Science.gov

Sample records for ae aegypti larvae

  1. Workbook on Identification of Aedes Aegypti Larvae.

    ERIC Educational Resources Information Center

    Pratt, Harry D.; And Others

    This self-instructional booklet is designed to enable yellow fever control workers to identify the larvae of "Aedes aegypti." The morphological features of mosquito larvae are illustrated in this partially programed text, and the distinguishing features of "A. aegypti" indicated. A glossary is included. (AL)

  2. Vertical Transmission of Zika Virus by Aedes aegypti and Ae. albopictus Mosquitoes.

    PubMed

    Ciota, Alexander T; Bialosuknia, Sean M; Ehrbar, Dylan J; Kramer, Laura D

    2017-05-15

    To determine the potential role of vertical transmission in Zika virus expansion, we evaluated larval pools of perorally infected Aedes. aegypti and Ae. albopictus adult female mosquitoes; ≈1/84 larvae tested were Zika virus-positive; and rates varied among mosquito populations. Thus, vertical transmission may play a role in Zika virus spread and maintenance.

  3. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    NASA Astrophysics Data System (ADS)

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-07-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.

  4. QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti

    PubMed Central

    Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

    2014-01-01

    Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

  5. The relative importance and distribution of Aedes polynesiensis and Ae. aegypti larval habitats in Samoa.

    PubMed

    Samarawickrema, W A; Sone, F; Kimura, E; Self, L S; Cummings, R F; Paulson, G S

    1993-01-01

    In preparation for a Filariasis Control programme in Samoa, during 1978 monthly larval surveys of the vector mosquito Aedes polynesiensis were carried out in four study villages in the main island of Upolu. A more extensive survey of larval habitat distribution was then made in twenty-two villages of Upolu and eighteen of Savai'i island, to determine the importance of habitat types according to their abundance, volume of water and whether their productivity was permanent or seasonal. Ae.aegypti larval densities and habitat distribution were also monitored and the occurrence of predatory Toxorhynchites amboinensis larvae in northern Upolu was recorded from forty-one collections. Aedes Breteau and container indices fluctuated with the pattern of rainfall in two coastal villages and an inland bush village, but not in a coconut plantation community. The five main Aedes larval habitat types encountered were: 200 litre water-storage drums, discarded tins and bottles, coconut shells, automobile tyres and treeholes. Aedes immatures occurred perennially in drums and tree holes, but breeding discontinued in tins, bottles and coconut shells during the driest month of July. For Ae. polynesiensis in Upolu the Breteau and container indices of 104.5 +/- SD 80.9 and 35.3 +/- 12.4 respectively were significantly higher than those in Savai'i: 33.1 +/- 25.0 and 24.3 +/- 20.0 respectively. Likewise for Ae.aegypti the Breteau and container indices of 50.8 +/- 32.5 and 23.9 +/- 15.6, respectively, were also significantly higher than those in Savai'i: 12.7 +/- 17.1 and 9.4 +/- 13.2 respectively. Habitat types greater or lesser importance were determined by plotting the percentage of each type of cotnainer utilized for Aedes breeding against the percentage of ech type amongst all larva-positive containers. Ae.polynesiensis preferred tree-holes but not water-storage drums. Ae.aegypti preferred drums and tyres; mixed populations of larvae of both species were commonest in these two types of

  6. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions.

    PubMed

    Ross, Perran A; Endersby, Nancy M; Hoffmann, Ary A

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments.

  7. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions

    PubMed Central

    Ross, Perran A.; Endersby, Nancy M.; Hoffmann, Ary A.

    2016-01-01

    The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments. PMID:26745630

  8. Screening of Methanolic Plant Extracts against Larvae of Aedes aegypti and Anopheles stephensi in Mysore

    PubMed Central

    Mohankumar, Thirumalapura Krishnaiah; Shivanna, Kumuda Sathigal; Achuttan, Vijayan Valiakottukal

    2016-01-01

    Background: Mosquitoes transmit serious human diseases, causing millions of death every year. Vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. Nine different locally available medicinally important plants suspected to posse larvicidal property were screened against fourth instar larvae of Aedes aegypti and Anopheles stephensi to a series of concentrations of the methanolic extracts. Methods: Susceptibility tests on Ae. aegypti and An. stephensi were conducted using standard WHO methods. The larvae of two mosquito species were exposed to methanolic extracts and mortality counts were made after 24 hours of exposure as per WHO method. Larvae of Ae. aegypti were more susceptible than that of An. stephensi. Results: Among the nine plant species tested, Annona reticulata leaf extract was more effective against Ae. aegypti larvae with LC50 and LC90 values of 95.24 and 262.64 ppm respectively and against An. stephensi larvae 262.71 and 636.94 ppm respectively. The least efficacy was in Cosmos bipinnatus with LC50 and LC90 values of 442.6 and 1225.93 ppm against Ae. aegypti and LC50 and LC90 values of 840.69 and 1334.01 ppm of Thespesia populnea against An. stephensi. Conclusion: The crude methanolic extract of the An. reticulata with good larvicidal efficacy could be considered for further characterization to control mosquito vectors instead of chemical insecticides. High efficacy found in An. reticulata extract will be considered for further studies to isolate the bioactive compound. PMID:27308289

  9. Dengue virus detection in Aedes aegypti larvae from southeastern Brazil.

    PubMed

    Cecílio, Samyra Giarola; Júnior, Willer Ferreira Silva; Tótola, Antônio Helvécio; de Brito Magalhães, Cíntia Lopes; Ferreira, Jaqueline Maria Siqueira; de Magalhães, José Carlos

    2015-06-01

    The transmission of dengue, the most important arthropod-borne viral disease in Brazil, has been intensified over the past decades, along with the accompanying expansion and adaptation of its Aedes vectors. In the present study, we mapped dengue vectors in Ouro Preto and Ouro Branco, Minas Gerais, by installing ovitraps in 32 public schools. The traps were examined monthly between September, 2011 through July, 2012 and November, 2012 to April, 2013. The larvae were reared until the fourth stadium and identified according to species. The presence of dengue virus was detected by real time PCR and agarose gel electrophoresis. A total of 1,945 eggs was collected during the 17 months of the study. The Ovitrap Positivity Index (OPI) ranged from 0 to 28.13% and the Eggs Density Index (EDI) ranged from 0 to 59.9. The predominant species was Aedes aegypti, with 84.9% of the hatched larvae. Although the collection was low when compared to other ovitraps studies, vertical transmission could be detected. Of the 54 pools, dengue virus was detected in four Ae. aegypti pools.

  10. An evaluation of some Trinidadian plant extracts against larvae of Aedes aegypti mosquitoes.

    PubMed

    Mohammed, Azad; Chadee, Dave D

    2007-06-01

    In recent times, bioprospecting for plants that show bioactive properties has yielded many chemicals that can be used in controlling mosquitoes. Crude extracts of 4 terrestrial and 3 mangrove plants were assayed against 2-3 larval instars of Aedes aegypti. Among the plants tested, Cordia curassavica showed the highest levels of activity for all the extracts tested. Azadirachta indica showed the least activity, whereas the 2 cultivars of Mangifera indica showed substantial activity for the aqueous extracts. The mangrove species proved to be relatively nontoxic to Ae. aegypti larvae when compared to the terrestrial plants. The results of this study suggest that some common plants in Trinidad may be highly effective in controlling the urban vector of yellow fever and dengue fever, Ae. aegypti.

  11. Selective inhibitors of digestive enzymes from Aedes aegypti larvae identified by phage display.

    PubMed

    Soares, Tatiane Sanches; Soares Torquato, Ricardo Jose; Alves Lemos, Francisco Jose; Tanaka, Aparecida Sadae

    2013-01-01

    Dengue is a serious disease transmitted by the mosquito Aedes aegypti during blood meal feeding. It is estimated that the dengue virus is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies have been based on controlling the vector, Ae. aegypti, using insecticide, but the emergence of resistance poses new challenges. The aim of this study was the identification of specific protease inhibitors of the digestive enzymes from Ae. aegypti larvae, which may serve as a prospective alternative biocontrol method. High affinity protein inhibitors were selected by all of the digestive serine proteases of the 4th instar larval midgut, and the specificity of these inhibitors was characterized. These inhibitors were obtained from a phage library displaying variants of HiTI, a trypsin inhibitor from Haematobia irritans, that are mutated in the reactive loop (P1-P4'). Based on the selected amino acid sequence pattern, seven HiTI inhibitor variants were cloned, expressed and purified. The results indicate that the HiTI variants named T6 (RGGAV) and T128 (WNEGL) were selected by larval trypsin-like (IC(50) of 1.1 nM) and chymotrypsin-like enzymes (IC(50) of 11.6 nM), respectively. The variants T23 (LLGGL) and T149 (GGVWR) inhibited both larval chymotrypsin-like (IC(50) of 4.2 nM and 29.0 nM, respectively) and elastase-like enzymes (IC(50) of 1.2 nM for both). Specific inhibitors were successfully obtained for the digestive enzymes of Ae. aegypti larvae by phage display. Our data also strongly suggest the presence of elastase-like enzymes in Ae. aegypti larvae. The HiTI variants T6 and T23 are good candidates for the development as a larvicide to control the vector.

  12. Transcriptome Sequencing Reveals Large-Scale Changes in Axenic Aedes aegypti Larvae

    PubMed Central

    Vogel, Kevin J.; Valzania, Luca; Coon, Kerri L.; Brown, Mark R.; Strand, Michael R.

    2017-01-01

    Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that Aedes aegypti larvae colonized by a native community of bacteria and gnotobiotic larvae colonized by only Escherichia coli develop very similarly into adults, whereas axenic larvae never molt and die as first instars. In this study, we extended these findings by first comparing the growth and abundance of bacteria in conventional, gnotobiotic, and axenic larvae during the first instar. Results showed that conventional and gnotobiotic larvae exhibited no differences in growth, timing of molting, or number of bacteria in their digestive tract. Axenic larvae in contrast grew minimally and never achieved the critical size associated with molting by conventional and gnotobiotic larvae. In the second part of the study we compared patterns of gene expression in conventional, gnotobiotic and axenic larvae by conducting an RNAseq analysis of gut and nongut tissues (carcass) at 22 h post-hatching. Approximately 12% of Ae. aegypti transcripts were differentially expressed in axenic versus conventional or gnotobiotic larvae. However, this profile consisted primarily of transcripts in seven categories that included the down-regulation of select peptidases in the gut and up-regulation of several genes in the gut and carcass with roles in amino acid transport, hormonal signaling, and metabolism. Overall, our results indicate that axenic larvae exhibit alterations in gene expression consistent with defects in acquisition and assimilation of nutrients required for growth. PMID:28060822

  13. Transcriptome Sequencing Reveals Large-Scale Changes in Axenic Aedes aegypti Larvae.

    PubMed

    Vogel, Kevin J; Valzania, Luca; Coon, Kerri L; Brown, Mark R; Strand, Michael R

    2017-01-01

    Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that Aedes aegypti larvae colonized by a native community of bacteria and gnotobiotic larvae colonized by only Escherichia coli develop very similarly into adults, whereas axenic larvae never molt and die as first instars. In this study, we extended these findings by first comparing the growth and abundance of bacteria in conventional, gnotobiotic, and axenic larvae during the first instar. Results showed that conventional and gnotobiotic larvae exhibited no differences in growth, timing of molting, or number of bacteria in their digestive tract. Axenic larvae in contrast grew minimally and never achieved the critical size associated with molting by conventional and gnotobiotic larvae. In the second part of the study we compared patterns of gene expression in conventional, gnotobiotic and axenic larvae by conducting an RNAseq analysis of gut and nongut tissues (carcass) at 22 h post-hatching. Approximately 12% of Ae. aegypti transcripts were differentially expressed in axenic versus conventional or gnotobiotic larvae. However, this profile consisted primarily of transcripts in seven categories that included the down-regulation of select peptidases in the gut and up-regulation of several genes in the gut and carcass with roles in amino acid transport, hormonal signaling, and metabolism. Overall, our results indicate that axenic larvae exhibit alterations in gene expression consistent with defects in acquisition and assimilation of nutrients required for growth.

  14. Toxicity studies for indigenous Bacillus thuringiensis isolates from Malang city, East Java on Aedes aegypti larvae

    PubMed Central

    Gama, Zulfaidah Penata; Nakagoshi, Nobukazu; Suharjono; Setyowati, Faridah

    2013-01-01

    Objective To investigate the toxicity of indigenous Bacillus thuringiensis (B. thuringiensis)isolates from Malang City for controlling Aedes aegypti (Ae. aegypti) larvae. Methods Soil samples were taken from Purwantoro and Sawojajar sub-districts. Bacterial isolation was performed using B. thuringiensis selective media. Phenotypic characteristics of the isolates were obtained with the simple matching method. The growth and prevalence of spores were determined by the Total Plate Count method, and toxicity tests were also performed on the third instar larval stage of Ae. aegypti. The percentage of larval mortality was analysed using probit regression. The LC50 was analysed by ANOVA, and the Tukey HSD interval was 95%. Results Among the 33 selected bacterial isolates, six were obtained (PWR4-31, PWR4-32, SWJ4-2b, SWJ4-4b, SWJ-4k and SWJ5-1) that had a similar phenotype to reference B. thuringiensis. Based on the dendrogram, all of the bacterial isolates were 71% similar. Three isolates that had a higher prevalence of reference B. thuringiensis were PWR4-32, SWJ4-4b and SW5-1, of which the spore prevalence was 52.44%, 23.59%, 34.46%, respectively. These three indigenous isolates from Malang City successfully killed Ae. aegypti larvae. The PWR4-32 isolates were the most effective at killing the larvae. Conclusions Six indigenous B. thuringiensis isolates among the 33 bacterial isolates found in the Sawojajar and Purwantoro sub-districts were toxic to the third instar larvae of Ae. aegypti. The PWR4-32 isolates were identical to the reference B. thuringiensis and had 88% phenotype similarity. The PWR4-32 isolates had the highest spore prevalence (52.44%), and the early stationary phase occurred at 36 h. The PWR4-32 isolates were the most effective at killing Ae. aegypti larvae (LC50-72 h=2.3×108 cells/mL). PMID:23593589

  15. The use of Aedes aegypti larvae attractants to enhance the effectiveness of larvicides.

    PubMed

    Gonzalez, Paula V; Harburguer, Laura; González-Audino, Paola A; Masuh, Héctor M

    2016-06-01

    Aedes aegypti (L.) is an important dengue, chikungunya, and yellow fever vector. Immature stages of this species inhabit human-made containers placed in residential landscapes, and the application of larvicides inside containers that cannot be eliminated is still considered a priority in control programs. Larvicidal efficacy is influenced by several factors, including the formulation used, the water quality, and the susceptibility of larvae, among others. If an attractant can be incorporated into a slow-release larvicide formulation, it will be feasible to direct the larvae into the source of insecticide and thereby improving its efficacy. We studied the influence of 1-octen-3ol and 3-methylphenol on the rate of Ae. aegypti larvae mortality using the larvicides Bacillus thuringiensis var. israelensis (Bti), temephos, and spinosad. These chemicals were combined with the larvicides mixed with agar during the bioassays. Mortality was registered every 10 min, and a lethal time 50 (LT50) was calculated. The inclusion of the Ae. aegypti larvae attractants with the larvicides into a solid agar matrix improved their efficiency obtaining a strong and marked reduction in the LT50 compared with the use of larvicides alone.

  16. Residual effects of TMOF-Bti formulations against 1st instar Aedes aegypti Linnaeus larvae outside laboratory

    PubMed Central

    Saiful, AN; Lau, MS; Sulaiman, S; Hidayatulfathi, O

    2012-01-01

    Objective To evaluate the effectiveness and residual effects of trypsin modulating oostatic factor-Bacillus thuringiensis israeliensis (TMOF-Bti) formulations against Aedes aegypti (Ae. aegypti) (L.) larvae at UKM Campus Kuala Lumpur. Methods Twenty first instar Ae. aegypti larvae were added in each bucket containing 4 L of water supplied with crushed dried leaf powder as their source of food. Combination of TMOF-Bti in rice husk formulation with the following weights viz 10, 25, 50 and 100 mg, respectively in duplicate was distributed in the buckets; while TMOF-Bti in wettable powder formulation each weighing viz 2, 5, 10 and 20 mg, respectively in duplicate was also placed in the buckets. The control buckets run in duplicate with 4 L of water and 20 first instar Ae. aegypti larvae. All buckets were covered with mosquito netting. Larval mortality was recorded after 24 hours and weekly for five weeks. A new batch of 20 1st instar larvae Ae. aegypti was introduced into each bucket weekly without additional TMOF-Bti rice husk formulation or wettable powder. The experiment was repeated for four times. Results The result of the study showed that all formulations were very effective on the first two weeks by giving 100% larval mortality for all concentrations applied. The TMOF (2%) + Bti (2%) had a good residual effect until the end of 3rd week, TMOF (4%) + Bti (4%) until 4th week, wettable powder TMOF (20%) + Bti (20%) until the third week. Conclusions From the results it can be concluded that the TMOF-Bti formulations can be utilized in dengue vector control. PMID:23569922

  17. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality

    PubMed Central

    Alkhaibari, Abeer M.; Carolino, Aline T.; Yavasoglu, Sare I.; Maffeis, Thierry; Mattoso, Thalles C.; Bull, James C.; Samuels, Richard I.; Butt, Tariq M.

    2016-01-01

    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world’s population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti

  18. Physiological and Morphological Aspects of Aedes aegypti Developing Larvae: Effects of the Chitin Synthesis Inhibitor Novaluron

    PubMed Central

    Farnesi, Luana C.; Brito, José M.; Linss, Jutta G.; Pelajo-Machado, Marcelo; Valle, Denise; Rezende, Gustavo L.

    2012-01-01

    Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae

  19. EFFICACY OF THAI NEEM OIL AGAINST AEDES AEGYPTI (L.) LARVAE.

    PubMed

    Silapanuntakul, Suthep; Keanjoom, Romnalin; Pandii, Wongdyan; Boonchuen, Supawadee; Sombatsiri, Kwanchai

    2016-05-01

    Trees with larvicidal activity may be found in Thailand. We conducted this study to evaluate the efficacy and length of efficacy of Thai neem (Azadirachta siamensis) oil emulsion and an alginate bead of Thai neem oil formulation against early fourth stage Aedes aegypti larvae using a dipping test. The Thai neem oil emulsion had significantly greater larvicidal activity than the alginate bead formulation at 12 to 60 hours post-exposure (p < 0.01). The Thai neem oil formulation resulted in 100% mortality among the early fourth stage Aedes aegypti larvae at 48 hours, while the alginate bead formulation resulted in 98% larval mortality at 84 hours and 100% mortality at 96 hours. The mean larval mortality using the Thai neem oil emulsion dropped to < 25% by 12 days and with the alginate beads dropped to < 25% by 15 days of exposure.

  20. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission

    PubMed Central

    2014-01-01

    Background Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. Methods Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Results Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. Conclusions These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we

  1. Cumulative mortality of Aedes aegypti larvae treated with compounds

    PubMed Central

    Torres, Sandra Maria; da Cruz, Nadine Louise Nicolau; Rolim, Vitor Pereira de Matos; Cavalcanti, Maria Inês de Assis; Alves, Leucio Câmara; da Silva, Valdemiro Amaro

    2014-01-01

    OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs. PMID:25119939

  2. Efficacy of encapsulated Lagenidium giganteum (Oomycetes: Lagenidiales) against Culex quinquefasciatus and Aedes aegypti larvae in artificial containers.

    PubMed

    Rueda, L M; Patel, K J; Axtell, R C

    1990-12-01

    Presporangial mycelia of Lagenidium giganteum cultured on sunflower seed extract were encapsulated in calcium alginate and added once (July 18) to outdoor (Raleigh, NC) caged tires, wood and concrete containers populated with first instars of Culex quinquefasciatus or Aedes aegypti. First instars were added twice weekly (for 10 wk) to simulate natural oviposition. The fungus persisted for 10 wk and recycled in the mosquito larvae of both species. The overall reductions of Cx. quinquefasciatus and Ae. aegypti immatures were higher in tires (55 and 45%, respectively) and wood (67 and 38%) than in concrete containers (17 and 14%). There were low correlations of the numbers of mosquito immatures with measurements of water quality (chemical oxygen demand, ammonia nitrogen and conductivity) in the containers.

  3. Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae.

    PubMed

    Soonwera, Mayura; Phasomkusolsil, Siriporn

    2016-04-01

    Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils were evaluated to determine mortality rates, morphological aberrations, and persistence when used against third and fourth larval instars of Aedes aegypti and Anopheles dirus. The oils were evaluated at 1, 5, and 10 % concentrations in mixtures with soybean oil. Persistence of higher concentrations was measured over a period of 10 days. For Ae. aegypti, both plant oils caused various morphological aberrations to include deformed larvae, incomplete eclosion, white pupae, deformed pupae, dead normal pupae, and incomplete pupal eclosion. All of these aberrations led to larval mortality. In Ae. aegypti larvae, there were no significant differences in mortality at days 1, 5, and 10 or between third and fourth larval instar exposure. In An. dirus, morphological aberrations were rare and S. aromaticum oil was more effective in causing mortality among all larval stages. Both oils were equally effective at producing mortality on days 1, 5, and 10. Both oils had slightly increased LT50 rates from day 1 to day 10. In conclusion, both lemongrass and clove oils have significant effects on the immature stages of Ae. aegypti and An. dirus and could potentially be developed for use as larvicides.

  4. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae

    PubMed Central

    Fernandez, Luisa E.; Aimanova, Karlygash G.; Gill, Sarjeet S.; Bravo, Alejandra; Soberón, Mario

    2005-01-01

    A 65 kDa GPI (glycosylphosphatidyl-inositol)-anchored ALP (alkaline phosphatase) was characterized as a functional receptor of the Bacillus thuringiensis subsp. israelensis Cry11Aa toxin in Aedes aegypti midgut cells. Two (a 100 kDa and a 65 kDa) GPI-anchored proteins that bound Cry11Aa toxin were preferentially extracted after treatment of BBMV (brush boder membrane vesicles) from Ae. aegypti midgut epithelia with phospholipase C. The 65 kDa protein was further purified by toxin affinity chromatography. The 65 kDa protein showed ALP activity. The peptide-displaying phages (P1.BBMV and P8.BBMV) that bound to the 65 kDa GPI–ALP (GPI-anchored ALP) and competed with the Cry11Aa toxin to bind to BBMV were isolated by selecting BBMV-binding peptide-phages by biopanning. GPI–ALP was shown to be preferentially distributed in Ae. aegypti in the posterior part of the midgut and in the caeca, by using P1.BBMV binding to fixed midgut tissue sections to determine the location of GPI–ALP. Cry11Aa binds to the same regions of the midgut and competed with P1.BBMV and P8.BBMV to bind to BBMV. The importance of this interaction was demonstrated by the in vivo attenuation of Cry11Aa toxicity in the presence of these phages. Our results shows that GPI–ALP is an important receptor molecule involved in Cry11Aa interaction with midgut cells and toxicity to Ae. aegypti larvae. PMID:16255715

  5. Bioactivity of seagrass against the dengue fever mosquito Aedes aegypti larvae

    PubMed Central

    Ali, M Syed; Ravikumar, S; Beula, J Margaret

    2012-01-01

    Objective To identify the larvicidal activity of the seagrass extracts. Methods Seagrass extracts, Syringodium isoetifolium (S. isoetifolium), Cymodocea serrulata and Halophila beccarii, were dissolved in DMSO to prepare a graded series of concentration. Batches of 25 early 4th instars larvae of Aedes aegypti (Ae. aegypti) were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts (0.01 mg – 0.1 mg). After 24 h the mortality rate was identified with the formulae [(% of test mortality – % of control mortality)/(100 – % of control mortality)] × 100. Each experiment was conducted with three replicates and a concurrent control group. A control group consisted of 1 mL of DMSO and 199 mL of distilled water only. Results : The root extract of S. isoetifolium showed maximum larvicidal activity with minimum concentration of extract of LC50= 0.0 604 ± 0.0 040)µg/mL with lower confidence limit (LCL) – upper confidence limit (UCL) = (0.051–0.071) and LC90=0.0 972µg/mL followed by leaf extract of S. isoetifolium showed LC50= (0.062 ± 0.005)µg/mL. The regression equation of root and leaf extract of S. isoetifolium for 4th instar larvae were Y= 4.909 + 1.32x (R2= 0.909) and Y= 2.066 + 1.21x (R2 =0.897) respectively. The results of the preliminary phytochemical constituents shows the presence of saponin, steroids, terpenoid, phenols, protein and sugars. Conclusions From the present study the ethanolic extracts of seagrass of S. isoetifolium possesses lead compound for development of larvicidal activity. PMID:23569973

  6. Expression of heat shock proteins (HSPs) in Aedes aegypti (L) and Aedes albopictus (Skuse) (Diptera: Culicidae) larvae in response to thermal stress.

    PubMed

    Sivan, Arun; Shriram, Ananganallur Nagarajan; Muruganandam, Nagarajan; Thamizhmani, Ramanathan

    2017-03-01

    Climatic changes are responsible, to a certain extent for the occurrence and spread of arboviral pathogens world over. Temperature is one of the important abiotic factors influencing the physiological processes of mosquitoes. Several genes of heat shock protein (HSP) families are known to be expressed in mosquitoes, which aid in overcoming stress induced by elevated temperature. In order to understand expression of HSP family genes in the Andaman population of Aedes aegypti and Aedes albopictus, we used quantitative real-time polymerase chain reaction (qPCR) to examine expression levels of HSPs in response to thermal stress under laboratory and in actual field conditions. HSP genes AeaHsp26, AeaHsp83 and AeaHsc70 were examined by comparing relative transcript expression levels at 31°C, 33°C, 34°C, 37°C and 39°C respectively. Enhanced up-regulation of HSPs was evident in third instar larvae of Ae. aegypti with rise in water temperatures (31°C, 33°C, 34°C) in the containers in the nature and thermally stressed (37°C and 39°C) in laboratory conditions. In Ae. albopictus up-regulation of HSPs was observed in field conditions at 34°C only and when thermally treated at 37°C, while down regulation was evident in larvae subjected to thermal stress in laboratory at 39°C. Data on expression levels revealed that larvae of Ae. aegypti was tolerant to thermal stress, while Ae. albopictus larvae was sensitive to heat shock treatment. Statistical analysis indicated that AeaHsp83 genes were significantly up-regulated in Ae. aegypti larvae after 360min exposure to high temperature (39°C). The difference in expression levels of AeaHsp26, AeaHsc70 and AeaHsp83 genes in Ae. albopictus larvae was statistically significant between different exposure temperatures. All of these genes were significantly up-regulated at 37°C. These results indicate that AeaHsp26, AeaHsc70 and AeaHsp83 are important markers of stress and perhaps function as proteins conferring protection and

  7. Investigation of relationships between Aedes aegypti egg, larvae, pupae, and adult density indices where their main breeding sites were located indoors.

    PubMed

    Romero-Vivas, Claudia M E; Falconar, Andrew K I

    2005-03-01

    Aedes aegypti (L.) density indices obtained in a dengue fever (DF) endemic area were compared. One hundred and twenty premises, in an urban area of Colombia where dengue type-1 and type-2 virus cocirculated, were randomly selected and sampled for 7 months. The geometric mean monthly numbers (density index, DI) of Ae. aegypti eggs (ODI), 4th instar larvae (LDI), pupae (PDI), and adults (ADI) were calculated based on the use of ovitraps, nets, and manual aspirators, respectively. A negative temporal correlation was observed between the LDI and the ODI (r = -0.83, df = 5, and P < 0.01). Positive temporal correlations were only observed between the LDI and the PDI (r = 0.90, df = 5, and P < 00.5) and the Breteau and House indices (r = 0.86, df = 5, and P < 0.01). No other correlations were found between these indices and any of the other density indices or the incidence of suspected DF cases in residents, the temperature, the rainfall, or seasonal fluctuations. Our results were, therefore, probably due to the most productive Ae. aegypti breeding sites (large water containers) being located indoors within this study area. The number of adult female Ae. aegypti/person (n = 0.5) and pupae/person (n = 11) in our study area were lower and dramatically higher than the transmission thresholds previously reported for adult and pupae, respectively. Because there were confirmed DF cases during the study period, the transmission threshold based on the Ae. aegypti pupae was clearly more reliable. We found that the mean ovitrap premise index (OPI) was 98.2% during this study and that the mean larval (L-4th instars) premise index (LPI) was 59.2%, and therefore we suggest that the OPI and LPI would be more sensitive methods to gauge the effectiveness of A. aegypti control programs.

