Science.gov

Sample records for ae aegypti larvae

  1. Oral Ingestion of Transgenic RIDL Ae. aegypti Larvae Has No Negative Effect on Two Predator Toxorhynchites Species

    PubMed Central

    Nordin, Oreenaiza; Donald, Wesley; Ming, Wong Hong; Ney, Teoh Guat; Mohamed, Khairul Asuad; Halim, Nor Azlina Abdul; Winskill, Peter; Hadi, Azahari Abdul; Muhammad, Zulkamal Safi'in; Lacroix, Renaud; Scaife, Sarah; McKemey, Andrew Robert; Beech, Camilla; Shahnaz, Murad; Alphey, Luke; Nimmo, Derric David; Nazni, Wasi Ahmed; Lee, Han Lim

    2013-01-01

    Dengue is the most important mosquito-borne viral disease. No specific treatment or vaccine is currently available; traditional vector control methods can rarely achieve adequate control. Recently, the RIDL (Release of Insect carrying Dominant Lethality) approach has been developed, based on the sterile insect technique, in which genetically engineered ‘sterile’ homozygous RIDL male insects are released to mate wild females; the offspring inherit a copy of the RIDL construct and die. A RIDL strain of the dengue mosquito, Aedes aegypti, OX513A, expresses a fluorescent marker gene for identification (DsRed2) and a protein (tTAV) that causes the offspring to die. We examined whether these proteins could adversely affect predators that may feed on the insect. Aedes aegypti is a peri-domestic mosquito that typically breeds in small, rain-water-filled containers and has no specific predators. Toxorhynchites larvae feed on small aquatic organisms and are easily reared in the laboratory where they can be fed exclusively on mosquito larvae. To evaluate the effect of a predator feeding on a diet of RIDL insects, OX513A Ae. aegypti larvae were fed to two different species of Toxorhynchites (Tx. splendens and Tx. amboinensis) and effects on life table parameters of all life stages were compared to being fed on wild type larvae. No significant negative effect was observed on any life table parameter studied; this outcome and the benign nature of the expressed proteins (tTAV and DsRed2) indicate that Ae. aegypti OX513A RIDL strain is unlikely to have any adverse effects on predators in the environment. PMID:23527029

  2. Workbook on Identification of Aedes Aegypti Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  3. Winter Refuge for Aedes aegypti and Ae. albopictus Mosquitoes in Hanoi during Winter

    PubMed Central

    Tsunoda, Takashi; Cuong, Tran Chi; Dong, Tran Duc; Yen, Nguyen Thi; Le, Nguyen Hoang; Phong, Tran Vu; Minakawa, Noboru

    2014-01-01

    Dengue occurs throughout the year in Hanoi, Vietnam, despite winter low temperatures <10°C. During July 2010 to March 2012, we surveyed monthly for Aedes larvae and pupae in 120 houses in 8 Hanoi districts. Aedes albopictus preferred discarded containers in summer and pupal density drastically decreased in winter. Aedes aegypti preferred concrete tanks and this preference increased in winter. Even in winter, the lowest water temperature found in concrete tanks was >14°C, exceeding the developmental zero point of Ae. aegypti. Although jars, drums and concrete tanks were the dominant containers previously (1994–97) in Hanoi, currently the percentage of residences with concrete tanks was still high while jars and drums were quite low. Our study showed that concrete tanks with broken lids allowing mosquitoes access were important winter refuge for Ae. aegypti. We also indicate a concern about concrete tanks serving as foci for Ae. aegypti to expand their distribution in cooler regions. PMID:24752230

  4. Pyrethroid resistance in Aedes aegypti larvae (Diptera: Culicidae) from Singapore.

    PubMed

    Koou, Sin-Ying; Chong, Chee-Seng; Vythilingam, Indra; Ng, Lee-Ching; Lee, Chow-Yang

    2014-01-01

    We report the first comprehensive insecticide susceptibility status ofAedes aegypti (L.) larvae from Singapore. The study indicated that Ae. aegypti is susceptible to temephos, although resistance (RR50 = 1.29-4.43-fold) couldbe developing. Of high concern is the detection of moderate to high resistance to permethrin (RR50 = 29-47-fold) and etofenprox (RR50 = 14-34-fold). Biolarvicide Bacillus thuringiensis israelensis (Bti) remains effective. The insecticide susceptibility profile of Ae. aegypti larvae was found to be homogenous among the different sites studied across the island city. The addition of synergists piperonyl butoxide, S,S,S,-tributyl phosphorotrithioate, and triphenyl phosphate generally failed to enhance the toxicity of the insecticides investigated, suggesting an insignificant role of metabolic-based resistance, and a possible involvement of target site resistance. Further biochemical investigation of specific metabolic enzyme activities suggested that detoxifying enzymes, mono-oxygenases, esterases, glutathione S-transferases, and altered acetylcholinesterases, generally did not contribute to the resistance observed. This study clearly demonstrated that pyrethroid resistance is widespread among Ae. aegypti population and lowered susceptibility to organophosphates is developing. PMID:24605467

  5. H+ V-ATPase-Energized Transporters in Brush Border Membrane Vesicles from Whole Larvae of Aedes Aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brush Border Membrane vesicles (BBMVs) from Whole larvae of Aedes aegypti (AeBBMVWs ) contain an H+ V-ATPase (V), a Na+/H+ antiporter, NHA1 (A) and a Na+-coupled, nutrient amino acid transporter, NAT8 (N), VAN for short. All V-ATPase subunits are present in the Ae. aegypti genome and in the vesicles...

  6. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    PubMed Central

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-01-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit. PMID:26175912

  7. QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti

    PubMed Central

    Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

    2014-01-01

    Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

  8. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions

    PubMed Central

    Ross, Perran A.; Endersby, Nancy M.; Hoffmann, Ary A.

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments. PMID:26745630

  9. Screening of Methanolic Plant Extracts against Larvae of Aedes aegypti and Anopheles stephensi in Mysore

    PubMed Central

    Mohankumar, Thirumalapura Krishnaiah; Shivanna, Kumuda Sathigal; Achuttan, Vijayan Valiakottukal

    2016-01-01

    Background: Mosquitoes transmit serious human diseases, causing millions of death every year. Vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. Nine different locally available medicinally important plants suspected to posse larvicidal property were screened against fourth instar larvae of Aedes aegypti and Anopheles stephensi to a series of concentrations of the methanolic extracts. Methods: Susceptibility tests on Ae. aegypti and An. stephensi were conducted using standard WHO methods. The larvae of two mosquito species were exposed to methanolic extracts and mortality counts were made after 24 hours of exposure as per WHO method. Larvae of Ae. aegypti were more susceptible than that of An. stephensi. Results: Among the nine plant species tested, Annona reticulata leaf extract was more effective against Ae. aegypti larvae with LC50 and LC90 values of 95.24 and 262.64 ppm respectively and against An. stephensi larvae 262.71 and 636.94 ppm respectively. The least efficacy was in Cosmos bipinnatus with LC50 and LC90 values of 442.6 and 1225.93 ppm against Ae. aegypti and LC50 and LC90 values of 840.69 and 1334.01 ppm of Thespesia populnea against An. stephensi. Conclusion: The crude methanolic extract of the An. reticulata with good larvicidal efficacy could be considered for further characterization to control mosquito vectors instead of chemical insecticides. High efficacy found in An. reticulata extract will be considered for further studies to isolate the bioactive compound. PMID:27308289

  10. Toxicity studies for indigenous Bacillus thuringiensis isolates from Malang city, East Java on Aedes aegypti larvae

    PubMed Central

    Gama, Zulfaidah Penata; Nakagoshi, Nobukazu; Suharjono; Setyowati, Faridah

    2013-01-01

    Objective To investigate the toxicity of indigenous Bacillus thuringiensis (B. thuringiensis)isolates from Malang City for controlling Aedes aegypti (Ae. aegypti) larvae. Methods Soil samples were taken from Purwantoro and Sawojajar sub-districts. Bacterial isolation was performed using B. thuringiensis selective media. Phenotypic characteristics of the isolates were obtained with the simple matching method. The growth and prevalence of spores were determined by the Total Plate Count method, and toxicity tests were also performed on the third instar larval stage of Ae. aegypti. The percentage of larval mortality was analysed using probit regression. The LC50 was analysed by ANOVA, and the Tukey HSD interval was 95%. Results Among the 33 selected bacterial isolates, six were obtained (PWR4-31, PWR4-32, SWJ4-2b, SWJ4-4b, SWJ-4k and SWJ5-1) that had a similar phenotype to reference B. thuringiensis. Based on the dendrogram, all of the bacterial isolates were 71% similar. Three isolates that had a higher prevalence of reference B. thuringiensis were PWR4-32, SWJ4-4b and SW5-1, of which the spore prevalence was 52.44%, 23.59%, 34.46%, respectively. These three indigenous isolates from Malang City successfully killed Ae. aegypti larvae. The PWR4-32 isolates were the most effective at killing the larvae. Conclusions Six indigenous B. thuringiensis isolates among the 33 bacterial isolates found in the Sawojajar and Purwantoro sub-districts were toxic to the third instar larvae of Ae. aegypti. The PWR4-32 isolates were identical to the reference B. thuringiensis and had 88% phenotype similarity. The PWR4-32 isolates had the highest spore prevalence (52.44%), and the early stationary phase occurred at 36 h. The PWR4-32 isolates were the most effective at killing Ae. aegypti larvae (LC50-72 h=2.3×108 cells/mL). PMID:23593589

  11. The use of Aedes aegypti larvae attractants to enhance the effectiveness of larvicides.

    PubMed

    Gonzalez, Paula V; Harburguer, Laura; González-Audino, Paola A; Masuh, Héctor M

    2016-06-01

    Aedes aegypti (L.) is an important dengue, chikungunya, and yellow fever vector. Immature stages of this species inhabit human-made containers placed in residential landscapes, and the application of larvicides inside containers that cannot be eliminated is still considered a priority in control programs. Larvicidal efficacy is influenced by several factors, including the formulation used, the water quality, and the susceptibility of larvae, among others. If an attractant can be incorporated into a slow-release larvicide formulation, it will be feasible to direct the larvae into the source of insecticide and thereby improving its efficacy. We studied the influence of 1-octen-3ol and 3-methylphenol on the rate of Ae. aegypti larvae mortality using the larvicides Bacillus thuringiensis var. israelensis (Bti), temephos, and spinosad. These chemicals were combined with the larvicides mixed with agar during the bioassays. Mortality was registered every 10 min, and a lethal time 50 (LT50) was calculated. The inclusion of the Ae. aegypti larvae attractants with the larvicides into a solid agar matrix improved their efficiency obtaining a strong and marked reduction in the LT50 compared with the use of larvicides alone. PMID:26922177

  12. Oviposition Behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Response to the Presence of Heterospecific and Conspecific Larvae.

    PubMed

    Gonzalez, Paula V; González Audino, Paola A; Masuh, Héctor M

    2016-03-01

    In mosquitoes, location of suitable sites for oviposition requires a set of visual, tactile, and olfactory cues that influences females before laying their eggs. The ability of gravid females to distinguish among potential oviposition sites that will or will not support the growth, development, and survival of their progeny is critical. Aedes aegypti (L.) and Aedes albopictus (Skuse) share ecological niches, being highly competitive in larval stage. We studied the oviposition behavior of both species in the presence of larvae of one or the other species (heterospecific or conspecific larvae). The number of eggs laid by gravid females on oviposition sites (water with different or the same species of Aedes larvae) were compared. The presence and density of heterospecific or conspecific larvae had a positive or negative effect on the ovipositional responses, measured as an oviposition activity index. For both species, the oviposition was not affected by heterospecific larvae with densities between 10 and 100 larvae in water, but a strong attractant behavior was observed for a density of 500 larvae in water. For Ae. albopictus in the presence of larvae of the same species (conspecific oviposition), we observed an attractant effect for larvae density of 10 but not for 100 or 500 larvae in water. Instead, for Ae. aegypti, we observed attraction only for 100 larvae, not for 10 or 500 larvae. Results presented here provide an additional insight about oviposition behavior responses of gravid females in the presence of conspecific and heterospecific larvae in breeding sites. PMID:26634825

  13. Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae.

    PubMed

    Figueira-Mansur, J; Ferreira-Pereira, A; Mansur, J F; Franco, T A; Alvarenga, E S L; Sorgine, M H F; Neves, B C; Melo, A C A; Leal, W S; Masuda, H; Moreira, M F

    2013-12-01

    Re-emergence of vector-borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P-glycoproteins (P-gps) are ATP-dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug resistance (MDR). In this study, we identified a putative P-glycoprotein in the Ae. aegypti database based on its significantly high identity with Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster and human P-gps. The basal ATPase activity of ATP-binding cassette transporters in larvae was significantly increased in the presence of MDR modulators (verapamil and quinidine). An eightfold increase in Ae. aegypti P-gp (AaegP-gp) gene expression was detected in temephos-treated larvae as determined by quantitative PCR. To analyse the potential role of AaegP-gp in insecticide efflux, a temephos larvicide assay was performed in the presence of verapamil. The results showed an increase of 24% in temephos toxicity, which is in agreement with the efflux reversing effect. RNA interference (RNAi)-mediated silencing of the AaegP-gp gene caused a significant increase in temephos toxicity (57%). In conclusion, we have demonstrated for the first time in insects that insecticide-induced P-gp expression can be involved in the modulation of insecticide efflux. PMID:23980723

  14. Behavioral Response of Aedes aegypti (Diptera: Culicidae) Larvae to Synthetic and Natural Attractants and Repellents.

    PubMed

    Gonzalez, Paula V; González Audino, Paola A; Masuh, Héctor M

    2015-11-01

    Aedes aegypti (L.) (Diptera: Culicidae) is the key vector of three important arboviral diseases: dengue, yellow fever, and chikungunya. Immature stages of this species inhabit human-made containers placed in residential landscapes. In this study, we evaluated a few compounds in a sensitive behavioral assay with Ae. aegypti larvae. The orientation of larvae to different compounds was surveyed using a performance index (PI). The PI represents the response to each odorant, where a value of +1 is indicative of full attraction and -1 represents complete repulsion. The widely used insect repellent N, N-diethyl-m-toluamide elicited a significantly negative PI, as did acetophenone and indole. A yeast extract, a known food source, elicited a significantly positive PI, as did 2-methylphenol, 1-octen-3-ol, 3-methylphenol, and fish food. On the other hand, no response was observed for the essential oil of Eucalyptus grandis x Eucalyptus camaldulensis at the concentration evaluated. Pretreatment of larvae with N-ethylmaleimide and ablation of the antennae resulted in a suppression of behavioral responses. The overall mobility of ablated larvae was indistinguishable from unablated controls, and absence of any visible locomotor dysfunction was observed. This work is a contribution to the study of the chemical ecology of disease vectors with the aim of developing more efficient tools for surveillance and control.Natural and synthetic compounds attractive to Ae. aegypti larvae should be incorporated into integrated pest management programs through the use of baited traps or by improving the efficacy of larvicides commonly used in control campaigns. PMID:26352935

  15. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality.

    PubMed

    Alkhaibari, Abeer M; Carolino, Aline T; Yavasoglu, Sare I; Maffeis, Thierry; Mattoso, Thalles C; Bull, James C; Samuels, Richard I; Butt, Tariq M

    2016-07-01

    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae

  16. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality

    PubMed Central

    Alkhaibari, Abeer M.; Carolino, Aline T.; Yavasoglu, Sare I.; Maffeis, Thierry; Mattoso, Thalles C.; Bull, James C.; Samuels, Richard I.; Butt, Tariq M.

    2016-01-01

    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world’s population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti

  17. Physiological and Morphological Aspects of Aedes aegypti Developing Larvae: Effects of the Chitin Synthesis Inhibitor Novaluron

    PubMed Central

    Farnesi, Luana C.; Brito, José M.; Linss, Jutta G.; Pelajo-Machado, Marcelo; Valle, Denise; Rezende, Gustavo L.

    2012-01-01

    Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae

  18. EFFICACY OF THAI NEEM OIL AGAINST AEDES AEGYPTI (L.) LARVAE.

    PubMed

    Silapanuntakul, Suthep; Keanjoom, Romnalin; Pandii, Wongdyan; Boonchuen, Supawadee; Sombatsiri, Kwanchai

    2016-05-01

    Trees with larvicidal activity may be found in Thailand. We conducted this study to evaluate the efficacy and length of efficacy of Thai neem (Azadirachta siamensis) oil emulsion and an alginate bead of Thai neem oil formulation against early fourth stage Aedes aegypti larvae using a dipping test. The Thai neem oil emulsion had significantly greater larvicidal activity than the alginate bead formulation at 12 to 60 hours post-exposure (p < 0.01). The Thai neem oil formulation resulted in 100% mortality among the early fourth stage Aedes aegypti larvae at 48 hours, while the alginate bead formulation resulted in 98% larval mortality at 84 hours and 100% mortality at 96 hours. The mean larval mortality using the Thai neem oil emulsion dropped to < 25% by 12 days and with the alginate beads dropped to < 25% by 15 days of exposure. PMID:27405123

  19. Structure-activity relationship studies on derivatives of eudesmanolides from Inula helenium as toxicants against Aedes aegypti larvae and adults.

    PubMed

    Cantrell, Charles L; Pridgeon, Julia W; Fronczek, Frank R; Becnel, James J

    2010-07-01

    An Aedes aegypti larval toxicity bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids, sesquiterpenoids, and triterpenoids. Among these compounds, two eudesmanolides, alantolactone, and isoalantolactone showed larvicidal activities against Ae. aegypti and, therefore, were chosen for further structure-activity relationship study. In this study, structural modifications were performed on both alantolactone and isoalantolactone in an effort to understand the functional groups necessary for maintaining and/or increasing its activity, and to possibly lead to more effective insect-control agents. All parent compounds and synthetic modification reaction products were evaluated for their toxic activities against Ae. aegypti larvae and adults. Structure modifications included epoxidations, reductions, catalytic hydrogenations, and Michael additions to the alpha,beta-unsaturated lactones. None of the synthetic isomers synthesized and screened against Ae. aegypti larvae were more active than isoalantolactone itself which had an LC(50) value of 10.0 microg/ml. This was not the case for analogs of alantolactone for which many of the analogs had larvicidal activities ranging from 12.4 to 69.9 microg/ml. In general, activity trends observed from Ae. aegypti larval screening were not consistent with observations from adulticidal screening. The propylamine Michael addition analog of alantolactone was the most active adulticide synthesized with an LC(50) value of 1.07 microg/mosquito. In addition, the crystal structures of both alantolactone and isoalantolactone were determined using CuK(alpha) radiation, which allowed their absolute configurations to be determined based on resonant scattering of the light atoms. PMID:20658657

  20. Effect of Chloroxylon swietenia Dc bark extracts against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi larvae.

    PubMed

    Balasubramanian, Jayaprasad; Subramanian, Sharavanan; Kaliyan, Veerakumar

    2015-11-01

    Mosquitoes are the vector of more diseases and cause major health problems like malaria, dengue, chikungunya, and lymphatic filariasis. This article deals with the mosquito larvicidal activity of Chloroxylon swietenia Dc bark extracts against late third instar larvae of Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Methanolic crude extract of Ch. swietenia bark was obtained by soxhlet apparatus and aqueous crude extract by cold percolation method. The range of concentrations of the crude extracts used was 50, 100, 150, 200, and 250 ppm. The mortality and lethal concentration (LC50 and LC90) was calculated after a 24-h exposure period. Both the extracts showed trustworthy larvicidal activity. The larvicidal activity of the methanol extract of Ch. swietenia bark was higher than the aqueous extract, and the LC50 and the LC90 values of the methanol extract were found to be 124.70 and 226.26 μg/ml (Ae. aegypti), 130.57 and 234.67 ppm (Cu. quinquefasciatus), and 137.55 and 246.09 ppm (An. stephensi). The LC50 and the LC90 values of the aqueous extract were found to be 133.10 and 238.93 ppm (Ae. aegypti), 136.45 and 242.47 ppm (Cu. quinquefasciatus), and 139.43 and 248.64 ppm (An. stephensi). No mortality was observed in the control. Methanolic crude extract Ch. swietenia bark shows higher activity against An. stephensi than the other two tested larvae and aqueous extract. The results of the present study propose a possible way for further investigations to find out the active molecule responsible for the larvicidal activity of Ch. swietenia bark extracts. PMID:26246308

  1. Synthesis, activity, and QSAR studies of tryptamine derivatives on third-instar larvae of Aedes aegypti Linn.

    PubMed

    Oliveira, Rafael R B; Brito, Thaysnara B; Nepel, Angelita; Costa, Emmanoel V; Barison, Andersson; Nunes, Rogéria S; Santos, Roseli L C; Cavalcanti, Sócrates C H

    2014-01-01

    Special attention has been given to the mosquito Aedes aegypti Linn. (Diptera: Culicidae) owing to numerous dengue epidemic outbreaks worldwide. Failure to control vector spreading is accounted for unorganized urban growth and resistance to larvicides and insecticides. Therefore, researchers are currently searching for new and more efficient larvicides and insecticides to aid dengue control measures. Triptamine is known to affect insect behavior, development, and physiology. Expression of this compound in plants has reduced the growth rate of herbivore insects. In view of these facts, it was of our interest to synthesize triptamine amide derivatives as potential larvicides against Ae. aegypti, establishing a Structure-Activity Relationship. Eleven amide derivatives of triptamine were synthesized, characterized, and evaluated for their larvicidal activity against third-instar Ae. aegypti larvae. N-(2-(1H-indol-3-yl)ethyl)-2,2,2-trichloroacetamide exhibited the highest overall larvicidal potency, while N-(2-(1H-Indol-3-yl)ethyl) acetamide displayed the lowest larvicidal potency. A regression equation correlating the larvicidal activity with Log P was obtained. We have found a clear relationship between the larvicidal activity of non-chlorinated compounds and Log P. Analysis of the relationship between Log P and larvicidal activity against Ae. aegypti may be useful in the evaluation of potential larvicidal compounds. PMID:24295020

  2. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission

    PubMed Central

    2014-01-01

    Background Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. Methods Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Results Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. Conclusions These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we

  3. Public Health Response to Aedes aegypti and Ae. albopictus Mosquitoes Invading California, USA

    PubMed Central

    Kramer, Vicki; Yoshimizu, Melissa Hardstone; Metzger, Marco; Hu, Renjie; Padgett, Kerry; Vugia, Duc J.

    2015-01-01

    Aedes aegypti and Ae. albopictus mosquitoes, primary vectors of dengue and chikungunya viruses, were recently detected in California, USA. The threat of potential local transmission of these viruses increases as more infected travelers arrive from affected areas. Public health response has included enhanced human and mosquito surveillance, education, and intensive mosquito control. PMID:26401891

  4. Survival of larvivorous fish used for biological control of Aedes aegypti larvae in domestic containers with different chlorine concentrations.

    PubMed

    Cavalcanti, Luciano Pamplona de Góes; de Paula, Francisco José Júnior; Pontes, Ricardo José Soares; Heukelbach, Jorg; Lima, José Wellington de Oliveira

    2009-07-01

    The two fish species Betta splendens (Regan) and Poecilia reticulata (Peters) are known predators of Aedes aegypti (L., 1762) larvae. Both species have been used for biological control in northeastern Brazil. However, the feasibility of these fish for the control of Ae. aegypti larvae in domestic containers may be limited by their survival in chlorinated water, as supplied by the public water system. We exposed fish to three different concentrations of chlorine: 1, 1.5, and 2.0 mg/liter. All B. splendens survived at 1.0 mg/liter chlorine concentration; 72.5 and 39.3% of B. splendens survived chlorine concentrations of 1.5 and 2.0 mg/liter, respectively. In contrast, only 4.4% of P. reticulata survived at a chlorine concentration of 1.0 mg/liter. We conclude that B. splendens may be an appropriate species for biological control of Ae. aegypti in domestic water tanks. PMID:19645286

  5. Cumulative mortality of Aedes aegypti larvae treated with compounds.

    PubMed

    Torres, Sandra Maria; Cruz, Nadine Louise Nicolau da; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; Silva Júnior, Valdemiro Amaro da

    2014-06-01

    OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs. PMID:25119939

  6. Cumulative mortality of Aedes aegypti larvae treated with compounds

    PubMed Central

    Torres, Sandra Maria; da Cruz, Nadine Louise Nicolau; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; da Silva, Valdemiro Amaro

    2014-01-01

    OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs. PMID:25119939

  7. Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae.

    PubMed

    Soonwera, Mayura; Phasomkusolsil, Siriporn

    2016-04-01

    Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils were evaluated to determine mortality rates, morphological aberrations, and persistence when used against third and fourth larval instars of Aedes aegypti and Anopheles dirus. The oils were evaluated at 1, 5, and 10 % concentrations in mixtures with soybean oil. Persistence of higher concentrations was measured over a period of 10 days. For Ae. aegypti, both plant oils caused various morphological aberrations to include deformed larvae, incomplete eclosion, white pupae, deformed pupae, dead normal pupae, and incomplete pupal eclosion. All of these aberrations led to larval mortality. In Ae. aegypti larvae, there were no significant differences in mortality at days 1, 5, and 10 or between third and fourth larval instar exposure. In An. dirus, morphological aberrations were rare and S. aromaticum oil was more effective in causing mortality among all larval stages. Both oils were equally effective at producing mortality on days 1, 5, and 10. Both oils had slightly increased LT50 rates from day 1 to day 10. In conclusion, both lemongrass and clove oils have significant effects on the immature stages of Ae. aegypti and An. dirus and could potentially be developed for use as larvicides. PMID:26796022

  8. Bioactivity of seagrass against the dengue fever mosquito Aedes aegypti larvae

    PubMed Central

    Ali, M Syed; Ravikumar, S; Beula, J Margaret

    2012-01-01

    Objective To identify the larvicidal activity of the seagrass extracts. Methods Seagrass extracts, Syringodium isoetifolium (S. isoetifolium), Cymodocea serrulata and Halophila beccarii, were dissolved in DMSO to prepare a graded series of concentration. Batches of 25 early 4th instars larvae of Aedes aegypti (Ae. aegypti) were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (0.01 mg – 0.1 mg). After 24 h the mortality rate was identified with the formulae [(% of test mortality – % of control mortality)/(100 – % of control mortality)] × 100. Each experiment was conducted with three replicates and a concurrent control group. A control group consisted of 1 mL of DMSO and 199 mL of distilled water only. Results : The root extract of S. isoetifolium showed maximum larvicidal activity with minimum concentration of extract of LC50= 0.0 604 ± 0.0 040)µg/mL with lower confidence limit (LCL) – upper confidence limit (UCL) = (0.051–0.071) and LC90=0.0 972µg/mL followed by leaf extract of S. isoetifolium showed LC50= (0.062 ± 0.005)µg/mL. The regression equation of root and leaf extract of S. isoetifolium for 4th instar larvae were Y= 4.909 + 1.32x (R2= 0.909) and Y= 2.066 + 1.21x (R2 =0.897) respectively. The results of the preliminary phytochemical constituents shows the presence of saponin, steroids, terpenoid, phenols, protein and sugars. Conclusions From the present study the ethanolic extracts of seagrass of S. isoetifolium possesses lead compound for development of larvicidal activity. PMID:23569973

  9. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae

    PubMed Central

    Patil, Chandrashekhar D; Borase, Hemant P; Salunkhe, Rahul B; Suryawanshi, Rahul K; Narkhade, Chandrakant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-01-01

    Background: We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Methods: Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. Results: LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2nd and 3rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2nd and 3rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi, respectively. Conclusion: Leaves extracts of Go. hirsutum (Bt) is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management. PMID:25629069

  10. Susceptibility of Aedes aegypti and Culex quinquefasciatus Larvae to gedunin-related limonoids.

    PubMed

    Gurulingappa, Hallur; Tare, Vrushali; Pawar, Pushpa; Tungikar, Vijay; Jorapur, Yogesh R; Madhavi, Sriram; Bhat, Sujata V

    2009-06-01

    The major non-azadirachtin limonoids such as gedunin (1), epoxyazadiradione (3), nimbocinol (4), and nimolicinol (5) from Azadirachta indica A. Juss ('neem') and their derivatives were evaluated for their toxic action against fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus Say. Gedunin exhibited 100% toxic action against both the mosquito larvae at 50 and 10 ppm. Epoxyazadiradione and epoxynimolicinol also showed significant toxicities (> or =50%) against larvae of both mosquito species at 50 ppm. These neem limonoids can have benefits in mosquito-control programs. PMID:19551731

  11. The larvicidal activity of Agave sisalana against L4 larvae of Aedes aegypti is mediated by internal necrosis and inhibition of nitric oxide production.

    PubMed

    Nunes, Fabiola C; Leite, Jacqueline A; Oliveira, Louise H G; Sousa, Patrícia A P S; Menezes, Márcio C; Moraes, João P S; Mascarenhas, Sandra R; Braga, Valdir A

    2015-02-01

    Dengue is a viral disease that affects about 50 million people per year around the world. The aim of this study was to investigate the larvicidal activity of Agave sisalana crude extract in order to develop a new insecticide against Aedes aegypti. In larvicidal activity assays, fourth-stage Ae. aegypti larvae were exposed to different concentrations of A. sisalana crude extract for 3, 6, 12, and 24 h for determining the LC50. Next, we explored its cytotoxic activity by flow cytometry. Furthermore, histological alterations were confirmed by histopathological analysis, and the nitric oxide (NO) production by hemocytes was checked after different periods of exposure to A. sisalana crude extract. The LC50 was 4.5 ± 0.07 mg/mL. In addition, flow cytometry revealed an increase of cellular necrosis (21 and 16.5 % after 12 and 24 h, respectively) in larvae that were exposed to A. sisalana crude extract. The histological analysis revealed cell lysis and destruction of the peritrophic membrane. Furthermore, there was a reduction in the concentration of NO in the hemolymph from larvae exposed to A. sisalana crude extract after 3, 6, and 24 h (5.3 ± 4.3 vs. 22.7 ± 5.2 μM, 4.3 ± 5.5 vs. 25.4 ± 6.6 μM, and 6 ± 1.7 vs. 37.1 ± 7.8 μM, respectively). Our findings show that A. sisalana crude extract constitutes an effective larvicidal agent against Ae. aegypti larvae due to its necrotizing activity in hemocytes and inhibition of the NO production. PMID:25395257

  12. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae.

    PubMed

    Cheng, Sen-Sung; Chang, Hui-Ting; Chang, Shang-Tzen; Tsai, Kun-Hsien; Chen, Wei-June

    2003-08-01

    The bioactivity of 14 essential oils from five plants has been studied using the brine shrimp lethality test and the Aedes aegypti larvicidal assay. All essential oils screened had LC50 values smaller than 200 microg/ml, showing significant lethality against brine shrimp. In addition, nine of the 14 essential oils tested showed toxicity against the fourth-instar A. aegypti larvae in 24 h (LC50<100 microg/ml). Of these, the leaf and bark essential oils of Cryptomeria japonica demonstrated high larvicidal activity, the most active being the leaf essential oil of C. japonica, with a LC50=37.6 microg/ml (LC90=71.9 microg/ml), followed by the bark essential oil of C. japonica also showing high activity against A. aegypti larvae, with a LC50=48.1 microg/ml (LC90=130.3 microg/ml). The results obtained from this study suggest that the leaf and bark essential oils of C. japonica are promising as larvicides against A. aegypti larvae and could be useful in the search for new natural larvicidal compounds. PMID:12676507

  13. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae

    PubMed Central

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution

  14. Efficacy of photodynamic therapy against larvae of Aedes aegypti: confocal microscopy and fluorescence-lifetime imaging

    NASA Astrophysics Data System (ADS)

    de Souza, L. M.; Pratavieira, S.; Inada, N. M.; Kurachi, C.; Corbi, J.; Guimarães, F. E. G.; Bagnato, V. S.

    2014-03-01

    Recently a few demonstration on the use of Photodynamic Reaction as possibility to eliminate larvae that transmit diseases for men has been successfully demonstrated. This promising tool cannot be vastly used due to many problems, including the lake of investigation concerning the mechanisms of larvae killing as well as security concerning the use of photosensitizers in open environment. In this study, we investigate some of the mechanisms in which porphyrin (Photogem) is incorporated on the Aedes aegypti larvae previously to illumination and killing. Larvae at second instar were exposed to the photosensitizer and after 30 minutes imaged by a confocal fluorescence microscope. It was observed the presence of photosensitizer in the gut and at the digestive tract of the larva. Fluorescence-Lifetime Imaging showed greater photosensitizer concentration in the intestinal wall of the samples, which produces a strong decrease of the Photogem fluorescence lifetime. For Photodynamic Therapy exposition to different light doses and concentrations of porphyrin were employed. Three different light sources (LED, Fluorescent lamp, Sun light) also were tested. Sun light and fluorescent lamp shows close to 100% of mortality after 24 hrs. of illumination. These results indicate the potential use of photodynamic effect against the LARVAE of Aedes aegypti.

  15. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae.

    PubMed

    da Silva Costa, Marilza; de Paula, Sérgio Oliveira; Martins, Gustavo Ferreira; Zanuncio, José Cola; Santana, Antônio Euzébio Goulart; Serrão, José Eduardo

    2016-01-01

    Annonaceous acetogenins are botanical compounds with good potential for use as insecticides. In the vector, Aedes aegypti (L.) (Diptera: Culicidae), squamocin (acetogenin) has been reported to be a larvicide and cytotoxic, but the modes of action of this molecule are still poorly understood. This study evaluated the changes in the cell morphology, and in the expression of genes, for autophagy (Atg1 and Atg8), for membrane ion transporter V-ATPase, and for water channel aquaporin-4 (Aqp4) in the midgut of A. aegypti larvae exposed to squamocin from Annona mucosa Jacq. (Annonaceae). Squamocin showed cytotoxic action with changes in the midgut epithelium and digestive cells of A. aegypti larvae, increase in the expression for autophagy gene Atg1 and Atg8, decrease in the expression of V-ATPase, decrease in the expression of Aqp4 gene in LC20 and inhibition of Apq4 genes in the midgut of this vector in LC50. These multiple modes of action for squamocin are described for the first time in insects, and they are important because different sites of action of squamocin from A. mucosa may reduce the possibility of resistance of A. aegypti to this molecule. PMID:27532504

  16. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae

    PubMed Central

    de Paula, Sérgio Oliveira; Martins, Gustavo Ferreira; Zanuncio, José Cola

    2016-01-01

    Annonaceous acetogenins are botanical compounds with good potential for use as insecticides. In the vector, Aedes aegypti (L.) (Diptera: Culicidae), squamocin (acetogenin) has been reported to be a larvicide and cytotoxic, but the modes of action of this molecule are still poorly understood. This study evaluated the changes in the cell morphology, and in the expression of genes, for autophagy (Atg1 and Atg8), for membrane ion transporter V-ATPase, and for water channel aquaporin-4 (Aqp4) in the midgut of A. aegypti larvae exposed to squamocin from Annona mucosa Jacq. (Annonaceae). Squamocin showed cytotoxic action with changes in the midgut epithelium and digestive cells of A. aegypti larvae, increase in the expression for autophagy gene Atg1 and Atg8, decrease in the expression of V-ATPase, decrease in the expression of Aqp4 gene in LC20 and inhibition of Apq4 genes in the midgut of this vector in LC50. These multiple modes of action for squamocin are described for the first time in insects, and they are important because different sites of action of squamocin from A. mucosa may reduce the possibility of resistance of A. aegypti to this molecule. PMID:27532504

  17. Field evaluation against Aedes aegypti larvae of aluminum-carboxymethylcellulose-encapsulated spore-toxin complex formulation of Bacillus thuringiensis serovar israelensis.

    PubMed

    Aguilar-Meza, O; Ramírez-Suero, M; Bernal, J S; Ramírez-Lepe, M

    2010-06-01

    The insecticidal activity after field exposure of an aluminum-carboxymethylcellulose microencapsulated formulation of Bacillus thuringiensis israelensis (Bti) spore-toxin complex, with malachite green as photoprotective agent, was evaluated using third-instar Aedes aegypti (L.) larvae in laboratory bioassays in Veracruz, México. Four insecticide treatments and an untreated control were compared at low and high doses over 96 d of field exposure under full sun or full shade conditions: 1) microencapsulated Bti spore-toxin complex, 2) nonmicroencapsulated Bti spore-toxin complex, 3) a commercial Bti formulation, 4) a commercial formulation of temephos, and 5) an untreated control. The low and high doses corresponded to the LC50 and LC90 concentrations for the Bti insecticides and to 0.5 and 1.0 mg/liter for temephos; the corresponding values for the microencapsulated Bti and commercial Bti, estimated in this study, were 0.061 and 0.14 mg/ml and 0.13 and 0.30 mg/ml, respectively. Overall, the study demonstrated that microencapsulation with aluminum-carboxymethylcellulose improved the activity against Ae. aegypti larvae of B. t. israelensis spore-toxin complex over that of a nonmicroencapsulated spore-toxin complex and that the improvement was particularly important under full sun and high dose. Moreover, insecticidal activity of the microencapsulated B. thuringiensis israelensis spore-toxin complex was superior to that of a commercial B. thuringiensis israelensis formulation and comparable to that of the chemical insecticide temephos. Finally, it was suggested that the microencapsulated B. thuringiensis israelensis formulation should be evaluated for field use in Veracruz because its activity against Ae. aegypti larvae remained high through 31 d and this would allow halving of the current insecticide application frequency. PMID:20568600

  18. Functional and immunohistochemical characterization of CCEae3a, a carboxylesterase associated with temephos resistance in the major arbovirus vectors Aedes aegypti and Ae. albopictus.

    PubMed

    Grigoraki, Linda; Balabanidou, Vassileia; Meristoudis, Christos; Miridakis, Antonis; Ranson, Hilary; Swevers, Luc; Vontas, John

    2016-07-01

    Temephos is a major organophosphate (OP) larvicide that has been used extensively for the control of Aedes albopictus and Aedes aegypti, the major vectors for viral diseases, such as dengue fever, zika and chikungunya. Resistance to temephos has been recently detected and associated with the upregulation of carboxylesterases (CCEs) through gene amplification, in both species. Here, we expressed the CCEae3a genes which showed the most striking up-regulation in resistant Aedes strains, using the baculovirus system. All CCEae3a variants encoded functional enzymes, with high activity and preference for p-nitrophenyl butyrate, a substrate that was shown capable to differentiate temephos resistant from susceptible Aedes larvae. Enzyme kinetic studies showed that CCEae3as from both Ae. aegypti and Ae. albopictus (CCEae3a_aeg and CCEae3a_alb, respectively) strongly interact with temephos oxon and slowly released the OP molecule, indicating a sequestration resistance mechanism. No difference was detected between resistant and susceptible CCEae3a_aeg variants (CCEae3a_aegR and CCEae3a_aegS, respectively), indicating that previously reported polymorphism is unlikely to play a role in temephos resistance. HPLC/MS showed that CCEae3as were able to metabolize temephos oxon to the temephos monoester [(4-hydroxyphenyl) sulfanyl] phenyl O,O-dimethylphosphorothioate. Western blot and immunolocalization studies, based on a specific antibody raised against the CCEae3a_alb showed that the enzyme is expressed at higher levels in resistant insects, primarily in malpighian tubules (MT) and nerve tissues. PMID:27180726

  19. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-11-01

    Microbial control agents offer alternatives to chemical pest control, as they can be more selective than chemical insecticides. The present study evaluates the mosquito larvicidal and pupicidal potential of fungus mycelia using ethyl acetate and methanol solvent extracts produced by Aspergillus terreus against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. The A. terreus mycelia were extracted after 15 days from Sabouraud dextrose broth medium. The ethyl acetate extracts showed lethal concentration that kills 50% of the exposed larvae (LC50) and lethal concentration that kills 90% of the exposed larvae (LC90) values of the first, second, third, and fourth instar larvae of An. stephensi (LC50 = 97.410, 102.551, 29.802, and 8.907; LC90 = 767.957, 552.546, 535.474, and 195.677 μg/ml), Cx. quinquefasciatus (LC50 = 89.584, 74.689, 68.265, and 67.40; LC90 = 449.091, 337.355, 518.793, and 237.347 μg/ml), and Ae. aegypti (LC50 = 83.541, 84.418, 80.407, and 95.926; LC90 = 515.464, 443.167, 387.910, and 473.998 μg/ml). Pupicidal activity of mycelium extracts was tested against An. stephensi (LC50 = 25.228, LC90 = 140.487), Cx. quinquefasciatus (LC50 = 54.525, LC90 = 145.366), and Ae. aegypti (LC50 = 10.536, LC90 = 63.762 μg/ml). At higher concentration (500 μg/ml), mortality starts within the first 6 h of exposure. One hundred percent mortality occurs at 24-h exposure. The overall result observed that effective activity against selected mosquito larvae and pupae after 24 h was a dose and time-dependent activity. These ensure that the resultant mosquito population reduction is substantial even where the larvicidal and pupicidal potential is minimal. The FTIR spectra of ethyl acetate extract reflect prominent peaks (3448.32, 3000.36, 2914.59, 2118.73, 1668.21, 1436.87, 1409.02, 954.33, 901.13, and 704.67 cm(-1)). The spectra showed a sharp absorption band at 1314.66 cm(-1) assigned to wagging vibration of

  20. A Trypsin Inhibitor from Clitoria fairchildiana Cotyledons is Active Against Digestive Enzymes of Aedes aegypti Larvae.

    PubMed

    de Oliveira, Lucilene O; Fernandes, Kátia V S; Pádua, Dayanni de Souza; Carvalho, André de O; Lemos, Francisco J A; Gomes, Valdirene M; Oliveira, Antônia E A; Ferreira, André T da Silva; Perales, Jonas

    2015-01-01

    Aedes aegypti, the principal mosquito vector of yellow fever, dengue fever and chikungunya fever virus-transmitted diseases, is an insect closely associated with humans and their housing habitats. As there is no commercially available vaccine, prevention is the most suggested form of avoiding disease spreading and a number of studies are being developed in order to give support to vector control operations. The present study reports on the identification of a trypsin inhibitor isolated from cotyledons of the Clitoria fairchildiana amazonic tree seeds, which was able to reduce by 87.93 % the activity of digestive enzymes of fourth instar A. aegypti larva. A partial amino acid sequence showed strong similarity with sequences from several trypsin inhibitors already reported in the literature. The 13,000 Da isolated inhibitor was seen to be active solely against trypsin-like enzymes, neither acting on papain, α-amylase nor on other serine proteases, such as elastase, chymotrypsin or subtilisin. At least six from seven active digestive proteases from A. aegypti larvae, visualized by zymography, were severely affected soon after exposed to the inhibitor. The strong and specific action of the isolated inhibitor against trypsin digestive enzymes of this insect vector led us to believe that this protein may be a good candidate for a prospective alternative biocontrol method. PMID:26156641

  1. Behavioral Observations and Sound Recordings of Free-Flight Mating Swarms of Ae. aegypti (Diptera: Culicidae) in Thailand

    PubMed Central

    CATOR, LAUREN J.; ARTHUR, BENJAMIN J.; PONLAWAT, ALONGKOT; HARRINGTON, LAURA C.

    2016-01-01

    Sound plays an important role in the mating behavior of mosquitoes, including Aedes aegypti (L). Males orient to the fundamental wing beat frequency of females, and both sexes actively modulate their flight tone before mating to converge at harmonic frequencies. The majority of studies on mosquito mating acoustics have been conducted in the laboratory using tethered individuals. In this study, we present the first free-flight recording of naturally forming Ae. aegypti swarms in Thailand. We describe mating behaviors and present results on the flight tone frequency and dynamics of wild pairs in free flight. To assess the importance of these behaviors in vector control programs, especially those using genetically modified mosquitoes, it will be critical to use methods, such as those described in this work, to measure mosquito mating behaviors in the field. PMID:21845959

  2. Effect of Moringa oleifera lectin on development and mortality of Aedes aegypti larvae.

    PubMed

    Coelho, Juliene S; Santos, Nataly D L; Napoleão, Thiago H; Gomes, Francis S; Ferreira, Rodrigo S; Zingali, Russolina B; Coelho, Luana C B B; Leite, Sônia P; Navarro, Daniela M A F; Paiva, Patrícia M G

    2009-11-01

    Aedes aegypti larvae have developed tolerance to many insecticides used for mosquito control. Moringa oleifera seeds contain a water-soluble lectin (WSMoL) and this paper reports the effect of M. oleifera seed extracts (MoE(1-15)) and WSMoL on development and survival of A. aegypti larvae. WSMoL peptide from in-gel trypsin digestion is also described. MoE(1-15) showed hemagglutinating activity and WSMoL had similarity with flocculating proteins from M. oleifera seeds. MoE(1) and MoE(3) delayed larval development which stopped in the third instar (L3) in MoE(6) and MoE(15). Significant (p<0.0001) larval mortality was only detected in MoE(15). Native WSMoL showed larvicidal activity (LC(50) 0.197 mg mL(-1)) and heated lectin, without hemagglutinating activity, did not kill fourth instar (L4) larvae. Optical microscopy showed that live L4 from MoE(1) presented underlying epithelium, increased gut lumen and hypertrophic segments; dead L4 from WSMoL were absent of underlying epithelium, had increased gut lumen and hypertrophic segments. The presence of hemagglutinating activity in the extracts suggests that soluble lectin promotes the delay of larval development and mortality; furthermore, the absence of larvicidal activity in heat-denatured WSMoL strengthens the involvement of lectin in this activity mechanism. PMID:19747711

  3. Defense reactions by larvae of Aedes aegypti during infection by the aquatic fungus Lagenidium giganteum (Oomycete).

    PubMed

    Brey, P T; Lebrun, R A; Papierok, B; Ohayon, H; Vennavalli, S; Hafez, J

    1988-07-01

    The adherence of zoospores of Lagenidium giganteum to the cuticle of mosquito larvae is the initial step in the infection process. Subsequently, a germ tube penetrates the integument, inducing a rapid melanization of the injured cuticle and epidermis. After entering the hemocoel the developing hyphae are occasionally encapsulated locally. This process is slow (6 to 12 h postincubation) and most frequently cell-free, although it can be mediated by circulating hemocytes. Sporadic hemocyte mediation of the humoral encapsulation process in larval stages of Culicidae adds a previously unreported dimension to this unusual type of defense reaction. The defense reactions of larvae of Aedes aegypti were ineffective against observed infection by Lagenidium giganteum. PMID:3416342

  4. Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides.

    PubMed

    Silva, W J; Dória, G A A; Maia, R T; Nunes, R S; Carvalho, G A; Blank, A F; Alves, P B; Marçal, R M; Cavalcanti, S C H

    2008-05-01

    The essential oils from leaves of Hyptis fruticosa (Lamiaceae) Salzm., H. pectinata (Lamiaceae) Poit., and Lippia gracilis (Verbenaceae) HBK were investigated for their larvicidal activity against Aedes aegypti and analyzed by GC/MS. Fifty-nine compounds, representing 91.28-98.39% of the essential oils, have been identified. A standard solution was used to make 20 mL solutions ranging from 30 to 2000 ppm. Twenty larvae between third and fourth stages were added to the essential oil solution. A mortality count was conducted 24 h after treatment. Essential oils LC50 and their confidence limits at 95% probability were calculated by the methods of Reed-Muench and Pizzi, respectively. The essential oil of Lippia gracilis showed potent insecticidal effect against Aedes aegypti larvae, the vector of dengue fever. Carvacrol and caryophyllene oxide were the main responsible for the activity of L. gracilis and H. pectinata. Minor compounds are probably acting synergistically to achieve H. fruticosa activity. PMID:17662602

  5. Effect of stalk and leaf extracts from Euphorbiaceae species on Aedes aegypti (Diptera, Culicidae) larvae.

    PubMed

    Lima, Maria Goretti Araújo de; Maia, Ismália Cassandra Costa; Sousa, Bruna Dantas de; Morais, Selene Maia de; Freitas, Sílvia Maria

    2006-01-01

    The objective of this study was to evaluate the larvicidal activity of essential oil aqueous solutions (hydrolates) obtained by steam distillation of stalks and leaves of Croton argyrophylloides, Croton nepetaefolius, Croton sonderianus and Croton zehntneri against Aedes aegypti larvae. Twenty-five larvae of third instar were placed in plastic beckers, containing the hydrolates (50 mL), in a four repetitions scheme. Water was used as control and the number of dead larvae was counted after 24 hours. The data obtained were submitted to Variance Analysis and Tukey test. Significant differences were observed among the hydrolates from different species and from different parts of each plant (p < 0.001). The hydrolates of stalk and leaf from C. nepetaefolius and C. zehntneri and leaf hydrolate of C. argyrophylloides presented 100% mortality against larvae. The compounds present in C. zenhtneri and C. nepetaefolius are oxygenated phenylpropanoids that are more soluble in water than the monoterpenes and sesquiterpenes detected in the oils of C. argyrophylloides and C. sonderianus. This study showed that all species analyzed presented compounds with larvicidal properties, with differences between each plant parts. PMID:17119677

  6. Comparative efficacy of existing surveillance tools for Aedes aegypti in Western Kenya.

    PubMed

    Yalwala, Sancto; Clark, Jeffrey; Oullo, David; Ngonga, Daniel; Abuom, David; Wanja, Elizabeth; Bast, Joshua

    2015-12-01

    All traditional surveillance techniques for Aedes aegypti have been developed for the cosmopolitan domestic subspecies Ae. aegypti aegypti, and not the sylvatic subspecies, Ae. aegypti formosus. The predominant form in Western Kenya is Ae. aegypti formosus that is rarely associated with human habitations but is linked to transmission of sylvatic dengue virus strains. We compared five surveillance methods for their effectiveness in sampling Ae. aegypti formosus with the goal of determining a sustainable surveillance strategy in Kenya. The methods included larval and pupal surveys, oviposition trapping, BG-Sentinel trapping, resting boxes, and backpack aspirations. Larval and pupal surveys collected the highest number of Ae. aegypti formosus (51.3%), followed by oviposition traps (45.7%), BG-Sentinel traps (3.0%), and zero collected with either backpack aspiration or resting box collections. No Ae. aegypti formosus larvae or pupae were found indoors. The results indicate that oviposition traps and outdoor larval and pupal surveys were better surveillance methods for Ae. aegypti formosus in Western Kenya. PMID:26611965

  7. Temporal Patterns of Abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and Mitochondrial DNA Analysis of Ae. albopictus in the Central African Republic

    PubMed Central

    Kamgang, Basile; Ngoagouni, Carine; Manirakiza, Alexandre; Nakouné, Emmanuel; Paupy, Christophe; Kazanji, Mirdad

    2013-01-01

    The invasive Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) was first reported in central Africa in 2000, in Cameroon, with the indigenous mosquito species Ae. aegypti (Diptera: Culicidae). Today, this invasive species is present in almost all countries of the region, including the Central African Republic (CAR), where it was first recorded in 2009. As invasive species of mosquitoes can affect the distribution of native species, resulting in new patterns of vectors and concomitant risk for disease, we undertook a comparative study early and late in the wet season in the capital and the main cities of CAR to document infestation and the ecological preferences of the two species. In addition, we determined the probable geographical origin of invasive populations of Ae. albopictus with two mitochondrial DNA genes, COI and ND5. Analysis revealed that Ae. aegypti was more abundant earlier in the wet season and Ae. albopictus in the late wet season. Used tyres were the most heavily colonized productive larval habitats for both species in both seasons. The invasive species Ae. albopictus predominated over the resident species at all sites in which the two species were sympatric. Mitochondrial DNA analysis revealed broad low genetic diversity, confirming recent introduction of Ae. albopictus in CAR. Phylogeographical analysis based on COI polymorphism indicated that the Ae. albopictus haplotype in the CAR population segregated into two lineages, suggesting multiple sources of Ae. albopictus. These data may have important implications for vector control strategies in central Africa. PMID:24349596

  8. Biocontrol evaluation of extracts and a major component, clusianone, from Clusia fluminensis Planch. & Triana against Aedes aegypti

    PubMed Central

    Anholeti, Maria C; Duprat, Rodrigo C; Figueiredo, Maria R; Kaplan, Maria AC; Santos, Marcelo Guerra; Gonzalez, Marcelo S; Ratcliffe, Norman A; Feder, Denise; Paiva, Selma R; Mello, Cicero B

    2015-01-01

    Studies evaluated the effects of hexanic extracts from the fruits and flowers ofClusia fluminensis and the main component of the flower extract, a purified benzophenone (clusianone), against Aedes aegypti. The treatment of larvae with the crude fruit or flower extracts from C. fluminensis did not affect the survival ofAe. aegypti (50 mg/L), however, the flower extracts significantly delayed development of Ae. aegypti. In contrast, the clusianone (50 mg/L) isolate from the flower extract, representing 54.85% of this sample composition, showed a highly significant inhibition of survival, killing 93.3% of the larvae and completely blocking development of Ae. aegypti. The results showed, for the first time, high activity of clusianone against Ae. aegypti that both killed and inhibited mosquito development. Therefore, clusianone has potential for development as a biopesticide for controlling insect vectors of tropical diseases. Future work will elucidate the mode of action of clusianone isolated from C. fluminensis. PMID:26200711

  9. Biocontrol evaluation of extracts and a major component, clusianone, from Clusia fluminensis Planch. & Triana against Aedes aegypti.

    PubMed

    Anholeti, Maria C; Duprat, Rodrigo C; Figueiredo, Maria R; Kaplan, Maria Ac; Santos, Marcelo Guerra; Gonzalez, Marcelo S; Ratcliffe, Norman A; Feder, Denise; Paiva, Selma R; Mello, Cicero B

    2015-08-01

    Studies evaluated the effects of hexanic extracts from the fruits and flowers of Clusia fluminensis and the main component of the flower extract, a purified benzophenone (clusianone), against Aedes aegypti. The treatment of larvae with the crude fruit or flower extracts from C. fluminensis did not affect the survival ofAe. aegypti (50 mg/L), however, the flower extracts significantly delayed development of Ae. aegypti. In contrast, the clusianone (50 mg/L) isolate from the flower extract, representing 54.85% of this sample composition, showed a highly significant inhibition of survival, killing 93.3% of the larvae and completely blocking development of Ae. aegypti. The results showed, for the first time, high activity of clusianone against Ae. aegypti that both killed and inhibited mosquito development. Therefore, clusianone has potential for development as a biopesticide for controlling insect vectors of tropical diseases. Future work will elucidate the mode of action of clusianone isolated from C. fluminensis. PMID:26200711

  10. Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species.

    PubMed

    Magalhães, Lyege Amazonas Maciel; Lima, Maria da Paz; Marques, Marcia Ortiz Mayo; Facanali, Roselaine; Pinto, Ana Cristina da Silva; Tadei, Wanderli Pedro

    2010-08-01

    The essential oils of four Guarea species collected at Manaus (Amazonas, Brazil) were obtained by hydrodistillation and analyzed by GC-MS. Except for one diterpene detected, the compounds identified in the essential oils were hydrocarbons and oxygenated sesquiterpenes. The major sesquiterpenes were alpha-santalene (26.26%) and alpha-copaene (14.61%) from G. convergens branches; caryophyllene epoxide (40.91%) and humulene epoxide II (14.43%) from G. humaitensis branches; cis-caryophyllene (33.37%) and alpha-trans-bergamotene (11.88%) from G. scabra leaves; caryophyllene epoxide (36.54%) in leaves and spathulenol (14.34%) in branches from G. silvatica. The diterpene kaurene (15.61%) was found in G. silvatica leaves. Larvicidal activity assay of essential oils against third-instar Aedes aegypti larvae revealed that at higher concentrations (500 and 250 microg/mL), all the essential oils caused 100% mortality after 24 h of exposure. The most active essential oils were those of G. humaitensis branches (LC(50) 48.6 microg/mL), G. scabra leaves (LC(50) 98.6 microg/mL) and G. silvatica (LC(50) 117.9 microg/mL). The differences in the toxicity of essential oils of Guarea species on A. aegypti are due to qualitative and quantitative variations of the components, therefore the larvicidal effect may be due to higher amount of the sesquiterpenes with caryophyllane skeleton. PMID:20724962

  11. Factors favoring houseplant container infestation with Aedes aegypti larvae in Marília, São Paulo, Brazil.

    PubMed

    Macoris, M L; Mazine, C A; Andrighetti, M T; Yasumaro, S; Silva, M E; Nelson, M J; Winch, P J

    1997-04-01

    Since reinvasion of São Paulo State by the Aedes aegypti (L.) mosquito in 1985, flower pots and vases have been important larval habitats despite educational messages focusing on their control. The objectives of this study were to characterize flower pots and vases as larval habitats with respect to the quantities present and infested, the types of plants involved, and the specific locations of the mosquito larvae; to explore local names for houseplants; and to examine factors affecting acceptance of control measures. The results showed an average of more than four potential plant-related larval habitats per premises, of which only 0.4% were occupied by the vector. Plant-related containers represented 31% of all the containers with Aedes aegypti larvae. Although a sample of 126 respondents was able to list 105 different houseplant names, 49% of the positive plants were of two types: ferns and the ornamental plant Dieffenbachia avoena. The public's apparent unwillingness to accept recommended anti-aegypti control measures involving houseplants seems related to the relative rarity of aegypti larvae in the very common houseplant containers, the control program's poor credibility as a source of information about plants, and a perception that the recommended control measures are harmful to plants. An intervention currently being planned for dengue control will use educational material that refers specifically to those plants whose containers are most commonly found to harbor aegypti larvae; it will also utilize information sources such as botanists with greater credibility regarding plants; and it will set out alternative plant care recommendations that are more likely to appeal as beneficial to the plants and that will stand a better chance of being accepted. PMID:9149524

  12. Trypsin inhibitor from Moringa oleifera flowers interferes with survival and development of Aedes aegypti larvae and kills bacteria inhabitant of larvae midgut.

    PubMed

    Pontual, Emmanuel Viana; de Lima Santos, Nataly Diniz; de Moura, Maiara Celine; Coelho, Luana Cassandra Breitenbach Barroso; do Amaral Ferraz Navarro, Daniela Maria; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes

    2014-02-01

    Moringa oleifera flower extract, with trypsin inhibitor activity, is a larvicidal agent on Aedes aegypti. This work reports the isolation of trypsin inhibitor (M. oleifera flower trypsin inhibitor (MoFTI)) and its effect on A. aegypti egg hatching, viability of newly hatched larvae, survival of pupae, and growth of inhabitant bacteria from midgut of fourth-instar larvae (L4). MoFTI (K i, 2.4 μM), isolated by affinity chromatography on trypsin-agarose column, was an 18.2 kDa polypeptide on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Flower extract (at concentrations of 8.5-17.0 mg/mL) reduced egg hatchability while MoFTI (0.05-0.5 mg/mL) did not affect the hatching rate. Mortality of newly hatched larvae ranged from 3.5 to 19.1 % in the presence of the extract (4.0-17.0 mg/mL) and was also promoted by MoFTI (LC50, 0.3 mg/mL). After 72 h, larvae incubated with extract at 13.0 and 17.0 mg/mL were at stages L2 and L1, respectively, while in control they reached L3 instar. In the presence of MoFTI, at all concentrations tested, the larvae did not pass the first instar. Flower extract and MoFTI did not interfere on pupae survival. The extract and MoFTI inhibited the growth of L4 gut bacteria (minimum inhibitory concentrations of 3.47 and 0.031 mg/mL, respectively) but only the inhibitor showed bactericide effect (minimum bactericidal concentration of 1.0 mg/mL). The findings reported herein indicate that MoFTI constitutes a larvicidal principle from M. oleifera flowers against A. aegypti newly hatched larvae and is an antibacterial agent active against the microbiota from L4 gut. PMID:24271154

  13. Aedes (Stegomyia) aegypti and Aedes (Howardina) cozumelensis in Yucatán State, México, with a summary of published collection records for Ae. cozumelensis

    PubMed Central

    García-Rejón, Julián E.; López-Uribe, Mildred P.; Loroño-Pino, María Alba; Arana-Guardia, Roger; Puc-Tinal, Maria; López-Uribe, Genny M.; Coba-Tún, Carlos; Baak-Baak, Carlos M.; Machain-Williams, Carlos; Reyes-Solis, Guadalupe C.; Lozano-Fuentes, Saul; Saavedra-Rodriguez, Karla; Black IV, William C.; Beaty, Barry J.; Eisen, Lars

    2013-01-01

    We collected mosquito immatures from artificial containers during 2010–2011 from 26 communities, ranging in size from small rural communities to large urban centers, located in different parts of Yucatán State in southeastern México. The arbovirus vector Aedes (Stegomyia) aegypti was collected from all 26 examined communities, and nine of the communities also yielded another container-inhabiting Aedes mosquito: Aedes (Howardina) cozumelensis. The communities from which Ae. cozumelensis were collected were all small, rural communities (<6,000 inhabitants) in the north-central part of Yucatán State. These new collection records for Ae. cozumelensis demonstrate that this mosquito has a far broader geographic range in the Yucatán Peninsula than previously known. Ae. cozumelensis immatures were collected from both residential premises and cemeteries, with specimens recovered from rock holes as well as various artificial containers including metal cans, flower vases, buckets, tires and a water storage tank. The co-occurrence with Ae. aegypti in small rural communities poses intriguing questions regarding linkages between these mosquitoes, including the potential for direct competition for larval development sites. Additional studies are needed to determine how commonly Ae. cozumelensis feeds on human blood and whether it is naturally infected with arboviruses or other pathogens of medical or veterinary importance. We also summarize the published records for Ae. cozumelensis, which are restricted to collections from México’s Yucatán Peninsula and Belize, and uniformly represent geographic locations where Ae. aegypti can be expected to occur. PMID:23181861

  14. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Vera, Sharon Smith; Zambrano, Diego Fernando; Méndez-Sanchez, Stelia Carolina; Rodríguez-Sanabria, Fernando; Stashenko, Elena E; Duque Luna, Jonny E

    2014-07-01

    Insecticidal activity of the essential oils (EOs) isolated from Tagetes lucida, Lippia alba, Lippia origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis, Swinglea glutinosa, and Cananga odorata aromatic plants, grown in Colombia (Bucaramanga, Santander), and of a mixture of L. alba and L. origanoides EOs were evaluated on Aedes (Stegomyia) aegypti Rockefeller larvae. The EOs were extracted by microwave-assisted hydrodistillation and characterized by gas chromatography-mass spectrometry (GC-MS). The main components of the EOs were identified using their linear retention indices and mass spectra. The lethal concentrations (LCs) of the EOs were determined between the third and fourth instar of A. aegypti. LC50 was determined by probit analysis using mortality rates of bioassays. All essential oils tested showed insecticidal activity. The following values were obtained for C. flexuosus (LC50 = 17.1 ppm); C. sinensis (LC50 = 20.6 ppm); the mixture of L. alba and L. origanoides (LC50 = 40.1 ppm); L. alba (LC50 = 42.2 ppm); C. odorata (LC50 = 52.9 ppm); L. origanoides (LC50 = 53.3 ppm); S. glutinosa (LC50 = 65.7 ppm); T. lucida (LC50 = 66.2 ppm); E. citriodora (LC50 = 71.2 ppm); and C. citratus (LC50 = 123.3 ppm). The EO from C. flexuosus, with citral (geranial + neral) as main component, showed the highest larvicidal activity. PMID:24781026

  15. Guppies as predators of common mosquito larvae in Malaysia.

    PubMed

    Saleeza, S N R; Norma-Rashid, Y; Sofian-Azirun, M

    2014-03-01

    Observation on predation activities of guppies (Poecilia reticulata) on the larvae of three species of mosquito, namely Aedes albopictus, Aedes aegypti, and Culex quinquefasciatus was carried out under laboratory conditions. Male and female guppies were used as predators for predation experiments on the 4th instars of mosquito larvae. The daily feeding rates comparing male and female guppies on mosquito larvae were different; the female guppies consumed more mosquito larvae than male guppies did. The daily feeding rates of female guppies were 121.3 for Ae. aegypti, 105.6 for Ae. albopictus, and 72.3 for Cx. quinquefasciatus. The daily feeding rates of male guppies were 98.6 for Ae. aegypti, 73.6 for Ae. albopictus, and 47.6 for Cx. quinquefasciatus. In terms of prey preference, there was greater preference towards mosquito larvae of Ae. aegypti, followed by Ae. albopictus, and the least preferred was Cx. quinquefasciatus. Male and female guppies consumed more mosquito larvae during lights on (day time) compared with lights off (night time). The water volume, prey species, number of fish predators available, prey densities, and prey's sex also influenced the predation activities. PMID:24968669

  16. Mosquito larvicidal activity of aromatic medicinal plant oils against Aedes aegypti and Culex pipiens pallens.

    PubMed

    Lee, Hoi-Seon

    2006-06-01

    Larvicidal activity of essential oils derived from 11 aromatic medicinal plants against early 4th-stage larvae of Aedes aegypti and Culex pipiens pallens was tested in the laboratory. At 100 ppm, the essential oils of all plants caused 100% mortality against Ae. aegypti and Cx. pipiens pallens. At 25 ppm, the essential oils of Citrus bergamia, Cuminum myrrha, and Pimenta racemosa caused 100% mortality against larvae of Ae. aegypti and Cx. pipiens pallens. The oil of C. begamia caused 32.5% and 24.5% mortality against Ae. aegypti and Cx. pipiens pallens at 12.5 ppm, but 24.2% and 0% mortality against Ae. aegypti and Cx. pipiens pallens at 6.25 ppm, respectively. The oil of P. racemosa caused 52.3% and 38.5% mortality against Ae. aegypti and Cx. pipiens pallens at 12.5 ppm, but 32.2% and 0% mortality against Ae. aegypti and Cx. pipiens pallens at 6.25 ppm, respectively. The larvicidal activity of oils of C. bergamia, C. myrrha, and P. racemosa was significantly reduced when used at 6.25 ppm. These plants warrant further studies as possible agents for mosquito control. PMID:17019775

  17. Biological differences between brackish and fresh water-derived Aedes aegypti from two locations in the Jaffna peninsula of Sri Lanka and the implications for arboviral disease transmission.

