NIST's response to the Committee's 2012 annual report recommendations, update the Committee on the progress of the NIST Technical Investigation of the May 22, 2011 Tornado in Joplin, MO, and gather...

  14. The Kaguya Mission Overview

    NASA Astrophysics Data System (ADS)

    Kato, Manabu; Sasaki, Susumu; Takizawa, Yoshisada

    2010-07-01

    The Japanese lunar orbiter Kaguya (SELENE) was successfully launched by an H2A rocket on September 14, 2007. On October 4, 2007, after passing through a phasing orbit 2.5 times around the Earth, Kaguya was inserted into a large elliptical orbit circling the Moon. After the apolune altitude was lowered, Kaguya reached its nominal 100 km circular polar observation orbit on October 19. During the process of realizing the nominal orbit, two subsatellites Okina (Rstar) and Ouna (Vstar) were released into elliptical orbits with 2400 km and 800 km apolune, respectively; both elliptical orbits had 100 km perilunes. After the functionality of bus system was verified, four radar antennas and a magnetometer boom were extended, and a plasma imager was deployed. Acquisition of scientific data was carried out for 10 months of nominal mission that began in mid-December 2007. During the 8-month extended mission, magnetic fields and gamma-rays from lower orbits were measured; in addition to this, low-altitude observations were carried out using a Terrain Camera, a Multiband Imager, and an HDTV camera. New data pertaining to an intense magnetic anomaly and GRS data with higher spatial resolution were acquired to study magnetism and the elemental distribution of the Moon. After some orbital maneuvers were performed by using the saved fuel, the Kaguya spacecraft finally impacted on the southeast part of the Moon. The Kaguya team has archived the initial science data, and since November 2, 2009, the data has been made available to public, and can be accessed at the Kaguya homepage of JAXA. The team continues to also study and publish initial results in international journals. Science purposes of the mission and onboard instruments including initial science results are described in this overview.

  15. A Solar-Powered Enceladus Mission

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Reuter, Dennis C.

    2008-01-01

    We present the results of a concept design study for a New Frontiers or small Flagship-class mission to Enceladus, using solar power. By concentrating on the science objectives most critical for a Cassini follow-on, this mission maximizes the science return while maintaining a power consumption level that can be provided by a practical solar power system. The optimized instrument payload is the product of a broad science community-based Science Definition Team Study. The spacecraft and mission designs are the products of studies carried out by the GSFC Mission Design Lab and Ball Aerospace. In addition to the low isolation at Enceladus, its location deep in Saturn's gravity well makes it a challenging target to reach, meaning that careful consideration must be given to spacecraft mass and the potential mission types. This presentation summarizes the mission science objectives and payload, the dynamical work, and the notional operations plan of this mission.

  16. A Solar-Powered Enceladus Mission

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Reuter, Dennis C.

    2008-01-01

    We present the results of a concept design study for a New Frontiers or small Flagship-class mission to Enceladus, using solar power. By concentrating on the science objectives most critical for a Cassini follow-on, this mission maximizes the science return while maintaining a power consumption level that can be provided by a practical solar power system. The optimized instrument payload is the product of a broad science community-based Science Definition Team Study. The spacecraft and mission designs are the products of studies carried out by the GSFC Mission Design Lab and Ball Aerospace. In addition to the low isolation at Enceladus, its location deep in Saturn's gravity well makes it a challenging target to reach, meaning that careful consideration must be given to spacecraft mass and the potential mission types. This presentation summarizes the mission science objectives and payload, the dynamical work, and the notional operations plan of this mission.

  17. Employability Development Teams: Team Member Roles

    ERIC Educational Resources Information Center

    Otto, Mary L.; Lewis, Meharry H.

    1972-01-01

    The authors point out that team roles are designed to be complementary, but much of the frustration that develops among team members is due to lack of role definition and too much overlapping of responsibility. (Author)

  18. 75 FR 43156 - Federal Advisory Committee; Missile Defense Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... staff and Program Managers on the Agency's strategic perspective and the Ballistic Missile Defense..., but are not limited to briefings on the Ballistic Missile Defense Review, Early Intercept, Phased... Office of the Secretary Federal Advisory Committee; Missile Defense Advisory Committee AGENCY:...

  19. Involvement: The Key to Success. Involving Students in the Student Advisory Board.

    ERIC Educational Resources Information Center

    Doi, Wes

    Involving middle school students in decision making is an important way to make them feel that they are part of the educational process in their school, that they are part of the "school team." A key way to involve students is through the creation of a Student Advisory Board (SAB), such as the one in place at Schmucker Middle School in…

  20. Ownership & Authorship of Collaborative Academic Work. CAUT Intellectual Property Advisory. Number 2

    ERIC Educational Resources Information Center

    Canadian Association of University Teachers, 2008

    2008-01-01

    The purpose of this advisory is to assist academic staff members in avoiding conflict over ownership and authorship rights in collaborative academic work. When students, professors, librarians and other researchers work together in teams, they can create fundamental advances in knowledge. Unfortunately, these arrangements are also generating…

  1. Mission Possible

    ERIC Educational Resources Information Center

    Kittle, Penny, Ed.

    2009-01-01

    As teachers, our most important mission is to turn our students into readers. It sounds so simple, but it's hard work, and we're all on a deadline. Kittle describes a class in which her own expectations that students would become readers combined with a few impassioned strategies succeeded ... at least with a young man named Alan.

  2. Ash cloud aviation advisories

    SciTech Connect

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.; Nasstrom, J.S.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  3. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report from the Aerospace Safety Advisory Panel (ASAP) contains findings, recommendations, and supporting material concerning safety issues with the space station program, the space shuttle program, aeronautics research, and other NASA programs. Section two presents findings and recommendations, section three presents supporting information, and appendices contain data about the panel membership, the NASA response to the March 1993 ASAP report, and a chronology of the panel's activities during the past year.

  4. The solar stereo mission

    NASA Astrophysics Data System (ADS)

    Rust, D. M.

    The principal scientific objective of the Solar-Terrestrial Relations Observatory (STEREO) is to understand the origin and consequences of coronal mass ejections (CMEs). CMEs are the most energetic eruptions on the Sun. They are responsible for essentially all of the largest solar energetic particle events and are the primary cause of major geomagnetic storms. They may be a critical element in the solar dynamo because they remove the dynamo-generated magnetic flux from the Sun. Two spacecraft at 1 AU from the Sun, one drifting ahead of Earth and one behind, will image CMEs. They will also map the distribution of magnetic fields and plasmas in the heliosphere and accomplish a variety of science goals described in the 1997 report of the NASA Science Definition Team for the STEREO Mission. Current plans call for the two STEREO launches in early 2003. Simultaneous image pairs will be obtained by the STEREO telescopes at gradually increasing spacecraft separations in the course of the mission. Additionally, in-situ measurements will provide accurate information about the state of the ambient solar wind and energetic particle populations ahead of and behind CMEs. These measurements will allow definitive tests of CME and interplanetary shock models. The mission will include a "beacon mode" to warn of either coronal or interplanetary conditions indicative of impending disturbances at Earth.