  8. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae

    PubMed Central

    Patil, Chandrashekhar D; Borase, Hemant P; Salunkhe, Rahul B; Suryawanshi, Rahul K; Narkhade, Chandrakant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-01-01

    Background: We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Methods: Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. Results: LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2nd and 3rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2nd and 3rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2nd, 3rd and 4th instars of Ae. aegypti and An. stephensi, respectively. Conclusion: Leaves extracts of Go. hirsutum (Bt) is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management. PMID:25629069

  9. The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae

    PubMed Central

    Abu Hasan, Zatul-’Iffah; Williams, Helen; Ismail, Nur M.; Othman, Hidayatulfathi; Cozier, Gyles E.; Acharya, K. Ravi; Isaac, R. Elwyn

    2017-01-01

    The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3rd instars showing greater resistance. Mortality was also high within 24 h of exposure of 1st, 2nd and 3rd instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1st instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides. PMID:28345667

  10. The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae.

    PubMed

    Abu Hasan, Zatul-'Iffah; Williams, Helen; Ismail, Nur M; Othman, Hidayatulfathi; Cozier, Gyles E; Acharya, K Ravi; Isaac, R Elwyn

    2017-03-27

    The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3(rd) instars showing greater resistance. Mortality was also high within 24 h of exposure of 1(st), 2(nd) and 3(rd) instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1(st) instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides.

  11. The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells

    PubMed Central

    Mercado-Curiel, Ricardo F; Esquinca-Avilés, Héctor Armando; Tovar, Rosalinda; Díaz-Badillo, Álvaro; Camacho-Nuez, Minerva; Muñoz, María de Lourdes

    2006-01-01

    Background Dengue viruses (DENV) attach to the host cell surface and subsequently enter the cell by receptor-mediated endocytosis. Several primary and low affinity co-receptors for this flavivirus have been identified. However, the presence of these binding molecules on the cell surface does not necessarily render the cell susceptible to infection. Determination of which of them serve as bona fide receptors for this virus in the vector may be relevant to treating DENV infection and in designing control strategies. Results (1) Overlay protein binding assay showed two proteins with molecular masses of 80 and 67 kDa (R80 and R67). (2) Specific antibodies against these two proteins inhibited cell binding and infection. (3) Both proteins were bound by all four serotypes of dengue virus. (4) R80 and R67 were purified by affinity chromatography from Ae. aegypti mosquito midguts and from Ae albopictus C6/36 cells. (5) In addition, a protein with molecular mass of 57 kDa was purified by affinity chromatography from the midgut extracts. (6) R80 and R67 from radiolabeled surface membrane proteins of C6/36 cells were immunoprecipitated by antibodies against Ae. aegypti midgut. Conclusion Our results strongly suggest that R67 and R80 are receptors for the four serotypes of dengue virus in the midgut cells of Ae. aegypti and in C6/36 Ae. albopictus cells. PMID:17014723

  12. The larvicidal activity of Agave sisalana against L4 larvae of Aedes aegypti is mediated by internal necrosis and inhibition of nitric oxide production.

    PubMed

    Nunes, Fabiola C; Leite, Jacqueline A; Oliveira, Louise H G; Sousa, Patrícia A P S; Menezes, Márcio C; Moraes, João P S; Mascarenhas, Sandra R; Braga, Valdir A

    2015-02-01

    Dengue is a viral disease that affects about 50 million people per year around the world. The aim of this study was to investigate the larvicidal activity of Agave sisalana crude extract in order to develop a new insecticide against Aedes aegypti. In larvicidal activity assays, fourth-stage Ae. aegypti larvae were exposed to different concentrations of A. sisalana crude extract for 3, 6, 12, and 24 h for determining the LC50. Next, we explored its cytotoxic activity by flow cytometry. Furthermore, histological alterations were confirmed by histopathological analysis, and the nitric oxide (NO) production by hemocytes was checked after different periods of exposure to A. sisalana crude extract. The LC50 was 4.5 ± 0.07 mg/mL. In addition, flow cytometry revealed an increase of cellular necrosis (21 and 16.5 % after 12 and 24 h, respectively) in larvae that were exposed to A. sisalana crude extract. The histological analysis revealed cell lysis and destruction of the peritrophic membrane. Furthermore, there was a reduction in the concentration of NO in the hemolymph from larvae exposed to A. sisalana crude extract after 3, 6, and 24 h (5.3 ± 4.3 vs. 22.7 ± 5.2 μM, 4.3 ± 5.5 vs. 25.4 ± 6.6 μM, and 6 ± 1.7 vs. 37.1 ± 7.8 μM, respectively). Our findings show that A. sisalana crude extract constitutes an effective larvicidal agent against Ae. aegypti larvae due to its necrotizing activity in hemocytes and inhibition of the NO production.

  13. Growth and development of Aedes aegypti larvae at limiting food concentrations.

    PubMed

    Levi, Tal; Ben-Dov, Eitan; Shahi, Preeti; Borovsky, Dov; Zaritsky, Arieh

    2014-05-01

    Mosquitoes have a complex life-cycle with dramatic changes in shape, function, and habitat. Aedes aegypti was studied by growing individual larvae at different concentrations of a defined rich food source. At higher food concentrations, rate of larval growth was faster, but the time required for 4th instar larvae to molt into the pupal stage was unexpectedly extended. These opposite tendencies resulted in constant times from hatching to pupation and up to adult eclosion at permissive food concentrations. The results demonstrate that nutritional conditions of 4th instar larvae impact initiation of the first metamorphic molt.

  14. Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae.

    PubMed

    Darriet, Frederic; Corbel, Vincent

    2006-11-01

    In this study, the efficacy of pyriproxyfen and spinosad, alone and in combination, was evaluated against the dengue vector Aedes aegypti (L.). Larval bioassays were carried out on susceptible mosquito larvae to determine the concentration-mortality responses of mosquitoes exposed to each insecticide alone and in mixture. Synergism between pyriproxyfen and spinosad was determined by the calculation of a combination index (CI) by using the isobologram method. For pyriproxyfen, LC50 and LC95 were 1.1 x 10(-4) (1.0 x 10(-4)-1.1 x 10(-4)) and 3.2 x 10(-4) (2.9 x 10(-4)-3.6 x 10(-4)) mg/liter, respectively. Pyriproxyfen acted at very low concentrations by inhibiting the adult emergence of Ae. aegypti (97% inhibition rates at 3.3 x 10(-4) mg/liter). Spinosad activity was -500 times lower than that of pyriproxyfen against the Bora strain, with LC50 and LC95 values estimated at 0.055 (0.047-0.064) and 0.20 (0.15-0.27) mg/liter, respectively. A binary mixture of pyriproxyfen and spinosad was realized at the ratio 1:500 by considering the values of the LC50 obtained for each product. The LC50 and LC95 of the mixture were 0.019 (0.016 - 0.022) and 0.050 (0.040 - 0.065) mg/liter, respectively. The mixture combined both the larvicidal activity of spinosad and the juvenoid action of pyriproxyfen. From the LC70 to LC99 a significant synergism effect was observed between the two insecticides (CI ranged from 0.74 to 0.31). This strong synergism observed at high concentrations allows a reduction by five and nine-fold of pyriproxyfen and spinosad amounts to kill almost 100% mosquitoes. Combination of pyriproxyfen and spinosad may then represent a promising strategy to improve mosquito control in situations with insecticide-resistant Aedes dengue vectors.

  15. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae

    PubMed Central

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution

  16. Efficacy of photodynamic therapy against larvae of Aedes aegypti: confocal microscopy and fluorescence-lifetime imaging

    NASA Astrophysics Data System (ADS)

    de Souza, L. M.; Pratavieira, S.; Inada, N. M.; Kurachi, C.; Corbi, J.; Guimarães, F. E. G.; Bagnato, V. S.

    2014-03-01

    Recently a few demonstration on the use of Photodynamic Reaction as possibility to eliminate larvae that transmit diseases for men has been successfully demonstrated. This promising tool cannot be vastly used due to many problems, including the lake of investigation concerning the mechanisms of larvae killing as well as security concerning the use of photosensitizers in open environment. In this study, we investigate some of the mechanisms in which porphyrin (Photogem) is incorporated on the Aedes aegypti larvae previously to illumination and killing. Larvae at second instar were exposed to the photosensitizer and after 30 minutes imaged by a confocal fluorescence microscope. It was observed the presence of photosensitizer in the gut and at the digestive tract of the larva. Fluorescence-Lifetime Imaging showed greater photosensitizer concentration in the intestinal wall of the samples, which produces a strong decrease of the Photogem fluorescence lifetime. For Photodynamic Therapy exposition to different light doses and concentrations of porphyrin were employed. Three different light sources (LED, Fluorescent lamp, Sun light) also were tested. Sun light and fluorescent lamp shows close to 100% of mortality after 24 hrs. of illumination. These results indicate the potential use of photodynamic effect against the LARVAE of Aedes aegypti.

  17. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae

    PubMed Central

    de Paula, Sérgio Oliveira; Martins, Gustavo Ferreira; Zanuncio, José Cola

    2016-01-01

    Annonaceous acetogenins are botanical compounds with good potential for use as insecticides. In the vector, Aedes aegypti (L.) (Diptera: Culicidae), squamocin (acetogenin) has been reported to be a larvicide and cytotoxic, but the modes of action of this molecule are still poorly understood. This study evaluated the changes in the cell morphology, and in the expression of genes, for autophagy (Atg1 and Atg8), for membrane ion transporter V-ATPase, and for water channel aquaporin-4 (Aqp4) in the midgut of A. aegypti larvae exposed to squamocin from Annona mucosa Jacq. (Annonaceae). Squamocin showed cytotoxic action with changes in the midgut epithelium and digestive cells of A. aegypti larvae, increase in the expression for autophagy gene Atg1 and Atg8, decrease in the expression of V-ATPase, decrease in the expression of Aqp4 gene in LC20 and inhibition of Apq4 genes in the midgut of this vector in LC50. These multiple modes of action for squamocin are described for the first time in insects, and they are important because different sites of action of squamocin from A. mucosa may reduce the possibility of resistance of A. aegypti to this molecule. PMID:27532504

  18. Behavioral observations and sound recordings of free-flight mating swarms of Ae. Aegypti (Diptera: Culicidae) in Thailand.

    PubMed

    Cator, Lauren J; Arthur, Benjamin J; Ponlawat, Alongkot; Harrington, Laura C

    2011-07-01

    Sound plays an important role in the mating behavior of mosquitoes, including Aedes aegypti (L). Males orient to the fundamental wing beat frequency of females, and both sexes actively modulate their flight tone before mating to converge at harmonic frequencies. The majority of studies on mosquito mating acoustics have been conducted in the laboratory using tethered individuals. In this study, we present the first free-flight recording of naturally forming Ae. aegypti swarms in Thailand. We describe mating behaviors and present results on the flight tone frequency and dynamics of wild pairs in free flight. To assess the importance of these behaviors in vector control programs, especially those using genetically modified mosquitoes, it will be critical to use methods, such as those described in this work, to measure mosquito mating behaviors in the field.

  19. Evaluation of the inhibition of egg laying, larvicidal effects, and bloodfeeding success of Aedes aegypti exposed to permethrin- and bifenthrin-treated military tent fabric.

    PubMed

    Frances, S P; Huggins, R L; Cooper, R D

    2008-12-01

    Laboratory studies were conducted to evaluate the effects of treating military canvas tent fabric with bifenthrin and permethrin on the survival of the eggs and larvae of Aedes aegypti. Gravid female Ae. aegypti were able to oviposit on tent canvas treated with either bifenthrin or permethrin. However, none of the eggs laid on treated canvas hatched, and no larvae added to water in treated trays survived. Low residual concentrations of bifenthrin and permethrin on treated canvas prevented the development of eggs and larvae of Ae. aegypti. Inhibition of bloodfeeding was shown when Ae. aegypti adults were exposed to lower concentrations (10-50% of operational concentrations) of bifenthrin- and permethrin-treated canvas tent fabric. These experiments have shown that military tent canvas treated with either bifenthrin or permethrin can reduce the development of Ae. aegypti eggs and larvae and reduce bloodfeeding success of adults.

  20. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae.

    PubMed

    Soni, Namita; Prakash, Soam

    2012-01-01

    Chrysosporium tropicum is a pathogenic fungus. It is known to be an effective mosquito control agent. In the present study, we have synthesized the silver and gold nanoparticles using C. tropicum. These nanoparticles have been characterized through Microscan reader, X-ray diffractometer, transmission electron microscopy, and further confirmed by scanning electron microscopy. The characterization study confirmed the spherical shape and size (2-15 and 20-50 nm) of gold and silver nanoparticles. These silver and gold nanoparticles have been tested as a larvicide against the Aedes aegypti larvae. The larvicidal efficacy was noted when performed against all instars of A. aegypti at six different log concentrations, and significant results could be observed. The gold nanoparticles used as an efficacy enhancer have shown mortality at three times higher concentration than the silver nanoparticles. The larval mortality was observed after different time of exposures. The mortality values were obtained using the probit analysis. The larvae of A. aegypti were found to be highly susceptible for the silver nanoparticles. The second instar larvae have shown 100% mortality against the silver nanoparticles after 1 h, whereas the first, third, and fourth instars have shown efficacy (LC(50) = 3.47, 4, and 2; LC(90) = 12.30, 8.91, and 4; LC(99) = 13.18, 13.18, and 7.58, respectively) after 1 h. The results could suggest that the use of fungus C. tropicum, silver, and gold nanoparticles is a rapid, environmentally safer, and greener approach for mosquito control. This could lead us to a new possibility in vector control strategy.

  1. Detritus type alters the outcome of interspecific competition between Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Murrell, Ebony G; Juliano, Steven A

    2008-05-01

    Many studies of interspecific competition between Aedes albopictus (Skuse) and Aedes aegypti (L.) (Diptera: Culicidae) larvae show that Ae. albopictus are superior resource competitors to Ae. aegypti. Single-species studies indicate that growth and survival of Ae. albopictus and Ae. aegypti larvae are affected by the type of detritus present in containers, which presumably affects the amount and quality of microorganisms that the mosquito larvae consume. We tested whether different detritus types alter the intensity of larval competition by raising 10 different density/species combinations of Ae. albopictus and Ae. aegypti larvae under standard laboratory conditions, with one of four detritus types (oak, pine, grass, or insect) provided as a nutrient base. Intraspecific competitive effects on survival were present with all detritus types. Ae. albopictus survivorship was unaffected by interspecific competition in all treatments. Negative interspecific effects on Ae. aegypti survivorship were present with three of four detritus types, but absent with grass. Estimated finite rate of increase (lambda') was lower with pine detritus than with any other detritus type for both species. Furthermore, Ae. aegypti lambda' was negatively affected by high interspecific density in all detritus types except grass. Thus, our experiment confirms competitive asymmetry in favor of Ae. albopictus with oak, pine, or insect detritus, but also demonstrates that certain detritus types may eliminate interspecific competition among the larvae of these species, which may allow for stable coexistence. Such variation in competitive outcome with detritus type may help to account for observed patterns of coexistence/exclusion of Ae. albopictus and Ae. aegypti in the field.

  2. Egg and fourth instar larvae gut of Aedes aegypti as a source of stem cells.

    PubMed

    Mario, Lara C; Borghesi, Jéssica; Crivellari-Damasceno, Wilson T; Favaron, Phelipe O; Carreira, Ana Claudia O; Will, Sonia E A L; Maria, Durvanei A; Miglino, Maria A

    2016-10-01

    According to the World Health Organization, 2015 registered more than 1.206.172 cases of Dengue in the Americas. Recently, the Aedes aegypti has been not only related to Dengue, but also with cases of Zika virus and Chikungunya. Due to its epidemiological importance, this study characterized the morphology of the embryonated eggs of A. aegypti and provided a protocol to culture stem cells from eggs and digestive tract of fourth instar larvae in order to examine cell biology and expression of markers in these vectors. Cells were isolated and cultured in DMEM-High at 28°C, and their morphology, cell cycle and immunophenotyping were examined. Morphologically, embryos were at the end of the embryonic period and showed: head, thorax, and abdomen with eight abdominal segments. The embryonic tissues expressed markers related to cell proliferation (PCNA), pluripotency (Sox2 and OCT3/4), neural cells (Nestin), mesenchymal cells (Vimentin and Stro-1), and endosomal cells (GM130 and RAB5). In culture, cells from both tissues (eggs and larvae gut) were composed by a heterogeneous population. The cells had a globoid shape and small size. Cell cycle analysis on passage 1 (P1) showed 27.5%±2.0% of cell debris, 68% of cells on G0-G1 phase, 30.2% on S phase, 1.9%±0.5% on G2-M phase. In addition, cells on passage 2 showed: 10% of cell debris, 92.4% of cells on G0-G1 phase, 6.8% on S phase, 0.6% on G2-M phase. Embryonated eggs expressed markers involved with pluripotency (Sox2 and Oct 3/4), mesenchymal cells (vimentin and Stro-1), neural cells (Nestin), and cellular death by apoptosis (Caspase 3). Specific endosomal markers for insect cells (GM130 and RAB5) were also highly expressed. In cell culture of A. aegypti larvae gut the same labeling pattern was observed, with a small decrease in the expression of mesenchymal (vimentin and Stro-1) and neural (Nestin) markers. In summary, we were able to establish a protocol to culture embryonated eggs and larvae gut of A. aegypti

  3. [Toxicity of isolates of Bacillus thuringiensis from Wroclaw against larvae of Aedes aegypti].

    PubMed

    Lonc, E; Kucińska, J; Rydzanicz, K

    2001-01-01

    Seven field isolates of Bacillus thuringiensis from the Lower Silesia, region of Poland, the Osola plain and phylloplane niches and soil samples from the Karkonosze National Park were tested in vitro for insecticidal activity against mosquito larvae Aedes aegypti. Both the spore/crystal mixture and pured crystals from B. thuringienis strains KpC1, KpF3 and OpQ3 (belonging to the first physiological group including the subspecies japonensis, yoso, jinghongiensis ) proved to be the most active against insects (61-65% of corrected mortality). The lowest toxicity (7-28% mortality) was caused by B. thuringiensis wratislaviensis strains (PO12 and 13).

  4. Learning in mosquito larvae (Aedes aegypti): Habituation to a visual danger signal.

    PubMed

    Baglan, Hugo; Lazzari, Claudio; Guerrieri, Fernando

    2017-01-07

    In spite of the mosquito Aedes aegypti being a vector of several infectious diseases, a limited number of studies has been undertaken on learning in this species. Moreover, larval stages have been neglected as model organisms, although they are active, aquatic and perform stereotyped behavioural responses, e.g. the escape response when disturbed. To study the learning abilities of mosquito larvae, we focused on habituation, a form of non-associative learning widely studied in vertebrates and invertebrates. Habituation was defined as the progressive and reversible decrease in response to a reiterative stimulus. We first aimed at confirming habituation of the escape response in mosquito larvae (4th instar). Then, we determined whether a mnesic trace was established. Larvae were individually stimulated with a visual danger stimulus inducing the escape response. We set up a protocol for testing larvae individually, allowing the control of different parameters that are crucial for the study of cognitive abilities. After 15 trials, the escape response of mosquitoes was significantly lower. A disturbance stimulus presented after the 15th trial, induced the escape response and reversed habituation. Retention was confirmed up to 1h after the last habituation trial. This original bioassay can be adapted for studying the physiology of learning and memory in mosquito larvae, for analysing the effects of chemicals in the water, the characterisation of the cognitive abilities related to the life history of different mosquito species across preimaginal stages.

  5. Comparative efficacy of existing surveillance tools for Aedes aegypti in Western Kenya.

    PubMed

    Yalwala, Sancto; Clark, Jeffrey; Oullo, David; Ngonga, Daniel; Abuom, David; Wanja, Elizabeth; Bast, Joshua

    2015-12-01

    All traditional surveillance techniques for Aedes aegypti have been developed for the cosmopolitan domestic subspecies Ae. aegypti aegypti, and not the sylvatic subspecies, Ae. aegypti formosus. The predominant form in Western Kenya is Ae. aegypti formosus that is rarely associated with human habitations but is linked to transmission of sylvatic dengue virus strains. We compared five surveillance methods for their effectiveness in sampling Ae. aegypti formosus with the goal of determining a sustainable surveillance strategy in Kenya. The methods included larval and pupal surveys, oviposition trapping, BG-Sentinel trapping, resting boxes, and backpack aspirations. Larval and pupal surveys collected the highest number of Ae. aegypti formosus (51.3%), followed by oviposition traps (45.7%), BG-Sentinel traps (3.0%), and zero collected with either backpack aspiration or resting box collections. No Ae. aegypti formosus larvae or pupae were found indoors. The results indicate that oviposition traps and outdoor larval and pupal surveys were better surveillance methods for Ae. aegypti formosus in Western Kenya.

  6. Genetic analysis of abnormal male sexual development in Aedes aegypti and Ae. mascarensis backcross progeny.

    PubMed

    Hilburn, L R; Rai, K S

    1982-01-01

    When male hybrids of Aedes aegypti females and A. mascarensis males were backcrossed to A. aegypti females, 32.8 percent of the male progeny exhibited abnormal sexual development, including failure of the terminalia to rotate, a split sternite of the eighth abdominal segment with partially duplicated telomeres, or feminization that gives rise to sterile intersexes. Observations made on three morphological marker loci and five isozyme loci with characteristic electromorphs in the two parental species suggested that when the sex-determining M locus is derived from A. mascarensis and the chromosome regions including s, LDH, and lDH2 on chromosome 2 and blt and 6PGD on chromosome 3 are homozygous for genes from A. aegypti, the frequency of abnormal sexual development is increased. An even greater percentage of males suffer aberrant development if recombination also occurs between the M and re locus of chromosome 1. The data suggest that genes on chromosome 2 control normal development of the male terminalia, genes on chromosome 3 control sexual differentiation, and the entire process is controlled by genes on chromosome 1 that are linked to, but not identical with, the M locus.

  7. [Attractive properties and physicochemical modifications of water following colonization by Aedes aegypti larvae (Diptera: Culicidae)].

    PubMed

    Darriet, Frédéric; Corbel, Vincent

    2008-08-01

    The authors investigated in this paper the attractiveness of a water colonized ('positive' breeding site) or not ('negative' breeding site) by larvae of Aedes aegypti on gravid females and then characterized their physicochemical properties to identify and quantify the principal components. The results showed that the water that sheltered several generations of larvae was more attractive to gravid females than water that had never been colonized. The water in a 'positive' breeding site contains 2.5 times more ammonium ions (NH(+)(4)), four times more nitrite ions (NO(-)(2)) and 20 times more nitrate ions (NO(-)(3)) than 'negative' breeding water. The authors suggest that in the 'positive' breeding sites, where the larvae absorb the organic matter, the turbidity of water decreases, which makes it possible for organic nitrogen to be converted into nitrites and nitrates via the nitrifying activity of the bacteria (NH(+)(4)-->NO(-)(2)-->NO(-)(3)). It is likely that chitin, while accumulating and decomposing at the bottom of the breeding site, may increase the percentage of organic carbon and ammonium ions, then reinforcing the nitrification process. Conversely, in the 'negative' breeding site where the conditions of evolution of the nitrifying bacteria are more restrictive, the nitrogen remains primarily in its organic form.

  8. Aedes (Stegomyia) aegypti and Aedes (Howardina) cozumelensis in Yucatán State, México, with a summary of published collection records for Ae. cozumelensis

    PubMed Central

    García-Rejón, Julián E.; López-Uribe, Mildred P.; Loroño-Pino, María Alba; Arana-Guardia, Roger; Puc-Tinal, Maria; López-Uribe, Genny M.; Coba-Tún, Carlos; Baak-Baak, Carlos M.; Machain-Williams, Carlos; Reyes-Solis, Guadalupe C.; Lozano-Fuentes, Saul; Saavedra-Rodriguez, Karla; Black IV, William C.; Beaty, Barry J.; Eisen, Lars

    2013-01-01

    We collected mosquito immatures from artificial containers during 2010–2011 from 26 communities, ranging in size from small rural communities to large urban centers, located in different parts of Yucatán State in southeastern México. The arbovirus vector Aedes (Stegomyia) aegypti was collected from all 26 examined communities, and nine of the communities also yielded another container-inhabiting Aedes mosquito: Aedes (Howardina) cozumelensis. The communities from which Ae. cozumelensis were collected were all small, rural communities (<6,000 inhabitants) in the north-central part of Yucatán State. These new collection records for Ae. cozumelensis demonstrate that this mosquito has a far broader geographic range in the Yucatán Peninsula than previously known. Ae. cozumelensis immatures were collected from both residential premises and cemeteries, with specimens recovered from rock holes as well as various artificial containers including metal cans, flower vases, buckets, tires and a water storage tank. The co-occurrence with Ae. aegypti in small rural communities poses intriguing questions regarding linkages between these mosquitoes, including the potential for direct competition for larval development sites. Additional studies are needed to determine how commonly Ae. cozumelensis feeds on human blood and whether it is naturally infected with arboviruses or other pathogens of medical or veterinary importance. We also summarize the published records for Ae. cozumelensis, which are restricted to collections from México’s Yucatán Peninsula and Belize, and uniformly represent geographic locations where Ae. aegypti can be expected to occur. PMID:23181861

  9. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus.

    PubMed

    Kraemer, Moritz U G; Sinka, Marianne E; Duda, Kirsten A; Mylne, Adrian Q N; Shearer, Freya M; Barker, Christopher M; Moore, Chester G; Carvalho, Roberta G; Coelho, Giovanini E; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Elyazar, Iqbal R F; Teng, Hwa-Jen; Brady, Oliver J; Messina, Jane P; Pigott, David M; Scott, Thomas W; Smith, David L; Wint, G R William; Golding, Nick; Hay, Simon I

    2015-06-30

    Dengue and chikungunya are increasing global public health concerns due to their rapid geographical spread and increasing disease burden. Knowledge of the contemporary distribution of their shared vectors, Aedes aegypti and Aedes albopictus remains incomplete and is complicated by an ongoing range expansion fuelled by increased global trade and travel. Mapping the global distribution of these vectors and the geographical determinants of their ranges is essential for public health planning. Here we compile the largest contemporary database for both species and pair it with relevant environmental variables predicting their global distribution. We show Aedes distributions to be the widest ever recorded; now extensive in all continents, including North America and Europe. These maps will help define the spatial limits of current autochthonous transmission of dengue and chikungunya viruses. It is only with this kind of rigorous entomological baseline that we can hope to project future health impacts of these viruses.

  10. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil.

    PubMed

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A; Lounibos, L Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses.

  11. Seasonal Differences in Density But Similar Competitive Impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil

    PubMed Central

    Camara, Daniel Cardoso Portela; Codeço, Claudia Torres; Juliano, Steven A.; Lounibos, L. Philip; Riback, Thais Irene Souza; Pereira, Glaucio Rocha; Honorio, Nildimar Alves

    2016-01-01

    Previous studies have shown that the negative effects of density of Ae. albopictus on Ae. aegypti exceed those of Ae. aegypti on Ae. albopictus for population growth, adult size, survivorship, and developmental rate. This competitive superiority has been invoked to explain the displacement of Ae. aegypti by Ae. albopictus in the southeastern USA. In Brazil, these species coexist in many vegetated suburban and rural areas. We investigated a related, but less-well-studied question: do effects of Ae. albopictus on Ae. aegypti larval development and survival occur under field conditions at realistic densities across multiple seasons in Brazil? We conducted additive competition experiments in a vegetated area of Rio de Janeiro where these species coexist. We tested the hypothesis that Ae. aegypti (the focal species, at a fixed density) suffers negative effects on development and survivorship across a gradient of increasing densities of Ae. albopictus (the associate species) in three seasons. The results showed statistically significant effects of both season and larval density on Ae. aegypti survivorship, and significant effects of season on development rate, with no significant season-density interactions. Densities of Aedes larvae in these habitats differed among seasons by a factor of up to 7x. Overall, Spring was the most favorable season for Ae. aegypti survivorship and development. Results showed that under natural conditions the negative competitive effects of Ae. albopictus on Ae. aegypti were expressed primarily as lower survivorship. Coexistence between Ae. aegypti and Ae. albopictus in vegetated areas is likely affected by seasonal environmental differences, such as detrital resource levels or egg desiccation, which can influence competition between these species. Interactions between these Aedes are important in Brazil, where both species are well established and widely distributed and vector dengue, Zika and chikungunya viruses. PMID:27322537

  12. Biological differences between brackish and fresh water-derived Aedes aegypti from two locations in the Jaffna peninsula of Sri Lanka and the implications for arboviral disease transmission.