    PubMed

    Ramasamy, Ranjan; Jude, Pavilupillai J; Veluppillai, Thabothiny; Eswaramohan, Thampoe; Surendran, Sinnathamby N

    2014-01-01

    The mainly fresh water arboviral vector Aedes aegypti L. (Diptera: Culicidae) can also undergo pre-imaginal development in brackish water of up to 15 ppt (parts per thousand) salt in coastal areas. We investigated differences in salinity tolerance, egg laying preference, egg hatching and larval development times and resistance to common insecticides in Ae. aegypti collected from brackish and fresh water habitats in Jaffna, Sri Lanka. Brackish water-derived Ae. aegypti were more tolerant of salinity than fresh water-derived Ae. aegypti and this difference was only partly reduced after their transfer to fresh water for up to five generations. Brackish water-derived Ae. aegypti did not significantly discriminate between 10 ppt salt brackish water and fresh water for oviposition, while fresh water-derived Ae. aegypti preferred fresh water. The hatching of eggs from both brackish and fresh water-derived Ae. aegypti was less efficient and the time taken for larvae to develop into pupae was prolonged in 10 ppt salt brackish water. Ae. aegypti isolated from coastal brackish water were less resistant to the organophosphate insecticide malathion than inland fresh water Ae. aegypti. Brackish and fresh water-derived Ae. aegypti however were able to mate and produce viable offspring in the laboratory. The results suggest that development in brackish water is characterised by pertinent biological changes, and that there is restricted genetic exchange between coastal brackish and inland fresh water Ae. aegypti isolates from sites 5 km apart. The findings highlight the need for monitoring Ae. aegypti developing in coastal brackish waters and extending vector control measures to their habitats. PMID:25170879

  18. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil.

    PubMed

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A; Lounibos, L Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses. PMID:27322537

  19. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil

    PubMed Central

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A.; Lounibos, L. Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses. PMID:27322537

  20. Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedes aegypti

    PubMed Central

    2014-01-01

    Background The yellow fever mosquito Aedes aegypti is essentially a container-inhabiting species that is closely associated with urban areas. This species is a vector of human pathogens, including dengue and yellow fever viruses, and its control is of paramount importance for disease prevention. Insecticide use against mosquito juvenile stages (i.e. larvae and pupae) is growing in importance, particularly due to the ever-growing problems of resistance to adult-targeted insecticides and human safety concerns regarding such use in human dwellings. However, insecticide effects on insects in general and mosquitoes in particular primarily focus on their lethal effects. Thus, sublethal effects of such compounds in mosquito juveniles may have important effects on their environmental prevalence. In this study, we assessed the survival and swimming behavior of A. aegypti 4th instar larvae (L4) and pupae exposed to increasing concentrations of insecticides. We also assessed cell death in the neuromuscular system of juveniles. Methods Third instar larvae of A. aegypti were exposed to different concentrations of azadirachtin, deltamethrin, imidacloprid and spinosad. Insect survival was assessed for 10 days. The distance swam, the resting time and the time spent in slow swimming were assessed in 4th instar larvae (L4) and pupae. Muscular and nervous cells of L4 and pupae exposed to insecticides were marked with the TUNEL reaction. The results from the survival bioassays were subjected to survival analysis while the swimming behavioral data were subjected to analyses of covariance, complemented with a regression analysis. Results All insecticides exhibited concentration-dependent effects on survival of larvae and pupae of the yellow fever mosquito. The pyrethroid deltamethrin was the most toxic insecticide followed by spinosad, imidacloprid, and azadirachtin, which exhibited low potency against the juveniles. All insecticides except azadirachtin reduced L4 swimming speed and

  1. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus

    PubMed Central

    Kraemer, Moritz UG; Sinka, Marianne E; Duda, Kirsten A; Mylne, Adrian QN; Shearer, Freya M; Barker, Christopher M; Moore, Chester G; Carvalho, Roberta G; Coelho, Giovanini E; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Elyazar, Iqbal RF; Teng, Hwa-Jen; Brady, Oliver J; Messina, Jane P; Pigott, David M; Scott, Thomas W; Smith, David L; Wint, GR William; Golding, Nick; Hay, Simon I

    2015-01-01

    Dengue and chikungunya are increasing global public health concerns due to their rapid geographical spread and increasing disease burden. Knowledge of the contemporary distribution of their shared vectors, Aedes aegypti and Aedes albopictus remains incomplete and is complicated by an ongoing range expansion fuelled by increased global trade and travel. Mapping the global distribution of these vectors and the geographical determinants of their ranges is essential for public health planning. Here we compile the largest contemporary database for both species and pair it with relevant environmental variables predicting their global distribution. We show Aedes distributions to be the widest ever recorded; now extensive in all continents, including North America and Europe. These maps will help define the spatial limits of current autochthonous transmission of dengue and chikungunya viruses. It is only with this kind of rigorous entomological baseline that we can hope to project future health impacts of these viruses. DOI: http://dx.doi.org/10.7554/eLife.08347.001 PMID:26126267

  2. Cadherin binding is not a limiting step for Bacillus thuringiensis subsp. israelensis Cry4Ba toxicity to Aedes aegypti larvae.

    PubMed

    Rodríguez-Almazán, Claudia; Reyes, Esmeralda Z; Zúñiga-Navarrete, Fernando; Muñoz-Garay, Carlos; Gómez, Isabel; Evans, Amy M; Likitvivatanavong, Supaporn; Bravo, Alejandra; Gill, Sarjeet S; Soberón, Mario

    2012-05-01

    Bacillus thuringiensis subsp. israelensis produces three Cry toxins (Cry4Aa, Cry4Ba and Cry11Aa) that are active against Aedes aegypti larvae. The identification of the rate-limiting binding steps of Cry toxins that are used for insect control in the field, such as those of B. thuringiensis subsp. israelensis, should provide targets for improving insecticides against important insect pests. Previous studies showed that Cry11Aa binds to cadherin receptor fragment CR7-11 (cadherin repeats 7-11) with high affinity. Binding to cadherin has been proposed to facilitate Cry toxin oligomer formation. In the present study, we show that Cry4Ba binds to CR7-11 with 9-fold lower binding affinity compared with Cry11Aa. Oligomerization assays showed that Cry4Ba is capable of forming oligomers when proteolytically activated in vitro in the absence of the CR7-11 fragment in contrast with Cry11Aa that formed oligomers only in the presence of CR7-11. Pore-formation assays in planar lipid bilayers showed that Cry4Ba oligomers were proficient in opening ion channels. Finally, silencing the cadherin gene by dsRNA (double-stranded RNA) showed that silenced larvae were more tolerant to Cry11Aa in contrast with Cry4Ba, which showed similar toxic levels to those of control larvae. These findings show that cadherin binding is not a limiting step for Cry4Ba toxicity to A. aegypti larvae. PMID:22329749

  3. Cadherin binding is not a limiting step for Bacillus thuringiensis subsp. israelensis Cry4Ba toxicity to Aedes aegypti larvae

    PubMed Central

    Rodríguez-Almazán, Claudia; Reyes, Esmeralda Z.; Zúñiga-Navarrete, Fernando; Muñoz-Garay, Carlos; Gómez, Isabel; Evans, Amy M.; Likitvivatanavong, Supaporn; Bravo, Alejandra; Gill, Sarjeet S.; Soberón, Mario

    2013-01-01

    Bacillus thuringiensis subsp. israelensis produces three Cry toxins (Cry4Aa, Cry4Ba and Cry11Aa) that are active against Aedes aegypti larvae. The identification of the rate-limiting binding steps of Cry toxins that are used for insect control in the field, such as those of B. thuringiensis subsp. israelensis, should provide targets for improving insecticides against important insect pests. Previous studies showed that Cry11Aa binds to cadherin receptor fragment CR7–11 (cadherin repeats 7–11) with high affinity. Binding to cadherin has been proposed to facilitate Cry toxin oligomer formation. In the present study, we show that Cry4Ba binds to CR7–11 with 9-fold lower binding affinity compared with Cry11Aa. Oligomerization assays showed that Cry4Ba is capable of forming oligomers when proteolytically activated in vitro in the absence of the CR7–11 fragment in contrast with Cry11Aa that formed oligomers only in the presence of CR7–11. Pore-formation assays in planar lipid bilayers showed that Cry4Ba oligomers were proficient in opening ion channels. Finally, silencing the cadherin gene by dsRNA (double-stranded RNA) showed that silenced larvae were more tolerant to Cry11Aa in contrast with Cry4Ba, which showed similar toxic levels to those of control larvae. These findings show that cadherin binding is not a limiting step for Cry4Ba toxicity to A. aegypti larvae. PMID:22329749

  4. Effect of ultraviolet-A radiation on the production of Leptolegnia chapmanii (Saprolegniales: Saprolegniaceae) zoospores on dead Aedes aegypti (Diptera: Culicidae) larvae and their larvicidal activity.

    PubMed

    Rueda Páramo, Manuel E; López Lastra, Claudia C; García, Juan J; Fernandes, Éverton K K; Marreto, Ricardo N; Luz, Christian

    2015-09-01

    Impact of UV-radiation in entomopathogens in aquatic environments remains little investigated. The present study reports on the effect of UV-A on the larvicidal activity of Leptolegnia chapmanii zoospores in Aedes aegypti; on the production of zoospores in larvae killed by the pathogen and then exposed to UV-A; and on the activity of these zoospores against healthy larvae. Whereas the virulence of free zoospores in A. aegypti larvae was affected by a UV-A exposure time longer than 10min, production of zoospores in larvae and their virulence were not hampered at a maximal 8h exposure of dead larvae to UV-A. Findings suggest that dead larvae and zoosporangia provide a certain protection to zoospores against UV-A and emphasize the susceptibility of free encysted zoospores to such radiation. PMID:26259676

  5. Breeding places and seasonal incidence of Aedes aegypti, as assessed by the single-larva survey method*

    PubMed Central

    Rao, T. Ramachandra; Trpis, M.; Gillett, J. D.; Teesdale, C.; Tonn, R. J.

    1973-01-01

    The single-larva survey method was employed to study the breeding places and seasonal incidence of Aedes aegypti in Dar es Salaam, Tanzania. From May 1968 to May 1969, 28 462 containers of water—located in approximately equal numbers indoors and outdoors—were investigated. The highest frequency of breeding (8.0%) of A. aegypti was observed in tires and motor parts. Drums, barrels, water-pots, and other receptacles left outdoors showed a higher frequency (3.1%) than those kept indoors (0.6%). Metal containers were infested to a greater extent than those made of mud, wood, or other materials; 2.5% of coconut shells, snail shells, etc. and 1.3% of tree holes, plant axils, and cut bamboos were infested. The seasonal prevalence, expressed as a container index, closely followed and paralleled the fluctuations in rainfall. The value of this survey method for both ecological studies and practical control purposes is discussed. PMID:4544149

  6. Simulated field evaluation of the efficacy of two formulations of diflubenzuron, a chitin synthesis inhibitor against larvae of Aedes aegypti (L.) (Diptera: Culicidae) in water-storage containers.

    PubMed

    Thavara, Usavadee; Tawatsin, Apiwat; Chansang, Chitti; Asavadachanukorn, Preecha; Zaim, Morteza; Mulla, Mir S

    2007-03-01

    Tablet (40 mg a.i./tablet) and granular (2% a.i.) formulations of diflubenzuron, a chitin synthesis inhibitor, insect growth regulator, were evaluated for larvicidal efficacy against the larvae of Aedes aegypti (L.) in water-storage containers under field conditions in Thailand. Each formulation was applied to 200-1 clay jars at 5 different dosages (0.02, 0.05, 0.1, 0.5 and 1 mg/l a.i.). The jars were covered with solid celocrete sheets and placed in the shade under a roof. Another experiment was also carried out using 3 different dosages (0.1, 0.5 and 1 mg/l) where half the water in each treated jar and the control was removed and refilled weekly. Each treatment was replicated four times. The treatments were challenged by adding 25 3rd instar larvae/jar weekly. Assessments were made of each treatment through emergence inhibition (%EI) by removing and counting pupal skins one week after larval addition. Using these assessment techniques, a high degree of larvicidal efficacy (96-100%EI) was achieved with 4 dosages (0.05, 0.1, 0.5 and 1 mg/l) of both (tablet and granular) formulations for a period of 23 weeks post-treatment. The efficacy of the lowest dosage (0.02 mg/l) of tablet and granular formulations lasted for 21 and 22 weeks post-treatment, respectively. Under the conditions of water removal and weekly refilling, a high degree of larvicidal efficacy (96-100%El) at the 3 dosages was obtained with the tablet formulation 18 to 21 weeks post-treatment, whereas the efficacy of the granular formulation persisted 15 to 23 weeks post-treatment depending on the dosage. This study clearly demonstrates a high level of residual activity with both formulations of diflubenzuron against larvae of Ae. aegypti in water-storage containers. Considering environmental factors and water-use conditions, it is likely that dosages of 0.05 to 0.1 mg a.i./l are effective dosages providing long-lasting control for 3 to 4 months in the field. PMID:17539276

  7. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.

    PubMed

    Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

    2010-06-01

    Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain

  8. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Chan, Y. C.; Chan, K. L.; Ho, B. C.

    1971-01-01

    The distribution and density of Ae. aegypti and Ae. albopictus in Singapore were assessed from extensive larval surveys carried out from 1966 to 1968 to evaluate their respective roles in the epidemiology of dengue haemorrhagic fever and to study their ecology in the urban areas. Ten urban areas where the majority of dengue haemorrhagic fever cases occurred were surveyed. The results showed that both species were common in the city, with Ae. aegypti being the dominant species. The distribution of Ae. aegypti was more uniform and related to the prevailing housing types and conditions. Its premise index was highest in slum houses, intermediate in shop houses, and lowest in multistorey flats. Ae. albopictus, on the other hand, did not seem to be related to the prevailing housing type in its distribution but tended to be more widespread in areas with open spaces. The larval density index (the average number of larvae per housing unit) was higher for Ae. aegypti than for Ae. albopictus, in agreement with the relative densities shown by their premise indices. The larval density index correlated well with the premise index and correlated best with the infested-receptacle index. For practical purposes, the most suitable, convenient, and reliable measure of density of Ae. aegypti population seems to be the infested-receptacle index. An attempt was made to estimate the rate of dispersal of Ae. aegypti from a stable population to an adjacent area of multistorey flats. The rate of dispersal, estimated from the premise index and the larval density index, was approximately 2% per year of the ”donor” population. PMID:5316745

  9. Comparative studies of Metarhizium anisopliae and Tolypocladium cylindrosporum as pathogens of mosquito larvae.

    PubMed

    Riba, G; Keita, A; Soares, G G; Ferron, P

    1986-12-01

    Mosquito fungal pathogens, Metarhizium anisopliae and Tolypocladium cylindrosporum, were compared with regard to virulence against the larvae of Aedes aegypti, Anopheles stephensi and Culex pipiens. Culex pipiens larvae were much more susceptible to M. anisopliae conidia than An. stephensi or Ae. aegypti. But Ae. aegypti and Cx. pipiens larvae were equally susceptible to T. cylindrosporum propagules which weakly attack An. stephensi. Using a high concentration conidial suspension (10(7) sp/ml) of M. anisopliae no. 139, Ae. aegypti larvae were killed immediately within 1.1 days, before intrahemocoelian invasion; but at lower concentrations (10(6) and 10(5) sp/ml), typical mycosis occurred. However, T. cylindrosporum no. 3 blastospores were much more pathogenic to Ae. aegypti larvae than conidia. Conidial suspension of 10(7) spores/ml killed 68% fourth-instar larvae, relative to the 96% invaded by blastospores under the same conditions. Presoaked conidia virulence appeared still intermediate between conidia and blastospores. At low temperatures, 15 degrees C, virulence of M. anisopliae highly decreased, while at the same temperature, T. cylindrosporum blastospores were still virulent. PMID:2906985

  10. Ultrastructural changes in the muscles, midgut, hemopoietic organ, imaginal discs and Malpighian tubules of the mosquito Aedes aegypti larvae infected by the fungus Coelomomyces stegomyiae.

    PubMed

    Shoulkamy, M A; Abdelzaher, H M; Shahin, A A

    2001-01-01

    Fungi belonging to the genus Coelomomyces can infect mosquito larvae and develop within the larval hemocoel. To examine fungal development, Aedes aegypti larvae infected with Coelomomyces stegomyiae Keilin were fixed, embedded and sectioned for both light and electron microscopy. While fungal hyphae of C. stegomyiae did not invade cells other than the cuticular epithelial cells, they did penetrate a number of tissues including muscles, midgut, hemopoietic organ, imaginal discs, and Malpighian tubules. PMID:11265168

  11. High affinity 3H-Phe uptake by brush border membrane vesicles from whole larvae of Aedes aegypti (AaBMVw)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brush border membrane vesicles from whole Aedes aegypti larvae (AaBBMVw) are confirmed to be valid preparations for membrane transport studies. The Abdul-Rauf and Ellar method was used to isolate AaBBMVw that were frozen, stored for several months, transported to a distant site, thawed and used to s...

  12. Resistance in some Caribbean populations of Aedes aegypti to several insecticides.

    PubMed

    Rawlins, S C; Wan, J O

    1995-03-01

    Thirty-four strains of Aedes aegypti larvae from 17 Caribbean countries were bioassayed for sensitivity to temephos, malathion, fenitrothion, fenthion, and chlorpyrifos. There were fairly high levels of resistance in Tortola (10-12-fold resistance) and Antigua (6-9-fold resistance) strains to temephos and to fenthion (Tortola, 7-10-fold; Antigua, 6-10-fold resistance). Most other strains showed some resistance to malathion, fenitrothion, and chlorpyrifos, but only moderate levels. Adult populations of Ae. aegypti--Aruba, Jamaica, Trinidad, Puerto Rico, St. Lucia, and Antigua strains--also showed moderate resistance to malathion. Mosquito control field data supported the laboratory findings. Doubling the diagnostic dosage of temephos for larval Ae. aegypti was only partially effective against a more resistant strain, and even so, the chemical lost its limited efficacy over a short period of time. Integrated strategies for Ae. aegypti control to mitigate the negative effects of insecticide resistance in the Caribbean strains are suggested. PMID:7542312

  13. The Sublethal Effects of the Entomopathic Fungus Leptolegnia chapmanii on Some Biological Parameters of the Dengue Vector Aedes aegypti

    PubMed Central

    Pelizza, S.A.; Scorsetti, A.C.; Tranchida, M.C.

    2013-01-01

    The mosquito Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of dengue in the Americas. The use of chemical insecticides is recommended during outbreaks of dengue in order to reduce the number of adult mosquitoes; however, because Ae. aegypti is highly synanthropic, the use of insecticides in densely populated areas is a dangerous practice. Leptolegnia chapmanii Seymour (Straminipila: Peronosporomycetes) is an entomopathogenic microorganism that has demonstrated marked pathogenicity toward the larvae of a number of mosquito species, with little or no effect on non-target insects. Therefore, the purpose of this study was to determine the sublethal effects of L. chapmanii on fecundity, number of gonotrophic cycles, fertility, and relationship between wing length and fecundity in Ae. aegypti females. Ae. aegypti females that survived infection with L. chapmanii laid fewer eggs, had a smaller number of gonotrophic cycles, had shorter wings, and were less fertile than controls. This is the first study on the sublethal effects experienced by specimens of Ae. aegypti that survived infection with zoospores of L. chapmanii. Although field studies should be carried out, the results obtained in this study are encouraging because the high and rapid larval mortality caused by L. chapmanii coupled with the reduction of reproductive capacity in Ae. aegypti females seem to cause a significant reduction in the number of adults in the mid and long term, thereby reducing the health risks associated with Ae. aegypti. PMID:23901823

  14. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae.

    PubMed

    Lucia, Alejandro; Gonzalez Audino, Paola; Seccacini, Emilia; Licastro, Susana; Zerba, Eduardo; Masuh, Hector

    2007-09-01

    In the search for new alternatives for the control of Aedes aegypti the larvicidal activity of Eucalyptus grandis essential oil and pine resin essential oil (turpentine) and their major components (alpha- and beta-pinene and 1,8-cineole) was determined. Gas chromatography-mass spectroscopy analysis of E. grandis essential oil revealed that its major components are alpha-pinene and 1,8-cineole. Similar analysis of turpentine obtained by distillation of the resin pitch of conifers showed that alpha- and beta-pinene are the only major components. Third and early 4th instars of the CIPEIN-susceptible strain of Ae. aegypti were exposed to acetonic solutions of E. grandis essential oil, turpentine, and their major components for 24 h. Turpentine, with an LC50 of 14.7 ppm, was more active than the essential oil of E. grandis (LC50: 32.4 ppm). Larvicidal activity of the essential oil components showed that alpha- and beta-pinene present low LC50 values (15.4 and 12.1 ppm, respectively), whereas pure 1,8-cineole showed an LC50 of 57.2 ppm. These results suggest that alpha-pinene in E. grandis and alpha- and beta-pinene in turpentine serve as the principal larvicidal components of both oils. Results obtained on larvicidal effects of essential oil of Eucalyptus grandis and turpentine could be considered a contribution to the search for new biodegradable larvicides of natural origin. PMID:17939510

  15. Larvicidal effect of andiroba oil, Carapa guianensis (Meliaceae), against Aedes aegypti.

    PubMed

    Silva, Onilda S; Prophiro, Josiane S; Nogared, Juliana C; Kanis, Luiz; Emerick, Sheila; Blazius, Rene D; Romão, Pedro R T

    2006-12-01

    The aim of this work was to evaluate the larvicidal effect of andiroba oil, Carapa guyanensis, against 2 strains of Aedes aegypti. After 8 h after exposure to oil, the lethal concentration (LC)90 and LC95 values for the GCZ (temephos-resistant) strain larvae were 80 and 86 ppm (1st instars), 98 and 106 (2nd instars), 166 and 182 (3rd instars), and 192 and 202 ppm (4th instars), respectively. TheLC90 and LC95 values for the Rockefeller strain larvae were 164 and 182 ppm (1st instars), 212 and 224 (2nd instars), 210 and 226 (3rd instars), and 450 and 490 ppm (4th instars), respectively. Comparison of the 2 laboratory strains of Ae. aegypti in the present study demonstrated significant variation in the susceptibility of larvae to andiroba oil. Whether a higher susceptibility of field populations of Ae. aegypti to andiroba oil occurs remains to be investigated. PMID:17304939

  16. Essential oils from Zanthoxylum fagara Wild Lime, Ruta chalepensis L. and Thymus vulgaris L.: Composition and activity against Aedes aegypti larvae.

    PubMed

    Pérez López, Luis Alejandro; de la Torre, Yael C; Cirio, Anabel Torres; de Torres, Noemí Waksman; Flores Suárez, Adriana Elizabeth; Aranda, Ricardo Salazar

    2015-09-01

    The dengue virus is transmitted by Aedes aegypti. Several plants are used to control this mosquito. In the present study the chemical composition of the essential oils of Ruta chalepensis, Zanthoxylum fagara and Thymus vulgaris were analyzed, and their activities against larvae of two A. aegypti populations were evaluated. The major compounds found in T. vulgaris were thymol and -cymene at 39.8% and 30.5%, respectively, with the major components being oxygenated monoterpenes and monoterpene hydrocarbons at 55.5% and 40.4%, respectively. For Z. fagara, the major compounds were sylvestrene and E-caryophyllene at 25.3% and 23.6%, respectively, with the major components being sesquiterpene and monoterpene hydrocarbons at 51.1% and 37.5%, respectively. Ketones were the predominant group of compounds found in R. chalepensis, with the major components being 2-undecanone and 2-nonanona at 43.7% and 35.4%, respectively. Essential oils from T. vulgaris, Z. fagara and R. chalepensis showed activity against larvae of the A. aegypti New Orleans strain, producing median lethal concentrations (LC₅₀) of 2.14, 27.57 and 2.69 g/mL, respectively, at 24 h. LC₅₀ values produced against larvae of a local A. aegypti population in Nuevo Leon, México, were 25.37, 60.42 and 20.13 g/mL, respectively, at 24 h. PMID:26525020

  17. High affinity (3)H-phenylalanine uptake by brush border membrane vesicles from whole larvae of Aedes aegypti (AaBBMVw).

    PubMed

    Sterling, Kenneth M; Okech, Bernard A; Xiang, Minghui A; Linser, Paul J; Price, David A; Vanekeris, Leslie; Becnel, James J; Harvey, William R

    2012-04-01

    Brush border membrane vesicles from whole Aedes aegypti larvae (AaBBMVw) are confirmed to be valid preparations for membrane transport studies. The Abdul-Rauf and Ellar method was used to isolate AaBBMVw that were frozen, stored for several months, transported to a distant site, thawed and used to study Na(+)-coupled, (3)H-labeled, phenylalanine (Phe) uptake. The affinity for all components of the uptake was very high with half maximal values in the sub-micromolar range. By contrast a K(0.5)(Phe) of 0.2mM and a K(0.5)(Na) of 26 mM were calculated from Phe-induced electrical currents in Xenopus oocytes that were heterologously expressing the Anopheles gambiae symporter (co-transporter), AgNAT8, in a buffer with 98 mM Na(+). What accounts for the >1000-fold discrepancy in affinity for substrates between the BBMV and oocyte experiments? Is it because Ae. aegypti were used to isolate BBMVw whereas An. gambiae were used to transfect oocytes? More likely, it is because BBMVw were exposed to [Na(+)] in the micromolar range with the transporter(s) being surrounded by native lipids. By contrast, the oocyte measurements were made at [Na(+)] 100,000 times higher with AgNAT8 surrounded by foreign frog lipids. The results show that AaBBMVw are osmotically sealed; the time-course has a Na(+)-induced overshoot, the pH optimum is ∼7 and the K(0.5) values for Phe and Na(+) are very low. The transport is virtually unchanged when Na(+) is replaced by K(+) or Li(+) but decreased by Rb(+). This approach to resolving discrepancies between electrical data on solute transporters such as AgNAT8 that are over-expressed in oocytes and flux data on corresponding transporters that are highly expressed in native membrane vesicles, may serve as a model for similar studies that add membrane biochemistry to molecular biology in efforts to identify targets for the development of new methods to control disease-vector mosquitoes. PMID:22251673

  18. First report on invasion of yellow fever mosquito, Aedes aegypti, at Narita International Airport, Japan in August 2012.

    PubMed

    Sukehiro, Nayu; Kida, Nori; Umezawa, Masahiro; Murakami, Takayuki; Arai, Naoko; Jinnai, Tsunesada; Inagaki, Shunichi; Tsuchiya, Hidetoshi; Maruyama, Hiroshi; Tsuda, Yoshio

    2013-01-01

    The invasion of the yellow fever mosquito Aedes aegypti at Narita International Airport, Japan was detected for the first time. During the course of routine vector surveillance at Narita International Airport, 27 Ae. aegypti adults emerged from larvae and pupae collected from a single larvitrap placed near No. 88 spot at passenger terminal 2 on August 8, 2012. After the appearance of Ae. aegypti in the larvitrap, we defined a 400-m buffer zone and started an intensive vector survey using an additional 34 larvitraps and 15 CO2 traps. International aircraft and passenger terminal 2 were also inspected, and one Ae. aegypti male was collected from the cargo space of an international aircraft from Darwin via Manila on August 28, 2012. Larvicide treatment with 1.5% fenitrothion was conducted in 64 catch basins and one ditch in the 400-m buffer zone. Twenty-four large water tanks were also treated at least once with 0.5% pyriproxyfen, an insect growth regulator. No Ae. aegypti eggs or adults were found during the 1-month intensive vector survey after finding larvae and pupae in the larvitrap. We concluded that Ae. aegypti had failed to establish a population at Narita International Airport. PMID:23698478

  19. Larvicidal and pupicidal activities of essential oils from Zingiberaceae plants against Aedes aegypti (Linn.) and Culex quinquefasciatus say mosquitoes.

    PubMed

    Phukerd, Ubol; Soonwera, Mayura

    2013-09-01

    We conducted this study to investigate the efficacy of herbal essential oils from 12 species of Zingiberaceae plants to determine their larvicidal and pupicidal activity against fourth instar larvae and pupae of Aedes aegypti and Culex quinquefasciatus mosquitoes. Probit analysis was used to analyze the data. Larval mortality was recorded at 1, 5, 10, 15, 30 and 60 minutes and 24 hours. Pupal mortality was recorded at 15 and 30 minutes and 1, 3, 6, 12, 24 and 48 hours. All the essential oils tested showed larvicidal activity. Zingiber cassumunar and Amomum biflorum oils proved to have the greatest activity against Ae. aegypti larvae with LT50 of 1.4 minutes and 100% mortality at 5 and 10 minutes, respectively. Boesenbergia rotunda, Curcuma zedoaria and Hedychium coronarium essential oils had activity against Cx. quinquefasciatus larvae with LT50 of 1.7 minutes and 100% mortality at 10 minutes, 5 minutes and 15 minutes, respectively. All the herbal essential oils tested resulted in 100% mortality against Ae. aegypti and Cx. quinquefasciatus larvae at 60 minutes and 30 minutes, respectively. Ae. aegypti and Cx. quinquefasciatus pupae were susceptible to Z. ottensii oil (LT50 of 0.2 hour) and Z. zerumbet oil (LT50 of 0.6 hour) and had pupicidal activity with 100% mortality at 6 and 3 hours, respectively. All the essential oils test had pupicidal activity against Ae. aegypti and Cx. quinquefasciatus by inducing 100% mortality at 48 hours. PMID:24437311

  20. Evidence for Aedes aegypti (Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Morrison, Amy C; Luis Barboza, Jose; Wesson, Dawn M; Ponnusamy, Loganathan; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-07-01

    Dengue vector Aedes aegypti L. is invading peri-urban and rural areas throughout Latin America. Our previous research in the Peruvian Amazon has shown that river boats are heavily infested with immature and adult Ae. aegypti mosquitoes, likely playing a major role in their long-distance dispersal and successful invasion. However, the presence of immature mosquitoes provides no information about the timing of oviposition, and whether it took place in the boats. Here, we used baited ovitraps deployed on river boats to test the hypothesis that Ae. aegypti oviposition occurs during boat travel. We deployed 360 ovitraps on 60 different barges during August and October of 2013, and February 2014 (with 20 barges sampled during each month). We found that Ae. aegypti mosquitoes in 22 individual ovitraps from 15 of the 60 barges (premise index 25%) across all sampling dates. Further, the distribution of Ae. aegypti egg abundance was highly aggregated: 2.6% of traps (N=7) were responsible for 71.8% of eggs found, and 1.5% of traps (N=4) were responsible for all (100%) of the larvae found. Similarly, 5% of boats were responsible for the 71.47% of eggs. Our results provide strong evidence that Ae. aegypti oviposition commonly occurs during boat travel. Baited ovitraps could represent a cost-effective means of monitoring and controlling mosquito populations on boats. PMID:26335482

  1. STUDIES ON AEDES AEGYPTI RESISTANCE TO SOME INSECTICIDES IN THE JAZAN DISTRICT, SAUDI ARABIA.

    PubMed

    Alsheikh, Adel A; Mohammed, W S; Noureldin, E M; Daffalla, O M; Shrwani, Y A; Hobani, K J; Alsheikh, F A; Alzahrani, M H; Binsaeed, A A

    2016-04-01

    The present study provided information on the susceptibility status of the adult and larvae of Aedes aegypti mosquitoes in Jazan region of Saudi Arabia. Bioassay tests were performed on adults and larvae by using WHO recommended concentrations and test kits. Adults of Ae. aegypti mosquitoes were exposed to test papers impregnated with Lambda-cyhalothrin (0.05%), Cyfluthrin (0.15%), Deltamethrin (0.05%), Permethrin (0.75%), Fenitrothion (1%), Bendiocarb (0.1%) and DDT (4%) insecticides. Ae. aegypti mosquitoes were found to be susceptible only to Cyfluthrin; (mortality rate was 100%), whereas variable resistances were observed from the rest of the other insecticides tested (mortality rates ranged between 93.6 and 17%). Larvae were subjected to different concentrations of Diflubenzuron, Methoprene (IGRs) and Temephos (Organophosphate). Adult emergence inhibition (IE₅₀ & IE₉₅) values for the IGRs and the (LC₅₀ & LC₉₅) for Temephos were determined by log-probit regression analysis. Ae. aegypti larvae were resistant to Temephos (LC₅₀ 61.8-LC₉₅ 35600.1 mg/l) and showed high susceptibility to Methoprene than Diflubenzuron (IE₅₀ 0.49-IE₉₅ 10.9 mg/l) and (IE₅₀ 0.86 and IE₉₅ 93.8 mg/l), respectively. Larvae were more susceptible to Methoprene than Diflubenzuron by 1.8 folds. PMID:27363057

  2. Effect of Moringa oleifera lectins on survival and enzyme activities of Aedes aegypti larvae susceptible and resistant to organophosphate.

    PubMed

    Agra-Neto, Afonso Cordeiro; Napoleão, Thiago Henrique; Pontual, Emmanuel Viana; Santos, Nataly Diniz de Lima; Luz, Luciana de Andrade; de Oliveira, Cláudia Maria Fontes; de Melo-Santos, Maria Alice Varjal; Coelho, Luana Cassandra Breitenbach Barroso; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes

    2014-01-01

    The indiscriminate use of synthetic insecticides to control Aedes aegypti has led to emergence of resistant populations. Moringa oleifera seeds contain the lectins WSMoL and cMoL. WSMoL has larvicidal activity on fourth-stage of A. aegypti organophosphate-susceptible larvae (Rockefeller L4). This study reports on the effects of cMoL on the survival of Rockefeller L4 as well as of WSMoL and cMoL on L4 from an organophosphate-resistant population (Rec-R). The effects of lectins on digestive (amylase, trypsin, and protease) and detoxifying (superoxide dismutase (SOD), α- and β-esterases) enzymes from larvae were also determined. cMoL (0.1-0.8 mg/ml) did not kill Rockefeller L4 as well as WSMoL and cMoL (0.1-0.8 mg/ml) were not larvicidal for Rec-R L4. WSMoL stimulated protease, trypsin-like, and α-amylase from Rockefeller L4 while cMoL inhibited these enzymes. WSMoL had no effect on trypsin-like activity from Rec-R L4 but inhibited protease and α-amylase. Among digestive enzymes of Rec-R L4, cMoL inhibited only trypsin-like activity. cMoL inhibited SOD activities from Rockefeller and Rec-R L4 in a higher level than WSMoL while β-esterase from Rockefeller L4 was more inhibited by WSMoL. The lectins promoted low stimulation or inhibition of α-esterase activities from both populations. In conclusion, Rockefeller and Rec-R larvae were distinctly affected by M. oleifera lectins, and larvicidal mechanism of WSMoL on Rockefeller L4 may involve deregulation of digestive enzymes. cMoL interfered mainly on SOD activity and thus it can be investigated as a synergistic agent for controlling populations whose resistance is linked to an increased detoxifying process mediated by this enzyme. PMID:24142287

  3. Cytotoxicity of piperamides towards Aedes aegypti (Diptera: Culicidae).

    PubMed

    Maleck, Marise; Ferreira, Bruna; Mallet, Jacenir; Guimarães, Anthony; Kato, Massuo

    2014-03-01

    The effectiveness of the amides piplartine and piperlonguminine isolated from Piper species for controlling L3 and L4 of Aedes aegypti (L.) was assessed through bioassays at concentrations ranging from 1 to 300 g/l ml. Piplartine reduced the mosquito development period and caused larval mortality only at concentrations > 100 microg/ml, whereas piperlonguminine resulted in an extended period of mosquito development (10 microg/ml) and caused 100% larval mortality (30 microg/ml) within 24 h. The toxicity and cytotoxic effects of piperlonguminine on epithelial cells of the digestive system of Ae. aegypti were viewed using transmission electron microscopy, which indicated vacuolization of cytoplasm, mitochondrial swelling and leaking of nuclear material. Piperlonguminine was the more effective amide, showing toxic activity with LD50 of approximately 12 microg/ml against the larvae of Ae. aegypti. PMID:24724297

  4. Larvicidal activity of Tagetes erecta against Aedes aegypti.

    PubMed

    Marques, Márcia M M; Morais, Selene M; Vieira, Icaro G P; Vieira, Mariano G S; Raquel, Ana; Silva, A; De Almeida, Raimundo Rafael; Guedes, Maria Izabel F

    2011-06-01

    The aim of this study was to evaluate the activity of essential oil from Tagetes erecta against 3rd instars of Aedes aegypti and to determine the amounts of larvicidal thiophenes in all plant tissues. The oil obtained by steam distillation and analyzed by gas chromatography/mass spectrometry showed 14 compounds. The main compounds were piperitone (45.72%), D-limonene (9.67%), and piperitenone (5.89%). The essential oil was active against larvae of Ae. aegypti, with LC50 of 79.78 microg/ml and LC90 of 100.84 microg/ml. The larvicidal thiophene contents were higher in the roots and flowers as demonstrated by high-performance liquid chromatography analysis. Thus, T. erecta constitutes a good source of varied compounds showing larvicidal activity against Ae. aegypti. PMID:21805850

  5. Finding Aedes aegypti in a natural breeding site in an urban zone, Sao Paulo, Southeastern Brazil

    PubMed Central

    Lima-Camara, Tamara Nunes; Urbinatti, Paulo Roberto; Chiaravalloti-Neto, Francisco

    2016-01-01

    ABSTRACT This is the description of how nine Aedes aegypti larvae were found in a natural breeding site in the Pinheiros neighborhood, city of Sao Paulo, SP, Southeastern Brazil. The record was conducted in December 2014, during an entomological surveillance program of dengue virus vectors, with an active search of potential breeding sites, either artificial or natural. Finding Ae. aegypti larvae in a tree hole shows this species’ ability to use both artificial and natural environments as breeding sites and habitats, which points towards the importance of maintaining continuous surveillance on this mosquito in all kinds of water-holding containers. PMID:26982959

  6. Late-instar Behavior of Aedes aegypti (Diptera: Culicidae) Larvae in Different Thermal and Nutritive Environments.

    PubMed

    Reiskind, Michael H; Janairo, M Shawn

    2015-09-01

    The effects of temperature on ectotherm growth have been well documented. How temperature affects foraging behavior is less well explored, and has not been studied in larval mosquitoes. We hypothesized that temperature changes foraging behavior in the aquatic larval phase of the mosquito, Aedes aegypti L. Based on empirical results in other systems, we predicted that foraging effort would increase at higher temperatures in these insects. We tested this prediction over three temperature conditions at two food levels. We measured behaviors by video recording replicated cohorts of fourth-instar mosquitoes and assessing individual behavior and time budgets using an ethogram. We found both food level and temperature had significant impacts on larval foraging behavior, with more time spent actively foraging at low food levels and at low temperatures, and more occurrences of active foraging at both temperature extremes. These results are contrary to some of our predictions, but fit into theoretical responses to temperature based upon dynamic energy budget models. PMID:26336228

  7. Draft Genome Sequence of Chromobacterium vaccinii, a Potential Biocontrol Agent against Mosquito (Aedes aegypti) Larvae

    PubMed Central

    Vöing, Kristin; Harrison, Alisha

    2015-01-01

    Chromobacterium vaccinii has been isolated only from cranberry bogs in Massachusetts. While it is unknown what role these bacteria play in their natural environments, they hold potential as biological control agents against the larvae of insect pests. Potential virulence genes were identified, including the violacein synthesis pathway, siderophores, and chitinases. PMID:25999572

  8. Truck-mounted area-wide application of pyriproxyfen targeting Aedes aegypti and Aedes albopictus in northeast Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the efficacy of truck-mounted ULV applications of pyriproxyfen against Aedes aegypti larvae in artificial water containers and wild adult Ae. albopictus populations in an urban setting. The study was conducted over a 3 ½ month period (Jun – Oct 2012), during wh...

  9. Bioactivity Evaluation of Plant Extracts Used in Indigenous Medicine against the Snail, Biomphalaria glabrata, and the Larvae of Aedes aegypti.

    PubMed

    Dos Santos, Edilson Alves; de Carvalho, Cenira M; Costa, Ana L S; Conceição, Adilva S; Moura, Flávia de B Prado; Santana, Antônio Euzébio Goulart

    2012-01-01

    This investigation examined the molluscicidal and larvicidal activity of eight plants that are used in the traditional medicine of the Pankararé indigenous people in the Raso da Catarina region, Bahia state, Brazil. The tested plants were chosen based on the results of previous studies. Only those plants that were used either as insect repellents or to treat intestinal parasitic infections were included in the study. Crude extracts (CEs) of these plants were tested for their larvicidal activity (against Aedes aegypti larvae in the fourth instar) and molluscicidal activity (against the snail Biomphalaria glabrata). The plant species Scoparia dulcis and Helicteres velutina exhibited the best larvicidal activities (LC(50) 83.426 mg/L and LC(50) 138.896 mg/L, resp.), and Poincianella pyramidalis, Chenopodium ambrosoides, and Mimosa tenuiflora presented the best molluscicidal activities (LC(50) 0.94 mg/L, LC(50) 13.51 mg/L, and LC(50) 20.22 mg/L, resp.). As we used crude extracts as the tested materials, further study is warranted to isolate and purify the most active compounds. PMID:22194773

  10. Bioactivity Evaluation of Plant Extracts Used in Indigenous Medicine against the Snail, Biomphalaria glabrata, and the Larvae of Aedes aegypti

    PubMed Central

    dos Santos, Edilson Alves; de Carvalho, Cenira M.; Costa, Ana L. S.; Conceição, Adilva S.; Moura, Flávia de B. Prado; Santana, Antônio Euzébio Goulart

    2012-01-01

    This investigation examined the molluscicidal and larvicidal activity of eight plants that are used in the traditional medicine of the Pankararé indigenous people in the Raso da Catarina region, Bahia state, Brazil. The tested plants were chosen based on the results of previous studies. Only those plants that were used either as insect repellents or to treat intestinal parasitic infections were included in the study. Crude extracts (CEs) of these plants were tested for their larvicidal activity (against Aedes aegypti larvae in the fourth instar) and molluscicidal activity (against the snail Biomphalaria glabrata). The plant species Scoparia dulcis and Helicteres velutina exhibited the best larvicidal activities (LC50 83.426 mg/L and LC50 138.896 mg/L, resp.), and Poincianella pyramidalis, Chenopodium ambrosoides, and Mimosa tenuiflora presented the best molluscicidal activities (LC50 0.94 mg/L, LC50 13.51 mg/L, and LC50 20.22 mg/L, resp.). As we used crude extracts as the tested materials, further study is warranted to isolate and purify the most active compounds. PMID:22194773

  11. In vivo identification of Bacillus thuringiensis Cry4Ba toxin receptors by RNA interference knockdown of glycosylphosphatidylinositol-linked aminopeptidase N transcripts in Aedes aegypti larvae.

    PubMed

    Saengwiman, Suchada; Aroonkesorn, Aratee; Dedvisitsakul, Plaipol; Sakdee, Somsri; Leetachewa, Somphob; Angsuthanasombat, Chanan; Pootanakit, Kusol

    2011-04-22

    Bacillus thuringiensis Cry4Ba toxin selectively kills Aedes aegypti mosquito larvae as it is in part due to the presence of specific membrane-bound protein receptors. In this study, using data mining approach, we initially identified three potential glycosylphosphatidylinositol-linked aminopeptidase N (GPI-APN) isoforms, APN2778, APN2783 and APN5808, which are believed to act as Cry4Ba toxin receptors. These three isoforms that are functionally expressed in the larval midgut can be sequence-specific knocked down (ranging from ∼80 % to 95 %) by soaking the Aedes aegypti larvae in buffer of long double-stranded GPI-APN RNAs (∼300-680 bp). Finally, to see the physiological effect of APN knockdowns, the larvae were fed with Escherichia coli expressing Cry4Ba toxin. The results revealed that all the three identified GPI-APN isoforms may possibly function as a Cry4Ba receptor, particularly for APN2783 as those larvae with this transcript knockdown showed a dramatic increase in resistance to Cry4Ba toxicity. PMID:21439264

  12. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L.

    PubMed

    Sundaravadivelan, Chandran; Padmanabhan, Madanagopal Nalini

    2014-03-01

    Mosquitoes transmit dreadful diseases, causing millions of deaths every year. Therefore, screening for larvicidal and pupicidal activity of microbial extracts attributes could lead to development of new and improved mosquito control methods that are economical and safe for nontarget organisms and are ecofriendly. Synthetic chemical insecticides occupy predominant position in control strategies. These hazardous chemicals exert unwarranted toxicity and lethal effects on nontarget organisms, develop physiological resistance in target, and cause adverse environmental effect. For vector control, fungal-mediated natural products have been a priority in this area at present. In the current study, effective larvicidal and pupicidal effect of mycosynthesized silver nanoparticles (Ag NPs) using an entomopathogenic fungi Trichoderma harzianum against developmental stages of the dengue vector Aedes aegypti was investigated. An attractive possibility of green nanotechnology is to use microorganisms in the synthesis of nanosilver especially Ag NPs. The mycosynthesized Ag NPs were characterized to find their unique properties through UV-visible spectrophotometer, X-ray diffraction analysis, Fourier transform infrared, and surface characteristics by scanning electron microscopy. To analyze the bioefficacy, different test concentrations for extracellular filtrate (0.2, 0.4, 0.6, 0.8, and 1.0 %) and Ag NPs (0.05, 0.10, 0.15, 0.20, and 0.25 %) were prepared to a final volume of 200 mL using deionized water; 20 larvae of each instars (I-IV) and pupa were exposed to each test concentration separately which included a set of control (distilled water) group with five replicates. Characterization of the synthesized Ag NPs were about 10-20 nm without aggregation. Susceptibility of larval instars to synthesized Ag NPs was higher than the extracellular filtrate of T. harzianum alone after 24-h exposure, where the highest mortality was recorded as 92 and 96 % for first and second instars and

  13. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti.

    PubMed

    Sasaki, Daniele Yumi; Jacobowski, Ana Cristina; de Souza, Antônio Pancrácio; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Macedo, Maria Lígia Rodrigues

    2015-05-01

    Currently, one of the major global public health concerns is related to the transmission of dengue/yellow fever virus by the vector Aedes aegypti. The most abundant digestive enzymes in Ae. aegypti midgut larvae are trypsin and chymotrypsin. Since protease inhibitors have the capacity to bind to and inhibit the action of insect digestive proteinases, we investigated the short- and long-term effects of Adenanthera pavonina seed proteinase inhibitor (ApTI) on Ae. aegypti larvae, as well as a possible mechanism of adaptation. ApTI had a significant effect on Ae. aegypti larvae exposed to a non-lethal concentration of ApTI during short- and long-duration assays, decreasing survival, weight and proteinase activities of midgut extracts of larvae. The zymographic profile of ApTI demonstrated seven bands; three bands apparently have trypsin-like activity. Moreover, the peritrophic membrane was not disrupted. The enzymes of ApTI-fed larvae were found to be sensitive to ApTI and to have a normal feedback mechanism; also, the larval digestive enzymes were not able to degrade the inhibitor. In addition, ApTI delayed larval development time. Histological studies demonstrated a degeneration of the microvilli of the posterior midgut region epithelium cells, hypertrophy of the gastric caeca cells and an augmented ectoperitrophic space in larvae. Moreover, Ae. aegypti larvae were incapable of overcoming the negative effects of ApTI, indicating that this inhibitor might be used as a promising agent against Ae. aegypti. In addition, molecular modeling and molecular docking studies were also performed in order to construct three-dimensional theoretical models for ApTI, trypsin and chymotrypsin from Ae. aegypti, as well as to predict the possible interactions and affinity values for the complexes ApTI/trypsin and ApTI/chymotrypsin. In this context, this study broadens the base of our understanding about the modes of action of proteinase inhibitors in insects, as well as the way insects

  14. Latex constituents from Calotropis procera (R. Br.) display toxicity upon egg hatching and larvae of Aedes aegypti (Linn.).

    PubMed

    Ramos, Márcio Viana; Bandeira, Glaís de Paiva; de Freitas, Cléverson Diniz Teixeira; Nogueira, Nádia Accioly Pinto; Alencar, Nylane Maria Nunes; de Sousa, Petrônio Augusto Simão; Carvalho, Ana Fontenele Urano

    2006-08-01

    Calotropis procera R. Br. (Asclepiadaceae) is a well-known medicinal plant with leaves, roots, and bark being exploited by popular medicine to fight many human and animal diseases. This work deals with the fractionation of the crude latex produced by the green parts of the plant and aims to evaluate its toxic effects upon egg hatching and larval development of Aedes aegypti. The whole latex was shown to cause 100% mortality of 3rd instars within 5 min. It was fractionated into water-soluble dialyzable (DF) and non-dialyzable (NDF) rubber-free materials. Both fractions were partially effective to prevent egg hatching and most of individuals growing under experimental conditions died before reaching 2nd instars or stayed in 1st instars. Besides, the fractions were very toxic to 3rd instars causing 100% mortality within 24 h. When both fractions were submitted to heat-treatment the toxic effects were diminished considerably suggesting low thermostability of the toxic compounds. Polyacrylamide gel electrophoresis of both fractions and their newly fractionated peaks obtained through ion exchange chromatography or desalting attested the presence of proteins in both materials. When submitted to protease digestion prior to larvicidal assays NDF lost most of its toxicity but DF was still strongly active. It may be possible that the highly toxic effects of the whole latex from C. procera upon egg hatching and larvae development should be at least in part due to its protein content found in NDE However the toxicity seems also to involve non protein molecules present in DF. PMID:17072453

  15. Oral Delivery of Double-Stranded RNA in Larvae of the Yellow Fever Mosquito, Aedes aegypti: Implications for Pest Mosquito Control

    PubMed Central

    Singh, Aditi D.; Wong, Sylvia; Ryan, Calen P.; Whyard, Steven

    2013-01-01

    RNA interference has already proven itself to be a highly versatile molecular biology tool for understanding gene function in a limited number of insect species, but its widespread use in other species will be dependent on the development of easier methods of double-stranded RNA (dsRNA) delivery. This study demonstrates that RNA interference can be induced in the mosquito Aedes aegypti L. (Diptera: Culicidae) simply by soaking larvae in a solution of dsRNA for two hours. The mRNA transcripts for β-tubulin, chitin synthase-1 and -2, and heat shock protein 83 were reduced between 30 and 50% three days post-dsRNA treatment. The dsRNA was mixed with a visible dye to identify those individuals that fed on the dsRNA, and based on an absence of RNA interference in those individuals that contained no dye within their guts, the primary route of entry of dsRNA is likely through the gut epithelium. RNA interference was systemic in the insects, inducing measurable knock down of gene expression in tissues beyond the gut. Silencing of the β-tubulin and chitin synthase-1 genes resulted in reduced growth and/or mortality of the larvae, demonstrating the utility of dsRNA as a potential mosquito larvicide. Silencing of chitin synthase-2 did not induce mortality in the larvae, and silencing of heat shock protein 83 only induced mortality in the insects if they were subsequently subjected to a heat stress. Drosophila melanogaster Meigen (Diptera: Drosophilidae) larvae were also soaked in dsRNA designed to specifically target either their own β-tubulin gene, or that of A. aegypti, and significant mortality was only seen in larvae treated with dsRNA targeting their own gene, which suggests that dsRNA pesticides could be designed to be species-limited. PMID:24224468

  16. How Diverse Detrital Environments Influence Nutrient Stoichiometry between Males and Females of the Co-Occurring Container Mosquitoes Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus

    PubMed Central

    Yee, Donald A.; Kaufman, Michael G.; Ezeakacha, Nnaemeka F.

    2015-01-01

    Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar

  17. How Diverse Detrital Environments Influence Nutrient Stoichiometry between Males and Females of the Co-Occurring Container Mosquitoes Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus.

    PubMed

    Yee, Donald A; Kaufman, Michael G; Ezeakacha, Nnaemeka F

    2015-01-01

    Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar

  18. Odonate Nymphs: Generalist Predators and Their Potential in the Management of Dengue Mosquito, Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Akram, Waseem; Ali-Khan, Hafiz Azhar

    2016-01-01

    Background: Dengue is amongst the most serious mosquito-borne infectious disease with hot spots in tropical and subtropical parts of the world. Unfortunately, no licensed vaccine for the disease is currently available in medicine markets. The only option available is the management of dengue vector mosquito, Aedes aegypti (Diptera: Culicidae). Method: Predatory potential of five odonate nymphs namely Anax parthenope, Bradinopyga geminate, Ischnura forcipata, Rhinocypha quadrimaculata, and Orthetrum sabina were evaluated against the 4th instar larvae of the dengue vector mosquito, Aedes aegypti, under laboratory conditions. The consumption of the mosquito larvae was evaluated at three water volume levels viz., 1 liter, 2 liter and 3 liter. Results: The number of Ae. aegypti larvae consumed varied significantly among the five species, and at different levels of water volume (P< 0.01). However, the interaction between odonate nymphs and the water volumes was statistically non-significant (P> 0.05). Ischnura forcipata consumed the highest number of Ae. aegypti larvae (n=56) followed by A. parthenope (n=47) and B. geminate (n=46). The number of larvae consumed was decreased with increasing search area or water volume, and the highest predation was observed at 1-liter water volume. Conclusion: The odonate nymphs could be a good source of biological agents for the management of the mosquitoes at larval stages. PMID:27308283

  19. Structure-Activity Relationship Studies on Natural Eremophilanes from Inula helenium as Toxicants Against Aedes aegypti Larvae and Adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Aedes aegypti larval toxicity bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids, sesquiterpenoids, and triterpenoids. Among these compounds studies, two eudesmanolides, alantolactone and isoalantolactone, showed l...

  20. Thiosemicarbazones as Aedes aegypti larvicidal.

    PubMed

    da Silva, João Bosco P; Navarro, Daniela Maria do A F; da Silva, Aluizio G; Santos, Geanne K N; Dutra, Kamilla A; Moreira, Diogo Rodrigo; Ramos, Mozart N; Espíndola, José Wanderlan P; de Oliveira, Ana Daura T; Brondani, Dalci José; Leite, Ana Cristina L; Hernandes, Marcelo Zaldini; Pereira, Valéria R A; da Rocha, Lucas F; de Castro, Maria Carolina A B; de Oliveira, Beatriz C; Lan, Que; Merz, Kenneth M

    2015-07-15

    A set of aryl- and phenoxymethyl-(thio)semicarbazones were synthetized, characterized and biologically evaluated against the larvae of Aedes aegypti (A. aegypti), the vector responsible for diseases like Dengue and Yellow Fever. (Q)SAR studies were useful for predicting the activities of the compounds not included to create the QSAR model as well as to predict the features of a new compound with improved activity. Docking studies corroborated experimental evidence of AeSCP-2 as a potential target able to explain the larvicidal properties of its compounds. The trend observed between the in silico Docking scores and the in vitro pLC50 (equals -log LC50, at molar concentration) data indicated that the highest larvicidal compounds, or the compounds with the highest values for pLC50, are usually those with the higher docking scores (i.e., greater in silico affinity for the AeSCP-2 target). Determination of cytotoxicity for these compounds in mammal cells demonstrated that the top larvicide compounds are non-toxic. PMID:26087027

  1. Regulation of Aedes aegypti Population Dynamics in Field Systems: Quantifying Direct and Delayed Density Dependence

    PubMed Central

    Walsh, Rachael K.; Aguilar, Cristobal L.; Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M.; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2013-01-01

    Transgenic strains of Aedes aegypti have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using Ae. aegypti larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on Ae. aegypti populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation. PMID:23669230

  2. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed Central

    Mocellin, Márcio Goulart; Simões, Taynãna César; do Nascimento, Teresa Fernandes Silva; Teixeira, Maria Lucia França; Lounibos, Leon Philip; de Oliveira, Ricardo Lourenço

    2012-01-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus (0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  3. Larval Development of Aedes aegypti and Aedes albopictus in Peri-Urban Brackish Water and Its Implications for Transmission of Arboviral Diseases

    PubMed Central

    Ramasamy, Ranjan; Surendran, Sinnathamby N.; Jude, Pavilupillai J.; Dharshini, Sangaralingam; Vinobaba, Muthuladchumy

    2011-01-01

    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5–30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats. PMID:22132243

  4. HPTLC analysis of Scoparia dulcis Linn (Scrophulariaceae) and its larvicidal potential against dengue vector Aedes aegypti.

    PubMed

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rathinasamy, Sheeladevi

    2015-01-01

    This study evaluates the larvicidal activity of Scoparia dulcis aqueous extract against dengue vector and determines its major chemical components. The extract was tested at various concentrations ranging from 0.1 to 2 mg/mL against Aedes aegypti larvae. The extracts displayed significant larvicidal efficacy against Ae. aegypt species after 24 h exposure revealing LC50 of 3.3835 (mg/mL) and LC90 of 5.7578 (mg/mL). Finger printing profile carried out by CAMAG automatic TLC sample applicator programmed through WIN CATS software revealed peaks with different Rf values for three different volumes injected: 16, 15 and 18 peaks were spotted for 3, 6 and 9 μL, respectively. Ascending order of Rf values was also ascertained for each peak recorded. This study clearly signifies that S. dulcis extract contains numerous compounds that are known to have larvicidal properties which clearly substantiates its efficacy on Ae. aegypti larvae. PMID:25573588

  5. Plant essential oils affect the toxicities of carbaryl and permethrin against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Tong, Fan; Bloomquist, Jeffrey R

    2013-07-01

    ABSTRACT Phytochemicals have been considered as alternatives for conventional pesticides because of their low mammalian toxicity and environmental safety. They usually display less potent insecticidal effects than synthetic compounds, but may express as yet unknown modes of action. In the current study, we evaluated 14 plant essential oils for their toxicities and synergistic effects with carbaryl and permethrin against fourth instars of Aedes aegypti (L.) as well as 5-7-d-old adults. Six essential oils showed significant synergistic effects with carbaryl at 10-50 mg/liter, but paradoxically all of them decreased the toxicity of permethrin against Ae. aegypti larvae. None showed toxicity or synergistic effects on Ae. aegypti adults, at doses up to 2,000 ng/ insect. The six essential oils displaying synergistic effects in Ae. aegypti larvae inhibited the in vitro activities of cytochrome P450 monooxygenases and carboxylesterases in the low milligram per liter range. The data indicated that cytochrome P450 monooxygenases and carboxylesterase were probably targets for these natural synergists. Thus, the mechanism of synergism was most likely inhibition of metabolism and not interacting target site effects. PMID:23926781

  6. Human-Mediated Marine Dispersal Influences the Population Structure of Aedes aegypti in the Philippine Archipelago

    PubMed Central

    Fonzi, Eugenio; Higa, Yukiko; Bertuso, Arlene G.; Futami, Kyoko; Minakawa, Noboru

    2015-01-01

    Background Dengue virus (DENV) is an extraordinary health burden on global scale, but still lacks effective vaccine. The Philippines is endemic for dengue fever, but massive employment of insecticides favored the development of resistance mutations in its major vector, Aedes aegypti. Alternative vector control strategies consist in releasing artificially modified mosquitos in the wild, but knowledge on their dispersal ability is necessary for a successful implementation. Despite being documented that Ae. aegypti can be passively transported for long distances, no study to date has been aimed at understanding whether human marine transportation can substantially shape the migration patterns of this mosquito. With thousands of islands connected by a dense network of ships, the Philippines is an ideal environment to fill this knowledge gap. Methodology/principal findings Larvae of Ae. aegypti from 15 seaports in seven major islands of central-western Philippines were collected and genotyped at seven microsatellite loci. Low genetic structure and considerable gene flow was found in the area. Univariate and multivariate regression analyses suggested that anthropic factors (specifically the amount of processed cargo and human population density) can explain the observed population structure, while geographical distance was not correlated. Interestingly, cargo shipments seem to be more efficient than passenger ships in transporting Ae. aegypti. Bayesian clustering confirmed that Ae. aegypti from busy ports are more genetically similar, while populations from idle ports are relatively structured, regardless of the geographical distance that separates them. Conclusions/significance The results confirmed the pivotal role of marine human-mediated long-range dispersal in determining the population structure of Ae. aegypti. Hopefully corroborated by further research, the present findings could assist the design of more effective vector control strategies. PMID:26039311

  7. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro--are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed

    Mocellin, Márcio Goulart; Simões, Taynãna César; Nascimento, Teresa Fernandes Silva do; Teixeira, Maria Lucia França; Lounibos, Leon Philip; Oliveira, Ricardo Lourenço de

    2009-12-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus(0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  8. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins.

    PubMed

    Eisen, Lars; Monaghan, Andrew J; Lozano-Fuentes, Saul; Steinhoff, Daniel F; Hayden, Mary H; Bieringer, Paul E

    2014-05-01

    The mosquito Aedes (Stegomyia) aegypti (L.), which occurs widely in the subtropics and tropics, is the primary urban vector of dengue and yellow fever viruses, and an important vector of chikungunya virus. There is substantial interest in how climate change may impact the bionomics and pathogen transmission potential of this mosquito. This Forum article focuses specifically on the effects of temperature on the bionomics of Ae. aegypti, with special emphasis on the cool geographic range margins where future rising temperatures could facilitate population growth. Key aims are to: 1) broadly define intra-annual (seasonal) patterns of occurrence and abundance of Ae. aegypti, and their relation to climate conditions; 2) synthesize the existing quantitative knowledge of how temperature impacts the bionomics of different life stages of Ae. aegypti; 3) better define the temperature ranges for which existing population dynamics models for Ae. aegypti are likely to produce robust predictions; 4) explore potential impacts of climate warming on human risk for exposure to Ae. aegypti at its cool range margins; and 5) identify knowledge or data gaps that hinder our ability to predict risk of human exposure to Ae. aegypti at the cool margins of its geographic range now and in the future. We first outline basic scenarios for intra-annual occurrence and abundance patterns for Ae. aegypti, and then show that these scenarios segregate with regard to climate conditions in selected cities where they occur. We then review how near-constant and intentionally fluctuating temperatures impact development times and survival of eggs and immatures. A subset of data, generated in controlled experimental studies, from the published literature is used to plot development rates and survival of eggs, larvae, and pupae in relation to water temperature. The general shape of the relationship between water temperature and development rate is similar for eggs, larvae, and pupae. Once the lower

  9. Infection and Vertical Transmission of Kamiti River Virus in Laboratory Bred Aedes aegypti Mosquitoes

    PubMed Central

    Lutomiah, Joel J. L.; Mwandawiro, Charles; Magambo, Japhet; Sang, Rosemary C.

    2007-01-01

    Kamiti river virus (KRV) is an insect-only Flavivirus that was isolated from field-collected Ae. macintoshi mosquitoes in 1999, and is closely related to cell fusing agent virus. Both of these viruses belong to the family Flaviviridae, which also contains other viruses of medical importance, such as yellow fever virus, West Nile virus and dengue. Because Ae. macintoshi is the only known natural host to KRV, the main objective of this study was to establish the possibility that other mosquito hosts of the virus exist, by determining its ability to infect Ae. aegypti mosquitoes under laboratory conditions. The study also sought to determine the rates of infection and, subsequently, vertical transmission as a possible means of its maintenance and propagation in nature, given that it neither grows in vertebrate cells or mice. The mosquitoes were infected by the virus either as larvae or adults. Virus assay was done by re-isolation in tissue culture and indirect immunofluoresce assay methods. KRV infected Ae. aegypti mosquitoes, with the observed rates as high as 74 to 96 %. The virus was also transmitted vertically in these mosquitoes. Vertical transmission rates of 3.90 % were observed for the 2nd and 3rd ovarian cycles combined. These results suggest that Ae. aegypti mosquitoes are likely to be infected with KRV in nature, and that vertical transmission is the natural means by which it is maintained and propagated in this host, and possibly others. PMID:20337552

  10. Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins.