  5. Bion-11 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Skidmore, M.

    1999-01-01

    The Sensors 2000! Program, in support of the Space Life Sciences Payloads Office at NASA Ames Research Center developed a suite of bioinstrumentation hardware for use on the Joint US/Russian Bion I I Biosatellite Mission (December 24, 1996 - January 7, 1997). This spaceflight included 20 separate experiments that were organized into a complimentary and interrelated whole, and performed by teams of US, Russian, and French investigators. Over 40 separate parameters were recorded in-flight on both analog and digital recording media for later analysis. These parameters included; Electromyogram (7 ch), Electrogastrogram, Electrooculogram (2 ch), ECG/EKG, Electroencephlogram (2 ch), single fiber firing of Neurovestibular afferent nerves (7 ch), Tendon Force, Head Motion Velocity (pitch & yaw), P02 (in vivo & ambient), temperature (deep body, skin, & ambient), and multiple animal and spacecraft performance parameters for a total of 45 channels of recorded data. Building on the close cooperation of previous missions, US and Russian engineers jointly developed, integrated, and tested the physiologic instrumentation and data recording system. For the first time US developed hardware replaced elements of the Russian systems resulting in a US/Russian hybrid instrumentation and data system that functioned flawlessly during the 14 day mission.

  6. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Todd Brown, right, working Cassini's attitude and articulation control subsystems, is seen at his console during the spacecraft's final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Todd Brown, working Cassini's attitude and articulation control subsystems, is seen at his console during the spacecraft's final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Adopting Team Contracts to Initiate Team Learning

    ERIC Educational Resources Information Center

    Marcellino, Patricia Ann

    2008-01-01

    Creighton, Harris and Coleman (2005) suggest that educational leadership instructors introduce aspiring administrators to a sound knowledge base. Currently, engaging in teams is recommended for high performance and problem-solving. Bolton (1999) recommends that instructors coach teams so teaming skills are improved. But, oftentimes, there are team…

  9. Adopting Team Contracts to Initiate Team Learning

    ERIC Educational Resources Information Center

    Marcellino, Patricia Ann

    2008-01-01

    Creighton, Harris and Coleman (2005) suggest that educational leadership instructors introduce aspiring administrators to a sound knowledge base. Currently, engaging in teams is recommended for high performance and problem-solving. Bolton (1999) recommends that instructors coach teams so teaming skills are improved. But, oftentimes, there are team…

  10. 16 CFR 1018.26 - Advisory functions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Advisory functions. 1018.26 Section 1018.26 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL ADVISORY COMMITTEE MANAGEMENT Operation of Advisory Committees § 1018.26 Advisory functions. (a) Unless otherwise specifically provided by statute...

  11. 16 CFR 1018.26 - Advisory functions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Advisory functions. 1018.26 Section 1018.26 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL ADVISORY COMMITTEE MANAGEMENT Operation of Advisory Committees § 1018.26 Advisory functions. (a) Unless otherwise specifically provided by statute...

  12. 78 FR 77443 - Electricity Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... Electricity Advisory Committee AGENCY: Office of Electricity Delivery and Energy Reliability, Department of... Electricity Advisory Committee (EAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770.../oe/services/electricity-advisory-committee-eac . FOR FURTHER INFORMATION CONTACT: Matthew...

  13. 75 FR 56997 - Global Markets Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... COMMISSION Global Markets Advisory Committee AGENCY: Commodity Futures Trading Commission (``CFTC''). ACTION: Notice of meeting of Global Markets Advisory Committee. SUMMARY: The Global Markets Advisory Committee...., Washington, DC 20581, attention Office of the Secretary. Please use the title ``Global Markets Advisory...

  14. 76 FR 25309 - Agricultural Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... COMMISSION Agricultural Advisory Committee; Meeting AGENCY: Commodity Futures Trading Commission (``CFTC''). ] ACTION: Notice of Meeting of Agricultural Advisory Committee. SUMMARY: The CFTC's Agricultural Advisory..., DC 20581. Written statements should be sent to the attention of Agricultural Advisory Committee, c/o...

  15. 76 FR 58813 - Homeland Security Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... SECURITY Homeland Security Advisory Council AGENCY: The Office of Policy, DHS. ACTION: Notice of open teleconference Federal Advisory Committee meeting. SUMMARY: The Homeland Security Advisory Council (HSAC) will... message. Fax: (202) 282-9207 Mail: Homeland Security Advisory Council, Department of Homeland Security...

  16. 77 FR 64532 - Homeland Security Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... SECURITY Homeland Security Advisory Council AGENCY: The Office of Policy, DHS. ACTION: Notice of open teleconference Federal advisory committee meeting. SUMMARY: The Homeland Security Advisory Council (HSAC) will... in the subject line of the message. Fax: (202) 282-9207 Mail: Homeland Security Advisory Council...

  17. 75 FR 2880 - Homeland Security Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... SECURITY Homeland Security Advisory Council AGENCY: The Office of Policy, DHS. ACTION: Committee management; Notice of partially closed federal advisory committee meeting. SUMMARY: The Homeland Security Advisory.... E-mail: HSAC@dhs.gov . Fax: 202-282-9207. Mail: Homeland Security Advisory Council, 1100 Hampton...

  18. 76 FR 55079 - Homeland Security Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... SECURITY Homeland Security Advisory Council AGENCY: The Office of Policy, DHS. ACTION: Notice of Open Teleconference Federal Advisory Committee Meeting. SUMMARY: The Homeland Security Advisory Council (HSAC) will... subject line of the message. Fax: (202) 282-9207. Mail: Homeland Security Advisory Council, Department of...

  19. 16 CFR 1018.26 - Advisory functions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Advisory functions. 1018.26 Section 1018.26 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL ADVISORY COMMITTEE MANAGEMENT Operation of Advisory Committees § 1018.26 Advisory functions. (a) Unless otherwise specifically provided by...

  20. 75 FR 59278 - Homeland Security Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... SECURITY Homeland Security Advisory Council AGENCY: The Office of Policy, DHS. ACTION: Notice of Closed Federal Advisory Committee Meeting. SUMMARY: The Homeland Security Advisory Council (HSAC) will meet on... message. Fax: (202) 282-9207. Mail: Homeland Security Advisory Council, Department of Homeland Security...

  1. 62 FR 67918 - NASA Advisory Council (NAC), Space Science Advisory Committee (SScAC), Structure and Evolution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-12-30

    ... and Evolution of the Universe Advisory Subcommittee; Meeting AGENCY: National Aeronautics and Space... meeting of the NASA Advisory Council, Space Science Advisory Committee, Structure and Evolution of the...

  2. 62 FR 45880 - NASA Advisory Council (NAC), Space Science Advisory Committee (SScAC), Structure and Evolution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-08-29

    ... and Evolution of the Universe Advisory Subcommittee; Meeting AGENCY: National Aeronautics and Space... of the NASA Advisory Council, Space Science Advisory Committee, Structure and Evolution of the...

  3. 64 FR 4721 - NASA Advisory Council (NAC), Space Science Advisory Committee (SScAC), Structure and Evolution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-01-29

    ... and Evolution of the Universe Advisory Subcommittee; Meeting. AGENCY: National Aeronautics and Space... of the NASA Advisory Council, Space Science Advisory Committee, Structure and Evolution of the...

  4. 64 FR 29702 - NASA Advisory Council (NAC), Space Science Advisory Committee (SScAC), Structure and Evolution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1999-06-02

    ... and Evolution of the Universe Advisory Subcommittee; Meeting AGENCY: National Aeronautics and Space... of the NASA Advisory Council, Space Science Advisory Committee, Structure and Evolution of the...

  5. 63 FR 52771 - NASA Advisory Council (NAC), Space Science Advisory Committee (SScAC), Structure and Evolution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-10-01

    ... and Evolution of the Universe Advisory Subcommittee; Meeting AGENCY: National Aeronautics and Space... of the NASA Advisory Council, Space Science Advisory Committee, Structure and Evolution of the...

  6. 61 FR 40662 - NASA Advisory Council (NAC), Space Science Advisory Committee (SScAC), Structure and Evolution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1996-08-05

    ... and Evolution of the Universe Advisory Subcommittee; Meeting AGENCY: National Aeronautics and Space... of the NASA Advisory Council, Space Science Advisory Committee, Structure and Evolution of the...