    PubMed

    Ramasamy, Ranjan; Jude, Pavilupillai J; Veluppillai, Thabothiny; Eswaramohan, Thampoe; Surendran, Sinnathamby N

    2014-01-01

    The mainly fresh water arboviral vector Aedes aegypti L. (Diptera: Culicidae) can also undergo pre-imaginal development in brackish water of up to 15 ppt (parts per thousand) salt in coastal areas. We investigated differences in salinity tolerance, egg laying preference, egg hatching and larval development times and resistance to common insecticides in Ae. aegypti collected from brackish and fresh water habitats in Jaffna, Sri Lanka. Brackish water-derived Ae. aegypti were more tolerant of salinity than fresh water-derived Ae. aegypti and this difference was only partly reduced after their transfer to fresh water for up to five generations. Brackish water-derived Ae. aegypti did not significantly discriminate between 10 ppt salt brackish water and fresh water for oviposition, while fresh water-derived Ae. aegypti preferred fresh water. The hatching of eggs from both brackish and fresh water-derived Ae. aegypti was less efficient and the time taken for larvae to develop into pupae was prolonged in 10 ppt salt brackish water. Ae. aegypti isolated from coastal brackish water were less resistant to the organophosphate insecticide malathion than inland fresh water Ae. aegypti. Brackish and fresh water-derived Ae. aegypti however were able to mate and produce viable offspring in the laboratory. The results suggest that development in brackish water is characterised by pertinent biological changes, and that there is restricted genetic exchange between coastal brackish and inland fresh water Ae. aegypti isolates from sites 5 km apart. The findings highlight the need for monitoring Ae. aegypti developing in coastal brackish waters and extending vector control measures to their habitats.

  13. Toxic effects on and structure-toxicity relationships of phenylpropanoids, terpenes, and related compounds in Aedes aegypti larvae.

    PubMed

    Santos, Sandra R L; Silva, Viviane B; Melo, Manuela A; Barbosa, Juliana D F; Santos, Roseli L C; de Sousa, Damião P; Cavalcanti, Sócrates C H

    2010-12-01

    In the search for toxic compounds against Aedes aegypti L. (Diptera: Culicidae) larvae, a collection of commercially available aromatic and aliphatic diversely substituted compounds were selected and evaluated. p-Cymene exhibited the highest larvicidal potency LC₅₀ = 51 ppm, whereas 1,8-cineole exhibited the lowest activity value LC₅₀ = 1419 ppm. To aid future work on the search for larvicidal compounds, the structure-toxicity relationships of this collection have been evaluated. The presence of lipophilic groups results in an overall increase in potency. In general, the presence of hydroxyl groups resulted in less potent compounds. However, methylation of such hydroxyls led to an overall increase in potency. The most potent compounds showed comparably good larvicidal activity in A. aegypti larvae as other terpenes, which we assume to be the result of the increased lipophilicity.

  14. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus

    PubMed Central

    Kraemer, Moritz UG; Sinka, Marianne E; Duda, Kirsten A; Mylne, Adrian QN; Shearer, Freya M; Barker, Christopher M; Moore, Chester G; Carvalho, Roberta G; Coelho, Giovanini E; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Elyazar, Iqbal RF; Teng, Hwa-Jen; Brady, Oliver J; Messina, Jane P; Pigott, David M; Scott, Thomas W; Smith, David L; Wint, GR William; Golding, Nick; Hay, Simon I

    2015-01-01

    Dengue and chikungunya are increasing global public health concerns due to their rapid geographical spread and increasing disease burden. Knowledge of the contemporary distribution of their shared vectors, Aedes aegypti and Aedes albopictus remains incomplete and is complicated by an ongoing range expansion fuelled by increased global trade and travel. Mapping the global distribution of these vectors and the geographical determinants of their ranges is essential for public health planning. Here we compile the largest contemporary database for both species and pair it with relevant environmental variables predicting their global distribution. We show Aedes distributions to be the widest ever recorded; now extensive in all continents, including North America and Europe. These maps will help define the spatial limits of current autochthonous transmission of dengue and chikungunya viruses. It is only with this kind of rigorous entomological baseline that we can hope to project future health impacts of these viruses. DOI: http://dx.doi.org/10.7554/eLife.08347.001 PMID:26126267

  15. Larvicidal activity of Copaifera sp. (Leguminosae) oleoresin microcapsules against Aedes aegypti (Diptera: Culicidae) larvae.

    PubMed

    Kanis, Luiz Alberto; Prophiro, Josiane Somariva; Vieira, Edna da Silva; Nascimento, Mariane Pires do; Zepon, Karine Modolon; Kulkamp-Guerreiro, Irene Clemes; Silva, Onilda Santos da

    2012-03-01

    Studies have demonstrated the potential of Copaifera sp. oleoresin to control Aedes aegypti proliferation. However, the low water solubility is a factor that limits its applicability. Thus, the micro- or nanoencapsulation could be an alternative to allow its use in larval breeding places. The purpose of this study was to evaluate if achievable lethal concentrations could be obtained from Copaifera sp. oleoresin incorporated into polymers (synthetic or natural) and, mainly, if it can be sustained in the residual activity compared to the pure oil when tested against the A. aegypti larvae. Microcapsules were prepared by the process of emulsification/precipitation using the polymers of cellulose acetate (CA) and poly(ethylene-co-methyl acrylate) (PEMA), yielding four types of microcapsules: MicPEMA₁ and MicPEMA₂, and MicCA₁ and MicCA₂. When using only Copaifera sp. oleoresin, the larvicidal activity was observed at concentrations of LC₅₀ = 48 mg/L and LC₉₉ = 149 mg/L. For MicPEMA₁, the LC₅₀ and LC₉₉ were 78 and 389 mg/L, respectively. Using MicPEMA₂, the LC₅₀ was 120 mg/L and LC₉₉ > 500 mg/L. For microcapsules MicCA₁ and MicCA₂, the LC₅₀ and LC₉₉ were 42, 164, 140, and 398 mg/L, respectively. For a dose of 150 mg/L of pure oleoresin, the residual activity remained above 20% for 10 days, while the dose of 400 mg/L remained above 40% for 21 days. The MicPEMA₁ microcapsules showed a loss in residual activity up to the first day; however, it remained in activity above 40% for 17 days. The microcapsules of MicCA₁ showed similar LC₅₀ of pure oil with 150 mg/L.

  16. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Vera, Sharon Smith; Zambrano, Diego Fernando; Méndez-Sanchez, Stelia Carolina; Rodríguez-Sanabria, Fernando; Stashenko, Elena E; Duque Luna, Jonny E

    2014-07-01

    Insecticidal activity of the essential oils (EOs) isolated from Tagetes lucida, Lippia alba, Lippia origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis, Swinglea glutinosa, and Cananga odorata aromatic plants, grown in Colombia (Bucaramanga, Santander), and of a mixture of L. alba and L. origanoides EOs were evaluated on Aedes (Stegomyia) aegypti Rockefeller larvae. The EOs were extracted by microwave-assisted hydrodistillation and characterized by gas chromatography-mass spectrometry (GC-MS). The main components of the EOs were identified using their linear retention indices and mass spectra. The lethal concentrations (LCs) of the EOs were determined between the third and fourth instar of A. aegypti. LC50 was determined by probit analysis using mortality rates of bioassays. All essential oils tested showed insecticidal activity. The following values were obtained for C. flexuosus (LC50 = 17.1 ppm); C. sinensis (LC50 = 20.6 ppm); the mixture of L. alba and L. origanoides (LC50 = 40.1 ppm); L. alba (LC50 = 42.2 ppm); C. odorata (LC50 = 52.9 ppm); L. origanoides (LC50 = 53.3 ppm); S. glutinosa (LC50 = 65.7 ppm); T. lucida (LC50 = 66.2 ppm); E. citriodora (LC50 = 71.2 ppm); and C. citratus (LC50 = 123.3 ppm). The EO from C. flexuosus, with citral (geranial + neral) as main component, showed the highest larvicidal activity.

  17. Light-dependent effects of alpha-terthienyl in eggs, larvae, and pupae of mosquitoAedes aegypti.

    PubMed

    Kagan, J; Kagan, E; Patel, S; Perrine, D; Bindokas, V

    1987-03-01

    Alpha-terthienyl is toxic toAedes aegypti larvae in the dark, but its activity is much enhanced in the presence of ultraviolet light. The development of first-instar larvae treated with alpha-terthienyl and ultraviolet light was followed until the emergence of adults. The LC50 value for first instars was about 0.002 ppm. Practically all the larvae which survived 24 hr reached adulthood. Fourth-instar larvae were also sensitive to photochemical treatment. When their development into adults was followed, the LC50 value was 0.45 ppm. Contrary to earlier reports, alpha-terthienyl was also phototoxic in pupae, but not when the adults were about to emerge. The LC50 value was ca. 0.06 ppm for pupae which were 1 or 2 days old. This is the first example where the activity of a photoinsecticide has been demonstrated in pupae. Alpha-terthienyl did not affect the hatching of eggs.

  18. Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedes aegypti

    PubMed Central

    2014-01-01

    Background The yellow fever mosquito Aedes aegypti is essentially a container-inhabiting species that is closely associated with urban areas. This species is a vector of human pathogens, including dengue and yellow fever viruses, and its control is of paramount importance for disease prevention. Insecticide use against mosquito juvenile stages (i.e. larvae and pupae) is growing in importance, particularly due to the ever-growing problems of resistance to adult-targeted insecticides and human safety concerns regarding such use in human dwellings. However, insecticide effects on insects in general and mosquitoes in particular primarily focus on their lethal effects. Thus, sublethal effects of such compounds in mosquito juveniles may have important effects on their environmental prevalence. In this study, we assessed the survival and swimming behavior of A. aegypti 4th instar larvae (L4) and pupae exposed to increasing concentrations of insecticides. We also assessed cell death in the neuromuscular system of juveniles. Methods Third instar larvae of A. aegypti were exposed to different concentrations of azadirachtin, deltamethrin, imidacloprid and spinosad. Insect survival was assessed for 10 days. The distance swam, the resting time and the time spent in slow swimming were assessed in 4th instar larvae (L4) and pupae. Muscular and nervous cells of L4 and pupae exposed to insecticides were marked with the TUNEL reaction. The results from the survival bioassays were subjected to survival analysis while the swimming behavioral data were subjected to analyses of covariance, complemented with a regression analysis. Results All insecticides exhibited concentration-dependent effects on survival of larvae and pupae of the yellow fever mosquito. The pyrethroid deltamethrin was the most toxic insecticide followed by spinosad, imidacloprid, and azadirachtin, which exhibited low potency against the juveniles. All insecticides except azadirachtin reduced L4 swimming speed and

  19. A laboratory study of cyromazine on Aedes aegypti and Culex quinquefasciatus and its activity on selected predators of mosquito larvae.

    PubMed

    Nelson, F R; Holloway, D; Mohamed, A K

    1986-09-01

    In a laboratory study, the insect growth regulator, cyromazine, exerted a high level of biological activity on Aedes aegypti and Culex quinquefasciatus treated in the 4th larval instar. At 1.5 and 1.0 ppm this IGR produced 97 and 99% inhibition of emergence in adult Ae. aegypti, respectively. In Cx. quinquefasciatus, there was 99% inhibition at 1 ppm and complete inhibition at 1.5 ppm. The overall pupal mortality was higher than larval or adult stages of both species. This material induced different types of morphogenetic abnormalities in pupae and adults of the 2 species similar to those induced by other IGRs. However, most abnormalities were observed in the pupal stage. Adverse effects were not detected on the 4 mosquito predator species during the acute or posttreatment tests.

  20. Superoxide dismutase in the anal gills of the mosquito larvae of Aedes aegypti: its inhibition by alpha-terthienyl.

    PubMed

    Nivsarkar, M; Kumar, G P; Laloraya, M; Laloraya, M M

    1991-01-01

    The anal gills of the mosquito larvae of Aedes aegypti were shown to possess superoxide dismutase (EC 1.15.1.1) activity, which increased with the maturation of the larvae from instar 1 to instar 4. This enzyme was highly inhibited upon treatment of the larvae with alpha-terthienyl (2,2':5,2"-terthiophene) and subsequent exposure to long-wave ultraviolet light. Inhibition also occurred with treatment of the crude enzyme extract in a similar fashion. Exposure of the enzyme to the ultraviolet light alone or the treatment of the enzyme with alpha-terthienyl in darkness could not manifest this inhibition. This finding adds a new dimension to the complex mechanism(s) proposed for the photodynamic toxicity of alpha-terthienyl.

  1. Synthesis and insecticidal activity of acridone derivatives to Aedes aegypti and Culex quinquefasciatus larvae and non-target aquatic species.

    PubMed

    Roopan, Selvaraj Mohana; Bharathi, Annadurai; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan; Madhumitha, G

    2017-01-06

    A serious Mosquito borne yellow fever is one of the grave diseases which affect the major population. Since there is no specific treatment for yellow fever, there is a necessity to develop an effective agent. The series of acridinone analogues 3 to 5 were synthesized with help of non-conventional microwave heating and confirmed by respective spectral characterization. 5c and 3b showed highest activity to kill 90% of larvae against A. aegypti and C. quinquefasciatus, respectively. Also the active products were treated to check the mortality of non-target aquatic species. Through the reports of the larvicidal bioassay, compounds 3b against C. quinquefasciatus whereas 5c against A. aegypti were found to be more active. By keeping this as a platform, further extension of the work can be done to find out a valuable drug for controlling disease vectors.

  2. Synthesis and insecticidal activity of acridone derivatives to Aedes aegypti and Culex quinquefasciatus larvae and non-target aquatic species

    PubMed Central

    Roopan, Selvaraj Mohana; Bharathi, Annadurai; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan; Madhumitha, G.

    2017-01-01

    A serious Mosquito borne yellow fever is one of the grave diseases which affect the major population. Since there is no specific treatment for yellow fever, there is a necessity to develop an effective agent. The series of acridinone analogues 3 to 5 were synthesized with help of non-conventional microwave heating and confirmed by respective spectral characterization. 5c and 3b showed highest activity to kill 90% of larvae against A. aegypti and C. quinquefasciatus, respectively. Also the active products were treated to check the mortality of non-target aquatic species. Through the reports of the larvicidal bioassay, compounds 3b against C. quinquefasciatus whereas 5c against A. aegypti were found to be more active. By keeping this as a platform, further extension of the work can be done to find out a valuable drug for controlling disease vectors. PMID:28059104

  3. Synthesis and insecticidal activity of acridone derivatives to Aedes aegypti and Culex quinquefasciatus larvae and non-target aquatic species

    NASA Astrophysics Data System (ADS)

    Roopan, Selvaraj Mohana; Bharathi, Annadurai; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan; Madhumitha, G.

    2017-01-01

    A serious Mosquito borne yellow fever is one of the grave diseases which affect the major population. Since there is no specific treatment for yellow fever, there is a necessity to develop an effective agent. The series of acridinone analogues 3 to 5 were synthesized with help of non-conventional microwave heating and confirmed by respective spectral characterization. 5c and 3b showed highest activity to kill 90% of larvae against A. aegypti and C. quinquefasciatus, respectively. Also the active products were treated to check the mortality of non-target aquatic species. Through the reports of the larvicidal bioassay, compounds 3b against C. quinquefasciatus whereas 5c against A. aegypti were found to be more active. By keeping this as a platform, further extension of the work can be done to find out a valuable drug for controlling disease vectors.

  4. Breeding places and seasonal incidence of Aedes aegypti, as assessed by the single-larva survey method*

    PubMed Central

    Rao, T. Ramachandra; Trpis, M.; Gillett, J. D.; Teesdale, C.; Tonn, R. J.

    1973-01-01

    The single-larva survey method was employed to study the breeding places and seasonal incidence of Aedes aegypti in Dar es Salaam, Tanzania. From May 1968 to May 1969, 28 462 containers of water—located in approximately equal numbers indoors and outdoors—were investigated. The highest frequency of breeding (8.0%) of A. aegypti was observed in tires and motor parts. Drums, barrels, water-pots, and other receptacles left outdoors showed a higher frequency (3.1%) than those kept indoors (0.6%). Metal containers were infested to a greater extent than those made of mud, wood, or other materials; 2.5% of coconut shells, snail shells, etc. and 1.3% of tree holes, plant axils, and cut bamboos were infested. The seasonal prevalence, expressed as a container index, closely followed and paralleled the fluctuations in rainfall. The value of this survey method for both ecological studies and practical control purposes is discussed. PMID:4544149

  5. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.

    PubMed

    Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

    2010-06-01

    Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain

  6. Evaluation of Insect Growth Regulators Against Field-Collected Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Malaysia.

    PubMed

    Lau, Koon Weng; Chen, Chee Dhang; Lee, Han Lim; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2015-03-01

    Susceptibility status of Aedes aegypti (L.) and Aedes albopictus Skuse larvae obtained from 12 states in Malaysia were evaluated against five insect growth regulators (IGRs), namely, pyriproxyfen, methoprene, diflubenzuron, cyromazine, and novaluron under laboratory conditions. Field populations of Ae. aegypti exhibited moderate resistance toward methoprene and low resistance toward pyriproxyfen, with resistance ratios of 12.7 and 1.4, respectively, but susceptibility to diflubenzuron, cyromazine, and novaluron. On the other hand, field populations of Ae. albopictus exhibited low resistance against diflubenzuron and novaluron, with resistance ratio of 2.1 and 1.0, respectively, but susceptibility to other tested IGRs. Our study concluded that the tested IGRs provide promising results and can be used to control field population of Ae. aegypti and Ae. albopictus, especially cyromazine. The use of IGR should be considered as an alternative when larvae develop resistance to conventional insecticides.

  7. The Sublethal Effects of the Entomopathic Fungus Leptolegnia chapmanii on Some Biological Parameters of the Dengue Vector Aedes aegypti

    PubMed Central

    Pelizza, S.A.; Scorsetti, A.C.; Tranchida, M.C.

    2013-01-01

    The mosquito Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of dengue in the Americas. The use of chemical insecticides is recommended during outbreaks of dengue in order to reduce the number of adult mosquitoes; however, because Ae. aegypti is highly synanthropic, the use of insecticides in densely populated areas is a dangerous practice. Leptolegnia chapmanii Seymour (Straminipila: Peronosporomycetes) is an entomopathogenic microorganism that has demonstrated marked pathogenicity toward the larvae of a number of mosquito species, with little or no effect on non-target insects. Therefore, the purpose of this study was to determine the sublethal effects of L. chapmanii on fecundity, number of gonotrophic cycles, fertility, and relationship between wing length and fecundity in Ae. aegypti females. Ae. aegypti females that survived infection with L. chapmanii laid fewer eggs, had a smaller number of gonotrophic cycles, had shorter wings, and were less fertile than controls. This is the first study on the sublethal effects experienced by specimens of Ae. aegypti that survived infection with zoospores of L. chapmanii. Although field studies should be carried out, the results obtained in this study are encouraging because the high and rapid larval mortality caused by L. chapmanii coupled with the reduction of reproductive capacity in Ae. aegypti females seem to cause a significant reduction in the number of adults in the mid and long term, thereby reducing the health risks associated with Ae. aegypti. PMID:23901823

  8. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru.

    PubMed

    Getis, Arthur; Morrison, Amy C; Gray, Kenneth; Scott, Thomas W

    2003-11-01

    We determine the spatial pattern of Aedes aegypti and the containers in which they develop in two neighborhoods of the Amazonian city of Iquitos, Peru. Four variables were examined: adult Ae. aegypti, pupae, containers positive for larvae or pupae, and all water-holding containers. Adults clustered strongly within houses and weakly to a distance of 30 meters beyond the household; clustering was not detected beyond 10 meters for positive containers or pupae. Over short periods of time restricted flight range and frequent blood-feeding behavior of Ae. aegypti appear to be underlying factors in the clustering patterns of human dengue infections. Permanent, consistently infested containers (key premises) were not major producers of Ae. aegypti, indicating that larvaciding strategies by themselves may be less effective than reduction of mosquito development sites by source reduction and education campaigns. We conclude that entomologic risk of human dengue infection should be assessed at the household level at frequent time intervals.

  9. High affinity 3H-Phe uptake by brush border membrane vesicles from whole larvae of Aedes aegypti (AaBMVw)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brush border membrane vesicles from whole Aedes aegypti larvae (AaBBMVw) are confirmed to be valid preparations for membrane transport studies. The Abdul-Rauf and Ellar method was used to isolate AaBBMVw that were frozen, stored for several months, transported to a distant site, thawed and used to s...

  10. Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases.

    PubMed

    Ramasamy, Ranjan; Surendran, Sinnathamby N; Jude, Pavilupillai J; Dharshini, Sangaralingam; Vinobaba, Muthuladchumy

    2011-11-01

    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5-30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats.

  11. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Ho, B. C.; Chan, K. L.; Chan, Y. C.

    1971-01-01

    Fluctuations in the adult Ae. aegypti and Ae. albopictus populations and their relationship to rainfall were studied by weekly collections from a number of stations in the city. Aedes aegypti populations generally fluctuated with the rainfall, with multiple peaks, except in the middle of the year when there was no increase in rainfall at the time of the peak in population. It is suggested that other regulating factors, in addition to rainfall, also determine the fluctuations of this species. Aedes albopictus also fluctuated, with three peaks in a year, and these bore a close relationship to rainfall. In one area, both larvae and adults of Ae. albopictus were studied simultaneously. The larval populations were investigated by exposing tin cans in the field. The population peaks of larvae were found to precede those of adults by almost exactly 2 months. It is suggested that each adult population peak represents the cumulative effect of more than one generation of mosquitos. PMID:5316747

  12. Nationwide investigation of the pyrethroid susceptibility of mosquito larvae collected from used tires in Vietnam.

    PubMed

    Kawada, Hitoshi; Higa, Yukiko; Nguyen, Yen T; Tran, Son H; Nguyen, Hoa T; Takagi, Masahiro

    2009-01-01

    Pyrethroid resistance is envisioned to be a major problem for the vector control program since, at present, there are no suitable chemical substitutes for pyrethroids. Cross-resistance to knockdown agents, which are mainly used in mosquito coils and related products as spatial repellents, is the most serious concern. Since cross-resistance is a global phenomenon, we have started to monitor the distribution of mosquito resistance to pyrethroids. The first pilot study was carried out in Vietnam. We periodically drove along the national road from the north end to the Mekong Delta in Vietnam and collected mosquito larvae from used tires. Simplified susceptibility tests were performed using the fourth instar larvae of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Compared with the other species, Ae. aegypti demonstrated the most prominent reduction in susceptibility. For Ae. aegypti, significant increases in the susceptibility indices with a decrease in the latitude of collection points were observed, indicating that the susceptibility of Ae. aegypti against d-allethrin was lower in the southern part, including mountainous areas, as compared to that in the northern part of Vietnam. There was a significant correlation between the susceptibility indices in Ae. aegypti and the sum of annual pyrethroid use for malaria control (1998-2002). This might explain that the use of pyrethroids as residual treatment inside houses and pyrethroid-impregnated bed nets for malaria control is attributable to low pyrethroid susceptibility in Ae. aegypti. Such insecticide treatment appeared to have been intensively administered in the interior and along the periphery of human habitation areas where, incidentally, the breeding and resting sites of Ae. aegypti are located. This might account for the strong selection pressure toward Ae. aegypti and not Ae. albopictus.

  13. [Ecology of Aedes aegypti and Aedes albopictus in the Americas and disease transmission].

    PubMed

    Rey, Jorge R; Lounibos, Philip

    2015-01-01

    The recent range expansion of the mosquito Aedes albopictus has been associated in some areas by declines in abundance or local elimination of Aedes aegypti, but the two species still coexist in large regions of the Americas. We offer a summary of the possible mechanisms responsible for the abundance and displacement pattern observed and of their significance in terms of disease transmission. Among these mechanisms we may mention the competition for limiting resources, the differences in the ability to withstand starvation, the apparent competition through differential effects of the parasite Ascogregarina taiwanensis, and the inhibition of Ae. aegypti egg development by Ae. albopictus larvae. Habitat segregation has been proposed as a mechanism promoting the coexistence of the two species through avoidance of direct competition. Aedes aegypti predominates in urban areas, Ae. albopictus in rural ones, and both species coexist in the suburbs. There is also evidence that in certain areas, habitat segregation in terms of distance from the coast can influence the distribution of both species. Another possible cause of the rapid disappearance of Ae. aegypti is reproductive interference between the species. According to this hypothesis, asymmetric effects of interspecific mating favor Ae. albopictus. This type of reproductive interference can result in the elimination of sympatric populations of the affected species and can be one of the major causes for the swiftness with which Ae. aegypti disappeared from some places in the Americas following invasions by Ae. albopictus.

  14. Essential oils from Zanthoxylum fagara Wild Lime, Ruta chalepensis L. and Thymus vulgaris L.: Composition and activity against Aedes aegypti larvae.

    PubMed

    Pérez López, Luis Alejandro; de la Torre, Yael C; Cirio, Anabel Torres; de Torres, Noemí Waksman; Flores Suárez, Adriana Elizabeth; Aranda, Ricardo Salazar

    2015-09-01

    The dengue virus is transmitted by Aedes aegypti. Several plants are used to control this mosquito. In the present study the chemical composition of the essential oils of Ruta chalepensis, Zanthoxylum fagara and Thymus vulgaris were analyzed, and their activities against larvae of two A. aegypti populations were evaluated. The major compounds found in T. vulgaris were thymol and -cymene at 39.8% and 30.5%, respectively, with the major components being oxygenated monoterpenes and monoterpene hydrocarbons at 55.5% and 40.4%, respectively. For Z. fagara, the major compounds were sylvestrene and E-caryophyllene at 25.3% and 23.6%, respectively, with the major components being sesquiterpene and monoterpene hydrocarbons at 51.1% and 37.5%, respectively. Ketones were the predominant group of compounds found in R. chalepensis, with the major components being 2-undecanone and 2-nonanona at 43.7% and 35.4%, respectively. Essential oils from T. vulgaris, Z. fagara and R. chalepensis showed activity against larvae of the A. aegypti New Orleans strain, producing median lethal concentrations (LC₅₀) of 2.14, 27.57 and 2.69 g/mL, respectively, at 24 h. LC₅₀ values produced against larvae of a local A. aegypti population in Nuevo Leon, México, were 25.37, 60.42 and 20.13 g/mL, respectively, at 24 h.

  15. Evidence for Aedes aegypti (Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Morrison, Amy C; Luis Barboza, Jose; Wesson, Dawn M; Ponnusamy, Loganathan; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-07-01

    Dengue vector Aedes aegypti L. is invading peri-urban and rural areas throughout Latin America. Our previous research in the Peruvian Amazon has shown that river boats are heavily infested with immature and adult Ae. aegypti mosquitoes, likely playing a major role in their long-distance dispersal and successful invasion. However, the presence of immature mosquitoes provides no information about the timing of oviposition, and whether it took place in the boats. Here, we used baited ovitraps deployed on river boats to test the hypothesis that Ae. aegypti oviposition occurs during boat travel. We deployed 360 ovitraps on 60 different barges during August and October of 2013, and February 2014 (with 20 barges sampled during each month). We found that Ae. aegypti mosquitoes in 22 individual ovitraps from 15 of the 60 barges (premise index 25%) across all sampling dates. Further, the distribution of Ae. aegypti egg abundance was highly aggregated: 2.6% of traps (N=7) were responsible for 71.8% of eggs found, and 1.5% of traps (N=4) were responsible for all (100%) of the larvae found. Similarly, 5% of boats were responsible for the 71.47% of eggs. Our results provide strong evidence that Ae. aegypti oviposition commonly occurs during boat travel. Baited ovitraps could represent a cost-effective means of monitoring and controlling mosquito populations on boats.