    PubMed

    Stalinski, Renaud; Laporte, Frédéric; Després, Laurence; Tetreau, Guillaume

    2016-03-01

    Bacillus thuringiensis subsp. israelensis (Bti) is a natural pathogen of dipterans widely used as a biological insecticide for mosquito control. To characterize the response of mosquitoes to intoxication with Bti, the transcriptome profile of Bti-exposed susceptible Aedes aegypti larvae was analysed using Illumina RNA-seq. Gene expression of 11 alkaline phosphatases (ALPs) was further investigated by real time quantitative polymerase chain reaction and ALP activity was measured in the susceptible strain and in four strains resistant to a single Bti Cry toxin or to Bti. These strains were unexposed or exposed to their toxin of selection. Although all resistant strains constitutively exhibited a higher level of transcription of ALP genes than the susceptible strain, they showed a lower total ALP activity. The intoxication with different individual Cry toxins triggered a global pattern of ALP gene under-transcription in all the one-toxin-resistant strains but involving different specific sets of ALPs in each resistant phenotype. Most of the ALPs involved are not known Cry-binding proteins. RNA interference experiment demonstrated that reducing ALP expression conferred increased the survival of larvae exposed to Cry4Aa, confirming the involvement of ALP in Cry4Aa toxicity. PMID:26663676

  11. Microevolution of Aedes aegypti.

    PubMed

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world's largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods have

  12. Microevolution of Aedes aegypti

    PubMed Central

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world’s largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods

  13. Toxicity effect of Delonix elata (Yellow Gulmohr) and predatory efficiency of Copepod, Mesocyclops aspericornis for the control of dengue vector, Aedes aegypti

    PubMed Central

    Vasugi, Chellamuthu; Kamalakannan, Siva; Murugan, Kadarkarai

    2013-01-01

    Objective To evaluate the toxicity, predatory efficiency of Delonix elata (D. elata) and Mesocyclops aspericornis (M. aspericornis) against dengue vector, Aedes aegypti (Ae. aegypti). Methods A mosquitocidal bioassay was conducted at different concentration of plant extract followed by WHO standard method. The probit analysis of each tested concentration and control were observed by using software SPSS 11 version package. The each tested concentration variable was assessed by DMRT method. The predatory efficiency of copepod was followed by Deo et al., 1988. The predator, M. aspericornis was observed for mortality, abnormalities, survival and swimming activity after 24 h treatment of plant and also predation on the mosquito larvae were observed. Results D. elata were tested for biological activity against the larvae, and pupae of Ae. aegypti. Significant mortality effects were observed in each life stage. The percentage of mortality was 100% in first and second instars whereas 96%, 92% in third and fourth instars. Fitted probit-mortality curves for larvae indicated the median and 90% lethal concentrations of D. elata for instars 1-4 to be 4.91 (8.13), 5.16 (8.44), 5.95 (7.76) and 6.87 (11.23), respectively. The results indicate that leaf extract exhibits significant biological activity against life stages. The present study revealed that D. elata is potentially important in the control of Ae. aegypti. Similar studies were conducted for predatory efficiency of Copepod, M. aspericornis against mosquito vector Ae. Aegypti. This study reported that the predatory copepod fed on 39% and 25% in I and III instar larvae of mosquito and in combined treatment of D. elata and copepod maximum control of mosquito larval states and at 83%, 80%, 75% and 53% in I, II, III and IV instars, respectively. Conclusions The combined action of plant extract and predatory copepod to effectively control mosquito population and reduce the dengue transmitting diseases.

  14. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides.

    PubMed

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring. PMID:26939002

  15. Toxicity of Cephalaria Species and their Individual Constituents against Aedes aegypti.

    PubMed

    Sarikahya, Nazli Boke; Kayce, Peyker; Tabanca, Nurhayat; Estep, Alden S; Becnel, James J; Khan, Ikhlas A; Kirmizigul, Suheyla

    2015-07-01

    Crude acetone and ethanol extracts of the aerial parts of 21 Cephalaria species collected from Turkey were investigated for larvicidal and adult topical activity against Aedes aegypti. The ethanol extracts from C. elazigensis var. purpurea, C. anatolica, and C. elmaliensis possessed the highest mortality against first instar Ae. aegypti larvae. Luteolin-7-O-β-D-glycoside (1), isolated from C. elmaliensis ethanol extract, demonstrated 33% and 53% mortality at 0.1 μg/mL concentration against first instar ORL (susceptible) and PR (pyrethroid resistant) strains, respectively. C. scoparia acetone extract showed 100% mortality against adult Ae. aegypti. From this extract compounds 2-8 were isolated. Compound 2 (isoorientin) possessed the highest toxicity with 31.7% and 65% mortality at a 10 μg/mL concentration against adult ORL and PR strains, respectively. This is the first screening report of potential insecticides from Cephalaria species against the yellow fever mosquito, Ae. aegypti, and the active compounds (1 and 2) could lead to the development of a new class of insecticide. PMID:26411009

  16. Insecticidal action of sodium anacardate from Brazilian cashew nut shell liquid against Aedes aegypti.

    PubMed

    Farias, Davi F; Cavalheiro, Mariana G; Viana, Sayonara M; De Lima, Glauber P G; da Rocha-Bezerra, Lady Clarissa B; Ricardo, Nágila M P S; Carvalho, Ana F U

    2009-09-01

    Aedes aegypti is the major vector of 1 of the most concerning arboviruses of the world, the dengue fever. The only effective way of reducing the incidence of dengue fever is to control the vector mosquito, mainly by application of insecticides to its breeding places. This study was aimed at assessing the insecticidal activity of sodium anacardate, isolated from Brazilian cashew nut shell liquid (CNSL), against the eggs, 3rd instars or pupae of Ae. aegypti. In addition, the acute toxicity of sodium anacardate to mice was also investigated. Sodium anacardate showed toxicity against Ae. aegypti eggs (median effective concentration [EC50] = 162.93 +/- 29.93 microg/ml), larvae (median lethal concentration [LC50] = 55.47 +/- 3.0 microg/ml) and pupae (LC50 = 369.78 - 52.30 microg/ml). On the other hand, even at high dose (0.3 g/kg body weight), this compound did not cause any adverse effects on mice, suggesting that this compound is safe to mammals. Therefore, sodium anacardate may be a viable low-cost alternative to help combat Ae. aegypti. PMID:19852234

  17. PREVALENCE OF TREMATODE LARVAE IN INTERMEDIATE HOSTS: SNAILS AND FISH IN KO AE SUB-DISTRICT OF KHUEANG NAI, UBON RATCHATHANI PROVINCE, THAILAND.

    PubMed

    Sripa, Jittiyawadee; Kiatsopit, Nadda; Piratae, Supawadee

    2016-05-01

    Ko Ae Sub-district of Khueang Nai, Ubon Ratchathani Province, Thailand is located in an endemic area for Opisthorchis viverrini and other fish-borne zoonotic trematodes (FZT) infection. This study shows the status in Ko Ae Sub-district of FZT infection based on availability of intermediate hosts and necessary requirements for the transmission of FZT. A cross-sectional survey of intermediate hosts of FZT, including Bithynia siamensis goniomphalos and cyprinoid fish, was conducted from April 2013 to December 2014. Examination of 1,000 snails revealed 3.4% were infected with trematode cercariae, with a density of infection greater than 100 cercariae per infected snail. Six groups of morphologically-distinguishable trematode cercariae were identified, namely, cystophorous, echinostome, furcocercous, mutabile, parapleurolophocercous, and xiphidio, the latter being the most predominant type. Among 250 cyprinoid fish samples with metacercariae present at their caudal fins and examined for FZT by pepsin digestion, metacer- cariae of Haplorchis taichui, H. pumilio, and Centrocestus formosanus were found. Unidentified metacercariae collected from fish caudal fins were subsequently shown using a PCR-based assay to be C. formosanus. No infection by O. viverrini in the intermediate hosts, Bithynia siamensis goniomphalos and cyprinoid fish was evident. The study provides new information regarding trematode larvae infection in the primary and secondary intermediate hosts of FZT in this area of Thailand. PMID:27405122

  18. Bdelloid rotifer, Philodina species in the breeding containers of Aedes aegypti and Aedes albopictus.

    PubMed

    Muniaraj, M; Arunachalam, N; Paramasivan, R; Mariappan, T; Philip Samuel, P; Rajamannar, V

    2012-12-01

    The vector mosquitoes of dengue and chikungunya fever, Aedes aegypti and Aedes albopictus have adapted to feed on humans and undergo larval and pupal development in natural and artificial freshwater collections. Although several studies reported, still, much information is required to understand the successful survival of Aedes mosquitoes in small temporary containers. In an investigation conducted in the chikungunya affected areas of Kerala state, India, the presence of Bdelloid rotifer, Philodina in 95% of breeding habitats of Ae. aegypti and Ae. albopictus was recorded. The role of Philodina in the breeding containers was investigated. It was found that while in control the number of Philodina was found increasing in the water sample during the study period of seven days, the number found decreased in the containers with larvae of Aedes. The gut content analysis also confirmed the presence of the rotating wheel, corona of Philodina in some of the specimen suggests its role as major larval food. PMID:23202612

  19. Larvicidal & ovicidal efficacy of Pithecellobium dulce (Roxb.) Benth. (Fabaceae) against Anopheles stephensi Liston & Aedes aegypti Linn. (Diptera: Culicidae)

    PubMed Central

    Govindarajan, M.; Rajeswary, M.; Sivakumar, R.

    2013-01-01

    Background & objectives: In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal and ovicidal potential of the crude hexane, benzene, chloroform, ethyl acetate and methanol solvent extracts from the medicinal plant Pithecellobium dulce against the mosquito vectors, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). Methods: Larvicidal activity of P. dulce plant extracts was studied in the range of 60 to 450 mg/l against early third instar larvae of An. stephensi and Ae. aegypti in the laboratory. The larval mortality was observed after 24 h of exposure. The ovicidal activity was determined against An. stephensi and Ae. aegypti to various concentrations ranging from 100 to 750 mg/l under the laboratory conditions. Mean per cent hatchability of the eggs were observed after 48 h post treatment. Results: All leaf and seed extracts showed moderate larvicidal and ovicidal effects; however, the highest larval mortality was found in methanol extract of leaf of P. dulce against the larvae of An. stephensi and Ae. aegypti with the LC50 and LC90 values 145.43, 155.78 mg/l and 251.23, 279.73 mg/l, respectively. The per cent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. Zero hatchability was observed at 400 mg/l for leaf methanol extract and 625 mg/l for seed methanol extract of P. dulce against An. stephensi and Ae. aegypti, respectively. Compared to leaf extracts, seed extracts have low potency against the two mosquitoes. Interpretation & conclusions: The present results suggest that the leaf and seed extracts of P. dulce have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. PMID:24056567

  20. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica.

    PubMed

    Bisset, J A; Marín, R; Rodríguez, M M; Severson, D W; Ricardo, Y; French, L; Díaz, M; Pérez, O

    2013-03-01

    Dengue (family Flaviridae, genus Flavivirus, DENV) and dengue hemorrhagic fever (DHF) are presently important public health problems in Costa Rica. The primary strategy for disease control is based on reducing population densities of the main mosquito vector Aedes aegypti (L.) (Diptera: Culicidae). This is heavily dependent on use of chemical insecticides, thus the development of resistance is a frequent threat to control program effectiveness. The objective of this study was to determine the levels of insecticide resistance and the metabolic resistance mechanisms involved in two Ae. aegypti strains collected from two provinces (Puntarenas and Limon) in Costa Rica. Bioassays with larvae were performed according to World Health Organization guidelines and resistance in adults was measured through standard bottle assays. The activities of beta-esterases, cytochrome P450 monooxygenases, and glutathione S-transferases (GST), were assayed through synergists and biochemical tests, wherein the threshold criteria for each enzyme was established using the susceptible Rockefeller strain. The results showed higher resistance levels to the organophosphate (OP) temephos and the pyrethroid deltamethrin in larvae. The efficacy of commercial formulations of temephos in controlling Ae. aegypti populations was 100% mortality up to 11 and 12 d posttreatment with daily water replacements in test containers. Temephos and deltamethrin resistance in larvae were associated with high esterase activity, but not to cytochrome P450 monooxygenase or GST activities. Adult mosquitoes were resistant to deltamethrin, and susceptible to bendiocarb, chlorpyrifos, and cypermethrin. Because temephos and deltamethrin resistance are emerging at the studied sites, alternative insecticides should be considered. The insecticides chlorpyrifos and cypermethrin could be good candidates to use as alternatives for Ae. aegypti control. PMID:23540124

  1. Seasonal profiles of Aedes aegypti (Diptera: Culicidae) larval habitats in an urban area of Costa Rica with a history of mosquito control

    PubMed Central

    Troyo, Adriana; Calderón-Arguedas, Olger; Fuller, Douglas O.; Solano, Mayra E.; Avendaño, Adrian; Arheart, Kristopher L.; Chadee, Dave D.; Beier, John C.

    2008-01-01

    Dengue is the most important arboviral disease worldwide and the principal vector-borne disease in Costa Rica. Control of Aedes aegypti populations through source reduction is still considered the most effective way of prevention and control, although it has proven ineffective or unsustainable in many areas with a history of mosquito control. In this study, seasonal profiles and productivity of Aedes aegypti were analyzed in the city of Puntarenas, Costa Rica, where vector control has been practiced for more than ten years. Households contained more than 80% of larval habitats identified, although presence of habitats was more likely in other locations like lots and streets. In the wet season, habitats in the “other” category, like appliances, small manholes, and miscellaneous containers, were the most frequent habitats observed as well as the most common and productive habitats for Ae. aegypti. In the dry season, domestic animal drinking containers were very common, although concrete washtubs contained 79% of Ae. aegypti pupae collected. Individually, non-disposable habitats were as likely or more likely to contain mosquito larvae, and large containers were more likely to harbor mosquito larvae than the small ones only in the dry season. Considering various variables in the logistic regressions, predictors for Ae. aegypti in a habitat were habitat type (p<0.001), setting (p=0.043), and disposability (p=0.022) in the wet season and habitat capacity in the dry season (p=0.025). Overall, traditional Ae. aegypti larval indices and pupal indices in Puntarenas were high enough to allow viral transmission during the wet season. In spite of continued vector control, it has not been possible to reduce vector densities below threshold levels in Puntarenas, and the habitat profiles show that non-household locations, as well as non-disposable containers, should be targeted in addition to the standard control activities. PMID:18697310

  2. Distribution of Mosquito Larvae on Kosrae Island, Kosrae State, the Federated States of Micronesia

    PubMed Central

    Noda, Shinichi; Yamamoto, Sota; Toma, Takako; Taulung, Livinson

    2013-01-01

    Surveys of mosquito larvae were carried out in six areas of Kosrae Island, Kosrae State, the Federated States of Micronesia in December 2009 and June 2012. A total of 962 larvae of six species were collected from 106 natural and artificial habitats. They were identified as Aedes aegypti, Ae. albopictus, Ae. marshallensis, Culex quinquefasciatus, Cx. annulirostris, and Cx. kusaiensis. This is the first report from Kosrae Island for three of these species—Ae. marshallensis, Cx. quinquefasciatus, and Cx. annulirostris. The most abundant species was Ae. albopictus, followed by Ae. marshallensis, and these two species were found in all areas. Relatively large numbers of Cx. quinquefasciatus and Cx. kusaiensis were found in five areas. Fewer Cx. annulirostris were found, and only in three areas. Aedes aegypti larvae were collected from a single habitat at Tafunsak in 2009. To prevent the outbreak of dengue fever, environmental management should focus on the destruction, alteration, disposal and recycling of containers that produce larger numbers of adult Aedes mosquitoes. PMID:24478593

  3. Distribution of mosquito larvae on kosrae island, kosrae state, the federated States of micronesia.

    PubMed

    Noda, Shinichi; Yamamoto, Sota; Toma, Takako; Taulung, Livinson

    2013-12-01

    Surveys of mosquito larvae were carried out in six areas of Kosrae Island, Kosrae State, the Federated States of Micronesia in December 2009 and June 2012. A total of 962 larvae of six species were collected from 106 natural and artificial habitats. They were identified as Aedes aegypti, Ae. albopictus, Ae. marshallensis, Culex quinquefasciatus, Cx. annulirostris, and Cx. kusaiensis. This is the first report from Kosrae Island for three of these species-Ae. marshallensis, Cx. quinquefasciatus, and Cx. annulirostris. The most abundant species was Ae. albopictus, followed by Ae. marshallensis, and these two species were found in all areas. Relatively large numbers of Cx. quinquefasciatus and Cx. kusaiensis were found in five areas. Fewer Cx. annulirostris were found, and only in three areas. Aedes aegypti larvae were collected from a single habitat at Tafunsak in 2009. To prevent the outbreak of dengue fever, environmental management should focus on the destruction, alteration, disposal and recycling of containers that produce larger numbers of adult Aedes mosquitoes. PMID:24478593

  4. Evaluation of Different Culture Media for Improvement in Bioinsecticides Production by Indigenous Bacillus thuringiensis and Their Application against Larvae of Aedes aegypti

    PubMed Central

    Devidas, Patil Chandrashekhar; Pandit, Borase Hemant; Vitthalrao, Patil Satish

    2014-01-01

    Production of indigenous isolate Bacillus thuringiensis sv2 (Bt sv2) was checked on conventional and nonconventional carbon and nitrogen sources in shake flasks. The effects on the production of biomass, toxin production, and spore formation capability of mosquito toxic strain were determined. Toxicity differs within the same strain depending on the growth medium. Bt sv2 produced with pigeon pea and soya bean flour were found highly effective with LC50 < 4 ppm against larvae of Aedes aegypti. These results were comparable with bacteria produced from Luria broth as a reference medium. Cost-effective analyses have revealed that production of biopesticide from test media is highly economical. The cost of production of Bt sv2 with soya bean flour was significantly reduced by 23-fold. The use of nonconventional sources has yielded a new knowledge in this area as the process development aspects of biomass production have been neglected as an area of research. These studies are very important from the point of media optimization for economic production of Bacillus thuringiensis based insecticides in mosquito control programmes. PMID:24592157

  5. Evaluation of different culture media for improvement in bioinsecticides production by indigenous Bacillus thuringiensis and their application against larvae of Aedes aegypti.

    PubMed

    Devidas, Patil Chandrashekhar; Pandit, Borase Hemant; Vitthalrao, Patil Satish

    2014-01-01

    Production of indigenous isolate Bacillus thuringiensis sv2 (Bt sv2) was checked on conventional and nonconventional carbon and nitrogen sources in shake flasks. The effects on the production of biomass, toxin production, and spore formation capability of mosquito toxic strain were determined. Toxicity differs within the same strain depending on the growth medium. Bt sv2 produced with pigeon pea and soya bean flour were found highly effective with LC50 < 4 ppm against larvae of Aedes aegypti. These results were comparable with bacteria produced from Luria broth as a reference medium. Cost-effective analyses have revealed that production of biopesticide from test media is highly economical. The cost of production of Bt sv2 with soya bean flour was significantly reduced by 23-fold. The use of nonconventional sources has yielded a new knowledge in this area as the process development aspects of biomass production have been neglected as an area of research. These studies are very important from the point of media optimization for economic production of Bacillus thuringiensis based insecticides in mosquito control programmes. PMID:24592157

  6. Unique biochemical and molecular biological mechanism of synergistic actions of formamidine compounds on selected pyrethroid and neonicotinoid insecticides on the fourth instar larvae of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph F A; Matsumura, Fumio

    2015-05-01

    We recently reported that formamidine pesticides such as amitraz and chlordimeform effectively synergize toxic actions of certain pyrethroid and neonicotinoid insecticides in some insect species on the 4th instar larvae of Aedes aegypti. Here we studied the biochemical basis of the synergistic actions of the formamidines in amplifying the toxicity of neonicotinoids and pyrethroids such as dinotefuran and thiamethoxam, as well as deltamethrin-fenvalerate type of pyrethroids. We tested the hypothesis that their synergistic actions are mediated by the octopamine receptor, and that the major consequence of octopamine receptor activation is induction of trehalase to increase glucose levels in the hemolymph. The results show that formamidines cause a significant up-regulation of the octopamine receptor and trehalase mRNA expressions. Furthermore, formamidines significantly elevate levels of free glucose when co-treated with dinotefuran, deltamethrin and fenvalerate, but not with permethrin or fenitrothion, which showed no synergistic toxic effects with formamidines. These results support the conclusion that the main mode of synergism is based on the ability to activate the octopamine receptor, which is particularly effective with insecticides causing hyperexcitation-induced glucose release and consequently leading to quick energy exhaustion. PMID:25987221

  7. Characterisation of DDT and pyrethroid resistance in Trinidad and Tobago populations of Aedes aegypti.

    PubMed

    Polson, K A; Rawlins, S C; Brogdon, W G; Chadee, D D

    2011-08-01

    Insecticide resistance is an important factor in the effectiveness of Aedes aegypti control and the related spread of dengue. The objectives of this study were to investigate the status of the organochlorine dichlorodiphenyltrichloroethane (DDT) and pyrethroid (permethrin and deltamethrin) resistance in Trinidad and Tobago populations of Ae. aegypti and the underlying biochemical mechanisms. Nine populations of Ae. aegypti larvae from Trinidad and Tobago were assayed to DDT and PYs using the Centers for Disease Control and Prevention (CDC) time-mortality-based bioassay method. A diagnostic dosage (DD) was established for each insecticide using the CAREC reference susceptible Ae. aegypti strain and a resistance threshold (RT), time in which 98-100% mortality was observed in the CAREC strain, was calculated for each insecticide. Mosquitoes which survived the DD and RT were considered as resistant, and the resistance status of each population was categorised based on the WHO criteria with mortality <80% indicative of resistance. Biochemical assays were conducted to determine the activities of α and β esterases, mixed function oxidases (MFO) and glutathione-S-transferases (GST) enzymes which are involved in resistance of mosquitoes to DDT and PYs. Enzymatic activity levels in each population were compared with those obtained for the CAREC susceptible strain, and significant differences were determined by Kruskal-Wallis and Tukey's non-parametric tests (P<0.05). The established DDs were 0.01 mg l(-1), 0.2 mg l(-1) and 1.0 mg l(-1) for deltamethrin, permethrin and DDT, respectively; and the RTs for deltamethrin, permethrin and DDT were 30, 75 and 120 min, respectively. All Ae. aegypti populations were resistant to DDT (<80% mortality); two strains were incipiently resistant to deltamethrin and three to permethrin (80-98% mortality). Biochemical assays revealed elevated levels of α-esterase and MFO enzymes in all Ae. aegypti populations. All, except three populations

  8. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    NASA Astrophysics Data System (ADS)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  9. Mesocyclops longisetus effects on survivorship of Aedes aegypti immature stages in car tyres.

    PubMed

    Manrique-Saide, P; Ibáñez-Bernal, S; Delfín-González, H; Parra Tabla, V

    1998-10-01

    The effect of the introduction of the entomophagous copepod Mesocyclops longisetus (Acuacultura F.C.B. strain) on the survival of Aedes aegypti immature stages in car tyres was evaluated under semi-natural conditions in the municipality of Merida, Yucatan, Mexico. Life tables were constructed for the immature stages of the mosquito in the presence and absence of M. longisetus, and the survival data were compared using log-linear models. The data set was adjusted using the GLIM statistical package and the quality of adjustment was evaluated with a chi-squared test. Survivorship curves were constructed for each treatment. In the absence of M. longisetus, the survivorship of Ae. aegypti immature stages averaged 9%. The highest mortality rate was observed during the fourth larval instar (54%) and the resulting survival pattern corresponded to a type II survivorship curve. The mortality rate of Ae. aegypti first-instar larvae (fifty per tyre) increased more than 200-fold in the presence of M. longisetus (twenty per tyre) and the highest mortality was during the first two larval instars, where it reached 98.9%, with a resulting survivorship of 0.2%. Overall mortality was sixfold greater in the presence of the copepod than in its absence. The survival pattern of immature stages of Ae. aegypti in the presence of the copepod corresponded to a type III survivorship curve. As M. longisetus was so effective against Ae. aegypti immature stages in tyres under seminatural conditions, its long-term effectiveness should be evaluated under socially and ecologically realistic field conditions in Mexico. PMID:9824822

  10. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    PubMed

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs. PMID:25843136

  11. Flavivirus susceptibility in Aedes aegypti.

    PubMed

    Black, William C; Bennett, Kristine E; Gorrochótegui-Escalante, Norma; Barillas-Mury, Carolina V; Fernández-Salas, Ildefonso; de Lourdes Muñoz, María; Farfán-Alé, José A; Olson, Ken E; Beaty, Barry J

    2002-01-01

    Aedes aegypti is the primary vector of yellow fever (YF) and dengue fever (DF) flaviviruses worldwide. In this review we focus on past and present research on genetic components and environmental factors in Aedes aegypti that appear to control flavivirus transmission. We review genetic relationships among Ae. aegypti populations throughout the world and discuss how variation in vector competence is correlated with overall genetic differences among populations. We describe current research into how genetic and environmental factors jointly affect distribution of vector competence in natural populations. Based on this information, we propose a population genetic model for vector competence and discuss our recent progress in testing this model. We end with a discussion of approaches being taken to identify the genes that may control flavivirus susceptibility in Ae. aegypti. PMID:12234528

  12. Rapid identification of Aedes albopictus, Aedes scutellaris, and Aedes aegypti life stages using real-time polymerase chain reaction assays.

    PubMed

    Hill, Lydia A; Davis, Joseph B; Hapgood, George; Whelan, Peter I; Smith, Greg A; Ritchie, Scott A; Cooper, R D; van den Hurk, Andrew F

    2008-12-01

    In 2005, a widespread infestation of Aedes albopictus was discovered in the Torres Strait, the region between northern Australia and New Guinea. To contain this species, an eradication program was implemented in 2006. However, the progress of this program is impeded by the difficulty of morphologically separating Ae. albopictus larvae from the endemic species Aedes scutellaris. In this study, three real-time TaqMan polymerase chain reaction assays that target the ribosomal internal transcribed spacer 1 region were developed to rapidly identify Aedes aegypti, Ae. albopictus, and Ae. scutellaris from northern Australia. Individual eggs, larvae, pupae, and adults, as well as the species composition of mixed pools were accurately identified. The assay method was validated using 703 field-collected specimens from the Torres Strait. PMID:19052295

  13. Laboratory evaluation of two native fishes from tropical North Queensland as biological control agents of subterranean Aedes aegypti.

    PubMed

    Russell, B M; Wang, J; Williams, Y; Hearnden, M N; Kay, B H

    2001-06-01

    The ability of 2 freshwater fishes, eastern rainbow fish Melanotaenia splendida splendida and fly-specked hardyhead Craterocephalus stercusmuscarum stercusmuscarum, native to North Queensland to prey on immature Aedes aegypti was evaluated under laboratory conditions. The predation efficiency of the 2 species was compared to the exotic guppy, Poecilia reticulata, which is commonly used as a biological control agent of mosquito larvae. Of the 3 fish species tested, M. s. splendida was shown to be the most promising agent for the biological control of Ae. aegypti that breed in wells. Melanotaenia s. splendida consumed significantly greater numbers of immature Ae. aegypti than P. reticulata, irrespective of developmental stage or light conditions. Unlike C s. stercusmuscarum, M. s. splendida could be handled, transported, and kept in captivity for extended periods with negligible mortality. However, M. s. splendida was also an efficient predator of Litoria caerulea tadpoles, a species of native frog found in wells during the dry season. This result may limit the usefulness of M. s. splendida as a biological control agent of well-breeding Ae. aegypti and suggests that predacious copepods, Mesocyclops spp., are more suitable. However, the use of M. s. splendida as a mosquito control agent in containers that are unlikely to support frog populations (e.g., aquaculture tanks and drinking troughs) should be given serious consideration. PMID:11480819

  14. Comprehensive Immunolocalization Studies of a Putative Serotonin Receptor from the Alimentary Canal of Aedes aegypti Larvae Suggest Its Diverse Roles in Digestion and Homeostasis

    PubMed Central

    Petrova, Adelina; Moffett, David Franklin

    2016-01-01

    Serotonin regulates key processes including digestion and homeostasis in insects. Serotonin effects are mediated by serotonin receptors that transduce information through initiation of second messenger signaling pathways. Lack of information on serotonin receptors associated with the alimentary canal impedes the understanding of the serotonergic role in insect physiology. To address this void, the present study has cloned and identified a putative serotonin receptor (hereafter AaSeR-1) from the alimentary canal of Aedes aegypti (yellow fever mosquito) larvae. In addition to in-silico analyses of AaSeR-1 primary sequence, immunohistochemical investigations were carried out to elucidate receptor expression patterns. Specific AaSeR-1 immunofluorescence was detected in the caeca, the mid- and hindgut, including the Malpighian tubules. These findings point out not only receptor ubiquitous nature but also its involvement in regulation of different stages of nutrient processing and homeostasis. Furthermore, AaSeR-1 may mediate an array of effects through its differential expression at various cell compartments. While AaSeR-1 specific immunofluorescence was depicted in the nucleus and nucleolus of principal cells of the anterior midgut, in the posterior, analyses suggest receptor association with the plasma membrane of both principal and regenerative cells. In addition, AaSeR-1 immunofluorescence was also found in some enteroendocrine cells and in both circular and longitudinal muscles that innervate the alimentary canal. Overall, immunohistochemical analyses of AaSeR-1 expression indicate that this receptor exercises multiple roles in digestion- and homeostasis-related mechanisms. PMID:26808995

  15. Comprehensive Immunolocalization Studies of a Putative Serotonin Receptor from the Alimentary Canal of Aedes aegypti Larvae Suggest Its Diverse Roles in Digestion and Homeostasis.

    PubMed

    Petrova, Adelina; Moffett, David Franklin

    2016-01-01

    Serotonin regulates key processes including digestion and homeostasis in insects. Serotonin effects are mediated by serotonin receptors that transduce information through initiation of second messenger signaling pathways. Lack of information on serotonin receptors associated with the alimentary canal impedes the understanding of the serotonergic role in insect physiology. To address this void, the present study has cloned and identified a putative serotonin receptor (hereafter AaSeR-1) from the alimentary canal of Aedes aegypti (yellow fever mosquito) larvae. In addition to in-silico analyses of AaSeR-1 primary sequence, immunohistochemical investigations were carried out to elucidate receptor expression patterns. Specific AaSeR-1 immunofluorescence was detected in the caeca, the mid- and hindgut, including the Malpighian tubules. These findings point out not only receptor ubiquitous nature but also its involvement in regulation of different stages of nutrient processing and homeostasis. Furthermore, AaSeR-1 may mediate an array of effects through its differential expression at various cell compartments. While AaSeR-1 specific immunofluorescence was depicted in the nucleus and nucleolus of principal cells of the anterior midgut, in the posterior, analyses suggest receptor association with the plasma membrane of both principal and regenerative cells. In addition, AaSeR-1 immunofluorescence was also found in some enteroendocrine cells and in both circular and longitudinal muscles that innervate the alimentary canal. Overall, immunohistochemical analyses of AaSeR-1 expression indicate that this receptor exercises multiple roles in digestion- and homeostasis-related mechanisms. PMID:26808995

  16. Desiccation resistance in Aedes aegypti and Aedes albopictus eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Causative influences that impact the separation of Aedes aegypti and Aedes albopictus populations in different geographic areas were determined. The eggs of Ae. albopictus and Ae. aegypti collected from McAllen and Brownsville, Texas, and laboratory populations of these two species were subjected t...

  17. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde.

    PubMed

    Rocha, Diara Kady; Matosc, Olivia; Novoa, Maria Teresa; Figueiredo, Ana Cristina; Delgado, Manuel; Moiteiro, Cristina

    2015-04-01

    Dengue is a potentially fatal mosquito-borne infection with 50 million cases per year and 2.5 billion people vulnerable to the disease. This major public health problem has recurrent epidemics in Latin America and occurred recently in Cape Verde and Madeira Island. The lack of anti-viral treatment or vaccine makes the control of mosquito vectors a high option to prevent virus transmission. Essential oil (EO) constituents can affect insect's behaviour, being potentially effective in pest control. The present study evaluated the potential use of Foenicultm vulgare (fennel) EO in the control of the dengue vector Aedes aegypti. EOs isolated from fennel aerial parts collected in Cape Verde and from a commercial fennel EO of Portugal were analysed by NMR, GC and GC-MS. trans-Anethole (32 and 30%, respectively), limonene (28 and 18%, respectively) and fenchone (10% in both cases) were the main compounds identified in the EOs isolated from fennel from Cape Verde and Portugal, respectively. The larvicidal activity of the EOs and its major constituents were evaluated, using WHO procedures, against third instar larvae ofAe. aegypti for 24 h. Pure compounds, such as limonene isomers, were also assayed. The lethal concentrations LC50, C90 and LC99 were determined by probit analysis using mortality rates of bioassays. A 99% mortality of Ae. aegypti larvae was estimated at 37.1 and 52.4 µL L-1 of fennel EOs from Cape Verde and Portugal, respectively. Bioassays showed that fennel EOs from both countries displayed strong larvicidal effect against Ae. aegypti, the Cape Verde EO being as active as one of its major constituents, (-)-limonene. PMID:25973508

  18. Synergistic efficacy of botanical blends with and without synthetic insecticides against Aedes aegypti and Culex annulirostris mosquitoes.

    PubMed

    Shaalan, Essam Abdel-Salam; Canyon, Deon Vahid; Younes, Mohamed Wagdy Faried; Abdel-Wahab, Hoda; Mansour, Abdel-Hamid

    2005-12-01

    Increasing insecticide resistance requires strategies to prolong the use of highly effective vector control compounds. The use of combinations of insecticides with other insecticides and phytochemicals is one such strategy that is suitable for mosquito control. In bioassays with Aedes aegypti and Culex annulirostris mosquitoes, binary mixtures of phytochemicals with or without synthetic insecticides produced promising results when each was applied at a LC25 dose. All mixtures resulted in 100% mortality against Cx. annulirostris larvae within 24 h rather than the expected mortality of 50%. All mixtures acted synergistically against Ae. aegypti larvae within the first 24 h except for one mixture that showed an additive effect. We conclude that mixtures are more effective than insecticides or phytochemicals alone and that they enable a reduced dose to be applied for vector control potentially leading to improved resistance management and reduced costs. PMID:16599164

  19. Field evaluation of pyriproxyfen and spinosad mixture for the control of insecticide resistant Aedes aegypti in Martinique (French West Indies)

    PubMed Central

    2010-01-01

    Background The resistance of Ae. aegypti to insecticides is already widespread and continues to develop. It represents a serious problem for programmes aimed at the control and prevention of dengue in tropical countries. In the light of this problem measures to control Ae. aegypti are being orientated towards how best to use existing insecticides, notably by combining those that have different modes of action. Results In this study we evaluated the operational efficiency of a mixture composed of pyriproxyfen (an insect growth regulator) and spinosad (a biopesticide) against a population of Ae. aegypti from Martinique resistant to pyrethroid and organophosphate insecticides. The first step consisted of evaluating the efficacy of pyriproxyfen and spinosad when used alone, or in combination, against Ae. aegypti larvae under simulated conditions. The results showed that the mixture of pyriproxyfen+spinosad remained active for at least 8 months, compared with 3 months for spinosad alone, and 5 months for pyriproxyfen alone. In a second step in containers experiencing natural conditions, pyriproxyfen and spinosad, maintained the rate of adult emergence at 20% for 3 weeks and 3.5 months, respectively. Following the same criteria of evaluation, the mixture pyriproxyfen+spinosad remained effective for 4.5 months, showing that the combination of the two larvicides with different modes of action acted to increase the residual activity of the treatment. Conclusion The mixture of pyriproxyfen and spinosad kills larvae and pupae giving it a broader range of action than either insecticide. This mixture could preserve the utility of both insecticides in public health programs. PMID:20843383

  20. River Boats Contribute to the Regional Spread of the Dengue Vector Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Morrison, Amy C.; Barboza, Jose Luis; Requena, Edwin; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-01-01

    Background and Objectives The dramatic range expansion of the dengue vector Aedes aegypti is associated with various anthropogenic transport activities, but little is known about the underlying mechanisms driving this geographic expansion. We longitudinally characterized infestation of different vehicle types (cars, boats, etc.) to estimate the frequency and intensity of mosquito introductions into novel locations (propagule pressure). Methods Exhaustive adult and immature Ae. aegypti collections were performed on six different vehicle types at five ports and two bus/ taxi departure points in the Amazonian city of Iquitos, Peru during 2013. Aquatic vehicles included 32 large and 33 medium-sized barges, 53 water taxis, and 41 speed boats. Terrestrial vehicles sampled included 40 buses and 30 taxis traveling on the only highway in the region. Ae. aegypti adult infestation rates and immature indices were analyzed by vehicle type, location within vehicles, and sampling date. Results Large barges (71.9% infested) and medium barges (39.4% infested) accounted for most of the infestations. Notably, buses had an overall infestation rate of 12.5%. On large barges, the greatest number of Ae. aegypti adults were found in October, whereas most immatures were found in February followed by October. The vast majority of larvae (85.9%) and pupae (76.7%) collected in large barges were produced in puddles formed in cargo holds. Conclusions Because larges barges provide suitable mosquito habitats (due to dark, damp cargo storage spaces and ample oviposition sites), we conclude that they likely serve as significant contributors to mosquitoes’ propagule pressure across long distances throughout the Peruvian Amazon. This information can help anticipate vector population mixing and future range expansions of dengue and other viruses transmitted by Ae. aegypti. PMID:25860352

  1. Evaluation of some adhesives for collecting Musca domestica and Chrysomya megacephala adults or mosquito larvae in sticky traps.

    PubMed

    Sulaiman, S; Yunus, H; Sohadi, R

    1987-07-01

    1. Seven types of water-insoluble adhesives were evaluated in sticky traps for collecting adults of Musca domestica L. and Chrysomya megacephala (Fabricius) or mosquito larvae (Aedes aegypti (L.) and Culex quinquefasciatus Say). 2. Adhesive viscosity affected the tackiness of the glues and this determined their trapping efficiency in air or water. 3. From the 'Hyvis' range of adhesives tested, 'Hyvis 200' was most effective for trapping adult flies. 4. With 24 h exposure to fourth instar Ae.aegypti larvae in tapwater, submerged plates coated with 'Hyvis 10', 'Hyvis 30' or 'Hyvis 200' formulations trapped the majority of larvae. In polluted water the highest rates of trapping were 17.3% of Ae.aegypti and 18.7% of Cx quinquefasciatus with 'Hyvis 200'. Floating traps were consistently less productive than submerged traps under laboratory conditions. 5. In a heavily polluted natural breeding-site of Cx quinquefasciatus, floating traps were more productive than submerged sticky traps with four of seven adhesives tested, the most efficient being 'Hyvis 200' (4.2 mosquitoes per hour) and Hyvis:polyethylene 90:10 (4.5/h). Despite the relative inefficiency of aquatic traps, emergent adults, pupae and second to fourth instars of larvae were collected quickly from the habitat. PMID:2979541

  2. Efficacy of various larvicides against Aedes aegypti immatures in the laboratory.

    PubMed

    Wang, Chih-Yuan; Teng, Hwa-Jen; Lee, Si-Jia; Lin, Cheo; Wu, Jhy-Wen; Wu, Ho-Sheng

    2013-01-01

    We conducted a laboratory study to evaluate the efficacy of control agents against small larvae, large larvae, and pupae of Aedes aegypti to determine an appropriate larvicide regime to employ in emergency dengue control programs. The control agents included Bacillus thuringiensis var. israelensis (Bti), pyriproxyfen (an insect growth regulator), a larvicidal oil, Aquatain AMF (polydimethylsiloxane, a monomolecular film), and temephos at the recommend application dosages and rates. Our results showed that Bti, pyriproxyfen, and temephos were efficacious (100% mortality) against larvae, irrespective of the instar stage, but not against pupae of Ae. aegypti (1.5-7.8% mortality). Aquatain AMF, on the other hand, was very effective at controlling the pupal stage (100% mortality), but had limited efficacy against small larvae (38.0% mortality) and large larvae (78.0% mortality). The larvicidal oil was effective against all immature stages (93.3-100% mortality). Therefore, we concluded that for effectively interrupting the dengue transmission cycle, larvicides that kill the pupal stage (Aquatain AMF or larvicidal oil) should be included in an emergency dengue control program in addition to Bti, pyriproxyfen, or temephos. PMID:23883850

  3. Potential of crude seed extract of celery, Apium graveolens L., against the mosquito Aedes aegypti (L.) (Diptera: Culicidae).

    PubMed

    Choochote, Wej; Tuetun, Benjawan; Kanjanapothi, Duangta; Rattanachanpichai, Eumporn; Chaithong, Udom; Chaiwong, Prasong; Jitpakdi, Atchariya; Tippawangkosol, Pongsri; Riyong, Doungrat; Pitasawat, Benjawan

    2004-12-01

    Crude seed extract of celery, Apium graveolens, was investigated for anti-mosquito potential, including larvicidal, adulticidal, and repellent activities against Aedes aegypti, the vector of dengue haemorrhagic fever. The ethanol-extracted A. graveolens possessed larvicidal activity against fourth instar larvae of Ae. aegypti with LD50 and LD95 values of 81.0 and 176.8 mg/L, respectively. The abnormal movement observed in treated larvae indicated that the toxic effect of A. graveolens extract was probably on the nervous system. In testing for adulticidal activity, this plant extract exhibited a slightly adulticidal potency with LD50 and LD95 values of 6.6 and 66.4 mg/cm2, respectively. It showed repellency against Ae. aegypti adult females with ED50 and ED95 values of 2.03 and 28.12 mg/cm2, respectively. It also provided biting protection time of 3 h when applied at a concentration of 25 g%. Topical application of the ethanol-extracted A. graveolens did not induce dermal irritation. No adverse effects on the skin or other parts of the body of human volunteers were observed during 3 mo of the study period or in the following 3 mo, after which time observations ceased. A. graveolens, therefore, can be considered as a probable source of some biologically active compounds used in the development of mosquito control agents, particularly repellent products. PMID:15707293

  4. Tree holes as larval habitats for Aedes aegypti in urban, suburban and forest habitats in a dengue affected area.

    PubMed

    Mangudo, C; Aparicio, J P; Gleiser, R M

    2015-12-01

    Aedes aegypti (L.) (Diptera: Culicidae), the main vector of dengue and urban yellow fever in the world, is highly adapted to the human environment. Artificial containers are the most common larval habitat for the species, but it may develop in tree holes and other phytotelmata. This study assessed whether tree holes in San Ramón de la Nueva Orán, a city located in subtropical montane moist forest where dengue outbreaks occur, are relevant as larval habitat for Ae. aegypti and if the species may be found in natural areas far from human habitations. Water holding tree holes were sampled during 3 years once a month along the rainy season using a siphon bottle, in urban and suburban sites within the city and in adjacent forested areas. Larvae and pupae were collected and the presence and volume of water in each tree hole were recorded. Finding Ae. aegypti in forested areas was an isolated event; however, the species was frequently collected from tree holes throughout the city and along the sampling period. Moreover, larvae were collected in considerably high numbers, stressing the importance of taking into account these natural cavities as potential reinfestation foci within dengue control framework. PMID:26193903

  5. Evaluation of mosquito densoviruses for controlling Aedes aegypti (Diptera: Culicidae): variation in efficiency due to virus strain and geographic origin of mosquitoes.

    PubMed

    Hirunkanokpun, Supanee; Carlson, Jonathan O; Kittayapong, Pattamaporn

    2008-05-01

    Four mosquito densovirus strains were assayed for mortality and infectivity against Aedes aegypti larvae from different geographic regions. The viral titers were quantified by real-time PCR using TaqMan technology. Firstinstar larvae were exposed to the same titer of each densovirus strain for 48 hours. All strains of densoviruses exhibited larvicidal activity and caused more than 80% mortality and infectivity in the three mosquito strains. AalDNV-exposed larvae had the highest mortality rate. The mean time to death of AalDNV-exposed larvae was shorter than other DNVs-exposed larvae. We can conclude that different densovirus strains exhibit some variations in their pathogenicity to different populations of Ae. aegypti mosquitoes. A few mosquitoes from Chachoengsao and Bangkok exposed to AeDNV and AThDNV survived to the adult stage to lay eggs and showed 22% to 50% vertical transmission in the F1 generation. Phylogenetic analysis of four densovirus strains indicated that mosquito densoviruses are separated into two distinct clades. PMID:18458314

  6. Toxicological evaluation of essential oil from the leaves of Croton tetradenius (Euphorbiaceae) on Aedes aegypti and Mus musculus.

    PubMed

    Carvalho, Karine da Silva; E Silva, Sandra Lúcia da Cunha; de Souza, Ivone Antonia; Gualberto, Simone Andrade; da Cruz, Rômulo Carlos Dantas; Dos Santos, Frances Regiane; de Carvalho, Mário Geraldo

    2016-09-01

    For control of Aedes aegypti, the main vector of dengue, botanical insecticides can be a viable alternative. Herein, we evaluated the chemical composition and insecticidal activity of the essential oils of the leaves of Croton tetradenius on Ae. aegypti larvae and adults. We also evaluated the acute toxicity in Mus musculus. The essential oil chemical analysis was performed using chromatography coupled with mass spectrometry and flame ionization detection. Female mice were used for assessing toxicity according to the Organization for Economic Cooperation and Development's Test Guideline 423/2001. Doses administered to mice orally and intraperitoneally were 5, 50, 300, and 2000 mg kg(-1). There was a greater toxic effect on larvae (LC50 = 0.152 mg mL(-1) and LC90 = 0.297 mg mL(-1)) and on adults (LC50 = 1.842 mg mL(-1) and LC90 = 3.156 mg mL(-1)) of Ae. aegypti after 24 h of exposure, when compared to other periods of exposure. Chemical analysis revealed 26 components, with camphor (25.49 %) as the major component. The acute toxicity via the intraperitoneal route identified an LD50 = 200 mg kg(-1) and by the oral route an LD50 = 500 mg kg(-1). Thus, the essential oil of C. tetradenius presents insecticidal potential for Ae. aegypti and has high safety threshold at the concentrations evaluated in this study. PMID:27169864

  7. Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C.; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2014-01-01

    Background and Objectives In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. Methods We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Results Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. Conclusion In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats. PMID:25101786

  8. Household survey of container-breeding mosquitoes and climatic factors influencing the prevalence of Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia

    PubMed Central

    Aziz, Al Thabiany; Dieng, Hamady; Ahmad, Abu Hassan; Mahyoub, Jazem A; Turkistani, Abdulhafis M; Mesed, Hatabbi; Koshike, Salah; Satho, Tomomitsu; Salmah, MR Che; Ahmad, Hamdan; Zuharah, Wan Fatma; Ramli, Ahmad Saad; Miake, Fumio

    2012-01-01

    Objective To investigate the prevalence of container breeding mosquitoes with emphasis on the seasonality and larval habitats of Aedes aegypti (Ae. aegypti) in Makkah City, adjoining an environmental monitoring and dengue incidence. Methods Monthly visits were performed between April 2008 and March 2009 to randomly selected houses. During each visit, mosquito larvae were collected from indoors and outdoors containers by either dipping or pipetting. Mosquitoes were morphologically identified. Data on temperature, relative humidity, rain/precipitations during the survey period was retrieved from governmental sources and analyzed. Results The city was warmer in dry season (DS) than wet season (WS). No rain occurred at all during DS and even precipitations did fall, wetting events were much greater during WS. Larval survey revealed the co-breeding of Aedes, Culex and Anopheles in a variety of artificial containers in and around homes. 32 109 larvae representing 1st , 2nd, 3rd, and 4th stages were collected from 22 618 container habitats. Culicines was far the commonest and Aedes genus was as numerous as the Culex population. Ae. aegypti larval abundance exhibited marked temporal variations, overall, being usually more abundant during WS. Ten types of artificial containers were found with developing larvae. 70% of these habitats were located indoors. 71.42% of indoor containers were permanent and 28.58% was semi-permanent during WS. Cement tanks was the only container type permanent during DS. Ae. aegypti larval indices (CI, HI, BI) recorded were greater during WS. Conclusions Taken together, these results indicate a high risk of dengue transmission in the holy city. PMID:23569860

  9. Rhamnolipids: solution against Aedes aegypti?

    PubMed Central

    Silva, Vinicius L.; Lovaglio, Roberta B.; Von Zuben, Claudio J.; Contiero, Jonas

    2015-01-01

    Aedes aegypti mosquitoes are the primary transmitters of dengue fever, urban yellow fever, and chikungunya viruses. This mosquito has developed resistance to the insecticides currently used to control their populations. These chemical insecticides are harmful to the environment and can have negative effects on human health. Rhamnolipids are environmentally compatible biological surfactants, but their insecticidal activity has not been extensively studied. The present study evaluated the potential larvicidal, insecticidal, and repellent activities of rhamnolipids against A. aegypti. At concentrations of 800, 900, and 1000 mg/L, rhamnolipids eliminated all mosquito larvae in 18 h and killed 100% of adults at 1000 mg/L. According to the results it may be conclude that rhamnolipids should be applied to control larvae and mosquitos besides present the repellency activity against A. aegypti. PMID:25762986

  10. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines

    PubMed Central

    Sayson, S. L.; Gloria-Soria, A.; Powell, J. R.; Edillo, F. E.

    2015-01-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011–2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST = 0.018; FST = 0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season. PMID:26335470

  11. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti.

    PubMed

    Chediak, Mateus; G Pimenta, Fabiano; Coelho, Giovanini E; Braga, Ima A; Lima, José Bento P; Cavalcante, Karina Ribeiro Lj; Sousa, Lindemberg C de; Melo-Santos, Maria Alice V de; Macoris, Maria de Lourdes da G; Araújo, Ana Paula de; Ayres, Constância Flávia J; Andrighetti, Maria Teresa M; Gomes, Ricristhi Gonçalves de A; Campos, Kauara B; Guedes, Raul Narciso C

    2016-05-01

    The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites. PMID:27143489

  12. Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Couret, Jannelle; Dotson, Ellen; Benedict, Mark Q.

    2014-01-01

    Many environmental factors, biotic and abiotic interact to influence organismal development. Given the importance of Aedes aegypti as a vector of human pathogens including dengue and yellow fever, understanding the impact of environmental factors such as temperature, resource availability, and intraspecific competition during development is critical for population control purposes. Despite known associations between developmental traits and factors of diet and density, temperature has been considered the primary driver of development rate and survival. To determine the relative importance of these critical factors, wide gradients of conditions must be considered. We hypothesize that 1) diet and density, as well as temperature influence the variation in development rate and survival, 2) that these factors interact, and this interaction is also necessary to understand variation in developmental traits. Temperature, diet, density, and their two-way interactions are significant factors in explaining development rate variation of the larval stages of Ae. aegypti mosquitoes. These factors as well as two and three-way interactions are significantly associated with the development rate from hatch to emergence. Temperature, but not diet or density, significantly impacted juvenile mortality. Development time was heteroskedastic with the highest variation occurring at the extremes of diet and density conditions. All three factors significantly impacted survival curves of experimental larvae that died during development. Complex interactions may contribute to variation in development rate. To better predict variation in development rate and survival in Ae. aegypti, factors of resource availability and intraspecific density must be considered in addition, but never to the exclusion of temperature. PMID:24498328

  13. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti

    PubMed Central

    Chediak, Mateus; G Pimenta, Fabiano; Coelho, Giovanini E; Braga, Ima A; Lima, José Bento P; Cavalcante, Karina Ribeiro LJ; de Sousa, Lindemberg C; de Melo-Santos, Maria Alice V; Macoris, Maria de Lourdes da G; de Araújo, Ana Paula; Ayres, Constância Flávia J; Andrighetti, Maria Teresa M; Gomes, Ricristhi Gonçalves de A; Campos, Kauara B; Guedes, Raul Narciso C

    2016-01-01

    The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites. PMID:27143489

  14. Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control.

    PubMed

    Yeap, H L; Mee, P; Walker, T; Weeks, A R; O'Neill, S L; Johnson, P; Ritchie, S A; Richardson, K M; Doig, C; Endersby, N M; Hoffmann, A A

    2011-02-01

    Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects. PMID:21135075

  15. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines.

    PubMed

    Sayson, S L; Gloria-Soria, A; Powell, J R; Edillo, F E

    2015-07-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011-2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST=0.018; FST=0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season. PMID:26335470

  16. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides

    PubMed Central

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%–15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97–7.8 and OR = 7.37, CI: 2.4–22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring. PMID:26939002

  17. Evidence of Experimental Vertical Transmission of Emerging Novel ECSA Genotype of Chikungunya Virus in Aedes aegypti

    PubMed Central

    Agarwal, Ankita; Dash, Paban Kumar; Singh, Anil Kumar; Sharma, Shashi; Gopalan, Natarajan; Rao, Putcha Venkata Lakshmana; Parida, Man Mohan; Reiter, Paul

    2014-01-01

    Background Chikungunya virus (CHIKV) has emerged as one of the most important arboviruses of public health significance in the past decade. The virus is mainly maintained through human-mosquito-human cycle. Other routes of transmission and the mechanism of maintenance of the virus in nature are not clearly known. Vertical transmission may be a mechanism of sustaining the virus during inter-epidemic periods. Laboratory experiments were conducted to determine whether Aedes aegypti, a principal vector, is capable of vertically transmitting CHIKV or not. Methodology/Principal Findings Female Ae. aegypti were orally infected with a novel ECSA genotype of CHIKV in the 2nd gonotrophic cycle. On day 10 post infection, a non-infectious blood meal was provided to obtain another cycle of eggs. Larvae and adults developed from the eggs obtained following both infectious and non-infectious blood meal were tested for the presence of CHIKV specific RNA through real time RT-PCR. The results revealed that the larvae and adults developed from eggs derived from the infectious blood meal (2nd gonotrophic cycle) were negative for CHIKV RNA. However, the larvae and adults developed after subsequent non-infectious blood meal (3rd gonotrophic cycle) were positive with minimum filial infection rates of 28.2 (1∶35.5) and 20.2 (1∶49.5) respectively. Conclusion/Significance This study is the first to confirm experimental vertical transmission of emerging novel ECSA genotype of CHIKV in Ae. aegypti from India, indicating the possibilities of occurrence of this phenomenon in nature. This evidence may have important consequence for survival of CHIKV during adverse climatic conditions and inter-epidemic periods. PMID:25080107

  18. Parity and Longevity of Aedes aegypti According to Temperatures in Controlled Conditions and Consequences on Dengue Transmission Risks

    PubMed Central

    Goindin, Daniella; Delannay, Christelle; Ramdini, Cédric; Gustave, Joël; Fouque, Florence

    2015-01-01

    Background In Guadeloupe, Aedes aegypti mosquitoes are the only vectors of dengue and chikungunya viruses. For both diseases, vector control is the only tool for preventing epidemics since no vaccine or specific treatment is available. However, to efficiently implement control of mosquitoes vectors, a reliable estimation of the transmission risks is necessary. To become infective an Ae. aegypti female must ingest the virus during a blood meal and will not be able to transmit the virus during another blood-meal until the extrinsic incubation period is completed. Consequently the aged females will carry more infectious risks. The objectives of the present study were to estimate under controlled conditions the expectation of infective life for females and thus the transmission risks in relation with their reproductive cycle and parity status. Methodology/Principal Findings Larvae of Ae. aegypti were collected in central Guadeloupe and breed under laboratory conditions until adult emergence. The experiments were performed at constant temperatures (± 1.5°C) of 24°C, 27°C and 30°C on adults females from first generation (F1). Females were kept and fed individually and records of blood-feeding, egg-laying and survival were done daily. Some females were dissected at different physiological stages to observe the ovaries development. The data were analyzed to follow the evolution of parity rates, the number of gonotrophic cycles, the fecundity and to study the mean expectation of life and the mean expectation of infective life for Ae. aegypti females according to temperatures. The expectation of life varies with the parity rates and according to the temperatures, with durations from about 10 days at low parity rates at the higher temperature to an optimal duration of about 35 days when 70% of females are parous at 27°C. Infective life expectancy was found highly variable in the lower parous rates and again the optimal durations were found when more than 50% of females

  19. Novel, Meso-Substituted Cationic Porphyrin Molecule for Photo-Mediated Larval Control of the Dengue Vector Aedes aegypti

    PubMed Central

    Lucantoni, Leonardo; Magaraggia, Michela; Lupidi, Giulio; Ouedraogo, Robert Kossivi; Coppellotti, Olimpia; Esposito, Fulvio; Fabris, Clara; Jori, Giulio; Habluetzel, Annette

    2011-01-01

    Background Control of the mosquito vector population is the most effective strategy currently available for the prevention of dengue fever and the containment of outbreaks. Photo-activated oxidants may represent promising tools for developing effective, safe and ecofriendly novel larvicides. The purpose of this study was to evaluate the potential of the synthetic meso-substituted porphyrin meso-tri(N-methylpyridyl), meso-mono(N-tetradecylpyridyl)porphine (C14) as a photoactivatable larvicide against the dengue vector Aedes (Stegomyia) aegypti. Methodology The photophysical and photochemical properties of the C14 molecule were assessed spectrophotometrically. Photomediated larvicidal efficacy, route of intake and site of action were determined on Ae. aegypti larvae by laboratory bioassays and fluorescence microscopy. Using powdered food pellet for laboratory rodents (a common larval food used in the laboratory) as a carrier for C14, loading-release dynamics, larvicidal efficacy and residual activity of the C14-carrier complex were investigated. Main Findings The C14 molecule was found to exert a potent photosensitizing activity on Ae. aegypti larvae. At irradiation intervals of 12 h and 1 h, at a light intensity of 4.0 mW/cm2, which is 50–100 times lower than that of natural sunlight, LC50 values of 0.1 µM (0.15 mg/l) and 0.5 µM (0.77 mg/l) were obtained, respectively. The molecule was active after ingestion by the larvae and caused irreversible, lethal damage to the midgut and caecal epithelia. The amphiphilic nature of C14 allowed a formulate to be produced that not only was as active against the larvae as C14 in solution, but also possessed a residual activity of at least two weeks, in laboratory conditions. Conclusions The meso-substituted synthetic porphyrin C14, thanks to its photo-sensitizing properties represents an attractive candidate for the development of novel photolarvicides for dengue vector control. PMID:22206031

  20. Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean

    PubMed Central

    Poole-Smith, B. Katherine; Hemme, Ryan R.; Delorey, Mark; Felix, Gilberto; Gonzalez, Andrea L.; Amador, Manuel; Hunsperger, Elizabeth A.; Barrera, Roberto

    2015-01-01

    Background Aedes mediovittatus mosquitoes are found throughout the Greater Antilles in the Caribbean and often share the same larval habitats with Ae. Aegypti, the primary vector for dengue virus (DENV). Implementation of vector control measures to control dengue that specifically target Ae. Aegypti may not control DENV transmission in Puerto Rico (PR). Even if Ae. Aegypti is eliminated or DENV refractory mosquitoes are released, DENV transmission may not cease when other competent mosquito species like Ae. Mediovittatus are present. To compare vector competence of Ae. Mediovittatus and Ae. Aegypti mosquitoes, we studied relative infection and transmission rates for all four DENV serotypes. Methods To compare the vector competence of Ae. Mediovittatus and Ae. Aegypti, mosquitoes were exposed to DENV 1–4 per os at viral titers of 5–6 logs plaque-forming unit (pfu) equivalents. At 14 days post infectious bloodmeal, viral RNA was extracted and tested by qRT-PCR to determine infection and transmission rates. Infection and transmission rates were analyzed with a generalized linear model assuming a binomial distribution. Results Ae. Aegypti had significantly higher DENV-4 infection and transmission rates than Ae. mediovittatus. Conclusions This study determined that Ae. Mediovittatus is a competent DENV vector. Therefore dengue prevention programs in PR and the Caribbean should consider both Ae. Mediovittatus and Ae. Aegypti mosquitoes in their vector control programs. PMID:25658951

  1. Genetic relationships among Aedes aegypti (Diptera: Culicidae) populations from Argentina using random amplified polymorphic DNA polymerase chain reaction markers.

    PubMed

    de Sousa, G B; Blanco, A; Gardenal, C N

    2001-05-01

    Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) polymorphism was analyzed in five Aedes aegypti (L.) populations from Argentina and one from Puerto Rico to estimate levels of intraspecific polymorphism and genetic relatedness. Allele frequencies were estimated assuming that RAPD products segregate as dominants and that genotype frequencies at those loci are in Hardy-Weinberg equilibrium. Mean expected heterozygosity (He) was 0.350; F(ST) values were significant at all loci except one, supporting the usefulness of the fragments used here to discriminate among populations. Rogers' genetic similarity between samples ranged from 0.806 to 0.621. The population from Puerto Rico was the most different from the Argentina populations. Considering that Ae. aegypti eggs, larvae, and pupae can be transported easily, relationships among the Argentinian populations may reflect the routes and intensity of commercial transit. PMID:11372960

  2. Reappearance of Aedes aegypti (Diptera: Culicidae) in Lima, Peru.

    PubMed

    Andrade, C S; Cáceres, A G; Vaquerizo, A; Ibañez-Bernal, S; Cachay, L S

    2001-07-01

    We report here the reappearance of Aedes aegypti in the Rimac district, and summarize the history of this mosquito species in Peru since its first detection in 1852. On March 17 2000 were found Ae. aegypti and Culex quinquefasciatus in Mariscal Castilla town, Flor de Amancaes, San Juan de Amancaes, El Altillo and Santa Rosa in the Rimac district, Lima Province. PMID:11500764

  3. Permethrin induces overexpression of multiple genes in Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using the PCR-select subtractive cDNA hybridization technique, 18 different genes were isolated from a permethrin-treated vs acetone-treated Aedes aegypti subtractive library. QPCR results revealed that eight of the 18 gene’s transcriptional levels in permethrin-treated Ae. aegypti were at least 2- ...

  4. Physiological and biochemical effects of botanical extract from Piper nigrum Linn (Piperaceae) against the dengue vector Aedes aegypti Liston (Diptera: Culicidae).

    PubMed

    Lija-Escaline, Jalasteen; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Pradeepa, Venkatraman; Vasantha-Srinivasan, Prabhakaran; Ponsankar, Athirstam; Edwin, Edward Sam; Selin-Rani, Selvaraj; Abdel-Megeed, Ahmed

    2015-11-01

    The leaves of Piper nigrum L. (Piperaceae) were evaluated for chemical constituents and mosquito larvicidal activity against the larvae of Aedes aegypti. GC and GC-MS analyses revealed that the crude extracts contain 16 compounds. Thymol (20.77%) and ç-elemene (10.42%) were identified as the major constituents followed by cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1 methylethyl)-, (3R-trans) (7.58%), 4,6-octadienoic acid, 2-acetyl-2-methyl-, ethyl ester (6.98), 2(3H)-furanone, 3,4-bis(1,3-benzodioxol-5-ylmethyl) dihydro-, (3R-trans) (6.95%), 1-naphthalenol, 1,2,3,4,4a,7,8,8a-octahydro-1,6-dimethyl-4-(1-methylethyl)-, [1R-(1à,4á,4aá,8aá)]-(Cedreanol) (5.30%), trans-2-undecen-1-ol (4.48%), phytol (4.22%), 1,6-cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-,[s-(E,E)] (3.78%) and 2,6-dimethyl-3,5,7-octatriene-2-ol, Z,Z (2.39%). Larval mortality was observed after 3 h of exposure period. The crude extract showed remarkable larvicidal activity against Ae. aegypti (LC50 = 34.97). The larvae of Ae. aegypti exposed to the P. nigrum, significantly reduced the activities of α- and β-carboxylesterases and superdioxide. Further, P. nigrum extract was severely affecting the mosquito gut cellular organelles. Based on the results, the chemical constituents of crude extracts of P. nigrum can be considered as a new source of larvicide for the control of Ae. aegypti. PMID:26277727

  5. Laboratory and Simulated Field Bioassays to Evaluate Larvicidal Activity of Pinus densiflora Hydrodistillate, Its Constituents and Structurally Related Compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in Relation to Their Inhibitory Effects on Acetylcholinesterase Activity.