  7. Markers for enhancing team cognition in complex environments: the power of team performance diagnosis.

    PubMed

    Salas, Eduardo; Rosen, Michael A; Burke, C Shawn; Nicholson, Denise; Howse, William R

    2007-05-01

    Team cognition has been identified as a key component to achieve mission goals in dynamic, team-based, stressful, distributed and multicultural operations. Effective team performance in complex environments requires that team members hold a shared understanding of the task, their equipment, and their teammates. So, many of the simulation-based training (SBT) systems and programs have been designed (partly) to enhance shared/team cognition. However, these simulation systems lack the sufficient robustness in their performance assessment tools or capabilities (if they have any) to allow for a rich and deep understanding of team cognition. Therefore, the purpose of this article is fourfold: I) to present a brief account of team cognition; 2) to develop the concept of performance diagnosis and present SBT as an approach to the performance diagnosis of team cognition; 3) to present a set of illustrative behavioral markers of team cognition; and 4) to explicate how these elements (performance diagnosis, team cognition, and SBT) can be leveraged to increase training effectiveness through the development of performance profiles--a rich, detailed, and informative set of metrics--and cognitive and behavioral indicators or illustrative markers of team cognition. Research needs are discussed in terms of realizing the potential of this approach in operational and embedded training contexts.

  8. SOFIA Team Prepares for Southern Hemisphere Science Flights

    NASA Image and Video Library

    SOFIA maintenance chief Daryl Townsend discusses how the team prepares the modified 747SP for science missions. The aircraft is flying from a base in Christchurch, New Zealand, for science investig...

  9. A university-based distributed satellite mission control network for operating professional space missions

    NASA Astrophysics Data System (ADS)

    Kitts, Christopher; Rasay, Mike

    2016-03-01

    For more than a decade, Santa Clara University's Robotic Systems Laboratory has operated a unique, distributed, internet-based command and control network for providing professional satellite mission control services for a variety of government and industry space missions. The system has been developed and is operated by students who become critical members of the mission teams throughout the development, test, and on-orbit phases of these missions. The mission control system also supports research in satellite control technology and hands-on student aerospace education. This system serves as a benchmark for its comprehensive nature, its student-centric nature, its ability to support NASA and industry space missions, and its longevity in providing a consistent level of professional services. This paper highlights the unique features of this program, reviews the network's design and the supported spacecraft missions, and describes the critical programmatic features of the program that support the control of professional space missions.

  10. Federal Advisory Committees: An Overview

    DTIC Science & Technology

    2009-04-16

    initiating a tradition of presidential use of outside expertise when, in 1794 , he appointed an ad hoc group of commissioners to investigate the Whiskey ... Rebellion .7 Since 1842, Congress has legislated control over federal advisory bodies — mostly by limiting funding and committee member pay. In 1842...reports aggregated advisory body information to Congress annually.12 7 " Whiskey Insurrection in

  11. Federal Advisory Committees: A Primer

    DTIC Science & Technology

    2007-03-20

    20 The Denali Commission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 President’s Council...the Lakes Advisory Board;10 Trade Deficit Review Commission;11 Denali Commission;12 President’s Council on Counter-Narcotics;13 Parents’ Advisory...statutory authority of the seven-member Denali Commission26 authorizes the Governor of Alaska, or an individual selected by the governor, to serve as the

  12. OCLC and Its Advisory Committees.

    ERIC Educational Resources Information Center

    Baker, Shirley K.

    1998-01-01

    Describes the Online Computer Library Center (OCLC) advisory committees in terms of research, public, college and university, and special libraries. All four of the type-of-library advisory groups work to shape OCLC policies and programs, according to the particular needs of each group. OCLC's financial and programmatic success depends upon…

  13. Science Planning for the TROPIX Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1998-01-01

    The objective of the study grant was to undertake the planning needed to execute meaningful solar electric propulsion missions in the magnetosphere and beyond. The first mission examined was the Transfer Orbit Plasma Investigation Experiment (TROPIX) mission to spiral outward through the magnetosphere. The next mission examined was to the moon and an asteroid. Entitled Diana, it was proposed to NASA in October 1994. Two similar missions were conceived in 1996 entitled CNR for Comet Nucleus Rendezvous and MBAR for Main Belt Asteroid Rendezvous. The latter mission was again proposed in 1998. All four of these missions were unsuccessfully proposed to the NASA Discovery program. Nevertheless we were partially successful in that the Deep Space 1 (DS1) mission was eventually carried out nearly duplicating our CNR mission. Returning to the magnetosphere we studied and proposed to the Medium Class Explorer (MIDEX) program a MidEx mission called TEMPEST, in 1995. This mission included two solar electric spacecraft that spiraled outward in the magnetosphere: one at near 900 inclination and one in the equatorial plane. This mission was not selected for flight. Next we proposed a single SEP vehicle to carry Energetic Neutral Atom (ENA) imagers and inside observations to complement the IMAGE mission providing needed data to properly interpret the IMAGE data. This mission called SESAME was submitted unsuccessfully in 1997. One proposal was successful. A study grant was awarded to examine a four spacecraft solar electric mission, named Global Magnetospheric Dynamics. This study was completed and a report on this mission is attached but events overtook this design and a separate study team was selected to design a classical chemical mission as a Solar Terrestrial Probe. Competing proposals such as through the MIDEX opportunity were expressly forbidden. A bibliography is attached.

  14. MRSR: Rationale for a Mars Rover/Sample Return mission

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.

    1992-01-01

    The Solar System Exploration Committee of the NASA Advisory Council has recommended that a Mars Rover/Sample Return mission be launched before the year 2000. The recommendation is consistent with the science objectives as outlined by the National Academy of Sciences committees on Planetary and Lunar Exploration, and Planetary Biology and Chemical Evolution. Interest has also focused on Mars Rover/Sample Return (MRSR) missions, because of their crucial role as precursors for human exploration. As a result of this consensus among the advisory groups, a study of an MRSR mission began early in 1987. The study has the following goals: (1) to assess the technical feasibility of the mission; (2) to converge on two or three options for the general architecture of the mission; (3) to determine what new technologies need to be developed in order to implement the mission; (4) to define the different options sufficiently well that preliminary cost estimates can be made; and (5) to better define the science requirements. This chapter briefly describes Mars Rover/Sample Return missions that were examined in the late 1980s. These missions generally include a large (1000 kg) rover and return of over 5 kg of sample.

  15. 75 FR 4069 - Science Advisory Board Staff Office; Notification of a Clean Air Scientific Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... Clean Air Scientific Advisory Committee (CASAC) Ambient Air Monitoring & Methods Subcommittee (AAMMS or... AGENCY Science Advisory Board Staff Office; Notification of a Clean Air Scientific Advisory Committee (CASAC); Ambient Air Methods and Monitoring Subcommittee (AAMMS); Meeting and Public Teleconference...

  16. 75 FR 60458 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital... Communications Commission's (FCC) Advisory Committee on Diversity for Communications in the Digital Age...

  17. 75 FR 70004 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital... Communications Commission's (FCC) Advisory Committee on Diversity for Communications in the Digital Age...

  18. 75 FR 20844 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital... Communications Commission's (FCC) Advisory Committee on Diversity for Communications in the Digital Age...

  19. 75 FR 6031 - Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Advisory Committee on Diversity for Communications in the Digital... Communications Commission's (FCC) Advisory Committee on Diversity for Communications in the Digital Age...