  16. Differences in the Structure and Dynamics of the Apo- and Palmitate-ligated Forms of Aedes aegypti Sterol Carrier Protein 2 (AeSCP-2)*

    PubMed Central

    Singarapu, Kiran K.; Radek, James T.; Tonelli, Marco; Markley, John L.; Lan, Que

    2010-01-01

    Sterol carrier protein-2 (SCP-2) is a nonspecific lipid-binding protein expressed ubiquitously in most organisms. Knockdown of SCP-2 expression in mosquitoes has been shown to result in high mortality in developing adults and significantly lowered fertility. Thus, it is of interest to determine the structure of mosquito SCP-2 and to identify its mechanism of lipid binding. We report here high quality three-dimensional solution structures of SCP-2 from Aedes aegypti determined by NMR spectroscopy in its ligand-free state (AeSCP-2) and in complex with palmitate. Both structures have a similar mixed α/β fold consisting of a five-stranded β-sheet and four α-helices arranged on one side of the β-sheet. Ligand-free AeSCP-2 exhibited regions of structural heterogeneity, as evidenced by multiple two-dimensional 15N heteronuclear single-quantum coherence peaks for certain amino acids; this heterogeneity disappeared upon complex formation with palmitate. The binding of palmitate to AeSCP-2 was found to decrease the backbone mobility of the protein but not to alter its secondary structure. Complex formation is accompanied by chemical shift differences and a loss of mobility for residues in the loop between helix αI and strand βA. The structural differences between the αI and βA of the mosquito and the vertebrate SCP-2s may explain the differential specificity (insect versus vertebrate) of chemical inhibitors of the mosquito SCP-2. PMID:20356842

  17. Effect of Moringa oleifera lectins on survival and enzyme activities of Aedes aegypti larvae susceptible and resistant to organophosphate.

    PubMed

    Agra-Neto, Afonso Cordeiro; Napoleão, Thiago Henrique; Pontual, Emmanuel Viana; Santos, Nataly Diniz de Lima; Luz, Luciana de Andrade; de Oliveira, Cláudia Maria Fontes; de Melo-Santos, Maria Alice Varjal; Coelho, Luana Cassandra Breitenbach Barroso; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes

    2014-01-01

    The indiscriminate use of synthetic insecticides to control Aedes aegypti has led to emergence of resistant populations. Moringa oleifera seeds contain the lectins WSMoL and cMoL. WSMoL has larvicidal activity on fourth-stage of A. aegypti organophosphate-susceptible larvae (Rockefeller L4). This study reports on the effects of cMoL on the survival of Rockefeller L4 as well as of WSMoL and cMoL on L4 from an organophosphate-resistant population (Rec-R). The effects of lectins on digestive (amylase, trypsin, and protease) and detoxifying (superoxide dismutase (SOD), α- and β-esterases) enzymes from larvae were also determined. cMoL (0.1-0.8 mg/ml) did not kill Rockefeller L4 as well as WSMoL and cMoL (0.1-0.8 mg/ml) were not larvicidal for Rec-R L4. WSMoL stimulated protease, trypsin-like, and α-amylase from Rockefeller L4 while cMoL inhibited these enzymes. WSMoL had no effect on trypsin-like activity from Rec-R L4 but inhibited protease and α-amylase. Among digestive enzymes of Rec-R L4, cMoL inhibited only trypsin-like activity. cMoL inhibited SOD activities from Rockefeller and Rec-R L4 in a higher level than WSMoL while β-esterase from Rockefeller L4 was more inhibited by WSMoL. The lectins promoted low stimulation or inhibition of α-esterase activities from both populations. In conclusion, Rockefeller and Rec-R larvae were distinctly affected by M. oleifera lectins, and larvicidal mechanism of WSMoL on Rockefeller L4 may involve deregulation of digestive enzymes. cMoL interfered mainly on SOD activity and thus it can be investigated as a synergistic agent for controlling populations whose resistance is linked to an increased detoxifying process mediated by this enzyme.

  18. Larvicidal activity of Tagetes erecta against Aedes aegypti.

    PubMed

    Marques, Márcia M M; Morais, Selene M; Vieira, Icaro G P; Vieira, Mariano G S; Raquel, Ana; Silva, A; De Almeida, Raimundo Rafael; Guedes, Maria Izabel F

    2011-06-01

    The aim of this study was to evaluate the activity of essential oil from Tagetes erecta against 3rd instars of Aedes aegypti and to determine the amounts of larvicidal thiophenes in all plant tissues. The oil obtained by steam distillation and analyzed by gas chromatography/mass spectrometry showed 14 compounds. The main compounds were piperitone (45.72%), D-limonene (9.67%), and piperitenone (5.89%). The essential oil was active against larvae of Ae. aegypti, with LC50 of 79.78 microg/ml and LC90 of 100.84 microg/ml. The larvicidal thiophene contents were higher in the roots and flowers as demonstrated by high-performance liquid chromatography analysis. Thus, T. erecta constitutes a good source of varied compounds showing larvicidal activity against Ae. aegypti.

  19. Toxicity of Thiophenes from Echinops transiliensis (Asteraceae) against Aedes aegypti (Diptera: Culicidae) Larvae

    DTIC Science & Technology

    2014-01-01

    and 9 (cf. Fig. 1), which exhibit toxicity against the Formosan subterranean termite (Coptotermes formosanus), have been isolated from E...Simulium vittatum) larvae, adult nematodes (Caenorhabditis elegans) [8], and adult termites (C. formosanus) [11], while bithiophenes or

  20. Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Banu, A Najitha; Balasubramanian, C

    2014-08-01

    The efficacy of silver synthesized biolarvicide with the help of entomopathogenic fungus, Beauveria bassiana, was assessed against the different larval instars of dengue vector, Aedes aegypti. The silver nanoparticles were observed and characterized by a scanning electron microscope (SEM) and energy-dispersive X-ray (EDX). A surface plasmon resonance band was observed at 420 nm in UV-vis spectrophotometer. The characterization was confirmed by shape (spherical), size 36.88-60.93 nm, and EDX spectral peak at 3 keV of silver nanoparticles. The synthesized silver nanoparticles have been tested against the different larval instars of Ae. aegypti at different concentrations for a period of 24 h. Ae. aegypti larvae were found more susceptible to the synthesized silver nanoparticles. The LC50 and LC90 values are 0.79 and 1.09 ppm with respect to the Ae. aegypti treated with B. bassiana (Bb) silver nanoparticles (AgNPs). First and second instar larvae of Ae. aegypti have shown cent percent mortality while third and fourth instars found 50.0, 56.6, 70.0, 80.0, and 86.6 and 52.4, 60.0, 68.5, 76.0, and 83.3% mortality at 24 h of exposure in 0.06 and 1.00 ppm, respectively. It is suggested that the entomopathogenic fungus synthesized silver nanoparticles would be appropriate for environmentally safer and greener approach for new leeway in vector control strategy through a biological process.

  1. Sub-lethal metal stress response of larvae of Aedes aegypti.

    PubMed

    Perez, Mario H; Noriega, Fernando G

    2014-06-01

    Aedes aegypti (Diptera: Culicidae) has adapted to urban environments; the urbanisation process provides suitable habitats for this disease vector subsequently increasing the probability of the transmission of pathogens in high-density environments. Urban environments provide metal stressed larval habitats. However, little is known about the physiological cost of metal stress or how this might affect the performance of this mosquito species. This study aims to characterise the sub-lethal physiological consequences of metal stress in Aedes aegypti. Various parameters of mosquito physiology under larval metal stress are assessed including larval metallothionein expression and the effects of larval metal stress on adult performance and their progeny. Results show that environmentally relevant larval metal stress compromises larval and adult development and performance, and results in larval metal tolerance along with an increase in lipid consumption. These performance costs are coupled to a dramatic increase in metallothionein expression in the midgut. Metal stress results in lowered adult body mass and neutral storage lipids at emergence, starvation tolerance, fecundity and starvation tolerance of offspring compared to non-metal stressed individuals. Ironically, larval metal stress results in increased adult longevity. Together, these findings indicate that even low levels of environmentally relevant larval metal stress have considerable physiological consequences for this important disease vector.

  2. RNAi knock-downs support roles for the mucin-like (AeIMUC1) gene and short-chain dehydrogenase/reductase (SDR) gene in Aedes aegypti susceptibility to Plasmodium gallinaceum.

    PubMed

    Berois, M; Romero-Severson, J; Severson, D W

    2012-03-01

    The mosquito midgut represents the first barrier encountered by the Plasmodium parasite (Haemosporida: Plasmodiidae) when it is ingested in blood from an infected vertebrate. Previous studies identified the Aedes aegypti (L.) (Diptera: Culicidae) mucin-like (AeIMUC1) and short-chain dehydrogenase/reductase (SDR) genes as midgut-expressed candidate genes influencing susceptibility to infection by Plasmodium gallinaceum (Brumpt). We used RNA inference (RNAi) by double-stranded RNA (dsRNA) injections to examine ookinete survival to the oocyst stage following individual gene knock-downs. Double-stranded RNA gene knock-downs were performed 3 days prior to P. gallinaceum infection and oocyst development was evaluated at 7 days post-infection. Mean numbers of parasites developing to the oocyst stage were significantly reduced by 52.3% in dsAeIMUC1-injected females and by 36.5% in dsSDR-injected females compared with females injected with a dsβ-gal control. The prevalence of infection was significantly reduced in dsAeIMUC1- and dsSDR-injected females compared with females injected with dsβ-gal; these reductions resulted in a two- and three-fold increase in the number of uninfected individuals, respectively. Overall, these results suggest that both AeIMUC1 and SDR play a role in Ae. aegypti vector competence to P. gallinaceum.

  3. Finding Aedes aegypti in a natural breeding site in an urban zone, Sao Paulo, Southeastern Brazil

    PubMed Central

    Lima-Camara, Tamara Nunes; Urbinatti, Paulo Roberto; Chiaravalloti-Neto, Francisco

    2016-01-01

    ABSTRACT This is the description of how nine Aedes aegypti larvae were found in a natural breeding site in the Pinheiros neighborhood, city of Sao Paulo, SP, Southeastern Brazil. The record was conducted in December 2014, during an entomological surveillance program of dengue virus vectors, with an active search of potential breeding sites, either artificial or natural. Finding Ae. aegypti larvae in a tree hole shows this species’ ability to use both artificial and natural environments as breeding sites and habitats, which points towards the importance of maintaining continuous surveillance on this mosquito in all kinds of water-holding containers. PMID:26982959

  4. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L.

    PubMed

    Sundaravadivelan, Chandran; Padmanabhan, Madanagopal Nalini

    2014-03-01

    Mosquitoes transmit dreadful diseases, causing millions of deaths every year. Therefore, screening for larvicidal and pupicidal activity of microbial extracts attributes could lead to development of new and improved mosquito control methods that are economical and safe for nontarget organisms and are ecofriendly. Synthetic chemical insecticides occupy predominant position in control strategies. These hazardous chemicals exert unwarranted toxicity and lethal effects on nontarget organisms, develop physiological resistance in target, and cause adverse environmental effect. For vector control, fungal-mediated natural products have been a priority in this area at present. In the current study, effective larvicidal and pupicidal effect of mycosynthesized silver nanoparticles (Ag NPs) using an entomopathogenic fungi Trichoderma harzianum against developmental stages of the dengue vector Aedes aegypti was investigated. An attractive possibility of green nanotechnology is to use microorganisms in the synthesis of nanosilver especially Ag NPs. The mycosynthesized Ag NPs were characterized to find their unique properties through UV-visible spectrophotometer, X-ray diffraction analysis, Fourier transform infrared, and surface characteristics by scanning electron microscopy. To analyze the bioefficacy, different test concentrations for extracellular filtrate (0.2, 0.4, 0.6, 0.8, and 1.0 %) and Ag NPs (0.05, 0.10, 0.15, 0.20, and 0.25 %) were prepared to a final volume of 200 mL using deionized water; 20 larvae of each instars (I-IV) and pupa were exposed to each test concentration separately which included a set of control (distilled water) group with five replicates. Characterization of the synthesized Ag NPs were about 10-20 nm without aggregation. Susceptibility of larval instars to synthesized Ag NPs was higher than the extracellular filtrate of T. harzianum alone after 24-h exposure, where the highest mortality was recorded as 92 and 96 % for first and second instars and

  5. Truck-mounted area-wide application of pyriproxyfen targeting Aedes aegypti and Aedes albopictus in northeast Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the efficacy of truck-mounted ULV applications of pyriproxyfen against Aedes aegypti larvae in artificial water containers and wild adult Ae. albopictus populations in an urban setting. The study was conducted over a 3 ½ month period (Jun – Oct 2012), during wh...

  6. Toxicity and Larvicidal Activity of Podophyllum-Based Lignans Against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Maleck, Marise; Hollanda, Priscila de Oliveira; Serdeiro, Michele Teixeira; Soares, Renata Oliveira de Araújo; Honório, Nildimar Alves; Silva, Cláudia Gontijo

    2017-01-01

    Aedes aegypti L. (Diptera: Culicidae) is a mosquito species that has adapted to urban environments and is the main vector of dengue viruses. Because of the increasing incidence of dengue, a more environmentally acceptable insecticide needs to be found. Natural products have been and continue to be an important source of leading compounds that can be modified in order to develop new drugs. The lignan family of natural products includes compounds with a diverse spectrum of biological activity. Podophyllotoxin and its related lignans represent an exciting class of natural products that can be targeted at different types of biological activity and are therefore worth exploring further. This study had the aim of evaluating the larvicidal activity of an ethanolic extract from the rhizomes and roots of Podophyllum hexandrum (PM-3) and its isolated lignans, podophyllotoxone (1) and desoxypodophyllotoxin (2), on the larvae of the mosquito vector Ae. aegypti. The PM-3 extract and the compounds (1) and (2) were dissolved in a mixture of acetone and dimethylsulfoxide at final concentrations of 1, 10, 30, 50, 100, and 200 μg/ml. After dilution, the solutions were applied (μg/ml) to the larvae-rearing medium. Overall, the ethanolic extract from the rhizomes and roots of P. hexandrum and the compounds (1) and (2) showed larvicidal activity against the larvae of Ae. aegypti According to the results from this study, it can be concluded that podophyllotoxone (1) and desoxypodophyllotoxin (2) exhibited significant toxicity toward Ae. aegypti larvae.

  7. Toxicity and Larvicidal Activity of Podophyllum-Based Lignans Against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Maleck, Marise; Hollanda, Priscila de Oliveira; Serdeiro, Michele Teixeira; Soares, Renata Oliveira de Araújo; Honório, Nildimar Alves; Silva, Cláudia Gontijo

    2016-08-25

    Aedes aegypti L. (Diptera: Culicidae) is a mosquito species that has adapted to urban environments and is the main vector of dengue viruses. Because of the increasing incidence of dengue, a more environmentally acceptable insecticide needs to be found. Natural products have been and continue to be an important source of leading compounds that can be modified in order to develop new drugs. The lignan family of natural products includes compounds with a diverse spectrum of biological activity. Podophyllotoxin and its related lignans represent an exciting class of natural products that can be targeted at different types of biological activity and are therefore worth exploring further. This study had the aim of evaluating the larvicidal activity of an ethanolic extract from the rhizomes and roots of Podophyllum hexandrum (PM-3) and its isolated lignans, podophyllotoxone (1) and desoxypodophyllotoxin (2), on the larvae of the mosquito vector Ae. aegypti. The PM-3 extract and the compounds (1) and (2) were dissolved in a mixture of acetone and dimethylsulfoxide at final concentrations of 1, 10, 30, 50, 100, and 200 μg/ml. After dilution, the solutions were applied (μg/ml) to the larvae-rearing medium. Overall, the ethanolic extract from the rhizomes and roots of P. hexandrum and the compounds (1) and (2) showed larvicidal activity against the larvae of Ae. aegypti According to the results from this study, it can be concluded that podophyllotoxone (1) and desoxypodophyllotoxin (2) exhibited significant toxicity toward Ae. aegypti larvae.

  8. Late-instar Behavior of Aedes aegypti (Diptera: Culicidae) Larvae in Different Thermal and Nutritive Environments.

    PubMed

    Reiskind, Michael H; Janairo, M Shawn

    2015-09-01

    The effects of temperature on ectotherm growth have been well documented. How temperature affects foraging behavior is less well explored, and has not been studied in larval mosquitoes. We hypothesized that temperature changes foraging behavior in the aquatic larval phase of the mosquito, Aedes aegypti L. Based on empirical results in other systems, we predicted that foraging effort would increase at higher temperatures in these insects. We tested this prediction over three temperature conditions at two food levels. We measured behaviors by video recording replicated cohorts of fourth-instar mosquitoes and assessing individual behavior and time budgets using an ethogram. We found both food level and temperature had significant impacts on larval foraging behavior, with more time spent actively foraging at low food levels and at low temperatures, and more occurrences of active foraging at both temperature extremes. These results are contrary to some of our predictions, but fit into theoretical responses to temperature based upon dynamic energy budget models.

  9. Bioactivity Evaluation of Plant Extracts Used in Indigenous Medicine against the Snail, Biomphalaria glabrata, and the Larvae of Aedes aegypti

    PubMed Central

    dos Santos, Edilson Alves; de Carvalho, Cenira M.; Costa, Ana L. S.; Conceição, Adilva S.; Moura, Flávia de B. Prado; Santana, Antônio Euzébio Goulart

    2012-01-01

    This investigation examined the molluscicidal and larvicidal activity of eight plants that are used in the traditional medicine of the Pankararé indigenous people in the Raso da Catarina region, Bahia state, Brazil. The tested plants were chosen based on the results of previous studies. Only those plants that were used either as insect repellents or to treat intestinal parasitic infections were included in the study. Crude extracts (CEs) of these plants were tested for their larvicidal activity (against Aedes aegypti larvae in the fourth instar) and molluscicidal activity (against the snail Biomphalaria glabrata). The plant species Scoparia dulcis and Helicteres velutina exhibited the best larvicidal activities (LC50 83.426 mg/L and LC50 138.896 mg/L, resp.), and Poincianella pyramidalis, Chenopodium ambrosoides, and Mimosa tenuiflora presented the best molluscicidal activities (LC50 0.94 mg/L, LC50 13.51 mg/L, and LC50 20.22 mg/L, resp.). As we used crude extracts as the tested materials, further study is warranted to isolate and purify the most active compounds. PMID:22194773

  10. Effect of niloticin, a protolimonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae).

    PubMed

    Reegan, Appadurai Daniel; Gandhi, Munusamy Rajiv; Paulraj, Micheal Gabriel; Balakrishna, Kedike; Ignacimuthu, Savarimuthu

    2014-11-01

    The aim of the present study was to evaluate the mosquitocidal activity of fractions and a compound niloticin from the hexane extract of Limonia acidissima L. leaves on eggs, larvae and pupae of Aedes aegypti L. (Diptera: Culicidae). In these bioassays, the eggs, larvae and pupae were exposed to concentrations of 2.5, 5.0, 7.5 and 10.0ppm for fractions and 0.5, 1.0, 1.5 and 2.0ppm for compound. After 24h, the mortality was assessed and the LC50 and LC90 values were calculated for larvae and pupae. Per cent ovicidal activity was calculated for eggs after 120h post treatment. Among the sixteen fractions screened, fraction 8 from the hexane extract of L. acidissima generated good mosquitocidal activity against Ae. aegypti. The LC50 and LC90 values of fraction 8 were 4.11, 8.04ppm against Ae. aegypti larvae and 4.19, 8.10ppm against Ae. aegypti pupae, respectively. Further, the isolated compound, niloticin recorded strong larvicidal and pupicidal activities. The 2ppm concentration of niloticin showed 100% larvicidal and pupicidal activities in 24h. The LC50 and LC90 values of niloticin on Ae. aegypti larvae were 0.44, 1.17ppm and on pupae were 0.62, 1.45ppm, respectively. Niloticin presented 83.2% ovicidal activity at 2ppm concentration after 120h post treatment and niloticin exhibited significant growth disruption and morphological deformities at sub lethal concentrations against Ae. aegypti. The structure of the isolated compound was identified on the basis of single XRD and spectral data ((1)H NMR and (13)C NMR) and compared with literature spectral data. The results indicate that niloticin could be used as a potential natural mosquitocide.

  11. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti.

    PubMed

    Sasaki, Daniele Yumi; Jacobowski, Ana Cristina; de Souza, Antônio Pancrácio; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Macedo, Maria Lígia Rodrigues

    2015-05-01

    Currently, one of the major global public health concerns is related to the transmission of dengue/yellow fever virus by the vector Aedes aegypti. The most abundant digestive enzymes in Ae. aegypti midgut larvae are trypsin and chymotrypsin. Since protease inhibitors have the capacity to bind to and inhibit the action of insect digestive proteinases, we investigated the short- and long-term effects of Adenanthera pavonina seed proteinase inhibitor (ApTI) on Ae. aegypti larvae, as well as a possible mechanism of adaptation. ApTI had a significant effect on Ae. aegypti larvae exposed to a non-lethal concentration of ApTI during short- and long-duration assays, decreasing survival, weight and proteinase activities of midgut extracts of larvae. The zymographic profile of ApTI demonstrated seven bands; three bands apparently have trypsin-like activity. Moreover, the peritrophic membrane was not disrupted. The enzymes of ApTI-fed larvae were found to be sensitive to ApTI and to have a normal feedback mechanism; also, the larval digestive enzymes were not able to degrade the inhibitor. In addition, ApTI delayed larval development time. Histological studies demonstrated a degeneration of the microvilli of the posterior midgut region epithelium cells, hypertrophy of the gastric caeca cells and an augmented ectoperitrophic space in larvae. Moreover, Ae. aegypti larvae were incapable of overcoming the negative effects of ApTI, indicating that this inhibitor might be used as a promising agent against Ae. aegypti. In addition, molecular modeling and molecular docking studies were also performed in order to construct three-dimensional theoretical models for ApTI, trypsin and chymotrypsin from Ae. aegypti, as well as to predict the possible interactions and affinity values for the complexes ApTI/trypsin and ApTI/chymotrypsin. In this context, this study broadens the base of our understanding about the modes of action of proteinase inhibitors in insects, as well as the way insects

  12. Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus.

    PubMed

    Patil, Chandrashekhar D; Patil, Satish V; Salunke, Bipinchandra K; Salunkhe, Rahul B

    2012-05-01

    The tremendous worldwide efforts to isolate novel mosquito larvicidal bacteria with improved efficacy present significant promise to control vector-borne diseases of public health importance. In the present study, two native bacterial isolates, Bacillus thuringiensis (Bt SV2) and Serratia species (SV6) were evaluated for mosquito larvicidal potential against the early fourth instar larvae of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus with reference to B. thuringiensis subsp. israelensis (Bti) H 14. The native Gram-positive, spore-forming Bt SV2 isolate showed 100% mortality against early fourth instars of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus, in parallel to Bti H14 strain. After 24 h, Bt SV2 showed 98%, 89%, and 80.67%, and Bti H14 showed 92%, 98.33%, and 60% mortality against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus, respectively. Serratia SV6 showed highest activity against Culex quinquefasciatus (100%) followed by Anopheles stephensi (95%) and Aedes aegypti (91%) after 48 h of exposure. The Gram-negative Serratia SV6 showed delayed toxicity compared to Bti H14 and Bt SV2 against early fourth instars of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. The relative mortality of all treatments after 12-h exposures showed the varied toxicity with respect to exposure time, bacterial treatment, and mosquito species. Genetic relatedness of the strains was confirmed on the basis of phylogenetic reconstructions based on alignment of 16S rRNA gene sequences which indicated a strong clustering of the strain SV2 with B. thuringiensis and the strain SV6 with Serratia nematodiphila. In conclusion, the native isolate B. thuringiensis SV2 showed significant toxicity while Serratia SV6 showed less and delayed toxicity against several mosquito species compared with BtiH14. They may be used as novel bacterial insecticidal agents in mosquito vector-borne disease control. To our knowledge, this is the

  13. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru.

    PubMed

    Morrison, Amy C; Gray, Kenneth; Getis, Arthur; Astete, Helvio; Sihuincha, Moises; Focks, Dana; Watts, Douglas; Stancil, Jeffrey D; Olson, James G; Blair, Patrick; Scott, Thomas W

    2004-11-01

    Large-scale longitudinal cohort studies are necessary to characterize temporal and geographic variation in Aedes aegypti (L.) (Diptera: Culicidae) production patterns and to develop targeted dengue control strategies that will reduce disease. We carried out pupal/demographic surveys in a circuit of approximately 6,000 houses, 10 separate times, between January 1999 and August 2002 in the Amazonian city of Iquitos, Peru. We quantified the number of containers positive for Ae. aegypti larvae and/or pupae, containers holding pupae, and the absolute number of pupae by 4-mo sampling circuits and spatially by geographic area by using a geographic information system developed for the city. A total of 289,941 water-holding containers were characterized, of which 7.3% were positive for Ae. aegypti. Temporal and geographic variations were detected for all variables examined, and the relative importance of different container types for production of Ae. aegypti was calculated. Ae. aegypti larvae and pupae were detected in 64 types of containers. Consistent production patterns were observed for the lid status (lids: 32% wet containers, 2% pupal production), container location (outdoor: 43% wet containers, 85% pupal production), and method by which the container was filled with water (rain filled: 15% wet containers, 88.3% pupal production); these patterns were consistent temporally and geographically. We describe a new container category (nontraditional) that includes transient puddles, which were rare but capable of producing large numbers of pupae. Because of high variable pupal counts, four container categories (large tank, medium storage, miscellaneous, and nontraditional) should be targeted in addition to outdoor rain-filled containers that are not covered by a lid. The utility of targeted Ae. aegypti control is discussed, as well as the ability to achieve control objectives based on published but untested threshold values.

  14. How Diverse Detrital Environments Influence Nutrient Stoichiometry between Males and Females of the Co-Occurring Container Mosquitoes Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus

    PubMed Central

    Yee, Donald A.; Kaufman, Michael G.; Ezeakacha, Nnaemeka F.

    2015-01-01

    Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar

  15. How Diverse Detrital Environments Influence Nutrient Stoichiometry between Males and Females of the Co-Occurring Container Mosquitoes Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus.

    PubMed

    Yee, Donald A; Kaufman, Michael G; Ezeakacha, Nnaemeka F

    2015-01-01

    Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar

  16. Generation of superoxide anion radical by alpha-terthienyl in the anal gills of mosquito larvae Aedes aegypti: a new aspect in alpha-terthienyl phototoxicity.

    PubMed

    Nivsarkar, M; Kumar, G P; Laloraya, M; Laloraya, M M

    1992-01-01

    The present study documents that the secondary plant metabolites, especially alpha-terthienyl, exert phototoxic action through inhibition of certain enzymes and generation of singlet oxygen. Some of the reports have emerged exhibiting involvement of free radical generation in vitro by alpha-terthienyl. We provide evidence for the generation of a free radical viz., superoxide anion radical, by alpha-terthienyl employing spin-trapping techniques, probably due to the extension of the latter reaction. On the basis of this observation the phototoxic action of alpha-terthienyl on Aedes aegypti larvae is explained.

  17. Evaluation of histological techniques for the detection of fungal infections caused by Leptolegnia chapmanii (Oomycetes: Saprolegniales) in Aedes aegypti (Diptera: Culicidae) larvae.

    PubMed

    Dikgolz, V E; Toledo, A V; Topa, P E; López Lastra, C C

    2005-01-01

    We evaluated which of the fixatives and stains most frequently used for observation of insect tissues were the most appropriate for histopathological visualization of entomopathogenic fungal infections with Leptolegnia chapmanii in larvae of Aedes aegypti. The best contrast between the host tissues and the fungal structures was obtained when using a combination of Camoy fixative with Grocott staining contrasted with light green. Masson trichromic stain combined with 10% formaldehyde-phosphate buffer also provided satisfactory results--a good contrast and clearly distinguishable host tissues and fungal structures.