    PubMed

    Lee, Dong Chan; Ahn, Young-Joon

    2013-01-01

    The toxicity of Pinus densiflora (red pine) hydrodistillate, its 19 constituents and 28 structurally related compounds against early third-instar larvae of Aedes albopictus (Ae. albopictus), Aedes aegypti (Ae. aegypti) and Culex pipiens palles (Cx. p. pallens) was examined using direct-contact bioassays. The efficacy of active compounds was further evaluated in semi-field bioassays using field-collected larval Cx. p. pallens. Results were compared with those of two synthetic larvicides, temephos and fenthion. In laboratory bioassays, Pinus densiflora hydrodistillate was found to have 24 h LC50 values of 20.33, 21.01 and 22.36 mg/L against larval Ae. albopictus, Ae. aegypti and Cx. p. pallens respectively. Among the identified compounds, thymol, δ-3-carene and (+)-limonene exhibited the highest toxicity against all three mosquito species. These active compounds were found to be nearly equally effective in field trials as well. In vitro bioassays were conducted to examine the acetylcholinesterase (AChE) inhibitory activity of 10 selected compounds. Results showed that there is a noticeable correlation between larvicidal activity and AChE inhibitory activity. In light of global efforts to find alternatives for currently used insecticides against disease vector mosquitoes, Pinus densiflora hydrodistillate and its constituents merit further research as potential mosquito larvicides. PMID:26464387

  6. Laboratory and Simulated Field Bioassays to Evaluate Larvicidal Activity of Pinus densiflora Hydrodistillate, Its Constituents and Structurally Related Compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in Relation to Their Inhibitory Effects on Acetylcholinesterase Activity

    PubMed Central

    Lee, Dong Chan; Ahn, Young-Joon

    2013-01-01

    The toxicity of Pinus densiflora (red pine) hydrodistillate, its 19 constituents and 28 structurally related compounds against early third-instar larvae of Aedes albopictus (Ae. albopictus), Aedes aegypti (Ae. aegypti) and Culex pipiens palles (Cx. p. pallens) was examined using direct-contact bioassays. The efficacy of active compounds was further evaluated in semi-field bioassays using field-collected larval Cx. p. pallens. Results were compared with those of two synthetic larvicides, temephos and fenthion. In laboratory bioassays, Pinus densiflora hydrodistillate was found to have 24 h LC50 values of 20.33, 21.01 and 22.36 mg/L against larval Ae. albopictus, Ae. aegypti and Cx. p. pallens respectively. Among the identified compounds, thymol, δ-3-carene and (+)-limonene exhibited the highest toxicity against all three mosquito species. These active compounds were found to be nearly equally effective in field trials as well. In vitro bioassays were conducted to examine the acetylcholinesterase (AChE) inhibitory activity of 10 selected compounds. Results showed that there is a noticeable correlation between larvicidal activity and AChE inhibitory activity. In light of global efforts to find alternatives for currently used insecticides against disease vector mosquitoes, Pinus densiflora hydrodistillate and its constituents merit further research as potential mosquito larvicides. PMID:26464387

  7. A new ovitrap made of slow release natural materials containing pyriproxyfen for Aedes aegypti (Diptera:Culicidae) control.

    PubMed

    Juan, Laura; Seccacini, Emilia; Zerba, Eduardo; Licastro, Susana

    2013-07-01

    ABSTRACT This initial study is aimed to measure the performance of incorporating pyriproxyfen in natural materials with low environmental impact to obtain slow release formulations that can be used as larvicidal or autocidal ovitraps avoiding hatched Aedes aegypti (L.) eggs to emerge as adults. Hollow candles made of beeswax or paraffin:stearin 1:1 mixture containing pyriproxyfen 0.01 and 0.05% were prepared and used as holding water containers for larval bioassay. Pyriproxyfen was released quickly into the larvae-breeding water. Ae. aegypti larvae were introduced immediately after the addition of tap water to the hollow candles (t = 1 min) or after 1, 4, and 8 h. More than 40% of the larvae did not emerge as adults for t = 1 min, reaching 80-100% when the larvae were added after 1 or 4 h, respectively. The hollow candles were kept at room temperature, and water was replaced every 15 d. Bioassays performed every 30 d showed that the residual activity obtained for both matrices and both concentrations of pyriproxyfen was higher than 360 d, with 100% inhibition of adult emergence. PMID:23926792

  8. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L.

    PubMed Central

    Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita

    2012-01-01

    Objective To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). Methods The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. Results The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7–11 times more irritable as compared with the control paper. Conclusions The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control. PMID:23569887

  9. Comparative field efficacy of newly developed formulations of larvicides against Aedes aegypti (L.) (Diptera: Culicidae).

    PubMed

    Thavara, Usavadee; Tawatsin, Apiwat; Chompoosri, Jakkrawarn; Bhakdeenuan, Payu; Khamsawads, Chayada; Sangkitporn, Somchai; Siriyasatien, Padet; Asavadachanukorn, Preecha; Boonmuen, Saibua; Mulla, Mir S

    2013-09-01

    Aedes aegypti (L.) is known as vector of dengue and chikungunya fever. Larvicides are used to control this vector. We evaluated the efficacy of newly developed formulations of larvicides to control Ae. aegypti under field conditions for 24 weeks post single application. Mosdop P and Mosdop TB containing diflubenzuron (2% and 40 mg/tablet, respectively) as the active ingredient, were applied at a dosage of 0.1 mg a.i./1 and Mosquit TB10, Mosquit TB100 and Temecal containing temephos (1%, 10% and 1%, respectively) as the active ingredient were applied at a dosage of 1 mg active ingredent (a.i.) to 200 liter water storage jars. Two water regimens were used in the jars: in one regimen the jar was kept full of water all the time and in the other regimen a full jar had half the volume removed and refilled weekly. The larvicidal efficacy was reported as the level of inhibition of emergence (IE%) calculated based on the pupal skins in the jars versus the original number of larvae added. Mosdop P, Mosdop TB, Mosquit TB10, Mosquit TB100 and Temecal showed complete larvicidal efficacy (100% IE) in the constantly full jars for 16, 17, 14, 20 and 13 weeks posttreatment, respectively; in the jars where half the volum of water was replaced weekly, the larvicides had complete larvicidal efficacy (100% IE) for 19, 20, 17, 24 and 15 weeks post-treatment, respectively. The five larvicide regimens evaluated in this study are effective for controlling Ae. aegypti larvae. PMID:24437310

  10. Evaluation of Costa Rican copepods (Crustacea: Eudecapoda) for larval Aedes aegypti control with special reference to Mesocyclops thermocyclopoides.

    PubMed

    Schaper, S

    1999-12-01

    This study attempted to find organisms for the biological control of the mosquito Aedes aegypti in Costa Rica. Copepods of the genera Arctodiaptomus, Eucylops, Mesocyclops, Megacyclops, and Thermocyclops were collected in several parts of the country and cultured for laboratory evaluations. Mesocyclops thermocyclopoides was the most successful species in reducing the number of larval Ae. aegypti (7.3 larvae in 24 h at a density of 200 Aedes/liter). Arctodiaptomus dorsalis, Eucyclops cf. bondi, Eucyclops leptacanthus, Megacyclops sp., and Thermocyclops decipens were not effective predators. In cage simulation trials, M. thermocyclopoides showed 100% larval reduction after 4 wk and adult mosquitoes disappeared after 7 wk. The copepod was able to survive in Aechmea sp. bromeliads under laboratory conditions. In field trials under 3 different climatic conditions M. thermocyclopoides survived 2-5 months in bromeliad leaf axils and 3-6 months in used car tires. In tires, this species reduced the number of larval Ae. aegypti 79, 90, and 99% in tropical dry, moderate, and humid climates, respectively. An El Niño phenomenon affected the results by drought, which apparently also caused a decline in the population of the predatory mosquito Toxorhynchites haemorrhoidalis superbus. Considering these severe test conditions, M. thermocyclopoides might be a promising predator for mosquito control in Costa Rica. PMID:10612615

  11. AE 941.

    PubMed

    2004-01-01

    AE 941 [Arthrovas, Neoretna, Psovascar] is shark cartilage extract that inhibits angiogenesis. AE 941 acts by blocking the two main pathways that contribute to the process of angiogenesis, matrix metalloproteases and the vascular endothelial growth factor signalling pathway. When initial development of AE 941 was being conducted, AEterna assigned the various indications different trademarks. Neovastat was used for oncology, Psovascar was used for dermatology, Neoretna was used for ophthalmology and Arthrovas was used for rheumatology. However, it is unclear if these trademarks will be used in the future and AEterna appears to only be using the Neovastat trademark in its current publications regardless of the indication. AEterna Laboratories signed commercialisation agreements with Grupo Ferrer Internacional SA of Spain and Medac GmbH of Germany in February 2001. Under the terms of the agreement, AEterna has granted exclusive commercialisation and distribution rights to AE 941 in oncology to Grupo Ferrer Internacional for the Southern European countries of France, Belgium, Spain, Greece, Portugal and Italy. It also has rights in Central and South America. Medac GmbH will have marketing rights in Germany, the UK, Scandinavia, Switzerland, Austria, Ireland, the Netherlands and Eastern Europe. In October 2002, AEterna Laboratories announced that it had signed an agreement with Australian healthcare products and services company Mayne Group for marketing AE 941 (as Neovastat) in Australia, New Zealand, Canada and Mexico. In March 2003, AEterna Laboratories announced it has signed an agreement with Korean based LG Life Sciences Ltd for marketing AE 941 (as Neovastat) in South Korea. The agreement provides AEterna with upfront and milestone payments, as well as a return on manufacturing and sales of AE 941. AEterna Laboratories had granted Alcon Laboratories an exclusive worldwide licence for AE 941 for ophthalmic products. However, this licence has been terminated. In

  12. Dengue virus-infected Aedes aegypti in the home environment.

    PubMed

    Garcia-Rejon, Julian; Loroño-Pino, Maria Alba; Farfan-Ale, Jose Arturo; Flores-Flores, Luis; Del Pilar Rosado-Paredes, Elsy; Rivero-Cardenas, Nubia; Najera-Vazquez, Rosario; Gomez-Carro, Salvador; Lira-Zumbardo, Victor; Gonzalez-Martinez, Pedro; Lozano-Fuentes, Saul; Elizondo-Quiroga, Darwin; Beaty, Barry J; Eisen, Lars

    2008-12-01

    We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from premises of laboratory-confirmed dengue patients over a 12-month period (March 2007 to February 2008) in Merida, Mexico. Backpack aspiration from 880 premises produced 1,836 females and 1,292 males indoors (predominantly from bedrooms) and 102 females and 108 males from patios/backyards. The mean weekly indoor catch rate per home peaked at 7.8 females in late August. Outdoor abundances of larvae or pupae were not predictive of female abundance inside the home. DENV-infected Ae. aegypti females were recovered from 34 premises. Collection of DENV-infected females from homes of dengue patients up to 27 days after the onset of symptoms (median, 14 days) shows the usefulness of indoor insecticide application in homes of suspected dengue patients to prevent their homes from becoming sources for dispersal of DENV by persons visiting and being bitten by infected mosquitoes. PMID:19052309

  13. Chikungunya virus susceptibility & variation in populations of Aedes aegypti (Diptera: Culicidae) mosquito from India

    PubMed Central

    Gokhale, Mangesh D.; Paingankar, Mandar S.; Sudeep, Anakathil B.; Parashar, Deepti

    2015-01-01

    Background & objectives: Although having immense clinical relevance, yet only a few studies have been targeted to understand the chikungunya virus (CHIKV) susceptibility and growth in Aedes aegypti populations from India. This study was undertaken to investigate CHIKV susceptibility and growth kinetics in Ae. aegypti along with genetic heterogeneity of Ae. aegypti populations. Methods: Dose dependent CHIKV susceptibility and growth kinetic studies for three CHIKV strains reported from India were carried out in Ae. aegypti mosquito populations. The phenotypic variation and genetic heterogeneity in five Ae. aegypti populations were investigated using multivariate morphometrics and allozyme variation studies. Results: The dissemination and growth kinetics studies of the three CHIKV strains showed no selective advantage for a particular strain of CHIKV in Ae. aegypti. At 100 per cent infection rate, five geographic Ae. aegypti populations showed differences in dissemination to three CHIKV strains. Morphometric studies revealed phenotypic variation in all the studied populations. The allelic frequencies, F statistics, and Nei's genetic identity values showed that genetic differences between the populations were small, but significant. Interpretation & conclusions: The results obtained in this study suggest that genetic background of the vector strongly influences the CHIKV susceptibility in Ae. aegypti. PMID:26905240

  14. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas.

    PubMed

    Díaz-González, Esteban E; Kautz, Tiffany F; Dorantes-Delgado, Alicia; Malo-García, Iliana R; Laguna-Aguilar, Maricela; Langsjoen, Rose M; Chen, Rubing; Auguste, Dawn I; Sánchez-Casas, Rosa M; Danis-Lozano, Rogelio; Weaver, Scott C; Fernández-Salas, Ildefonso

    2015-12-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)-positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. PMID:26416113

  15. Operational use of household bleach to "crash and release" Aedes aegypti prior to Wolbachia-infected mosquito release.

    PubMed

    Jacups, Susan P; Ball, Tamara S; Paton, Christopher J; Johnson, Petrina H; Ritchie, Scott A

    2013-03-01

    Dengue (family Flaviviridae, genus Flavivirus, DENV) remains the leading arboviral cause of mortality in the tropics. Wolbachia pipientis has been shown to interrupt DENV transmission and is presently being trialled as a biological control. However, deployment issues have arisen on methods to temporarily suppress wild mosquito populations before Wolbachia-infected mosquito releases. By suppressing wild populations, fewer Ae. aegypti releases are required to achieve a sustainable Wolbachia density threshold. Furthermore, public distress is reduced. This study tests the application of domestic bleach (4% NaCIO) to temporarily "crash" immature Aedes populations in water-filled containers. Spray application NaClO (215 ppm) resulted in a mean 48-h mortality of 100, 100, 97, and 88% of eggs, second-instar larvae, fourth-instar larvae, and pupae, respectively. In the field, NaClO delayed ovipositing by 9 d in cooler months, and 11 d in hotter months, after which oviposition resumed in treated receptacles. We found bleach treatment of pot-plant bases did not cause wilting, yellowing, or dropping of leaves in two ornamental plants species. Domestically available NaClO could be adopted for a "crash and release" strategy to temporarily suppress wild populations of Ae. aegypti in containers before release of Wolbachia-infected mosquitoes. The "crash and release" strategy is also applicable to other mosquito species, e.g., Aedes albopictus (Skuse), in strategies using released mosquitoes. PMID:23540123

  16. Nepenthes ampullaria (Nepenthaceae) Pitchers Are Unattractive to Gravid Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Chou, Lee Yiung; Dykes, Gary A; Wilson, Robyn F; Clarke, Charles M

    2016-02-01

    Nepenthes pitcher plants are colonized by a variety of specialized arthropods. As Aedes mosquitoes are container breeders, Nepenthes pitchers are a potential candidate oviposition site for vector species, such as Aedes aegypti (L.) and Aedes albopictus (Skuse). However, Aedes spp. are not commonly encountered in Nepenthes pitchers, and the environment inside the pitchers of some species is lethal to them. One exception is Nepenthes ampullaria Jack, whose pitchers are known to be colonized by Ae. albopictus on very rare occasions. Given that Ae. albopictus larvae can survive in N. ampullaria pitcher fluids, we sought to determine why pitcher colonization is rare, testing the hypothesis that gravid Aedes mosquitoes are deterred from ovipositing into container habitats that have similar characteristics to N. ampullaria pitchers. Using plastic ovitraps of different sizes, colors, and with different types of fluids (based on the characteristics of N. ampullaria pitchers), we compared oviposition rates by Aedes mosquitoes in urban and rural areas within the geographical range of N. ampullaria near Kuala Lumpur, Malaysia. Ovitraps that were black and large (>250-ml capacity) accumulated significantly more eggs than ovitraps that were smaller, or green in color. In terms of size and color, small, green ovitraps are analogous to N. ampullaria pitchers, indicating that these pitchers are not particularly attractive to gravid Ae. albopictus. Although Aedes spp. are capable of colonizing N. ampullaria pitchers, the pitchers are relatively unattractive to gravid females and do not represent a significant habitat for larvae of dengue vectors at present. PMID:26518035

  17. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru

    PubMed Central

    LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.

    2014-01-01

    Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically

  18. Metarhizium anisopliae pathogenesis of mosquito larvae: a verdict of accidental death.

    PubMed

    Butt, Tariq M; Greenfield, Bethany P J; Greig, Carolyn; Maffeis, Thierry G G; Taylor, James W D; Piasecka, Justyna; Dudley, Ed; Abdulla, Ahmed; Dubovskiy, Ivan M; Garrido-Jurado, Inmaculada; Quesada-Moraga, Enrique; Penny, Mark W; Eastwood, Daniel C

    2013-01-01

    Metarhizium anisopliae, a fungal pathogen of terrestrial arthropods, kills the aquatic larvae of Aedes aegypti, the vector of dengue and yellow fever. The fungus kills without adhering to the host cuticle. Ingested conidia also fail to germinate and are expelled in fecal pellets. This study investigates the mechanism by which this fungus adapted to terrestrial hosts kills aquatic mosquito larvae. Genes associated with the M. anisopliae early pathogenic response (proteinases Pr1 and Pr2, and adhesins, Mad1 and Mad2) are upregulated in the presence of larvae, but the established infection process observed in terrestrial hosts does not progress and insecticidal destruxins were not detected. Protease inhibitors reduce larval mortality indicating the importance of proteases in the host interaction. The Ae. aegypti immune response to M. anisopliae appears limited, whilst the oxidative stress response gene encoding for thiol peroxidase is upregulated. Cecropin and Hsp70 genes are downregulated as larval death occurs, and insect mortality appears to be linked to autolysis through caspase activity regulated by Hsp70 and inhibited, in infected larvae, by protease inhibitors. Evidence is presented that a traditional host-pathogen response does not occur as the species have not evolved to interact. M. anisopliae retains pre-formed pathogenic determinants which mediate host mortality, but unlike true aquatic fungal pathogens, does not recognise and colonise the larval host. PMID:24349111

  19. Metarhizium anisopliae Pathogenesis of Mosquito Larvae: A Verdict of Accidental Death

    PubMed Central

    Butt, Tariq M.; Greenfield, Bethany P. J.; Greig, Carolyn; Maffeis, Thierry G. G.; Taylor, James W. D.; Piasecka, Justyna; Dudley, Ed; Abdulla, Ahmed; Dubovskiy, Ivan M.; Garrido-Jurado, Inmaculada; Quesada-Moraga, Enrique; Penny, Mark W.; Eastwood, Daniel C.

    2013-01-01

    Metarhizium anisopliae, a fungal pathogen of terrestrial arthropods, kills the aquatic larvae of Aedes aegypti, the vector of dengue and yellow fever. The fungus kills without adhering to the host cuticle. Ingested conidia also fail to germinate and are expelled in fecal pellets. This study investigates the mechanism by which this fungus adapted to terrestrial hosts kills aquatic mosquito larvae. Genes associated with the M. anisopliae early pathogenic response (proteinases Pr1 and Pr2, and adhesins, Mad1 and Mad2) are upregulated in the presence of larvae, but the established infection process observed in terrestrial hosts does not progress and insecticidal destruxins were not detected. Protease inhibitors reduce larval mortality indicating the importance of proteases in the host interaction. The Ae. aegypti immune response to M. anisopliae appears limited, whilst the oxidative stress response gene encoding for thiol peroxidase is upregulated. Cecropin and Hsp70 genes are downregulated as larval death occurs, and insect mortality appears to be linked to autolysis through caspase activity regulated by Hsp70 and inhibited, in infected larvae, by protease inhibitors. Evidence is presented that a traditional host-pathogen response does not occur as the species have not evolved to interact. M. anisopliae retains pre-formed pathogenic determinants which mediate host mortality, but unlike true aquatic fungal pathogens, does not recognise and colonise the larval host. PMID:24349111

  20. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus

    PubMed Central

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methods To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen) of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR. Results CHIKV infection rate, dissemination and transmission efficiencies ranged from 7–90%, 18–78% and 5–53% respectively for Ae. aegypti and from 39–41%, 3–17% and 0–14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector. Conclusion As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there

  1. Larvicidal efficacy screening of Anacardaciae crude extracts on the dengue hemorrhagic vector, Aedes aegypti.

    PubMed

    Zuharah, W F; Fadzly, N; Ali, Y; Zakaria, R; Juperi, S; Asyraf, M; Dieng, H

    2014-06-01

    Vector-borne diseases are still rife because of the re-emergence of diseases transmitted by mosquitoes. The objective of this paper is to evaluate the larvicidal efficacy of crude leaf extract of Mangifera indica, Gluta renghas, and Melanochyla fasciculiflora against vector of dengue hemorrhagic fever, Aedes aegypti. These plant species are endemic species and widely distributed in Malaysian forests. Leaves of Ma. indica, G. renghas and M. fascculiflora were collected from Teluk Bahang National Park, Penang Malaysia. Fractions of leaves were segregated, air-dried, powdered and extracted using Soxhlet with methanol. The solvent was removed by using rotary evaporator to obtain the crude extract. Using WHO standard larval bioassay test method, third instar larvae of Aedes aegypti were exposed to concentration ranging from 200- 4500 ppm of methanol extract for all plant species. Larval mortality was observed after 24 hours exposure. The highest susceptibility and toxicity was recorded by Mangifera indica with the lowest concentration at 800 ppm followed by M. fasciculiflora and G. renghas. This indicates that crude plant extract is very effective in killing Ae. aegypti mosquitoes. This finding may lead to new low cost alternative, environmentally friendly method for mosquito control programs. To our knowledge, this is the first report on larvicidal bioefficacy from endemic Malaysian plants. PMID:25134898

  2. FISH landmarks for Aedes aegypti chromosomes.

    PubMed

    Brown, S E; Knudson, D L

    1997-05-01

    Aedes aegypti metaphase chromosome landmarks have been developed so that each chromosome of the haploid genome can be unambiguously identified and oriented by fluorescence in situ hybridization (FISH) and digital imaging microscopy. The FISH tags were derived from three cosmids that contain repetitive Ae. aegypti sequences and their unique FISH tagging characteristics are demonstrated. The sequence of the three chromosomal tags revealed that the chromosome 1 tag is an 18S fragment from the ribosomal cistron, and the other two chromosomal tags are repeats found in Ae. aegypti with no apparent similarity to known sequences. A single plasmid that contains the three chromosomes tag sequences has been constructed to simplify future FISH physical mapping. PMID:9099584

  3. Spatial Stability of Adult Aedes aegypti Populations

    PubMed Central

    Barrera, Roberto

    2011-01-01

    Vector control programs could be more efficient by identifying the location of highly productive sites of Aedes aegypti. This study explored if the number of female adults of Ae. aegypti in BG-Sentinel traps was clustered and if their spatial distribution changed in time in two neighborhoods in San Juan, Puerto Rico. Traps were uniformly distributed across each neighborhood (130 m from each other), and samples were taken every 3 weeks. Global and local spatial autocorrelations were explored. Spatial stability existed if the rank order of trap captures was kept in time. There was lack of global autocorrelation in both neighborhoods, precluding their stratification for control purposes. Hot and cold spots were identified, revealing the highly focal nature of Ae. aegypti. There was significant spatial stability throughout the study in both locations. The consistency in trap productivity in time could be used to increase the effectiveness of vector and dengue control programs. PMID:22144449

  4. Neuropeptidomics of the mosquito Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptidomic data were collected on the mosquito Ae. aegypti which is considered the most tractable mosquito species for physiological and endocrine studies. The data were solely obtained by direct mass spectrometric profiling, including tandem fragmentation, of selected tissues from single speci...

  5. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Peinado, Stephen A.; Velez, Ivan Dario; Osorio, Jorge E.

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  6. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti.

    PubMed

    Aliota, Matthew T; Peinado, Stephen A; Velez, Ivan Dario; Osorio, Jorge E

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  7. Widespread Distribution of a Newly Found Point Mutation in Voltage-Gated Sodium Channel in Pyrethroid-Resistant Aedes aegypti Populations in Vietnam

    PubMed Central

    Kawada, Hitoshi; Higa, Yukiko; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Thi Yen, Nguyen; Loan, Luu Lee; Sánchez, Rodrigo A. P.; Takagi, Masahiro

    2009-01-01

    Background Resistance of Aedes aegypti to photostable pyrethroid insecticides is a major problem for disease-vector control programs. Pyrethroids target the voltage-gated sodium channel on the insects' neurons. Single amino acid substitutions in this channel associated with pyrethroid resistance are one of the main factors that cause knockdown resistance in insects. Although kdr has been observed in several mosquito species, point mutations in the para gene have not been fully characterized in Ae. aegypti populations in Vietnam. The aim of this study was to determine the types and frequencies of mutations in the para gene in Ae. aegypti collected from used tires in Vietnam. Methods and Findings Several point mutations were examined that cause insensitivity of the voltage-gated sodium channel in the insect nervous system due to the replacement of the amino acids L1014F, the most commonly found point mutation in several mosquitoes; I1011M (or V) and V1016G (or I), which have been reported to be associated to knockdown resistance in Ae. aegypti located in segment 6, domain II; and a recently found amino acid replacement in F1269 in Ae. aegypti, located in segment 6, domain III. Among 756 larvae from 70 locations, no I1011M or I1011V nor L1014F mutations were found, and only two heterozygous V1016G mosquitoes were detected. However, F1269C mutations on domain III were distributed widely and with high frequency in 269 individuals among 757 larvae (53 collection sites among 70 locations surveyed). F1269C frequencies were low in the middle to north part of Vietnam but were high in the areas neighboring big cities and in the south of Vietnam, with the exception of the southern mountainous areas located at an elevation of 500–1000 m. Conclusions The overall percentage of homozygous F1269C seems to remain low (7.4%) in the present situation. However, extensive and uncontrolled frequent use of photostable pyrethroids might be a strong selection pressure for this mutation to

  8. Diterpenoids from Copaifera reticulata Ducke with larvicidal activity against Aedes aegypti (L.) (Diptera, Culicidae).

    PubMed

    Geris, Regina; Silva, Ionizete Garcia da; Silva, Heloísa Helena Garcia da; Barison, Andersson; Rodrigues-Filho, Edson; Ferreira, Antônio Gilberto

    2008-01-01

    The objective of this study was to evaluate the larvicidal activity of diterpenoids obtained from the oil-resin of Copaifera reticulata against Aedes aegypti larvae, the principal vector of dengue and urban yellow fever. Four diterpenes were obtained from oil-resin extraction with organic solvents and subsequent chromatographic and spectroscopic procedures allowed to isolation and identification of these compounds as 3-beta-acetoxylabdan-8(17)-13-dien-15-oic acid (1), alepterolic acid (2), 3-beta-hidroxylabdan-8(17)-en-15-oic acid (3), and ent-agatic acid (4). Each compound was previously dissolved in dimethylsulphoxide, and distilled water was added to obtain the desired concentrations. Twenty larvae of third instars were placed into plastic beckers, containing the solution test (25 mL), in a five repetitions scheme, and their mortality, indicated by torpor and darkening of the cephalic capsule, was recorded after 48 h. Probit analyses were used to determine lethal concentrations (LC50 and LC90) and their respective 95% confidence intervals. This study showed that only diterpenoids 1 and 2 exhibited larvicidal properties with LC50 of 0.8 ppm and 87.3 ppm, respectively, revealing the former as the most toxic compound against third instars of Ae. aegypti. Therefore, this compound seems to be an interesting source for new metabolite to be exploited. PMID:18383630

  9. A Recombinant AeDNA Containing the Insect-Specific Toxin, BmK IT1, Displayed an Increasing Pathogenicity on Aedes albopictus

    PubMed Central

    Gu, Jin-Bao; Dong, Yun-Qiao; Peng, Hong-Juan; Chen, Xiao-Guang

    2010-01-01

    The Aedes aegypti densovirus (AeDNV) has previously shown potential in mosquito control. To improve its efficacy as a biopesticide, the gene for an excitatory insect-specific toxin from Buthus martensii Karsch (BmK IT1) was inserted into the AeDNV genome and cloned into pUCA plasmid. The coding sequence for green fluorescent protein was ligated to the C-terminus of the BmK IT1 gene as a screening marker. Recombinant and helper plasmids were cotransfected into C6/36 cells; wild-type viruses were the controls. The recombinant viruses were identified and quantified by real-time polymerase chain reaction and exposed to Ae. albopictus larvae for the evaluation of its bioinsecticidal activity. LT50 and LD50 bioassays showed that the recombinant AeDNV had stronger and faster pathogenic effects on Ae. albopictus than the wild-type virus. This is the first report on the recombinant AeDNA containing the insect-specific toxin, BmK IT1, which may be used to develop a novel type of insecticide. PMID:20810829

  10. Effect of housing factors on infestation by Aedes aegypti (L.) and Aedes albopictus Skuse in urban Hanoi City, Vietnam.

    PubMed

    Tsuzuki, Ataru; Sunahara, Toshihiko; Duoc, Vu Trong; Le Nguyen, Hoang; Higa, Yukiko; Phong, Tran Vu; Minakawa, Noboru

    2013-11-01

    To determine the effect of housing factors on infestation with Aedes aegypti (L.) and Aedes albopictus Skuse we conducted an entomological survey and inspection of 267 urban houses in Hanoi City, Vietnam. Two hundred ten pupae and 194 adult Ae. aegypti were collected from 19 and 88 houses, respectively. One hundred eighty-one pupae and 24 adult Ae. albopictus were collected from 21 and 14 houses, respectively. The presence of a private well was associated with increasing infestation with Ae. aegypti adults (p = 0.01) and increased the risk of Ae. aegypti and Ae. albopictus pupal presence (p = 0.04 for Ae. aegypti, p = 0.03 for Ae. albopictus). The presence of an outdoor space in the household premises was associated with a higher risk of Ae. albopictus pupal presence (p = 0.004) and a higher risk of high levels of Ae. albopictus adults (p = 0.01); however, it had no association with infestation with Ae. aegypti. The presence of an air-conditioning unit (p = 0.03) and four or more rooms in the residence (p = 0.02) were negatively and positively associated with the risk for Ae. albopictus presence, respectively. PMID:24450235

  11. Investigation of environmental influences on a transcriptional assay for the prediction of age of Aedes aegypti (Diptera: Culicidae) mosquitoes.

    PubMed

    Hugo, Leon E; Kay, Brian H; O'Neill, Scott L; Ryan, Peter A

    2010-11-01

    We examined the effects of environmental regulation of gene transcription on the accuracy of a transcriptional profiling method for determining insect age. In combined temperature/nutrition treatments, Aedes aegypti (L.) mosquitoes were maintained in the laboratory at three different temperatures (20, 26, and 32 degrees C), and larvae were fed on low, medium, and high diet regimens. Adult mosquitoes of distinct size classes were produced. Transcription of three age-responsive genes (Ae-15848, Ae-8505, and Ae-4274) was measured from 1-, 10-, and 19-d-old specimens using a quantitative reverse-transcription polymerase chain reaction method incorporating dual-labeled TaqMan probes. Temperature had a significant effect on transcript abundance for two of the model genes (Ae-15848 and Ae-8505), and transcription of model genes was unaffected by the main effect of larval diet level; however, significant temperature by diet level interactions were observed. Total RNA yield from individual mosquitoes varied according to adult age and temperature, and when combined with wing length, provided a useful predictor variable in age prediction models. More accurate age predictions were achieved from models generated at the same temperature as test mosquitoes; however, whereas significant differences in mean predicted ages were observed between 1- and 10-d-old mosquitoes, differences between 10 and 19 d were nonsignificant. This study highlights the effect of environmental regulation on gene transcription age grading and the need to identify additional gene biomarkers of age to improve the classification of older mosquitoes. PMID:21175052

  12. Insecticidal potential of Ocimum canum plant extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus larval and adult mosquitoes (Diptera: Culicidae).

    PubMed

    Murugan, Jimmantiyur Madhappan; Ramkumar, Govindaraju; Shivakumar, Muthugoundar Subramanian

    2016-05-01

    Mosquitoes have developed resistance to various synthetic insecticides, making their control increasingly difficult. Insecticides of botanical origin may serve as suitable natural control. This study evaluates the toxic potential of Ocimum canum (Sims) leaf extract and powder against Anopheles stephensi (Liston), Aedes aegypti (Lin) and Culex quinquefasciatus (Say) larval and adult mosquitoes. Larval mortality was observed after 24 h recovery period and adult smoke toxicity observed for 40 min duration at 10 min interval. Methanol extract of O. canum showed highest larval mortality against the larvae of C. quinquefasciatus LC50 = 28.3225, LC90 = 44.1150; Ae. aegypti LC50 = 43.327, LC90 = 61.249; and An. stephensi LC50 = 30.2001, LC90 = 48.2866 ppm. The smoke toxicities were 93% mortality in C. quinquefasciatus, 74% in Ae. aegypti and 79% in An. stephensi adults, respectively, whereas 100% mortality was recorded in the commercial mosquito control. Our results suggest that O. canum leaf extract and powder are natural insecticide, and ideal eco friendly approach for mosquito control. PMID:26135241

  13. Cloning and epitope mapping of Cry11Aa-binding sites in the Cry11Aa-receptor alkaline phosphatase from Aedes aegypti.

    PubMed

    Fernandez, Luisa E; Martinez-Anaya, Claudia; Lira, Erandi; Chen, Jianwu; Evans, Amy; Hernández-Martínez, Salvador; Lanz-Mendoza, Humberto; Bravo, Alejandra; Gill, Sarjeet S; Soberón, Mario

    2009-09-22

    Cry11Aa is the most active Bacillus thuringiensis israelensis toxin against Aedes aegypti larvae. Ae. aegypti alkaline phosphatase (ALP) was previously identified as a Cry11Aa receptor mediating toxicity. Here we report the cloning and functional characterization of this Ae. aegypti Cry11Aa-ALP receptor. Of three ALP's cDNA clones, the recombinant produced ALP1 isoform was shown to bind Cry11Aa and P1.BBMV peptide phage that specifically binds the midgut ALP-Cry11Aa receptor. An anti-ALP1 antibody inhibited binding to brush border membrane vesicles and toxicity of Cry11Aa in isolated cultured guts. Two ALP1 Cry11Aa binding regions (R59-G102 and N257-I296) were mapped by characterizing binding of Cry11Aa to nine recombinant overlapping peptides covering the ALP1 sequence. Finally, by using a peptide spot array of Cry11Aa domain III and site-directed mutagenesis, we show that the ALP1 R59-G102 region binds Cry11Aa through domain II loop alpha-8 while ALP1 N257-I296 interacts with Cry11Aa through domain III 561RVQSQNSGNN570 located in beta18-beta19. Our results show that Cry11Aa domain II and domain III are involved in the binding with two distinct binding sites in the ALP1 receptor. PMID:19697959

  14. Male accessory gland substances from Aedes albopictus affect the locomotor activity of Aedes aegypti females

    PubMed Central

    Lima-Camara, Tamara Nunes; Codeço, Claudia Torres; Honório, Nildimar Alves; Bruno, Rafaela Vieira; Peixoto, Alexandre Afranio; Lounibos, Leon Philip

    2013-01-01

    Dengue is one of the world’s most important mosquito-borne diseases and is usually transmitted by one of two vector species: Aedes aegypti or Aedes albopictus . These two diurnal mosquitoes are frequently found coexisting in similar habitats, enabling interactions between adults, such as cross-mating. The objective of this study was to assess cross-mating between Ae. aegypti females and Ae. albopictus males under artificial conditions and evaluate the locomotor activity of Ae. aegypti virgin females injected with male accessory gland (MAG) homogenates to infer the physiological and behavioural responses to interspecific mating. After seven days of exposure, 3.3-16% of Ae. aegypti females mated with Ae. albopictus males. Virgin Ae. aegypti females injected with conspecific and heterospecific MAGs showed a general decrease in locomotor activity compared to controls and were refractory to mating with conspecific males. The reduction in diurnal locomotor activity induced by injections of conspecific or heterospecific MAGs is consistent with regulation of female reproductive activities by male substances, which are capable of sterilising female Ae. aegypti through satyrisation by Ae. albopictus . PMID:24473799

  15. Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan.

    PubMed

    Rasheed, S B; Boots, M; Frantz, A C; Butlin, R K

    2013-12-01

    Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long-range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human-aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites. PMID:23662926

  16. Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas

    PubMed Central

    Kesorn, Kraisak; Ongruk, Phatsavee; Chompoosri, Jakkrawarn; Phumee, Atchara; Thavara, Usavadee; Tawatsin, Apiwat; Siriyasatien, Padet

    2015-01-01

    Background In the past few decades, several researchers have proposed highly accurate prediction models that have typically relied on climate parameters. However, climate factors can be unreliable and can lower the effectiveness of prediction when they are applied in locations where climate factors do not differ significantly. The purpose of this study was to improve a dengue surveillance system in areas with similar climate by exploiting the infection rate in the Aedes aegypti mosquito and using the support vector machine (SVM) technique for forecasting the dengue morbidity rate. Methods and Findings Areas with high incidence of dengue outbreaks in central Thailand were studied. The proposed framework consisted of the following three major parts: 1) data integration, 2) model construction, and 3) model evaluation. We discovered that the Ae. aegypti female and larvae mosquito infection rates were significantly positively associated with the morbidity rate. Thus, the increasing infection rate of female mosquitoes and larvae led to a higher number of dengue cases, and the prediction performance increased when those predictors were integrated into a predictive model. In this research, we applied the SVM with the radial basis function (RBF) kernel to forecast the high morbidity rate and take precautions to prevent the development of pervasive dengue epidemics. The experimental results showed that the introduced parameters significantly increased the prediction accuracy to 88.37% when used on the test set data, and these parameters led to the highest performance compared to state-of-the-art forecasting models. Conclusions The infection rates of the Ae. aegypti female mosquitoes and larvae improved the morbidity rate forecasting efficiency better than the climate parameters used in classical frameworks. We demonstrated that the SVM-R-based model has high generalization performance and obtained the highest prediction performance compared to classical models as measured by

  17. Transstadial Effects of Bti on Traits of Aedes aegypti and Infection with Dengue Virus

    PubMed Central

    Alto, Barry W.; Lord, Cynthia C.

    2016-01-01

    Most mosquito control efforts are primarily focused on reducing the adult population size mediated by reductions in the larval population, which should lower risk of disease transmission. Although the aim of larviciding is to reduce larval abundance and thus recruitment of adults, nonlethal effects on adults are possible, including transstadial effects on phenotypes of adults such as survival and pathogen infection and transmission. In addition, the mortality induced by control efforts may act in conjunction with other sources of mosquito mortality in nature. The consequences of these effects and interactions may alter the potential of the population to transmit pathogens. We tested experimentally the combined effects of a larvicide (Bacillus thuringiensis ssp. israelensis, Bti) and competition during the larval stages on subsequent Aedes aegypti (Linnaeus) traits, population performance, and susceptibility to dengue-1 virus infection. Ae. aegypti that survived exposure to Bti experienced accelerated development, were larger, and produced more eggs with increasing amounts of Bti, consistent with competitive release among surviving mosquitoes. Changing larval density had no significant interactive effect with Bti treatment on development and growth to adulthood. Larval density, but not Bti or treatment interaction, had a strong effect on survival of adult Ae. aegypti females. There were sharper declines in cumulative daily survival of adults from crowded than uncrowded larval conditions, suggesting that high competition conditions of larvae may be an impediment to transmission of dengue viruses. Rates of infection and dengue-1 virus disseminated infections were found to be 87±13% and 88±12%, respectively. There were no significant treatment effects on infection measurements. Our findings suggest that larvicide campaigns using Bti may reduce the number of emerged adults, but survivors will have a fitness advantage (growth, development, enhanced production of eggs

  18. Transstadial Effects of Bti on Traits of Aedes aegypti and Infection with Dengue Virus.

    PubMed

    Alto, Barry W; Lord, Cynthia C

    2016-02-01

    Most mosquito control efforts are primarily focused on reducing the adult population size mediated by reductions in the larval population, which should lower risk of disease transmission. Although the aim of larviciding is to reduce larval abundance and thus recruitment of adults, nonlethal effects on adults are possible, including transstadial effects on phenotypes of adults such as survival and pathogen infection and transmission. In addition, the mortality induced by control efforts may act in conjunction with other sources of mosquito mortality in nature. The consequences of these effects and interactions may alter the potential of the population to transmit pathogens. We tested experimentally the combined effects of a larvicide (Bacillus thuringiensis ssp. israelensis, Bti) and competition during the larval stages on subsequent Aedes aegypti (Linnaeus) traits, population performance, and susceptibility to dengue-1 virus infection. Ae. aegypti that survived exposure to Bti experienced accelerated development, were larger, and produced more eggs with increasing amounts of Bti, consistent with competitive release among surviving mosquitoes. Changing larval density had no significant interactive effect with Bti treatment on development and growth to adulthood. Larval density, but not Bti or treatment interaction, had a strong effect on survival of adult Ae. aegypti females. There were sharper declines in cumulative daily survival of adults from crowded than uncrowded larval conditions, suggesting that high competition conditions of larvae may be an impediment to transmission of dengue viruses. Rates of infection and dengue-1 virus disseminated infections were found to be 87±13% and 88±12%, respectively. There were no significant treatment effects on infection measurements. Our findings suggest that larvicide campaigns using Bti may reduce the number of emerged adults, but survivors will have a fitness advantage (growth, development, enhanced production of eggs

  19. Undesirable Consequences of Insecticide Resistance following Aedes aegypti Control Activities Due to a Dengue Outbreak

    PubMed Central

    Maciel-de-Freitas, Rafael; Avendanho, Fernando Campos; Santos, Rosangela; Sylvestre, Gabriel; Araújo, Simone Costa; Lima, José Bento Pereira; Martins, Ademir Jesus; Coelho, Giovanini Evelim; Valle, Denise

    2014-01-01

    Background During a dengue outbreak with co-circulation of DENV-1 and -2 in the city of Boa Vista, one patient was diagnosed with DENV-4, a serotype supposed absent from Brazil for almost 30 years. The re-emergence of DENV-4 triggered the intensification of mechanical and chemical Aedes aegypti control activities in order to reduce vector density and avoid DENV-4 dissemination throughout the country. Methods/Principal Findings Vector control activities consisted of (a) source reduction, (b) application of diflubenzuron against larvae and (c) vehicle-mounted space spraying of 2% deltamethrin to eliminate adults. Control activity efficacy was monitored by comparing the infestation levels and the number of eggs collected in ovitraps before and after interventions, performed in 22 Boa Vista districts, covering an area of ∼80% of the city and encompassing 56,837 dwellings. A total of 94,325 containers were eliminated or treated with diflubenzuron. The most frequently positive containers were small miscellaneous receptacles, which corresponded to 59% of all positive breeding sites. Insecticide resistance to deltamethrin was assessed before, during and after interventions by dose-response bioassays adopting WHO-based protocols. The intense use of the pyrethroid increased fourfold the resistance ratio of the local Ae. aegypti population only six months after the beginning of vector control. Curiously, this trend was also observed in the districts in which no deltamethrin was applied by the public health services. On the other hand, changes in the resistance ratio to the organophosphate temephos seemed less influenced by insecticide in Boa Vista. Conclusions Despite the intense effort, mosquito infestation levels were only slightly reduced. Besides, the median number of eggs in ovitraps remained unaltered after control activity intensification. The great and rapid increase in pyrethroid resistance levels of natural Ae. aegypti populations is discussed in the context of

  20. Midgut bacterial dynamics in Aedes aegypti.

    PubMed

    Terenius, Olle; Lindh, Jenny M; Eriksson-Gonzales, Karolina; Bussière, Luc; Laugen, Ane T; Bergquist, Helen; Titanji, Kehmia; Faye, Ingrid

    2012-06-01

    In vector mosquitoes, the presence of midgut bacteria may affect the ability to transmit pathogens. We have used a laboratory colony of Aedes aegypti as a model for bacterial interspecies competition and show that after a blood meal, the number of species (culturable on Luria-Bertani agar) that coexist in the midgut is low and that about 40% of the females do not harbor any cultivable bacteria. We isolated species belonging to the genera Bacillus, Elizabethkingia, Enterococcus, Klebsiella, Pantoea, Serratia, and Sphingomonas, and we also determined their growth rates, antibiotic resistance, and ex vivo inhibition of each other. To investigate the possible existence of coadaptation between midgut bacteria and their host, we fed Ae. aegypti cohorts with gut bacteria from human, a frog, and two mosquito species and followed the bacterial population growth over time. The dynamics of the different species suggests coadaptation between host and bacteria, and interestingly, we found that Pantoea stewartii isolated from Ae. aegypti survive better in Ae. aegypti as compared to P. stewartii isolated from the malaria mosquito Anopheles gambiae. PMID:22283178

  1. Age-Stage, Two-Sex Life Table Characteristics of Aedes albopictus and Aedes Aegypti in Penang Island, Malaysia.

    PubMed

    Maimusa, Hamisu A; Ahmad, Abu Hassan; Kassim, Nur Faeza A; Rahim, Junaid

    2016-03-01

    The life table developmental attributes of laboratory colonies of wild strains of Aedes albopictus and Aedes aegypti were analyzed and compared based on the age-stage, two-sex life table. Findings inclusive in this study are: adult preoviposition periods, total preoviposition period, mean intrinsic rate of increase (r), mean finite rate of increase (λ), net reproductive rates (R0), and mean generation time (T). The total preadult development time was 9.47 days for Ae. albopictus and 8.76 days for Ae. aegypti. The life expectancy was 19.01 days for Ae. albopictus and 19.94 days for Ae. aegypti. Mortality occurred mostly during the adult stage. The mean development time for each stage insignificantly correlated with temperature for Ae. albopictus (r  =  -0.208, P > 0.05) and (r  =  -0.312, P > 0.05) for Ae. aegypti. The population parameters suggest that Ae. albopictus and Ae. aegypti populations are r-strategists characterized by a high r, a large R0, and short T. This present study provides the first report to compare the life parameters of Ae. albopictus and Ae. aegypti strains from Penang island, Malaysia. PMID:27105211

  2. CLONING AND EXPRESSING TRYPSIN MODULATING OOSTATIC FACTOR IN Chlorella desiccata TO CONTROL MOSQUITO LARVAE.

    PubMed

    Borovsky, Dov; Sterner, Andeas; Powell, Charles A

    2016-01-01

    The insect peptide hormone trypsin modulating oostatic factor (TMOF), a decapeptide that is synthesized by the mosquito ovary and controls the translation of the gut's trypsin mRNA was cloned and expressed in the marine alga Chlorella desiccata. To express Aedes aegypti TMOF gene (tmfA) in C. desiccata cells, two plasmids (pYES2/TMOF and pYDB4-tmfA) were engineered with pKYLX71 DNA (5 Kb) carrying the cauliflower mosaic virus (CaMV) promoter 35S(2) and the kanamycin resistant gene (neo), as well as, a 8 Kb nitrate reductase gene (nit) from Chlorella vulgaris. Transforming C. desiccata with pYES2/TMOF and pYDB4-tmfA show that the engineered algal cells express TMOF (20 ± 4 μg ± SEM and 17 ± 3 μg ± SEM, respectively in 3 × 10(8) cells) and feeding the cells to mosquito larvae kill 75 and 60% of Ae. aegypti larvae in 4 days, respectively. Southern and Northern blots analyses show that tmfA integrated into the genome of C. desiccata by homologous recombination using the yeast 2 μ circle of replication and the nit in pYES2/TMOF and pYDB4-tmfA, respectively, and the transformed algal cells express tmfA transcript. Using these algal cells it will be possible in the future to control mosquito larvae in the marsh. PMID:26440910

  3. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Edwin, Edward-Sam; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Ponsankar, Athirstam; Pradeepa, Venkatraman; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Abdel-Megeed, Ahmed; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2016-11-01

    The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management. PMID:27443607

  4. Comparison of the insecticide susceptibilities of laboratory strains of Aedes aegypti and Aedes albopictus.

    PubMed

    Gómez, Andrea; Seccacini, Emilia; Zerba, Eduardo; Licastro, Susana

    2011-12-01

    A susceptible strain of Aedes albopictus derived from the Gainesville strain (Florida, USA) was established in our laboratory. The larvicidal efficacies of the neurotoxic insecticides temephos, permethrin and the pure cis and trans-permethrin isomers and the microbial insecticide Bacillus thuringiensis israelensis (Bti) against Ae. albopictus were estimated and compared to a susceptible strain of Aedes aegypti. The larvicidal effect of insect growth regulator pyriproxyfen was also evaluated in both mosquito strains. The median lethal concentration/median emergency inhibition values for Ae. aegypti and Ae. albopictus, respectively, were: temephos, 3.058 and 6.632 ppb, permethrin, 3.143 and 4.933 ppb, cis-permethrin, 4.457 and 10.068 ppb, trans-permethrin, 1.510 and 3.883 ppb, Bti, 0.655 and 0.880 ppb and pyriproxyfen, 0.00774 and 0.01642 ppb. Ae. albopictus was more tolerant than Ae. aegypti to all six larvicides evaluated. The order of susceptibility for Ae. aegypti was pyriproxyfen > Bti > trans-permethrin > temephos > permethrin > cis-permethrin and for Ae. albopictus was pyriproxyfen > Bti > trans-permethrin > permethrin > temephos > cis-permethrin. Because both species can be found together in common urban, suburban and rural breeding sites, the results of this work provide baseline data on the susceptibility of Ae. albopictus to insecticides commonly used for controlling Ae. aegypti in the field. PMID:22241122

  5. THAP and ATF-2 Regulated Sterol Carrier Protein-2 Promoter Activities in the Larval Midgut of the Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Peng, Rong; Fu, Qiang; Hong, Huazhu; Schwaegler, Tyler; Lan, Que

    2012-01-01

    Expression of sterol carrier protein-2 (SCP-2) in Aedes aegypti shows a distinct temporal/spatial pattern throughout the life cycle. In order to identify the transcription factors responsible for the larval temporal/spatial regulation of AeSCP-2 transcription, AeSCP-2 promoter activities were studied in vivo via transient transfection of promoter/reporter gene assays. Regulatory sequences upstream −1.3 kb of the transcription start site of AeSCP-2 were found to be critical for the in vivo temporal/spatial promoter activity. Interestingly, the −1.6 kb promoter sequence efficiently drove the larval midgut-specific siRNA expression, indicating that the −1.6 kb upstream sequence is sufficient for temporal/spatial AeSCP-2 transcriptional activity. Four transcription factors were identified in the midgut nuclear extract from feeding larvae via labeled −1.6/−1.3 kb DNA probe pull-down and proteomic analysis. Co-transfection of the promoter/reporter gene with inducible siRNA expression of each transcription factor was performed to confirm the regulatory function of individual transcription factor on AeSCP-2 transcriptional activities in the larval midgut. The results indicate that two of the identified transcription factors, Thanatos-associated protein (THAP) and activating transcription factor-2 (ATF-2), antagonistically control AeSCP-2 transcriptional activity in the midgut of feeding larvae via the regulatory sequences between −1.6 to −1.3 kb 5′ upstream of the transcription start site. In vivo expression knockdown of THAP and ATF-2 resulted in significant changes in developmental progression, which may be partially due to their effects on AeSCP-2 expression. PMID:23056538

  6. THAP and ATF-2 regulated sterol carrier protein-2 promoter activities in the larval midgut of the yellow fever mosquito, Aedes aegypti.

    PubMed

    Peng, Rong; Fu, Qiang; Hong, Huazhu; Schwaegler, Tyler; Lan, Que

    2012-01-01

    Expression of sterol carrier protein-2 (SCP-2) in Aedes aegypti shows a distinct temporal/spatial pattern throughout the life cycle. In order to identify the transcription factors responsible for the larval temporal/spatial regulation of AeSCP-2 transcription, AeSCP-2 promoter activities were studied in vivo via transient transfection of promoter/reporter gene assays. Regulatory sequences upstream -1.3 kb of the transcription start site of AeSCP-2 were found to be critical for the in vivo temporal/spatial promoter activity. Interestingly, the -1.6 kb promoter sequence efficiently drove the larval midgut-specific siRNA expression, indicating that the -1.6 kb upstream sequence is sufficient for temporal/spatial AeSCP-2 transcriptional activity. Four transcription factors were identified in the midgut nuclear extract from feeding larvae via labeled -1.6/-1.3 kb DNA probe pull-down and proteomic analysis. Co-transfection of the promoter/reporter gene with inducible siRNA expression of each transcription factor was performed to confirm the regulatory function of individual transcription factor on AeSCP-2 transcriptional activities in the larval midgut. The results indicate that two of the identified transcription factors, Thanatos-associated protein (THAP) and activating transcription factor-2 (ATF-2), antagonistically control AeSCP-2 transcriptional activity in the midgut of feeding larvae via the regulatory sequences between -1.6 to -1.3 kb 5' upstream of the transcription start site. In vivo expression knockdown of THAP and ATF-2 resulted in significant changes in developmental progression, which may be partially due to their effects on AeSCP-2 expression. PMID:23056538

  7. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles.

    PubMed

    Murugan, Kadarkarai; Priyanka, Vishwanathan; Dinesh, Devakumar; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Suresh, Udaiyan; Chandramohan, Balamurugan; Roni, Mathath; Nicoletti, Marcello; Alarfaj, Abdullah A; Higuchi, Akon; Munusamy, Murugan A; Khater, Hanem F; Messing, Russell H; Benelli, Giovanni

    2015-10-01

    Aedes aegypti is a primary vector of dengue and chikungunya. The use of synthetic insecticides to control Aedes populations often leads to high operational costs and adverse non-target effects. Botanical extracts have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles, but their impact against predators of mosquito larvae has not been well studied. We propose a single-step method for the biosynthesis of silver nanoparticles (AgNP) using the extract of Artemisia vulgaris leaves as a reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). SEM and XRD showed that AgNP were polydispersed, crystalline, irregularly shaped, with a mean size of 30-70 nm. EDX confirmed the presence of elemental silver. FTIR highlighted that the functional groups from plant metabolites capped AgNP, stabilizing them over time. We investigated the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae. aegypti. We also evaluated the predatory efficiency of Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against larvae of Ae. aegypti, under laboratory conditions and in an aquatic environment treated with ultra-low doses of AgNP. AgNP were highly toxic to Ae. aegypti larval instars (I-IV) and pupae, with LC50 ranging from 4.4 (I) to 13.1 ppm (pupae). In the lab, the mean number of prey consumed per tadpole per day was 29.0 (I), 26.0 (II), 21.4 (III), and 16.7 (IV). After treatment with AgNP, the mean number of mosquito prey per tadpole per day increased to 34.2 (I), 32.4 (II), 27.4 (III), and 22.6 (IV). Overall, this study highlights the importance of a synergistic approach based on biocontrol agents and botanical nano-insecticides for mosquito control. PMID:26091763

  8. Impact of deltamethrin-impregnated container covers on Aedes aegypti oviposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA researchers are studying novel methods to control Aedes aegypti. One approach focuses on prevention of oviposition by female Ae. aegypti. In collaboration with Vestergaard Frandsen Ltd., deltamethrin-treated PermaNet® Container Covers (jar lids) were evaluated with different configurations of...

  9. Alkaline phosphatases and aminopeptidases are altered in a Cry11Aa resistant strain of Aedes aegypti

    PubMed Central

    Lee, Su-Bum; Aimanova, Karlygash G.; Gill, Sarjeet S.

    2014-01-01

    Bacillus thuringiensis subsp. israelensis (Bti) has been widely for the biological control of mosquito populations. However, the mechanism of Bti toxins is still not fully understood. To further elucidate the mechanism of Bti toxins, we developed an Aedes aegypti resistant strain that shows high-level resistance to Cry11Aa toxin. After 27 selections with Cry11Aa toxin, the larvae showed a 124-fold resistance ratio for Cry11Aa (strain G30). G30 larvae showed cross-resistance to Cry4Aa (66-fold resistance), less to Cry4Ba (13-fold), but not to Cry11Ba (2-fold). Midguts from these resistant larvae did not show detectable difference in the processing of the Cry11Aa toxin compared to that in susceptible larvae (WT). Brush border membrane vesicles (BBMV) from resistant larvae bound slightly less Cry11Aa compared to WT BBMV. To identify potential proteins associated with Cry11A resistance, not only transcript changes in the larval midgut were analyzed using Illumina sequencing and qPCR, but alterations of previously identified receptor proteins were investigated using immunoblots. The transcripts of 375 genes were significantly increased and those of 208 genes were down regulated in the resistant larvae midgut compared to the WT. None of the transcripts for previously identified receptors of Cry11Aa (Aedes cadherin, ALP1, APN1, and APN2) were altered in these analyses. The genes for the identified functional receptors in resistant larvae midgut did not contain any mutation in their sequences nor was there any change in their transcript expression levels compared to WT. However, ALP proteins were expressed at reduced levels (~40%) in the resistant strain BBMV. APN proteins and their activity were also slightly reduced in resistance strain. The transcript levels of ALPs (AAEL013330 and AAEL015070) and APNs (AAEL008158, AAEL008162) were significantly reduced. These results strongly suggest that ALPs and APNs could be associated with Cry11Aa resistance in Ae. aegypti. PMID

  10. Alkaline phosphatases and aminopeptidases are altered in a Cry11Aa resistant strain of Aedes aegypti.

    PubMed

    Lee, Su-Bum; Aimanova, Karlygash G; Gill, Sarjeet S

    2014-11-01

    Bacillus thuringiensis subsp. israelensis (Bti) is widely used for the biological control of mosquito populations. However, the mechanism of Bti toxins is still not fully understood. To further elucidate the mechanism of Bti toxins, we developed an Aedes aegypti resistant strain that shows high-level resistance to Cry11Aa toxin. After 27 selections with Cry11Aa toxin, the larvae showed a 124-fold resistance ratio for Cry11Aa (strain G30). G30 larvae showed cross-resistance to Cry4Aa (66-fold resistance), less to Cry4Ba (13-fold), but not to Cry11Ba (2-fold). Midguts from these resistant larvae did not show detectable difference in the processing of the Cry11Aa toxin compared to that in susceptible larvae (WT). Brush border membrane vesicles (BBMV) from resistant larvae bound slightly less Cry11Aa compared to WT BBMV. To identify potential proteins associated with Cry11A resistance, not only transcript changes in the larval midgut were analyzed using Illumina sequencing and qPCR, but alterations of previously identified receptor proteins were investigated using immunoblots. The transcripts of 375 genes were significantly increased and those of 208 genes were down regulated in the resistant larvae midgut compared to the WT. None of the transcripts for previously identified receptors of Cry11Aa (Aedes cadherin, ALP1, APN1, and APN2) were altered in these analyses. The genes for the identified functional receptors in resistant larvae midgut did not contain any mutation in their sequences nor was there any change in their transcript expression levels compared to WT. However, ALP proteins were expressed at reduced levels (∼ 40%) in the resistant strain BBMV. APN proteins and their activity were also slightly reduced in resistance strain. The transcript levels of ALPs (AAEL013330 and AAEL015070) and APNs (AAEL008158, AAEL008162) were significantly reduced. These results strongly suggest that ALPs and APNs could be associated with Cry11Aa resistance in Ae. aegypti. PMID

  11. Molecular Analysis of the Aedes aegypti Carboxypeptidase Gene Family

    PubMed Central

    Isoe, Jun; Zamora, Jorge; Miesfeld, Roger L.

    2009-01-01

    To gain a better understanding of coordinate regulation of protease gene expression in the mosquito midgut, we undertook a comprehensive molecular study of digestive carboxypeptidases in Aedes aegypti. Through a combination of cDNA cloning using degenerate PCR primers, and database mining of the recently completed Ae. aegypti genome, we cloned and characterized 18 Ae. aegypti carboxypeptidase genes. Bioinformatic analysis revealed that 11 of these genes belong to the carboxypeptidase A family (AaCPA-I through AaCPA-XI), and seven to the carboxypeptidase B gene family (AaCPB-I through AaCPB-VII). Phylogenetic analysis of 32 mosquito carboxypeptidases from five different species indicated that most of the sequence divergence in the carboxypeptidase gene family occurred prior to the separation of Aedes and Anopheles mosquito lineages. Unlike the CPA genes that are scattered throughout the Ae. aegypti genome, six of seven CPB genes were found to be located within a single 120 kb genome contig, suggesting that they most likely arose from multiple gene duplication events. Quantitative expression analysis revealed that 11 of the Ae. aegypti carboxypeptidase genes were induced up to 40-fold in the midgut in response to blood meal feeding, with peak expression times ranging from 3-36 hours post-feeding depending on the gene. PMID:18977440

  12. Gene flow networks among American Aedes aegypti populations

    PubMed Central

    Gonçalves da Silva, Anders; Cunha, Ivana C L; Santos, Walter S; Luz, Sérgio L B; Ribolla, Paulo E M; Abad-Franch, Fernando

    2012-01-01

    The mosquito Aedes aegypti, the dengue virus vector, has spread throughout the tropics in historical times. While this suggests man-mediated dispersal, estimating contemporary connectivity among populations has remained elusive. Here, we use a large mtDNA dataset and a Bayesian coalescent framework to test a set of hypotheses about gene flow among American Ae. aegypti populations. We assessed gene flow patterns at the continental and subregional (Amazon basin) scales. For the Americas, our data favor a stepping-stone model in which gene flow is higher among adjacent populations but in which, at the same time, North American and southeastern Brazilian populations are directly connected, likely via sea trade. Within Amazonia, the model with highest support suggests extensive gene flow among major cities; Manaus, located at the center of the subregional transport network, emerges as a potentially important connecting hub. Our results suggest substantial connectivity across Ae. aegypti populations in the Americas. As long-distance active dispersal has not been observed in this species, our data support man-mediated dispersal as a major determinant of the genetic structure of American Ae. aegypti populations. The inferred topology of interpopulation connectivity can inform network models of Ae. aegypti and dengue spread. PMID:23144654

  13. Vector Competence in West African Aedes aegypti Is Flavivirus Species and Genotype Dependent

    PubMed Central

    Dickson, Laura B.; Sanchez-Vargas, Irma; Sylla, Massamba; Fleming, Karen; Black, William C.

    2014-01-01

    Background Vector competence of Aedes aegypti mosquitoes is a quantitative genetic trait that varies among geographic locations and among different flavivirus species and genotypes within species. The subspecies Ae. aegypti formosus, found mostly in sub-Saharan Africa, is considered to be refractory to both dengue (DENV) and yellow fever viruses (YFV) compared to the more globally distributed Ae. aegypti aegypti. Within Senegal, vector competence varies with collection site and DENV-2 viral isolate, but knowledge about the interaction of West African Ae. aegypti with different flaviviruses is lacking. The current study utilizes low passage isolates of dengue-2 (DENV-2-75505 sylvatic genotype) and yellow fever (YFV BA-55 -West African Genotype I, or YFV DAK 1279-West African Genotype II) from West Africa and field derived Ae. aegypti collected throughout Senegal to determine whether vector competence is flavivirus or virus genotype dependent. Methodology/Principal Findings Eight collections of 20–30 mosquitoes from different sites were fed a bloodmeal containing either DENV-2 or either isolate of YFV. Midgut and disseminated infection phenotypes were determined 14 days post infection. Collections varied significantly in the rate and intensity of midgut and disseminated infection among the three viruses. Conclusions/Significance Overall, vector competence was dependent upon both viral and vector strains. Importantly, contrary to previous studies, sylvatic collections of Ae. aegypti showed high levels of disseminated infection for local isolates of both DENV-2 and YFV. PMID:25275366

  14. Further evidences for the mode of action of the larvicidal m-pentadecadienyl-phenol isolated from Myracrodruon urundeuva seeds against Aedes aegypti.

    PubMed

    Souza, Terezinha M; Menezes, Erika S Bezerra; Oliveira, Rodrigo V; Almeida Filho, Luiz Carlos P; Martins, Jorge M; Moreno, Frederico B; Monteiro-Moreira, Ana Cristina O; Moura, Arlindo A Araripe; Carvalho, Ana F Urano

    2015-12-01

    Nowadays, dengue fever is considered the most important arbovirosis worldwide and its control is still based upon combating the vector Aedes aegypti. Besides monitoring of mosquito populations resistant to conventional insecticides, the search for new environmentally safe insecticides and conduction of molecular studies focusing on the elucidation of mode of action and possible resistance mechanisms are considered the key for a sustainable management of the mosquito vector. Thus, the present work aimed to assess changes in protein expression of 3rd-instar larvae of Ae. aegypti after exposure to the natural insecticide m-pentadecadienyl-phenol. Bidimensional electrophoresis followed by mass spectrometry resulted in identification of 12 proteins differentially expressed between control and treated groups. Larvae exposed to the toxic compound for 24h showed elevated detoxification response (glutathione-S-transferase), increased levels of stress-related proteins (HSP70) as well as evidence of lysosome stabilization to enable survival. Furthermore, expression of proteins involved in protection of peritrophic membrane and metabolism of lipids indicated systemic effect of toxic effects in treated larvae. PMID:26299195

  15. Differentiation of Aedes aegypti and Aedes notoscriptus (Diptera: Culicidae) eggs using scanning electron microscopy.

    PubMed

    Faull, Katherine J; Williams, Craig R

    2016-05-01

    Aedes notoscriptus and Aedes aegypti are both peri-domestic, invasive container-breeding mosquitoes. While the two potential arboviral vectors are bionomically similar, their sympatric distribution in Australia is limited. In this study, analyses of Ae. aegypti and Ae. notoscriptus eggs were enabled using scanning electron microscopy. Significant variations in egg length to width ratio and outer chorionic cell field morphology between Ae. aegypti and Ae. notoscriptus enabled distinction of the two species. Intraspecific variations in cell field morphology also enabled differentiation of the separate populations of both species, highlighting regional and global variation. Our study provides a comprehensive comparative analysis of inter- and intraspecific egg morphological and morphometric variation between two invasive container-breeding mosquitoes. The results indicate a high degree of intraspecific variation in Ae. notoscriptus egg morphology when compared to the eggs of Ae. aegypti. Comparative morphological analyses of Ae. aegypti and Ae. notoscriptus egg attributes using SEM allows differentiation of the species and may be helpful in understanding egg biology in relation to biotope of origin. PMID:26845557

  16. Patterns of Aedes aegypti (Diptera: Culicidae) Infestation and Container Productivity Measured Using Pupal and Stegomyia Indices in Northern Argentina

    PubMed Central

    Garelli, F. M.; Espinosa, M. O.; Weinberg, D.; Coto, H. D.; Gaspe, M. S.; Gürtler, R. E.