  20. 78 FR 30305 - The President's Management Advisory Board (PMAB); Public Advisory Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... ADMINISTRATION The President's Management Advisory Board (PMAB); Public Advisory Meeting AGENCY: Office of Executive Councils, U.S. General Services Administration (GSA). ACTION: Notice. SUMMARY: The President's..., Designated Federal Officer, President's Management Advisory Board, Office of Executive Councils, General...

  1. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Science Advisory Group. This...

  2. 76 FR 70425 - Federal Advisory Committee; Defense Intelligence Agency (DIA) Advisory Board; Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Office of the Secretary Federal Advisory Committee; Defense Intelligence Agency (DIA) Advisory Board... discussions of classified information relating to DIA's intelligence operations including its support to... Advisory Board to discuss DIA operations and capabilities in support of current intelligence operations...

  3. 77 FR 2277 - Federal Advisory Committee; Defense Intelligence Agency (DIA) Advisory Board; Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ... of the Secretary Federal Advisory Committee; Defense Intelligence Agency (DIA) Advisory Board; Closed... discussions of classified information relating to DIA's intelligence operations including its support to... Advisory Board to discuss DIA operations and capabilities in support of current intelligence operations...

  4. STS-61C Mission Insignia

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Columbia, which opened the era of the Space Transportation System with four orbital flight tests, is featured in re-entry in the emblem designed by the STS-61C crew representing the seven team members who manned the vehicle for its seventh STS mission. Gold lettering against black background honors the astronaut crewmembers on the delta pattern surrounding colorful re-entry shock waves, and the payload specialists are honored similarly below the sphere

  5. Using Simulation for Launch Team Training and Evaluation

    NASA Technical Reports Server (NTRS)

    Peaden, Cary J.

    2005-01-01

    This document describes some of the histor y and uses of simulation systems and processes for the training and evaluation of Launch Processing, Mission Control, and Mission Management teams. It documents some of the types of simulations that are used at Kennedy Space Center (KSC) today and that could be utilized (and possibly enhanced) for future launch vehicles. This article is intended to provide an initial baseline for further research into simulation for launch team training in the near future.

  6. Team Learning in Teacher Teams: Team Entitativity as a Bridge between Teams-in-Theory and Teams-in-Practice

    ERIC Educational Resources Information Center

    Vangrieken, Katrien; Dochy, Filip; Raes, Elisabeth

    2016-01-01

    This study aimed to investigate team learning in the context of teacher teams in higher vocational education. As teacher teams often do not meet all criteria included in theoretical team definitions, the construct "team entitativity" was introduced. Defined as the degree to which a group of individuals possesses the quality of being a…

  7. Team Learning in Teacher Teams: Team Entitativity as a Bridge between Teams-in-Theory and Teams-in-Practice

    ERIC Educational Resources Information Center

    Vangrieken, Katrien; Dochy, Filip; Raes, Elisabeth

    2016-01-01

    This study aimed to investigate team learning in the context of teacher teams in higher vocational education. As teacher teams often do not meet all criteria included in theoretical team definitions, the construct "team entitativity" was introduced. Defined as the degree to which a group of individuals possesses the quality of being a…

  8. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-08

    Dartmouth College's Chris Polashenski cuts a block of ice from below a melt pond on sea ice in the Chukchi Sea on July 9, 2010, for analysis upon return from the mission. The research is part of NASA's ICESCAPE mission onboard the U.S. Coast Guard icebreaker Healy to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  9. SEQUOIA mission

    NASA Astrophysics Data System (ADS)

    Welsh, Barry Y.; Carone, Timothy; Siegmund, Oswald H.; Jelinsky, Patrick N.; Polidan, Ronald S.

    1995-06-01

    We describe a mission concept for the SEQUOIA instrument, which would carry out the first wide-field, far ultraviolet, photometric all-sky survey. SEQUOIA will image the astronomical sky in the 912-1050 angstrom spectral region to a limiting magnitude of 19.5(superscript m) over a one degree field of view with a spatial resolution of less than 30 arc seconds. This mission was proposed to the USRA STEDI program in late 1994, and has been designed as a low cost, fast-track program for launch within 3 years. The spacecraft bus is being provided by Orbital Sciences Corporation (Dulles) and since the entire payload weighs less than 100kg, it can be launched using either a Minuteman or Pegasus rocket.

  10. Vehicle Systems Analysis Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Vehicle Systems Analysis Technical Team (VSATT) is to evaluate the performance and interactions of proposed advanced automotive powertrain components and subsystems, in a vehicle systems context, to inform ongoing research and development activities and maximize the potential for fuel efficiency improvements and emission reduction.

  11. STS-106 Orbit 2 Flight Team

    NASA Image and Video Library

    2000-09-14

    JSC2000-06244 (September 2000)--- Flight director Jeff Hanley, front center, and the fifty-odd flight controllers making up the ISS Orbit 2 Team pose for their group portrait in the ISS Flight Control Room of Houston's Mission Control Center.

  12. In Brief: Proposed European space missions

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    New candidates for possible future scientific missions were selected by the European Space Agency's Space Science Advisory Committee at its 17-18 October meeting. Among the eight candidates are four solar system missions. The Laplace mission would perform coordinated observations of Europa, the Jovian satellites, Jupiter's magnetosphere, and its atmosphere and interior. Tandem is a mission that would explore two Saturn satellites-Titan and Enceladus-in situ and from orbit to investigate their origins, interiors, and evolution as well as their astrobiological potential. Cross-Scale, with 12 spacecraft, would make simultaneous measurements of plasma on different scales at shocks, reconnection sites, and turbulent regions in near-Earth space. Marco Polo would characterize a near-Earth object at multiple scales and return with a sample. Among other missions, Plato, a photometry mission, would detect and characterize transiting exoplanets, while Spica, a next-generation infrared observatory, would address planetary formation questions. Ultimately, two missions will be proposed for implementation, with launches planned for 2017 and 2018.

  13. Team coordination dynamics.

    PubMed

    Gorman, Jamie C; Amazeen, Polemnia G; Cooke, Nancy J

    2010-07-01

    Team coordination consists of both the dynamics of team member interaction and the environmental dynamics to which a team is subjected. Focusing on dynamics, an approach is developed that contrasts with traditional aggregate-static concepts of team coordination as characterized by the shared mental model approach. A team coordination order parameter was developed to capture momentary fluctuations in coordination. Team coordination was observed in three-person uninhabited air vehicle teams across two experimental sessions. The dynamics of the order parameter were observed under changes of a team familiarity control parameter. Team members returned for the second session to either the same (Intact) or different (Mixed) team. 'Roadblock' perturbations, or novel changes in the task environment, were introduced in order to probe the stability of team coordination. Nonlinear dynamic methods revealed differences that a traditional approach did not: Intact and Mixed team coordination dynamics looked very different; Mixed teams were more stable than Intact teams and explored the space of solutions without the need for correction. Stability was positively correlated with the number of roadblock perturbations that were overcome successfully. The novel and non-intuitive contribution of a dynamical analysis was that Mixed teams, who did not have a long history working together, were more adaptive. Team coordination dynamics carries new implications for traditional problems such as training adaptive teams.

  14. 76 FR 22878 - Closed Meeting of the Threat Reduction Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Under Secretary of Defense (Acquisition, Technology and Logistics), DoD. ACTION: Federal Advisory..., review and evaluate classified information related to the Committee's mission to advise on technology security, combating weapons of mass destruction (WMD), counter terrorism and counter proliferation. Agenda...