  18. Enhancement of the efficacy of a combination of Mesocyclops aspericornis and Bacillus thuringiensis var. israelensis by community-based products in controlling Aedes aegypti larvae in Thailand.

    PubMed

    Kosiyachinda, Pahol; Bhumiratana, Amaret; Kittayapong, Pattamaporn

    2003-08-01

    Prolonged efficacy of a combination of bacteria (Bacillus thuringiensis var. israelensis [Bti] and copepods (Mesocyclops aspericornis) in controlling immature forms of Aedes aegypti in peridomestic water containers was achieved by adding various products from local villages as supplementary food for copepods. In all experiments, 100 first-instar larvae were added into the breeding containers every day for eight weeks. Combinations of biological control agents and each local supplementary food were applied once at the beginning of the experiment. At the end of the experiment, the average number of mosquito larvae in containers with a combination of copepods and Bti with one gram of rice grain had decreased to only 0.5% of that with no control agent. In comparison, the average numbers of mosquito larvae in containers with Bti only, or copepods only, were approximately 10% and 33% of those in containers with no control agents, respectively. In addition, the number of copepods in containers with mosquito larvae and supplementary food was at least three times higher than those with mosquito larvae alone.

  19. Neuropeptidomics of the Mosquito Aedes Aegypti

    DTIC Science & Technology

    2010-01-01

    and PK in different ganglia, differential posttranslational pro- cessing of CAPA-PVK-2 in Ae. aegypti tissues was observed. The N-terminally blocked...secretory cells (X cells) is separate and posterior to the CC, and axons from these cells extend to the CC. In female An. gambiae and Ae. aegypti , these...Expression of a gene encoding AKH-2 was characterized in Ae. aegypti .19 Native AKH-2 was resolved by HPLC from head extracts of female An. gambiae in

  20. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed Central

    Mocellin, Márcio Goulart; Simões, Taynãna César; do Nascimento, Teresa Fernandes Silva; Teixeira, Maria Lucia França; Lounibos, Leon Philip; de Oliveira, Ricardo Lourenço

    2012-01-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus (0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats. PMID:20140379

  1. Odonate Nymphs: Generalist Predators and Their Potential in the Management of Dengue Mosquito, Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Akram, Waseem; Ali-Khan, Hafiz Azhar

    2016-01-01

    Background: Dengue is amongst the most serious mosquito-borne infectious disease with hot spots in tropical and subtropical parts of the world. Unfortunately, no licensed vaccine for the disease is currently available in medicine markets. The only option available is the management of dengue vector mosquito, Aedes aegypti (Diptera: Culicidae). Method: Predatory potential of five odonate nymphs namely Anax parthenope, Bradinopyga geminate, Ischnura forcipata, Rhinocypha quadrimaculata, and Orthetrum sabina were evaluated against the 4th instar larvae of the dengue vector mosquito, Aedes aegypti, under laboratory conditions. The consumption of the mosquito larvae was evaluated at three water volume levels viz., 1 liter, 2 liter and 3 liter. Results: The number of Ae. aegypti larvae consumed varied significantly among the five species, and at different levels of water volume (P< 0.01). However, the interaction between odonate nymphs and the water volumes was statistically non-significant (P> 0.05). Ischnura forcipata consumed the highest number of Ae. aegypti larvae (n=56) followed by A. parthenope (n=47) and B. geminate (n=46). The number of larvae consumed was decreased with increasing search area or water volume, and the highest predation was observed at 1-liter water volume. Conclusion: The odonate nymphs could be a good source of biological agents for the management of the mosquitoes at larval stages. PMID:27308283

  2. Structure-Activity Relationship Studies on Natural Eremophilanes from Inula helenium as Toxicants Against Aedes aegypti Larvae and Adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Aedes aegypti larval toxicity bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids, sesquiterpenoids, and triterpenoids. Among these compounds studies, two eudesmanolides, alantolactone and isoalantolactone, showed l...

  3. Larval Development of Aedes aegypti and Aedes albopictus in Peri-Urban Brackish Water and Its Implications for Transmission of Arboviral Diseases

    PubMed Central

    Ramasamy, Ranjan; Surendran, Sinnathamby N.; Jude, Pavilupillai J.; Dharshini, Sangaralingam; Vinobaba, Muthuladchumy

    2011-01-01

    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5–30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats. PMID:22132243

  4. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti).

    PubMed

    Telang, A; Qayum, A A; Parker, A; Sacchetta, B R; Byrnes, G R

    2012-09-01

    We report key physiological traits that link larval nutritional experience to adult immune status in the yellow fever mosquito Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae). Many lines of defence make up the innate immune system of mosquitoes. Among defences, the epithelium-lined midgut is the first barrier, circulating haemocytes are cellular components of innate immunity and, when triggered, the Toll and Imd pathways signal production of antimicrobial peptides (AMP) as part of humoral defences. We quantified three lines of defence in Ae. aegypti in response to larval nutritional stress, and our data show that important female immune functions are modified by the larval rearing environment. Adult midgut basal lamina thickness was not affected by larval nutrient stress as has been observed in another Aedes sp. However, nutrient stresses experienced by larvae lead to a reduced number of haemocytes in females. Transcripts of Spaetzle (upstream regulator of Toll pathway that leads to induction of AMPs) and some immune-related genes were less abundant in stressed larvae but showed increased expression in females derived from stressed larvae. Results indicate a potential for compensation by the humoral branch for a reduced cellular branch of innate immunity in adults in response to larval nutrient stress.

  5. Evaluation of the present dengue situation and control strategies against Aedes aegypti in Cebu City, Philippines.

    PubMed

    Mahilum, Milagros M; Ludwig, Mario; Madon, Minoo B; Becker, Norbert

    2005-12-01

    The present dengue situation and methods to control Aedes aegypti larvae in Cebu City, Philippines, were evaluated for the development of an integrated community-based dengue control program. The study included the detection of dengue infection among Filipino patients, surveying mosquito breeding sites to determine larval population density of Aedes aegypti, an evaluation of public knowledge, attitude, and personal protection practices against dengue, and an evaluation of the efficacy of VectoBac DT/Culinex Tab tablets based on Bacillus thuringiensis israelensis against Ae. aegypti larvae. Of the 173 human sera samples that were assayed for dengue viruses, 94.9% were positive, 2.2% negative and 2.8% equivocal. Thirty households were randomly chosen per Barangay "Villages" (lowest level of formal local administration). Of the 489 breeding sites surveyed, 29.4% were infested with Ae. aegypti larvae, with discarded tires having the highest infestation rate (69.4%). A survey of people's knowledge, attitude, and practices for integrated community-based dengue control showed that 68.7% of the interviewees were aware that dengue is transmitted by mosquitoes, but only 4.3% knew that a virus was the cause of the disease. The efficacy of one and two tablets of VectoBac DT/Culinex Tab, based on Bacillus thuringiensis israelensis, was assessed against the larvae of Ae. aegypti exposed to sunshine and shaded water containers in semi-field and field tests. In semi-field tests, 100% mortality was achieved until the 18th and 30th day after the application of one and two tablets, respectively, in sun-exposed containers. In shaded containers, 100% mortality was observed until the 30th and 36th day after the application of one and two tablets, respectively. In field tests, the tablets were effective for approximately 3 weeks.

  6. Factors influencing the seasonal abundance of Aedes (Stegomyia) aegypti and the control strategy of dengue and dengue haemorrhagic fever in Thanlyin Township, Yangon City, Myanmar.

    PubMed

    Oo, T T; Storch, V; Madon, M B; Becker, N

    2011-08-01

    From June 2006 to May 2007, mosquito surveys were conducted in Thanlyin Township, Yangon City, Myanmar, to determine factors influencing the abundance of Aedes aegypti (Stegomyia aegypti) during the rainy season. Both the biological and environmental factors were included in this study. Increase in the hatchability of egg, larval survival rate, the shortened larval life-span and increased pupation rates supplemented by rainfall (i.e. continuous flooding of the containers, stimulate the continuous hatching of eggs) were observed for correlation with the increase in population density of Ae. aegypti during the rainy season in the study area. Control strategy of Ae. aegypti to analyze the infestation in the community (study area) with larval Ae. aegypti, integrated management measures including health education, attitudes and practices regarding dengue and dengue haemorrhagic fever, transmission of the disease and possible preventive measures, reduction of breeding sites and testing the efficacy of Bacillus thuringiensis israelensis (B.t.i.) with respect to the reduction level of Ae. aegypti larvae in breeding sources, were taken into consideration.

  7. Serratia odorifera a Midgut Inhabitant of Aedes aegypti Mosquito Enhances Its Susceptibility to Dengue-2 Virus

    PubMed Central

    Apte-Deshpande, Anjali; Paingankar, Mandar; Gokhale, Mangesh D.; Deobagkar, Dileep N.

    2012-01-01

    Mosquito midgut plays a crucial role in its vector susceptibility and pathogen interaction. Identification of the sustainable microflora of the midgut environment can therefore help in evaluating its contribution in mosquito-pathogen interaction and in turn vector competence. To understand the bacterial diversity in the midgut of Aedes aegypti mosquitoes, we conducted a screening study of the gut microbes of these mosquitoes which were either collected from fields or reared in the laboratory “culture-dependent” approach. This work demonstrated that the microbial flora of larvae and adult Ae. aegypti midgut is complex and is dominated by Gram negative proteobacteria. Serratia odorifera was found to be stably associated in the midguts of field collected and laboratory reared larvae and adult females. The potential influence of this sustainable gut microbe on DENV-2 susceptibility of this vector was evaluated by co-feeding S. odorifera with DENV-2 to adult Ae. aegypti females (free of gut flora). The observations revealed that the viral susceptibility of these Aedes females enhanced significantly as compared to solely dengue-2 fed and another gut inhabitant, Microbacterium oxydans co-fed females. Based on the results of this study we proposed that the enhancement in the DENV-2 susceptibility of Ae. aegypti females was due to blocking of prohibitin molecule present on the midgut surface of these females by the polypeptide of gut inhabitant S. odorifera. PMID:22848375

  8. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro--are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?

    PubMed

    Mocellin, Márcio Goulart; Simões, Taynãna César; Nascimento, Teresa Fernandes Silva do; Teixeira, Maria Lucia França; Lounibos, Leon Philip; Oliveira, Ricardo Lourenço de

    2009-12-01

    Immatures of both Aedes aegypti and Aedes albopictus have been found in water-holding bromeliad axils in Brazil. Removal of these plants or their treatment with insecticides in public and private gardens have been undertaken during dengue outbreaks in Brazil despite uncertainty as to their importance as productive habitats for dengue vectors. From March 2005-February 2006, we sampled 120 randomly selected bromeliads belonging to 10 species in a public garden less than 200 m from houses in a dengue-endemic neighborhood in Rio de Janeiro. A total of 2,816 mosquito larvae and pupae was collected, with an average of 5.87 immatures per plant per collection. Culex (Microculex) pleuristriatus and Culex spp of the Ocellatus Group were the most abundant culicid species, found in all species of bromeliads; next in relative abundance were species of the genus Wyeomyia. Only two individuals of Ae. aegypti (0.07%) and five of Ae. albopictus(0.18%) were collected from bromeliads. By contrast, immatures of Ae. aegypti were found in manmade containers in nearly 5% of nearby houses. These results demonstrate that bromeliads are not important producers of Ae. aegypti and Ae. albopictus and, hence, should not be a focus for dengue control. However, the results of this study of only one year in a single area may not represent outcomes in other urban localities where bromeliads, Ae. aegypti and dengue coincide in more disturbed habitats.

  9. The inactivation of acetylcholinesterase by alpha-terthienyl and ultraviolet light. Studies in vitro and in larvae of the mosquito Aedes aegypti.

    PubMed

    Kagan, J; Hasson, M; Grynspan, F

    1984-12-20

    Acetylcholinesterase (EC 3.1.1.7) was inactivated photochemically in solution, in the presence of dissolved terthiophene sensitizers. Alpha-terthienyl (2,2':5,2"-terthiophene) and its isomers 3,2':5',2"- and 3,2':5',3"-terthiophenes showed very similar sensitizing properties. With all three terthiophenes, the photosensitization was completely suppressed under anaerobic conditions, and therefore the inactivation process required the presence of oxygen. The enzyme was inactivated in vivo when fourth instar larvae of the mosquito Aedes aegypti were treated with alpha-terthienyl in the presence of long-wavelength ultraviolet light. No inactivation was observed when the organisms were treated with the ultraviolet light alone, with the chemical alone, or with a previously irradiated sample of the chemical. This paper represents the first example of acetylcholinesterase inactivation in vivo by a photoactive insecticide.

  10. Impact of Terminalia chebula Retz. against Aedes aegypti L. and non-target aquatic predatory insects.

    PubMed

    Thanigaivel, Annamalai; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Edwin, Edward-Sam; Ponsankar, Athirstam; Chellappandian, Muthiah; Selin-Rani, Selvaraj; Lija-Escaline, Jalasteen; Kalaivani, Kandaswamy

    2017-03-01

    Aedes aegypti Linn is one of the most important mosquito species. The vectors are responsible for causing deadly diseases like dengue and dengue hemorrhagic fever. Several chemical pesticides used to control these dengue vectors caused severe toxic significances on human health and other non-target beneficial insects. Therefore the current investigation has been made to access the bio-efficacy of the crude seed extracts of T. chebula against the dengue vector Ae. aegypti. The GC-MS analysis of crude seed extracts of T. chebula identified nine chemical compounds with major peak area in the 1,2,3-Benzenetriol (61.96%), followed by Tridecanoic acid (09.55%). Ae. aegypti larvae showed dose dependent mortality rate was observed between the treatments. Prominent protection rate at greater concentrations of 100ppm and moderate protection at 75 and 50ppm was observed in the repellent assay. Lethal concentration (LC50 and LC90) of fourth instar larvae of Ae. aegypti was observed in 138 and 220ppm concentration respectively. Similarly, the seed extracts showed 100% adulticidal activity at the concentration of 400ppm at 30min of exposure time. Phytochemicals present in the seed extracts of T. chebula significantly affects the major portions of the midgut tissues of Ae. aegypti at the concentration of 100ppm. The toxicological evaluation of seed extracts also proved non-toxic towards the A. bouvieri and Tx. splendens aquatic predatory insects. Hence, the present result suggest that bio-rational plant derived T. chebula could be incorporated in the dengue vector control and have no adverse effects on non-target beneficial insects.

  11. Field evaluation of a lethal ovitrap for the control of Aedes aegypti (Diptera: Culicidae) in Thailand.

    PubMed

    Sithiprasasna, Ratana; Mahapibul, Pradith; Noigamol, Chumnong; Perich, Michael J; Zeichner, Brian C; Burge, Bob; Norris, Sarah L W; Jones, James W; Schleich, Sonya S; Coleman, Russell E

    2003-07-01

    In 1999 and 2000 we evaluated a lethal ovitrap (LO) for the control of Aedes aegypti (L.) in three villages in Ratchaburi Province, Thailand. Two blocks of 50 houses (a minimum of 250 m apart) served as treatment and control sites in each village, with each house in the treatment area receiving 10 LOs. Thirty houses in the center of each treatment and control block were selected as sampling sites, with larval and adult mosquito sampling initiated when LOs were placed. Sampling was conducted weekly in 10 of the 30 houses at each site, with each block of 10 houses sampled every third week. Sampling continued for 30 wk. Efficacy of the LO was evaluated by determining number of containers with larvae and/or pupae per house and number of adult mosquitoes collected inside each house. In 1999, the LO had a negligible impact on all measures of Ae. aegypti abundance that were assessed; however, fungal contamination of insecticide-impregnated strips may have been responsible for the low efficacy. In 2000, significant suppression was achieved based on changes in multiple entomologic criteria (containers with larvae, containers with pupae, and number of adult Ae. aegypti); however, control was not absolute and neither immature nor adult Ae. aegypti were ever eliminated completely. We conclude that the LO can reduce adult Ae. aegypti populations in Thailand; however, efficacy of the LO is lower than desired due primarily to the high number of alternative oviposition sites. LO efficacy may be improved when used as part of an integrated control program that places emphasis on reduction of adjacent larval habitats. Further studies are required to assess this issue.

  12. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins.

    PubMed

    Eisen, Lars; Monaghan, Andrew J; Lozano-Fuentes, Saul; Steinhoff, Daniel F; Hayden, Mary H; Bieringer, Paul E

    2014-05-01

    The mosquito Aedes (Stegomyia) aegypti (L.), which occurs widely in the subtropics and tropics, is the primary urban vector of dengue and yellow fever viruses, and an important vector of chikungunya virus. There is substantial interest in how climate change may impact the bionomics and pathogen transmission potential of this mosquito. This Forum article focuses specifically on the effects of temperature on the bionomics of Ae. aegypti, with special emphasis on the cool geographic range margins where future rising temperatures could facilitate population growth. Key aims are to: 1) broadly define intra-annual (seasonal) patterns of occurrence and abundance of Ae. aegypti, and their relation to climate conditions; 2) synthesize the existing quantitative knowledge of how temperature impacts the bionomics of different life stages of Ae. aegypti; 3) better define the temperature ranges for which existing population dynamics models for Ae. aegypti are likely to produce robust predictions; 4) explore potential impacts of climate warming on human risk for exposure to Ae. aegypti at its cool range margins; and 5) identify knowledge or data gaps that hinder our ability to predict risk of human exposure to Ae. aegypti at the cool margins of its geographic range now and in the future. We first outline basic scenarios for intra-annual occurrence and abundance patterns for Ae. aegypti, and then show that these scenarios segregate with regard to climate conditions in selected cities where they occur. We then review how near-constant and intentionally fluctuating temperatures impact development times and survival of eggs and immatures. A subset of data, generated in controlled experimental studies, from the published literature is used to plot development rates and survival of eggs, larvae, and pupae in relation to water temperature. The general shape of the relationship between water temperature and development rate is similar for eggs, larvae, and pupae. Once the lower

  13. Toxicological Evaluation of Essential Oil From the Leaves of Croton argyrophyllus (Euphorbiaceae) on Aedes aegypti (Diptera: Culicidae) and Mus musculus (Rodentia: Muridae).

    PubMed

    Cruz, R C D; Silva, S L C E; Souza, I A; Gualberto, S A; Carvalho, K S; Santos, F R; Carvalho, M G

    2017-01-27

    Plant-derived essential oils can be used as insecticides for vector control. However, to establish their safety, it is necessary to perform toxicological studies. Herein, we evaluated the chemical composition and insecticidal activity of the essential oil from the leaves of Croton argyrophyllus on the third- and fourth-instar larvae and adult Aedes aegypti (L., 1762). We also evaluated the acute toxicity of the essential oil in adult female Mus musculus The lethal concentration 50 (LC50) and 90 (LC90) of C. argyrophyllus essential oil on larvae of Ae. aegypti were 0.31 and 0.70 mg ml(-1), respectively, and 5.92 and 8.94 mg ml(-1), respectively, on Ae. aegypti adults. The major components of the essential oil were spathulenol (22.80%), (E)-caryophyllene (15.41%), α-pinene (14.07%), and bicyclogermacrene (10.43%). It also displayed acute toxicity in adults of Mus musculus; the intraperitoneal and oral lethal dose 50 (LD50) were 2,000 mg kg(-1) and 2,500 mg kg(-1), respectively. The results showed that the essential oil from C. argyrophyllus leaves has insecticidal activity on Ae. aegypti larvae and adults at an average lethal concentration below the median lethal dose needed to cause acute toxicity in the common mouse.

  14. Repellency and Larvicidal Activity of Essential oils from Xylopia laevigata, Xylopia frutescens, Lippia pedunculosa, and Their Individual Compounds against Aedes aegypti Linnaeus.

    PubMed

    Nascimento, A M D; Maia, T D S; Soares, T E S; Menezes, L R A; Scher, R; Costa, E V; Cavalcanti, S C H; La Corte, R

    2017-04-01

    In order to find new alternatives for vector control and personal protection, we evaluated the larvicidal and repellent activity of essentials oils from plants found in the Northeast of Brazil against Aedes aegypti Linnaeus mosquitoes. The plants tested include Xylopia laevigata, Xylopia frutescens, and Lippia pedunculosa and their major compounds, piperitenone oxide, and (R)-limonene. The essential oil of L. pedunculosa and its major volatile compounds were shown to be toxic for Ae. aegypti larvae with a LC50 lower than 60 ppm. The essential oil of plants from the Xylopia genus, on the other hand, showed no activity against Ae. aegypti, proving to be toxic to mosquito larvae only when concentrations were higher than 1000 ppm. All plants tested provided some degree of protection against mosquitoes landing, but only the essential oil of L. pedunculosa and the volatile compound piperitenone oxide suppressed 100% of mosquitoes landing on human skin, in concentrations lower than 1%. Among the plants studied, the essential oil of L. pedunculosa and its volatiles compounds have shown the potential for the development of safe alternative for mosquito larvae control and protection against Ae. aegypti mosquito bites.

  15. Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins.

    PubMed

    Stalinski, Renaud; Laporte, Frédéric; Després, Laurence; Tetreau, Guillaume

    2016-03-01

    Bacillus thuringiensis subsp. israelensis (Bti) is a natural pathogen of dipterans widely used as a biological insecticide for mosquito control. To characterize the response of mosquitoes to intoxication with Bti, the transcriptome profile of Bti-exposed susceptible Aedes aegypti larvae was analysed using Illumina RNA-seq. Gene expression of 11 alkaline phosphatases (ALPs) was further investigated by real time quantitative polymerase chain reaction and ALP activity was measured in the susceptible strain and in four strains resistant to a single Bti Cry toxin or to Bti. These strains were unexposed or exposed to their toxin of selection. Although all resistant strains constitutively exhibited a higher level of transcription of ALP genes than the susceptible strain, they showed a lower total ALP activity. The intoxication with different individual Cry toxins triggered a global pattern of ALP gene under-transcription in all the one-toxin-resistant strains but involving different specific sets of ALPs in each resistant phenotype. Most of the ALPs involved are not known Cry-binding proteins. RNA interference experiment demonstrated that reducing ALP expression conferred increased the survival of larvae exposed to Cry4Aa, confirming the involvement of ALP in Cry4Aa toxicity.

  16. A parvo-like virus persistently infecting a C6/36 clone of Aedes albopictus mosquito cell line and pathogenic for Aedes aegypti larvae.

    PubMed

    Jousset, F X; Barreau, C; Boublik, Y; Cornet, M

    1993-08-01

    We have isolated and partially characterized from an apparently healthy C6/36 subclone of Aedes albopictus cell line a small icosahedral non-enveloped DNA virus, designated AaPV. This virus proved to be highly pathogenic for Aedes aegypti neonate larvae. Viral infection persisted for over 4 years in the cell culture without any cytopathic effect. Attempts to infect suckling mice, Drosophila melanogaster adults and Spodoptera littoralis larvae with AaPV were unsuccessful. Similarly, the AaPV failed to replicate in vertebrate and Drosophila cell lines. Virions, about 22 nm in diameter, had a buoyant density of 1.43 g/cm3 and contained three capsid polypeptides with molecular weights of 53, 41 and 40 kDa. A preliminary study of the viral genome indicated the presence of single-stranded DNA. By its biophysical and biochemical properties, this virus appears to be related to the genus Densovirus within the family Parvoviridae, but lacks serological relationships with the other members of this genus.

  17. Impact of inter- and intra-specific competition among larvae on larval, adult, and life-table traits of Aedes aegypti and Aedes albopictus females.

    PubMed

    Noden, Bruce H; O'Neal, Paul A; Fader, Joseph E; Juliano, Steven A

    2016-04-01

    Few studies have taken a comprehensive approach of measuring the impact of inter- and intra-specific larval competition on adult mosquito traits. In this study, the impact of competition Aedes aegypti and A. albopictus was quantified over the entire life of a cohort.Competitive treatments affected hatch-to-adult survivorship and development time to adulthood of females for both species, but affected median wing length of females only for A. albopictus. Competitive treatments had no significant effect on the median adult female longevity nor were there any effects on other individual traits related to bloodfeeding and reproductive success.Analysis of life table traits revealed no effect of competitive treatment on net reproductive rate (R0) but there were significant effects on cohort generation time (Tc) and cohort rate of increase (r) for both species.Inter-specific and intra-specific competition among Aedes larvae may produce individual and population-level effects that are manifest in adults; however, benign conditions may enable resulting adults to compensate for some impacts of competition, particularly those affecting blood feeding success, fecundity, and net reproductive rate, R0. The effect of competition, therefore, affects primarily larva - to - adult survivorship and larval development time, which in turn impact the cohort generation time, Tc and ultimately cohort rate of increase, r.The lack of effects of larval rearing environment on adult longevity suggests that effects on vectorial capacity due to longevity may be limited if adults have easy access to sugar and blood meals.

  18. Toxicity effect of Delonix elata (Yellow Gulmohr) and predatory efficiency of Copepod, Mesocyclops aspericornis for the control of dengue vector, Aedes aegypti

    PubMed Central

    Vasugi, Chellamuthu; Kamalakannan, Siva; Murugan, Kadarkarai

    2013-01-01

    Objective To evaluate the toxicity, predatory efficiency of Delonix elata (D. elata) and Mesocyclops aspericornis (M. aspericornis) against dengue vector, Aedes aegypti (Ae. aegypti). Methods A mosquitocidal bioassay was conducted at different concentration of plant extract followed by WHO standard method. The probit analysis of each tested concentration and control were observed by using software SPSS 11 version package. The each tested concentration variable was assessed by DMRT method. The predatory efficiency of copepod was followed by Deo et al., 1988. The predator, M. aspericornis was observed for mortality, abnormalities, survival and swimming activity after 24 h treatment of plant and also predation on the mosquito larvae were observed. Results D. elata were tested for biological activity against the larvae, and pupae of Ae. aegypti. Significant mortality effects were observed in each life stage. The percentage of mortality was 100% in first and second instars whereas 96%, 92% in third and fourth instars. Fitted probit-mortality curves for larvae indicated the median and 90% lethal concentrations of D. elata for instars 1-4 to be 4.91 (8.13), 5.16 (8.44), 5.95 (7.76) and 6.87 (11.23), respectively. The results indicate that leaf extract exhibits significant biological activity against life stages. The present study revealed that D. elata is potentially important in the control of Ae. aegypti. Similar studies were conducted for predatory efficiency of Copepod, M. aspericornis against mosquito vector Ae. Aegypti. This study reported that the predatory copepod fed on 39% and 25% in I and III instar larvae of mosquito and in combined treatment of D. elata and copepod maximum control of mosquito larval states and at 83%, 80%, 75% and 53% in I, II, III and IV instars, respectively. Conclusions The combined action of plant extract and predatory copepod to effectively control mosquito population and reduce the dengue transmitting diseases.

  19. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides.

    PubMed

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.

  20. Microevolution of Aedes aegypti.

    PubMed

    Louise, Caroline; Vidal, Paloma Oliveira; Suesdek, Lincoln

    2015-01-01

    Scientific research into the epidemiology of dengue frequently focuses on the microevolution and dispersion of the mosquito Aedes aegypti. One of the world's largest urban agglomerations infested by Ae. aegypti is the Brazilian megalopolis of Sao Paulo, where >26,900 cases of dengue were reported until June 2015. Unfortunately, the dynamics of the genetic variability of Ae. aegypti in the Sao Paulo area have not been well studied. To reduce this knowledge gap, we assessed the morphogenetic variability of a population of Ae. aegypti from a densely urbanised neighbourhood of Sao Paulo. We tested if allelic patterns could vary over a short term and if wing shape could be a predictor of the genetic variation. Over a period of 14 months, we examined the variation of genetic (microsatellites loci) and morphological (wing geometry) markers in Ae. aegypti. Polymorphisms were detected, as revealed by the variability of 20 microsatellite loci (115 alleles combined; overall Fst = 0.0358) and 18 wing landmarks (quantitative estimator Qst = 0.4732). These levels of polymorphism are higher than typically expected to an exotic species. Allelic frequencies of the loci changed over time and temporal variation in the wing shape was even more pronounced, permitting high reclassification levels of chronological samples. In spite of the fact that both markers underwent temporal variation, no correlation was detected between their dynamics. We concluded that microevolution was detected despite the short observational period, but the intensities of change of the markers were discrepant. Wing shape failed from predicting allelic temporal variation. Possibly, natural selection (Qst>Fst) or variance of expressivity of wing phenotype are involved in this discrepancy. Other possibly influential factors on microevolution of Ae. aegypti are worth searching. Additionally, the implications of the rapid evolution and high polymorphism of this mosquito vector on the efficacy of control methods have

  1. Toxicity, localization and elimination of the phototoxin, alpha-terthienyl, in mosquito larvae.

    PubMed

    Hasspieler, B M; Arnason, J T; Downe, A E

    1988-12-01

    Mosquito larvae were examined to determine interspecific and interstrain differences in susceptibility to the larvicidal effects of the plant-derived phototoxin, alpha-terthienyl (alpha-T). The LC50 values were as follows: Aedes aegypti, 4 ppb; Ae. epactius, 6 ppb; anopheles stephensi, 14 ppb; malathion-susceptible Culex tarsalis (S), 12 ppb; malathion-resistant Cx. tarsalis (R), 16 ppb. Fluorescence studies indicated localization of alpha-T in the midgut epithelium and in the lumen of Malpighian tubules. Rates of elimination of tritiated alpha-T differed significantly between Ae. aegypti and Cx. tarsalis (S) larvae. Rate of 3H-alpha-T elimination was inversely correlated with susceptibility to the toxic effects of the compound. The toxicological significance of selective alpha-T accumulation and the importance of alpha-T elimination in determining sensitivity are discussed.