    2011-01-01

    A citywide control program of Aedes aegypti (L.) (Diptera: Culicidae) mainly based on the use of larvicides reduced infestations but failed to achieve the desired target levels in Clorinda, northeastern Argentina, over 5 yr of interventions. To understand the underlying causes of persistent infestations and to develop new control tactics adapted to the local context, we conducted two pupal surveys in a large neighborhood with ≈2,500 houses and recorded several variables for every container inspected in fall and spring 2007. In total, 4,076 lots and 4,267 containers were inspected over both surveys, and 8,391 Ae. aegypti pupae were collected. Large tanks used for potable water storage were the most abundant and the most productive type of container, accounting for 65–84% of all the pupae collected. Therefore, large tanks were key containers and candidates for improved targeted interventions. Multivariate analysis showed that containers located in the yard, at low sun exposure, unlidded, filled with rain water, and holding polluted water were all more likely to be infested by larvae or pupae. When only infested containers were considered, productivity of pupae was most closely associated with large tanks and rain water. A stochastic simulation model was developed to calculate the expected correlations between pupal and Stegomyia indices according to the characteristics of the distribution of larvae and pupae per container and the spatial scale at which the indices were computed. The correlation between pupal and Stegomyia indices is expected to increase as infestation levels decline. PMID:19769052

  17. Hatching response of Aedes aegypti (Diptera: Culicidae) eggs at low temperatures: effects of hatching media and storage conditions.

    PubMed

    Byttebier, B; De Majo, M S; De Majo, M S; Fischer, S

    2014-01-01

    In temperate regions, Aedes aegypti (L.) (Diptera: Culicidae) populations remain in the egg stage during the cold season. To ensure the start of a new breeding season, eggs should hatch at the beginning of a favorable period. The aim of the current study was to investigate the hatching response of two Ae. aegypti egg batches collected and stored for 3 mo under different conditions, to different low immersion temperatures. Two different hatching media (water and yeast solution) were used for the first batch and only one (water) for the second egg batch. Eggs were immersed for 8 d, during which the number of hatched eggs was recorded daily. The proportion of hatched eggs, delay of the hatching response, proportion of dead larvae, and proportion of remaining eggs within the first egg batch were compared between the two hatching media at each temperature. These parameters also were compared between the two batches immersed in water. Hatching rates were higher and faster in the yeast solution. The hatching response was lower at lower immersion temperatures and among eggs stored under field conditions at colder temperatures (second batch). Among the eggs stored in the laboratory (first batch), older eggs exhibited lower hatching response. The proportion of dead larvae was higher in the yeast solution and in the eggs stored in the laboratory. The conditions that triggered a lower hatching response led to higher proportions of remaining eggs, allowing the population to maintain an egg bank for future favorable opportunities. PMID:24605458

  18. Larvicidal activity of catechin isolated from Leucas aspera against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Elumalai, Devan; Hemavathi, Maduraiveeran; Hemalatha, Periaswamy; Deepaa, Chandrasekar Vijayalakshmi; Kaleena, Patheri Kunyil

    2016-03-01

    Vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of plant origin my serve as an alternative biocontrol technique in the future. The aim of the present study was to evaluate the larvicidal activity of fractions and compounds from the whole-plant methanol extracts of Leucas aspera on the fourth-instar larvae of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. The larvae were exposed to fractions with concentrations ranging from 1.25, 2.25, 5, 10, and 20 ppm and isolated compounds. After 24 h exposure, larval mortality was assessed. Among the eight fractions, four from hexane extractions showed potent larvicidal activity against tested mosquito species at 20 ppm concentration. The isolated compound catechin showed pronounced larvicidal activity at very low concentrations. The LC50 and LC90 values of catechin were 3.05 and 8.25 ppm against Ae. aegypti, 3.44 and 8.89 ppm against An. stephensi, and 3.76 and 9.79 ppm against C. quinquefasciatus, respectively. The isolated compound was subjected to spectral analyses (GC-MS, FTIR, (1)H NMR, and (13)C NMR) to elucidate the structure and to compare with spectral data literature. PMID:26711450

  19. Larvicidal efficacies of plants from Midwestern Brazil: melianodiol from Guarea kunthiana as a potential biopesticide against Aedes aegypti

    PubMed Central

    Sarmento, Ulana Chaves; Miguita, Carlos Henrique; Almeida, Luís Henrique de Oliveira; Gaban, Cleusa Rocha Garcia; da Silva, Lilliam May Grespan Estodutto; de Souza, Albert Schiaveto; Garcez, Walmir Silva; Garcez, Fernanda Rodrigues

    2016-01-01

    A total of 36 ethanol extracts from different anatomical parts of 27 plant species (18 families), native to the Pantanal and Cerrado biomes in Midwest Brazil, was assessed for their effect against Aedes aegypti larvae, the vector of dengue, hemorrhagic dengue, Zika and chikungunya fevers. Only the extract obtained from seeds of Guarea kunthiana (Meliaceae) proved active (LC50 = 169.93 μg/mL). A bioassay-guided investigation of this extract led to the isolation and identification of melianodiol, a protolimonoid, as the active constituent (LC50 = 14.44 mg/mL). Meliantriol, which was also obtained from the bioactive fraction, was nevertheless devoid of any larval toxicity, even at the highest concentration tested (LC50 > 100.0 mg/mL). These results indicate that the larvicidal activity of melianodiol stems from the presence of the carbonyl moiety at C-3 in the 21,23-epoxy-21,24,25-trihydroxy-tirucall-7-ene-type skeleton. The structures of both protolimonoids were established on the basis of spectral methods (1H and 13C NMR and MS). This is the first report on the toxicity of melianodiol against Ae. aegypti larvae. Based on the results, melianodiol can be regarded as a potential candidate for use as an ecologically sound biocontrol agent for reducing the larval population of this vector. PMID:27333366

  20. Larvicidal efficacies of plants from Midwestern Brazil: melianodiol from Guarea kunthiana as a potential biopesticide against Aedes aegypti.

    PubMed

    Sarmento, Ulana Chaves; Miguita, Carlos Henrique; Almeida, Luís Henrique de Oliveira; Gaban, Cleusa Rocha Garcia; Silva, Lilliam May Grespan Estodutto da; Souza, Albert Schiaveto de; Garcez, Walmir Silva; Garcez, Fernanda Rodrigues

    2016-06-20

    A total of 36 ethanol extracts from different anatomical parts of 27 plant species (18 families), native to the Pantanal and Cerrado biomes in Midwest Brazil, was assessed for their effect against Aedes aegypti larvae, the vector of dengue, hemorrhagic dengue, Zika and chikungunya fevers. Only the extract obtained from seeds of Guarea kunthiana (Meliaceae) proved active (LC50 = 169.93 μg/mL). A bioassay-guided investigation of this extract led to the isolation and identification of melianodiol, a protolimonoid, as the active constituent (LC50 = 14.44 mg/mL). Meliantriol, which was also obtained from the bioactive fraction, was nevertheless devoid of any larval toxicity, even at the highest concentration tested (LC50 > 100.0 mg/mL). These results indicate that the larvicidal activity of melianodiol stems from the presence of the carbonyl moiety at C-3 in the 21,23-epoxy-21,24,25-trihydroxy-tirucall-7-ene-type skeleton. The structures of both protolimonoids were established on the basis of spectral methods (1H and 13C NMR and MS). This is the first report on the toxicity of melianodiol against Ae. aegypti larvae. Based on the results, melianodiol can be regarded as a potential candidate for use as an ecologically sound biocontrol agent for reducing the larval population of this vector. PMID:27333366

  1. Interspecific Cross-Mating Between Aedes aegypti and Aedes albopictus Laboratory Strains: Implication of Population Density on Mating Behaviors.

    PubMed

    Marcela, P; Hassan, A Abu; Hamdan, A; Dieng, H; Kumara, T K

    2015-12-01

    Mating behavior between Aedes aegypti and Ae. albopictus, established colony strains were examined under laboratory conditions (30-cm(3) screened cages) for 5 consecutive days. The effect of selected male densities (30, 20, 10) and female density (20) on the number of swarming, mating pairs, eggs produced, and inseminated females were evaluated. Male densities significantly increased swarming behavior, mating pairs, and egg production of heterospecific females, but female insemination was reduced. Aedes aegypti males mate more readily with heterospecific females than do Ae. albopictus males. The current study suggests that Ae. aegypti males were not species-specific in mating, and if released into the field as practiced in genetically modified mosquito techniques, they may mate with both Ae. aegypti and Ae. albopictus females, hence reducing populations of both species by producing infertile eggs. PMID:26675452

  2. Burchellin: study of bioactivity against Aedes aegypti

    PubMed Central

    2014-01-01

    Background The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. Methods Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. Results The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations ≥ 30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. Conclusion The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti. PMID:24713267

  3. Proteome of Aedes aegypti in response to infection and coinfection with microsporidian parasites

    PubMed Central

    Duncan, Alison B; Agnew, Philip; Noel, Valérie; Demettre, Edith; Seveno, Martial; Brizard, Jean-Paul; Michalakis, Yannis

    2012-01-01

    Hosts are frequently infected with more than one parasite or pathogen at any one time, but little is known as to how they respond to multiple immune challenges compared to those involving single infections. We investigated the proteome of Aedes aegypti larvae following infection with either Edhazardia aedis or Vavraia culicis, and coinfections involving both. They are both obligate intracellular parasites belonging to the phylum microsporidia and infect natural populations of Ae. aegypti. The results found some proteins only showing modified abundance in response to infections involving E. aedis, while others were only differentially abundant when infections involved V. culicis. Some proteins only responded with modified abundance to the coinfection condition, while others were differentially abundant in response to all three types of infection. As time since infection increased, the response to each of the single parasite infections diverged, while the response to the E. aedis and coinfection treatments converged. Some of the proteins differentially abundant in response to infection were identified. They included two vacuolar ATPases, proteins known to have a role in determining the infection success of intracellular parasites. This result suggests microsporidia could influence the infection success of other intracellular pathogens infecting vector species of mosquito, including viruses, Plasmodium and Wolbachia. PMID:22837817

  4. [Toxic effects of plant extracts on mosquito larvae].

    PubMed

    Rageau, J; Delaveau, P

    1979-01-01

    Vegetable extracts prepared with 530 species belonging to 120 botanical families are biologically screened with fourth stage larvae of Aedes aegypti. About twenty species are selected. Eight species of Convolvulaceae are specially toxic. PMID:527161

  5. Disruption of Aedes aegypti Olfactory System Development through Chitosan/siRNA Nanoparticle Targeting of semaphorin-1a

    PubMed Central

    Mysore, Keshava; Flannery, Ellen M.; Tomchaney, Michael; Severson, David W.; Duman-Scheel, Molly

    2013-01-01

    Despite the devastating impact of mosquito-borne illnesses on human health, surprisingly little is known about mosquito developmental biology, including development of the olfactory system, a tissue of vector importance. Analysis of mosquito olfactory developmental genetics has been hindered by a lack of means to target specific genes during the development of this sensory system. In this investigation, chitosan/siRNA nanoparticles were used to target semaphorin-1a (sema1a) during olfactory system development in the dengue and yellow fever vector mosquito Aedes aegypti. Immunohistochemical analyses and anterograde tracing of antennal sensory neurons, which were used to track the progression of olfactory development in this species, revealed antennal lobe defects in sema1a knockdown fourth instar larvae. These findings, which correlated with a larval odorant tracking behavioral phenotype, identified previously unreported roles for Sema1a in the developing insect larval olfactory system. Analysis of sema1a knockdown pupae also revealed a number of olfactory phenotypes, including olfactory receptor neuron targeting and projection neuron defects coincident with a collapse in the structure and shape of the antennal lobe and individual glomeruli. This study, which is to our knowledge the first functional genetic analysis of insect olfactory development outside of D. melanogaster, identified critical roles for Sema1a during Ae. aegypti larval and pupal olfactory development and advocates the use of chitosan/siRNA nanoparticles as an effective means of targeting genes during post-embryonic Ae. aegypti development. Use of siRNA nanoparticle methodology to understand sensory developmental genetics in mosquitoes will provide insight into the evolutionary conservation and divergence of key developmental genes which could be exploited in the development of both common and species-specific means for intervention. PMID:23696908

  6. Juvenile hormone regulates Aedes aegypti Krüppel homolog 1 through a conserved E box motif.

    PubMed

    Cui, Yingjun; Sui, Yipeng; Xu, Jingjing; Zhu, Fang; Palli, Subba Reddy

    2014-09-01

    Juvenile hormone (JH) plays important roles in regulation of many physiological processes including development, reproduction and metabolism in insects. However, the molecular mechanisms of JH signaling pathway are not completely understood. To elucidate the molecular mechanisms of JH regulation of Krüppel homolog 1 gene (Kr-h1) in Aedes aegypti, we employed JH-sensitive Aag-2 cells developed from the embryos of this insect. In Aag-2 cells, AaKr-h1 gene is induced by nanomolar concentration of JH III, its expression peaked at 1.5 h after treatment with JH III. RNAi studies showed that JH induction of this gene requires the presence of Ae. aegypti methoprene-tolerant (AaMet). A conserved 13 nucleotide JH response element (JHRE, TGCCTCCACGTGC) containing canonical E box motif (underlined) identified in the promoter of AaKr-h1 is required for JH induction of this gene. Critical nucleotides in the JHRE required for JH action were identified by employing mutagenesis and reporter assays. Reporter assays also showed that basic helix loop helix (bHLH) domain of AaMet is required for JH induction of AaKr-h1. 5' rapid amplification of cDNA ends method identified two isoforms of AaKr-h1, AaKr-h1α and AaKr-h1β, the expression of both isoforms is induced by JH III, but AaKr-h1α is the predominant isoform in both Aag-2 cells and Ae. aegypti larvae. PMID:24931431

  7. Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program

    PubMed Central

    Monteiro, Fernando A.; Shama, Renata; Martins, Ademir J.; Gloria-Soria, Andrea; Brown, Julia E.; Powell, Jeffrey R.

    2014-01-01

    Background Aedes aegypti is the most important vector of dengue fever in Brazil, where severe epidemics have recently taken place. Ae. aegypti in Brazil was the subject of an intense eradication program in the 1940s and 50s to control yellow fever. Brazil was the largest country declared free of this mosquito by the Pan-American Health Organization in 1958. Soon after relaxation of this program, Ae. aegypti reappeared in this country, and by the early 1980s dengue fever had been reported. The aim of this study is to analyze the present-day genetic patterns of Ae. aegypti populations in Brazil. Methodology/Principal Findings We studied the genetic variation in samples of 11 widely spread populations of Ae. aegypti in Brazil based on 12 well-established microsatellite loci. Our principal finding is that present-day Brazilian Ae. aegypti populations form two distinct groups, one in the northwest and one in the southeast of the country. These two groups have genetic affinities to northern South American countries and the Caribbean, respectively. This is consistent with what has been reported for other genetic markers such as mitochondrial DNA and allele frequencies at the insecticide resistance gene, kdr. Conclusions/Significance We conclude that the genetic patterns in present day populations of Ae. aegypti in Brazil are more consistent with a complete eradication of the species in the recent past followed by re-colonization, rather than the alternative possibility of expansion from residual pockets of refugia. At least two colonizations are likely to have taken place, one from northern South American countries (e.g., Venezuela) that founded the northwestern group, and one from the Caribbean that founded the southeastern group. The proposed source areas were never declared free of Ae. aegypti. PMID:25233218

  8. Comparative study on nocturnal behavior of Aedes aegypti and Aedes albopictus.

    PubMed

    Kawada, Hitoshi; Takemura, Shin-Ya; Arikawa, Kentaro; Takagi, Masahiro

    2005-05-01

    Nocturnal behavior of nonblood-fed females of Aedes aegypti (L.) and Aedes albopictus (Skuse) was studied using an automatic recording device equipped with a photoelectric sensor. Carbon dioxide, heating, and the contrast of the black and white colors were used as attractive cues for mosquitoes. The nocturnal host-seeking activity positively correlated with the increasing light intensity in both species. Ae. aegypti was found to be more sensitive to light than Ae. albopictus. The threshold of light intensity for the activation of the nocturnal host-seeking activity was <0.1 lx (approximately 0.01 foot candle) in Ae. aegypti and >10 lx (approximately 1 foot candle) in Ae. albopictus. Complete darkness during the daytime deactivated the host-seeking activity of both species, irrespective of their increasing flight activity controlled by their intrinsic circadian rhythms. This finding suggested that visual cues are indispensable for host-seeking behavior. The eye parameter value, the product of the ommatidial diameter, and the interommatidial angle were significantly larger in Ae. aegypti than those in Ae. albopictus, indicating that the eye of Ae. aegypti is more adapted to a darker environment. PMID:15962780

  9. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Chan, K. L.; Ho, B. C.; Chan, Y. C.

    1971-01-01

    Detailed information on the breeding habitats of Ae. aegypti and Ae. albopictus is necessary when planning programmes for their control. The larval habitats of the two species in 10 city areas were counted and classified according to type, frequency of occurrence, location, and function. Of all the breeding habitats recorded 95% were domestic containers. The most common Ae. aegypti breeding habitats were ant traps, earthenware jars, bowls, tanks, tin cans, and drums, ant traps being the most common indoors and earthenware jars the most common out doors. Breeding habitats for Ae. albopictus were commonly found in earthen ware jars, tin cans, ant traps, rubber tires, bowls, and drums; ant traps were the most common indoor habitat and tin cans were most common outdoors. The majority of Ae. aegypti breeding habitats were found indoors, while only half of all the Ae. albopictus breeding habitats were indoors. The indoor and outdoor distribution of breeding habitats of both species was not related to the type of housing in the area. The distribution of the type of breeding habitats, however, was related to the type of housing in the area. Ant traps were common to all areas, but water-storage containers and unused containers were common in slum-house and shop-house areas. Flats, however, had more containers used for keeping plants and flowers. The most common breeding habitats of Ae. aegypti and Ae. albopictus are discussed in relation to the habits of the people. It is concluded that control of the two species will depend largely on a change in such habits, either through public health education or by some form of law enforcement. PMID:5316746

  10. Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico

    PubMed Central

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M.; Scott, Thomas W.

    2012-01-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  11. Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability

    NASA Astrophysics Data System (ADS)

    de Garín, A.; Bejarán, R. A.; Carbajo, A. E.; de Casas, S. C.; Schweigmann, N. J.

    The mosquito Aedes aegypti is the main urban vector responsible for the transmission of dengue fever and dengue hemorrhagic fever. The city of Buenos Aires, Argentina, is located at the southern end of the world distribution of the species. The population abundance of Ae. aegypti is mainly regulated by environmental factors. We calculated the potential number of times that a female could lay eggs during its mean life expectancy, based on potential egg production and daily meteorological records. The model considers those variables implying physical hazard to the survival of Ae. aegypti, mosquito flying activity and oviposition. The results, obtained after calibration and validation of the model with field observations, show significant correlation (P<0.001) for different lags depending on the life stage. From these results, more favorable atmospheric conditions for Ae. aegypti reproduction (linked to the urban climatic change) can be observed. The climatic variability in the last decade resembles conditions at the end of 19th century.

  12. Dispersal of male Aedes aegypti in a coastal village in southern Mexico.

    PubMed

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M; Bond, J Guillermo; Scott, Thomas W

    2012-04-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12-166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  13. Transposition of the Hermes element in embryos of the vector mosquito, Aedes aegypti.

    PubMed

    Sarkar, A; Yardley, K; Atkinson, P W; James, A A; O'Brochta, D A

    1997-05-01

    Using a plasmid-based transpositional recombination assay in vivo, we have demonstrated that Hermes, a short inverted repeat type transposable element from Musca domestica, can transpose in Aedes aegypti embryos. Hermes transpositions in Ae. aegypti have all the characteristics observed during Hermes transposition in its host M. domestica and in related species. These characteristics include an absolute dependence on the expression of the Hermes transposase and a preference for the integration site GTNCAGAC (P < 0.05). In addition, the rate of Hermes transposition in Ae. aegypti (0.286 transpositions per 10,000 donor plasmids screened) was comparable to that observed in Drosophila melanogaster under similar conditions. These results suggest that Hermes can be developed into a gene vector and genetic engineering tool for Ae. aegypti and related mosquitoes. PMID:9219363

  14. Using GARP to predict the range of Aedes aegypti in China.

    PubMed

    Wang, Gang; Zhang, Hengduan; Cao, Xin; Zhang, Xiaolong; Wang, Guolong; He, Zhihong; Yu, Changhui; Zhao, Tongyan

    2014-03-01

    Dengue fever and dengue hemorrhagic fever are common mosquito-borne diseases in tropical and subtropical regions, and are mainly transmitted by the mosquito Aedes aegypti (Diptera: Culicidae). The international trade of used tires, coupled with its anthropophilic habit, has enabled Ae. aegypti to colonise new areas in China. We used Genetic Algorithum Rule-Set Production (GARP) to predict the putative current distribution of Ae. aegypti based on data on its distribution 20 years ago and compared this predicted distribution with the known current distribution. The putative distribution corresponded perfectly to the existing distribution. We conclude that GARP is a valid method to predict the putative future distribution of Ae. aegypti, and therefore is an important tool for the surveillance of mosquito-borne diseases in general. PMID:24968668

  15. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Chan, K. L.; Chan, Y. C.; Ho, B. C.

    1971-01-01

    There is a current belief stemming from statements made in the literature that Ae. aegypti is displacing Ae. albopictus in a number of cities of South-East Asia and in Calcutta, India. A critical review of these works showed that either the observations were inconclusive or the methods of collection were biased for one or the other species. Extensive surveys of the larval habitats of the two species in Singapore showed that the sharing of breeding habitats was uncommon in both urban and rural areas. In the laboratory, Ae. aegypti took a slightly shorter time to complete its development from egg-hatching to adult emergence. It is concluded that information available at present is insufficient to interpret the Ae. aegypti—Ae. albopictus population balance resulting from interspecific competition in Singapore. The pattern of distribution of the two species is unlikely to be the result of competitive displacement; it is, rather, probable that this pattern results from factors that favour the rapid increase and spread of one species over the other. It is suggested that Ae. aegypti in the city is favoured by rapid and extensive urbanization and by the higher fecundity and shorter life cycle of the species. PMID:5316748

  16. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan

    2015-03-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Mosquito control is to enhance the health and quality of life of county residents and visitors through the reduction of mosquito populations. Mosquito control is a serious concern in developing countries like India due to the lack of general awareness, development of resistance, and socioeconomic reasons. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, larvicidal activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using C. asiatica plant leaves against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Cx. quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (40, 80, 120, 160, and 200 μg/mL) were tested against the larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus. The synthesized AgNPs from C. asiatica were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis (EDX). Considerable mortality was evident after the treatment of C. asiatica for all three important vector mosquitoes. The LC50 and LC90 values of C. asiatica aqueous leaf extract appeared to be effective against An. stephensi (LC50, 90.17 μg/mL; LC90, 165.18 μg/mL) followed by Ae. aegypti (LC50, 96.59 μg/mL; LC90, 173.83 μg/mL) and Cx. quinquefasciatus (LC50, 103.08 μg/mL; LC90, 183.16 μg/mL). Synthesized AgNPs against the vector mosquitoes of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus had the following LC50 and LC90

  17. Cytochromr b expression and RNAi knockdown in Aedes aegypti.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome b, coded by mitochondrial DNA, is one of the cytochromes involved in the electron transport in the respiratory chain of mitochondria. Cytochrome b is a critical intermediate in mitoptosis, i.e. a mitochondrial death pathway. To reveal whether cytochrome b of the mosquito Aedes aegypti (Ae...

  18. Molecular characterization of Chikungunya virus isolates from clinical samples and adult Aedes albopictus mosquitoes emerged from larvae from Kerala, South India.

    PubMed

    Niyas, Kudukkil P; Abraham, Rachy; Unnikrishnan, Ramakrishnan Nair; Mathew, Thomas; Nair, Sajith; Manakkadan, Anoop; Issac, Aneesh; Sreekumar, Easwaran

    2010-01-01

    Chikungunya virus (CHIKV), an arthritogenic alphavirus, is transmitted to humans by infected Aedes (Ae.) aegypti and Ae.albopictus mosquitoes. In the study, reverse-transcription PCR (RT PCR) and virus isolation detected CHIKV in patient samples and also in adult Ae.albopictus mosquitoes that was derived from larvae collected during a chikungunya (CHIK) outbreak in Kerala in 2009. The CHIKV strains involved in the outbreak were the East, Central and South African (ECSA) genotype that had the E1 A226V mutation. The viral strains from the mosquitoes and CHIK patients from the same area showed a close relationship based on phylogenetic analysis. Genetic characterization by partial sequencing of non-structural protein 2 (nsP2; 378 bp), envelope E1 (505 bp) and E2 (428 bp) identified one critical mutation in the E2 protein coding region of these CHIKV strains. This novel, non-conservative mutation, L210Q, consistently present in both human and mosquito-derived samples studied, was within the region of the E2 protein (amino acids E2 200-220) that determines mosquito cell infectivity in many alpha viruses. Our results show the involvement of Ae. albopictus in this outbreak in Kerala and appearance of CHIKV with novel genetic changes. Detection of virus in adult mosquitoes, emerged in the laboratory from larvae, also points to the possibility of transovarial transmission (TOT) of mutant CHIKV strains in mosquitoes. PMID:20704755

  19. Co-occurrence Patterns of the Dengue Vector Aedes aegypti and Aedes mediovitattus, a Dengue Competent Mosquito in Puerto Rico

    PubMed Central

    Little, Eliza; Barrera, Roberto; Seto, Karen C.; Diuk-Wasser, Maria

    2015-01-01

    Aedes aegypti is implicated in dengue transmission in tropical and subtropical urban areas around the world. Ae. aegypti populations are controlled through integrative vector management. However, the efficacy of vector control may be undermined by the presence of alternative, competent species. In Puerto Rico, a native mosquito, Ae. mediovittatus, is a competent dengue vector in laboratory settings and spatially overlaps with Ae. aegypti. It has been proposed that Ae. mediovittatus may act as a dengue reservoir during inter-epidemic periods, perpetuating endemic dengue transmission in rural Puerto Rico. Dengue transmission dynamics may therefore be influenced by the spatial overlap of Ae. mediovittatus, Ae. aegypti, dengue viruses, and humans. We take a landscape epidemiology approach to examine the association between landscape composition and configuration and the distribution of each of these Aedes species and their co-occurrence. We used remotely sensed imagery from a newly launched satellite to map landscape features at very high spatial resolution. We found that the distribution of Ae. aegypti is positively predicted by urban density and by the number of tree patches, Ae. mediovittatus is positively predicted by the number of tree patches, but negatively predicted by large contiguous urban areas, and both species are predicted by urban density and the number of tree patches. This analysis provides evidence that landscape composition and configuration is a surrogate for mosquito community composition, and suggests that mapping landscape structure can be used to inform vector control efforts as well as to inform urban planning. PMID:21989642

  20. LARVICIDAL ACTIVITY OF PERESKIA BLEO (KUNTH) DC. (CACTACEAE) FRUIT ENDOCARP CRUDE AND FRACTIONATED EXTRACTS AGAINST AEDES AEGYPTI (L.) (DIPTERA: CULICIDAE).

    PubMed

    Thongwat, Damrongpan; Ganranoo, Lucksagoon; Chokchaisiri, Ratchanaporn

    2014-11-01

    The use of insecticides can cause adverse effects in vector control, a plant bio-insecticide is an advantageous substitute. Currently, the promising mosquito larvicidal activity from plant extracts has been reported worldwide, including Thailand. In this study, the endocarp of Pereskia bleo (Kunth) DC. fruit was extracted with distilled water and ethanol. Crudes and fractionated groups of the extracts were evaluated for their larvicidal efficacy against the 3rd instar larvae of Aedes aegypti. At 48 hours of exposure, it was found that the activities of the extracts were higher than 24-hour's. The ethanolic extracts showed stronger activities than the aqueous ones, indicating the lower LC50 values of both crude and fractionated group extracts. The most toxic activity was found in a fractionated group of the ethanolic extract, E-Gr3, with significantly lowest LC50 values of 707.94 and 223.12 ppm for 24- and 48-hour detection times, respectively. The bioassay results indicated the larvicidal property against the Ae. aegypti mosquito of the P. bleo plant extracts. A safety for non-target organisms or an action on other mosquito vectors of this plant, should be further investigated. PMID:26466415

  1. Comparative investigation of Umbellularia californica and Laurus nobilis leaf essential oils and identification of constituents active against Aedes aegypti.

    PubMed

    Tabanca, Nurhayat; Avonto, Cristina; Wang, Mei; Parcher, Jon F; Ali, Abbas; Demirci, Betul; Raman, Vijayasankar; Khan, Ikhlas A

    2013-12-18

    Umbellularia californica (California bay laurel) and Laurus nobilis (Mediterranean bay laurel) leaves may be mistaken or used as a substitute on the market due to their morphological similarity. In this study, a comparison of anatomical and chemical features and biological activity of both plants is presented. L. nobilis essential oil biting deterrent and larvicidal activity were negligible. On the other hand, U. californica leaf oil showed biting deterrent activity against Aedes aegypti . The identified active repellents was thymol, along with (-)-umbellulone, 1,8-cineole, and (-)-α-terpineol. U. californica essential oil also demonstrated good larvicidal activity against 1-day-old Ae. aegypti larvae with a LD50 value of 52.6 ppm. Thymol (LD50 = 17.6 ppm), p-cymene, (-)-umbellulone, and methyleugenol were the primary larvicidal in this oil. Umbellulone was found as the principal compound (37%) of U. californica essential oil, but was not present in L. nobilis essential oil. Umbellulone mosquito activity is here reported for the first time. PMID:24266426

  2. Effect of insecticide resistance on development, longevity and reproduction of field or laboratory selected Aedes aegypti populations.

    PubMed

    Martins, Ademir Jesus; Ribeiro, Camila Dutra e Mello; Bellinato, Diogo Fernandes; Peixoto, Alexandre Afranio; Valle, Denise; Lima, José Bento Pereira

    2012-01-01

    Aedes aegypti dispersion is the major reason for the increase in dengue transmission in South America. In Brazil, control of this mosquito strongly relies on the use of pyrethroids and organophosphates against adults and larvae, respectively. In consequence, many Ae. aegypti field populations are resistant to these compounds. Resistance has a significant adaptive value in the presence of insecticide treatment. However some selected mechanisms can influence important biological processes, leading to a high fitness cost in the absence of insecticide pressure. We investigated the dynamics of insecticide resistance and its potential fitness cost in five field populations and in a lineage selected for deltamethrin resistance in the laboratory, for nine generations. For all populations the life-trait parameters investigated were larval development, sex ratio, adult longevity, relative amount of ingested blood, rate of ovipositing females, size of egglaying and eggs viability. In the five natural populations, the effects on the life-trait parameters were discrete but directly proportional to resistance level. In addition, several viability parameters were strongly affected in the laboratory selected population compared to its unselected control. Our results suggest that mechanisms selected for organophosphate and pyrethroid resistance caused the accumulation of alleles with negative effects on different life-traits and corroborate the hypothesis that insecticide resistance is associated with a high fitness cost. PMID:22431967

  3. The genetic architecture of a complex trait: Resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti.

    PubMed

    Bonin, Aurélie; Paris, Margot; Frérot, Hélène; Bianco, Erica; Tetreau, Guillaume; Després, Laurence

    2015-10-01

    The bacterial insecticide Bacillus thuringiensis subsp. israelensis (Bti) is an increasingly popular alternative to chemical insecticides for controlling mosquito populations. Because Bti toxicity relies on the action of four main toxins, resistance to Bti is very likely a complex phenotype involving several genes simultaneously. Dissecting the underlying genetic basis thus requires associating a quantitative measure of resistance to genetic variation at many loci in a segregating population. Here, we undertake this task using the dengue and yellow fever vector, the mosquito Aedes aegypti, as a study model. We conducted QTL (Quantitative Trait Locus) and admixture mapping analyses on two controlled crosses and on an artificial admixed population, respectively, all obtained from resistant and susceptible lab strains. We detected 16 QTL regions, among which four QTLs were revealed by different analysis methods. These four robust QTLs explained altogether 29.2% and 62.2% of the total phenotypic variance in the two QTL crosses, respectively. They also all showed a dominant mode of action. In addition, we found six loci showing statistical association with Bti resistance in the admixed population. Five of the supercontigs highlighted in this study contained candidate genes as suggested by their function, or by prior evidence from expression and/or outlier analyses. These genomic regions are thus good starting points for fine mapping of resistance to Bti or functional analyses aiming at identifying the underlying genes and mutations. Moreover, for the purpose of this work, we built the first Ae. aegypti genetic map based on markers associated with genes expressed in larvae. This genetic map harbors 229 SNP markers mapped across the three chromosomes for a total length of 311.9cM. It brought to light several assembly discrepancies with the reference genome, suggesting a high level of genome plasticity in Ae. aegypti. PMID:26238211

  4. Molecular and phytochemical investigation of Angelica dahurica and Angelica pubescentis essential oils and their biological activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum species.

    PubMed

    Tabanca, Nurhayat; Gao, Zengping; Demirci, Betul; Techen, Natascha; Wedge, David E; Ali, Abbas; Sampson, Blair J; Werle, Chris; Bernier, Ulrich R; Khan, Ikhlas A; Baser, Kemal Husnu Can

    2014-09-01

    In this study, Angelica dahurica and Angelica pubescentis root essential oils were investigated as pest management perspectives, and root samples were also analyzed genetically using the nuclear ribosomal internal transcribed spacer (ITS) region as a DNA barcode marker. A. pubescentis root essential oil demonstrated weak antifungal activity against Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides, whereas A. dahurica root essential oil did not show antifungal activity. Conversely, A. dahurica root essential oil demonstrated better biting deterrent and insecticidal activity against yellow fever mosquito, Aedes aegypti, and azalea lace bugs, Stephanitis pyrioides, than A. pubescentis root oil. The major compounds in the A. dahurica oil were found as α-pinene (46.3%), sabinene (9.3%), myrcene (5.5%), 1-dodecanol (5.2%), and terpinen-4-ol (4.9%). α-Pinene (37.6%), p-cymene (11.6%), limonene (8.7%), and cryptone (6.7%) were the major compounds found in the A. pubescentis oil. In mosquito bioassays, 1-dodecanol and 1-tridecanol showed antibiting deterrent activity similar to the positive control DEET (N,N-diethyl-3-methylbenzamide) at 25 nmol/cm(2) against Ae. aegypti, whereas only 1-tridecanol showed repellent activity in human-based cloth patch bioassay with minimum effective dosages (MED) of 0.086 ± 0.089 mg/cm(2) (DEET = 0.007 ± 0.003 mg/cm(2)). In larval bioassays, 1-tridecanol was more toxic with an LC50 value of 2.1 ppm than 1-dodecanol having an LC50 value of 5.2 ppm against 1-day-old Ae. aegypti larvae. 1-Dodecanol and 1-tridecanol could be useful for the natural mosquito control agents. PMID:25133520

  5. Experimental Transmission of Mayaro Virus by Aedes aegypti

    PubMed Central

    Long, Kanya C.; Ziegler, Sarah A.; Thangamani, Saravanan; Hausser, Nicole L.; Kochel, Tadeusz J.; Higgs, Stephen; Tesh, Robert B.

    2011-01-01

    Outbreaks of Mayaro fever have been associated with a sylvatic cycle of Mayaro virus (MAYV) transmission in South America. To evaluate the potential for a common urban mosquito to transmit MAYV, laboratory vector competence studies were performed with Aedes aegypti from Iquitos, Peru. Oral infection in Ae. aegypti ranged from 0% (0/31) to 84% (31/37), with blood meal virus titers between 3.4 log10 and 7.3 log10 plaque-forming units (PFU)/mL. Transmission of MAYV by 70% (21/30) of infected mosquitoes was shown by saliva collection and exposure to suckling mice. Amount of viral RNA in febrile humans, determined by real-time polymerase chain reaction, ranged from 2.7 to 5.3 log10 PFU equivalents/mL. Oral susceptibility of Ae. aegypti to MAYV at titers encountered in viremic humans may limit opportunities to initiate an urban cycle; however, transmission of MAYV by Ae. aegypti shows the vector competence of this species and suggests potential for urban transmission. PMID:21976583

  6. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

    2012-01-01

    Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185-406)) compared with the treated substrate (88 (13-210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves. PMID:21822443

  7. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

    2012-01-01

    Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185–406)) compared with the treated substrate (88 (13–210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves. PMID:21822443

  8. History of domestication and spread of Aedes aegypti - A Review

    PubMed Central

    Powell, Jeffrey R; Tabachnick, Walter J

    2013-01-01

    The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya. PMID:24473798

  9. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies)

    PubMed Central

    Marcombe, Sébastien; Poupardin, Rodolphe; Darriet, Frederic; Reynaud, Stéphane; Bonnet, Julien; Strode, Clare; Brengues, Cecile; Yébakima, André; Ranson, Hilary; Corbel, Vincent; David, Jean-Philippe

    2009-01-01

    Background The yellow fever mosquito Aedes aegypti is a major vector of dengue and hemorrhagic fevers, causing up to 100 million dengue infections every year. As there is still no medicine and efficient vaccine available, vector control largely based on insecticide treatments remains the only method to reduce dengue virus transmission. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides. Resistance of Ae. aegypti to chemical insecticides has been reported worldwide and the underlying molecular mechanisms, including the identification of enzymes involved in insecticide detoxification are not completely understood. Results The present paper investigates the molecular basis of insecticide resistance in a population of Ae. aegypti collected in Martinique (French West Indies). Bioassays with insecticides on adults and larvae revealed high levels of resistance to organophosphate and pyrethroid insecticides. Molecular screening for common insecticide target-site mutations showed a high frequency (71%) of the sodium channel 'knock down resistance' (kdr) mutation. Exposing mosquitoes to detoxification enzymes inhibitors prior to bioassays induced a significant increased susceptibility of mosquitoes to insecticides, revealing the presence of metabolic-based resistance mechanisms. This trend was biochemically confirmed by significant elevated activities of cytochrome P450 monooxygenases, glutathione S-transferases and carboxylesterases at both larval and adult stages. Utilization of the microarray Aedes Detox Chip containing probes for all members of detoxification and other insecticide resistance-related enzymes revealed the significant constitutive over-transcription of multiple detoxification genes at both larval and adult stages. The over-transcription of detoxification genes in the resistant strain was confirmed by using real-time quantitative RT-PCR. Conclusion These results suggest

  10. Species composition and habitat characterization of mosquito (Diptera: Culicidae) larvae in semi-urban areas of Dhaka, Bangladesh.

    PubMed

    Bashar, Kabirul; Rahman, Md Sayfur; Nodi, Ila Jahan; Howlader, Abdul Jabber

    2016-03-01

    Mosquito larvae are purely aquatic and develop in water bodies, the type of which is more or less specific to each species. Therefore, a study was carried out to identify the habitat characters of different mosquito species along with their species composition in semi-urban area of Dhaka in Bangladesh during the month of May and June 2012. A total of 6088 mosquito larvae belonging to 12 species (Aedes aegypti, Aedes albopictus, Anopheles barbirostris, Anopheles peditaeniatus, Anopheles vagus, Culex gelidus, Culex hutchinsoni, Culex quinquefasciatus, Culex tritaeniorhynchus, Mansonia annulifera, Mansonia uniformis, and Toxorhynchites splendens) under 5 genera were collected from 14 different types of habitats. Culex quinquefsciatus was the dominant (21.7/500 ml) species followed by Cx. tritaeniorhynchus (10.53/500 ml). Dissolved oxygen and chlorophyll a were the preeminent predictors for the abundance of all collected mosquito larvae except Ae. aegypti. Water temperature was positively associated with the breeding of An. vagus (r = 0.421, p = <0.001), An. barbirostris (r = 0.489, p = <0.001) and An. peditaeniatus (r = 0.375, p = <0.001). Water depth, distance from nearest house, emergent plant coverage, and alkalinity were found as the basis of larval abundance. Every Culex species and Tx. splendens (r = 0.359, p = 0.001) were found positively associated with chemical oxygen demand, while Mn. annulifera showed negative association (r = -0.115, p = 0.0297). This study also highlighted that various physicochemical factors affect the presence or abundance of mosquito larvae. PMID:27241953

  11. Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae)

    PubMed Central

    Govindarajan, M; Mathivanan, T; Elumalai, K; Krishnappa, K; Anandan, A

    2011-01-01

    Objective To determine the ovicidal and repellent activities of methanol leaf extract of Ervatamia coronaria (E. coronaria) and Caesalpinia pulcherrima (C. pulcherrima) against Culex quinquefasciatus (Cx. quinquefasciatus), Aedes aegypti (Ae. aegypti) and Anopheles stephensi (An. stephensi). Methods The ovicidal activity was determined against three mosquito species at various concentrations ranging from 50-450 ppm under the laboratory conditions. The hatch rates were assessed 48 h after treatment. The repellent efficacy was determined against three mosquito species at three concentrations viz., 1.0, 2.5 and 5.0 mg/cm2 under the laboratory conditions. Results The crude extract of E. coronaria exerted zero hatchability (100% mortality) at 250, 200 and 150 ppm for Cx. quinquefasciatus, Ae. aegypti and An. stephensi, respectively. The crude extract of C. pulcherrima exerted zero hatchability (100% mortality) at 375, 300 and 225 ppm for Cx. quinquefasciatus, Ae. aegypti and An. Stephensi, respectively. The methanol extract of E. coronaria found to be more repellenct than C. pulcherrima extract. A higher concentration of 5.0 mg/cm2 provided 100% protection up to 150, 180 and 210 min against Cx. quinquefasciatus, Ae. aegypti and An. stephensi, respectively. The results clearly showed that repellent activity was dose dependent. Conclusions From the results it can be concluded the crude extracts of E. coronaria and C. pulcherrima are an excellent potential for controlling Cx. quinquefasciatus, Ae. aegypti and An. stephensi mosquitoes. PMID:23569723

  12. Integrated control of the dengue vector Aedes aegypti in Liu-Chiu village, Ping-Tung County, Taiwan.

    PubMed

    Wang, C H; Chang, N T; Wu, H H; Ho, C M

    2000-06-01

    Because of an inadequate supply of potable water, villagers of Small Liu-Chiu Isle, Ping-Tung County, Taiwan, store water in containers supporting a large population of Aedes aegypti. In 1989-96, integrated control measures against Ae. aegypti were implemented on the basis of community participation. These measures included release of mosquito larvivorous fish in the drinking water storage facilities, application of larvicides to the water storage facilities in vegetable gardens, removal of discarded and unused containers and tires, improvement of household water storage facilities, and increase of potable water supply. Before implementation of the integrated control measures in 1988, 74% of the water-containing vessels were water storage facilities, and 24% of those were infested by Ae. aegypti. In 1989, the Breteau index for the entire island, indicating the average distribution density for larval Ae. aegypti, was 53.9, as compared to an index of 1.2 in 1996. In 4 villages located at the southwest and middle of the island, Ae. aegypti nearly became extinct because of the enthusiastic participation of the community. Before the implementation of integrated control, Ae. aegypti was the dominant species in containers both inside and outside the household, but after the integrated control, Aedes albopictus became predominant outside. PMID:10901632

  13. Mosquito Infestation and Dengue Virus Infection in Aedes aegypti Females in Schools in Mérida, México

    PubMed Central

    García-Rejón, Julián E.; Loroño-Pino, María Alba; Farfán-Ale, José Arturo; Flores-Flores, Luis F.; López-Uribe, Mildred P.; del Rosario Najera-Vazquez, Maria; Nuñez-Ayala, Guadalupe; Beaty, Barry J.; Eisen, Lars

    2011-01-01

    We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from schools in Mérida, México, during 2008 and 2009. Backpack aspiration from 24 schools produced 468 females of Ae. aegypti and 1,676 females of another human biter, Culex quinquefasciatus. Ae. aegypti females were collected most commonly from classrooms followed by offices and bathrooms. Of these females, 24.7% were freshly fed. Examination of 118 pools of Ae. aegypti females (total of 415 females) for presence of DENV RNA produced 19 positive pools (16.1%). DENV-infected pools were detected from 11 (45.8%) of 24 schools and came from different room types, including classrooms, offices, and bathrooms. The overall rate of DENV infection per 100 Ae. aegypti females was 4.8. We conclude that schools in Mérida present a risk environment for students, teachers, and other personnel to be exposed to mosquitoes and bites of DENV-infected Ae. aegypti females. PMID:21363990

  14. A field test for competitive effects of Aedes albopictus on A. aegypti in South Florida: differences between sites of coexistence and exclusion?

    PubMed Central

    Juliano, Steven A.; Lounibos, L. Philip; O’Meara, George F.

    2007-01-01

    We tested whether interspecific competition from Aedes albopictus had measurable effects on A. aegypti at the typical numbers of larval mosquitoes found in cemetery vases in south Florida. We also tested whether the effect of interspecific competition from A. albopictus on A. aegypti differed between sites where A. aegypti either persists or went extinct following invasion by A. albopictus. Similar experiments manipulating numbers of A. albopictus in cemetery vases were conducted at three sites of A. aegypti persistence and three sites where A. aegypti was apparently extinct. The experiments were done using numbers of larvae that were determined by observed numbers of larvae for each site, and with resources (leaf detritus) that accumulated in experimental vases placed into each field site. In both the early rainy season (when number of mosquito larvae was low) and the late rainy season (when number of mosquito larvae was high), there was a significant effect of treatment on developmental progress of experimental A. aegypti. In the late rainy season, when numbers of larvae were high, there was also a significant effect of treatment on survivorship of A. aegypti. However, the competition treatment × site type (A. aegypti persists vs extinct) interaction was never significant, indicating that the competitive effect of A. albopictus on A. aegypti did not differ systematically between persistence versus extinction sites. Thus, although competition from A. albopictus is strong under field conditions at all sites, we find no evidence that variation in the impact of interspecific competition is associated with coexistence or exclusion. Interspecific competition among larvae is thus a viable explanation for exclusion or reduction of A. aegypti in south Florida, but variation in the persistence of A. aegypti following invasion does not seem to be primarily a product of variation in the conditions in the aquatic environments of cemetery vases. PMID:15024640

  15. [Lethal effect of Cuban Myrtaceae on Aedes aegypti (Diptera Cuilicidae)].

    PubMed

    Aguilera, Lucita; Navarro, Agustín; Tacoronte, Juan E; Leyva, Maureen; Marquetti, María C

    2003-01-01

    The biological activity of the essential foliar oils from 2 Cuban endemic Myrtaceae: Eugenia melanadenia and Psidium rotundatum on A. aegypti larvae was evaluated for the first time at the laboratory level. The probit-log analysis of the results showed the larvicidal effect of both oils with values of CL50 = 0.0085% and CL95 = 0.0104% for E. melanadenia and CL50 = 0.0063% and CL95 = 0.0071% for O. rotundatum. Besides, the diagnostic concentration for both essential oils are given and the possible implications of these findings on field populations of A. aegypti are suggessted. PMID:15849965

  16. Behavioral responses of catnip (Nepeta cataria l.)by two species of mosquitoes, Aedes aegypti (l.) and Anopheles harrisoni harbach and manguin, in Thailand.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Ae. aegypti and An. harrisoni were conducted using an automated excito-repellency test system. Aedes aegypti showed significant higher escape rates from the contact chamber at 5%...

  17. Changing Domesticity of Aedes aegypti in Northern Peninsular Malaysia: Reproductive Consequences and Potential Epidemiological Implications

    PubMed Central

    Saifur, Rahman G. M.; Dieng, Hamady; Hassan, Ahmad Abu; Salmah, Md Rawi Che; Satho, Tomomitsu; Miake, Fumio; Hamdan, Ahmad

    2012-01-01

    Background The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior. Methodology/Principal Findings This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts. Conclusion/Significance The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence. PMID:22363516

  18. Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan State, Mexico.

    PubMed

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. PMID:25371186

  19. Diversity of containers and buildings infested with Aedes aegypti in Puerto Iguazú, Argentina.

    PubMed

    Costa, Federico; Fattore, Gladys; Abril, Marcelo

    2012-09-01

    Aedes aegypti is the main domestic vector of the dengue virus. Control measures to prevent dengue transmission focus on the treatment and elimination of this vector's oviposition sites. There is limited biological information on Ae. aegypti in Argentina. The aim of this study was to characterize Ae. aegypti oviposition sites in the city of Puerto Iguazú, Argentina. We surveyed an area covering nine neighborhoods in 2005. We identified 191 premises as positive for Ae. aegypti, giving a general house index of 9.6%. Premises classified as residential and vacant lots presented the highest number of infested premises, with 9% and 22% respectively. The total number of surveyed containers was 29,600. The overall container index (CI) was 1.1. The most frequently infested containers were water tanks (CI = 37). These preliminary results suggest that vacant lots and water tanks provide suitable breeding areas and environmental conditions, improving the chances of Ae. aegypti survival in Puerto Iguazú. PMID:23033195

  20. Evidence of limited polyandry in a natural population of Aedes aegypti.

    PubMed

    Richardson, Joshua B; Jameson, Samuel B; Gloria-Soria, Andrea; Wesson, Dawn M; Powell, Jeffrey

    2015-07-01

    The mosquito Aedes aegypti is a vector of yellow fever, dengue, and chikungunya. Control of the insect is crucial to stop the spread of dengue and chikungunya, so it is critically important to understand its mating behavior. Primarily, based on laboratory behavior, it has long been assumed that Ae. aegypti females mate once in their lifetime. However, multiple inseminations have been observed in semi-field and laboratory settings, and in closely related species. Here, we report the first evidence of polyandry in a natural population of Ae. aegypti. Female Ae. aegypti were captured around the New Orleans, LA, metropolitan area. They were offered a blood meal and allowed to lay eggs, which were reared to the third-instar larval stage. A parentage analysis using four microsatellite loci was performed. Out of 48 families, 3 showed evidence of multiple paternity. An expanded analysis of these three families found that one family group included offspring contributed by three fathers, and the other two included offspring from two fathers. This result establishes that polyandry can occur in a small proportion of Ae. aegypti females in a natural setting. This could complicate future genetic control efforts and has implications for sampling for population genetics. PMID:25870424

  1. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae).

    PubMed

    da Silva, Onilda Santos; Prado, Geronimo Rodrigues; da Silva, João Luiz Rosa; Silva, Carlos Eugenio; da Costa, Marisa; Heermann, Ralf

    2013-08-01

    Dengue fever is an important vector-borne disease, mainly transmitted by Aedes aegypti. To date, there are no vaccines or effective drugs available against this arboviral disease. As mosquito control is practically the only method available to control dengue fever, alternative and cost-effective pest control strategies need to be explored. The gram-negative enteric bacteria Xenorhabdus and Photorhabdus are symbiotically associated with nematode parasites, which themselves are highly pathogenic for insect larvae. Here, we evaluate the oral toxicity of these entomopathogenic bacteria in A. aegypti larvae. The susceptibility of larvae (third late or fourth early instars) was assessed by exposing them to suspensions containing Photorhabdus luminescens or Xenorhabdus nematophila, respectively. Two diet treatments were tested with larvae fed on pet food and unfed larvae. After 24 h, larvae began to die when exposed to the bacteria. Exposure to P. luminescens killed 73% of the fed and 83% of the unfed larvae, respectively. In comparison, X. nematophila was less pathogenic, killing 52% of the larvae in the fed and 42% in the unfed treatment. Remarkably, cannibalism was observed in all bioassays after exposing larvae to either of the bacterial species. To our knowledge, this is the first report demonstrating the efficiency of these entomopathogenic bacteria for oral A. aegypti killing. Our results provide a promising basis for using these bacteria as bioinsecticides for mosquito control in the future. PMID:23728731

  2. Effects of the Botanical Insecticide, Toosendanin, on Blood Digestion and Egg Production by Female Aedes aegypti (Diptera: Culicidae): Topical Application and Ingestion

    PubMed Central

    ZHIQING, MA; GULIA-NUSS, MONIKA; ZHANG, XING; BROWN, MARK R.

    2014-01-01

    Botanical insecticides offer novel chemistries and actions that may provide effective mosquito control. Toosendanin (TSN, 95% purity) is one such insecticide used to control crop pests in China, and in this study, it was evaluated for lethal and sublethal effects on larvae and females of the yellowfever mosquito, Aedes aegypti (L.). TSN was very toxic to first instar larvae after a 24 h exposure (LC50 = 60.8 μg/ml) and to adult females up to 96 h after topical treatment (LD50 = 4.3 μg/female) or ingestion in a sugar bait (LC50 = 1.02 μg/μl). Treatment of first instars for 24 h with a range of sublethal doses (6.3–25 μg/ml) delayed development to pupae by 1 to 2 d. Egg production and larval hatching from eggs were dose dependently reduced (>45%) by TSN doses (1.25–10.0 μg) topically applied to females 24 h before or 1 h after a bloodmeal. Ingestion of TSN (0.031–0.25 μg/μl of sugar bait) by females 24 h before a bloodmeal also greatly reduced egg production and larval hatch; no eggs were oviposited by females ingesting the highest dose. Further studies revealed that topical or ingested TSN dose-dependently disrupted yolk deposition in oocytes, blood ingestion and digestion, and ovary ecdysteroid production in blood-fed females. Overall, our results indicate that TSN is an effective insecticide for Ae. aegypti larvae and adults, because of its overt toxicity at high doses and disruption of development and reproduction at sublethal doses. PMID:23427659

  3. Aedes aegypti resistance to temephos in Argentina.

    PubMed

    Seccacini, Emilia; Lucia, Alejandro; Zerba, Eduardo; Licastro, Susana; Masuh, Hector

    2008-12-01

    Monitoring of resistance of Aedes aegypti to temephos was implemented in the provinces of Formosa and Misiones, Argentina, as a response to the need to improve the vigilance for the dengue vector in areas of high risk of dengue. Eggs collected in each locality were reared, and susceptibility to temephos was assayed using larval bioassays. A weak decrease in susceptibility of larvae to temephos was observed in Clorinda and Puerto Iguazú, indicating an incipient resistance with a resistance ratio of 3. No control failures have been observed yet, and this program should allow the early detection of a real problem in our country. PMID:19181076

  4. Assessing the Effects of Aedes aegypti kdr Mutations on Pyrethroid Resistance and Its Fitness Cost

    PubMed Central

    Brito, Luiz Paulo; Linss, Jutta G. B.; Lima-Camara, Tamara N.; Belinato, Thiago A.; Peixoto, Alexandre A.; Lima, José Bento P.; Valle, Denise; Martins, Ademir J.

    2013-01-01

    Pyrethroids are the most used insecticide class worldwide. They target the voltage gated sodium channel (NaV), inducing the knockdown effect. In Aedes aegypti, the main dengue vector, the AaNaV substitutions Val1016Ile and Phe1534Cys are the most important knockdown resistance (kdr) mutations. We evaluated the fitness cost of these kdr mutations related to distinct aspects of development and reproduction, in the absence of any other major resistance mechanism. To accomplish this, we initially set up 68 crosses with mosquitoes from a natural population. Allele-specific PCR revealed that one couple, the one originating the CIT-32 strain, had both parents homozygous for both kdr mutations. However, this pyrethroid resistant strain also presented high levels of detoxifying enzymes, which synergistically account for resistance, as revealed by biological and biochemical assays. Therefore, we carried out backcrosses between CIT-32 and Rockefeller (an insecticide susceptible strain) for eight generations in order to bring the kdr mutation into a susceptible genetic background. This new strain, named Rock-kdr, was highly resistant to pyrethroid and presented reduced alteration of detoxifying activity. Fitness of the Rock-kdr was then evaluated in comparison with Rockefeller. In this strain, larval development took longer, adults had an increased locomotor activity, fewer females laid eggs, and produced a lower number of eggs. Under an inter-strain competition scenario, the Rock-kdr larvae developed even slower. Moreover, when Rockefeller and Rock-kdr were reared together in population cage experiments during 15 generations in absence of insecticide, the mutant allele decreased in frequency. These results strongly suggest that the Ae. aegypti kdr mutations have a high fitness cost. Therefore, enhanced surveillance for resistance should be priority in localities where the kdr mutation is found before new adaptive alleles can be selected for diminishing the kdr deleterious

  5. Natural vertical transmission of dengue viruses in Aedes aegypti in selected sites in Cebu City, Philippines.

    PubMed

    Edillo, Frances E; Sarcos, Janet R; Sayson, Stephanie L

    2015-12-01

    We attempted to determine the vertical transmission of dengue virus (DENV) in Aedes aegypti in selected sites in Cebu City, Philippines. Mosquito sub-adults were collected monthly from households and the field during the wet-dry-wet season from November, 2011 to July, 2012 and were laboratory-reared to adults. Viral RNA extracts in mosquitoes were assayed by hemi-nested RT-PCR. Results showed that 62 (36.26%; n=679) out of 171 mosquito pools (n=2,871) were DENV+. The minimum infection rate (MIR) of DENV ranged from 0 in wet months to 48.22/1,000 mosquitoes in April, 2012 (mid-dry). DENVs were detected in larvae, pupae, and male and female adults, with DENV-4, DENV-3, and DENV-1, in that rank of prevalence. DENV-1 co-infected with either DENV-3 or -4 or with both in April, 2012; DENV-3 and -4 were present in both seasons. More DENV+ mosquitoes were collected from households than in field premises (p<0.001) and in the dry than in the wet season (p<0.05), with significant interaction (p<0.05) between sites and premises but no interaction between sites and seasons (p>0.05). By Generalized Linear Mixed models, the type of premises nested in sites and monthly total rainfall were significant predictors of monthly dengue cases (p<0.05) and not MIR, season, temperature, and relative humidity. Surveillance of DENV prevalence in Ae. aegypti and detecting their natural foci in the dry season provide an early warning signal of dengue outbreak. PMID:26611963

  6. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China.

    PubMed

    Guo, Xiao-Xia; Li, Chun-Xiao; Zhang, Ying-Mei; Xing, Dan; Dong, Yan-De; Zhang, Heng-Duan; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-01

    Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P<0.05); replication of the DEN2-FJ10 strain was greater in Ae. aegypti than in Ae. albopictus 5 days post infection whereas replication of the DEN2-FJ11 was greater in Ae. albopictus than in Ae. aegypti 7 days post infection. The replicative ability of the DEN2-FJ11 strain was greater than that of the DEN2-FJ10 strain in infected Ae. albopictus. In infected Ae. aegypti, rapid proliferation of the DEN2-FJ10 strain occurred earlier than in the DEN2-FJ11 strain. There were no significant differences in the midgut and salivary gland infection rates of Ae. albopictus and Ae. aegypti with respect to either viral strain. Although the DEN2-FJ10 and DEN2-FJ11 strains differ in their virulence to neonatal rats, there was no significant difference in the ability of either Ae. albopictus or Ae. aegypti to transmit the DEN2-FJ10 and DEN2-FJ10 strains of the dengue 2 virus (P>0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China. PMID:27260668

  7. Stage-Structured Population Dynamics of AEDES AEGYPTI

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  8. Analysis of ovary-specific genes in relation to egg maturation and female nutritional condition in the mosquitoes Georgecraigius atropalpus and Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Telang, Aparna; Rechel, Julie A.; Brandt, Jessica R.; Donnell, David M.

    2013-01-01

    Analysis of the reproductive physiology of anautogenous mosquitoes at the molecular level is complicated by the simultaneity of ovarian maturation and the digestion of a blood meal. In contrast to anautogenous mosquitoes, autogenous female mosquitoes can acquire greater nutrient stores as larvae and exhibit higher ovarian production of ecdysteroids at adult eclosion. These features essentially replace the role of a blood meal in provisioning the first batch of eggs and initiating egg development. To gain insight into the process of ovary maturation we first performed a transcript analysis of the obligatory autogenous mosquito Georgecraigius atropalpus (formerly Ochlerotatus atropalpus). We identified ESTs using suppressive subtractive hybridization (SSH) of transcripts from ovaries at critical times during oogenesis in the absence of blood digestion. Preliminary expression studies of genes such as apolipophorin III (APO) and oxysterol binding protein (OSBP) suggested these genes might be cued to female nutritional status. We then applied our findings to the medically important anautogenous mosquito Aedes aegypti. RNAi-based analyses of these genes in Ae. aegypti revealed a reduction in APO transcripts leads to reduced lipid levels in carcass and ovaries and that OSBP may play a role in overall lipid and sterol homeostasis. In addition to expanding our understanding of mosquito ovarian development, the continued use of a comparative approach between autogenous and anautogenous species may provide novel intervention points for the regulation of mosquito egg production. PMID:23238126

  9. Synergistic action of octopamine receptor agonists on the activity of selected novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae) mosquito.

    PubMed

    Ahmed, Mohamed Ahmed Ibrahim; Vogel, Christoph Franz Adam

    2015-05-01

    Studying insecticide resistance in mosquitoes has attracted the attention of many scientists to elucidate the pathways of resistance development and to design novel strategies in order to prevent or minimize the spread and evolution of resistance. Here, we tested the synergistic action of piperonyl butoxide (PBO) and two octopamine receptor (OR) agonists, amitraz (AMZ) and chlordimeform (CDM) on selected novel insecticides to increase their lethal action on the fourth instar larvae of Aedes aegypti L. However, chlorfenapyr was the most toxic insecticide (LC50 = 193, 102, and 48 ng/ml, after 24, 48, and 72 h exposure, respectively) tested. Further, PBO synergized all insecticides and the most toxic combinatorial insecticide was nitenpyram even after 48 and 72 h exposure. In addition, OR agonists significantly synergized most of the selected insecticides especially after 48 and 72 h exposure. The results imply that the synergistic effects of amitraz are a promising approach in increasing the potency of certain insecticides in controlling the dengue vector Ae. aegypti mosquito. PMID:25987220

  10. Use of the CDC Autocidal Gravid Ovitrap to Control and Prevent Outbreaks of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Barrera, Roberto; Amador, Manuel; Acevedo, Veronica; Caban, Belkis; Felix, Gilberto; Mackay, Andrew J.

    2015-01-01

    Populations of Aedes aegypti (L.) can be managed through reductions in adult mosquito survival, number of offspring produced, or both. Direct adult mortality can be caused by the use of space sprays or residual insecticides to mosquito resting sites, and with a variety of residual insecticide-impregnated surfaces that are being tested, such as curtains, covers for water-storage vessels, bednets, and ovitraps. The fertility of Ae. aegypti populations can be reduced by the use of autocidal oviposition cups that prevent the development of mosquitoes inside the trap by mechanical means or larvicides, as well as by releasing sterile, transgenic, and para-transgenic mosquitoes. Survival and fertility can be simultaneously reduced by capturing gravid female Ae. aegypti with sticky gravid traps. We tested the effectiveness of the novel Centers for Disease Control and Prevention autocidal gravid ovitrap (CDC-AGO trap) to control natural populations of Ae. aegypti under field conditions in two isolated urban areas (reference vs. intervention areas) in southern Puerto Rico for 1 yr. There were significant reductions in the captures of female Ae. aegypti (53–70%) in the intervention area. The presence of three to four AGO control traps per home in 81% of the houses prevented outbreaks of Ae. aegypti, which would be expected after rains. Mosquito captures in BG-Sentinel and AGO traps were significantly and positively correlated, showing that AGO traps are useful and inexpensive mosquito surveillance devices. The use of AGO traps to manage Ae. aegypti populations is compatible with other control means such as source reduction, larviciding, adulticiding, sterile insect techniques, induced cytoplasmic incompatibility, and dominant lethal gene systems. PMID:24605464

  11. Use of the CDC autocidal gravid ovitrap to control and prevent outbreaks of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Barrera, Roberto; Amador, Manuel; Acevedo, Veronica; Caban, Belkis; Felix, Gilberto; Mackay, Andrew J

    2014-01-01

    Populations ofAedes aegypti (L.) can be managed through reductions in adult mosquito survival, number of offspring produced, or both. Direct adult mortality can be caused by the use of space sprays or residual insecticides to mosquito resting sites, and with a variety of residual insecticide-impregnated surfaces that are being tested, such as curtains, covers for water-storage vessels, bednets, and ovitraps. The fertility ofAe. aegypti populations can be reduced by the use of autocidal oviposition cups that prevent the development of mosquitoes inside the trap by mechanical means or larvicides, as well as by releasing sterile, transgenic, and para-transgenic mosquitoes. Survival and fertility can be simultaneously reduced by capturing gravid female Ae. aegypti with sticky gravid traps. We tested the effectiveness of the novel Centers for Disease Control and Prevention autocidal gravid ovitrap (CDC-AGO trap) to control natural populations ofAe. aegypti under field conditions in two isolated urban areas (reference vs. intervention areas) in southern Puerto Rico for 1 yr. There were significant reductions in the captures of female Ae. aegypti (53-70%) in the intervention area The presence of three to four AGO control traps per home in 81% of the houses prevented outbreaks of Ae. aegypti, which would be expected after rains. Mosquito captures in BG-Sentinel and AGO traps were significantly and positively correlated, showing that AGO traps are useful and inexpensive mosquito surveillance devices. The use of AGO traps to manage Ae. aegypti populations is compatible with other control means such as source reduction, larviciding, adulticiding, sterile insect techniques, induced cytoplasmic incompatibility, and dominant lethal gene systems. PMID:24605464

  12. Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals

    PubMed Central

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G.; Grieco, John P.; Achee, Nicole L.