  15. 77 FR 58847 - Advisory Committee to the Director (ACD), Centers for Disease Control and Prevention (CDC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... HUMAN SERVICES Centers for Disease Control and Prevention Advisory Committee to the Director (ACD), Centers for Disease Control and Prevention (CDC) In accordance with section 10(a)(2) of the Federal... enable CDC to fulfill its mission of protecting health through health promotion, prevention, and...

  16. Mission Operations Control Room Activities during STS-2 mission

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. President Ronald Reagan is briefed by Dr. Christopher C. Kraft, Jr., JSC Director, who points toward the orbiter spotter on the projection plotter at the front of the MOCR (39499); President Reagan joking with STS-2 astronauts during space to ground conversation (39500); Mission Specialist/Astronaut Sally K. Ride communicates with the STS-2 crew from the spacecraft communicator console (39501); Charles R. Lewis, bronze team Flight Director, monitors activity from the STS-2 crew. He is seated at the flight director console in MOCR (39502); Eugene F. Kranz, Deputy Director of Flight Operations at JSC answers a question during a press conference on Nov. 13, 1981. He is flanked by Glynn S. Lunney, Manager, Space Shuttle Program Office, JSC; and Dr. Christopher C. Kraft, Jr., Director of JSC (39503).

  17. Challenges of Space Mission Interoperability

    NASA Technical Reports Server (NTRS)

    Martin, Warren L.; Hooke, Adrian J.

    2007-01-01

    This viewgraph presentation reviews some of the international challenges to space mission interoperability. Interoperability is the technical capability of two or more systems or components to exchange information and to use the information that has been exchanged. One of the challenges that is addressed is the problem of spectrum bandwidth, and interference. The key to interoperability is the standardization of space communications services and protocols. Various levels of international cross support are reviewed: harmony, cooperation cross support and confederation cross support. The various international bodies charged with implementing cross support are reviewed. The goal of the Interagency Operations Advisory Group (IOAG) is to achieve plug-and-play operations where all that is required is for each of the systems to use an agreed communications medium, after which the systems configure each other for the purpose of exchanging information and subsequently effect such exchange automatically.

  18. Challenges of Space Mission Interoperability

    NASA Technical Reports Server (NTRS)

    Martin, Warren L.; Hooke, Adrian J.

    2007-01-01

    This viewgraph presentation reviews some of the international challenges to space mission interoperability. Interoperability is the technical capability of two or more systems or components to exchange information and to use the information that has been exchanged. One of the challenges that is addressed is the problem of spectrum bandwidth, and interference. The key to interoperability is the standardization of space communications services and protocols. Various levels of international cross support are reviewed: harmony, cooperation cross support and confederation cross support. The various international bodies charged with implementing cross support are reviewed. The goal of the Interagency Operations Advisory Group (IOAG) is to achieve plug-and-play operations where all that is required is for each of the systems to use an agreed communications medium, after which the systems configure each other for the purpose of exchanging information and subsequently effect such exchange automatically.

  19. Team Expo: A State-of-the-Art JSC Advanced Design Team

    NASA Technical Reports Server (NTRS)

    Tripathi, Abhishek

    2001-01-01

    In concert with the NASA-wide Intelligent Synthesis Environment Program, the Exploration Office at the Johnson Space Center has assembled an Advanced Design Team. The purpose of this team is two-fold. The first is to identify, use, and develop software applications, tools, and design processes that streamline and enhance a collaborative engineering environment. The second is to use this collaborative engineering environment to produce conceptual, system-level-of-detail designs in a relatively short turnaround time, using a standing team of systems and integration experts. This includes running rapid trade studies on varying mission architectures, as well as producing vehicle and/or subsystem designs. The standing core team is made up of experts from all of the relevant engineering divisions (e.g. Power, Thermal, Structures, etc.) as well as representatives from Risk and Safety, Mission Operations, and Crew Life Sciences among others. The Team works together during 2- hour sessions in the same specially enhanced room to ensure real-time integration/identification of cross-disciplinary issues and solutions. All subsystem designs are collectively reviewed and approved during these same sessions. In addition there is an Information sub-team that captures and formats all data and makes it accessible for use by the following day. The result is Team Expo: an Advanced Design Team that is leading the change from a philosophy of "over the fence" design to one of collaborative engineering that pushes the envelope to achieve the next-generation analysis and design environment.

  20. 76 FR 7551 - Advisory Committee on Student Financial Assistance: Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... Advisory Committee on Student Financial Assistance: Hearing AGENCY: Advisory Committee on Student Financial... Student Financial Assistance (the Advisory Committee). This notice also describes the functions of the.... Alison Bane, Associate Director of Government Relations, Advisory Committee on Student...

  1. Are self-directed work teams successful and effective tools for today`s organization?

    SciTech Connect

    Arnwine, A.D.

    1995-03-01

    The purpose of this research is to (1) show the effectiveness and success of self-directed work teams within the organization, (2) emphasize the importance of team building in the success of the team, and (3) assist organizations in building self-directed work teams. The researcher used a direct survey and studied the following team building techniques: (1) Is the team`s mission clearly defined to each team member? (2) Are the goals clearly defined and achievable by all team members? (3) Will empowerment (decision-making power) be given equally to all team members? (4) Will open and honest communication be allowed among team members? (5) Will each team member be respected and valued for his/her position on the team? (6) Are self-directed work teams effectively rewarded for accomplishments? (7) Have team members received adequate training to effectively complete their job tasks? Upon completion of the literature review and statistical data, and after analyzing the seven areas of team building techniques, it was determined three of the four teams were successful and effective. The only area of concern to the organization is that the participants felt they did not have true ownership of their teams; that is, team members were not given full empowerment. According to this study and the review of literature, full empowerment must be given to achieve successful and effective teams. If true empowerment is not given, the team will suffer in other areas of team building, and the organization will lose a valuable tool.

  2. Speeding Up Team Learning.

    ERIC Educational Resources Information Center

    Edmondson, Amy; Bohmer, Richard; Pisano, Gary

    2001-01-01

    A study of 16 cardiac surgery teams looked at how the teams adapted to new ways of working. The challenge of team management is to implement new processes as quickly as possible. Steps for creating a learning team include selecting a mix of skills and expertise, framing the challenge, and creating an environment of psychological safety. (JOW)

  3. The Discipline of Teams.

    ERIC Educational Resources Information Center

    Katzenbach, Jon R.; Smith, Douglas K.

    1993-01-01

    Teams share commitment, translate purpose into performance goals, and have members be accountable with and to their teammates. Types of teams are those that recommend, make or do things, and run things. The distinction between teams and other working groups is performance: an effective team is worth more than the sum of its parts. (SK)

  4. TeamXchange: A Team Project Experience Involving Virtual Teams and Fluid Team Membership

    ERIC Educational Resources Information Center

    Dineen, Brian R.

    2005-01-01

    TeamXchange, an online team-based exercise, is described. TeamXchange is consistent with the collaborative model of learning and provides a means of fostering enhanced student learning and engagement through collaboration in virtual teams experiencing periodic membership changes. It was administered in an undergraduate Organizational Behavior…

  5. Speeding Up Team Learning.

    ERIC Educational Resources Information Center

    Edmondson, Amy; Bohmer, Richard; Pisano, Gary

    2001-01-01

    A study of 16 cardiac surgery teams looked at how the teams adapted to new ways of working. The challenge of team management is to implement new processes as quickly as possible. Steps for creating a learning team include selecting a mix of skills and expertise, framing the challenge, and creating an environment of psychological safety. (JOW)

  6. Instructional Design Team

    ERIC Educational Resources Information Center

    Bancroft, Judith A.; Collins, Keith

    1974-01-01

    An instructional design team, composed of experts in nursing, education, and media production, is used at the University of Wisconsin School of Nursing, Madison, to produce instructional units for a new curriculum. The authors summarize steps of team/faculty communications, team methodology, and factors influencing the team's effectiveness. (EA)

  7. Student Team Learning.

    ERIC Educational Resources Information Center

    Slavin, Robert E.