  2. Differences in performance of Aedes aegypti larvae raised at different densities in tires and ovitraps under field conditions in Argentina.

    PubMed

    Maciá, Arnaldo

    2006-12-01

    Alteration of fitness components was assessed in the yellow fever mosquito, Aedes aegypti, in automobile tires and vases (ovitraps) under field conditions. Larval numbers were manipulated in both kinds of containers to compare low, high, and control (natural) densities. Densities were set from a census of a wild population, then doubling and reducing to half the mean crowding, m*. Artificially altered densities were not high or low enough to produce differences among treatments. Tires generated more vigorous larval populations and females with higher fecundity than did small containers, although the mortality was more intense.

  3. Insecticidal action of sodium anacardate from Brazilian cashew nut shell liquid against Aedes aegypti.

    PubMed

    Farias, Davi F; Cavalheiro, Mariana G; Viana, Sayonara M; De Lima, Glauber P G; da Rocha-Bezerra, Lady Clarissa B; Ricardo, Nágila M P S; Carvalho, Ana F U

    2009-09-01

    Aedes aegypti is the major vector of 1 of the most concerning arboviruses of the world, the dengue fever. The only effective way of reducing the incidence of dengue fever is to control the vector mosquito, mainly by application of insecticides to its breeding places. This study was aimed at assessing the insecticidal activity of sodium anacardate, isolated from Brazilian cashew nut shell liquid (CNSL), against the eggs, 3rd instars or pupae of Ae. aegypti. In addition, the acute toxicity of sodium anacardate to mice was also investigated. Sodium anacardate showed toxicity against Ae. aegypti eggs (median effective concentration [EC50] = 162.93 +/- 29.93 microg/ml), larvae (median lethal concentration [LC50] = 55.47 +/- 3.0 microg/ml) and pupae (LC50 = 369.78 - 52.30 microg/ml). On the other hand, even at high dose (0.3 g/kg body weight), this compound did not cause any adverse effects on mice, suggesting that this compound is safe to mammals. Therefore, sodium anacardate may be a viable low-cost alternative to help combat Ae. aegypti.

  4. Distribution of mosquito larvae on kosrae island, kosrae state, the federated States of micronesia.

    PubMed

    Noda, Shinichi; Yamamoto, Sota; Toma, Takako; Taulung, Livinson

    2013-12-01

    Surveys of mosquito larvae were carried out in six areas of Kosrae Island, Kosrae State, the Federated States of Micronesia in December 2009 and June 2012. A total of 962 larvae of six species were collected from 106 natural and artificial habitats. They were identified as Aedes aegypti, Ae. albopictus, Ae. marshallensis, Culex quinquefasciatus, Cx. annulirostris, and Cx. kusaiensis. This is the first report from Kosrae Island for three of these species-Ae. marshallensis, Cx. quinquefasciatus, and Cx. annulirostris. The most abundant species was Ae. albopictus, followed by Ae. marshallensis, and these two species were found in all areas. Relatively large numbers of Cx. quinquefasciatus and Cx. kusaiensis were found in five areas. Fewer Cx. annulirostris were found, and only in three areas. Aedes aegypti larvae were collected from a single habitat at Tafunsak in 2009. To prevent the outbreak of dengue fever, environmental management should focus on the destruction, alteration, disposal and recycling of containers that produce larger numbers of adult Aedes mosquitoes.

  5. Seasonal profiles of Aedes aegypti (Diptera: Culicidae) larval habitats in an urban area of Costa Rica with a history of mosquito control

    PubMed Central

    Troyo, Adriana; Calderón-Arguedas, Olger; Fuller, Douglas O.; Solano, Mayra E.; Avendaño, Adrian; Arheart, Kristopher L.; Chadee, Dave D.; Beier, John C.

    2008-01-01

    Dengue is the most important arboviral disease worldwide and the principal vector-borne disease in Costa Rica. Control of Aedes aegypti populations through source reduction is still considered the most effective way of prevention and control, although it has proven ineffective or unsustainable in many areas with a history of mosquito control. In this study, seasonal profiles and productivity of Aedes aegypti were analyzed in the city of Puntarenas, Costa Rica, where vector control has been practiced for more than ten years. Households contained more than 80% of larval habitats identified, although presence of habitats was more likely in other locations like lots and streets. In the wet season, habitats in the “other” category, like appliances, small manholes, and miscellaneous containers, were the most frequent habitats observed as well as the most common and productive habitats for Ae. aegypti. In the dry season, domestic animal drinking containers were very common, although concrete washtubs contained 79% of Ae. aegypti pupae collected. Individually, non-disposable habitats were as likely or more likely to contain mosquito larvae, and large containers were more likely to harbor mosquito larvae than the small ones only in the dry season. Considering various variables in the logistic regressions, predictors for Ae. aegypti in a habitat were habitat type (p<0.001), setting (p=0.043), and disposability (p=0.022) in the wet season and habitat capacity in the dry season (p=0.025). Overall, traditional Ae. aegypti larval indices and pupal indices in Puntarenas were high enough to allow viral transmission during the wet season. In spite of continued vector control, it has not been possible to reduce vector densities below threshold levels in Puntarenas, and the habitat profiles show that non-household locations, as well as non-disposable containers, should be targeted in addition to the standard control activities. PMID:18697310

  6. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica.

    PubMed

    Bisset, J A; Marín, R; Rodríguez, M M; Severson, D W; Ricardo, Y; French, L; Díaz, M; Pérez, O

    2013-03-01

    Dengue (family Flaviridae, genus Flavivirus, DENV) and dengue hemorrhagic fever (DHF) are presently important public health problems in Costa Rica. The primary strategy for disease control is based on reducing population densities of the main mosquito vector Aedes aegypti (L.) (Diptera: Culicidae). This is heavily dependent on use of chemical insecticides, thus the development of resistance is a frequent threat to control program effectiveness. The objective of this study was to determine the levels of insecticide resistance and the metabolic resistance mechanisms involved in two Ae. aegypti strains collected from two provinces (Puntarenas and Limon) in Costa Rica. Bioassays with larvae were performed according to World Health Organization guidelines and resistance in adults was measured through standard bottle assays. The activities of beta-esterases, cytochrome P450 monooxygenases, and glutathione S-transferases (GST), were assayed through synergists and biochemical tests, wherein the threshold criteria for each enzyme was established using the susceptible Rockefeller strain. The results showed higher resistance levels to the organophosphate (OP) temephos and the pyrethroid deltamethrin in larvae. The efficacy of commercial formulations of temephos in controlling Ae. aegypti populations was 100% mortality up to 11 and 12 d posttreatment with daily water replacements in test containers. Temephos and deltamethrin resistance in larvae were associated with high esterase activity, but not to cytochrome P450 monooxygenase or GST activities. Adult mosquitoes were resistant to deltamethrin, and susceptible to bendiocarb, chlorpyrifos, and cypermethrin. Because temephos and deltamethrin resistance are emerging at the studied sites, alternative insecticides should be considered. The insecticides chlorpyrifos and cypermethrin could be good candidates to use as alternatives for Ae. aegypti control.

  7. Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control

    PubMed Central

    Wong, Jacklyn; Stoddard, Steven T.; Astete, Helvio; Morrison, Amy C.; Scott, Thomas W.

    2011-01-01

    Background Because no dengue vaccine or antiviral therapy is commercially available, controlling the primary mosquito vector, Aedes aegypti, is currently the only means to prevent dengue outbreaks. Traditional models of Ae. aegypti assume that population dynamics are regulated by density-dependent larval competition for food and little affected by oviposition behavior. Due to direct impacts on offspring survival and development, however, mosquito choice in oviposition site can have important consequences for population regulation that should be taken into account when designing vector control programs. Methodology/Principal Findings We examined oviposition patterns by Ae. aegypti among 591 naturally occurring containers and a set of experimental containers in Iquitos, Peru. Using larval starvation bioassays as an indirect measure of container food content, we assessed whether females select containers with the most food for their offspring. Our data indicate that choice of egg-laying site is influenced by conspecific larvae and pupae, container fill method, container size, lid, and sun exposure. Although larval food positively influenced oviposition, our results did not support the hypothesis that females act primarily to maximize food for larvae. Females were most strongly attracted to sites containing immature conspecifics, even when potential competitors for their progeny were present in abundance. Conclusion/Significance Due to strong conspecific attraction, egg-laying behavior may contribute more to regulating Ae. aegypti populations than previously thought. If highly infested containers are targeted for removal or larvicide application, females that would have preferentially oviposited in those sites may instead distribute their eggs among other suitable, previously unoccupied containers. Strategies that kill mosquitoes late in their development (i.e., insect growth regulators that kill pupae rather than larvae) will enhance vector control by creating

  8. Impact of inter- and intra-specific competition among larvae on larval, adult, and life-table traits of Aedes aegypti and Aedes albopictus females

    PubMed Central

    Noden, Bruce H.; O’Neal, Paul A.; Fader, Joseph E.; Juliano, Steven A.

    2015-01-01

    Few studies have taken a comprehensive approach of measuring the impact of inter- and intra-specific larval competition on adult mosquito traits. In this study, the impact of competition Aedes aegypti and A. albopictus was quantified over the entire life of a cohort.Competitive treatments affected hatch-to-adult survivorship and development time to adulthood of females for both species, but affected median wing length of females only for A. albopictus. Competitive treatments had no significant effect on the median adult female longevity nor were there any effects on other individual traits related to bloodfeeding and reproductive success.Analysis of life table traits revealed no effect of competitive treatment on net reproductive rate (R0) but there were significant effects on cohort generation time (Tc) and cohort rate of increase (r) for both species.Inter-specific and intra-specific competition among Aedes larvae may produce individual and population-level effects that are manifest in adults; however, benign conditions may enable resulting adults to compensate for some impacts of competition, particularly those affecting blood feeding success, fecundity, and net reproductive rate, R0. The effect of competition, therefore, affects primarily larva – to - adult survivorship and larval development time, which in turn impact the cohort generation time, Tc and ultimately cohort rate of increase, r.The lack of effects of larval rearing environment on adult longevity suggests that effects on vectorial capacity due to longevity may be limited if adults have easy access to sugar and blood meals. PMID:27141149

  9. Aedes aegypti Global Suitability Maps Using a Water Container Energy Balance Model for Dengue Risk Applications

    NASA Astrophysics Data System (ADS)

    Steinhoff, D.

    2015-12-01

    Dengue infections are estimated to total nearly 400 million per year worldwide, with both the geographic range and the magnitude of infections having increased in the past 50 years. The primary dengue vector mosquito Aedes aegypti is closely associated with humans. It lives exclusively in urban and semi-urban areas, preferentially bites humans, and spends its developmental stages in artificial water containers. Climate regulates the development of Ae. aegypti immature mosquitoes in artificial containers. Potential containers for Ae. aegypti immature development include, but are not limited to, small sundry items (e.g., bottles, cans, plastic containers), buckets, tires, barrels, tanks, and cisterns. Successful development of immature mosquitoes from eggs to larvae, pupae, and eventually adults is largely dependent on the availability of water and the thermal properties of the water in the containers. Recent work has shown that physics-based approaches toward modeling container water properties are promising for resolving the complexities of container water dynamics and the effects on immature mosquito development. An energy balance container model developed by the author, termed the Water Height And Temperature in Container Habitats Energy Model (WHATCH'EM), solves for water temperature and height for user-specified containers with readily available weather data. Here we use WHATCH'EM with NASA Earth Science products used as input to construct global suitability maps based on established water temperature ranges for immature Ae. aegypti mosquitoes. A proxy for dengue risk is provided from habitat suitability, but also population estimates, as Ae. aegypti is closely associated with human activity. NASA gridded Global Population of the World data is used to mask out rural areas with low dengue risk. Suitability maps are illustrated for a variety of containers (size, material, color) and shading scenarios.

  10. Mesocyclops longisetus effects on survivorship of Aedes aegypti immature stages in car tyres.

    PubMed

    Manrique-Saide, P; Ibáñez-Bernal, S; Delfín-González, H; Parra Tabla, V

    1998-10-01

    The effect of the introduction of the entomophagous copepod Mesocyclops longisetus (Acuacultura F.C.B. strain) on the survival of Aedes aegypti immature stages in car tyres was evaluated under semi-natural conditions in the municipality of Merida, Yucatan, Mexico. Life tables were constructed for the immature stages of the mosquito in the presence and absence of M. longisetus, and the survival data were compared using log-linear models. The data set was adjusted using the GLIM statistical package and the quality of adjustment was evaluated with a chi-squared test. Survivorship curves were constructed for each treatment. In the absence of M. longisetus, the survivorship of Ae. aegypti immature stages averaged 9%. The highest mortality rate was observed during the fourth larval instar (54%) and the resulting survival pattern corresponded to a type II survivorship curve. The mortality rate of Ae. aegypti first-instar larvae (fifty per tyre) increased more than 200-fold in the presence of M. longisetus (twenty per tyre) and the highest mortality was during the first two larval instars, where it reached 98.9%, with a resulting survivorship of 0.2%. Overall mortality was sixfold greater in the presence of the copepod than in its absence. The survival pattern of immature stages of Ae. aegypti in the presence of the copepod corresponded to a type III survivorship curve. As M. longisetus was so effective against Ae. aegypti immature stages in tyres under seminatural conditions, its long-term effectiveness should be evaluated under socially and ecologically realistic field conditions in Mexico.

  11. Raw sewage as breeding site to Aedes (Stegomyia) aegypti (Diptera, culicidae).

    PubMed

    Chitolina, R F; Anjos, F A; Lima, T S; Castro, E A; Costa-Ribeiro, M C V

    2016-12-01

    The selection of oviposition sites by females of Aedes (Stegomyia) aegypti is a key factor for the larval survival and egg dispersion and has a direct influence in vector control programs. In this study, we evaluated the aspects of reproductive physiology of Ae. aegypti mosquitoes tested in the presence of raw sewage. Ae. aegypti females were used in oviposition bioassays according to two methodologies: (i) choice assay, in which three oviposition substrates were offered in the same cage: treatment (raw sewage), positive control (distilled water) and negative control (1% sodium hypochlorite) and; (ii) no choice assay, in which only one substrate was available. The physicochemical and microbiological analysis of the raw sewage used in this study indicated virtually no levels of chlorine, low levels of dissolved oxygen and high levels of nitrogenous compounds as well as the presence of Escherichia coli and total fecal coliforms. After 72h of oviposition, the eggs were counted and there was no statistically significant difference (p>0.05) in the oviposition rate between raw sewage and positive control in both methodologies. In addition, females were dissected to evaluate egg-retention and also there were no appreciable differences in egg retention even when raw sewage was the only substrate offered. The data also showed that egg hatching and larvae development occurred normally in the raw sewage. Therefore, the present study suggests that Ae. aegypti can adapt to new sites and lay eggs in polluted water, such as the raw sewage. These findings are of particular importance for the control and surveillance programs against Ae. aegypti in countries where the conditions of poor infrastructure and lack of basic sanitation are still an issue.

  12. Effectiveness of Gambusia holbrooki fish in domestic water containers and controlling Aedes aegypti larvae (Linnaeus, 1762) in southwest Saudi Arabia (Jeddah).

    PubMed

    Gamal, Zakia A

    2012-04-01

    The objective of this study was to estimate the survival of Gambusia holbrooki (Cyprinodontiformes: Poeciliidae) fishin domestic containers in Jeddah, as well as its effectiveness in the control of immature A.aegypti. The use of G. holbrooki compared to Bacillus thuringiensis israelensis (B.t.i.)was donein domestic containers. In a first home visit, G. holbrooki or B.t.i were applied to water containers. Two follow-up visits were conducted after 3-4 & 5-6 months to assess the presence of viable fish in the containers and infestation by larvae. G. holbrooki fish were still present in 97.6% of containers 45-60 days after application. The infestation rate was significantly higher (P < 0.001) in the B.t.i group (IR ratio=21.60, 95% CI: 6.46-72.28). In deposits where the fish remained, efficacy was 85% better than B.t.i. The permanence of fish was higher in concrete tanks (48.5%) located outside the house (47.5%) and at ground level (53.3%).

  13. Evaluation of Different Culture Media for Improvement in Bioinsecticides Production by Indigenous Bacillus thuringiensis and Their Application against Larvae of Aedes aegypti

    PubMed Central

    Devidas, Patil Chandrashekhar; Pandit, Borase Hemant; Vitthalrao, Patil Satish

    2014-01-01

    Production of indigenous isolate Bacillus thuringiensis sv2 (Bt sv2) was checked on conventional and nonconventional carbon and nitrogen sources in shake flasks. The effects on the production of biomass, toxin production, and spore formation capability of mosquito toxic strain were determined. Toxicity differs within the same strain depending on the growth medium. Bt sv2 produced with pigeon pea and soya bean flour were found highly effective with LC50 < 4 ppm against larvae of Aedes aegypti. These results were comparable with bacteria produced from Luria broth as a reference medium. Cost-effective analyses have revealed that production of biopesticide from test media is highly economical. The cost of production of Bt sv2 with soya bean flour was significantly reduced by 23-fold. The use of nonconventional sources has yielded a new knowledge in this area as the process development aspects of biomass production have been neglected as an area of research. These studies are very important from the point of media optimization for economic production of Bacillus thuringiensis based insecticides in mosquito control programmes. PMID:24592157

  14. Evaluation of different culture media for improvement in bioinsecticides production by indigenous Bacillus thuringiensis and their application against larvae of Aedes aegypti.

    PubMed

    Devidas, Patil Chandrashekhar; Pandit, Borase Hemant; Vitthalrao, Patil Satish

    2014-01-01

    Production of indigenous isolate Bacillus thuringiensis sv2 (Bt sv2) was checked on conventional and nonconventional carbon and nitrogen sources in shake flasks. The effects on the production of biomass, toxin production, and spore formation capability of mosquito toxic strain were determined. Toxicity differs within the same strain depending on the growth medium. Bt sv2 produced with pigeon pea and soya bean flour were found highly effective with LC50 < 4 ppm against larvae of Aedes aegypti. These results were comparable with bacteria produced from Luria broth as a reference medium. Cost-effective analyses have revealed that production of biopesticide from test media is highly economical. The cost of production of Bt sv2 with soya bean flour was significantly reduced by 23-fold. The use of nonconventional sources has yielded a new knowledge in this area as the process development aspects of biomass production have been neglected as an area of research. These studies are very important from the point of media optimization for economic production of Bacillus thuringiensis based insecticides in mosquito control programmes.

  15. Global genetic diversity of Aedes aegypti.

    PubMed

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi Bin; Fernandez-Salas, Ildefonso; Kamal, Hany A; Kamgang, Basile; Khater, Emad I M; Kramer, Laura D; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B; Saleh, Amag A; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A; Tabachnick, Walter J; Troyo, Adriana; Powell, Jeffrey R

    2016-11-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.

  16. Relish2 mediates bursicon homodimer-induced prophylactic immunity in the mosquito Aedes aegypti.

    PubMed

    Zhang, Hongwei; Dong, Shengzhang; Chen, Xi; Stanley, David; Beerntsen, Brenda; Feng, Qili; Song, Qisheng

    2017-02-22

    Bursicon is a neuropeptide hormone consisting of two cystine-knot proteins (burs α and burs β), responsible for cuticle tanning and other developmental processes in insects. Recent studies show that each bursicon subunit forms homodimers that induce prophylactic immunity in Drosophila melanogaster. Here, we investigated the hypothesis that bursicon homodimers act in prophylactic immunity in insects, and possibly arthropods, generally, using the mosquito, Aedes aegypti. We found that burs α and burs β are expressed in larvae, pupae and newly emerged adults. Treating newly emerged Ae. aegypti and D. melanogaster adults with recombinant bursicon (r-bursicon) heterodimer led to cuticle tanning in both species. Treating larvae and adults with r-bursicon homodimers led to up-regulation of five anti-microbial peptide (AMP) genes, noting the possibility that bursicon heterodimers also lead to up-regulation of these genes can not been excluded. The induced AMPs effectively suppressed the growth of bacteria in vitro. RNAi knock-down of the transcriptional factor Relish2 abolished the influence of r-bursicon homodimers on AMP production. We infer the bursicon homodimers induce expression of AMP genes via Relish2 in Ae. aegypti, as prophylactic immunity to protect mosquitoes during the vulnerable stages of each molt.

  17. Relish2 mediates bursicon homodimer-induced prophylactic immunity in the mosquito Aedes aegypti

    PubMed Central

    Zhang, Hongwei; Dong, Shengzhang; Chen, Xi; Stanley, David; Beerntsen, Brenda; Feng, Qili; Song, Qisheng

    2017-01-01

    Bursicon is a neuropeptide hormone consisting of two cystine-knot proteins (burs α and burs β), responsible for cuticle tanning and other developmental processes in insects. Recent studies show that each bursicon subunit forms homodimers that induce prophylactic immunity in Drosophila melanogaster. Here, we investigated the hypothesis that bursicon homodimers act in prophylactic immunity in insects, and possibly arthropods, generally, using the mosquito, Aedes aegypti. We found that burs α and burs β are expressed in larvae, pupae and newly emerged adults. Treating newly emerged Ae. aegypti and D. melanogaster adults with recombinant bursicon (r-bursicon) heterodimer led to cuticle tanning in both species. Treating larvae and adults with r-bursicon homodimers led to up-regulation of five anti-microbial peptide (AMP) genes, noting the possibility that bursicon heterodimers also lead to up-regulation of these genes can not been excluded. The induced AMPs effectively suppressed the growth of bacteria in vitro. RNAi knock-down of the transcriptional factor Relish2 abolished the influence of r-bursicon homodimers on AMP production. We infer the bursicon homodimers induce expression of AMP genes via Relish2 in Ae. aegypti, as prophylactic immunity to protect mosquitoes during the vulnerable stages of each molt. PMID:28225068

  18. Desiccation resistance in Aedes aegypti and Aedes albopictus eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Causative influences that impact the separation of Aedes aegypti and Aedes albopictus populations in different geographic areas were determined. The eggs of Ae. albopictus and Ae. aegypti collected from McAllen and Brownsville, Texas, and laboratory populations of these two species were subjected t...

  19. Comprehensive Immunolocalization Studies of a Putative Serotonin Receptor from the Alimentary Canal of Aedes aegypti Larvae Suggest Its Diverse Roles in Digestion and Homeostasis

    PubMed Central

    Petrova, Adelina; Moffett, David Franklin

    2016-01-01

    Serotonin regulates key processes including digestion and homeostasis in insects. Serotonin effects are mediated by serotonin receptors that transduce information through initiation of second messenger signaling pathways. Lack of information on serotonin receptors associated with the alimentary canal impedes the understanding of the serotonergic role in insect physiology. To address this void, the present study has cloned and identified a putative serotonin receptor (hereafter AaSeR-1) from the alimentary canal of Aedes aegypti (yellow fever mosquito) larvae. In addition to in-silico analyses of AaSeR-1 primary sequence, immunohistochemical investigations were carried out to elucidate receptor expression patterns. Specific AaSeR-1 immunofluorescence was detected in the caeca, the mid- and hindgut, including the Malpighian tubules. These findings point out not only receptor ubiquitous nature but also its involvement in regulation of different stages of nutrient processing and homeostasis. Furthermore, AaSeR-1 may mediate an array of effects through its differential expression at various cell compartments. While AaSeR-1 specific immunofluorescence was depicted in the nucleus and nucleolus of principal cells of the anterior midgut, in the posterior, analyses suggest receptor association with the plasma membrane of both principal and regenerative cells. In addition, AaSeR-1 immunofluorescence was also found in some enteroendocrine cells and in both circular and longitudinal muscles that innervate the alimentary canal. Overall, immunohistochemical analyses of AaSeR-1 expression indicate that this receptor exercises multiple roles in digestion- and homeostasis-related mechanisms. PMID:26808995

  20. Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L

    PubMed Central

    Kumar, Sarita; Wahab, Naim; Warikoo, Radhika

    2011-01-01

    Objective To assess the larvicidal and repellent potential of the essential oil extracted from the leaves of peppermint plant, Mentha piperita (M. piperita) against the larval and adult stages of Aedes aegypti (Ae. Aegypti). Methods The larvicidal potential of peppermint oil was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 and 48 h, and LC50 and LC90 values were calculated. The efficacy of peppermint oil as mosquito repellent was assessed using the human-bait technique. The measured area of one arm of a human volunteer was applied with the oil and the other arm was applied with ethanol. The mosquito bites on both the arms were recorded for 3 min after every 15 min. The experiment continued for 3 h and the percent protection was calculated. Results The essential oil extracted from M. piperita possessed excellent larvicidal efficiency against dengue vector. The bioassays showed an LC50 and LC90 value of 111.9 and 295.18 ppm, respectively after 24 h of exposure. The toxicity of the oil increased 11.8% when the larvae were exposed to the oil for 48 h. The remarkable repellent properties of M. piperita essential oil were established against adults Ae. aegypti. The application of oil resulted in 100% protection till 150 min. After next 30 min, only 1-2 bites were recorded as compared with 8-9 bites on the control arm. Conclusions The peppermint essential oil is proved to be efficient larvicide and repellent against dengue vector. Further studies are needed to identify the possible role of oil as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the oil could help in formulating strategies for mosquito control. PMID:23569733

  1. Aedes cadherin mediates the in vivo toxicity of the Cry11Aa toxin to Aedes aegypti

    PubMed Central

    Aimanova, Karlygash G.; Gill, Sarjeet S.