    2013-01-01

    Background Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Methods Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Results Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Conclusions/Significance Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human–vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown

  13. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized Serosal Cuticle

    PubMed Central

    Rezende, Gustavo Lazzaro; Martins, Ademir Jesus; Gentile, Carla; Farnesi, Luana Cristina; Pelajo-Machado, Marcelo; Peixoto, Alexandre Afrânio; Valle, Denise

    2008-01-01

    Background One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito Aedes aegypti, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC) contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of its components, however conclusive evidence is still missing. Results We observed an abrupt acquisition of desiccation resistance during Ae. aegypti embryogenesis associated with serosal cuticle secretion, occurring at complete germ band extension, between 11 and 13 hours after egglaying. After SC formation embryos are viable on dry for at least several days. The presence of chitin as one of the SC constituents was confirmed through Calcofluor and WGA labeling and chitin quantitation. The Ae. aegypti Chitin Synthase A gene (AaCHS1) possesses two alternatively spliced variants, AaCHS1a and AaCHS1b, differentially expressed during Ae. aegypti embryonic development. It was verified that at the moment of serosal cuticle formation, AaCHS1a is the sole variant specifically expressed. Conclusion In addition to the peritrophic matrix and exoskeleton, these findings confirm chitin is also present in the mosquito serosal cuticle. They also point to the role of the chitinized SC in the desiccation resistance of Ae. aegypti eggs. AaCHS1a expression would be responsible for SC chitin synthesis. With this embryological approach we expect to shed new light regarding this important physiological process related to the Ae. aegypti life cycle. PMID:18789161

  14. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti.

    PubMed

    Gulia-Nuss, Monika; Elliot, Anne; Brown, Mark R; Strand, Michael R

    2015-11-01

    Aedes aegypti is an anautogenous mosquito that must blood feed on a vertebrate host to produce and lay a clutch of eggs. The rockpool mosquito, Georgecraigius atropalpus, is related to A. aegypti but is a facultatively autogenous species that produces its first clutch of eggs shortly after emerging without blood feeding. Consumption of a blood meal by A. aegypti triggers the release of ovary ecdysteroidogenic hormone (OEH) and insulin-like peptide 3 (ILP3) from the brain, which stimulate egg formation. OEH and ILP3 also stimulate egg formation in G. atropalpus but are released at eclosion independently of blood feeding. These results collectively suggest that blood meal dependent release of OEH and ILP3 is one factor that prevents A. aegypti from reproducing autogenously. Here, we examined two other factors that potentially inhibit autogeny in A. aegypti: teneral nutrient reserves and the ability of OEH and ILP3 to stimulate egg formation in the absence of blood feeding. Measures of nutrient reserves showed that newly emerged A. aegypti females had similar wet weights but significantly lower protein and glycogen reserves than G. atropalpus females when larvae were reared under identical conditions. OEH stimulated non-blood fed A. aegypti females to produce ecdysteroid hormone and package yolk into oocytes more strongly than ILP3. OEH also reduced host seeking and blood feeding behavior, yet females produced few mature eggs. Overall, our results indicate that multiple factors prevent A. aegypti from reproducing autogenously. PMID:26255841

  15. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.

    PubMed

    Eisen, Lars; Moore, Chester G

    2013-05-01

    After more than a half century without recognized local dengue outbreaks in the continental United States, there were recent outbreaks of autochthonous dengue in the southern parts of Texas (2004-2005) and Florida (2009-2011). This dengue reemergence has provoked interest in the extent of the future threat posed by the yellow fever mosquito, Aedes (Stegomyia) aegypti (L.), the primary vector of dengue and yellow fever viruses in urban settings, to human health in the continental United States. Ae. aegypti is an intriguing example of a vector species that not only occurs in the southernmost portions of the eastern United States today but also is incriminated as the likely primary vector in historical outbreaks of yellow fever as far north as New York, Philadelphia, and Boston, from the 1690s to the 1820s. For vector species with geographic ranges limited, in part, by low temperature and cool range margins occurring in the southern part of the continental United States, as is currently the case for Ae. aegypti, it is tempting to speculate that climate warming may result in a northward range expansion (similar to that seen for Ixodes tick vectors of Lyme borreliosis spirochetes in Scandinavia and southern Canada in recent decades). Although there is no doubt that climate conditions directly impact many aspects of the life history of Ae. aegypti, this mosquito also is closely linked to the human environment and directly influenced by the availability of water-holding containers for oviposition and larval development. Competition with other container-inhabiting mosquito species, particularly Aedes (Stegomyia) albopictus (Skuse), also may impact the presence and local abundance of Ae. aegypti. Field-based studies that focus solely on the impact of weather or climate factors on the presence and abundance of Ae. aegypti, including assessments of the potential impact of climate warming on the mosquito's future range and abundance, do not consider the potential confounding

  16. Larvicidal and Biting Deterrent Activity of Essential Oils of Curcuma longa, Ar-turmerone, and Curcuminoids Against Aedes aegypti and Anopheles quadrimaculatus (Culicidae: Diptera).

    PubMed

    Ali, Abbas; Wang, Yan-Hong; Khan, Ikhlas A

    2015-09-01

    Essential oils and extract of Curcuma longa, ar-turmerone, and curcuminoids were evaluated for their larvicidal and deterrent activity against mosquitoes. Ar-turmerone and curcuminoids constituted 36.9, 24.9 and 50.6% of rhizome oil, leaf oil, and rhizome extract, respectively. Ar-turmerone was the major compound of the rhizome oil (36.9%) and leaf oil (24.9%). The ethanolic extract had 15.4% ar-turmerone with 6.6% bisdesmethoxycurcumin, 6.1% desmethoxycurcumin, and 22.6% curcumin. In in vitro studies, essential oils of the leaf (biting deterrence index [BDI] = 0.98), rhizome (BDI = 0.98), and rhizome ethanolic extract (BDI = 0.96) at 10 µg/cm(2) showed biting deterrent activity similar to DEET at 25 nmol/cm(2) against Aedes aegypti L. Among the pure compounds, ar-turmerone (BDI = 1.15) showed the biting deterrent activity higher than DEET at 25 nmol/cm(2) whereas the activity of other compounds was lower than DEET. In Anopheles quadrimaculatus Say, only ar-turmerone showed deterrent activity similar to DEET. In dose-response bioassay, ar-turmerone showed significantly higher biting deterrence than DEET at all the dosages. Ar-turmerone, at 15 nmol/cm(2), showed activity similar to DEET at 25 nmol/cm(2) and activity at 5 nmol/cm(2) was similar to DEET at 20 and 15 nmol/cm(2). Leaf essential oil with LC(50) values of 1.8 and 8.9 ppm against larvae of An. quadrimaculatus and Ae. aegypti, respectively, showed highest toxicity followed by rhizome oil and ethanolic extract. Among the pure compounds, ar-turmerone with LC(50) values of 2.8 and 2.5 ppm against larvae of An. quadrimaculatus and Ae. aegypti, respectively, was most toxic followed by bisdesmethoxycurcumin, curcumin, and desmethoxycurcumin. PMID:26336212

  17. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City. 2. Larval habitats.

    PubMed

    Chan, K L; Ho, B C; Chan, Y C

    1971-01-01

    Detailed information on the breeding habitats of Ae. aegypti and Ae. albopictus is necessary when planning programmes for their control. The larval habitats of the two species in 10 city areas were counted and classified according to type, frequency of occurrence, location, and function. Of all the breeding habitats recorded 95% were domestic containers. The most common Ae. aegypti breeding habitats were ant traps, earthenware jars, bowls, tanks, tin cans, and drums, ant traps being the most common indoors and earthenware jars the most common out doors. Breeding habitats for Ae. albopictus were commonly found in earthen ware jars, tin cans, ant traps, rubber tires, bowls, and drums; ant traps were the most common indoor habitat and tin cans were most common outdoors.The majority of Ae. aegypti breeding habitats were found indoors, while only half of all the Ae. albopictus breeding habitats were indoors. The indoor and outdoor distribution of breeding habitats of both species was not related to the type of housing in the area.The distribution of the type of breeding habitats, however, was related to the type of housing in the area. Ant traps were common to all areas, but water-storage containers and unused containers were common in slum-house and shop-house areas. Flats, however, had more containers used for keeping plants and flowers.The most common breeding habitats of Ae. aegypti and Ae. albopictus are discussed in relation to the habits of the people. It is concluded that control of the two species will depend largely on a change in such habits, either through public health education or by some form of law enforcement. PMID:5316746

  18. [The risk of urban yellow fever outbreaks in Brazil by dengue vectors. Aedes aegypti and Aedes albopictus].

    PubMed

    Mondet, B; da Rosa, A P; Vasconcelos, P F

    1996-01-01

    Urban yellow fever (YF) epidemics have disappeared from Brazil since about 50 years, but a selvatic cycle still exist. In many States, cases are more or less numerous each year. Ae. aegypti was eradicated in 1954, re-appeared temporarily in 1967, and then definitively in 1976-1977. Ae. aegypti is a vector of yellow few (YF), but also of dengue, whose first cases were reported in 1982. Today, dengue is endemic in many regions. A second Flavivirus vector, Aedes albopictus is present since about ten years in some States, from which Säo Paulo. The analysis of the YF cases between 1972 and 1994 allowed us to determine the epidemiologic regions. In the first region, the endemic area, the YF virus is circulating "silently" among monkeys, and the emergence of human cases is rare. In the second region, the epidemic area, some epizootics occur in a more or less cyclic way, and human cases can be numerous. Nevertheless, these outbreaks are considered "selvatic" epidemics, as long as Ae. aegypti is not concerned. From the Amazonian region, the virus moves forward along the forest galleries of the Amazone tributaries, from North to South. Actually, dengue epidemics appear in quite all States, and reflect the geographical distribution of Ae. aegypti. Recently, Ae. aegypti was found in the southern part of the Pará State, in the Carajás region considered to be the source of the main YF epidemics. In another hand, Ae. albopictus is now increasing its distribution area, specially in the suburban zones. The ecology of this potential vector, which seems to have a great adaptative capacity, give this vector an intermediate position between the forest galleries, where the YF virus circulates, and the agglomerations infested with Ae. aegypti. Since a few years, the possibility of urban YF is threatening Brazil, it is more and more predictable and we must survey very carefully the epidemiological situation in some regions of the country. PMID:8924767

  19. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus

    PubMed Central

    Vazeille, Marie; Yebakima, André; Girod, Romain; Goindin, Daniella; Dupont-Rouzeyrol, Myrielle; Lourenço-de-Oliveira, Ricardo; Failloux, Anna-Bella

    2016-01-01

    Background Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe), North America (southern United States), South America (Brazil, French Guiana) for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia. Methodology/Principal Findings Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132). Upon exposure, engorged mosquitoes were maintained at 28°±1°C, a 16h:8h light:dark cycle and 80% humidity. 25–30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level. Conclusions/Significance This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak. PMID:26938868

  20. CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells.

    PubMed

    Tham, Hong-Wai; Balasubramaniam, Vinod R M T; Tejo, Bimo Ario; Ahmad, Hamdan; Hassan, Sharifah Syed

    2014-12-01

    Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network. PMID:25521592

  1. Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil.

    PubMed

    Marinho, Rafael A; Beserra, Eduardo B; Bezerra-Gusmão, Maria A; Porto, Valbia de S; Olinda, Ricardo A; Dos Santos, Carlos A C

    2016-06-01

    The mosquito Aedes aegypti is the primary vector of dengue and is common throughout tropical and subtropical regions. Its distribution is modulated by environmental factors, such as temperature. This study aimed to evaluate the influence of temperature on the life cycle and expansion of Ae. aegypti populations in the cities of Campina Grande, João Pessoa, and Patos. Samples of Ae. aegypti were collected in the three cities and raised in the laboratory. We assessed the life cycles of the three Ae. aegypti populations under six constant temperatures (16, 22, 28, 33, 36, and 39°C), selected on the basis of historical temperature tendencies of each city. We also used existing climate data to calculate projected temperature increases for all three areas. Our results suggest that Campina Grande, João Pessoa, and Patos will experience, respectively, maximum temperature increases of 0.030°C/year, 0.069°C/year, and 0.061°C/year, and minimum temperature increases of 0.019°C/year, -0.047°C/year, and -0.086°C/year. These projected increases will result in temperatures favorable to the Ae. aegypti life cycle, causing rapid population growth. Therefore, Ae. aegypti populations are likely to expand in the mesoregions represented by these cities. PMID:27232118

  2. CPB1 of Aedes aegypti Interacts with DENV2 E Protein and Regulates Intracellular Viral Accumulation and Release from Midgut Cells

    PubMed Central

    Tham, Hong-Wai; Balasubramaniam, Vinod R. M. T.; Tejo, Bimo Ario; Ahmad, Hamdan; Hassan, Sharifah Syed

    2014-01-01

    Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network. PMID:25521592

  3. A geographical sampling method for surveys of mosquito larvae in an urban area using high-resolution satellite imagery

    PubMed Central

    Troyo, Adriana; Fuller, Douglas O.; Calderón-Arguedas, Olger; Beier, John C.

    2008-01-01

    Entomological surveys in urban areas are often biased by selecting houses or locations with known high vector densities. A sampling strategy was developed for Puntarenas, Costa Rica, using high-resolution satellite imagery. Grids from the Advanced Spaceborne Thermal Emission and Reflection Radiometer and a QuickBird classified land cover map were used to determine the optimal final grid area for surveys. A random sample (10% of cells) was selected, and sample suitability was assessed by comparing the mean percentage of tree cover between sample and total cells. Sample cells were used obtain entomological data from 581 locations: 26.3% of all locations positive for mosquito larvae were not households, they contained 29.5% of mosquito-positive habitats and 16% of Aedes aegypti pupae collected. Entomological indices for Ae. aegypti (pupae per person, Breteau index, container index, location index) were slightly lower when only household data were analyzed. High-resolution satellite imagery and geographical information systems appear useful for evaluating urban sites and randomly selecting locations for accurate entomological surveys. PMID:18697301

  4. Sustained, Area-Wide Control of Aedes aegypti Using CDC Autocidal Gravid Ovitraps

    PubMed Central

    Barrera, Roberto; Amador, Manuel; Acevedo, Verónica; Hemme, Ryan R.; Félix, Gilberto

    2014-01-01

    We have shown that the Centers for Disease Control and Prevention (CDC) autocidal gravid ovitraps (AGO trap) reduced the Aedes aegypti population and prevented mosquito outbreaks in southern Puerto Rico. After showing treatment efficacy for 1 year, we deployed three traps per home in an area that formerly did not have traps and in a site that served as the intervention area. Two new areas were selected as reference sites to compare the density of Ae. aegypti without traps. We monitored mosquitoes and weather every week in all four sites. The hypotheses were the density of Ae. aegypti in the former reference area converges to the low levels observed in the intervention area, and mosquito density in both areas having control traps is lower than in the new reference areas. Mosquito density in the former reference area decreased 79% and mosquito density in the new reference areas was 88% greater than in the intervention areas. PMID:25223937

  5. The Drosophila melanogaster cinnabar gene is a cell autonomous genetic marker in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Sethuraman, Nagaraja; O'Brochta, David A

    2005-07-01

    The cinnabar gene of Drosophila melanogaster (Meigen) encodes for kynurenine hydroxylase, an enzyme involved in ommochrome biosynthesis. This gene is commonly included as a visible genetic marker in gene vectors used to create transgenic Aedes aegypti (L.) that are homozygous for the khw allele, the mosquito homolog of cinnabar. Unexpectedly, the phenotype of cells expressing kynurenine hydroxylase in transgenic Ae. aegypti is cell autonomous as demonstrated by the recovery of insects heterozygous for the kynurenine hydroxylase transgene with mosaic eye color patterns. In addition, a transgenic gynandromorph was recovered in which one-half of the insect was expressing the kynurenine hydroxylase transgene, including one eye with red pigmentation, whereas the other half of the insect was homozygous khw and included a white eye. The cell autonomous behavior of cinnabar in transgenic Ae. aegypti is unexpected and increases the utility of this genetic marker. PMID:16119567

  6. Permethrin Induces Overexpression of Cytochrome c Oxidase Subunit 3 in Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using quantitative PCR (QPCR), the relative transcriptional levels of cytochrome c oxidase subunit 3 (CO3) were studied in Aedes aegypti (L.) in response to treatments with acetone, permethrin, or fipronil. The transcriptional levels of CO3 were significantly (p <0.05) higher in acetone-treated Ae. ...

  7. Spatial and Temporal Variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Numbers in the Yogyakarta Area of Java, Indonesia, With Implications for Wolbachia Releases.

    PubMed

    Tantowijoyo, W; Arguni, E; Johnson, P; Budiwati, N; Nurhayati, P I; Fitriana, I; Wardana, S; Ardiansyah, H; Turley, A P; Ryan, P; O'Neill, S L; Hoffmann, A A

    2016-01-01

    of mosquito vector populations, particularly through Wolbachia endosymbionts. The success of these strategies depends on understanding the dynamics of vector populations. In preparation for Wolbachia releases around Yogyakarta, we have studied Aedes populations in five hamlets. Adult monitoring with BioGent- Sentinel (BG-S) traps indicated that hamlet populations had different dynamics across the year; while there was an increase in Aedes aegypti (L.) and Aedes albopictus (Skuse) numbers in the wet season, species abundance remained relatively stable in some hamlets but changed markedly (>2 fold) in others. Local rainfall a month prior to monitoring partly predicted numbers of Ae. aegypti but not Ae. albopictus. Site differences in population size indicated by BG-S traps were also evident in ovitrap data. Egg or larval collections with ovitraps repeated at the same location suggested spatial autocorrelation (<250 m) in the areas of the hamlets where Ae. aegypti numbers were high. Overall, there was a weak negative association (r<0.43) between Ae. aegypti and Ae. albopictus numbers in ovitraps when averaged across collections. Ae. albopictus numbers in ovitraps and BG-S traps were positively correlated with vegetation around areas where traps were placed, while Ae. aegypti were negatively correlated with this feature. These data inform intervention strategies by defining periods when mosquito densities are high, highlighting the importance of local site characteristics on populations, and suggesting relatively weak interactions between Ae. aegypti and Ae. albopictus. They also indicate local areas within hamlets where consistently high mosquito densities may influence Wolbachia invasions and other interventions. PMID:26576934

  8. Aedes aegypti pupal/demographic surveys in southern Mexico: consistency and practicality.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-04-01

    In interventions aimed at the control of the immature stages of Aedes aegypti (L.), the principal vector of the dengue viruses, attempts are often made to treat or manage all larval habitats in households. When there are resource-constraints, however, a concentration of effort on the types of container that produce the most pupae may be required. Identification of these 'key' container types requires surveys of the immature stages and particularly - since these give the best estimates of the numbers of adults produced - of the numbers of pupae in local containers. Although there has been no clearly defined or standardized protocol for the sampling of Ae. aegypti pupae for many years, a methodology for 'pupal/demographic' surveys, which may allow the risk of dengue outbreaks in a given setting to be estimated, has been recently described. The consistency and practicality of using such surveys has now been investigated in three cities in the Mexican state of Chiapas, Mexico. Using a combination of 'quadrat'- and transect-sampling methods, 600 houses in each city were each sampled twice. Containers within each study household were searched for pupae and larvae. Although 107,297 containers, belonging to 26 categories, were observed, only 16,032 were found to contain water and 96% and 92% of these 'wet' containers contained no pupae and no third- or fourth-instar larvae, respectively. Although the random 'quadrat' sampling gave similar results to sampling along transects, there were statistically significant differences in the numbers of pupae according to container type and locality. The most important containers for pupal production were found to be large cement wash basins, which were present in almost every household investigated and from which 84% (10,257/12,271) of all pupae were collected. A focus on this class of container could serve as the basis of a targeted intervention strategy. When traditional Stegomyia indices were calculated they appeared to be

  9. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico.

    PubMed

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J

    2011-12-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. PMID:22206021

  10. Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico

    PubMed Central

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J.

    2011-01-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. PMID:22206021

  11. Detection of multiple blood feeding in Aedes aegypti (Diptera: Culicidae) during a single gonotrophic cycle using a histologic technique.

    PubMed

    Scott, T W; Clark, G G; Lorenz, L H; Amerasinghe, P H; Reiter, P; Edman, J D

    1993-01-01

    We evaluated a histologic technique for its usefulness in detecting multiple blood feeding by Aedes aegypti (L.) in a single gonotrophic cycle. To standardize the procedure, we carried out a laboratory study in which 166 mosquitoes imbibed two blood meals at known intervals. Eighty percent (78/98) of the multiple meals were detected when the interval between meals was from 1 to < to = 24 h and the time from the second meal to fixation ranged from 0 to 12 hr. At intervals outside this range, only 34% (23/68) of the multiple meals were detected. Overall, 61% (101/166) of the double meals were detected. Examination of 96 engorged Ae. aegypti collected by aspiration from inside houses in San Juan, Puerto Rico, indicated that 50% had imbibed multiple meals. Most wild-caught mosquitoes took their last meal the day before capture, and most multiple feeders fed twice on consecutive days. A dark line of digested blood, or heme, around the first meal and a physical separation between meals were the most useful histologic parameters for detecting multiple feeding in wild Ae. aegypti. An association of multiple feeding with advanced stages of oocyte development suggests that, at the time of collection, most Ae. aegypti from the study site had fed twice in each gonotrophic cycle. We conclude that, although it is labor intensive, histologic examination is an appropriate technique for a longitudinal, community-wide survey of multiple feeding by Ae. aegypti. PMID:8433350

  12. Study of the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus according to the habitat and meteorological variables, municipality of São Sebastião, São Paulo State, Brazil

    PubMed Central

    2013-01-01

    Background This study focused on the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus. Methods Eighty ovitraps were exposed for four days of each month in peri- and intradomiciliary environments of 40 urban residences on 20 street blocks that were drawn monthly in Sebastião, SP, between February 2011 and February 2012. The monthly distribution of positive ovitrap indices (POI) and mean egg counts per trap (MET) of Ae. aegypti and Ae. albopictus were analyzed using the Kruskal-Wallis test, followed by the Dwass-Steel-Critchlow-Fligner (DSCF) test. Spearman's rank correlation coefficient and simple linear regression were used to determine the association between the meteorological variables of temperature and rainfall and the number of ovitraps with eggs and the egg count. Results The POI and MET of Ae. aegypti were higher in peridomiciliary premises. A positive correlation was found between the temperature and the number of ovitraps with eggs and the egg count of this species in domestic environments. There was no difference in the POI and MET of Ae. albopictus between the environments. A positive correlation was found between temperature and positive ovitraps of Ae. albopictus in peridomiciliary premises. The POI and MET of Ae. aegypti were higher than those of Ae. albopictus. Conclusions Peridomiciliary premises were the preferred environments for oviposition of Ae. aegypti. The use of ovitraps for surveillance and vector control is reiterated. PMID:24499530

  13. Formulas of components of citronella oil against mosquitoes (Aedes aegypti).

    PubMed

    Hsu, Wey-Shin; Yen, Jui-Hung; Wang, Yei-Shung

    2013-01-01

    The mosquito Aedes aegypti is an epidemic vector of several diseases such as dengue fever and yellow fever. Several pesticides are used to control the mosquito population. Because of their frequent use, some mosquitoes have developed resistance. In this study, we used the Y-tube olfactometer to test essential oils of Cymbopogon species and screened specific formulas of components as repellents against Ae. aegypti. At 400 μL, the extracted oil of citronella grass (Cymbopogon nardus) and myrcene produced a low-active response by inhibiting mosquito host-seeking activity. Citronella grass, lemon grass (Cymbopogon citratus), citral and myrcene also produced a low-treatment response to repellents, for more potential to affect host-seeking behavior. Furthermore, the mixture of citral, myrcene, and citronellal oil (C:M:Ci = 6:4:1) greatly affected and inhibited host-seeking behavior (76% active response; 26% treatment response with 40 μL; 42.5%, 18% with 400 μL; and 19%, 23% with 1000 μL). As compared with the result for N,N-diethyl-3-methylbenzamide (DEET; 44%, 22% with 400 μL), adjusting the composition formulas of citronella oil had a synergistic effect, for more effective repellent against Ae. aegypti. PMID:23998314

  14. New Candidates for Plant-Based Repellents Against Aedes aegypti.

    PubMed

    Misni, Norashiqin; Nor, Zurainee Mohamed; Ahmad, Rohani

    2016-06-01

    Based on an ethnobotanical study on use for plant species against mosquito bites in the Kota Tinggi District, Johor State, Malaysia, 3 plants selected for study, Citrus aurantifolia (leaves), Citrus grandis (fruit peel), and Alpinia galanga (rhizome), were extracted using hydrodistillation to produce essential oils. These essential oils were then formulated as a lotion using a microencapsulation process and then tested for their repellent effect against Aedes aegypti. N,N-diethyl-m-toluamide (deet) was also prepared in the same formulation and tested for repellency as controls. Four commercial plant-based repellent (KAPS(®), MozAway(®), BioZ Natural(®), and Mosiquard(®)) also were incorporated in the bioassay for comparison purposes. Bioassays revealed that at 20% concentration all repellent formulations demonstrated complete protection for 2 h and >90% for 4 h post-application. The A. galanga-based formulation provided the greatest level of protection (98.91%), which extended for 4 h post-application and was not significantly different from deet at similar concentration. When compared with commercial plant-based repellents (KAPS(®), MozAway(®), and BioZ Natural(®)), the 3 lotion formulations showed significantly better protection against Ae. aegypti bites, providing >90% protection for 4 h. In conclusion, our 3 plant-based lotion formulations provided acceptable levels of protection against host-seeking Ae. aegypti and should be developed. PMID:27280349

  15. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.

    PubMed

    Mint Lekweiry, Khadijetou; Ould Ahmedou Salem, Mohamed Salem; Ould Brahim, Khyarhoum; Ould Lemrabott, Mohamed Aly; Brengues, Cécile; Faye, Ousmane; Simard, Frédéric; Ould Mohamed Salem Boukhary, Ali

    2015-07-01

    Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city. PMID:26335483

  16. BIOTIC AND ABIOTIC FACTORS AFFECTING LEPTOLEGNIA CHAPMANII INFECTION IN AEDES AEGYPTI L. (DIPTERA: CULICIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of water volume, container surface area and the density of hosts and fungal zoospores on the infectivity of the oomycete fungus, Leptolegnia chapmanii Seymour to Aedes aegypti (L.) were investigated in the laboratory. Late third or early fourth instar larvae from a laboratory colony of A...

  17. On the analysis of parasite effect for Aedes aegypti and Aedes albopictus population

    NASA Astrophysics Data System (ADS)

    Kallista, Meta; Aldila, Dipo; Nuraini, Nuning; Soewono, Edy

    2014-03-01

    It has been reported in some countries that the population of Aedes aegypti has been significantly reduced by the invasion of Aedes albopictus. There has been a hypothesis explaining this phenomenon of which investigated the influence of parasites pathogenesis to the competition between these two mosquito species in the fields. Ascogregarina taiwanensis and Ascogregarina culicis are known as parasites that infect Aedes albopictus and Aedes aegypti, respectively. Several studies have concluded that Ascogregarina taiwanensis caused high fatality for Aedes aegypti larvae, but Ascogregarina culicis was not pathogenic to Aedes albopictus larvae. Therefore, Ascogregarina taiwanensis may contribute to reduce the number of populations Aedes aegypti in the fields. Inspired by these facts, a mathematical model depicting interaction between parasites and mosquitoes is constructed in this paper. In this model are included six dynamic mosquito compartments, i.e. egg, larvae, infected larvae, adult, infected adult and one dynamic compartment for parasite. Derivation of the existence criteria and the stability analysis of parasite-free equilibrium as well as the basic offspring for the model are presented. Numerical simulations for sensitivity analysis indicating the invasive species for variation parameters are shown.

  18. Ovicidal activity of Metarhizium brunneum (Mb F52) on dengue fever vector, Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ovicidal activity of Metarhizium brunneum F52 (Mb F52) grown from granules was evaluated against Aedes aegypti eggs over time. Survival of larvae from treated eggs was significantly less when compared with untreated eggs at 7, 10 and 14 days post treatment. Only 27 % of treated eggs produced vi...

  19. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings

    PubMed Central

    2013-01-01

    Background The survival of adult female Aedes mosquitoes is a critical component of their ability to transmit pathogens such as dengue viruses. One of the principal determinants of Aedes survival is temperature, which has been associated with seasonal changes in Aedes populations and limits their geographical distribution. The effects of temperature and other sources of mortality have been studied in the field, often via mark-release-recapture experiments, and under controlled conditions in the laboratory. Survival results differ and reconciling predictions between the two settings has been hindered by variable measurements from different experimental protocols, lack of precision in measuring survival of free-ranging mosquitoes, and uncertainty about the role of age-dependent mortality in the field. Methods Here we apply generalised additive models to data from 351 published adult Ae. aegypti and Ae. albopictus survival experiments in the laboratory to create survival models for each species across their range of viable temperatures. These models are then adjusted to estimate survival at different temperatures in the field using data from 59 Ae. aegypti and Ae. albopictus field survivorship experiments. The uncertainty at each stage of the modelling process is propagated through to provide confidence intervals around our predictions. Results Our results indicate that adult Ae. albopictus has higher survival than Ae. aegypti in the laboratory and field, however, Ae. aegypti can tolerate a wider range of temperatures. A full breakdown of survival by age and temperature is given for both species. The differences between laboratory and field models also give insight into the relative contributions to mortality from temperature, other environmental factors, and senescence and over what ranges these factors can be important. Conclusions Our results support the importance of producing site-specific mosquito survival estimates. By including fluctuating temperature regimes

  20. Dengue and its vectors in Thailand: calculated transmission risk from total pupal counts of Aedes aegypti and association of wing-length measurements with aspects of the larval habitat.

    PubMed

    Strickman, Daniel; Kittayapong, Pattamaporn

    2003-02-01

    Working in a village dengue focus in Chachoengsao Province, Thailand, aedine mosquito larvae and pupae were counted in all containers of 10 houses per month. The wings of female Aedes aegypti (L.) emerging from pupae were measured. Number of pupae and size of emerging females increased in containers with qualities that favored availability of larval food sources (e.g., uncovered containers). The small size of most mosquitoes compared with those raised in the laboratory indicated that the larval population as a whole was under nutritional stress. Applying the number of pupae per house and measurement of air and water temperature with an existing model, the risk of dengue transmission was greatest in May and June. The estimated number of female Ae. aegypti per house was well above the threshold for increasing transmission in all months but December through February. A phased approach to sampling immature aedine mosquitoes in Thailand is proposed, which would consist of routine surveillance of larval index and occasional total counts with measurement of wing size. Such a system would combine the benefits of the simple application of larval surveillance with the valuable data gathered from pupal counts and wing measurements. PMID:12641413

  1. Anarchy in AE Aquarii

    NASA Astrophysics Data System (ADS)

    Welsh, W. F.

    Interest in AE Aqr remains high, as evidenced by the lively discussion that took place during the workshop. In this contribution I briefly remark on the results I presented at the workshop, then address topics that were raised during the discussion. I attempt to preserve the spirit and flavor of that discussion.

  2. Larvicidal activity of Tagetes minuta (marigold) toward Aedes aegypti.

    PubMed

    Green, M M; Singer, J M; Sutherland, D J; Hibben, C R

    1991-06-01

    The steam distilled oils of 3 species of marigold, Tagetes patula, T. erecta and T. minuta, were tested for larvicidal activity toward third instar Aedes aegypti; activity at 10 ppm was demonstrated only for T. minuta. The larvicidal property of the whole oil dispersed in water persisted for at least 9 days. The terpene, ocimenone, which is a part of the whole oil, was found to be larvicidal only at a higher concentration than the whole oil and to lose its activity within 24 h after dispersal in water. These results suggest a potential utilization of oil of T. minuta or its components for the control of Ae. aegypti and other species of mosquitoes. PMID:1895085

  3. Genome sequence of Aedes aegypti, a major arbovirus vector.

    PubMed

    Nene, Vishvanath; Wortman, Jennifer R; Lawson, Daniel; Haas, Brian; Kodira, Chinnappa; Tu, Zhijian Jake; Loftus, Brendan; Xi, Zhiyong; Megy, Karyn; Grabherr, Manfred; Ren, Quinghu; Zdobnov, Evgeny M; Lobo, Neil F; Campbell, Kathryn S; Brown, Susan E; Bonaldo, Maria F; Zhu, Jingsong; Sinkins, Steven P; Hogenkamp, David G; Amedeo, Paolo; Arensburger, Peter; Atkinson, Peter W; Bidwell, Shelby; Biedler, Jim; Birney, Ewan; Bruggner, Robert V; Costas, Javier; Coy, Monique R; Crabtree, Jonathan; Crawford, Matt; Debruyn, Becky; Decaprio, David; Eiglmeier, Karin; Eisenstadt, Eric; El-Dorry, Hamza; Gelbart, William M; Gomes, Suely L; Hammond, Martin; Hannick, Linda I; Hogan, James R; Holmes, Michael H; Jaffe, David; Johnston, J Spencer; Kennedy, Ryan C; Koo, Hean; Kravitz, Saul; Kriventseva, Evgenia V; Kulp, David; Labutti, Kurt; Lee, Eduardo; Li, Song; Lovin, Diane D; Mao, Chunhong; Mauceli, Evan; Menck, Carlos F M; Miller, Jason R; Montgomery, Philip; Mori, Akio; Nascimento, Ana L; Naveira, Horacio F; Nusbaum, Chad; O'leary, Sinéad; Orvis, Joshua; Pertea, Mihaela; Quesneville, Hadi; Reidenbach, Kyanne R; Rogers, Yu-Hui; Roth, Charles W; Schneider, Jennifer R; Schatz, Michael; Shumway, Martin; Stanke, Mario; Stinson, Eric O; Tubio, Jose M C; Vanzee, Janice P; Verjovski-Almeida, Sergio; Werner, Doreen; White, Owen; Wyder, Stefan; Zeng, Qiandong; Zhao, Qi; Zhao, Yongmei; Hill, Catherine A; Raikhel, Alexander S; Soares, Marcelo B; Knudson, Dennis L; Lee, Norman H; Galagan, James; Salzberg, Steven L; Paulsen, Ian T; Dimopoulos, George; Collins, Frank H; Birren, Bruce; Fraser-Liggett, Claire M; Severson, David W

    2007-06-22

    We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species. PMID:17510324

  4. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes

    PubMed Central

    Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A.; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L.

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011 – 0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  5. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations

    PubMed Central

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715

  6. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations.

    PubMed

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715

  7. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    PubMed

    Carvalho, Danilo O; McKemey, Andrew R; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  8. Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: a precursor to successful worldwide colonization?

    PubMed

    Bennett, Kelly Louise; Shija, Fortunate; Linton, Yvonne-Marie; Misinzo, Gerald; Kaddumukasa, Martha; Djouaka, Rousseau; Anyaele, Okorie; Harris, Angela; Irish, Seth; Hlaing, Thaung; Prakash, Anil; Lutwama, Julius; Walton, Catherine

    2016-09-01

    Increasing globalization has promoted the spread of exotic species, including disease vectors. Understanding the evolutionary processes involved in such colonizations is both of intrinsic biological interest and important to predict and mitigate future disease risks. The Aedes aegypti mosquito is a major vector of dengue, chikungunya and Zika, the worldwide spread of which has been facilitated by Ae. aegypti's adaption to human-modified environments. Understanding the evolutionary processes involved in this invasion requires characterization of the genetic make-up of the source population(s). The application of approximate Bayesian computation (ABC) to sequence data from four nuclear and one mitochondrial marker revealed that African populations of Ae. aegypti best fit a demographic model of lineage diversification, historical admixture and recent population structuring. As ancestral Ae. aegypti were dependent on forests, this population history is consistent with the effects of forest fragmentation and expansion driven by Pleistocene climatic change. Alternatively, or additionally, historical human movement across the continent may have facilitated their recent spread and mixing. ABC analysis and haplotype networks support earlier inferences of a single out-of-Africa colonization event, while a cline of decreasing genetic diversity indicates that Ae. aegypti moved first from Africa to the Americas and then to Asia. ABC analysis was unable to verify this colonization route, possibly because the genetic signal of admixture obscures the true colonization pathway. By increasing genetic diversity and forming novel allelic combinations, divergence and historical admixture within Africa could have provided the adaptive potential needed for the successful worldwide spread of Ae. aegypti. PMID:27439067

  9. Ecotoxicological assessment of pyriproxyfen under environmentally realistic exposure conditions of integrated vector management for Aedes aegypti control in Brazil.

    PubMed

    Caixeta, Evelyn Siqueira; Silva, Carolina Fabiano; Santos, Vanessa Santana Vieira; Olegário de Campos Júnior, Edimar; Pereira, Boscolli Barbosa

    2016-01-01

    There is increasing concern to control Aedes aegypti mosquito exposure in developing countries such as Brazil. Thus, integrated approaches using a combination of chemical, pyriproxyfen larvicide, and biological, Xiphophorus maculatus, larvivorous fish species approaches are necessary and important to initiate more effective control against mosquito borne diseases. This study describes the toxicological effects of pyriproxyfen larvicide on the fish Xiphophorus maculatus, the larvivorous fish species employed to destroy A. aegypti larvae mosquito species. The toxicological profile of pyriproxyfen was evaluated to determine compatible concentrations for the use of this chemical in conjunction with X. maculatus as an integrated approach against A. aegypti mosquito larvae. According to the behavioral responses of fish, the no-observed-effect concentration (NOEC) and lowest-observed-effect concentration (LOEC) of pyriproxyfen were determined to be 2.5 and 5 µg/L, respectively. Bioassays indicated that although pyriproxyfen was not lethal to X. maculatus, the application of this compound at a concentration reported to control the emergence of A. aegypti larvae may decrease the swimming performance of larvivorous fish and their ability to ingest A. aegypti L4 larvae. Data show that integration of biological larvivorous fish and chemical larvicides is more effective when the appropriate larvicide concentration is utilized. PMID:27458879

  10. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance

    PubMed Central

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-01-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring. PMID:25946154

  11. Genetics and Morphology of Aedes aegypti (Diptera: Culicidae) in Septic Tanks in Puerto Rico

    PubMed Central

    SOMERS, GERARD; BROWN, JULIA E.; BARRERA, ROBERTO; POWELL, JEFFREY R.

    2012-01-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50–100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future. PMID:22238867

  12. Association of Human Immune Response to Aedes aegypti Salivary Proteins with Dengue Disease Severity

    PubMed Central

    Machain-Williams, Carlos; Mammen, Mammen P; Zeidner, Nordin S; Beaty, Barry J; Prenni, Jessica E.; Nisalak, Ananda

    2011-01-01

    SUMMARY Dengue viruses (DENV; family Flaviviridae, genus Flavivirus) are transmitted by Aedes aegypti mosquitoes and can cause dengue fever (DF), a relatively benign disease, or more severe dengue haemorrhagic fever (DHF). Arthropod saliva contains proteins delivered into the bite wound that can modulate the host haemostatic and immune responses to facilitate the intake of a blood meal. The potential effects on DENV infection of previous exposure to Ae. aegypti salivary proteins have not been investigated. We collected Ae. aegypti saliva, concentrated the proteins, and fractionated them by non-denaturing polyacrylamide gel electrophoresis (PAGE). By use of immunoblots we analysed reactivity with the mosquito salivary proteins (MSP) of sera from 96 Thai children diagnosed with secondary DENV infections leading either to DF or DHF, or with no DENV infection, and found that different proportions of each patient group had serum antibodies reactive to specific Ae. aegypti salivary proteins. Our results suggest that prior exposure to MSP might play a role in the outcome of DENV infection in humans. PMID:21995849

  13. TALEN-based gene disruption in the dengue vector Aedes aegypti.

    PubMed

    Aryan, Azadeh; Anderson, Michelle A E; Myles, Kevin M; Adelman, Zach N

    2013-01-01

    In addition to its role as the primary vector for dengue viruses, Aedes aegypti has a long history as a genetic model organism for other bloodfeeding mosquitoes, due to its ease of colonization, maintenance and reproductive productivity. Though its genome has been sequenced, functional characterization of many Ae. aegypti genes, pathways and behaviors has been slow. TALE nucleases (TALENs) have been used with great success in a number of organisms to generate site-specific DNA lesions. We evaluated the ability of a TALEN pair to target the Ae. aegypti kmo gene, whose protein product is essential in the production of eye pigmentation. Following injection into pre-blastoderm embryos, 20-40% of fertile survivors produced kmo alleles that failed to complement an existing kh(w) mutation. Most of these individuals produced more than 20% white-eyed progeny, with some producing up to 75%. Mutant alleles were associated with lesions of 1-7 bp specifically at the selected target site. White-eyed individuals could also be recovered following a blind intercross of G1 progeny, yielding several new white-eyed strains in the genetic background of the sequenced Liverpool strain. We conclude that TALENs are highly active in the Ae. aegypti germline, and have the potential to transform how reverse genetic experiments are performed in this important disease vector. PMID:23555893

  14. Stormwater Drains and Catch Basins as Sources for Production of Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Arana-Guardia, Roger; Baak-Baak, Carlos M.; Loroño-Pino, María Alba; Machain-Williams, Carlos; Beaty, Barry J.; Eisen, Lars; García-Rejón, Julián E.

    2014-01-01

    We present data showing that structures serving as drains and catch basins for stormwater are important sources for production of the mosquito arbovirus vectors Aedes aegypti and Culex quinquefasciatus in Mérida City, México. We examined 1,761 stormwater drains – located in 45 different neighborhoods spread across the city – over dry and wet seasons from March 2012–March 2013. Of the examined stormwater drains, 262 (14.9%) held water at the time they were examined and 123 yielded mosquito immatures. In total, we collected 64,560 immatures representing nine species. The most commonly encountered species were Cx. quinquefasciatus (n=39,269) and Ae. aegypti (n=23,313). Ae. aegypti and Cx. quinquefasciatus were collected during all 11 months when we found water-filled stormwater drains, and both were found in stormwater drains located throughout Mérida City. We also present data for associations between structural characteristics of stormwater drains or water-related characteristics and the abundance of mosquito immatures. In conclusion, stormwater drains produce massive numbers of Ae. aegypti and Cx. quinquefasciatus across Mérida City, both in the wet and dry seasons, and represent non-residential development sites that should be strongly considered for inclusion in the local mosquito surveillance and control program. PMID:24582840

  15. Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico.

    PubMed

    Somers, Gerard; Brown, Julia E; Barrera, Roberto; Powell, Jeffrey R

    2011-11-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50-100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future. PMID:22238867

  16. Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer

    PubMed Central

    Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan

    2016-01-01

    Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (P< 0.05) at all 3 concentration tested. Conclusion: Litsea oil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295

  17. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance.

    PubMed

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-06-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring. PMID:25946154

  18. Complex Modulation of the Aedes aegypti Transcriptome in Response to Dengue Virus Infection

    PubMed Central

    Bonizzoni, Mariangela; Dunn, W. Augustine; Campbell, Corey L.; Olson, Ken E.; Marinotti, Osvaldo; James, Anthony A.

    2012-01-01

    Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1–4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes. PMID:23209765

  19. Novel estimates of Aedes aegypti (Diptera: Culicidae) population size and adult survival based on Wolbachia releases.

    PubMed

    Ritchie, Scott A; Montgomery, Brian L; Hoffmann, Ary A

    2013-05-01

    The size of Aedes aegypti (L.) mosquito populations and adult survival rates have proven difficult to estimate because of a lack of consistent quantitative measures to equate sampling methods, such as adult trapping, to actual population size. However, such estimates are critical for devising control methods and for modeling the transmission of dengue and other infectious agents carried by this species. Here we take advantage of recent releases of Wolbachia-infected Ae. aegypti coupled with the results of ongoing monitoring to estimate the size of adult Ae. aegypti populations around Cairns in far north Queensland, Australia. Based on the association between released adults infected with Wolbachia and data from Biogents Sentinel traps, we show that data from two locations are consistent with population estimates of approximately 5-10 females per house and daily survival rates of 0.7-0.9 for the released Wolbachia-infected females. Moreover, we estimate that networks of Biogents Sentinel traps at a density of one per 15 houses capture around 5-10% of the adult population per week, and provide a rapid estimate of the absolute population size of Ae. aegypti. These data are discussed with respect to release rates and monitoring in future Wolbachia releases and also the levels of suppression required to reduce dengue transmission. PMID:23802459

  20. Laboratory and field assessment of some kairomone blends for host-seeking Aedes aegypti.

    PubMed

    Williams, Craig R; Bergbauer, Ramona; Geier, Martin; Kline, Daniel L; Bernier, Ulrich R; Russell, Richard C; Ritchie, Scott A

    2006-12-01

    Using laboratory Y-tube olfactometers, the attractiveness of lactic acid and 2 kairomone blends from the United States Department of Agriculture (USDA) and BioGents GmbH (BG) was assessed for attractiveness to Aedes aegypti. Four geographically disparate populations were assessed: North Queensland Australia (NQA), Florida USA, Minas Gerais Brazil (MGB), and Singapore. In descending order, populations were attracted to USDA, BG blends, and lactic acid. MGB was poorly attracted to lactic acid alone. The blends were less attractive than human odor. Proprietary blends were modified, and their attractiveness was assessed to find the optimum attractive mixture for NQA. Adding acetone to BG, and ammonia and caproic acid to USDA, improved attractiveness in the laboratory. Field attractiveness was assessed by coupling the blends with a newly developed BG-Sentinel Ae. aegypti trap. Trials were carried out using the BG blend, BG blend plus acetone, USDA blend, USDA blend plus ammonia and caproic acid, and a control trap with no kairomones. The traps were highly effective, with mean 24-h collections up to 11.15 Ae. aegypti per trap, and this species made up 91.7% of collections. However, the effectiveness of the unbaited control trap indicated that the BG-Sentinel has visual attractive properties for Ae. aegypti and that the kairomone lures added little to trap performance in NQA. PMID:17304931

  1. Transcript profiling of the meiotic drive phenotype in testis of Aedes aegypti using suppressive subtractive hybridization.

    PubMed

    Shin, Dongyoung; Jin, Lizhong; Lobo, Neil F; Severson, David W

    2011-09-01

    The meiotic drive gene in Aedes aegypti is tightly linked with the sex determination locus on chromosome 1, and causes highly male-biased sex ratios. We prepared cDNA libraries from testes from the Ae. aegypti T37 strain (driving) and RED strain (non-driving), and used suppressive subtraction hybridization techniques to enrich for T37 testes-specific transcripts. Expressed sequence tags (ESTs) were obtained from a total of 2784 randomly selected clones from the subtracted T37 (subT37) library as well as the primary libraries for each strain (pT37 and pRED). Sequence analysis identified a total of 171 unique genes in the subT37 library and 299 unique genes among the three libraries. The majority of genes enriched in the subT37 library were associated with signal transduction, development, reproduction, metabolic process and cell cycle functions. Further, as observed with meiotic drive systems in Drosophila and mouse, a number of these genes were associated with signaling cascades that involve the Ras superfamily of regulatory small GTPases. Differential expression of several of these genes was verified in Ae. aegypti pupal testes using qRT-PCR. This study increases our understanding of testes gene expression enriched in adult males from the meiotic drive strain as well as insights into the basic testes transcriptome in Ae. aegypti. PMID:21708167

  2. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    PubMed Central

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  3. Post-integration stability of piggyBac in Aedes aegypti.

    PubMed

    Sethuraman, Nagaraja; Fraser, Malcolm J; Eggleston, Paul; O'Brochta, David A

    2007-09-01

    The post-integration activity of piggyBac transposable element gene vectors in Aedes aegypti mosquitoes was tested under a variety of conditions. The embryos from five independent transgenic lines of Ae. aegypti, each with a single integrated non-autonomous piggyBac transposable element gene vector, were injected with plasmids containing the piggyBac transposase open-reading frame under the regulatory control of the Drosophila melanogaster hsp70 promoter. No evidence for somatic remobilization was detected in the subsequent adults whereas somatic remobilization was readily detected when similar lines of transgenic D. melanogaster were injected with the same piggyBac transposase-expressing plasmid. Ae. aegypti heterozygotes of piggyBac reporter-containing transgenes and piggyBac transposase-expressing transgenes showed no evidence of somatic and germ-line remobilization based on phenotypic and molecular detection methods. The post-integration mobility properties of piggyBac in Ae. aegypti enhance the utility of this gene vector for certain applications, particularly those where any level of vector remobilization is unacceptable. PMID:17681233

  4. Insecticide susceptibility of Aedes aegypti populations from Senegal and Cape Verde Archipelago

    PubMed Central

    2012-01-01

    Background Two concomitant dengue 3 (DEN-3) epidemics occurred in Cape Verde Archipelago and Senegal between September and October 2009. Aedes aegypti was identified as the vector of these epidemics as several DEN-3 virus strains were isolated from this species in both countries. The susceptibility to pyrethroids, organochlorine, organophosphates and carbamate was investigated in two field strains of Aedes aegypti from both countries using WHO diagnostic bioassay kits in order to monitor their the current status of insecticide susceptibility. Findings The two tested strains were highly resistant to DDT. The Cape Verde strain was found to be susceptible to all others tested insecticides except for propoxur 0.1%, which needs further investigation. The Dakar strain was susceptible to fenitrothion 1% and permethrin 0.75%, but displayed reduced susceptibility to deltamethrin, lambda-cyhalothrin and propoxur. Conclusions As base-line results, our observations stress a careful management of insecticide use for the control of Ae. aegypti. Indeed, they indicate that DDT is no longer efficient for the control of Ae. aegypti populations in Cape Verde and Dakar and further suggest a thorough follow-up of propoxur susceptibility status in both sites and that of deltamethrin and lambda-cyhalothrin in Ae. aegypti populations in Dakar. Thus, regular monitoring of susceptibility is greatly needed as well as the knowing if this observed resistance/susceptibility is focal or not and for observed resistance, the use of biochemical methods is needed with detailed comparison of resistance levels over a large geographic area. Keywords Aedes aegypti, Insecticides, Susceptibility, Cape Verde, Senegal PMID:23088621

  5. Interpopulation differences in competitive effect and response of the mosquito Aedes aegypti and resistance to invasion by a superior competitor

    PubMed Central

    Juliano, S. A.

    2012-01-01

    Geographic variation in species interactions can have major effects on species distributions and can be important for the resistance of resident communities to invasive species. We tested the hypothesis that coexistence or replacement of a resident North American mosquito Aedes aegypti with the invasive Aedes albopictus is affected by interpopulation variation in the inherent competitive ability of A. aegypti and variation in the fecundity–size relationship. We postulated that such variation creates differential population-level outcomes of competition with A. albopictus. We compared competitive abilities of eight North American populations of A. aegypti, four populations sympatric to A. albopictus, and four populations allopatric to A. albopictus. Competition among larvae from each A. aegypti population and a single A. albopictus population was tested in laboratory microcosms in a response-surface design. We found origin of A. aegypti influences its competitive response to competition from A. albopictus and competitive effect on A. albopictus. A. aegypti from allopatric sites preformed better in competition with A. albopictus than did A. aegypti from sympatric sites because they had a stronger average effect on A. albopictus. This average was strongly influenced by the allopatric population from Miami. Competitive effect and response were uncorrelated among populations, indicating inconsistent ranking of A. aegypti in competitive effect and response. Although A. albopictus is generally a superior competitor to A. aegypti, a stronger competitive effect of particular A. aegypti populations on invading A. albopictus may contribute to competition-mediated biotic resistance to the invader. These results suggest that interpopulation variation in competitive ability of A. aegypti may contribute to failure of A. albopictus to invade parts of the southeastern United States and offer evidence of a contribution to biotic resistance by an inferior competitor. Geographic

  6. An Integrated Linkage, Chromosome, and Genome Map for the Yellow Fever Mosquito Aedes aegypti

    PubMed Central

    Timoshevskiy, Vladimir A.; Severson, David W.; deBruyn, Becky S.; Black, William C.; Sharakhov, Igor V.; Sharakhova, Maria V.

    2013-01-01

    Background Aedes aegypti, the yellow fever mosquito, is an efficient vector of arboviruses and a convenient model system for laboratory research. Extensive linkage mapping of morphological and molecular markers localized a number of quantitative trait loci (QTLs) related to the mosquito's ability to transmit various pathogens. However, linking the QTLs to Ae. aegypti chromosomes and genomic sequences has been challenging because of the poor quality of polytene chromosomes and the highly fragmented genome assembly for this species. Methodology/Principal Findings Based on the approach developed in our previous study, we constructed idiograms for mitotic chromosomes of Ae. aegypti based on their banding patterns at early metaphase. These idiograms represent the first cytogenetic map developed for mitotic chromosomes of Ae. aegypti. One hundred bacterial artificial chromosome clones carrying major genetic markers were hybridized to the chromosomes using fluorescent in situ hybridization. As a result, QTLs related to the transmission of the filarioid nematode Brugia malayi, the avian malaria parasite Plasmodium gallinaceum, and the dengue virus, as well as sex determination locus and 183 Mbp of genomic sequences were anchored to the exact positions on Ae. aegypti chromosomes. A linear regression analysis demonstrated a good correlation between positions of the markers on the physical and linkage maps. As a result of the recombination rate variation along the chromosomes, 12 QTLs on the linkage map were combined into five major clusters of QTLs on the chromosome map. Conclusion This study developed an integrated linkage, chromosome, and genome map—iMap—for the yellow fever mosquito. Our discovery of the localization of multiple QTLs in a few major chromosome clusters suggests a possibility that the transmission of various pathogens is controlled by the same genomic loci. Thus, the iMap will facilitate the identification of genomic determinants of traits responsible

  7. The Siren's Song: Exploitation of Female Flight Tones to Passively Capture Male Aedes aegypti (Diptera: Culicidae).

    PubMed

    Johnson, Brian J; Ritchie, Scott A

    2016-01-01

    The need to capture male mosquitoes has intensified recently as a result of a number of male-based sterile insect technique (SIT) and population-modification programs focused on Aedes aegypti (L.) having initiated field releases. Here, we report the results of the successful exploitation of the attraction of male Ae. aegypti to female flight tones to enhance male collections in nonmechanical passive (nonbattery powered) Gravid Aedes Traps (GAT). Prior to field studies, male attraction to female flight tones of 484 and 560 Hz, as well as to a male flight tone of 715 Hz, were assessed in a series of controlled release-recapture and semifield trials. These trials determined that a pure tone of 484 Hz was significantly more attractive to free-flying males than the other flight tones and enabled their collection in sound-baited GATs (ca. 95% capture rate after 2 h; 484 Hz at 65 dB). In contrast, gravid females were unresponsive to male or female flight tones and were evenly distributed among sound-baited and control GATs. Importantly, under normal field conditions sound-baited GATs (484 Hz at 70 dB) captured significantly more male Ae. aegypti per 24-h trap interval (1.3 ± 0.37) than controls (0.2 ± 0.13). Overall, sound-bated GATs captured approximately twice as many Ae. aegypti (male and female; 3.0 ± 0.68 per interval, 30 total) than controls (1.5 ± 0.56 per interval, 15 total). These results reveal that sound-baited GATs are a simple and effective surveillance tool for Ae. aegypti that would allow current male-based SIT and population-modification programs to effectively monitor males in their target populations. PMID:26502754

  8. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Walker, Emma C.; Uribe Yepes, Alexander; Dario Velez, Ivan; Christensen, Bruce M.; Osorio, Jorge E.

    2016-01-01

    Background New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. Methodology/Principal Findings Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. Conclusions/Significance These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this

  9. Genetic Diversity and Phylogeny of Aedes aegypti, the Main Arbovirus Vector in the Pacific

    PubMed Central

    Calvez, Elodie; Guillaumot, Laurent; Millet, Laurent; Marie, Jérôme; Bossin, Hervé; Rama, Vineshwaran; Faamoe, Akata; Kilama, Sosiasi; Teurlai, Magali; Mathieu-Daudé, Françoise; Dupont-Rouzeyrol, Myrielle

    2016-01-01

    Background The Pacific region is an area unique in the world, composed of thousands of islands with differing climates and environments. The spreading and establishment of the mosquito Aedes aegypti in these islands might be linked to human migration. Ae. aegypti is the major vector of arboviruses (dengue, chikungunya and Zika viruses) in the region. The intense circulation of these viruses in the Pacific during the last decade led to an increase of vector control measures by local health authorities. The aim of this study is to analyze the genetic relationships among Ae. aegypti populations in this region. Methodology/Principal Finding We studied the genetic variability and population genetics of 270 Ae. aegypti, sampled from 9 locations in New Caledonia, Fiji, Tonga and French Polynesia by analyzing nine microsatellites and two mitochondrial DNA regions (CO1 and ND4). Microsatellite markers revealed heterogeneity in the genetic structure between the western, central and eastern Pacific island countries. The microsatellite markers indicate a statistically moderate differentiation (FST = 0.136; P < = 0.001) in relation to island isolation. A high degree of mixed ancestry can be observed in the most important towns (e.g. Noumea, Suva and Papeete) compared with the most isolated islands (e.g. Ouvea and Vaitahu). Phylogenetic analysis indicated that most of samples are related to Asian and American specimens. Conclusions/Significance Our results suggest a link between human migrations in the Pacific region and the origin of Ae. aegypti populations. The genetic pattern observed might be linked to the island isolation and to the different environmental conditions or ecosystems. PMID:26799213

  10. Spatial Patterns of High Aedes aegypti Oviposition Activity in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet Lilia; Más, Guillermo; Vergara-Cid, Carolina; Lanfri, Mario Alberto; Ludueña-Almeida, Francisco; Scavuzzo, Carlos Marcelo; Introini, María Virginia; Zaidenberg, Mario; Almirón, Walter Ricardo

    2013-01-01

    Background In Argentina, dengue has affected mainly the Northern provinces, including Salta. The objective of this study was to analyze the spatial patterns of high Aedes aegypti oviposition activity in San Ramón de la Nueva Orán, northwestern Argentina. The location of clusters as hot spot areas should help control programs to identify priority areas and allocate their resources more effectively. Methodology Oviposition activity was detected in Orán City (Salta province) using ovitraps, weekly replaced (October 2005–2007). Spatial autocorrelation was measured with Moran’s Index and depicted through cluster maps to identify hot spots. Total egg numbers were spatially interpolated and a classified map with Ae. aegypti high oviposition activity areas was performed. Potential breeding and resting (PBR) sites were geo-referenced. A logistic regression analysis of interpolated egg numbers and PBR location was performed to generate a predictive mapping of mosquito oviposition activity. Principal Findings Both cluster maps and predictive map were consistent, identifying in central and southern areas of the city high Ae. aegypti oviposition activity. A logistic regression model was successfully developed to predict Ae. aegypti oviposition activity based on distance to PBR sites, with tire dumps having the strongest association with mosquito oviposition activity. A predictive map reflecting probability of oviposition activity was produced. The predictive map delimitated an area of maximum probability of Ae. aegypti oviposition activity in the south of Orán city where tire dumps predominate. The overall fit of the model was acceptable (ROC = 0.77), obtaining 99% of sensitivity and 75.29% of specificity. Conclusions Distance to tire dumps is inversely associated with high mosquito activity, allowing us to identify hot spots. These methodologies are useful for prevention, surveillance, and control of tropical vector borne diseases and might assist National Health

  11. History of domestication and spread of Aedes aegypti--a review.

    PubMed

    Powell, Jeffrey R; Tabachnick, Walter J

    2013-01-01

    The adaptation of insect vectors of human diseases to breed in human habitats (domestication) is one of the most important phenomena in medical entomology. Considerable data are available on the vector mosquito Aedes aegypti in this regard and here we integrate the available information including genetics, behaviour, morphology, ecology and biogeography of the mosquito, with human history. We emphasise the tremendous amount of variation possessed by Ae. aegypti for virtually all traits considered. Typological thinking needs to be abandoned to reach a realistic and comprehensive understanding of this important vector of yellow fever, dengue and Chikungunya. PMID:24473798

  12. Methods for TALEN evaluation, use, and mutation detection in the mosquito Aedes aegypti

    PubMed Central

    Basu, Sanjay; Aryan, Azadeh; Haac, Mary Etna; Myles, Kevin M.; Adelman, Zach N.

    2016-01-01

    The generation and study of transgenic Aedes aegypti mosquitoes provides an essential tool for elucidating the complex molecular biology of this important vector. Within the field, genetic manipulation has now surpassed the proof of principle stage and is now utilised in both applied and theoretical vector control strategies. The application of new instruments, technologies and techniques allows ever more controlled experiments to be conducted. In this text we describe microinjection of Ae. aegypti embryos in the context of evaluating and performing genomic editing with transcription activator-like effector nucleases (TALENs). PMID:26443221

  13. Toxicities of certain larvicides to resistant and susceptible Aedes aegypti

    PubMed Central

    Klassen, W.; Keppler, W. J.; Kitzmiller, J. B.

    1965-01-01

    In a study of the toxicological characteristics of dieldrin-resistant and DDT-resistant strains of Aedes aegypti, combined with an evaluation of certain larvicides, 14 cyclodienes, 13 DDT-type compounds, 18 organophosphorus compounds, several carbamates and a number of other compounds were tested against larvae of A. aegypti. Telodrin and GC-9160 proved to be toxic against a highly dieldrin-resistant strain. Against highly DDT-resistant strains the toxicity of DDT could be enhanced by piperonyl butoxide, DMC or WARF, that of deutero-DDT by DMC, and that of methoxychlor by piperonyl butoxide. Prolan and Bulan were found to be slightly less effective than deutero-DDT against highly DDT-resistant strains. Among the more recent organophosphorus compounds found to exceed fenthion in toxicity are AC-52160, Stauffer N-2404, Folithion, Bayer 52957 and SD-7438. The effectiveness of dimethrin could be enhanced with piperonyl butoxide. PMID:5294255

  14. Effect of confertifolin from Polygonum hydropiper L. against dengue vector mosquitoes Aedes aegypti L.

    PubMed

    Maheswaran, Rajan; Ignacimuthu, Savarimuthu

    2015-06-01

    The essential oil from the leaves of Polygonum hydropiper L. (Polygonaceae) was tested against Aedes aegypti L. The LC50 values were 190.72 and 234.37 ppm against second and fourth instar larvae of A. aegypti, respectively. Confertifolin (6,6,9a-trimethy l-4,5,5a,6,7,8,9,9a-octahydronaphtho [1,2-c] furan-3 (1H)-one) was isolated from the essential oil of P. hydropiper leaves using silica gel column chromatography. The LC50 values were 2.90 and 2.96 ppm for second and fourth instar larvae of A. aegypti, respectively. At 10 ppm, the concentration of confertifolin showed ovicidal activity of 100, 100, and 77.6 % on 0-6, 6-12, and 12-18 h old eggs; the repellent activity was 323.2 min; and oviposition deterrent activity was 97.52 % and adulticidal activity was 100 % against A. aegypti. The results were statistically significant at P < 0.05 level. The results suggested that confertifolin as an effective major constituent against A. aegypti and might be considered as a potent source for the production of superior natural mosquitocides. PMID:25523289

  15. Insecticide susceptibility of the dengue vector, Aedes aegypti (L.) in Metropolitan Bangkok.

    PubMed

    Komalamisra, Narumon; Srisawat, Raweewan; Phanbhuwong, Theerawit; Oatwaree, Sompis

    2011-07-01

    Mosquito larvae were collected from the houses of dengue infected patients in Bangkok, Thailand from 55 sites (36 out of the 50 districts of Metropolitan Bangkok). Aedes aegypti larvae were tested against temephos using WHO bioassay techniques. Adult mosquitoes were tested for susceptibility to permethrin, deltamethrin, cyfluthrin, malathion and DDT using WHO diagnostic doses. Most of the larvae tested were susceptible to temephos. Only few specimens were resistant to temephos. Most adult mosquitoes were highly susceptible to malathion. Deltamethrin resistance was seen in 6 districts of Bangkok. Variable levels of susceptibility were seen with cyfluthrin. Most of the specimens showed resistance to permethrin and all specimens were resistant to DDT. PMID:22299463

  16. Host-feeding pattern of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in heterogeneous landscapes of South Andaman, Andaman and Nicobar Islands, India.