    Three Student Team Learning techniques have been extensively researched and found to significantly increase student learning. In Student Teams Achievement Divisions (STAD), teams are made up of high, average, and low performing students of both genders and different racial and ethnic backgrounds. Team members study worksheets, work problems in…

  8. TeamXchange: A Team Project Experience Involving Virtual Teams and Fluid Team Membership

    ERIC Educational Resources Information Center

    Dineen, Brian R.

    2005-01-01

    TeamXchange, an online team-based exercise, is described. TeamXchange is consistent with the collaborative model of learning and provides a means of fostering enhanced student learning and engagement through collaboration in virtual teams experiencing periodic membership changes. It was administered in an undergraduate Organizational Behavior…

  9. Sports Teams Extend Reach

    ERIC Educational Resources Information Center

    Shah, Nirvi

    2012-01-01

    Unlike traditional high school athletic teams, Unified Sports teams are designed to immerse students with intellectual disabilities in a facet of school culture that has largely eluded them. Nationwide, more than 2,000 schools in 42 states have the teams, where the ideal is for about half the athletes on each team to be students with intellectual…

  10. Sports Teams Extend Reach

    ERIC Educational Resources Information Center

    Shah, Nirvi

    2012-01-01

    Unlike traditional high school athletic teams, Unified Sports teams are designed to immerse students with intellectual disabilities in a facet of school culture that has largely eluded them. Nationwide, more than 2,000 schools in 42 states have the teams, where the ideal is for about half the athletes on each team to be students with intellectual…

  11. Micro Team Teaching.

    ERIC Educational Resources Information Center

    Altman, Burton E.

    A micro team teaching project was designed to give student teachers an increased responsibility for planning, executing, and evaluating an instructional program; to provide classroom teachers who had not previously taught in a teaching team with the opportunity to learn about the dynamics of team teaching through organizing teams of their own; to…

  12. Assessing Team Performance.

    ERIC Educational Resources Information Center

    Trimble, Susan; Rottier, Jerry

    Interdisciplinary middle school level teams capitalize on the idea that the whole is greater than the sum of its parts. Administrators and team members can maximize the advantages of teamwork using team assessments to increase the benefits for students, teachers, and the school environment. Assessing team performance can lead to high performing…

  13. Power lunch: Teaming to train

    SciTech Connect

    Sartoris, B.E. ); Snow, E.A.; Whitehead, J.K. )

    1991-05-01

    In 1990, the Hanford Site, a US Department of Energy project, changed missions from defense production to environmental restoration. An engineering group at Westinghouse Hanford Company, prime contractor at the Hanford Site, hired a trainer to help publish documents and develop group-specific courses. Boeing Computer Services Richland, subcontractor providing publications services, hired editor trainers. Kaiser Engineers Hanford, another subcontractor, provides site-wide Quality training. Four trainers, friends, met weekly for lunch: These meetings evolved into training exchanges. This presentation illustrates ways that inter- or intra-company teaming can work to improve technical communication. Additional benefits are significant cost and time savings to all companies involved.

  14. Team Management of Career Services in a Decentralized Environment.

    ERIC Educational Resources Information Center

    Ask, Karin

    2002-01-01

    At Cornell, a university with seven distinct undergraduate colleges, four self-managed teams are responsible for career services campus-wide-- and for significant enhancements in service delivery. This article provides an overview of the career services' teams and their respective missions. (GCP)

  15. 76 FR 21349 - Science Advisory Board Staff Office; Request for Nominations of Candidates to the EPA's Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... AGENCY Science Advisory Board Staff Office; Request for Nominations of Candidates to the EPA's Advisory Council on Clean Air Compliance Analysis (Council) EPA's Clean Air Scientific Advisory Committee (CASAC) and EPA's Science Advisory Board (SAB) AGENCY: Environmental Protection Agency. ACTION:...

  16. SOHO Mission Science Briefing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Footage shows the SOHO Mission Pre-Launch Science Briefing. The moderator of the conference is Fred Brown, NASA/GSFC Public Affairs, introduces the panel members. Included are Professor Roger Bonnet, Director ESA Science Program, Dr. Wesley Huntress, Jr., NASA Associate Administrator for Space Science and Dr. Vicente Domingo, ESA SOHO Project Scientist. Also present are several members from the SOHO Team: Dr. Richard Harrison, Art Poland, and Phillip Scherrer. The discussions include understanding the phenomena of the sun, eruption of gas clouds into the atmosphere, the polishing of the mirrors for the SOHO satellite, artificial intelligence in the telescopes, and the launch and operating costs. The panel members are also seen answering questions from various NASA Centers and Paris.

  17. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Simnett, G. M.

    The scientific goals, instrumentation and operation, and results from the Solar Maximum Mission are described. The spacecraft was launched to observe the peak of the solar cycle and the impulsive phase of large flares. Instrumentation included a gamma ray spectrometer, X ray burst spectrometer, imaging spectrometer, and polychromator, a UV spectrometer and polarimeter, a coronagraph/polarimeter, and an active cavity radiometer for measurements at wavelengths ranging from the Hα line at 6563 A up to the gamma ray region of the spectrum. Command programs were prepared one day in advance by each team for its instrument, and limited readjustment was available in real-time. The spacecraft was equipped to, and did, point the instruments at one region for an expected flare build-up, and maintain that heading for an extended period of time through the appearance, development, and demise of the flare.

  18. Developing Expert Teams with a Strong Safety Culture

    NASA Technical Reports Server (NTRS)

    Rogers, David G.

    2010-01-01

    Would you like to lead a world renowned team that draws out all the talents and expertise of its members and consistently out performs all others in the industry? Ever wonder why so many organizations fail to truly learn from past mistakes only to repeat the same ones at a later date? Are you a program/project manager or team member in a high-risk organization where the decisions made often carry the highest of consequences? Leadership, communication, team building, critical decision-making and continuous team improvement skills and behaviors are mere talking points without the attitudes, commitment and strategies necessary to make them the very fabric of a team. Developing Expert Teams with a Strong Safety Culture, will provide you with proven knowledge and strategies to take your team soaring to heights you may have not thought possible. A myriad of teams have applied these strategies and techniques within their organization team environments: military and commercial aviation, astronaut flight crews, Shuttle flight controllers, members of the Space Shuttle Program Mission Management Team, air traffic controllers, nuclear power control teams, surgical teams, and the fire service report having spectacular success. Many industry leaders are beginning to realize that although the circumstances and environments of these teams may differ greatly to their own, the core elements, governing principles and dynamics involved in managing and building a stellar safety conscious team remain identical.

  19. Developing Expert Teams with a Strong Safety Culture

    NASA Technical Reports Server (NTRS)

    Rogers, David G.

    2010-01-01

    Would you like to lead a world renowned team that draws out all the talents and expertise of its members and consistently out performs all others in the industry? Ever wonder why so many organizations fail to truly learn from past mistakes only to repeat the same ones at a later date? Are you a program/project manager or team member in a high-risk organization where the decisions made often carry the highest of consequences? Leadership, communication, team building, critical decision-making and continuous team improvement skills and behaviors are mere talking points without the attitudes, commitment and strategies necessary to make them the very fabric of a team. Developing Expert Teams with a Strong Safety Culture, will provide you with proven knowledge and strategies to take your team soaring to heights you may have not thought possible. A myriad of teams have applied these strategies and techniques within their organization team environments: military and commercial aviation, astronaut flight crews, Shuttle flight controllers, members of the Space Shuttle Program Mission Management Team, air traffic controllers, nuclear power control teams, surgical teams, and the fire service report having spectacular success. Many industry leaders are beginning to realize that although the circumstances and environments of these teams may differ greatly to their own, the core elements, governing principles and dynamics involved in managing and building a stellar safety conscious team remain identical.