    2014-01-01

    Cadherin plays an important role in the toxicity of Bacillus thuringiensis Cry proteins. We previously cloned a full-length cadherin from Aedes aegypti larvae and reported this protein binds Cry11Aa toxin from B. thuringiensis subsp. israelensis with high affinity, ≈ 16.7 nM. Based on these results, we investigated if Aedes cadherin is involved in the in vivo toxicity of Cry11Aa toxin to Ae. aegypti. We established a mosquito cell line stably expressing the full-length Aedes cadherin and transgenic mosquitoes with silenced Aedes cadherin expression. Cells expressing the Aedes cadherin showed increased sensitivity to Cry11Aa toxin. Cry11Aa toxin at 400 nM killed approximately 37% of the cells in 3 h. Otherwise, transgenic mosquitoes with silenced Aedes cadherin expression showed increased tolerance to Cry11Aa toxin. Furthermore, cells expressing Aedes cadherin triggered Cry11Aa oligomerization. These results show the Aedes cadherin plays a pivotal role in Cry11Aa toxicity to Ae. aegypti larvae by mediating Cry11Aa oligomerization. However, since high toxicity was not obtained in cadherin-expressing cells, an additional receptor may be needed for manifestation of full toxicity. Moreover, cells expressing Aedes cadherin were sensitive to Cry4Aa and Cry11Ba but not Cry4Ba. However transgenic mosquitoes with silenced Aedes cadherin expression showed no tolerance to Cry4Aa, Cry4Ba, and Cry11Ba toxins. These results suggest that while Aedes cadherin may mediate Cry4Aa and Cry11Ba toxicity, this cadherin but is not the main receptor of Cry4Aa, Cry4Ba and Cry11Ba toxin in Ae. aegypti. PMID:25064814

  2. Aedes cadherin mediates the in vivo toxicity of the Cry11Aa toxin to Aedes aegypti.

    PubMed

    Lee, Su-Bum; Chen, Jianwu; Aimanova, Karlygash G; Gill, Sarjeet S

    2015-06-01

    Cadherin plays an important role in the toxicity of Bacillus thuringiensis Cry proteins. We previously cloned a full-length cadherin from Aedes aegypti larvae and reported this protein binds Cry11Aa toxin from B. thuringiensis subsp. israelensis with high affinity, ≈16.7nM. Based on these results, we investigated if Aedes cadherin is involved in the in vivo toxicity of Cry11Aa toxin to Ae. aegypti. We established a mosquito cell line stably expressing the full-length Aedes cadherin and transgenic mosquitoes with silenced Aedes cadherin expression. Cells expressing the Aedes cadherin showed increased sensitivity to Cry11Aa toxin. Cry11Aa toxin at 400nM killed approximately 37% of the cells in 3h. Otherwise, transgenic mosquitoes with silenced Aedes cadherin expression showed increased tolerance to Cry11Aa toxin. Furthermore, cells expressing Aedes cadherin triggered Cry11Aa oligomerization. These results show the Aedes cadherin plays a pivotal role in Cry11Aa toxicity to Ae. aegypti larvae by mediating Cry11Aa oligomerization. However, since high toxicity was not obtained in cadherin-expressing cells, an additional receptor may be needed for manifestation of full toxicity. Moreover, cells expressing Aedes cadherin were sensitive to Cry4Aa and Cry11Ba, but not Cry4Ba. However transgenic mosquitoes with silenced Aedes cadherin expression showed no tolerance to Cry4Aa, Cry4Ba, and Cry11Ba toxins. These results suggest that while Aedes cadherin may mediate Cry4Aa and Cry11Ba toxicity, this cadherin but is not the main receptor of Cry4Aa, Cry4Ba and Cry11Ba toxin in Ae. aegypti.

  3. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde.

    PubMed

    Rocha, Diara Kady; Matosc, Olivia; Novoa, Maria Teresa; Figueiredo, Ana Cristina; Delgado, Manuel; Moiteiro, Cristina

    2015-04-01

    Dengue is a potentially fatal mosquito-borne infection with 50 million cases per year and 2.5 billion people vulnerable to the disease. This major public health problem has recurrent epidemics in Latin America and occurred recently in Cape Verde and Madeira Island. The lack of anti-viral treatment or vaccine makes the control of mosquito vectors a high option to prevent virus transmission. Essential oil (EO) constituents can affect insect's behaviour, being potentially effective in pest control. The present study evaluated the potential use of Foenicultm vulgare (fennel) EO in the control of the dengue vector Aedes aegypti. EOs isolated from fennel aerial parts collected in Cape Verde and from a commercial fennel EO of Portugal were analysed by NMR, GC and GC-MS. trans-Anethole (32 and 30%, respectively), limonene (28 and 18%, respectively) and fenchone (10% in both cases) were the main compounds identified in the EOs isolated from fennel from Cape Verde and Portugal, respectively. The larvicidal activity of the EOs and its major constituents were evaluated, using WHO procedures, against third instar larvae ofAe. aegypti for 24 h. Pure compounds, such as limonene isomers, were also assayed. The lethal concentrations LC50, C90 and LC99 were determined by probit analysis using mortality rates of bioassays. A 99% mortality of Ae. aegypti larvae was estimated at 37.1 and 52.4 µL L-1 of fennel EOs from Cape Verde and Portugal, respectively. Bioassays showed that fennel EOs from both countries displayed strong larvicidal effect against Ae. aegypti, the Cape Verde EO being as active as one of its major constituents, (-)-limonene.

  4. Field evaluation of pyriproxyfen and spinosad mixture for the control of insecticide resistant Aedes aegypti in Martinique (French West Indies)

    PubMed Central

    2010-01-01

    Background The resistance of Ae. aegypti to insecticides is already widespread and continues to develop. It represents a serious problem for programmes aimed at the control and prevention of dengue in tropical countries. In the light of this problem measures to control Ae. aegypti are being orientated towards how best to use existing insecticides, notably by combining those that have different modes of action. Results In this study we evaluated the operational efficiency of a mixture composed of pyriproxyfen (an insect growth regulator) and spinosad (a biopesticide) against a population of Ae. aegypti from Martinique resistant to pyrethroid and organophosphate insecticides. The first step consisted of evaluating the efficacy of pyriproxyfen and spinosad when used alone, or in combination, against Ae. aegypti larvae under simulated conditions. The results showed that the mixture of pyriproxyfen+spinosad remained active for at least 8 months, compared with 3 months for spinosad alone, and 5 months for pyriproxyfen alone. In a second step in containers experiencing natural conditions, pyriproxyfen and spinosad, maintained the rate of adult emergence at 20% for 3 weeks and 3.5 months, respectively. Following the same criteria of evaluation, the mixture pyriproxyfen+spinosad remained effective for 4.5 months, showing that the combination of the two larvicides with different modes of action acted to increase the residual activity of the treatment. Conclusion The mixture of pyriproxyfen and spinosad kills larvae and pupae giving it a broader range of action than either insecticide. This mixture could preserve the utility of both insecticides in public health programs. PMID:20843383

  5. River Boats Contribute to the Regional Spread of the Dengue Vector Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Morrison, Amy C.; Barboza, Jose Luis; Requena, Edwin; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2015-01-01

    Background and Objectives The dramatic range expansion of the dengue vector Aedes aegypti is associated with various anthropogenic transport activities, but little is known about the underlying mechanisms driving this geographic expansion. We longitudinally characterized infestation of different vehicle types (cars, boats, etc.) to estimate the frequency and intensity of mosquito introductions into novel locations (propagule pressure). Methods Exhaustive adult and immature Ae. aegypti collections were performed on six different vehicle types at five ports and two bus/ taxi departure points in the Amazonian city of Iquitos, Peru during 2013. Aquatic vehicles included 32 large and 33 medium-sized barges, 53 water taxis, and 41 speed boats. Terrestrial vehicles sampled included 40 buses and 30 taxis traveling on the only highway in the region. Ae. aegypti adult infestation rates and immature indices were analyzed by vehicle type, location within vehicles, and sampling date. Results Large barges (71.9% infested) and medium barges (39.4% infested) accounted for most of the infestations. Notably, buses had an overall infestation rate of 12.5%. On large barges, the greatest number of Ae. aegypti adults were found in October, whereas most immatures were found in February followed by October. The vast majority of larvae (85.9%) and pupae (76.7%) collected in large barges were produced in puddles formed in cargo holds. Conclusions Because larges barges provide suitable mosquito habitats (due to dark, damp cargo storage spaces and ample oviposition sites), we conclude that they likely serve as significant contributors to mosquitoes’ propagule pressure across long distances throughout the Peruvian Amazon. This information can help anticipate vector population mixing and future range expansions of dengue and other viruses transmitted by Ae. aegypti. PMID:25860352

  6. Analysis of molecular markers for metamorphic competency and their response to starvation or feeding in the mosquito, Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Telang, A.; Peterson, B.; Frame, L.; Baker, E.; Brown, M.R.

    2010-01-01

    The nutritional condition of fourth instar larvae of the yellow fever mosquito, Aedes aegypti, governs female longevity and egg production, both are key determinants of pathogen transmission. As well, nutrition provisions larval growth and development and attains its greatest pace in the last larval instar in preparation for metamorphosis to an adult. These developmental processes are regulated by a complex endocrine interplay of juvenile hormone, neuropeptides, and ecdysteroids that is nutrition sensitive. We previously determined that feeding for only 24 h post-ecdysis was sufficient for fourth instar Ae. aegypti larvae to reach critical weight and accumulate sufficient nutritional stores to commit to metamorphosis. To understand the genetic basis of metamorphic commitment in Ae. aegypti, we profiled the expression of 16 genes known to be involved in the endocrine and nutritional regulation of insect metamorphosis in two ways. The first set is a developmental profile from the beginning of the fourth instar to early pupae, and the second set is for fourth instars starved or fed for up to 36 h. By comparing the two sets, we found that seven of the genes (AaegCYP302, AaegJHE43357, AaegBrCZ4, AaegCPF1-2, AaegCPR-7, AaegPpl, and AaegSlif) were expressed during metamorphic commitment in fourth instars and in fed but not starved larvae. Based on these results, the seven genes alone or in combination may serve as molecular indicators of nutritional and metamorphic status of fourth instar Ae. aegypti larvae and possibly other mosquito species in field and laboratory studies to gauge sub-lethal effects of novel and traditional cultural or chemical controls. PMID:20816681

  7. Vertical infestation of the dengue vectors Aedes aegypti and Aedes albopictus in apartments in Kuala Lumpur, Malaysia.

    PubMed

    Roslan, Muhammad Aidil; Shafie, Aziz; Ngui, Romano; Lim, Yvonne Ai Lian; Sulaiman, Wan Yusoff Wan

    2013-12-01

    Dengue is a serious public health problem in Malaysia. The aim of this study was to compare the vertical infestation of Aedes population in 2 apartments in Kuala Lumpur with different status of dengue incidence (i.e., high-dengue-incidence area and area with no reported dengue cases). The study was also conducted to assess the relationship between environmental factors such as rainfall, temperature, and humidity and Aedes population that may influence Aedes infestation. Surveillance with a mosquito larvae trapping device was conducted for 28 continuous weeks (January to July 2012) in Vista Angkasa (VA) and Inderaloka (IL) apartments located in Kuala Lumpur, Malaysia. The results indicated that both Aedes spp. could be found from ground to higher floor levels of the apartments, with Aedes aegypti being more predominant than Ae. albopictus. Data based on mixed and single breeding of Aedes spp. on different floors did not show any significant difference. Both rainfall (R3; i.e., the amount of rainfall collected during the previous 3 wk before the surveillance period began) and RH data showed significant relationship with the number of Aedes larvae collected in VA and IL. No significant difference was found between the numbers of Aedes larvae in both study areas as well as maximum and minimum temperatures. Results also indicated adaptations of Ae. aegypti to the ecosystem at each elevation of high-rise buildings, with Ae. albopictus staying inside of apartment units.

  8. The molecular and immunochemical expression of innexins in the yellow fever mosquito, Aedes aegypti: insights into putative life stage- and tissue-specific functions of gap junctions

    PubMed Central

    Calkins, Travis L.; Woods-Acevedo, Mikal A.; Hildebrandt, Oliver; Piermarini, Peter M.

    2015-01-01

    Gap junctions (GJ) mediate direct intercellular communication by forming channels through which certain small molecules and/or ions can pass. Connexins, the proteins that form vertebrate GJ, are well studied and known to contribute to neuronal, muscular and epithelial physiology. Innexins, the GJ proteins of insects, have only recently received much investigative attention and many of their physiological roles remain to be determined. Here we characterize the molecular expression of six innexin (Inx) genes in the yellow fever mosquito Aedes aegypti (AeInx1, AeInx2, AeInx3, AeInx4, AeInx7, and AeInx8) and the immunochemical expression of one innexin protein, AeInx3, in the alimentary canal. We detected the expression of no less than four innexin genes in each mosquito life stage (larva, pupa, adult) and tissue/body region from adult males and females (midgut, Malpighian tubules, hindgut, head, carcass, gonads), suggesting a remarkable potential molecular diversity of GJ in mosquitoes. Moreover, the expression patterns of some innexins were life stage and/or tissue specific, suggestive of potential functional specializations. Cloning of the four full-length cDNAs expressed in the Malpighian tubules of adult females (AeInx1, AeInx2, AeInx3, and AeInx7) revealed evidence for 1) alternative splicing of AeInx1 and AeInx3 transcripts, and 2) putative N-glycosylation of AeInx3 and AeInx7. Finally, immunohistochemistry of AeInx3 in the alimentary canal of larval and adult female mosquitoes confirmed localization of this innexin to the intercellular regions of Malpighian tubule and hindgut epithelial cells, suggesting that it is an important component of GJ in these tissues. PMID:25585357

  9. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae).

    PubMed

    da Silva, João Luiz Rosa; Undurraga Schwalm, Fernanda; Eugênio Silva, Carlos; da Costa, Marisa; Heermann, Ralf; Santos da Silva, Onilda

    2017-01-06

    Dengue, Chikungunya, and Zika are important vector-borne diseases, and Aedes aegypti L. is their main transmitter. As the disease management is mainly based on mosquito control strategies, the search for alternative and cost-effective approaches is ongoing. The Gram-negative bacteria Xenorhabdus nematophila and Photorhabdus luminescens are symbiotically associated with entomopathogenic nematodes and are highly pathogenic for insect larvae. After we have recently confirmed the toxicity of these bacteria in Ae. aegypti larvae, we here evaluated the toxic activity of culture fluids on the development of this mosquito species. Larval susceptibility was assessed by exposing larvae to different concentrations of P. luminescens or X. nematophila culture fluids to confirm whether secondary metabolites might cause the mosquitos' death. Xenorhabdus nematophila culture fluid was more effective and stable during the mosquito pathogenicity bioassays compared to that of P. luminescens Larval mortality started a few hours after exposure of the insects to the fluids. Furthermore, the residual effect of larvicidal activity of X. nematophila fluid persisted at full efficiency for 4 d. Particularly, larval mortality was still higher than 50% for up to 8 d. Exposure of larvae to a sublethal dose of X. nematophila fluid delayed pupation as well as emergence of adult mosquitoes and caused cumulative larval mortality higher than 90% by day 14. Here, we describe for the first time the use of stable culture fluids and therefore secondary metabolites of P. luminescens and X. nematophila as a promising basis for the use as biopesticide for control of Ae. aegypti in the future.

  10. Potential of crude seed extract of celery, Apium graveolens L., against the mosquito Aedes aegypti (L.) (Diptera: Culicidae).

    PubMed

    Choochote, Wej; Tuetun, Benjawan; Kanjanapothi, Duangta; Rattanachanpichai, Eumporn; Chaithong, Udom; Chaiwong, Prasong; Jitpakdi, Atchariya; Tippawangkosol, Pongsri; Riyong, Doungrat; Pitasawat, Benjawan

    2004-12-01

    Crude seed extract of celery, Apium graveolens, was investigated for anti-mosquito potential, including larvicidal, adulticidal, and repellent activities against Aedes aegypti, the vector of dengue haemorrhagic fever. The ethanol-extracted A. graveolens possessed larvicidal activity against fourth instar larvae of Ae. aegypti with LD50 and LD95 values of 81.0 and 176.8 mg/L, respectively. The abnormal movement observed in treated larvae indicated that the toxic effect of A. graveolens extract was probably on the nervous system. In testing for adulticidal activity, this plant extract exhibited a slightly adulticidal potency with LD50 and LD95 values of 6.6 and 66.4 mg/cm2, respectively. It showed repellency against Ae. aegypti adult females with ED50 and ED95 values of 2.03 and 28.12 mg/cm2, respectively. It also provided biting protection time of 3 h when applied at a concentration of 25 g%. Topical application of the ethanol-extracted A. graveolens did not induce dermal irritation. No adverse effects on the skin or other parts of the body of human volunteers were observed during 3 mo of the study period or in the following 3 mo, after which time observations ceased. A. graveolens, therefore, can be considered as a probable source of some biologically active compounds used in the development of mosquito control agents, particularly repellent products.

  11. Mosquito larvicidal and ovicidal activity of puffer fish extracts against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Samidurai, Kaliyaperumal; Mathew, Nisha

    2013-03-01

    The extracts of liver (LE), ovary (OE), skin (SE) and muscle (ME) tissues of four species of puffer fishes viz., Arothron hispidus, Lagocephalus inermis, Lagocephalus scleratus and Chelonodon patoca were evaluated against larvae and eggs of three mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. The LC50 values were 1194.26, 1382.73 (LE); 1421.42, 1982.73 (OE); 7116.86, 15038.98 (ME) and 10817.8 ppm (SE) for An. stephensi and Cx. quinquefasciatus respectively for A. hispidus. In the case of L. inermis, the LC50 values were 1163.83, 1556.1 and 2426.38 (LE); 1653.53, 2734.74 (OE); 6067.47 (ME) and 10283.04 ppm (SE) for An. stephensi, Cx. quinquefasciatus and Ae. aegypti respectively. The LC50 values were 1509.98, 1608.69 (LE) and 1414.9, 2278.69 ppm (OE) for An. stephensi and Cx. quinquefasciatus respectively for the extracts of L. scleratus. In the case C. patoca extracts the LC50 values were 1182.29, 1543.00, 2441.03 (LE) and 1076.13, 2582.11 ppm (OE) for An. stephensi, Cx. quinquefasciatus and Ae. aegypti respectively. OE and LE of all puffer fishes exhibited zero percent egg hatchability from 600 to 1000 ppm against eggs of An. stephensi and Cx. quinquefasciatus. This study shows that puffer toxins are effective in killing the larvae and eggs of mosquitoes.

  12. Tree holes as larval habitats for Aedes aegypti in urban, suburban and forest habitats in a dengue affected area.

    PubMed

    Mangudo, C; Aparicio, J P; Gleiser, R M

    2015-12-01

    Aedes aegypti (L.) (Diptera: Culicidae), the main vector of dengue and urban yellow fever in the world, is highly adapted to the human environment. Artificial containers are the most common larval habitat for the species, but it may develop in tree holes and other phytotelmata. This study assessed whether tree holes in San Ramón de la Nueva Orán, a city located in subtropical montane moist forest where dengue outbreaks occur, are relevant as larval habitat for Ae. aegypti and if the species may be found in natural areas far from human habitations. Water holding tree holes were sampled during 3 years once a month along the rainy season using a siphon bottle, in urban and suburban sites within the city and in adjacent forested areas. Larvae and pupae were collected and the presence and volume of water in each tree hole were recorded. Finding Ae. aegypti in forested areas was an isolated event; however, the species was frequently collected from tree holes throughout the city and along the sampling period. Moreover, larvae were collected in considerably high numbers, stressing the importance of taking into account these natural cavities as potential reinfestation foci within dengue control framework.

  13. Household survey of container-breeding mosquitoes and climatic factors influencing the prevalence of Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia

    PubMed Central

    Aziz, Al Thabiany; Dieng, Hamady; Ahmad, Abu Hassan; Mahyoub, Jazem A; Turkistani, Abdulhafis M; Mesed, Hatabbi; Koshike, Salah; Satho, Tomomitsu; Salmah, MR Che; Ahmad, Hamdan; Zuharah, Wan Fatma; Ramli, Ahmad Saad; Miake, Fumio

    2012-01-01

    Objective To investigate the prevalence of container breeding mosquitoes with emphasis on the seasonality and larval habitats of Aedes aegypti (Ae. aegypti) in Makkah City, adjoining an environmental monitoring and dengue incidence. Methods Monthly visits were performed between April 2008 and March 2009 to randomly selected houses. During each visit, mosquito larvae were collected from indoors and outdoors containers by either dipping or pipetting. Mosquitoes were morphologically identified. Data on temperature, relative humidity, rain/precipitations during the survey period was retrieved from governmental sources and analyzed. Results The city was warmer in dry season (DS) than wet season (WS). No rain occurred at all during DS and even precipitations did fall, wetting events were much greater during WS. Larval survey revealed the co-breeding of Aedes, Culex and Anopheles in a variety of artificial containers in and around homes. 32 109 larvae representing 1st , 2nd, 3rd, and 4th stages were collected from 22 618 container habitats. Culicines was far the commonest and Aedes genus was as numerous as the Culex population. Ae. aegypti larval abundance exhibited marked temporal variations, overall, being usually more abundant during WS. Ten types of artificial containers were found with developing larvae. 70% of these habitats were located indoors. 71.42% of indoor containers were permanent and 28.58% was semi-permanent during WS. Cement tanks was the only container type permanent during DS. Ae. aegypti larval indices (CI, HI, BI) recorded were greater during WS. Conclusions Taken together, these results indicate a high risk of dengue transmission in the holy city. PMID:23569860

  14. Chitosan, Carbon Quantum Dot, and Silica Nanoparticle Mediated dsRNA Delivery for Gene Silencing in Aedes aegypti: A Comparative Analysis.

    PubMed

    Das, Sumistha; Debnath, Nitai; Cui, Yingjun; Unrine, Jason; Palli, Subba Reddy

    2015-09-09

    In spite of devastating impact of mosquito borne pathogens on humans, widespread resistance to chemical insecticides and environmental concerns from residual toxicity limit mosquito control strategies. We tested three nanoparticles, chitosan, carbon quantum dot (CQD), and silica complexed with dsRNA, to target two mosquito genes (SNF7 and SRC) for controlling Aedes aegypti larvae. Relative mRNA levels were quantified using qRT-PCR to evaluate knockdown efficiency in nanoparticle-dsRNA treated larvae. The knockdown efficiency of target genes correlated with dsRNA mediated larval mortality. Among the three nanoparticles tested, CQD was the most efficient carrier for dsRNA retention, delivery, and thereby causing gene silencing and mortality in Ae. aegypti.

  15. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides

    PubMed Central

    Sayono, Sayono; Hidayati, Anggie Puspa Nur; Fahri, Sukmal; Sumanto, Didik; Dharmana, Edi; Hadisaputro, Suharyo; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%–15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97–7.8 and OR = 7.37, CI: 2.4–22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring. PMID:26939002

  16. AE 941.

    PubMed

    2004-01-01

    AE 941 [Arthrovas, Neoretna, Psovascar] is shark cartilage extract that inhibits angiogenesis. AE 941 acts by blocking the two main pathways that contribute to the process of angiogenesis, matrix metalloproteases and the vascular endothelial growth factor signalling pathway. When initial development of AE 941 was being conducted, AEterna assigned the various indications different trademarks. Neovastat was used for oncology, Psovascar was used for dermatology, Neoretna was used for ophthalmology and Arthrovas was used for rheumatology. However, it is unclear if these trademarks will be used in the future and AEterna appears to only be using the Neovastat trademark in its current publications regardless of the indication. AEterna Laboratories signed commercialisation agreements with Grupo Ferrer Internacional SA of Spain and Medac GmbH of Germany in February 2001. Under the terms of the agreement, AEterna has granted exclusive commercialisation and distribution rights to AE 941 in oncology to Grupo Ferrer Internacional for the Southern European countries of France, Belgium, Spain, Greece, Portugal and Italy. It also has rights in Central and South America. Medac GmbH will have marketing rights in Germany, the UK, Scandinavia, Switzerland, Austria, Ireland, the Netherlands and Eastern Europe. In October 2002, AEterna Laboratories announced that it had signed an agreement with Australian healthcare products and services company Mayne Group for marketing AE 941 (as Neovastat) in Australia, New Zealand, Canada and Mexico. In March 2003, AEterna Laboratories announced it has signed an agreement with Korean based LG Life Sciences Ltd for marketing AE 941 (as Neovastat) in South Korea. The agreement provides AEterna with upfront and milestone payments, as well as a return on manufacturing and sales of AE 941. AEterna Laboratories had granted Alcon Laboratories an exclusive worldwide licence for AE 941 for ophthalmic products. However, this licence has been terminated. In

  17. Evaluation of novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Paul, Ayesa; Harrington, Laura C; Scott, Jeffrey G

    2006-01-01

    Insecticides are one of the major tools for controlling vector populations and for reducing the transmission of human pathogens. However, there are few new insecticides being developed and marketed for vector control. Herein, we report on the toxicity of six novel insecticides to both adult and larval Aedes aegypti (L). and the toxicity of three novel insect growth regulators (IGRs) to larvae. Four insecticides were highly or moderately toxic to larvae with LC50 values of 16 (chlorfenapyr), 70 (hydramethylnon), 79 (indoxacarb), and 84 ng/ml (imidacloprid). Diafenthiuron and chlorfenapyr were moderately toxic to adult mosquitoes with LC50 values of 13 and 92 ng/cm2, respectively. Imidacloprid was strongly synergized by piperonyl butoxide (PBO) in Ae. aegypti adults, suggesting that neonicotinoids are intrinsically very toxic to adult mosquitoes (in the absence of detoxification). The effect of PBO on the toxicity in adults and larvae was considerably different, both in terms of the insecticides that were synergized (or antagonized for chlorfenapyr versus adults) and in terms of the degree of synergism. This result implies that the cytochrome P450s involved in metabolism of these insecticides are different between adults and larvae. Pyriproxyfen was confirmed as a potent IGR (EC50 of 0.0017 ng/ml) for mosquitoes, although tebufenozide lacked activity. The potential for use of these materials in mosquito control is discussed.

  18. Sublethal iridovirus disease of the mosquito Aedes aegypti is due to viral replication not cytotoxicity.

    PubMed

    Marina, C F; Ibarra, J E; Arredondo-Jiménez, J I; Fernández-Salas, I; Valle, J; Williams, T

    2003-06-01

    Invertebrate iridescent viruses (Iridoviridae) possess a highly cytotoxic protein. In mosquitoes (Diptera: Culicidae), invertebrate iridescent virus 6 (IIV-6) usually causes covert (inapparent) infection that reduces fitness. To determine whether sublethal effects of IIV-6 are principally due to cytotoxicity of the viral inoculum (which inhibits macromolecular synthesis in the host), or caused by replication of the virus larvae of the mosquito Aedes aegypti (L) were exposed to untreated IIV-6 virus that had previously been deactivated by heat or ultraviolet light. Control larvae were not exposed to virus. Larval development time was shortest in control larvae and extended in larvae exposed to untreated virus. Covertly infected mosquitoes laid significantly fewer eggs, produced between 20 and 35% fewer progeny and had reduced longevity compared to other treatments. Wing length was shortest in mosquitoes exposed to heat-deactivated virus. Multivariate analysis of the same data identified fecundity and progeny production as the most influential variables in defining differences among treatments. Overall, viral infection resulted in a 34% decrease in the net reproductive rate (R0) of covertly infected mosquitoes, vs. only 5-17% decrease of R0 following treatments with deactivated virus, compared to controls. Sublethal effects of IIV-6 in Ae. aegypti appear to be mainly due to virus replication, rather than cytotoxic effects of the viral inoculum.

  19. Thermal sensitivity of Aedes aegypti from Australia: empirical data and prediction of effects on distribution.

    PubMed

    Richardson, Kelly; Hoffmann, Ary A; Johnson, Petrina; Ritchie, Scott; Kearney, Michael R

    2011-07-01

    An understanding of physiological sensitivity to temperature and its variability is important for predicting habitat suitability for disease vectors under different climatic regimes. In this study, we characterized the thermal sensitivity of larval developmental rates and survival in several Australian mainland populations of the dengue virus vector Aedes aegypti. Males developed more rapidly than females, but there were no differences among populations for development time or survival despite previously demonstrated genetic differentiation for neutral markers. Optimal development and survival temperatures were 37 degrees C and 25 degrees C, respectively. The values for maximal development and survival were similar to standard functions used in the container inhabiting simulation (CIMSIM) model for predicting population dynamics ofAe. aegypti populations, but CIMSIM assumed a lower optimal temperature. Heat stress experiments indicated that larvae could withstand water temperatures up to 44 degrees C regardless of the rate at which temperature was increased. Results from development time measured under constant temperatures could predict development time under fluctuating conditions, whereas CIMSIM predicted faster rates of development. This difference acts to reduce the predicted potential number of generations of Ae. aegypti per year in Australia, although it does not influence its predicted distribution, which depends critically on the nature of the aquatic breeding sites.