    PubMed

    Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T

    2015-09-01

    Mosquito foraging behavior is a determinant of host-vector contact and has an impact on the risk of arboviral epidemics. Therefore, blood-feeding patterns is a useful tool for assessing the role in pathogen transmission by vector mosquitoes. Competent vectors of dengue and chikungunya viz. Aedes aegypti and Aedes albopictus are widely prevalent in the Andaman and Nicobar archipelago. Considering the vector potential, medical importance of both these mosquito species and lack of information on host-feeding patterns, blood meal analysis of both these vector mosquitoes was undertaken. Biogents Sentinel traps were used for sampling blooded mosquitoes, for identifying the source of blood meal by agar gel-precipitin test. We identified vertebrate source of 147 and 104 blood meals in Ae. aegypti and Ae. albopictus from heterogeneous landscapes in South Andaman district. Results revealed that Ae. aegypti (88 %) and Ae. albopictus (49 %) fed on human and a small proportion on mammals and fowls, indicative of predominance of anthropophilism. Ae. aegypti predominantly fed on human blood (94.2 %-densely built urban, 89.8 %-low vegetation coverage, and 78.3 %-medium vegetation coverage). Anthropophilism in Ae. albopictus was maximal in densely built urban (90.5 %) and progressively decreased from low vegetation-vegetation/forested continuum (66.7, 36.4, and 8.7 %), indicating plasticity in feeding across these landscapes. Epidemiological significance of the findings is discussed. PMID:26220560

  17. The effect of Piper aduncum Linn. (Family: Piperaceae) essential oil as aerosol spray against Aedes aegypti (L.) and Aedes albopictus Skuse.

    PubMed

    Misni, Norashiqin; Othman, Hidayatulfathi; Sulaiman, Sallehudin

    2011-08-01

    The bioefficacy of Piper aduncum L. essential oil formulated in aerosol cans was evaluated against Aedes aegypti and Aedes albopictus in a simulated room. The aerosol spray test was based on the Malaysian test standard for aerosol (MS 1221:1991UDC 632.982.2 modified from WHO 2009 methodology) and examined the knockdown effect within 20 minutes of exposure. Mortality rate after 24 hour of holding period was also determined. A commercial aerosol spray (0.09% prallethrin 0.05% d-phenothrin) was also tested as a comparison. Our results showed that the knockdown effect of the commercial aerosol spray and P. aduncum essential oil spray (8% and 10% concentrations) was significantly higher in Ae. albopictus adult females, when compared with that of Ae. aegypti adult females (P<0.05). There was a significant difference in knockdown between commercial aerosol spray and essential oil spray for both Aedes spp. (P<0.05). The essential oil induced significantly higher mortality in Ae. aegypti (80%) than in Ae. albopictus (71.6%) (P<0.05). The commercial aerosol spray caused 97.7% and 86.5% mortality against Ae. aegypti and Ae. albopictus respectively (P<0.05). Based on these data, P. aduncum essential oil has the potential to be used as an aerosol spray against Aedes spp. PMID:22041743

  18. Selective oviposition by Aedes aegypti (Diptera: culicidae) in response to Mesocyclops longisetus (Copepoda: Cyclopoidea) under laboratory and field conditions.

    PubMed

    Torres-Estrada, J L; Rodríguez, M H; Cruz-López, L; Arredondo-Jimenez, J I

    2001-03-01

    The influence of predacious Mesocyclops longisetus Thiebaud on the selection of oviposition sites by prey Aedes aegypti (L.) was studied under laboratory and field conditions. In both cases, gravid Ae. aegypti females were significantly more attracted to ovitraps containing copepods or to ovitraps with water in which copepods were held previously than to distilled water. Monoterpene and sesquiterpene compounds including 3-carene, alpha-terpinene, alpha-copaene, alpha-longipinene, alpha-cedrene, and delta-cadinene were found in hexane extracts of copepods by gas chromatography and mass spectrometry analyses. These compounds may be responsible for attracting gravid Ae. aegypti females and may increase the number of potential prey for the copepod. PMID:11296821

  19. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations. PMID:25968596

  20. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-12-01

    Dengue fever is a serious problem in Mexico and vector control has not been effective enough at preventing outbreaks. Malaria is largely under control, but it is important that new control measures continue to be developed. Novaluron, a novel host-specific insect growth regulator and chitin synthesis inhibitor, has proved to be effective against agricultural pests, but its efficacy against larval mosquito vectors under field conditions remains unknown. In accordance with the World Health Organization Pesticide Evaluation Scheme, phase I, II and III studies were conducted to evaluate the efficacy and residual effect of Novaluron (Rimon 10 EC, Makhteshim, Beer-Sheva, Israel) on the malaria vectors Anopheles albimanus Wiedemann (Diptera: Culicidae) and Anopheles pseudopunctipennis Theobald, the dengue vectors Aedes aegypti (L) and Aedes albopictus Skuse and the nuisance mosquito Culex quinquefasciatus Say. Laboratory susceptibility tests yielded diagnostic concentrations for all five target species. Field trials to identify the optimum field dosage of Novaluron against Anopheles mosquitoes were carried out under semi-natural conditions in artificial plots and in vessels with wild mosquitoes. Efficacy was measured by monitoring mortality of larvae and pupae and the percentage of inhibition of emergence from floating cages. Dosages of Novaluron for field tests were based on pupal LC(99) (lethal concentration 99%) of An. pseudopunctipennis (0.166 mg/L) in plots and average pupal LC(99) of Ae. aegypti and Ae. albopictus (0.55 mg/L). At all dosages tested, Novaluron significantly reduced larval populations of An. albimanus, Culex coronator Dyar & Knab, Ae. albopictus and Cx. quinquefasciatus by approximately 90%, inhibited adult emergence of An. albimanus and An. pseudopunctipennis by approximately 97% for almost 4 months in experimental plots, and inhibited adult emergence of Ae. aegypti and Ae. albopictus by approximately 97% for up to 14 weeks. Recommended dosages of

  1. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    NASA Astrophysics Data System (ADS)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  2. The Effects of Midgut Serine Proteases on Dengue Virus Type 2 Infectivity of Aedes aegypti

    PubMed Central

    Brackney, Doug E.; Foy, Brian D.; Olson, Ken E.

    2009-01-01

    Dengue viruses (DENV) cause significant morbidity and mortality worldwide and are transmitted by the mosquito Aedes aegypti. Mosquitoes become infected after ingesting a viremic bloodmeal, and molecular mechanisms involved in bloodmeal digestion may affect the ability of DENV to infect the midgut. We used RNA interference (RNAi) to silence expression of four midgut serine proteases and assessed the effect of each RNAi phenotype on DENV-2 infectivity of Aedes aegypti. Silencing resulted in significant reductions in protease mRNA levels and correlated with a reduction in activity except in the case of late trypsin. RNA silencing of chymotrypsin, early and late trypsin had no effect on DENV-2 infectivity. However, silencing of 5G1 or the addition of soybean trypsin inhibitor to the infectious bloodmeals significantly increased midgut infection rates. These results suggest that some midgut serine proteases may actually limit DENV-2 infectivity of Ae. aegypti. PMID:18689635

  3. Insecticidal and genotoxic potential of two semi-synthetic derivatives of dillapiole for the control of Aedes (Stegomyia) aegypti (Diptera: Culicidae).

    PubMed

    Domingos, Pedro Rauel Cândido; da Silva Pinto, Ana Cristina; dos Santos, Joselita Maria Mendes; Rafael, Míriam Silva

    2014-09-15

    The effects of two semi-synthetic dillapiole derivatives, ethyl-ether dillapiole and n-butyl ether dillapiole, on eggs and larvae of Aedes aegypti were studied in view of the need for expansion and renovation of strategic action to control this mosquito - the vector of Dengue virus -, which currently shows a high resistance to chemical insecticides. Eggs and third-instar larvae of A. aegypti that had been exposed to different concentrations of these two compounds showed toxicity and susceptibility, with 100% mortality. Classical cytogenetic assays showed genotoxicity caused by the two compounds in A. aegypti from the cumulative effect of nuclear abnormalities, indicating that these derivatives may be potential alternatives to control A. aegypti. PMID:25308546

  4. [Larva migrans].

    PubMed

    Chabasse, D; Le Clec'h, C; de Gentile, L; Verret, J L

    1995-01-01

    Larbish, cutaneous larva migrans or creeping eruption, is a serpiginous cutaneous eruption caused by skin penetration of infective larva from various animal nematodes. Hookworms (Ancylostoma brasiliense, A. caninum) are the most common causative parasites. They live in the intestines of dogs and cats where their ova are deposited in the animal feces. In sandy and shady soil, when temperature and moisture are elevated, the ova hatch and mature into infective larva. Infection occurs when humans have contact with the infected soil. Infective larva penetrate the exposed skin of the body, commonly around the feet, hands and buttocks. In humans, the larva are not able to complete their natural cycle and remain trapped in the upper dermis of the skin. The disease is widespread in tropical or subtropical regions, especially along the coast on sandy beaches. The diagnosis is easy for the patient who is returning from a tropical or subtropical climate and gives a history of beach exposure. The characteristic skin lesion is a fissure or erythematous cord which is displaced a few millimeters each day in a serpiginous track. Scabies, the larva currens syndrome due to Strongyloides stercoralis, must be distinguished from other creeping eruptions and subcutaneous swelling lesions caused by other nematodes or myiasis. Medical treatments are justified because it shortens the duration of the natural evolution of the disease. Topical tiabendazole is safe for localized invasions, but prolonged treatment may be necessary. Oral thiabendazole treatment for three days is effective, but sometimes is associated with adverse effects. Trials using albendazole for one or four consecutive days appear more efficacious. More recent trials using ivermectine showed that a single oral dose can cure 100% of the patients; thus, this drug looks very promising as a new form of therapy. Individual prophylaxis consists of avoiding skin contact with soil which has been contaminated with dog or cat feces

  5. Excito-repellency of essential oils against an Aedes aegypti (L.) field population in Thailand.

    PubMed

    Boonyuan, Wasana; Grieco, John P; Bangs, Michael J; Prabaripai, Atchariya; Tantakom, Siripun; Chareonviriyaphap, Theeraphap

    2014-06-01

    An investigation of the behavioral responses of Aedes aegypti (= Stegomyia aegypti) to various concentrations of essential oils (2.5, 5, and 10%) extracted from hairy basil (Ocimum americanum Linn), ginger (Zingiber officinale Roscoe), lemongrass (Cymbopogon citratus Stapf), citronella grass (Cymbopogon nardus Rendle), and plai (Zingiber cassumunar Roxb) were performed using an excito-repellency test chamber. Results showed that Ae. aegypti exhibited varying levels of escape response in both the contact and noncontact chambers in response to different essential oils. The magnitude of the behaviors changed in a dose-response fashion depending on the percent volume to volume concentration of oil used. A 2.5% concentration of hairy basil oil produced a significantly greater escape response compared to the other extracts at the same concentration (P< 0.05). Oils of ginger, lemongrass, and citronella produced stronger irritant and repellent responses at the median 5% concentration compared to the lowest and highest concentrations. There was marked suppression of escape for both contact and noncontact tests using 10% concentrations of hairy basil, lemongrass, and citronella, with high knockdown for all three oils after 30 min. Hairy basil and lemongrass had the highest insecticidal activity to Ae. aegypti, with LC50 values of 6.3 and 6.7 percent, respectively. We conclude that the essential oils from native plants tested, and likely many other extracts found in plants, have inherent repellent and irritant qualities that should to be screened and optimized for their behavior-modifying properties against Ae. aegypti and other biting arthropods of public health and pest importance. PMID:24820563

  6. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus.

    PubMed

    Prajapati, Veena; Tripathi, A K; Aggarwal, K K; Khanuja, S P S

    2005-11-01

    Essential oils extracted from 10 medicinal plants were evaluated for larvicidal, adulticidal, ovicidal, oviposition-deterrent and repellent activities towards three mosquito species; Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. The essential oils of Juniperus macropoda and Pimpinella anisum were highly effective as both larvicidal and ovicidal. The essential oil of P. anisum showed toxicity against 4th instar larvae of A. stephensi and A. aegypti with equivalent LD95 values of 115.7 microg/ml, whereas it was 149.7 microg/ml against C. quinquefasciatus larvae. Essential oils of Zingiber officinale and Rosmarinus officinalis were found to be ovicidal and repellent, respectively towards the three mosquito species. The essential oil of Cinnamomum zeylanicum resulted into highest repellent (RD95) values of 49.6, 53.9 and 44.2 mg/mat against A. stephensi, A. aegypti and C. quinquefasciatus, respectively apart from oviposition-deterrent potential. PMID:16051081

  7. Proof of concept for a novel insecticide bioassay based on sugar feeding by adult Aedes aegypti (Stegomyia aegypti).

    PubMed

    Stell, F M; Roe, R M; Arellano, C; Kennedy, L; Thornton, H; Saavedra-Rodriguez, K; Wesson, D M; Black, W C; Apperson, C S

    2013-09-01

    Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae) is the principal vector of dengue and yellow fever viruses in tropical and subtropical regions of the world. Disease management is largely based on mosquito control achieved by insecticides applied to interior resting surfaces and through space sprays. Population monitoring to detect insecticide resistance is a significant component of integrated disease management programmes. We developed a bioassay method for assessing insecticide susceptibility based on the feeding activity of mosquitoes on plant sugars. Our prototype sugar-insecticide feeding bioassay system was composed of inexpensive, disposable components, contained minimal volumes of insecticide, and was compact and highly transportable. Individual mosquitoes were assayed in a plastic cup that contained a sucrose-permethrin solution. Trypan blue dye was added to create a visual marker in the mosquito's abdomen for ingested sucrose-permethrin solution. Blue faecal spots provided further evidence of solution ingestion. With the sugar-insecticide feeding bioassay, the permethrin susceptibility of Ae. aegypti females from two field-collected strains was characterized by probit analysis of dosage-response data. The field strains were also tested by forced contact of females with permethrin residues on filter paper. Dosage-response patterns were similar, indicating that the sugar-insecticide feeding bioassay had appropriately characterized the permethrin susceptibility of the two strains. PMID:23077986

  8. Edhazardia aedis, a microsporidian pathogen of Aedes aegypti: Possibilities and challenges for classical biocontrol in South America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edhazardia aedis, a pathogen of Aedes aegypti, has a complex life cycle involving both horizontal and vertical transmission affecting two successive generations of the host. Usually, one sporulation sequence occurs in the adult female (infected orally as a larva) and results in the formation of bin...

  9. Inheritance Pattern of Temephos Resistance, an Organophosphate Insecticide, in Aedes aegypti (L.).

    PubMed

    Shetty, Vinaya; Sanil, Deepak; Shetty, N J

    2015-01-01

    The present paper reports the mode of inheritance of resistance in laboratory induced temephos resistant and susceptible strains of Ae. aegypti. Homozygous resistant and susceptible strains of Ae. aegypti were generated by selective inbreeding at a diagnostic dose of 0.02 mg/L of temephos. Genetic crosses were carried out between these strains to determine the inheritance pattern of temephos resistance. The log-dosage probit mortality relationships and degree of dominance (D) were calculated. The dosage-mortality (d-m) line of the F 1 generation was nearer to the resistant parent than the susceptible one. The "D" value was calculated as 0.15 indicating that the temephos resistant gene is incompletely dominant. The d-m lines of the F 2 generation and progeny from the backcross exhibited clear plateaus of mortality across a range of doses indicating that temephos resistance is controlled by a single gene. Comparison of the mortality data with the theoretical expectations using the χ (2) test revealed no significant difference, confirming a monogenic pattern of inheritance. In conclusion, the study provides evidence that the temephos resistance in Ae. aegypti follows an incompletely dominant and monogenic mode of inheritance. PMID:25861478

  10. Inheritance Pattern of Temephos Resistance, an Organophosphate Insecticide, in Aedes aegypti (L.)

    PubMed Central

    Shetty, N. J.

    2015-01-01

    The present paper reports the mode of inheritance of resistance in laboratory induced temephos resistant and susceptible strains of Ae. aegypti. Homozygous resistant and susceptible strains of Ae. aegypti were generated by selective inbreeding at a diagnostic dose of 0.02 mg/L of temephos. Genetic crosses were carried out between these strains to determine the inheritance pattern of temephos resistance. The log-dosage probit mortality relationships and degree of dominance (D) were calculated. The dosage-mortality (d-m) line of the F1 generation was nearer to the resistant parent than the susceptible one. The “D” value was calculated as 0.15 indicating that the temephos resistant gene is incompletely dominant. The d-m lines of the F2 generation and progeny from the backcross exhibited clear plateaus of mortality across a range of doses indicating that temephos resistance is controlled by a single gene. Comparison of the mortality data with the theoretical expectations using the χ2 test revealed no significant difference, confirming a monogenic pattern of inheritance. In conclusion, the study provides evidence that the temephos resistance in Ae. aegypti follows an incompletely dominant and monogenic mode of inheritance. PMID:25861478

  11. Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti

    PubMed Central

    Drake, Lisa L.; Rodriguez, Stacy D.; Hansen, Immo A.

    2015-01-01

    After taking vertebrate blood, female mosquitoes quickly shed excess water and ions while retaining and concentrating the mostly proteinaceous nutrients. Aquaporins (AQPs) are an evolutionary conserved family of membrane transporter proteins that regulate the flow of water and in some cases glycerol and other small molecules across cellular membranes. In a previous study, we found six putative AQP genes in the genome of the yellow fever mosquito, Ae. aegypti, and demonstrated the involvement of three of them in the blood meal-induced diuresis. Here we characterized AQP expression in different tissues before and after a blood meal, explored the substrate specificity of AQPs expressed in the Malpighian tubules and performed RNAi-mediated knockdown and tested for changes in mosquito desiccation resistance. We found that AQPs are generally down-regulated 24 hrs after a blood meal. Ae. aegypti AQP 1 strictly transports water, AQP 2 and 5 demonstrate limited solute transport, but primarily function as water transporters. AQP 4 is an aquaglyceroporin with multiple substrates. Knockdown of AQPs expressed in the MTs increased survival of Ae. aegypti under dry conditions. We conclude that Malpighian tubules of adult female yellow fever mosquitoes utilize three distinct AQPs and one aquaglyceroporin in their osmoregulatory functions. PMID:25589229

  12. Vacant Lots: Productive Sites for Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Mérida City, México

    PubMed Central

    BAAK-BAAK, CARLOS M.; ARANA-GUARDIA, ROGER; CIGARROA-TOLEDO, NOHEMI; LOROÑO-PINO, MARÍA ALBA; REYES-SOLIS, GUADALUPE; MACHAIN-WILLIAMS, CARLOS; BEATY, BARRY J.; EISEN, LARS; GARCÍA-REJÓN, JULIÁN E.

    2014-01-01

    We assessed the potential for vacant lots and other non-residential settings to serve as source environments for Aedes (Stegomyia) aegypti (L.) in Mérida City, México. Mosquito immatures were collected, during November 2011 – June 2013, from residential premises (n = 156 site visits) and non-residential settings represented by vacant lots (50), parking lots (18), and streets/sidewalks (28). Collections totaled 46,025 mosquito immatures of 13 species. Ae. aegypti was the most commonly encountered species accounting for 81.0% of total immatures, followed by Culex quinquefasciatus Say (12.1%). Site visits to vacant lots (74.0%) were more likely to result in collection of Ae. aegypti immatures that residential premises (35.9%). Tires accounted for 75.5% of Ae. aegypti immatures collected from vacant lots. Our data suggest that vacant lots should be considered for inclusion in mosquito surveillance and control efforts in Mérida City, as they often are located near homes, commonly have abundant vegetation, and frequently harbor accumulations of small and large discarded water-holding containers that we now have demonstrated to serve as development sites for immature mosquitoes. Additionally, we present data for associations of immature production with various container characteristics, such as storage capacity, water quality and physical location in the environment. PMID:24724299

  13. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus.

    PubMed

    Sathantriphop, Sunaiyana; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2015-12-01

    The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock-down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P<0.05) contact irritant escape responses between treatment and control for all tested compound concentrations, except with the minimum dose of picaridin (P>0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes. PMID:26611967

  14. Improving the effectiveness of three essential oils against Aedes aegypti (Linn.) and Anopheles dirus (Peyton and Harrison).

    PubMed

    Auysawasdi, Nutthanun; Chuntranuluck, Sawitri; Phasomkusolsil, Siriporn; Keeratinijakal, Vichien

    2016-01-01

    Repellency of essential oil extracted from Curcuma longa, Eucalyptus globulus, and Citrus aurantium at various concentrations (5, 10, 15, 20, and 25 %) with and without 5 % vanillin was evaluated against female mosquitoes: Aedes aegypti and Anopheles dirus. The comparisons were made with a commercial chemical repellent (N,N-diethyl-3-methylbenzamide (DEET) 25 % w/w; KOR YOR 15) by arm in cage method. It was found that the essential oils with 5 % vanillin gave the longest lasting period against two mosquitoes as follows: Curcuma longa gave 150 min for Ae. aegypti, 480 min for An. dirus; Eucalyptus globulus gave 144 min for Ae. aegypti, 390 min for An. dirus; and Citrus aurantium gave 120 min for Ae. aegypti, 360 min for An. dirus. The 25 % Curcuma longa essential oil exhibited the best efficiency as equal as a commercial repellent (480 min against An. dirus). Vanillin can extend the period of time in protection against the two mosquitoes. This study indicates the potential uses of the essential oils (Curcuma longa, Eucalyptus globulus, and Citrus aurantium) with vanillin as natural mosquito repellents. PMID:26358103

  15. Worldwide patterns of genetic differentiation imply multiple 'domestications' of Aedes aegypti, a major vector of human diseases.

    PubMed

    Brown, Julia E; McBride, Carolyn S; Johnson, Petrina; Ritchie, Scott; Paupy, Christophe; Bossin, Hervé; Lutomiah, Joel; Fernandez-Salas, Ildefonso; Ponlawat, Alongkot; Cornel, Anthony J; Black, William C; Gorrochotegui-Escalante, Norma; Urdaneta-Marquez, Ludmel; Sylla, Massamba; Slotman, Michel; Murray, Kristy O; Walker, Christopher; Powell, Jeffrey R

    2011-08-22

    Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single 'domestication' event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic populations outside of Africa and the other included both domestic and forest populations within Africa. This suggests that human association in Africa occurred independently from that in domestic populations across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti. PMID:21227970

  16. Vacant lots: productive sites for Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Mérida City, México.

    PubMed

    Baak-Baak, Carlos M; Arana-Guardia, Roger; Cigarroa-Toledo, Nohemi; Loroño-Pino, Maria Alba; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Beaty, Barry J; Eisen, Lars; García-Rejón, Julián E

    2014-03-01

    We assessed the potential for vacant lots and other nonresidential settings to serve as source environments for Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) in Mérida City, México. Mosquito immatures were collected, during November 2011-June 2013, from residential premises (n = 156 site visits) and nonresidential settings represented by vacant lots (50), parking lots (18), and streets or sidewalks (28). Collections totaled 46,025 mosquito immatures of 13 species. Ae. aegypti was the most commonly encountered species accounting for 81.0% of total immatures, followed by Culex quinquefasciatus Say (12.1%). Site visits to vacant lots (74.0%) were more likely to result in collection of Ae. aegypti immatures than residential premises (35.9%). Tires accounted for 75.5% of Ae. aegypti immatures collected from vacant lots. Our data suggest that vacant lots should be considered for inclusion in mosquito surveillance and control efforts in Mérida City, as they often are located near homes, commonly have abundant vegetation, and frequently harbor accumulations of small and large discarded water-holding containers that we now have demonstrated to serve as development sites for immature mosquitoes. In addition, we present data for associations of immature production with various container characteristics, such as storage capacity, water quality, and physical location in the environment. PMID:24724299

  17. Diminished reproductive fitness associated with the deltamethrin resistance in an Indian strain of dengue vector mosquito, Aedes aegypti L.

    PubMed

    Kumar, Sarita; Thomas, Anita; Samuel, Thomas; Sahgal, Arunima; Verma, Anita; Pillai, M K K

    2009-08-01

    The susceptible (SS) and resistant (DLR) strains of Aedes aegypti selected with deltamethrin and combination of deltamethrin and PBO (1:5) at the larval/adult stage were studied in the laboratory for their reproductive fitness in terms of fecundity, hatchability and longevity of gonotrophic cycles. The DLR strains exhibited 73-88% reduction in the duration of gonotrophic cycles as compared to their SS counterparts. There was a considerable decrease in egg production and hatchability rates in the selected strains of Ae. aegypti, as compared to that of the SS strain. Data indicate deltamethrin being an effective insecticide against Ae. aegypti and a possible correlation between the deltamethrin resistance and disadvantages during reproduction. The most drastic and significant effect was observed in DLR1b strains exhibiting 36.7% decrease in fecundity and 32.4% reduction in hatchability. Another important observation was diminished reproductive fitness in DLR2 strains. This suggests the usefulness of synergized deltamethrin selections in reducing the frequency of resistant individuals. A significant finding was to observe the reproductive disadvantage in adult-selected strains having negligible resistance to deltamethrin implicating the efficacy of deltamethrin as an adulticide rather than as a larvicide. Various probable reasons for the reduction in the reproductive potential and the possible resistance-management strategies of Ae. aegypti are discussed. PMID:19901902

  18. Larvicidal and Pupicidal Activities of Alizarin Isolated from Roots of Rubia cordifolia Against Culex quinquefasciatus Say and Aedes aegypti (L.) (Diptera: Culicidae).

    PubMed

    Gandhi, M R; Reegan, A D; Ganesan, P; Sivasankaran, K; Paulraj, M G; Balakrishna, K; Ignacimuthu, S; Al-Dhabi, N A

    2016-08-01

    The mosquitocidal activities of different fractions and a compound alizarin from the methanol extract of Rubia cordifolia roots were evaluated on larvae and pupae of Culex quinquefasciatus Say and Aedes aegypti (L.) (Diptera: Culicidae). Larvae and pupae were exposed to concentrations of 2.5, 5.0, 7.5 and 10 ppm for fractions and 0.5, 1.0, 1.5 and 2.0 ppm for compound. After 24 h, the mortality was assessed and the LC50 and LC90 values were estimated for larvae and pupae. Among the 23 fractions screened, fraction 2 from the methanol extract of R. cordifolia showed good mosquitocidal activity against C. quinquefasciatus and A. aegypti. LC50 and LC90 values of fraction 2 were 3.53 and 7.26 ppm for C. quinquefasciatus and 3.86 and 8.28 ppm for A. aegypti larvae, and 3.76 and 7.50 ppm for C. quinquefasciatus and 3.92 and 8.05 ppm for A. aegypti pupae, respectively. Further, the isolated compound alizarin presented good larvicidal and pupicidal activities. LC50 and LC90 values of alizarin for larvae were 0.81 and 3.86 ppm against C. quinquefasciatus and 1.31 and 6.04 ppm for A. aegypti larvae, respectively. Similarly, the LC50 and LC90 values of alizarin for pupae were 1.97 and 4.79 ppm for C. quinquefasciatus and 2.05 and 5.59 ppm for A. aegypti pupae, respectively. The structure of the isolated compound was identified on the basis of spectroscopic analysis and compared with reported spectral data. The results indicated that alizarin could be used as a potential larvicide and pupicide. PMID:27004695

  19. Lights, camera, A&E.

    PubMed

    Gould, Mark

    Channel 4 series 24 Hours in A&E was one of the television highlights of 2011. Filmed at King's College Hospital in London, it showed the reality of life in an A&E department and may have improved the public's understanding of nursing. PMID:22324233

  20. Water level flux in household containers in Vietnam--a key determinant of Aedes aegypti population dynamics.

    PubMed

    Jeffery, Jason A L; Clements, Archie C A; Nguyen, Yen Thi; Nguyen, Le Hoang; Tran, Son Hai; Le, Nghia Trung; Vu, Nam Sinh; Ryan, Peter A; Kay, Brian H

    2012-01-01

    We examined changes in the abundance of immature Aedes aegypti at the household and water storage container level during the dry-season (June-July, 2008) in Tri Nguyen village, central Vietnam. We conducted quantitative immature mosquito surveys of 171 containers in the same 41 households, with replacement of samples, every two days during a 29-day period. We developed multi-level mixed effects regression models to investigate container and household variability in pupal abundance. The percentage of houses that were positive for I/II instars, III/IV instars and pupae during any one survey ranged from 19.5-43.9%, 48.8-75.6% and 17.1-53.7%, respectively. The mean numbers of Ae. aegypti pupae per house ranged between 1.9-12.6 over the study period. Estimates of absolute pupal abundance were highly variable over the 29-day period despite relatively stable weather conditions. Most variability in pupal abundance occurred at the container rather than the household level. A key determinant of Ae. aegypti production was the frequent filling of the containers with water, which caused asynchronous hatching of Ae. aegypti eggs and development of cohorts of immatures. We calculated the probability of the water volume of a large container (>500 L) increasing or decreasing by ≥20% to be 0.05 and 0.07 per day, respectively, and for small containers (<500 L) to be 0.11 and 0.13 per day, respectively. These human water-management behaviors are important determinants of Ae. aegypti production during the dry season. This has implications for choosing a suitable Wolbachia strain for release as it appears that prolonged egg desiccation does not occur in this village. PMID:22911683

  1. Electroantennogram, flight orientation and oviposition responses of Anopheles stephensi and Aedes aegypti to a fatty acid ester-propyl octadecanoate.

    PubMed

    Seenivasagan, Thangaraj; Sharma, Kavita R; Prakash, Shri

    2012-10-01

    Studies were carried out to evaluate the role of a C(21)-fatty acid ester; propyl octadecanoate (PO) for olfaction-mediated behavioral responses of urban malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti mosquitoes using electroantennogram (EAG), flight orientation and oviposition experiments. Dose dependent electrophysiological responses were recorded for PO from the antenna of both mosquito species in which 10(-5) g elicited significant EAG response. An. stephensi exhibited 2.4, 4.2 and 5.5 fold increased EAG response compared to control, while Ae. aegypti showed 1.9, 4.6 and 5.8 fold EAG responses respectively at 10(-7) g, 10(-6) g and 10(-5) g doses. In the Y-tube olfactometer, 77-80% gravid females of An. stephensi, and 64-77% of Ae. aegypti were caught in the chambers releasing 10(-6) g and 10(-5) g plume of PO. The synthetic fatty acid ester loaded onto an effervescent tablet at 0.1 mg/L, 1 mg/L and 10 mg/L elicited increased ovipositional responses from gravid mosquitoes compared to control. The oviposition activity indices (OAI) of An. stephensi females were +0.40, +0.51 and +0.58, whereas the OAI for Ae. aegypti females were +0.05, +0.36 and +0.57 respectively in 0.1, 1, 10 mg/L of PO; indicated concentration dependent increased egg deposition. Similarly, in the residual activity studies, oviposition substrates treated with PO on effervescent tablet at 1mg/L and 10mg/L received significantly increased egg deposition by gravid females of both mosquito species for up to 1 week compared to control substrates. PO can potentially be used in ovitraps to monitor An. stephensi and Ae. aegypti populations in the vector surveillance programs. PMID:22750483

  2. Mating competitiveness and life-table comparisons between transgenic and Indian wild-type Aedes aegypti L.

    PubMed Central

    Patil, Prabhakargouda B; Niranjan Reddy, BP; Gorman, Kevin; Seshu Reddy, KV; Barwale, Shirish R; Zehr, Usha B; Nimmo, Derric; Naish, Neil; Alphey, Luke

    2015-01-01

    BACKGROUND OX513A is a genetically engineered strain of Aedes aegypti carrying a repressible, dominantly inherited transgene that confers lethality in immature heterozygous progeny. Released male OX513A adults have proven to be effective for the localised suppression of wild Ae. aegypti, highlighting its potential in vector control. Mating and life-table assessments were used to compare OX513A with reared Ae. aegypti strains collected from New Delhi and Aurangabad regions in India. RESULTS Mating proportions of New Delhi females versus males of OX513A or New Delhi strains were 0.52 and 0.48 respectively, indicating no discrimination by females against either strain, and males of both strains were equally competitive. Developmental time from first instar to adult emergence was significantly longer for OX513A (10.7 ± 0.04 days) than for New Delhi (9.4 ± 0.04 days) and Aurangabad strains (9.1 ± 0.04 days). Differences in mean longevities, female reproductive parameters and population growth parameters between the strains were non-significant. CONCLUSIONS The laboratory study demonstrates that only minor life-table variations of limited biological relevance exist between OX513A and Indian Ae. aegypti populations, and males had equal potential for mating competitiveness. Thus, results support the OX513A strain as a suitable candidate for continued evaluation towards sustainable management of Ae. aegypti populations in India. © 2014 Gangabishan Bhikulal Investment and Trading Limited. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25078081

  3. Low efficacy of delthamethrin-treated net against Singapore Aedes aegypti is associated with kdr-type resistance.

    PubMed

    Pang, S C; Chiang, L P; Tan, C H; Vythilingam, I; Lam-Phua, S G; Ng, L C

    2015-03-01

    There has been a worldwide surge in the number and severity of dengue in the past decades. In Singapore, relentless vector control efforts have been put in to control the disease since the 1960's. Space spraying, fogging, chemical treatment and source reduction are some commonly used methodologies for controlling its vectors, particularly Aedes aegypti. Here, as we explored the use of a commercially available delthamethrin-treated net as an alternative strategy and the efficacy of the treated net was found to be limited. Through bioassays and molecular studies, the failure of the treated net to render high mortality rate was found to be associated with the knockdown resistance (kdr) mutation. This is the first report of kdr- mutations in Singapore's Ae. aegypti. At least one point mutation, either homozygous or heterozygous, at amino acid residue V1016G of DIIS6 or F1269C of DIIIS6 was detected in 93% of field strains of Ae. aegypti. Various permutations of wild type and mutant amino acids of the four alleles were found to result in varying degree of survival rate among local field Ae. aegypti when exposed to the deltamethrin treated net. Together with the association of higher survival rate with the presence of both V1016G and F1269C, the data suggest the role of these mutations in the resistance to the deltamethrin. The high prevalence of these mutations were confirmed in a country wide survey where 70% and 72% of the 201 Ae. aegypti analysed possessed the mutations at residues 1016 and 1269 respectively. The highest mutated frequency combination was found to be heterozygous alleles (VG/FC) at both residues 1016 and 1269 (37.8%), followed by homozygous mutation at allele 1269 (24.4%) and homozygous mutation at allele 1016 (22.9%). The kdr- type of resistance among the vector is likely to undermine the effectiveness of pyrethroids treated materials against these mosquitoes. PMID:25801264

  4. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development

    PubMed Central

    Beier, John C.; Devine, Gregor J.; Hugo, Leon E.

    2016-01-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30–40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20–30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20–30°C for 4–7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  5. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    PubMed

    Ulrich, Jill N; Beier, John C; Devine, Gregor J; Hugo, Leon E

    2016-07-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  6. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.

    PubMed

    Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R

    2016-06-01

    The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. PMID:26744174

  7. Influence of Time of Assay on Behavioral Responses of Laboratory and Field Populations Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) to DEET.

    PubMed

    Tainchum, Krajana; Ritthison, Wanapa; Sathantriphop, Sunaiyana; Tanasilchayakul, Somchai; Manguin, Sylvie; Bangs, Michael J; Chareonviriyaphap, Theeraphap

    2014-11-01

    Knowledge on test conditions that may influence behavioral responses of mosquitoes is critical when excito-repellency tests are conducted. The objective of this study was to investigate the effect of test time differences on normal circadian activity and behavioral responses of field and colonized Aedes aegypti (L.) (=Stegomyia aegypti) and Culex quinquefasciatus Say to DEET, one of the most common synthetic repellent active ingredients available. Two field populations of Ae. aegypti and Cx. quinquefasciatus from Kanchanaburi and Nonthaburi provinces, respectively, and two long-standing laboratory populations, Ae. aegypti obtained from the U.S. Department of Agriculture, and Cx. quinquefasciatus from the Ministry of Public Health, Thailand, were used. Each population was exposed to DEET during two different periods of time (0900-1500 hours) and (2100-0300 hours). Both field and laboratory Cx. quinquefasciatus showed marked differences in spatial repellent escape responses between day and nighttime periods but none in direct contact tests. No significant differences between day and nighttime testing periods were observed with field or laboratory Ae. aegypti, except a higher daytime escape response from noncontact DEET treatment. This study indicates that test time may influence the behavioral avoidance responses and is a potential confounder of excito-repellency evaluations. PMID:26309311

  8. Susceptibility of two different strains of Aedes aegypti (Diptera: Culicidae) to plant oils.

    PubMed

    Tare, Vrushali; Deshpande, Sudhakar; Sharma, Ravindra Nath

    2004-10-01

    The toxicity of 11 oils extracted from plants commonly grown in the Himalayan region was studied using larvae of two Aedes aegypti (L.) strains. A strain from Liverpool, England, was highly susceptible to these oils. The LC50 values were much higher in a local laboratory strain. Daucus carota L. oil was highly toxic in both strains. Differences in the susceptibility of these strains to the action of the test oils and their potential use in integrated pest management are discussed. PMID:15568366

  9. Seasonal changes in the larvel populations of Aedes aegypti in two biotopes in Dar es Salaam, Tanzania

    PubMed Central

    Trpis, Milan

    1972-01-01

    The seasonal dynamics of larval populations of Aedes aegypti was studied in two different biotopes in Dar es Salaam, Tanzania. The first biotope was located on the Msasani peninsula on the coast 6 km north of Dar es Salaam, where A. aegypti breeds exclusively in coral rock holes. The population dynamics was studied during both the rainy and the dry season. Seasonal changes in the density of A. aegypti larvae depend primarily on variation in rainfall. The population of larvae dropped to zero only for a short time during the driest period while the adult population was maintained at a low level. The second biotope was in an automobile dump in a Dar es Salaam suburb, where A. aegypti breeds in artificial containers such as tires, automobile parts, tins, coconut shells, and snail shells. The greater part of the A. aegypti population of this biotope is maintained in the egg stage during the dry season. It serves as a focal point for breeding during the dry season: with the coming of the rains, the population expands into the surrounding residential areas. More than 70% of the larval population developed in tires, 20% in tins, 5% in coconut shells, and 1% in snail shells. PMID:4539415

  10. An improved autocidal gravid ovitrap for the control and surveillance of Aedes aegypti

    PubMed Central

    2013-01-01

    Background Limited success has been achieved using traditional vector control methods to prevent the transmission of dengue viruses. Integrated control programs incorporating alternative tools, such as gravid ovitraps (lethal ovitraps and sticky ovitraps) may provide greater potential for monitoring and reducing vector populations and dengue virus transmission. We had developed an autocidal gravid ovitrap (AGO) as a simple, low-cost device for surveillance and control of Ae. aegypti without the use of pesticides that does not require servicing for an extended period of time. The purpose of our study was to improve the efficacy and efficiency of this device. Methods Competitive assays were performed in the laboratory and an outdoor cage to evaluate whether modifications to the structure and appearance of our original trap design (AGO-A), and the addition of an olfactory bait (hay infusion), improve trap function. The performance of a modified trap design (AGO-B) was then assessed and compared with conventional ovitraps in a series of field tests in San Juan City, Puerto Rico. Generalized linear mixed models were used to analyze adult Ae. aegypti capture data from the laboratory, outdoor cage and field experiments. Results Increasing the size of the trap entrance, altering the color of trap components, and increasing the volume/surface area of the aqueous bait significantly improved the performance of the AGO in the outdoor cage. In a subsequent field comparison, captures of Ae. aegypti females were 3.7 fold greater in the improved trap (AGO-B), compared with the original design (AGO-A). An infusion bait produced “in situ” significantly improved capture rates of the improved trap under both semi-natural and field conditions. Semi-weekly collections of Ae. aegypti females in the AGO-B were significantly correlated with cumulative rainfall 8 to 28 days prior to sampling, whereas egg collections in paired conventional ovitraps were not. When vector abundance was low

  11. Mosquitocidal and Oviposition Repellent Activities of the Extracts of Seaweed Bryopsis pennata on Aedes aegypti and Aedes albopictus.

    PubMed

    Yu, Ke-Xin; Wong, Ching-Lee; Ahmad, Rohani; Jantan, Ibrahim

    2015-01-01

    The ever-increasing threat from infectious diseases and the development of insecticide resistance in mosquito populations drive the global search for new natural insecticides. The aims of this study were to evaluate the mosquitocidal activity of the extracts of seaweed Bryopsis pennata against dengue vectors Aedes aegypti and Aedes albopictus, and determine the seaweed's toxic effect on brine shrimp nauplii (as a non-target organism). In addition, the chemical compositions of the active larvicidal extract and fraction were analyzed by using liquid chromatography-mass spectrometry (LC-MS). Chloroform extract exhibited strong ovicidal activity (with LC50 values of 229.3 and 250.5 µg/mL) and larvicidal activity against Ae. aegypti and Ae. albopictus. The larvicidal potential of chloroform extract was further ascertained when its A7 fraction exhibited strong toxic effect against Ae. aegypti (LC50 = 4.7 µg/mL) and Ae. albopictus (LC50 = 5.3 µg/mL). LC-MS analysis of the chloroform extract gave a tentative identification of 13 compounds; Bis-(3-oxoundecyl) tetrasulfide was identified as the major compound in A7 fraction. Methanol extract showed strong repellent effect against female oviposition, along with weak adulticidal activity against mosquito and weak toxicity against brine shrimp nauplii. The mosquitocidal results of B. pennata suggest further investigation for the development of effective insecticide. PMID:26247928

  12. The Effects of Interspecific Courtship on the Mating Success of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Males

    PubMed Central

    Bargielowski, Irka; Blosser, Erik; Lounibos, L. P.

    2015-01-01

    Satyrization, a form of asymmetric reproductive interference, has recently been shown to play a role in competitive displacements of Aedes aegypti (L.) by Aedes albopictus (Skuse). Furthermore, female Ae. aegypti from populations in sympatry with Ae. albopictus have evolved reproductive character displacement and changes in mating behavior to reduce interspecific mating. In this article, we examine evolutionary responses of males to interspecific mating and show that satyrization has also evoked reproductive character displacement in males. We demonstrate that the presence of heterospecific females negatively influences conspecific mating success in male Ae. aegypti, most likely due to misdirected courting or mating efforts, and that males of this species from populations in sympatry with Ae. albopictus have evolved to be less influenced by the presence of heterospecific females than their allopatric counterparts. Conversely, we suggest that the presence of conspecifics may, in some circumstances, increase interspecific mating. This study demonstrates that co-occurrences of these two invasive species may lead to evolution and adaptation of reproductive behaviors to changing circumstances. Understanding the processes driving development of mate choice preferences or avoidance mechanisms may help predict future changes in the distribution and abundance of insect vectors or pests.

  13. Effect of triflumuron, a chitin synthesis inhibitor, on Aedes aegypti, Aedes albopictus and Culex quinquefasciatus under laboratory conditions

    PubMed Central

    2013-01-01

    Background Resistance to traditional insecticides represents a threat to the control of disease vectors. The insect growth regulators (IGR) are a potential alternative to control mosquitoes, including resistant populations. The chitin synthesis inhibitors (CSI) are IGRs, which interfere with the insect molting process and represent one major class of compounds against Aedes aegypti populations resistant to the larvicide organophosphate temephos. In the present study, we evaluated the efficacy of the CSI triflumuron on Culex quinquefasciatus, Aedes albopictus and against several Ae. aegypti field populations. Methods The efficacy of triflumuron, against Cx. quinquefasciatus and Ae. albopictus was evaluated with laboratory strains through dose–response assays. Additionaly, this CSI was tested against seven Ae. aegypti field populations exhibiting distinct resistance levels to both temephos and the pyrethroid deltamethrin. Aedes aegypti populations were exposed to both a dose that inhibits 99% of the adult emergence of mosquitoes from the susceptible reference strain, Rockefeller, (EI99 = 3.95 μg/L) and the diagnostic dose (DD), corresponding to twice the EI99. Results Our results indicate that triflumuron was effective in emergence inhibition (EI) of Cx. quinquefasciatus (EI50= 5.28 μg/L; EI90= 12.47 μg/L) and Ae. albopictus (EI50= 1.59 μg/L; EI90= 2.63 μg/L). Triflumuron was also effective against seven Ae. aegypti Brazilian populations resistant to both temephos and deltamethrin. Exposure of all the Ae. aegypti populations to the triflumuron EI99 of the susceptible reference strain, Rockefeller, resulted in complete inhibition of adult emergence, suggesting no cross-resistance among traditional insecticides and this CSI. However, a positive correlation between temephos resistance and tolerance to triflumuron was observed. Conclusion The results suggest that triflumuron represents a potential tool for the control of disease vectors in public

  14. Ecdysis triggering hormone signaling in the yellow fever mosquito Aedes aegypti.

    PubMed

    Dai, Li; Adams, Michael E

    2009-05-15

    At the end of each developmental stage, the yellow fever mosquito Aedes aegypti performs the ecdysis behavioral sequence, a precisely timed series of behaviors that culminates in shedding of the old exoskeleton. Here we describe ecdysis triggering hormone-immunoreactive Inka cells located at branch points of major tracheal trunks and loss of staining coincident with ecdysis. Peptides (AeaETH1, AeaETH2) purified from extracts of pharate 4th instar larvae have--PRXamide C-terminal amino acid sequence motifs similar to ETHs previously identified in moths and flies. Injection of synthetic AeaETHs induced premature ecdysis behavior in pharate larvae, pupae and adults. Two functionally distinct subtypes of ETH receptors (AeaETHR-A, AeaETHR-B) of A. aegypti are identified and show high sensitivity and selectivity to ETHs. Increased ETHR transcript levels and behavioral sensitivity to AeaETHs arising in the hours preceding the 4th instar larva-to-pupa ecdysis are correlated with rising ecdysteroid levels, suggesting steroid regulation of receptor gene expression. Our description of natural and ETH-induced ecdysis in A. aegypti should facilitate future approaches directed toward hormone-based interference strategies for control of mosquitoes as human disease vectors. PMID:19298818

  15. Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.

    PubMed

    Hugo, Leon E; Jeffery, Jason A L; Trewin, Brendan J; Wockner, Leesa F; Nguyen, Thi Yen; Nguyen, Hoang Le; Nghia, Le Trung; Hine, Emma; Ryan, Peter A; Kay, Brian H

    2014-02-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle. PMID:24551251

  16. Application of wMelPop Wolbachia Strain to Crash Local Populations of Aedes aegypti

    PubMed Central

    Ritchie, Scott A.; Townsend, Michael; Paton, Chris J.; Callahan, Ashley G.; Hoffmann, Ary A.

    2015-01-01

    The endosymbiotic bacteria Wolbachia pipientis (wMel strain) has been successfully established in several populations of Aedes aegypti, the primary dengue vector. The virulent Wolbachia strain wMelPop is known to cause several pathological impacts (increased egg mortality, life shortening, etc.) reducing overall fitness in the mosquito Ae. aegypti. Increased egg mortality could substantially reduce egg banks in areas with a lengthy monsoonal dry season, and be employed to eliminate local populations. We tested this application under semi-field cage conditions. First, we determined that wMelPop infection significantly reduced the survival of desiccation-resistant eggs of the dengue vector Ae. aegypti, with shade and temperature having a significant impact; nearly all wMelPop-infected eggs failed to hatch after 6 and 10 weeks in summer and winter conditions, respectively. In laboratory selection experiments we found that egg desiccation resistance can be increased by selection, and that this effect of wMelPop infection is due to the nuclear background of the host rather than Wolbachia. We then conducted an invasion of wMelPop within a semi-field cage using sustained weekly releases of wMelPop infected mosquitoes, with fixation achieved after 9 weeks. The egg populations wMelPop infected and an uninfected control were then subjected to a simulated prolonged monsoonal dry season (2.5 months) before flooding to induce hatching. The wMelPop infected eggs suffered significantly greater mortality than the controls, with only 0.67% and 4.35% of respective infected and uninfected eggs held in 99% shade hatching after 80 days. These studies suggest that wMelPop could be used to locally eliminate populations of Ae. aegypti that are exposed to prolonged dry conditions, particularly if combined with vector control. PMID:26204449

  17. Chemical composition, larvicidal, and biting deterrent activity of essential oils of two subspecies of Tanacetum argenteum (Asterales: Asteraceae) and individual constituents against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ali, Abbas; Tabanca, Nurhayat; Kurkcuoglu, Mine; Duran, Ahmet; Blythe, Eugene K; Khan, Ikhlas A; Baser, K Husnu Can

    2014-07-01

    Water-distilled essential oils from dried aerial parts of Tanacetum argenteum (Lam.) Willd. subsp. argenteum (Lam.) and T. argenteum (Lam.) Willd. subsp. canum (C. Koch) Grierson were analyzed by gas chromatography and gas chromatography-mass spectrometry. In total, 27 and 32 components were identified representing 97.2 and 98.7% of essential oils of subsp. argenteum and canum, respectively. Main compounds of T. argenteum subsp. argenteum were alpha-pinene (67.9%) and beta-pinene (4.8%), whereas alpha-pinene (53.6%), 1, 8-cineole (14.8%), and camphor (4.7%) were the major constituents of subsp. canum. Essential oil of T. argenteum subsp. canum at 10 microg/cm2 with Biting Deterrent Index (BDI) value of 0.73 showed activity similar to N,N-Diethyl-meta-toluamide (DEET) at 25 mol/cm2, whereas the activity of essential oil of subsp. argenteum was lower (BDI = 0.47) than subsp. canum and DEET. Based on 95% CIs, activity of beta-caryophyllene (BDI value = 0.54) and caryophyllene oxide (BDI = 0.66) were significantly lower than DEET. In larval bioassays, essential oil of T. argenteum subsp. argenteum showed LC50 value of 93.34 ppm, whereas T. argenteum subsp. canum killed only 40% of the larvae at the highest dose of 125 ppm. Among the pure compounds, beta-caryophyllene (LC50 = 26 ppm) was the most potent compound followed by caryophyllene oxide (LC50 = 29 ppm), which was also similar to (-)-beta-pinene (LC50 = 35.9 ppm) against 1-d-old Ae. aegypti larvae at 24-h post treatment. Compounds (-)-alpha-pinene and (+)-beta-pinene showed similar larvicidal activity. Activity of (+)-alpha-pinene with LC50 value of was similar to the essential oil of T. argenteum subsp. argenteum. PMID:25118415

  18. Comparative efficacy of two poeciliid fish in indoor cement tanks against chikungunya vector Aedes aegypti in villages in Karnataka, India

    PubMed Central

    2011-01-01

    Background In 2006, severe outbreaks of Aedes aegypti-transmitted chikungunya occurred in villages in Karnataka, South India. We evaluated the effectiveness of combined information, education and communication (IEC) campaigns using two potential poeciliid larvivorous fish guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis), in indoor cement tanks for Aedes larval control. Methods Trials were conducted in two villages (Domatmari and Srinivaspura) in Tumkur District from March to May 2006 for Poecilia and one village (Balmanda) in Kolar District from July to October 2006 for Gambusia. A survey on knowledge, attitude and practice (KAP) on chikungunya was initially conducted and IEC campaigns were performed before and after fish release in Domatmari (IEC alone, followed by IEC + Poecilia) and Balmanda (IEC + Gambusia). In Srinivaspura, IEC was not conducted. Larval surveys were conducted at the baseline followed by one-week and one-month post-intervention periods. The impact of fish on Aedes larvae and disease was assessed based on baseline and post-intervention observations. Results Only 18% of respondents knew of the role of mosquitoes in fever outbreaks, while almost all (n = 50 each) gained new knowledge from the IEC campaigns. In Domatmari, IEC alone was not effective (OR 0.54; p = 0.067). Indoor cement tanks were the most preferred Ae. aegypti breeding habitat (86.9%), and had a significant impact on Aedes breeding (Breteau Index) in all villages in the one-week period (p < 0.001). In the one-month period, the impact was most sustained in Domatmari (OR 1.58, p < 0.001) then Srinivaspura (OR 0.45, p = 0.063) and Balmanda (OR 0.51, p = 0.067). After fish introductions, chikungunya cases were reduced by 99.87% in Domatmari, 65.48% in Srinivaspura and 68.51% in Balmanda. Conclusions Poecilia exhibited greater survival rates than Gambusia (86.04 vs.16.03%) in cement tanks. Neither IEC nor Poecilia alone was effective against Aedes (p > 0.05). We conclude

  19. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti.

    PubMed

    Saavedra-Rodriguez, K; Urdaneta-Marquez, L; Rajatileka, S; Moulton, M; Flores, A E; Fernandez-Salas, I; Bisset, J; Rodriguez, M; McCall, P J; Donnelly, M J; Ranson, H; Hemingway, J; Black, W C

    2007-12-01

    Pyrethroids are commonly used as mosquito adulticides and evolution of resistance to these compounds is a major threat to public health. 'Knockdown resistance' to pyrethroids (kdr) is frequently caused by nonsynonymous mutations in the voltage-gated sodium channel transmembrane protein (para) that reduce pyrethroid binding. Early detection of kdr is critical to the development of resistance management strategies in mosquitoes including Aedes aegypti, the most prevalent vector of dengue and yellow fever viruses. Brengues et al. described seven novel mutations in hydrophobic segment 6 of domain II of para in Ae. aegypti. Assays on larvae from strains bearing these mutations indicated reduced nerve sensitivity to permethrin inhibition. Two of these occurred in codons Iso1011 and Val1016 in exons 20 and 21 respectively. A transition in the third position of Iso1011 encoded a Met1011 replacement and a transversion in the second position of Val1016 encoded a Gly1016 replacement. We have screened this same region in 1318 mosquitoes in 32 additional strains; 30 from throughout Latin America. While the Gly1016 allele was never detected in Latin America, we found two new mutations in these same codons. A transition in the first position of codon 1011 encodes a Val replacement while a transition in the first position of codon 1016 encodes an Iso replacement. We developed PCR assays for these four mutations that can be read either on an agarose gel or as a melting curve. Selection experiments, one with deltamethrin on a field strain from Santiago de Cuba and another with permethrin on a strain from Isla Mujeres, Mexico rapidly increased the frequency of the Iso1016 allele. Bioassays of F(3) offspring arising from permethrin susceptible Val1016 homozygous parents and permethrin resistant Iso1016 homozygous parents show that Iso1016 segregates as a recessive allele in conferring kdr. Analysis of segregation between alleles at the 1011 and 1016 codons in the F(3) showed a high

  20. Toxicity of extracts from three Tagetes against adults and larvae of yellow fever mosquito and Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Perich, M J; Wells, C; Bertsch, W; Tredway, K E

    1994-11-01

    Whole-plant Soxhlet extractions for the three Tagetes species showed that T. minuta had the greatest biocidal effect on the larvae and adults of Aedes aegypti (L.) and Anopheles stephensi Liston. Bioassays of simultaneous steam distillation extractions of the various parts of T. minuta found extracts from the flowers provided LD90s of 4 and 8 ppm against the larvae and 0.4 and 0.45% against the adults of A. aegypti and A. stephensi, respectively. Further research on T. minuta floral extracts as new biorational insecticides are discussed. PMID:7815394

  1. Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti

    PubMed Central

    Subramaniam, Jayapal; Kovendan, Kalimuthu; Mahesh Kumar, Palanisamy; Murugan, Kadarkarai; Walton, William

    2012-01-01

    The bio-efficacy of Aloe vera leaf extract and bacterial insecticide, Bacillus sphaericus larvicidal activity was assessed against the first to fourth instars larvae of Aedes aegypti, under the laboratory conditions. The plant material was shade dried at room temperature and powdered coarsely. A. vera and B. sphaericus show varied degrees of larvicidal activity against various instars larvae of A. aegypti. The LC50 of A. vera against the first to fourth instars larvae were 162.74, 201.43, 253.30 and 300.05 ppm and the LC90 442.98, 518.86, 563.18 and 612.96 ppm, respectively. B. sphaericus against the first to fourth instars larvae the LC50 values were 68.21, 79.13, 93.48, and 107.05 ppm and the LC90 values 149.15, 164.67, 183.84, and 201.09 ppm, respectively. However, the combined treatment of A. vera + B. sphaericus (1:2) material shows highest larvicidal activity of the LC50 values 54.80, 63.11, 74.66 and 95.10 ppm; The LC90 values of 145.29, 160.14, 179.74 and 209.98 ppm, against A. aegypti in all the tested concentrations than the individuals and clearly established that there is a substantial amount of synergist act. The present investigation clearly exhibits that both A. vera and B. sphaericus materials could serve as a potential larvicidal agent. Since, A. aegypti is a container breeder vector mosquito this user and eco-friendly and low-cost vector control strategy could be a viable solution to the existing dengue disease burden. Therefore, this study provides first report on the mosquito larvicidal activity the combined effect of A. vera leaf extract and B. sphaericus against as target species of A. aegypti. PMID:23961212

  2. Effect of isodillapiole on the expression of the insecticide resistance genes GSTE7 and CYP6N12 in Aedes aegypti from central Amazonia.

    PubMed

    Lima, V S; Pinto, A C; Rafael, M S

    2015-01-01

    The yellow fever mosquito Aedes (Stegomyia) aegypti is the main vector of dengue arbovirus and other arboviruses. Dengue prevention measures for the control of A. aegypti involve mainly the use of synthetic insecticides. The constant use of insecticides has caused resistance in this mosquito. Alternative studies on plant extracts and their products have been conducted with the aim of controlling the spread of the mosquito. Dillapiole is a compound found in essential oils of the plant Piper aduncum (Piperaceae) which has been effective as a biopesticide against A. aegypti. Isodillapiole is a semisynthetic substance obtained by the isomerization of dillapiole. In the present study, isodillapiole was evaluated for its potential to induce differential expression of insecticide resistance genes (GSTE7 and CYP6N12) in 3rd instar larvae of A. aegypti. These larvae were exposed to this compound at two concentrations (20 and 40 μg/mL) for 4 h during four generations (G1, G2, G3, and G4). Quantitative RT-PCR was used to assess the expression of GSTE7 and CYP6N12 genes. GSTE7 and CYP6N12 relative expression levels were higher at 20 than at 40 μg/mL and varied among generations. The decrease in GSTE7 and CYP6N12 expression levels at the highest isodillapiole concentration suggests that larvae may have suffered from metabolic stress, revealing a potential alternative product in the control of A. aegypti. PMID:26681019

  3. Effect of Quorum Sensing by Staphylococcus epidermidis on the Attraction Response of Female Adult Yellow Fever Mosquitoes, Aedes aegypti aegypti (Linnaeus) (Diptera: Culicidae), to a Blood-Feeding Source

    PubMed Central

    Zhang, Xinyang; Crippen, Tawni L.; Coates, Craig J.; Wood, Thomas K.; Tomberlin, Jeffery K.

    2015-01-01

    Aedes aegypti, the principal vector of yellow fever and dengue fever, is responsible for more than 30,000 deaths annually. Compounds such as carbon dioxide, amino acids, fatty acids and other volatile organic compounds (VOCs) have been widely studied for their role in attracting Ae. aegypti to hosts. Many VOCs from humans are produced by associated skin microbiota. Staphyloccocus epidermidis, although not the most abundant bacteria according to surveys of relative 16S ribosomal RNA abundance, commonly occurs on human skin. Bacteria demonstrate population level decision-making through quorum sensing. Many quorum sensing molecules, such as indole, volatilize and become part of the host odor plum. To date, no one has directly demonstrated the link between quorum sensing (i.e., decision-making) by bacteria associated with a host as a factor regulating arthropod vector attraction. This study examined this specific question with regards to S. epidermidis and Ae. aegypti. Pairwise tests were conducted to examine the response of female Ae. aegypti to combinations of tryptic soy broth (TSB) and S. epidermidis wildtype and agr- strains. The agr gene expresses an accessory gene regulator for quorum sensing; therefore, removing this gene inhibits quorum sensing of the bacteria. Differential attractiveness of mosquitoes to the wildtype and agr- strains was observed. Both wildtype and the agr- strain of S. epidermidis with TSB were marginally more attractive to Ae. aegypti than the TSB alone. Most interestingly, the blood-feeder treated with wildtype S. epidermidis/TSB attracted 74% of Ae. aegypti compared to the agr- strain of S. epidermidis/TSB (P ≤ 0.0001). This study is the first to suggest a role for interkingdom communication between host symbiotic bacteria and mosquitoes. This may have implications for mosquito decision-making with regards to host detection, location and acceptance. We speculate that mosquitoes “eavesdrop” on the chemical discussions occurring

  4. Functional and Genetic Characterization of Neuropeptide Y-Like Receptors in Aedes aegypti

    PubMed Central

    Liesch, Jeff; Bellani, Lindsay L.; Vosshall, Leslie B.

    2013-01-01

    Background Female Aedes aegypti mosquitoes are the principal vector for dengue fever, causing 50–100 million infections per year, transmitted between human and mosquito by blood feeding. Ae. aegypti host-seeking behavior is known to be inhibited for three days following a blood meal by a hemolymph-borne humoral factor. Head Peptide-I is a candidate peptide mediating this suppression, but the mechanism by which this peptide alters mosquito behavior and the receptor through which it signals are unknown. Methodology/Principal Findings Head Peptide-I shows sequence similarity to short Neuropeptide-F peptides (sNPFs) that have been implicated in feeding behaviors and are known to signal through Neuropeptide Y (NPY)-Like Receptors (NPYLRs). We identified eight NPYLRs in the Ae. aegypti genome and screened each in a cell-based calcium imaging assay for sensitivity against a panel of peptides. Four of the Ae. aegypti NPYLRs responded to one or more peptide ligands, but only NYPLR1 responded to Head Peptide-I as well as sNPFs. Two NPYLR1 homologues identified in the genome of the Lyme disease vector, Ixodes scapularis, were also sensitive to Head Peptide-I. Injection of synthetic Head Peptide-I and sNPF-3 inhibited host-seeking behavior in non-blood-fed female mosquitoes, whereas control injections of buffer or inactive Head Peptide-I [Cys10] had no effect. To ask if NPYLR1 is necessary for blood-feeding-induced host-seeking inhibition, we used zinc-finger nucleases to generate five independent npylr1 null mutant strains and tested them for behavioral abnormalities. npylr1 mutants displayed normal behavior in locomotion, egg laying, sugar feeding, blood feeding, host seeking, and inhibition of host seeking after a blood meal. Conclusions In this work we deorphanized four Ae. aegypti NPYLRs and identified NPYLR1 as a candidate sNPF receptor that is also sensitive to Head Peptide-I. Yet npylr1 alone is not required for host-seeking inhibition and we conclude that other

  5. A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2014-01-01

    Background Development rates of Aedes aegypti are known to vary with respect to many abiotic and biotic factors including temperature, resource availability, and intraspecific competition. The relative importance of these factors and their interactions are not well established across populations. We performed meta-analysis on a dataset of development rate estimates from 49 studies. Results Meta-analytic results indicated that the environmental factor of temperature is sufficient to explain development rate variability in Ae. aegypti. While diet and density may greatly impact other developmental phenotypes, these results suggest that for development rate these factors should never be considered to the exclusion of temperature. The effect of temperature on development rate is not homogenous or constant. The sources of heterogeneity of the effect of temperature are difficult to analyze due to lack of consistent reporting of larval rearing methods. Conclusions Temperature is the most important ecological determinant of development rate in Ae. aegypti, but its effect is heterogeneous. Ignoring this heterogeneity is problematic for models of vector population and vector-borne disease transmission. PMID:24495345

  6. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly

    PubMed Central

    Jasinskiene, Nijole; Coates, Craig J.; Benedict, Mark Q.; Cornel, Anthony J.; Rafferty, Cristina Salazar; James, Anthony A.; Collins, Frank H.

    1998-01-01

    The mosquito Aedes aegypti is the world’s most important vector of yellow fever and dengue viruses. Work is currently in progress to control the transmission of these viruses by genetically altering the capacity of wild Ae. aegypti populations to support virus replication. The germ-line transformation system reported here constitutes a major advance toward the implementation of this control strategy. A modified Hermes transposon carrying a 4.7-kb fragment of genomic DNA that includes a wild-type allele of the Drosophila melanogaster cinnabar (cn) gene was used to transform a white-eyed recipient strain of Ae. aegypti. Microinjection of preblastoderm mosquito embryos with this construct resulted in 50% of the emergent G0 adults showing some color in their eyes. Three transformed families were recovered, each resulting from an independent insertion event of the cn+-carrying transposon. The cn+ gene functioned as a semidominant transgene and segregated in Mendelian ratios. Hermes shows great promise as a vector for efficient, heritable, and stable transformation of this important mosquito vector species. PMID:9520437

  7. Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti.

    PubMed

    Smith, Ryan C; Atkinson, Peter W

    2011-01-01

    The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti. PMID:20596755

  8. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly.

    PubMed

    Jasinskiene, N; Coates, C J; Benedict, M Q; Cornel, A J; Rafferty, C S; James, A A; Collins, F H

    1998-03-31

    The mosquito Aedes aegypti is the world's most important vector of yellow fever and dengue viruses. Work is currently in progress to control the transmission of these viruses by genetically altering the capacity of wild Ae. aegypti populations to support virus replication. The germ-line transformation system reported here constitutes a major advance toward the implementation of this control strategy. A modified Hermes transposon carrying a 4.7-kb fragment of genomic DNA that includes a wild-type allele of the Drosophila melanogaster cinnabar (cn) gene was used to transform a white-eyed recipient strain of Ae. aegypti. Microinjection of preblastoderm mosquito embryos with this construct resulted in 50% of the emergent G0 adults showing some color in their eyes. Three transformed families were recovered, each resulting from an independent insertion event of the cn+-carrying transposon. The cn+ gene functioned as a semidominant transgene and segregated in Mendelian ratios. Hermes shows great promise as a vector for efficient, heritable, and stable transformation of this important mosquito vector species. PMID:9520437

  9. Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti

    PubMed Central

    Smith, Ryan C.