  20. Team Leader Structuring for Team Effectiveness and Team Learning in Command-and-Control Teams.

    PubMed

    van der Haar, Selma; Koeslag-Kreunen, Mieke; Euwe, Eline; Segers, Mien

    2017-04-01

    Due to their crucial and highly consequential task, it is of utmost importance to understand the levers leading to effectiveness of multidisciplinary emergency management command-and-control (EMCC) teams. We argue that the formal EMCC team leader needs to initiate structure in the team meetings to support organizing the work as well as facilitate team learning, especially the team learning process of constructive conflict. In a sample of 17 EMCC teams performing a realistic EMCC exercise, including one or two team meetings (28 in sum), we coded the team leader's verbal structuring behaviors (1,704 events), rated constructive conflict by external experts, and rated team effectiveness by field experts. Results show that leaders of effective teams use structuring behaviors more often (except asking procedural questions) but decreasingly over time. They support constructive conflict by clarifying and by making summaries that conclude in a command or decision in a decreasing frequency over time.

  1. Team Leader Structuring for Team Effectiveness and Team Learning in Command-and-Control Teams

    PubMed Central

    van der Haar, Selma; Koeslag-Kreunen, Mieke; Euwe, Eline; Segers, Mien

    2017-01-01

    Due to their crucial and highly consequential task, it is of utmost importance to understand the levers leading to effectiveness of multidisciplinary emergency management command-and-control (EMCC) teams. We argue that the formal EMCC team leader needs to initiate structure in the team meetings to support organizing the work as well as facilitate team learning, especially the team learning process of constructive conflict. In a sample of 17 EMCC teams performing a realistic EMCC exercise, including one or two team meetings (28 in sum), we coded the team leader’s verbal structuring behaviors (1,704 events), rated constructive conflict by external experts, and rated team effectiveness by field experts. Results show that leaders of effective teams use structuring behaviors more often (except asking procedural questions) but decreasingly over time. They support constructive conflict by clarifying and by making summaries that conclude in a command or decision in a decreasing frequency over time. PMID:28490856

  2. Physiological monitoring of team and task stressors

    NASA Astrophysics Data System (ADS)

    Orasanu, Judith; Tada, Yuri; Kraft, Norbert; Fischer, Ute

    2005-05-01

    Sending astronauts into space, especially on long-durations missions (e.g. three-year missions to Mars), entails enormous risk. Threats include both physical dangers of radiation, bone loss and other consequences of weightlessness, and also those arising from interpersonal problems associated with extended life in a high-risk isolated and confined environment. Before undertaking long-duration missions, NASA seeks to develop technologies to monitor indicators of potentially debilitating stress at both the individual and team level so that countermeasures can be introduced to prevent further deterioration. Doing so requires a better understanding of indicators of team health and performance. To that end, a study of team problem solving in a simulation environment was undertaken to explore effects of team and task stress. Groups of four males (25-45 yrs) engaged in six dynamic computer-based Antarctic search and rescue missions over four days. Both task and team stressors were manipulated. Physiological responses (ECG, respiration rate and amplitude, SCL, EMG, and PPG); communication (voice and email); individual personality and subjective team dynamics responses were collected and related to task performance. Initial analyses found that physiological measures can be used to identify transient stress, predict performance, and reflect subjective workload. Muscle tension and respiration were the most robust predictors. Not only the level of arousal but its variability during engagement in the task is important to consider. In general, less variability was found to be associated with higher levels of performance. Individuals scoring high on specific personality characteristics responded differently to task stress.

  3. Overview of a Preliminary Destination Mission Concept for a Human Orbital Mission to the Martial Moons

    NASA Technical Reports Server (NTRS)

    Mazanek, D. D.; Abell, P. A.; Antol, J.; Barbee, B. W.; Beaty, D. W.; Bass, D. S.; Castillo-Rogez, J. C.; Coan, D. A.; Colaprete, A.; Daugherty, K. J.; hide

    2012-01-01

    The National Aeronautics and Space Administration s Human Spaceflight Architecture Team (HAT) has been developing a preliminary Destination Mission Concept (DMC) to assess how a human orbital mission to one or both of the Martian moons, Phobos and Deimos, might be conducted as a follow-on to a human mission to a near-Earth asteroid (NEA) and as a possible preliminary step prior to a human landing on Mars. The HAT Mars-Phobos-Deimos (MPD) mission also permits the teleoperation of robotic systems by the crew while in the Mars system. The DMC development activity provides an initial effort to identify the science and exploration objectives and investigate the capabilities and operations concepts required for a human orbital mission to the Mars system. In addition, the MPD Team identified potential synergistic opportunities via prior exploration of other destinations currently under consideration.

  4. The discipline of teams.

    PubMed

    Katzenbach, J R; Smith, D K

    1993-01-01

    Groups don't become teams because that is what someone calls them. Nor do teamwork values by themselves ensure team performance. So what is a team? How can managers know when the team option makes sense and what they can do to ensure team success? In this article, drawn from their recent book The Wisdom of Teams, McKinsey partners Jon Katzenbach and Douglas Smith answer these questions and outline the discipline that makes a real team. The essence of a team is shared commitment. Without it, groups perform as individuals; with it, they become a powerful unit of collective performance. The best teams invest a tremendous amount of time shaping a purpose that they can own. The best teams also translate their purpose into specific performance goals. And members of successful teams pitch in and become accountable with and to their teammates. The fundamental distinction between teams and other forms of working groups turns on performance. A working group relies on the individual contributions of its members for group performance. But a team strives for something greater than its members could achieve individually. In short, an effective team is always worth more than the sum of its parts. Katzenbach and Smith identify three basic types of teams: teams that recommend things--task forces or project groups; teams that make or do things--manufacturing, operations, or marketing groups; and teams that run things--groups that oversee some significant functional activity. For managers, the key is knowing where in the organization real teams should be encouraged. Team potential exists anywhere hierarchy or organizational boundaries inhibit good performance.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Developing Your Dream Team

    ERIC Educational Resources Information Center

    Gatlin, Kenda

    2005-01-01

    Almost anyone has held various roles on a team, be it a family unit, sports team, or a project-oriented team. As an educator, one must make a conscious decision to build and invest in a team. Gathering the best team possible will help one achieve one's goals. This article explores some of the key reasons why it is important to focus on the team…

  6. Concurrent engineering: Spacecraft and mission operations system design

    NASA Technical Reports Server (NTRS)

    Landshof, J. A.; Harvey, R. J.; Marshall, M. H.

    1994-01-01

    Despite our awareness of the mission design process, spacecraft historically have been designed and developed by one team and then turned over as a system to the Mission Operations organization to operate on-orbit. By applying concurrent engineering techniques and envisioning operability as an essential characteristic of spacecraft design, tradeoffs can be made in the overall mission design to minimize mission lifetime cost. Lessons learned from previous spacecraft missions will be described, as well as the implementation of concurrent mission operations and spacecraft engineering for the Near Earth Asteroid Rendezvous (NEAR) program.