    2010-01-01

    The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti. PMID:20596755

  10. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection.

    PubMed

    Saavedra-Rodriguez, K; Strode, C; Flores, A E; Garcia-Luna, S; Reyes-Solis, G; Ranson, H; Hemingway, J; Black, W C

    2014-04-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study. PMID:24299217

  11. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    PubMed

    Bian, Guowu; Xu, Yao; Lu, Peng; Xie, Yan; Xi, Zhiyong

    2010-04-01

    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement. PMID:20368968

  12. Intraspecific DNA variation in nuclear genes of the mosquito Aedes aegypti.

    PubMed

    Morlais, I; Severson, D W

    2003-12-01

    Single nucleotide polymorphisms (SNPs) are an abundant source of genetic variation among individual organisms. To assess the usefulness of SNPs for genome analysis in the yellow fever mosquito, Aedes aegypti, we sequenced 25 nuclear genes in each of three strains and analysed nucleotide diversity. The average frequency of nucleotide variation was 12 SNPs per kilobase, indicating that nucleotide variation in Ae. aegypti is similar to that in other organisms, including Drosophila and the malaria vector Anopheles gambiae. Transition polymorphisms outnumbered transversion polymorphisms, at a ratio of about 2:1. We examined codon usage and confirmed that mutational bias favours G and C ending codons. Codon bias was most pronounced in highly expressed genes. Nucleotide diversity estimates indicated that substitution rates are positively correlated in coding and non-coding regions. Nucleotide diversity varied from one gene to another. The unequal distribution of SNPs among Ae. aegypti nuclear genes suggests that single base variations are non-neutral and are subject to selective constraints. Our analysis showed that ubiquitously expressed genes have lower polymorphism rates and are likely under strong purifying selection, whereas tissue specific genes and genes with a putative role in parasite defence exhibit higher levels of polymorphism that may be associated with diversifying selection. PMID:14986924

  13. Quantitative Trait Loci That Control Dengue-2 Virus Dissemination in the Mosquito Aedes aegypti

    PubMed Central

    Bennett, Kristine E.; Flick, Don; Fleming, Karen H.; Jochim, Ryan; Beaty, Barry J.; Black, William C.

    2005-01-01

    The mosquito Aedes aegypti is the most important vector of yellow fever and dengue fever flaviviruses. Ae. aegypti eradication campaigns have not been sustainable and there are no effective vaccines for dengue viruses. Alternative control strategies may depend upon identification of mosquito genes that condition flavivirus susceptibility and may ultimately provide clues for interrupting transmission. Quantitative trait loci affecting the ability of Ae. aegypti to develop a dengue-2 infection in the midgut have been mapped previously. Herein we report on QTL that determine whether mosquitoes with a dengue-2-infected gut can then disseminate the virus to other tissues. A strain selected for high rates of dengue-2 dissemination was crossed to a strain selected for low dissemination rates. QTL were mapped in the F2 and again in an F5 advanced intercross line. QTL were detected at 31 cM on chromosome I, at 32 cM on chromosome II, and between 44 and 52 cM on chromosome III. Alleles at these QTL were additive or dominant in determining rates of dengue-2 dissemination and accounted for ∼45% of the phenotypic variance. The locations of dengue-2 midgut infection and dissemination QTL correspond to those found in earlier studies. PMID:15781707

  14. Temporal genetic structure of major dengue vector Aedes aegypti from Manaus, Amazonas, Brazil.

    PubMed

    Mendonça, Barbara Alessandra Alves; de Sousa, Adna Cristina Barbosa; de Souza, Anete Pereira; Scarpassa, Vera Margarete

    2014-06-01

    In recent years, high levels of Aedes aegypti infestation and several dengue outbreaks with fatal outcome cases have been reported in Manaus, State of Amazonas, Brazil. This situation made it important to understand the genetic structure and gene flow patterns among the populations of this vector in Manaus, vital pieces of information for their management and development of new control strategies. In this study, we used nine microsatellite loci to examine the effect of seasonality on the genetic structure and gene flow patterns in Ae. aegypti populations from four urban neighborhoods of Manaus, collected during the two main rainy and dry seasons. All loci were polymorphic in the eight samples from the two seasons, with a total of 41 alleles. The genetic structure analyses of the samples from the rainy season revealed genetic homogeneity and extensive gene flow, a result consistent with the abundance of breeding sites for this vector. However, the samples from the dry season were significantly structured, due to a reduction of Ne in two (Praça 14 de Janeiro and Cidade Nova) of the four samples analyzed, and this was the primary factor influencing structure during the dry season. Genetic bottleneck analyses suggested that the Ae. aegypti populations from Manaus are being maintained continuously throughout the year, with seasonal reduction rather than severe bottleneck or extinction, corroborating previous reports. These findings are of extremely great importance for designing new dengue control strategies in Manaus. PMID:24631342

  15. Release of thiotepa sterilized males into caged populations of Aedes aegypti: life table analysis.

    PubMed

    Gato, René; Companioni, Ariamys; Bruzón, Rosa Y; Menéndez, Zulema; González, Aileen; Rodríguez, Misladys

    2014-04-01

    Successful SIT trials against mosquitoes in the 1960-70s were achieved by sterilizing male mosquitoes using chemosterilants. Their use was discontinued after concerns were raised about the effect of residues on non-target organisms, although scant evidence has been published. Irradiation is an expensive process; chemosterilization could be an affordable option for implementing SIT programs in developing countries. We compare life table parameters of three Aedes aegypti populations comprising different ratios of thiotepa-treated and non-treated males in order to identify the impact on reproductive potential of the presence of sterile males. No difference was observed in the survival of the treated and untreated males. The release of thiotepa sterilized males into caged Ae. aegypti populations had no effect on death or survival probability of the individuals in the cages but the fecundity of females was significantly reduced, as evaluated by hatch rate and stable age structure parameters. The significant decreases in net reproduction rate, finite rate of natural increase and intrinsic rate of natural increase in populations including sterile males are sufficient to indicate that such populations would not be able to proliferate in natural conditions. This suggests that release of Ae. aegypti thiotepa-treated males could be effective in reducing the reproductive capability of the target population and consequently contribute to vector control. PMID:24513037

  16. Differential transcription profiles in Aedes aegypti detoxification genes following temephos selection

    PubMed Central

    Saavedra-Rodriguez, Karla; Strode, Clare; Flores, Adriana E.; Garcia-Luna, Selene; Reyes-Solis, Guadalupe; Ranson, Hilary; Hemingway, Janet; Black, William C.

    2014-01-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti ‘Detox Chip’ microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from México, and one from Perú. The response to selection was tracked in terms of lethal concentrations (LC50). Uniform upregulation was seen in the epsilon class glutathione-S-transferase genes (eGSTs) in strains from México prior to laboratory selection, while eGSTs in the Iquitos Perú strain became upregulated following five generations of temephos selection. While expression of many esterase genes (CCE) increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 genes (CYP) and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using GST, CCE and CYP inhibitors suggest that various CCE instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study. PMID:24299217

  17. Field Validation of a Transcriptional Assay for the Prediction of Age of Uncaged Aedes aegypti Mosquitoes in Northern Australia

    PubMed Central

    Hugo, Leon E.; Cook, Peter E.; Johnson, Petrina H.; Rapley, Luke P.; Kay, Brian H.; Ryan, Peter A.; Ritchie, Scott A.; O'Neill, Scott L.

    2010-01-01

    Background New strategies to eliminate dengue have been proposed that specifically target older Aedes aegypti mosquitoes, the proportion of the vector population that is potentially capable of transmitting dengue viruses. Evaluation of these strategies will require accurate and high-throughput methods of predicting mosquito age. We previously developed an age prediction assay for individual Ae. aegypti females based on the transcriptional profiles of a selection of age responsive genes. Here we conducted field testing of the method on Ae. aegypti that were entirely uncaged and free to engage in natural behavior. Methodology/Principal Findings We produced “free-range” test specimens by releasing 8007 adult Ae. aegypti inside and around an isolated homestead in north Queensland, Australia, and recapturing females at two day intervals. We applied a TaqMan probe-based assay design that enabled high-throughput quantitative RT-PCR of four transcripts from three age-responsive genes and a reference gene. An age prediction model was calibrated on mosquitoes maintained in small sentinel cages, in which 68.8% of the variance in gene transcription measures was explained by age. The model was then used to predict the ages of the free-range females. The relationship between the predicted and actual ages achieved an R2 value of 0.62 for predictions of females up to 29 days old. Transcriptional profiles and age predictions were not affected by physiological variation associated with the blood feeding/egg development cycle and we show that the age grading method could be applied to differentiate between two populations of mosquitoes having a two-fold difference in mean life expectancy. Conclusions/Significance The transcriptional profiles of age responsive genes facilitated age estimates of near-wild Ae. aegypti females. Our age prediction assay for Ae. aegypti provides a useful tool for the evaluation of mosquito control interventions against dengue where mosquito

  18. Inheritance of Resistance to Deltamethrin in Aedes aegypti (Diptera: Culicidae) From Cuba.

    PubMed

    Rodríguez, María Magdalena; Hurtado, Daymi; Severson, David W; Bisset, Juan A

    2014-11-01

    The development of pyrethroid resistance in Aedes aegypti (L) (Diptera: Culicidae) is a serious concern because major A. aegypti control programs are predominantly based on pyrethroid use during epidemic disease outbreaks. Research about the genetic basis for pyrethroid resistance and how it is transmitted among mosquito populations is needed. The objective of this study was to determine how deltamethrin resistance is inherited in the Cuban A. aegypti-resistant reference strain. Here, a field population of A. aegypti from Santiago de Cuba (SAN-F14), subjected to 14 generations of selection for high deltamethrin resistance level (91.25×), was used to prepare reciprocal F1 and backcross progeny with the insecticide-susceptible Rockefeller strain. Bioassays with larvae were performed according to World Health Organization guidelines. The activities of metabolic enzymes were assayed through synergist and biochemical tests. The null hypothesis of the parallelism test between the two probit regression lines of the reciprocal F1 (susceptible females × resistant males and vice versa) was not rejected at the 5% significance level (P = 0.42), indicating autosomal inheritance. The LC50 response of both F1 progenies to deltamethrin was elevated but less than the highly resistant SAN-F14 strain. DLC values for the F1 progenies were 0.91 and 0.87, respectively, suggesting that deltamethrin resistance in the SAN-F14 strain is inherited as an autosomal incompletely dominant trait, involving at least two factors, which implies a faster development of deltamethrin resistance in larvae and lost product effectiveness. Metabolic enzymes including esterases and cytochrome P-450 monooxygenases but not glutathione-S-transferases were involved in deltamethrin resistance in larvae. PMID:26309309

  19. An animal homolog of plant Mep/Amt transporters promotes ammonia excretion by the anal papillae of the disease vector mosquito Aedes aegypti.

    PubMed

    Chasiotis, Helen; Ionescu, Adrian; Misyura, Lidiya; Bui, Phuong; Fazio, Kimberly; Wang, Jason; Patrick, Marjorie; Weihrauch, Dirk; Donini, Andrew

    2016-05-01

    The transcripts of three putative ammonia (NH3/NH4 (+)) transporters, Rhesus-like glycoproteins AeRh50-1, AeRh50-2 and Amt/Mep-like AeAmt1 were detected in the anal papillae of larval Aedes aegypti Quantitative PCR studies revealed 12-fold higher transcript levels of AeAmt1 in anal papillae relative to AeRh50-1, and levels of AeRh50-2 were even lower. Immunoblotting revealed AeAmt1 in anal papillae as a pre-protein with putative monomeric and trimeric forms. AeAmt1 was immunolocalized to the basal side of the anal papillae epithelium where it co-localized with Na(+)/K(+)-ATPase. Ammonium concentration gradients were measured adjacent to anal papillae using the scanning ion-selective electrode technique (SIET) and used to calculate ammonia efflux by the anal papillae. dsRNA-mediated reductions in AeAmt1 decreased ammonia efflux at larval anal papillae and significantly increased ammonia levels in hemolymph, indicating a principal role for AeAmt1 in ammonia excretion. Pharmacological characterization of ammonia transport mechanisms in the anal papillae suggests that, in addition to AeAmt1, the ionomotive pumps V-type H(+)-ATPase and Na(+)/K(+)-ATPase as well as NHE3 are involved in ammonia excretion at the anal papillae. PMID:26944496

  20. Origin of the Dengue Fever Mosquito, Aedes aegypti, in California

    PubMed Central

    Gloria-Soria, Andrea; Brown, Julia E.; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R.

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases. PMID:25077804

  1. The Aedes aegypti Toll Pathway Controls Dengue Virus Infection

    PubMed Central

    Xi, Zhiyong; Ramirez, Jose L.; Dimopoulos, George

    2008-01-01

    Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference–based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi)-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway–associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway. PMID:18604274

  2. Origin of the dengue fever mosquito, Aedes aegypti, in California.

    PubMed

    Gloria-Soria, Andrea; Brown, Julia E; Kramer, Vicki; Hardstone Yoshimizu, Melissa; Powell, Jeffrey R

    2014-01-01

    Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases. PMID:25077804

  3. (abstract) Airborne Emission Spectrometer (AES)

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard

    1994-01-01

    AES is a low-cost analog of the TES downlooking modes. Because AES operates at ambient temperature, limb-viewing is not possible. The first flight of AES took place in April 1994 on the NASA P3B aircraft out of Wallops Island, VA. While planned as an engineering test flight, spectra were successfully acquired both over the Atlantic Ocean and the area of the Great Dismal Swamp on the Virginia-North Carolina border. At this writing (July 1994), a second series of flights on the NASA DC8 aircraft out of Ames RC,CA is in progress. By the time of the workshop, a third series using the NASA C130 should have been accomplished.

  4. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti.

    PubMed

    Abreu, Filipe Vieira Santos de; Morais, Maira Moreira; Ribeiro, Sérvio Pontes; Eiras, Álvaro Eduardo

    2015-08-01

    Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16) was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed "favourite", which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches. PMID:26154742

  5. Influence of plant abundance on nectar feeding by Aedes aegypti (Diptera: Culicidae) in southern Mexico.

    PubMed

    Martinez-Ibarra, J A; Rodriguez, M H; Arredondo-Jimenez, J I; Yuval, B

    1997-11-01

    The availability of flowering plants affected the sugar feeding rates of female Aedes aegypti (L.) in 4 areas of a small city in southern Mexico. The proportion of mosquitoes containing sugar varied from 8 to 21% in 4 areas in direct relation to blooming plant abundance. Human density was similar in the 4 areas (range, 3.9-5.4 per house), whereas the number of flowering plants per house increased on the outskirts (range, 3.1-5.4 plants per house). Equal proportions of sugar positive females were nulliparous or parous, indicating similar sugar feeding at any age. In addition, nearly 60% of positive females were at the Christophers stage II, indicating a greater need for flight fuel during the early stages of egg development. We conclude that Ae. aegypti feeds frequently on nectar and that this activity is modulated by nectar availability. PMID:9439110

  6. Effect of Wolbachia on insecticide susceptibility in lines of Aedes aegypti.

    PubMed

    Endersby, N M; Hoffmann, A A

    2013-06-01

    Two stable infections of Wolbachia pipientis, wMelPop and wMel, now established in Aedes aegypti, are being used in a biocontrol program to suppress the transmission of dengue. Any effects of Wolbachia infection on insecticide resistance of mosquitoes may undermine the success of this program. Bioassays of Ae. aegypti were conducted to test for differences in response to insecticides between Wolbachia infected (wMelPop, wMel) and uninfected lines. Insecticides screened were bifenthrin, the pyrethroid commonly used for adult knockdown, as well as larvicides: Bacillus thuringiensis var. israelensis, the organophosphate, temephos and the insect growth regulator, s-methoprene. While differences in response between lines were detected for some insecticides, no obvious or consistent effects related to presence of Wolbachia infection were observed. Spreading Wolbachia infections are, therefore, unlikely to affect the efficacy of traditional chemical control of mosquito outbreaks. PMID:23149015

  7. Influence of breeding site availability on the oviposition behaviour of Aedes aegypti

    PubMed Central

    de Abreu, Filipe Vieira Santos; Morais, Maira Moreira; Ribeiro, Sérvio Pontes; Eiras, Álvaro Eduardo

    2015-01-01

    Despite the importance of the mosquito Aedes aegypti in the transmission of arboviruses, such as yellow fever, Chikungunya fever and dengue fever, some aspects of their behaviour remain unknown. In the present study, the oviposition behaviour of Ae. aegypti females that were exposed to different densities of breeding sites (2, 4, 8 and 16) was evaluated in laboratory and semi-field conditions. The number of breeding sites that were used was proportional to the number available, but tended towards stabilisation. Females used four-six breeding sites on average, with a maximum of 11. A high percentage of eggs was observed in the water, along with the presence of a breeding site termed “favourite”, which received at least 40% of the eggs. The results are discussed in ecological, evolutionary and epidemiological approaches. PMID:26154742

  8. Assessing the Feasibility of Controlling Aedes aegypti with Transgenic Methods: A Model-Based Evaluation

    PubMed Central

    Legros, Mathieu; Xu, Chonggang; Okamoto, Kenichi; Scott, Thomas W.; Morrison, Amy C.; Lloyd, Alun L.; Gould, Fred

    2012-01-01

    Suppression of dengue and malaria through releases of genetically engineered mosquitoes might soon become feasible. Aedes aegypti mosquitoes carrying a conditionally lethal transgene have recently been used to suppress local vector populations in small-scale field releases. Prior to releases of transgenic insects on a wider scale, however, most regulatory authorities will require additional evidence that suppression will be effective in natural heterogeneous habitats. We use a spatially explicit stochastic model of an Ae. aegypti population in Iquitos, Peru, along with an uncertainty analysis of its predictions, to quantitatively assess the outcome of varied operational approaches for releases of transgenic strains with conditional death of females. We show that population elimination might be an unrealistic objective in heterogeneous populations. We demonstrate that substantial suppression can nonetheless be achieved if releases are deployed in a uniform spatial pattern using strains combining multiple lethal elements, illustrating the importance of detailed spatial models for guiding genetic mosquito control strategies. PMID:23284949

  9. Evidence for an Overwintering Population of Aedes aegypti in Capitol Hill Neighborhood, Washington, DC.

    PubMed

    Lima, Andrew; Lovin, Diane D; Hickner, Paul V; Severson, David W

    2016-01-01

    Aedes aegypti is an invasive, highly anthropophilic mosquito and a major vector for dengue and chikungunya. Population persistence in the continental United States is reportedly limited to southward of the average 10°C winter isotherm, which in the east, bisects Alabama, Mississippi, Georgia, and South Carolina. We report on summer collections and genotypic analyses of Ae. aegypti collected in the Capitol Hill neighborhood in Washington, DC (WDC). Analysis of a 441-bp fragment of the mitochondrial cytochrome oxidase I gene sequence identified the same two haplotype sequences during 2011-2014, and placed these within two discrete groups known to be derived from lineages resident in the Americas. Analysis of 10 microsatellite loci for specimens collected during 2011-2014 revealed no evidence for introgression of new alleles across years. Overall, our data support a conclusion that this represents a resident WDC population, likely maintained during winter months in a subterranean habitat that facilitates year-round survival. PMID:26526922

  10. Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations

    PubMed Central

    Souza, Raquel Santos; Diaz-Albiter, Hector Manuel; Dillon, Vivian Maureen; Dillon, Rod J.; Genta, Fernando Ariel

    2016-01-01

    Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2h, 100% in 48h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated. PMID

  11. Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Rahuman, A Abdul; Gopalakrishnan, Geetha; Venkatesan, P; Geetha, Kannappan

    2008-04-01

    Larvicidal activity of ethyl acetate, butanol, and petroleum ether extracts of five species of Euphorbiaceae plants, Jatropha curcas, Pedilanthus tithymaloides, Phyllanthus amarus, Euphorbia hirta, and Euphorbia tirucalli, were tested against the early fourth instar larvae of Aedes aegypti L. and Culex quinquefasciatus (Say). The larval mortality was observed after 24 h of exposure. All extracts showed low larvicidal effects; however, the highest larval mortality was found in petroleum ether extract. The LC50 value of petroleum ether extracts of J. curcas, P. tithymaloides, P. amarus, E. hirta, and E. tirucalli were 8.79, 55.26, 90.92, 272.36, and 4.25 ppm, respectively, against A. aegypti and 11.34, 76.61, 113.40, 424.94, and 5.52 ppm, respectively, against C quinquefasciatus. Of the various ratios tested, the petroleum ether extracts of J. curcas and E. tirucalli were observed to be more efficient than the other plant extracts. It is, therefore, suggested that E. tirucalli can be applied as an ideal potential larvicide against A. aegypti and C. quinquefasciatus. This is an ideal ecofriendly approach for the control of the dengue vector, A. aegypti, and the lymphatic filariasis vector, C. quinquefasciatus. PMID:18163189

  12. Relationship between Aedes aegypti production and occurrence of Escherichia coli in domestic water storage containers in rural and sub-urban villages in Thailand and Laos.

    PubMed

    Dada, Nsa; Vannavong, Nanthasane; Seidu, Razak; Lenhart, Audrey; Stenström, Thor Axel; Chareonviriyaphap, Theeraphap; Overgaard, Hans J

    2013-06-01

    In a cross-sectional survey in one rural and one suburban village each in Thailand and Laos the relationship between Aedes aegypti production and Escherichia coli contamination in household water storage containers was investigated. Entomological and microbiological surveys were conducted in 250 and 239 houses in Thailand and Laos, respectively. Entomological indices across all four villages were high, indicating a high risk for dengue transmission. Significantly more Ae. aegypti pupae were produced in containers contaminated with E. coli as compared to those that were not, with the odds of Ae. aegypti infested containers being contaminated with E. coli ranging from two to five. The level of E. coli contamination varied across container classes but contamination levels were not significantly associated with the number of pupae produced. We conclude that the observed relationship between Ae. aegypti production and presence of E. coli in household water storage containers suggests a causal relationship between dengue and diarrheal disease at these sites. How this relationship can be exploited for the combined and cost-effective control of dengue and diarrheal diseases requires further research. PMID:23499713

  13. Effects of Beauveria bassiana on Survival, Blood-Feeding Success, and Fecundity of Aedes aegypti in Laboratory and Semi-Field Conditions

    PubMed Central

    Darbro, Jonathan M.; Johnson, Petrina H.; Thomas, Matthew B.; Ritchie, Scott A.; Kay, Brian H.; Ryan, Peter A.

    2012-01-01

    The fungus Beauveria bassiana reduces Aedes aegypti longevity in laboratory conditions, but effects on survival, blood-feeding behavior, and fecundity in realistic environmental conditions have not been tested. Adult, female Ae. aegypti infected with B. bassiana (FI-277) were monitored for blood-feeding success and fecundity in the laboratory. Fungal infection reduced mosquito-human contact by 30%. Fecundity was reduced by (mean ± SD) 29.3 ± 8.6 eggs per female per lifetime in the laboratory; egg batch size and viability were unaffected. Mosquito survival, blood-feeding behavior, and fecundity were also tested in 5 meter×7 meter×4 meter semi-field cages in northern Queensland, Australia. Fungal infection reduced mosquito survival in semi-field conditions by 59–95% in large cages compared with 61–69% in small cages. One semi-field cage trial demonstrated 80% reduction in blood-feeding; a second trial showed no significant effect. Infection did not affect fecundity in large cages. Beauveria bassiana can kill and may reduce biting of Ae. aegypti in semi-field conditions and in the laboratory. These results further support the use of B. bassiana as a potential biocontrol agent against Ae. aegypti. PMID:22492151

  14. Genetic Structure of Aedes aegypti in Australia and Vietnam Revealed by Microsatellite and Exon Primed Intron Crossing Markers Suggests Feasibility of Local Control Options

    PubMed Central

    ENDERSBY, N. M.; HOFFMANN, A. A.; WHITE, V. L.; LOWENSTEIN, S.; RITCHIE, S.; JOHNSON, P. H.; RAPLEY, L. P.; RYAN, P. A.; NAM, V. S.; YEN, N. T.; KITTIYAPONG, P.; WEEKS, A. R.

    2009-01-01

    The distribution of Aedes aegypti (L.) in Australia is currently restricted to northern Queensland, but it has been more extensive in the past. In this study, we evaluate the genetic structure of Ae. aegypti populations in Australia and Vietnam and consider genetic differentiation between mosquitoes from these areas and those from a population in Thailand. Six microsatellites and two exon primed intron crossing markers were used to assess isolation by distance across all populations and also within the Australian sample. Investigations of founder effects, amount of molecular variation between and within regions and comparison of FST values among Australian and Vietnamese populations were made to assess the scale of movement of Ae. aegypti. Genetic control methods are under development for mosquito vector populations including the dengue vector Ae. aegypti. The success of these control methods will depend on the population structure of the target species including population size and rates of movement among populations. Releases of modified mosquitoes could target local populations that show a high degree of isolation from surrounding populations, potentially allowing new variants to become established in one region with eventual dispersal to other regions. PMID:19769038

  15. Vector competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde archipelago for West African lineages of chikungunya virus.

    PubMed

    Diagne, Cheikh T; Faye, Oumar; Guerbois, Mathilde; Knight, Rachel; Diallo, Diawo; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Faye, Ousmane; Weaver, Scott C; Sall, Amadou A; Diallo, Mawlouth

    2014-09-01

    To assess the risk of emergence of chikungunya virus (CHIKV) in West Africa, vector competence of wild-type, urban, and non-urban Aedes aegypti and Ae. vittatus from Senegal and Cape Verde for CHIKV was investigated. Mosquitoes were fed orally with CHIKV isolates from mosquitoes (ArD30237), bats (CS13-288), and humans (HD180738). After 5, 10, and 15 days of incubation following an infectious blood meal, presence of CHIKV RNA was determined in bodies, legs/wings, and saliva using real-time reverse transcription-polymerase chain reaction. Aedes vittatus showed high susceptibility (50-100%) and early dissemination and transmission of all CHIKV strains tested. Aedes aegypti exhibited infection rates ranging from 0% to 50%. Aedes aegypti from Cape Verde and Kedougou, but not those from Dakar, showed the potential to transmit CHIKV in saliva. Analysis of biology and competence showed relatively high infective survival rates for Ae. vittatus and Ae. aegypti from Cape Verde, suggesting their efficient vector capacity in West Africa. PMID:25002293

  16. The effects of herbal essential oils on the oviposition-deterrent and ovicidal activities of Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say).

    PubMed

    Siriporn, P; Mayura, S

    2012-03-01

    The effect of oviposition-deterrent and ovicidal of seven essential oils were evaluated towards three mosquito vectors, Aedes aegypti, Anopheles dirus and Culex quinquefasciatus. The oviposition activity index (OAI) values of six essential oils namely Cananga odorata, Cymbopogon citratus, Cymbopogon nardus, Eucalyptus citriodora, Ocimum basilicum and Syzygium aromaticum indicated that there were more deterrent than the control whereas Citrus sinensis oil acted as oviposition attractant. At higher concentration (10%) of Ca. odorata (ylang ylang flowers) showed high percent effective repellency (ER) against oviposition at 99.4% to Ae. aegypti, 97.1% to An. dirus and 100% to Cx. quinquefasciatus, respectively. The results showed that mean numbers of eggs were lower in treated than in untreated water. In addition, there was an inverse relationship between essential oil concentrations and ovicidal activity. As the concentration of essential oil increased from 1%, 5% and up to 10% conc., the hatching rate decreased. The essential oil of Ca. odorata at 10% conc. gave minimum egg hatch of 10.4% (for Ae. aegypti), 0.8% (for An. dirus) and 1.1% (for Cx. quinquefasciatus) respectively. These results clearly revealed that the essential oil of Ca. odorata served as a potential oviposition-deterrent and ovicidal activity against Ae. aegypti, An. dirus and Cx. quinquefasciatus. PMID:22543614

  17. Insect repellent activity of medicinal plant oils against Aedes aegypti (Linn.), Anopheles minimus (Theobald) and Culex quinquefasciatus Say based on protection time and biting rate.

    PubMed

    Phasomkusolsil, Siriporn; Soonwera, Mayura

    2010-07-01

    This study investigated insect bite protection and length of the protection with 30 repellents which were divided into 3 categories: plant oil, essential oil and essential oil with ethyl alcohol, tested against three mosquito species, Aedes aegypti, Anopheles minimus and Culex quinquefasciatus, under laboratory conditions. The plant oil group was comprised of Phlai (Zingiber cassumunar) and Sweet basil (Ocimum basilicum). Both substances were effective as repellents and feeding deterrents against An. minimus (205 minutes protection time and a biting rate of 0.9%), Cx. quinquefasciatus (165 minutes protection time and 0.9% biting rate) and Ae. aegypti (90 minutes protection time and 0.8% biting rate). Essential oil from citronella grass (Cymbopogon nardus) exhibited protection against biting from all 3 mosquito species: for An. minimus, Cx. quinquefasciatus and Ae. aegypti, the results were 130 minutes and 0.9%, 140 minutes and 0.8%, and 115 minutes and 0.8%, respectively. The period of protection time against Ae. aegypti for all repellent candidates tested was lower than the Thai Industrial Standards Institute (TISI) determined time of greater than 2 hours. PMID:21073057

  18. Aedes aegypti population sampling using BG-Sentinel traps in north Queensland Australia: statistical considerations for trap deployment and sampling strategy.

    PubMed

    Williams, Craig R; Long, Sharron A; Webb, Cameron E; Bitzhenner, Moritz; Geier, Martin; Russell, Richard C; Ritchie, Scott A

    2007-03-01

    BG-Sentinel mosquito traps were trialed as a tool for the rapid assessment (24-h collections) and routine monitoring (72-h collections) of adult Aedes aegypti L. populations in north Queensland. Analysis of Ae. aegypti collections using BG-Sentinels set in suburban Cairns for 24 h permitted the calculation of sample size for a range of precision levels. Clusters of houses with BG-Sentinels operating continuously for 15 d, with collections every 72 h, also permitted required sample size calculation. Evidence of Ae. aegypti spatial clustering at the house scale was revealed, with statistically significant effects detected for all collection days. Less variation was detected at each trap location, with only nine of 32 trap locations revealing significant clustering over time. Trap-out effects through continuous BG-Sentinel operation at a fixed location were absent. The findings support fixed position sampling at 72-h intervals for routine monitoring ofAe. aegypti populations in Cairns. Despite the relationship between collections of adult vectors and the incidence of disease remaining unknown, BG-Sentinel collections provide an alternative and less labor-intensive abundance measure for assessing risk of dengue virus transmission and success of dengue vector control programs. PMID:17427707

  19. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet L.; Ludueña-Almeida, Francisco F.; Introini, María V.; Zaidenberg, Mario; Almirón, Walter R.

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10°C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R2). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415

  20. Weather Variability Associated with Aedes (Stegomyia) aegypti (Dengue Vector) Oviposition Dynamics in Northwestern Argentina.

    PubMed

    Estallo, Elizabet L; Ludueña-Almeida, Francisco F; Introini, María V; Zaidenberg, Mario; Almirón, Walter R

    2015-01-01

    This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10 °C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R(2)). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415

  1. Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Dias, Clarice Noleto; Alves, Luciana Patrícia Lima; Rodrigues, Klinger Antonio da Franca; Brito, Maria Cristiane Aranha; Rosa, Carliane Dos Santos; do Amaral, Flavia Maria Mendonça; Monteiro, Odair Dos Santos; Andrade, Eloisa Helena de Aguiar; Maia, José Guilherme Soares; Moraes, Denise Fernandes Coutinho

    2015-01-01

    The mosquito Aedes aegypti L. (Diptera: Culicidae) is the major vector of dengue and chikungunya fever. The lack of effective therapies and vaccines for these diseases highlights the need for alternative strategies to control the spread of virus. Therefore, this study investigated the larvicidal potential of essential oils from common plant species obtained from the Chapada das Mesas National Park, Brazil, against third instar A. aegypti larvae. The chemical composition of these oils was determined by gas chromatography coupled to mass spectrometry. The essential oils of Eugenia piauhiensis Vellaff., Myrcia erythroxylon O. Berg, Psidium myrsinites DC., and Siparuna camporum (Tul.) A. DC. were observed to be mainly composed of sesquiterpene hydrocarbons. The essential oil of Lippia gracilis Schauer was composed of oxygenated monoterpenes. Four of the five tested oils were effective against the A. aegypti larvae, with the lethal concentration (LC50) ranging from 230 to 292 mg/L after 24 h of exposure. Overall, this work demonstrated the possibility of developing larvicidal products against A. aegypti by using essential oils from the flora of the Brazilian Legal Amazon. This in turn demonstrates the potential of using natural resources for the control of disease vectors. PMID:25949264

  2. Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae)

    PubMed Central

    Dias, Clarice Noleto; Alves, Luciana Patrícia Lima; Rodrigues, Klinger Antonio da Franca; Brito, Maria Cristiane Aranha; Rosa, Carliane dos Santos; do Amaral, Flavia Maria Mendonça; Monteiro, Odair dos Santos; Andrade, Eloisa Helena de Aguiar; Maia, José Guilherme Soares; Moraes, Denise Fernandes Coutinho

    2015-01-01

    The mosquito Aedes aegypti L. (Diptera: Culicidae) is the major vector of dengue and chikungunya fever. The lack of effective therapies and vaccines for these diseases highlights the need for alternative strategies to control the spread of virus. Therefore, this study investigated the larvicidal potential of essential oils from common plant species obtained from the Chapada das Mesas National Park, Brazil, against third instar A. aegypti larvae. The chemical composition of these oils was determined by gas chromatography coupled to mass spectrometry. The essential oils of Eugenia piauhiensis Vellaff., Myrcia erythroxylon O. Berg, Psidium myrsinites DC., and Siparuna camporum (Tul.) A. DC. were observed to be mainly composed of sesquiterpene hydrocarbons. The essential oil of Lippia gracilis Schauer was composed of oxygenated monoterpenes. Four of the five tested oils were effective against the A. aegypti larvae, with the lethal concentration (LC50) ranging from 230 to 292 mg/L after 24 h of exposure. Overall, this work demonstrated the possibility of developing larvicidal products against A. aegypti by using essential oils from the flora of the Brazilian Legal Amazon. This in turn demonstrates the potential of using natural resources for the control of disease vectors. PMID:25949264

  3. Discovery of Point Mutations in the Voltage-Gated Sodium Channel from African Aedes aegypti Populations: Potential Phylogenetic Reasons for Gene Introgression

    PubMed Central

    Muranami, Yuto; Kawashima, Emiko; Osei, Joseph H. N.; Sakyi, Kojo Yirenkyi; Dadzie, Samuel; de Souza, Dziedzom K.; Appawu, Maxwell; Ohta, Nobuo; Minakawa, Noboru

    2016-01-01

    Background Yellow fever is endemic in some countries in Africa, and Aedes aegpyti is one of the most important vectors implicated in the outbreak. The mapping of the nation-wide distribution and the detection of insecticide resistance of vector mosquitoes will provide the beneficial information for forecasting of dengue and yellow fever outbreaks and effective control measures. Methodology/Principal Findings High resistance to DDT was observed in all mosquito colonies collected in Ghana. The resistance and the possible existence of resistance or tolerance to permethrin were suspected in some colonies. High frequencies of point mutations at the voltage-gated sodium channel (F1534C) and one heterozygote of the other mutation (V1016I) were detected, and this is the first detection on the African continent. The frequency of F1534C allele and the ratio of F1534C homozygotes in Ae. aegypti aegypti (Aaa) were significantly higher than those in Ae. aegypti formosus (Aaf). We could detect the two types of introns between exon 20 and 21, and the F1534C mutations were strongly linked with one type of intron, which was commonly found in South East Asian and South and Central American countries, suggesting the possibility that this mutation was introduced from other continents or convergently selected after the introgression of Aaa genes from the above area. Conclusions/Significance The worldwide eradication programs in 1940s and 1950s might have caused high selection pressure on the mosquito populations and expanded the distribution of insecticide-resistant Ae. aegypti populations. Selection of the F1534C point mutation could be hypothesized to have taken place during this period. The selection of the resistant population of Ae. aegypti with the point mutation of F1534C, and the worldwide transportation of vector mosquitoes in accordance with human activity such as trading of used tires, might result in the widespread distribution of F1534C point mutation in tropical countries

  4. Evaluation of the Activity of the Essential Oil from an Ornamental Flower against Aedes aegypti: Electrophysiology, Molecular Dynamics and Behavioral Assays.

    PubMed

    Bezerra-Silva, Patrícia C; Dutra, Kamilla A; Santos, Geanne K N; Silva, Rayane C S; Iulek, Jorge; Milet-Pinheiro, Paulo; Navarro, Daniela M A F

    2016-01-01

    Dengue fever has spread worldwide and affects millions of people every year in tropical and subtropical regions of Africa, Asia, Europe and America. Since there is no effective vaccine against the dengue virus, prevention of disease transmission depends entirely on regulating the vector (Aedes aegypti) or interrupting human-vector contact. The aim of this study was to assess the oviposition deterrent activity of essential oils of three cultivars of torch ginger (Etlingera elatior, Zingiberaceae) against the dengue mosquito. Analysis of the oils by gas chromatography (GC)-mass spectrometry revealed the presence of 43 constituents, of which α-pinene, dodecanal and n-dodecanol were the major components in all cultivars. Solutions containing 100 ppm of the oils exhibited oviposition deterrent activities against gravid Ae. aegypti females. GC analysis with electroantennographic detection indicated that the oil constituents n-decanol, 2-undecanone, undecanal, dodecanal, trans-caryophyllene, (E)-β-farnesene, α-humulene, n-dodecanol, isodaucene and dodecanoic acid were able to trigger antennal depolarization in Ae. aegypti females. Bioassays confirmed that solutions containing 50 ppm of n-dodecanol or dodecanal exhibited oviposition deterrent activities, while a solution containing the alcohol and aldehyde in admixture at concentrations representative of the oil presented an activity similar to that of the 100 ppm oil solution. Docking and molecular dynamics simulations verified that the interaction energies of the long-chain oil components and Ae. aegypti odorant binding protein 1 were quite favorable, indicating that the protein is a possible oviposition deterrent receptor in the antenna of Ae. aegypti. PMID:26927837

  5. Evaluation of the Activity of the Essential Oil from an Ornamental Flower against Aedes aegypti: Electrophysiology, Molecular Dynamics and Behavioral Assays

    PubMed Central

    Bezerra-Silva, Patrícia C.; Dutra, Kamilla A.; Santos, Geanne K. N.; Silva, Rayane C. S.; Iulek, Jorge; Milet-Pinheiro, Paulo; Navarro, Daniela M. A. F.

    2016-01-01

    Dengue fever has spread worldwide and affects millions of people every year in tropical and subtropical regions of Africa, Asia, Europe and America. Since there is no effective vaccine against the dengue virus, prevention of disease transmission depends entirely on regulating the vector (Aedes aegypti) or interrupting human-vector contact. The aim of this study was to assess the oviposition deterrent activity of essential oils of three cultivars of torch ginger (Etlingera elatior, Zingiberaceae) against the dengue mosquito. Analysis of the oils by gas chromatography (GC)—mass spectrometry revealed the presence of 43 constituents, of which α-pinene, dodecanal and n-dodecanol were the major components in all cultivars. Solutions containing 100 ppm of the oils exhibited oviposition deterrent activities against gravid Ae. aegypti females. GC analysis with electroantennographic detection indicated that the oil constituents n-decanol, 2-undecanone, undecanal, dodecanal, trans-caryophyllene, (E)-β-farnesene, α-humulene, n-dodecanol, isodaucene and dodecanoic acid were able to trigger antennal depolarization in Ae. aegypti females. Bioassays confirmed that solutions containing 50 ppm of n-dodecanol or dodecanal exhibited oviposition deterrent activities, while a solution containing the alcohol and aldehyde in admixture at concentrations representative of the oil presented an activity similar to that of the 100 ppm oil solution. Docking and molecular dynamics simulations verified that the interaction energies of the long-chain oil components and Ae. aegypti odorant binding protein 1 were quite favorable, indicating that the protein is a possible oviposition deterrent receptor in the antenna of Ae. aegypti. PMID:26927837

  6. Copulation Activity, Sperm Production and Conidia Transfer in Aedes aegypti Males Contaminated by Metarhizium anisopliae: A Biological Control Prospect

    PubMed Central

    Russell, Tanya L.; Braks, Marieta A. H.

    2015-01-01

    Background Dengue is the most prevalent arboviral disease transmitted by Aedes aegypti worldwide, whose chemical control is difficult, expensive, and of inconsistent efficacy. Releases of Metarhizium anisopliae—exposed Ae. aegypti males to disseminate conidia among female mosquitoes by mating represents a promising biological control approach against this important vector. A better understanding of fungus virulence and impact on reproductive parameters of Ae. aegypti, is need before testing auto-dissemination strategies. Methodology/Principal Findings Mortality, mating competitiveness, sperm production, and the capacity to auto-disseminate the fungus to females up to the 5thcopulation, were compared between Aedes aegypti males exposed to 5.96 x 107 conidia per cm2 of M. anisopliae and uninfected males. Half (50%) of fungus-exposed males (FEMs) died within the first 4 days post-exposure (PE). FEMs required 34% more time to successively copulate with 5 females (165 ± 3 minutes) than uninfected males (109 ± 3 minutes). Additionally, fungus infection reduced the sperm production by 87% at 5 days PE. Some beneficial impacts were observed, FEMs were able to successfully compete with uninfected males in cages, inseminating an equivalent number of females (about 25%). Under semi-field conditions, the ability of FEMs to search for and inseminate females was also equivalent to uninfected males (both inseminating about 40% females); but for the remaining females that were not inseminated, evidence of tarsal contact (transfer of fluorescent dust) was significantly greater in FEMs compared to controls. The estimated conidia load of a female exposed on the 5th copulation was 5,200 mL-1 which was sufficient to cause mortality. Conclusion/Significance Our study is the first to demonstrate auto-dissemination of M. anisopliae through transfer of fungus from males to female Ae. aegypti during mating under semi-field conditions. Our results suggest that auto-dissemination studies

  7. OFF! Clip-on Repellent Device With Metofluthrin Tested on Aedes aegypti (Diptera: Culicidae) for Mortality at Different Time Intervals and Distances.

    PubMed

    Bibbs, Christopher S; Xue, Rui-De

    2016-03-01

    The OFF! Clip-on mosquito-repellent device was tested outdoors against Aedes aegypti (L.). A single treatment device was used against batches of caged adult, nonblood fed Ae. aegypti at multiple locations 0.3m from treatment center. Another set of cages was stationed 0.6m from treatment. A final set of cages was placed 0.9m away. Trials ran for durations of 5, 15, 30, and 60 min. Initial knockdown and mortality after 24 h was recorded. The devices had effective knockdown and mortality. This was not sustained at distances greater than 0.3m from the device. PMID:26668103

  8. Effect of Aedes aegypti exposure to spatial repellent chemicals on BG-Sentinel™ trap catches

    PubMed Central

    2013-01-01

    Background An integrated approach to reduce densities of adult Aedes aegypti inside homes is currently being evaluated under experimentally controlled field conditions. The strategy combines a spatial repellent (SR) treatment (applied indoors) with the Biogents Sentinel™ (BGS) mosquito trap positioned in the outdoor environment. In essence, when combined, the goal is to create a push-pull mechanism that will reduce the probability of human-vector contact. The current study measured BGS recapture rates of Ae. aegypti test cohorts that were exposed to either SR or control (chemical-free) treatments within experimental huts. The objective was to define what, if any, negative impact SR may have on BGS trap efficacy (i.e., reduced BGS collection). Methods Aedes aegypti females were exposed to SR compounds within experimental huts in the form of either treated fabric (DDT and transfluthrin) or mosquito coil (metofluthrin). Test cohorts were released within individual screen house cubicles, each containing 4 BGS traps, following SR exposure according to treatment. Two separate test cohorts were evaluated: (i) immediate release (IR) exposed from 06:00–12:00 hours and released at 12:00 hours and (ii) delayed release (DR) exposed from12:00–18:00 hours and released at 05:30 hours the following day. BGS recapture was monitored at 09:30, 13:30 and 15:30 hours and the cumulative recapture by time point quantified. Results Exposure of Ae. aegypti females to either DDT or metofluthrin did not significantly impact BGS capture as compared to cohorts of non-exposed females. This was true for both IR and DR exposure populations. IR cohorts exposed to transfluthrin resulted in significantly lower BGS recapture compared to matched controls but this effect was primarily due to high mosquito mortality during transfluthrin trials. Conclusion Our data indicate no more than minor and short-lived impacts (i.e., reduced attraction) on BGS trap catches following exposure to the

  9. Insecticidal and repellent activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus.

    PubMed

    Aguiar, Raimundo Wagner Souza; dos Santos, Suetonio Fernandes; da Silva Morgado, Fabricio; Ascencio, Sergio Donizeti; de Mendonça Lopes, Magnólia; Viana, Kelvinson Fernandes; Didonet, Julcemar; Ribeiro, Bergmann Morais

    2015-01-01

    This study investigated the toxic effects of essential oils isolated from Siparuna guianensis against Aedes aegypti, Culex quinquefasciatus (eggs, larvae, pupae, and adult) and Aedes albopictus (C6/36) cells. The oviposition-deterring activity, egg viability, and repellence activity in the presence of different essential oils concentrations were determined. The essential oils showed high toxicity to all developmental stages of A. aegypti and C. quinquefasciatus. Furthermore, the oils also showed high repellent activity towards the adult stage of mosquitoes (0.025 to 0.550 μg/cm2 skin conferred 100% repellence up to 120 min) and in contact with cultured insect cells (C6/36) induced death possibly by necrosis. The results presented in this work show the potential of S. guianensis essential oils for the development of an alternative and effective method for the natural control of mosquitoes in homes and urban areas. PMID:25646797

  10. Insecticidal and Repellent Activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Aguiar, Raimundo Wagner Souza; dos Santos, Suetonio Fernandes; da Silva Morgado, Fabricio; Ascencio, Sergio Donizeti; de Mendonça Lopes, Magnólia; Viana, Kelvinson Fernandes; Didonet, Julcemar; Ribeiro, Bergmann Morais

    2015-01-01

    This study investigated the toxic effects of essential oils isolated from Siparuna guianensis against Aedes aegypti, Culex quinquefasciatus (eggs, larvae, pupae, and adult) and Aedes albopictus (C6/36) cells. The oviposition-deterring activity, egg viability, and repellence activity in the presence of different essential oils concentrations were determined. The essential oils showed high toxicity to all developmental stages of A. aegypti and C. quinquefasciatus. Furthermore, the oils also showed high repellent activity towards the adult stage of mosquitoes (0.025 to 0.550 μg/cm2 skin conferred 100% repellence up to 120 min) and in contact with cultured insect cells (C6/36) induced death possibly by necrosis. The results presented in this work show the potential of S. guianensis essential oils for the development of an alternative and effective method for the natural control of mosquitoes in homes and urban areas. PMID:25646797

  11. Immunotoxicity activity of the major essential oils of Valeriana fauriei Briq against Aedes aegypti L.

    PubMed

    Chung, Ill-Min; Kim, Eun-Hye; Moon, Hyung-In

    2011-03-01

    The rhizomes and roots of Valeriana fauriei were extracted and the major essential oil composition and immunotoxicity effects were studied. The analyses were conducted by gas chromatography-mass spectroscopy (GC-MS) revealed that the essential oils of V. fauriei. The V. fauriei essential oil (VFEO) yield was 1.93%, and GC/MS analysis revealed that its major constituents were bornyl acetate (32.83%), terpinyl acetate (3.82%), bornyl isovalerate (2.11%), β-sesquiphellandrene (2.21%), sesquiterpene alcohol (7.32%), and cedrol (2.45%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an LC(50) value of 30.44 ppm and an LC(90) value of 82.64 ppm. The results could be useful in search for newer, safer, and more effective natural immunotoxicity agents against Aedes aegypti L. PMID:20462349

  12. Immunotoxicity activity of the major essential oil of Filipendula glaberrima against Aedes aegypti L.

    PubMed

    Lee, Sung-Jae; Moon, Hyung-In

    2010-12-01

    The aerial parts of Filipendula glaberrima were extracted and the composition and immunotoxicity effects of major essential oils were studied. The analyses conducted by gas chromatography and mass spectroscopy (GC-MS) revealed the essential oils of F. glaberrima. The F. glaberrima essential oil (FGEO) yield was 0.046%, and GC/MS analysis revealed that its major constituents were β-farnesol (2.96%), l-α-terpineol (2.43%), benzenemethanol (2.87%), (Z)-3-hexen-1-ol (5.23%), and 2,6-bis(1,1-dimethylethyl)-4-methylphenol (1.91%). The essential oil had a significant toxic effect against early fourth stage larvae of Aedes aegypti L with an LC(50) value of 28.43 ppm and an LC(90) value of 76.21 ppm. The results could be useful in search for newer, safer, and more effective natural immunotoxicity agents against A. aegypti. PMID:20175741

  13. Immunotoxicity activity of sesquiterpenoids from black galingale (Kaempferia parviflora Wall. Ex. Baker) against Aedes aegypti L.

    PubMed

    Moon, Hyung-In; Cho, Sang-Buem; Lee, Jun-Hyeong; Paik, Hyun-Dong; Kim, Soo-Ki

    2011-06-01

    The roots of black galingale (Kaempferia parviflora) were chloroform-extracted and the isolated two sesquiterpene and immunotoxicity effects were studied. The structures and stereochemistry of these compounds were established on the basis of analysis of spectra including UV, MS, (1)H-NMR, and (13)C-NMR as follows: 1 (4α-acetoxycadina-2,9-diene-1,8-dione), 2 (1α,3α,4β-trihydroxy-9-cadinen-8-one). Compound 2 had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L. with an LC(50) value of 0.7 μM and an LC(90) value of 3.8 μM. The results could be useful in search for newer, safer, and more effective natural immunotoxicity agents against A. aegypti. PMID:20925462

  14. Real-time PCR Tests in Dutch Exotic Mosquito Surveys; Implementation of Aedes aegypti and Aedes albopictus Identification Tests, and the Development of Tests for the Identification of Aedes atropalpus and Aedes japonicus japonicus (Diptera: Culicidae).

    PubMed

    van de Vossenberg, B T L H; Ibáñez-Justicia, A; Metz-Verschure, E; van Veen, E J; Bruil-Dieters, M L; Scholte, E J

    2015-05-01

    Since 2009, The Netherlands Food and Consumer Product Safety Authority carries out surveys focusing on, amongst others, the presence of invasive mosquito species (IMS). Special attention is given to exotic container-breeding Aedes species Aedes aegypti (L.), Aedes albopictus (Skuse), Aedes atropalpus (Coquillett), and Aedes japonicus japonicus (Theobald). This study describes the implementation of real-time PCR tests described by Hill et al. (2008) for the identification of Ae. aegypti and Ae. albopictus, and the development of two novel real-time PCR tests for the identification of Ae. atropalpus and Ae. j. japonicus. Initial test showed that optimization of elements of the Ae. aegypti and Ae. albopictus tests was needed. Method validation tests were performed to determine if the implemented and newly developed tests are fit for routine diagnostics. Performance criteria of analytical sensitivity, analytical specificity, selectivity, repeatability, and reproducibility were determined. In addition, experiments were performed to determine the influence of environmental conditions on the usability of DNA extracted from mosquito specimens trapped in BG-Sentinel traps. The real-time PCR tests were demonstrated to be sensitive, specific, repeatable, reproducible, and are less prone to false negative results compared to partial cytochrome c oxidase I gene sequencing owing to the DNA fragmentation caused by environmental influences. PMID:26334807

  15. A SLC4-like anion exchanger from renal tubules of the mosquito (Aedes aegypti): evidence for a novel role of stellate cells in diuretic fluid secretion.

    PubMed

    Piermarini, Peter M; Grogan, Laura F; Lau, Kenneth; Wang, Li; Beyenbach, Klaus W

    2010-03-01

    Transepithelial fluid secretion across the renal (Malpighian) tubule epithelium of the mosquito (Aedes aegypti) is energized by the vacuolar-type (V-type) H(+)-ATPase and not the Na(+)-K(+)-ATPase. Located at the apical membrane of principal cells, the V-type H(+)-ATPase translocates protons from the cytoplasm to the tubule lumen. Secreted protons are likely to derive from metabolic H(2)CO(3), which raises questions about the handling of HCO(3)(-) by principal cells. Accordingly, we tested the hypothesis that a Cl/HCO(3) anion exchanger (AE) related to the solute-linked carrier 4 (SLC4) superfamily mediates the extrusion of HCO(3)(-) across the basal membrane of principal cells. We began by cloning from Aedes Malpighian tubules a full-length cDNA encoding an SLC4-like AE, termed AeAE. When expressed heterologously in Xenopus oocytes, AeAE is both N- and O-glycosylated and mediates Na(+)-independent intracellular pH changes that are sensitive to extracellular Cl(-) concentration and to DIDS. In Aedes Malpighian tubules, AeAE is expressed as two distinct forms: one is O-glycosylated, and the other is N-glycosylated. Significantly, AeAE immunoreactivity localizes to the basal regions of stellate cells but not principal cells. Concentrations of DIDS that inhibit AeAE activity in Xenopus oocytes have no effects on the unstimulated rates of fluid secretion mediated by Malpighian tubules as measured by the Ramsay assay. However, in Malpighian tubules stimulated with kinin or calcitonin-like diuretic peptides, DIDS reduces the diuretic rates of fluid secretion to basal levels. In conclusion, Aedes Malpighian tubules express AeAE in the basal region of stellate cells, where this transporter may participate in producing diuretic rates of transepithelial fluid secretion. PMID:20042685

  16. Laboratory and simulated field evaluation of a new recombinant of Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus against Culex mosquito larvae (Diptera: Culicidae).

    PubMed

    Zahiri, Nayer S; Federici, Brian A; Mulla, Mir S

    2004-05-01

    In the laboratory, three microbial mosquito larvicidal products consisting of Bacillus thuringiensis ssp. israelensis de Barjac (Bti), Bacillus sphaericus (Neide) (Bsph) (strain 2362), and the University of California Riverside (UCR) recombinant (producing toxins of both Bacillus sphaericus and Bacillus thuringiensis ssp. israelensis) were bioassayed against larvae of Culex quinequefasciatus Say (susceptible and resistant to Bsph 2362), and Aedes aegypti (L.). Bti proved highly effective against Cx. Quinequefasciatus susceptible and resistant strains, with LC50 values of 0.009 and 0.011 ppm and LC90 values of 0.057 and 0.026 ppm for Bsph-susceptible and -resistant strains, respectively. Bti was also highly active against Ae. eagypti with LC50 and LC90 values of 0.014 and 0.055 ppm, respectively. The UCR recombinant was equally active against both Bsph-susceptible and -resistant strains of Cx. Quinquefasciatus; LC50 values were 0.005 and 0.009 and LC90 values were 0.030 and 0.043 ppm, respectively. Bti and the UCR recombinant essentially showed similar activity against Bsph-susceptible and -resistant strains. UCR recombinant showed high toxicity against Ae. eagypti with LC50 and LC90 values of 0.023 and 0.064 ppm, respectively. Bsph was highly active against susceptible strain of Cx. quinequefasciatus with LC50 and LC9o values of 0.006 and 0.024 ppm, respectively. Bsph exhibited little toxicity against Ae. eagypti larvae and also no toxicity to Bsph resistance. In the field, we evaluated four experimental corn grit formulations of Bti (VBC 60021), Bsph (VBC 60022), UCR recombinants VBC 60023 (7.89%), and VBC 60024 (1.87%) in simulated field (microcosms) against Bsph-susceptible Culex mosquitoes. Bti and low-concentrate UCR recombinant showed similar initial activity as well as persistence. Both materials provided high-to-moderate level of control for 2-7 d posttreatment at low treatment rates. At low dosages, residual activity of Bti and UCR recombinant lasted for

  17. [Utilization of the waste of sisal industry in the control of mosquito larvae].

    PubMed

    Pizarro, A P; Oliveira Filho, A M; Parente, J P; Melo, M T; dos Santos, C E; Lima, P R

    1999-01-01

    The aim of this research was to utilize the waste residues of sisal fiber separation from Agave sisalana leaves to develop a larvicide for the combat of mosquito transmitting tropical diseases. Larvae of Aedes aegypti and Culex quinquefasciatus were exposed to different concentrations of the Agave extract for 24 hours to determine lethal concentrations. The LC50 for A. aegypti was 322 ppm and the LC50 for C. quinquefasciatus was 183 ppm. To detect the active substances, saponins were investigated. It was found that the various components of the extract were effective in eliminating the larvae. Under field conditions, this formulation can probably be used at 100 ppm, which causes 100% mortality of C. quinquefasciatus larvae after 3-4 days. The product is not recommended for use against A. aegypti due to the necessity for high concentrations and to the fact that the larvae of this species live frequently on drinking water. To avoid fermentation, Agave extract should be used in a dehydrated form which also represent a good formulation for practical use. PMID:9927821

  18. LABORATORY EVALUATION OF THE DEVELOPMENT OF Aedes aegypti IN TWO SEASONS: INFLUENCE OF DIFFERENT PLACES AND DIFFERENT DENSITIES

    PubMed Central

    Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

    2014-01-01

    Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact. PMID:25229215

  19. Laboratory evaluation of the development of Aedes aegypti in two seasons: influence of different places and different densities.

    PubMed

    Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

    2014-01-01

    Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact. PMID:25229215

  20. Determinants of male Aedes aegypti and Aedes polynesiensis (Diptera: Culicidae) response to sound: efficacy and considerations for use of sound traps in the field.

    PubMed

    Stone, C M; Tuten, H C; Dobson, S L

    2013-07-01

    Understanding the mating competitiveness of male mosquitoes in field settings is essential to programs relying on the mass release of modified male mosquitoes, yet studies on male ecology have been hampered by the lack of a convenient trapping method. An existing promising method makes use of the innate attraction of males to female flight tones. Here, we present laboratory, greenhouse, and field experiments on the efficacy of sound traps for the collection of Aedes aegypti (L.) and Aedes polynesiensis Marks, and laboratory experiments with Ae. aegypti on the effects of male age, size, and mating status on responsiveness to a range of frequencies. Age and mating status influenced the overall responsiveness to sound, whereas male size did not. There were no interactions between these factors and sound frequency. A Centers for Disease Control and Prevention miniature light trap modified to produce a tone of 465 Hz collected 76.2% of Ae. aegypti males in laboratory cages, and 49.7% of males in a greenhouse enclosure. In two sets of experiments in laboratory cages, 50.8 and 46.5% of male Ae. polynesiensis were captured with a trap producing a tone of 440 Hz. In the field, CDC miniature light traps or BG-Sentinel traps fitted with a portable speaker producing tones of 440 or 465 Hz captured significantly more male Ae. polynesiensis when placed near a male swarm than did traps that did not produce sound. When the trap was placed at a distance of 16.5 m from the nearest swarm, there was no significant difference in the number of males caught between control and sound-producing traps. The numbers of Ae. aegypti males captured were low under all circumstances in the field. PMID:23926769

  1. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management

    PubMed Central

    De Bruyne, Jyotika Taneja; Kien, Duong Hue T.; Hoang, Nhat Le Thanh; Chau, Nguyen Van Vinh; Iturbe-Ormaetxe, Iñaki; Simmons, Cameron P.; O’Neill, Scott L.

    2016-01-01

    Wolbachia pipientis is an endosymbiotic bacterium estimated to chronically infect between 40–75% of all arthropod species. Aedes aegypti, the principle mosquito vector of dengue virus (DENV), is not a natural host of Wolbachia. The transinfection of Wolbachia strains such as wAlbB, wMel and wMelPop-CLA into Ae. aegypti has been shown to significantly reduce the vector competence of this mosquito for a range of human pathogens in the laboratory. This has led to wMel-transinfected Ae. aegypti currently being released in five countries to evaluate its effectiveness to control dengue disease in human populations. Here we describe the generation of a superinfected Ae. aegypti mosquito line simultaneously infected with two avirulent Wolbachia strains, wMel and wAlbB. The line carries a high overall Wolbachia density and tissue localisation of the individual strains is very similar to each respective single infected parental line. The superinfected line induces unidirectional cytoplasmic incompatibility (CI) when crossed to each single infected parental line, suggesting that the superinfection would have the capacity to replace either of the single constituent infections already present in a mosquito population. No significant differences in fitness parameters were observed between the superinfected line and the parental lines under the experimental conditions tested. Finally, the superinfected line blocks DENV replication more efficiently than the single wMel strain when challenged with blood meals from viremic dengue patients. These results suggest that the deployment of superinfections could be used to replace single infections and may represent an effective strategy to help manage potential resistance by DENV to field deployments of single infected strains. PMID:26891349

  2. The effect of long-lasting insecticidal water container covers on field populations of Aedes aegypti (L.) mosquitoes in Cambodia.

    PubMed

    Seng, Chang Moh; Setha, To; Nealon, Joshua; Chantha, Ngan; Socheat, Doung; Nathan, Michael B

    2008-12-01

    Dengue in Cambodia is mainly transmitted by Aedes aegypti (L.) mosquitoes that primarily breed in large, concrete jars (> or =200 liters) used for the storage of water for domestic use. Following a preliminary risk assessment, long-lasting insecticidal netting (LN) treated with deltamethrin was incorporated into the design of the covers for these jars. Their effect on immature and adult female populations of Ae. aegypti in six villages in a peri-urban area of Cambodia were compared with populations in six nearby control villages before and for 22 weeks after distribution of the jar covers. There were significantly fewer pupae per house in intervention villages than in control villages (6.6 and 31.9, respectively, p<0.01). Fewer pupae were recovered from intervention houses than from control houses at every post-intervention assessment. Two weeks after the intervention, the average number of indoor resting female Ae. aegypti per house in the intervention villages had declined approximately three-fold, whereas in the controls there was only a slight reduction (16%). The magnitude of the difference between the two areas diminished over time, which contact bioassays confirmed was likely due to a gradual reduction of insecticidal effect of the jar covers. In the study area, insecticide-treated covers for large concrete water storage jars were efficacious for controlling Ae. aegypti in the protected water jars and with a demonstrable effect on adult densities and survival. Further studies of this targeted container strategy in Cambodia, and elsewhere, are recommended. However, improvements in technology that would extend the duration of insecticidal effectiveness of LN materials may be needed for the development of cost-effective public health applications. PMID:19263854

  3. Aedes aegypti (Diptera: Culicidae) production from non-residential sites in the Amazonian city of Iquitos, Peru.

    PubMed

    Morrison, A C; Sihuincha, M; Stancil, J D; Zamora, E; Astete, H; Olson, J G; Vidal-Ore, C; Scott, T W

    2006-04-01

    Programmes for the surveillance of Aedes aegypti (L.) often focus on residential areas, ignoring non-residential sites. Between November 2003 and October 2004, pupal/demographic surveys were therefore conducted in non-residential sites in the Peruvian city of Iquitos. The sampled sites included schools, factories, ports, public markets, petrol stations, commercial zones, airports, government buildings, animal-production areas, and recreational areas. Compared with the residential sites that had been surveyed a few years earlier, the non-residential sites generally had fewer pupae/ha, even though pupae were found in a high percentage of the sites investigated. Nonetheless, although <56 pupae/ha were observed in the industrial, commercial, recreational and school sites, the river boats in the ports and the areas in and around public markets sometimes had pupal abundances (of 122-213 pupae/ha) that were comparable with those previously recorded in the residential sites. When the relative production of Ae. aegypti was calculated by container type and characteristic (lidded/lidless, indoors/outdoors, and water-use patterns), no single container category was found to be a major producer of Ae. aegypti, with the exception of flower vases in cemeteries. In general, almost all (97%) of the pupae collected in the non-residential sites came from unlidded containers, although 91% of those collected in river boats came from lidded storage areas. With the exception of lumber mills, plant nurseries and markets (where only 39%-60% of the pupae were collected outdoors), >70% of pupal production was outdoors. In commercial areas, 41% of the pupae came from manually-filled containers, compared with <12% in residential sites. These results indicate that non-residential sites can be highly productive for Ae. aegypti and that the role of such sites in dengue transmission requires further investigation. PMID:16630393

  4. Evaluation of some aromatic plant extracts for mosquito larvicidal potential against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi.

    PubMed

    Jayaraman, M; Senthilkumar, A; Venkatesalu, V

    2015-04-01

    In the present investigation, larvicidal potential of hexane, choloroform, ethyl acetate, acetone, and methanol extracts of seven aromatic plants, viz., Blume