  7. Historical trends of participation of women in robotic spacecraft missions

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie A.; Dones, Luke; Gay, Pamela; Cohen, Barbara; Horst, Sarah; Lakdawalla, Emily; Spickard, James; Milazzo, Moses; Sayanagi, Kunio M.; Schug, Joanna

    2015-11-01

    For many planetary scientists, being involved in a spacecraft mission is the highlight of a career. Many young scientists hope to one day be involved in such a mission. We will look at the science teams of several flagship-class spacecraft missions to look for trends in the representation of groups that are underrepresented in science. We will start with The Galileo, Cassini, and Europa missions to the outer solar system as representing missions that began in the 1980s, 1990s and 2010s respectively. We would also like to extend our analysis to smaller missions and those to targets other than the outer solar system.

  8. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-03

    The terrain for the scientific work conducted by ICESCAPE scientists on July 4, 2010, is Arctic sea ice and melt ponds in the Chukchi Sea. The five-week field mission is dedicated to sampling the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  9. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-03

    Clark University student Christie Wood lowers a water sampler into a borehole on July 4, 2010, to collect water samples from below the Arctic sea ice off the north coast of Alaska. The research is part of NASA's ICESCAPE oceanographic mission to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  10. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-03

    Clark University's Karen Frey and Luke Trusel work amid sea ice in the Chukchi Sea on July 4, 2010, setting up an instrument that measures the optical properties of melt ponds. The research is part of NASA's ICESCAPE mission to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  11. ICESCAPE Mission

    NASA Image and Video Library

    2010-07-08

    Clark University's Luke Trusel works amid sea ice in the Chukchi Sea on July 9, 2010, and logs the depths at which measurements are collected below the ice. The research is part of NASA's ICESCAPE mission to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)

  12. When Teams Break Down: A Study of the Active Army/National Guard Feud of 1997.

    DTIC Science & Technology

    2007-11-02

    we find relevance for the Active Army and National Guard. In the 197 0s, psychologist B.W. Tuckman characterized team development in four stages ...importance of their contributions to the unit.Ř While much of this was surely written with small teams in mind, FM 22-102, Soldier Team Development ...reminds us that the principles of team development and cohesion are "key to success for all teams in all missions at all times.ř ESSENCE OF THE FEUD OF

  13. Complex collaborative problem-solving processes in mission control.

    PubMed

    Fiore, Stephen M; Wiltshire, Travis J; Oglesby, James M; O'Keefe, William S; Salas, Eduardo

    2014-04-01

    NASA's Mission Control Center (MCC) is responsible for control of the International Space Station (ISS), which includes responding to problems that obstruct the functioning of the ISS and that may pose a threat to the health and well-being of the flight crew. These problems are often complex, requiring individuals, teams, and multiteam systems, to work collaboratively. Research is warranted to examine individual and collaborative problem-solving processes in this context. Specifically, focus is placed on how Mission Control personnel-each with their own skills and responsibilities-exchange information to gain a shared understanding of the problem. The Macrocognition in Teams Model describes the processes that individuals and teams undertake in order to solve problems and may be applicable to Mission Control teams. Semistructured interviews centering on a recent complex problem were conducted with seven MCC professionals. In order to assess collaborative problem-solving processes in MCC with those predicted by the Macrocognition in Teams Model, a coding scheme was developed to analyze the interview transcriptions. Findings are supported with excerpts from participant transcriptions and suggest that team knowledge-building processes accounted for approximately 50% of all coded data and are essential for successful collaborative problem solving in mission control. Support for the internalized and externalized team knowledge was also found (19% and 20%, respectively). The Macrocognition in Teams Model was shown to be a useful depiction of collaborative problem solving in mission control and further research with this as a guiding framework is warranted.

  14. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-19

    JSC2010-E-086277 (19 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Holly Ridings holds the STS-132 mission logo.

  15. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-085365 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 2 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Emily Nelson holds the Expedition 23 mission logo.

  16. STS-132/ULF-4 Flight Control Team in FCR-1

    NASA Image and Video Library

    2010-05-20

    JSC2010-E-086504 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Scott Stover holds the Expedition 23 mission logo.

  17. STS-120 Orbit 2 Flight Control Team Photo

    NASA Image and Video Library

    2007-10-31

    JSC2007-E-095908 (31 Oct. 2007) --- The members of the STS-120 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Mike Moses holds the STS-120 mission logo.

  18. Analogue Missions on Earth, a New Approach to Prepare Future Missions on the Moon

    NASA Astrophysics Data System (ADS)

    Lebeuf, Martin

    Human exploration of the Moon is a target by 2020 with an initial lunar outpost planned in polar regions. Current architectures maintain a capability for sorties to other latitudes for science activities. In the early stages of design of lunar outpost infrastructure and science activity planning, it has been recognized that analogue missions could play a major role in Moon mission design. Analogue missions, as high fidelity simulations of human and robotic surface operations, can help field scientists and engineers develop and test strategies as well as user requirements, as they provide opportunities to groundtruth measurements, and for the team to share understanding of key science needs and key engineering trades. These types of missions also provide direct training in planning science operations, and in team building and communication. The Canadian Space Agency's Exploration Core Program targets the development of technology infrastructure elements in key areas of science, technology and robotics in preparation for its role in the future exploration of the Moon and Mars. Within this Program, Analogue Missions specifically target the operations requirements and lessons learned that will reduce costs and lower the risk of planetary surface missions. Analogue missions are simulations of planetary surface operations that take place at analogue sites on Earth. A terrestrial analogue site resembles in some key way: eg. geomorphologically or geochemically, a surface environment of another planet. An analogue mission can, therefore, be defined as an integrated set of activities that represent (or simulate) entire mission designs or narrowly focus on specific aspects of planned or potential future planetary exploration missions. Within the CSA's Exploration Core Program, Analogue Missions facilitate the maturation of science instruments and mission concepts by integrating ongoing space instrument and technology development programs with science and analogue elements. As

  19. Operating the Dual-Orbtier GRAIL Mission to Measure the Moon's Gravity

    NASA Technical Reports Server (NTRS)

    Beerer, Joseph G.; Havens, Glen G.

    2012-01-01

    The GRAIL mission is on track to satisfy all prime mission requirements. The performance of the orbiters and payload has been exceptional. Detailed pre-launch operations planning and validation have paid off. Prime mission timeline has been conducted almost exactly as laid out in the mission plan. Flight experience in the prime mission puts the flight team in a good position for completing the challenges of the extended mission where the science payoff is even greater

  20. Changes in team cognition after a retention interval: the benefits of mixing it up.

    PubMed

    Gorman, Jamie C; Cooke, Nancy J

    2011-12-01

    This paper examines the retention of team cognition with changes in team membership. Hypotheses are developed from shared cognition and interactive team cognition theories. We report a study of the effects of Short (3-6 weeks) versus Long (10-13 weeks) retention intervals and change (Mixed) versus no change (Intact) in team membership during the interval on shared knowledge, team process, and team performance. The study context was a three-person Unmanned Aerial Vehicle (UAV) simulator. The long retention interval resulted in significantly lower team process scores and, except for the Short-Intact condition, all teams suffered a drop in performance after the break. However, those teams recovered prebreak levels of performance after one UAV mission. The counterintuitive result was that team mixing resulted in significant knowledge and process gains. An exploratory communication analysis indicated that Mixed team communication is longer in duration than Intact team communication, and Long-interval teams communicated more frequently than Short-interval teams. Unlike the Long-interval communication frequency effect, the Mixed team communication duration effect lasted throughout the experiment, suggesting greater interaction experience for Mixed teams. An exploratory mediation analysis indicated that the shared cognition Input-Process-Output framework was a good fit for the Intact team data, but not for the Mixed team data. We conclude that there are team-learning benefits of team mixing and that the interactive team cognition theory accounts better for those benefits than shared cognition theory.