  20. Use of transgenic Aedes aegypti in Brazil: risk perception and assessment.

    PubMed

    Paes de Andrade, Paulo; Aragão, Francisco José Lima; Colli, Walter; Dellagostin, Odir Antônio; Finardi-Filho, Flávio; Hirata, Mario Hiroyuki; Lira-Neto, Amaro de Castro; Almeida de Melo, Marcia; Nepomuceno, Alexandre Lima; Gorgônio da Nóbrega, Francisco; Delfino de Sousa, Gutemberg; Valicente, Fernando Hercos; Zanettini, Maria Helena Bodanese

    2016-10-01

    The OX513A strain of Aedes aegypti, which was developed by the British company Oxitec, expresses a self-limiting transgene that prevents larvae from developing to adulthood. In April 2014, the Brazilian National Technical Commission on Biosafety completed a risk assessment of OX513A and concluded that the strain did not present new biological risks to humans or the environment and could be released in Brazil. At that point, Brazil became the first country to approve the unconstrained release of a genetically modified mosquito. During the assessment, the commission produced a comprehensive list of - and systematically analysed - the perceived hazards. Such hazards included the potential survival to adulthood of immature stages carrying the transgene - should the transgene fail to be expressed or be turned off by exposure to sufficient environmental tetracycline. Other perceived hazards included the potential allergenicity and/or toxicity of the proteins expressed by the gene, the potential for gene flow or increased transmission of human pathogens and the occupation of vacant breeding sites by other vector species. The Zika epidemic both elevated the perceived importance of Ae. aegypti as a vector - among policy-makers and regulators as well as the general public - and increased concerns over the release of males of the OX513A strain. We have therefore reassessed the potential hazards. We found that release of the transgenic mosquitoes would still be both safe and of great potential value in the control of diseases spread by Ae. aegypti, such as chikungunya, dengue and Zika.

  1. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti

    PubMed Central

    Chediak, Mateus; G Pimenta, Fabiano; Coelho, Giovanini E; Braga, Ima A; Lima, José Bento P; Cavalcante, Karina Ribeiro LJ; de Sousa, Lindemberg C; de Melo-Santos, Maria Alice V; Macoris, Maria de Lourdes da G; de Araújo, Ana Paula; Ayres, Constância Flávia J; Andrighetti, Maria Teresa M; Gomes, Ricristhi Gonçalves de A; Campos, Kauara B; Guedes, Raul Narciso C

    2016-01-01

    The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites. PMID:27143489

  2. Temperature, Larval Diet, and Density Effects on Development Rate and Survival of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Couret, Jannelle; Dotson, Ellen; Benedict, Mark Q.

    2014-01-01

    Many environmental factors, biotic and abiotic interact to influence organismal development. Given the importance of Aedes aegypti as a vector of human pathogens including dengue and yellow fever, understanding the impact of environmental factors such as temperature, resource availability, and intraspecific competition during development is critical for population control purposes. Despite known associations between developmental traits and factors of diet and density, temperature has been considered the primary driver of development rate and survival. To determine the relative importance of these critical factors, wide gradients of conditions must be considered. We hypothesize that 1) diet and density, as well as temperature influence the variation in development rate and survival, 2) that these factors interact, and this interaction is also necessary to understand variation in developmental traits. Temperature, diet, density, and their two-way interactions are significant factors in explaining development rate variation of the larval stages of Ae. aegypti mosquitoes. These factors as well as two and three-way interactions are significantly associated with the development rate from hatch to emergence. Temperature, but not diet or density, significantly impacted juvenile mortality. Development time was heteroskedastic with the highest variation occurring at the extremes of diet and density conditions. All three factors significantly impacted survival curves of experimental larvae that died during development. Complex interactions may contribute to variation in development rate. To better predict variation in development rate and survival in Ae. aegypti, factors of resource availability and intraspecific density must be considered in addition, but never to the exclusion of temperature. PMID:24498328

  3. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines

    PubMed Central

    Sayson, S. L.; Gloria-Soria, A.; Powell, J. R.; Edillo, F. E.

    2015-01-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011–2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST = 0.018; FST = 0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season. PMID:26335470

  4. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines.

    PubMed

    Sayson, S L; Gloria-Soria, A; Powell, J R; Edillo, F E

    2015-07-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011-2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST=0.018; FST=0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season.

  5. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti.

    PubMed

    Chediak, Mateus; G Pimenta, Fabiano; Coelho, Giovanini E; Braga, Ima A; Lima, José Bento P; Cavalcante, Karina Ribeiro Lj; Sousa, Lindemberg C de; Melo-Santos, Maria Alice V de; Macoris, Maria de Lourdes da G; Araújo, Ana Paula de; Ayres, Constância Flávia J; Andrighetti, Maria Teresa M; Gomes, Ricristhi Gonçalves de A; Campos, Kauara B; Guedes, Raul Narciso C

    2016-05-01

    The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites.

  6. Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae).

    PubMed

    Koenraadt, C J M; Harrington, L C

    2008-01-01

    We investigated the role of heavy rain on container-inhabiting mosquito (Diptera: Culicidae) populations, and how different species may have adapted to such conditions. Rains were created with a rain simulator calibrated to natural rain intensities in the habitats of two important vector species: Aedes aegypti (L.) from northern Thailand and Culex pipiens L. from New York state, USA. Immature stages of Ae. aegypti were able to resist the flushing effect of rain better than Cx. pipiens. This difference was most dramatic during the pupal stage. Fourth instars of Ae. aegypti were not affected by flushing when exposed for longer rain intervals (30 versus 60 min) or at a colder water temperature (24 versus 16 degrees C). In contrast, significantly more Cx. pipiens larvae flushed out with longer rain exposure. Warmer water temperatures also increased the proportion of Cx. pipiens flushed out, but mostly at the longest exposure time. Container position (tilted at a 7 degrees angle or level) did not affect proportions of fourth instars flushed out for both species. More accurate models of vector-borne diseases can be developed by incorporating the described effects of rain on container-breeding mosquito populations. Such models may provide more realistic assessments of disease risk and ensure optimal use of limited financial resources of mosquito control agencies.

  7. Rhamnolipids: solution against Aedes aegypti?

    PubMed Central

    Silva, Vinicius L.; Lovaglio, Roberta B.; Von Zuben, Claudio J.; Contiero, Jonas

    2015-01-01

    Aedes aegypti mosquitoes are the primary transmitters of dengue fever, urban yellow fever, and chikungunya viruses. This mosquito has developed resistance to the insecticides currently used to control their populations. These chemical insecticides are harmful to the environment and can have negative effects on human health. Rhamnolipids are environmentally compatible biological surfactants, but their insecticidal activity has not been extensively studied. The present study evaluated the potential larvicidal, insecticidal, and repellent activities of rhamnolipids against A. aegypti. At concentrations of 800, 900, and 1000 mg/L, rhamnolipids eliminated all mosquito larvae in 18 h and killed 100% of adults at 1000 mg/L. According to the results it may be conclude that rhamnolipids should be applied to control larvae and mosquitos besides present the repellency activity against A. aegypti. PMID:25762986

  8. Aedes aegypti in Córdoba Province, Argentina.

    PubMed

    Avilés, G; Cecchini, R; Harrington, M E; Cichero, J; Asis, R; Rios, C

    1997-09-01

    In 1955, the area infested by Aedes aegypti in Argentina was estimated as 1,500,000 km2; and in 1963, the species was considered to be eradicated from Argentina. In 1995, the Argentine Ministry of Health reported reinfestation by Ae. aegypti. During 1994-95, the Ministry of Health of Córdoba Province, Zoonosis Department, established a surveillance system for Ae. aegypti in Córdoba Province, Argentina. This report is a summary of results obtained thus far. In total, 74 localities in Córdoba Province were sampled during August 1994-April 1996, resulting in 5 positives (6.7%): Villa María city, Villa Nueva, and Córdoba city in 1995, and Juarez Celman and Jesús María in 1996. In Villa María and Villa Nueva, Ae. aegypti was present until June 1995 (autumn) and reappeared in December 1995. In Córdoba city, Ae. aegypti was eliminated from the only positive house in May 1995, but it reappeared in March 1996. Reappearance of Ae. aegypti in this temperate area in early summer may have been due to the survival of individuals during winter and not to reintroduction during summertime. The last previous active surveillance for Ae. aegypti in Córdoba Province was carried out more than 30 years ago.

  9. Dynamics of Aedes aegypti and Culex quinquefasciatus in septic tanks.

    PubMed

    Mackay, Andrew J; Amador, Manuel; Diaz, Annette; Smith, Josh; Barrera, Roberto

    2009-12-01

    Aedes aegypti and Culex quinquefasciatus were found in large numbers emerging from septic tanks in southern Puerto Rico during the dry season. Previous studies suggested that Ae. aegypti uses subterranean aquatic habitats only during dry periods when surface containers do not have water. This research investigated whether septic tanks are alternative aquatic habitats that this mosquito uses during unfavorable times of the year, or whether Ae. aegypti uses this aquatic habitat throughout the year. To assess temporal change, exit traps were used to collect mosquitoes emerging from septic tanks in Playa/Playita, southern Puerto Rico, from November 2006 to October 2007. We also investigated the hypotheses that (1) the production of Ae. aegypti in septic tanks was larger than in surface containers and (2) adult mosquitoes emerging from septic tanks were larger than those emerging from surface containers. This study demonstrated that unsealed septic tanks produced large numbers of Ae. aegypti and Cx. quinquefasciatus throughout the year, without any significant relationship with rainfall. The number of adult Ae. aegypti emerging per day from septic tanks in each community was 3 to 9 times larger than those produced in surface containers. It was also demonstrated that Ae. aegypti emerging from septic tanks were significantly larger than those emerging from surface container habitats. It is recommended that dengue prevention programs include regular inspection and maintenance of septic tanks in communities lacking sewerage.

  10. Parity and Longevity of Aedes aegypti According to Temperatures in Controlled Conditions and Consequences on Dengue Transmission Risks

    PubMed Central

    Goindin, Daniella; Delannay, Christelle; Ramdini, Cédric; Gustave, Joël; Fouque, Florence

    2015-01-01

    Background In Guadeloupe, Aedes aegypti mosquitoes are the only vectors of dengue and chikungunya viruses. For both diseases, vector control is the only tool for preventing epidemics since no vaccine or specific treatment is available. However, to efficiently implement control of mosquitoes vectors, a reliable estimation of the transmission risks is necessary. To become infective an Ae. aegypti female must ingest the virus during a blood meal and will not be able to transmit the virus during another blood-meal until the extrinsic incubation period is completed. Consequently the aged females will carry more infectious risks. The objectives of the present study were to estimate under controlled conditions the expectation of infective life for females and thus the transmission risks in relation with their reproductive cycle and parity status. Methodology/Principal Findings Larvae of Ae. aegypti were collected in central Guadeloupe and breed under laboratory conditions until adult emergence. The experiments were performed at constant temperatures (± 1.5°C) of 24°C, 27°C and 30°C on adults females from first generation (F1). Females were kept and fed individually and records of blood-feeding, egg-laying and survival were done daily. Some females were dissected at different physiological stages to observe the ovaries development. The data were analyzed to follow the evolution of parity rates, the number of gonotrophic cycles, the fecundity and to study the mean expectation of life and the mean expectation of infective life for Ae. aegypti females according to temperatures. The expectation of life varies with the parity rates and according to the temperatures, with durations from about 10 days at low parity rates at the higher temperature to an optimal duration of about 35 days when 70% of females are parous at 27°C. Infective life expectancy was found highly variable in the lower parous rates and again the optimal durations were found when more than 50% of females

  11. Insecticidal activity of Leptodactylus knudseni and Phyllomedusa vaillantii crude skin secretions against the mosquitoes Anopheles darlingi and Aedes aegypti

    PubMed Central

    2014-01-01

    Background Mosquitoes are important vectors of several diseases, including malaria and dengue, and control measures are mostly performed using chemical insecticides. Unfortunately, mosquito resistance to commonly applied insecticides is widespread. Therefore, a prospection for new molecules with insecticidal activity based on Amazon biodiversity using the anurans Leptodactylus knudseni and Phyllomedusa vaillantii was performed against the mosquito species Anopheles darlingi and Aedes aegypti. Methods The granular secretion from anuran skin was obtained by manual stimulation, and lethal concentrations (LCs) for larvicidal and adulticidal tests were calculated using concentrations from 1-100 ppm. The skin secretions from the anuran species tested caused significant mortality within the first 24 hours on adults and larvae, but differed within the mosquito species. Results The skin secretions from the anuran species tested caused significant mortality within the first 24 hours on adults and larvae, but differed within the mosquito species. The calculated LC50 of L. knudseni skin secretions against An. darlingi was 0.15 and 0.2 ppm for adults and larvae, respectively, but much higher for Ae. aegypti, i.e., 19 and 38 ppm, respectively. Interestingly, the calculated LCs50 of P. vaillantii against both mosquito species in adults were similar, 1.8 and 2.1 ppm, respectively, but the LC50 for An. darlingi larvae was much lower (0.4 ppm) than for Ae aegypti (2.1 ppm). Conclusions The present experiments indicate that skin secretions from L. knudseni and P. vaillantii contain bioactive molecules with potent insecticide activity. The isolation and characterization of skin secretions components will provide new insights for potential insecticidal molecules. PMID:25165469

  12. Novel, Meso-Substituted Cationic Porphyrin Molecule for Photo-Mediated Larval Control of the Dengue Vector Aedes aegypti

    PubMed Central

    Lucantoni, Leonardo; Magaraggia, Michela; Lupidi, Giulio; Ouedraogo, Robert Kossivi; Coppellotti, Olimpia; Esposito, Fulvio; Fabris, Clara; Jori, Giulio; Habluetzel, Annette

    2011-01-01

    Background Control of the mosquito vector population is the most effective strategy currently available for the prevention of dengue fever and the containment of outbreaks. Photo-activated oxidants may represent promising tools for developing effective, safe and ecofriendly novel larvicides. The purpose of this study was to evaluate the potential of the synthetic meso-substituted porphyrin meso-tri(N-methylpyridyl), meso-mono(N-tetradecylpyridyl)porphine (C14) as a photoactivatable larvicide against the dengue vector Aedes (Stegomyia) aegypti. Methodology The photophysical and photochemical properties of the C14 molecule were assessed spectrophotometrically. Photomediated larvicidal efficacy, route of intake and site of action were determined on Ae. aegypti larvae by laboratory bioassays and fluorescence microscopy. Using powdered food pellet for laboratory rodents (a common larval food used in the laboratory) as a carrier for C14, loading-release dynamics, larvicidal efficacy and residual activity of the C14-carrier complex were investigated. Main Findings The C14 molecule was found to exert a potent photosensitizing activity on Ae. aegypti larvae. At irradiation intervals of 12 h and 1 h, at a light intensity of 4.0 mW/cm2, which is 50–100 times lower than that of natural sunlight, LC50 values of 0.1 µM (0.15 mg/l) and 0.5 µM (0.77 mg/l) were obtained, respectively. The molecule was active after ingestion by the larvae and caused irreversible, lethal damage to the midgut and caecal epithelia. The amphiphilic nature of C14 allowed a formulate to be produced that not only was as active against the larvae as C14 in solution, but also possessed a residual activity of at least two weeks, in laboratory conditions. Conclusions The meso-substituted synthetic porphyrin C14, thanks to its photo-sensitizing properties represents an attractive candidate for the development of novel photolarvicides for dengue vector control. PMID:22206031

  13. Sarniensine, a mesembrine-type alkaloid isolated from Nerine sarniensis, an indigenous South African Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti.

    PubMed

    Masi, Marco; van der Westhuyzen, Alet E; Tabanca, Nurhayat; Evidente, Marco; Cimmino, Alessio; Green, Ivan R; Bernier, Ulrich R; Becnel, James J; Bloomquist, Jeffrey R; van Otterlo, Willem A L; Evidente, Antonio

    2017-01-01

    A new mesembrine-type alkaloid, named sarniensine, was isolated together with tazettine, lycorine, the main alkaloid, and 3-epimacronine from Nerine sarniensis, with the last two produced for the first time by this plant. This Amaryllidaceae, which is indigenous of South Africa, was investigated for its alkaloid content, because the organic extract of its bulbs showed strong larvicidal activity with an LC50 value of 0.008μgμL(-1) against first instar Aedes aegypti larvae and with an LD50 value 4.6μg/mosquito against adult female Ae. aegypti, which is the major vector for dengue, yellow fever and the Zika virus. The extract did not show repellency at MED value of 0.375mgcm(2) against adult Ae. aegypti. Sarniensine was characterized using spectroscopic and chiroptical methods as (3aR,4Z,6S,7aS)-6-methoxy-3a-(2'-methoxymethyl-benzo [1,3]dioxol-1'-yl)-1-methyl-2,3,3a,6,7,7a-hexahydro-1H-indole. It was less effective against larva at the lowest concentration of 0.1μgμL(-1), however it showed strong adulticidal activity with an LD50 value of 1.38±0.056μgmosquito(-1).

  14. Reappearance of Aedes aegypti (Diptera: Culicidae) in Lima, Peru.

    PubMed

    Andrade, C S; Cáceres, A G; Vaquerizo, A; Ibañez-Bernal, S; Cachay, L S

    2001-07-01

    We report here the reappearance of Aedes aegypti in the Rimac district, and summarize the history of this mosquito species in Peru since its first detection in 1852. On March 17 2000 were found Ae. aegypti and Culex quinquefasciatus in Mariscal Castilla town, Flor de Amancaes, San Juan de Amancaes, El Altillo and Santa Rosa in the Rimac district, Lima Province.

  15. Physiological and biochemical effects of botanical extract from Piper nigrum Linn (Piperaceae) against the dengue vector Aedes aegypti Liston (Diptera: Culicidae).

    PubMed

    Lija-Escaline, Jalasteen; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Pradeepa, Venkatraman; Vasantha-Srinivasan, Prabhakaran; Ponsankar, Athirstam; Edwin, Edward Sam; Selin-Rani, Selvaraj; Abdel-Megeed, Ahmed

    2015-11-01

    The leaves of Piper nigrum L. (Piperaceae) were evaluated for chemical constituents and mosquito larvicidal activity against the larvae of Aedes aegypti. GC and GC-MS analyses revealed that the crude extracts contain 16 compounds. Thymol (20.77%) and ç-elemene (10.42%) were identified as the major constituents followed by cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1 methylethyl)-, (3R-trans) (7.58%), 4,6-octadienoic acid, 2-acetyl-2-methyl-, ethyl ester (6.98), 2(3H)-furanone, 3,4-bis(1,3-benzodioxol-5-ylmethyl) dihydro-, (3R-trans) (6.95%), 1-naphthalenol, 1,2,3,4,4a,7,8,8a-octahydro-1,6-dimethyl-4-(1-methylethyl)-, [1R-(1à,4á,4aá,8aá)]-(Cedreanol) (5.30%), trans-2-undecen-1-ol (4.48%), phytol (4.22%), 1,6-cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-,[s-(E,E)] (3.78%) and 2,6-dimethyl-3,5,7-octatriene-2-ol, Z,Z (2.39%). Larval mortality was observed after 3 h of exposure period. The crude extract showed remarkable larvicidal activity against Ae. aegypti (LC50 = 34.97). The larvae of Ae. aegypti exposed to the P. nigrum, significantly reduced the activities of α- and β-carboxylesterases and superdioxide. Further, P. nigrum extract was severely affecting the mosquito gut cellular organelles. Based on the results, the chemical constituents of crude extracts of P. nigrum can be considered as a new source of larvicide for the control of Ae. aegypti.

  16. Laboratory and Simulated Field Bioassays to Evaluate Larvicidal Activity of Pinus densiflora Hydrodistillate, Its Constituents and Structurally Related Compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in Relation to Their Inhibitory Effects on Acetylcholinesterase Activity.

    PubMed

    Lee, Dong Chan; Ahn, Young-Joon

    2013-05-30

    The toxicity of Pinus densiflora (red pine) hydrodistillate, its 19 constituents and 28 structurally related compounds against early third-instar larvae of Aedes albopictus (Ae. albopictus), Aedes aegypti (Ae. aegypti) and Culex pipiens palles (Cx. p. pallens) was examined using direct-contact bioassays. The efficacy of active compounds was further evaluated in semi-field bioassays using field-collected larval Cx. p. pallens. Results were compared with those of two synthetic larvicides, temephos and fenthion. In laboratory bioassays, Pinus densiflora hydrodistillate was found to have 24 h LC50 values of 20.33, 21.01 and 22.36 mg/L against larval Ae. albopictus, Ae. aegypti and Cx. p. pallens respectively. Among the identified compounds, thymol, δ-3-carene and (+)-limonene exhibited the highest toxicity against all three mosquito species. These active compounds were found to be nearly equally effective in field trials as well. In vitro bioassays were conducted to examine the acetylcholinesterase (AChE) inhibitory activity of 10 selected compounds. Results showed that there is a noticeable correlation between larvicidal activity and AChE inhibitory activity. In light of global efforts to find alternatives for currently used insecticides against disease vector mosquitoes, Pinus densiflora hydrodistillate and its constituents merit further research as potential mosquito larvicides.

  17. Wolbachia Infections in Aedes aegypti Differ Markedly in Their Response to Cyclical Heat Stress

    PubMed Central

    Wiwatanaratanabutr, Itsanun; White, Vanessa L.; Hoffmann, Ary A.

    2017-01-01

    Aedes aegypti mosquitoes infected with Wolbachia bacteria are currently being released for arbovirus suppression around the world. Their potential to invade populations and persist will depend on interactions with environmental conditions, particularly as larvae are often exposed to fluctuating and extreme temperatures in the field. We reared Ae. aegypti larvae infected with different types of Wolbachia (wMel, wAlbB and wMelPop-CLA) under diurnal cyclical temperatures. Rearing wMel and wMelPop-CLA-infected larvae at 26–37°C reduced the expression of cytoplasmic incompatibility, a reproductive manipulation induced by Wolbachia. We also observed a sharp reduction in the density of Wolbachia in adults. Furthermore, the wMel and wMelPop-CLA infections were not transmitted to the next generation when mosquitoes were exposed to 26–37°C across all life stages. In contrast, the wAlbB infection was maintained at a high density, exhibited complete cytoplasmic incompatibility, and was transmitted from mother to offspring with a high fidelity under this temperature cycle. These findings have implications for the potential success of Wolbachia interventions across different environments and highlight the importance of temperature control in rearing. PMID:28056065

  18. Wolbachia Infections in Aedes aegypti Differ Markedly in Their Response to Cyclical Heat Stress.

    PubMed

    Ross, Perran A; Wiwatanaratanabutr, Itsanun; Axford, Jason K; White, Vanessa L; Endersby-Harshman, Nancy M; Hoffmann, Ary A

    2017-01-01

    Aedes aegypti mosquitoes infected with Wolbachia bacteria are currently being released for arbovirus suppression around the world. Their potential to invade populations and persist will depend on interactions with environmental conditions, particularly as larvae are often exposed to fluctuating and extreme temperatures in the field. We reared Ae. aegypti larvae infected with different types of Wolbachia (wMel, wAlbB and wMelPop-CLA) under diurnal cyclical temperatures. Rearing wMel and wMelPop-CLA-infected larvae at 26-37°C reduced the expression of cytoplasmic incompatibility, a reproductive manipulation induced by Wolbachia. We also observed a sharp reduction in the density of Wolbachia in adults. Furthermore, the wMel and wMelPop-CLA infections were not transmitted to the next generation when mosquitoes were exposed to 26-37°C across all life stages. In contrast, the wAlbB infection was maintained at a high density, exhibited complete cytoplasmic incompatibility, and was transmitted from mother to offspring with a high fidelity under this temperature cycle. These findings have implications for the potential success of Wolbachia interventions across different environments and highlight the importance of temperature control in rearing.

  19. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L.

    PubMed Central

    Warikoo, Radhika; Ray, Ankita; Sandhu, Jasdeep Kaur; Samal, Roopa; Wahab, Naim; Kumar, Sarita

    2012-01-01

    Objective To assess the larvicidal and irritant activities of the hexane extracts of leaves of Citrus sinensis (C. sinensis) against the early fourth instars and female adults of Aedes aegypti (Ae. aegypti). Methods The larvicidal potential of the prepared leaf extract was evaluated against early fourth instar larvae of Ae. aegypti using WHO protocol. The mortality counts were made after 24 h and LC50 and LC90 values were calculated. The efficacy of extract as mosquito irritant was assessed by contact irritancy assays. Extract-impregnated paper was placed on a glass plate over which a perspex funnel with a hole on the top was kept inverted. Single female adult, 3-day old unfed/blood-fed, was released inside the funnel. After 3 min of acclimatization time, the time taken for the first take-off and total number of flights undertaken during 15 min were scored. Results The citrus leaf extracts from hexane possessed moderate larvicidal efficiency against dengue vector. The bioassays resulted in an LC50 and LC90 value of 446.84 and 1 370.96 ppm, respectively after 24 h of exposure. However, the extracts were proved to be remarkable irritant against adults Ae. aegypti, more pronounced effects being observed on blood-fed females than unfed females. The extract-impregnated paper was thus proved to be 7–11 times more irritable as compared with the control paper. Conclusions The hexane extracts from C. sinensis leaves are proved to be reasonably larvicidal but remarkably irritant against dengue vector. Further studies are needed to identify the possible role of extract as adulticide, oviposition deterrent and ovicidal agent. The isolation of active ingredient from the extract could help in formulating strategies for mosquito control. PMID:23569887

  20. Controlling Aedes aegypti in Cryptic Environments with Manually Carried Ultra-Low Volume and Mist Blower Pesticide Applications.

    PubMed

    Harwood, James F; Helmey, Wendy L; Turnwall, Brent B; Justice, Kevin D; Farooq, Muhammed; Richardson, Alec G

    2016-09-01

    Because Aedes aegypti , a vector of dengue, chikungunya, and Zika viruses, exhibits resting and reproductive behaviors that present challenges to control them, pesticide application equipment available for vector control must be evaluated for their ability to control this species in a variety of cryptic environments. Five types of pesticide sprayers, representing 3 spray technologies (1 mister, 2 ultra-low volume [ULV] cold foggers, and 2 ULV thermal foggers), were evaluated for their ability to control adult and immature stages of Ae. aegypti in indoor and outdoor environments. Cages holding adult mosquitoes and larvae were placed in cryptic sites for indoor sprays and placed among dense vegetation for outdoor sprays. Adult and pupal mortality data were recorded following applications of a mixture of synergized pyrethrins and pyriproxyfen. We found that no single sprayer was best suited for controlling Ae. aegypti in indoor and outdoor environments, nor was one best for controlling adult and immature mosquitoes. Sprayers producing larger droplets (misters and cold foggers) were more effective in controlling immature mosquitoes indoors and outdoors. Thermal fogging was more effective in controlling adults indoors, whereas cold fogs and misters were more effective for outdoor control.

  1. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes.

    PubMed

    Mohammed, Azad; Chadee, Dave D

    2011-07-01

    This study was conducted to determine the effects of increased water temperatures on the development of Aedes aegypti immatures under laboratory conditions in Trinidad, West Indies using temperature regulated water baths to cover a range of temperatures from 24-25°C to 34-35°C at a relative humidity of 80%. Two experiments were designed: (1) at constant temperature regimens and (2) under diurnal temperature regimens ranging from 24-25°C to 34-35°C. At 24-25°C egg hatching success was 98% at 48 h, however at 34-35°C egg hatching rates declined to 1.6% after 48 h. Ae. aegypti larvae reared under constant temperature regimens showed pupation on day 4 with highest pupation occurring at 30°C (78.4%) However, under diurnal temperature regimens, pupation began on day 4 but only at the higher temperatures of 30-35°C. Under diurnal temperature regimens ranging from 24°C to 35°C significantly more females emerged at higher temperatures, than males. In contrast, at constant temperatures of 24-35°C no significant difference in M/F ratios were observed. The body size of Ae. aegypti reared at constant temperature regimens was significantly larger than males and females larvae reared under diurnal temperature regimens of 25-30°C. The results of this study are discussed in the context of changing or increasing water temperatures, seasonal changes in vector populations and vector competence. Using these key factors control strategies are recommended to manage vector populations as expected increases in temperatures impact the Caribbean region.

  2. Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti

    PubMed Central

    Fu, Qiang; Lynn-Miller, Ace; Lan, Que

    2011-01-01

    The oxysterol-binding protein (OSBP) and related proteins (ORPs) are sterol-binding proteins that may be involved in cellular sterol transportation, sterol metabolism and signal transduction pathways. Four ORP genes were cloned from Aedes aegypti. Based on amino acid sequence homology to human proteins, they are AeOSBP, AeORP1, AeORP8 and AeORP9. Splicing variants of AeOSBP and AeORP8 were identified. The temporal and spatial transcription patterns of members of the AeOSBP gene family through developmental stages and the gonotrophic cycle were profiled. AeORP1 transcription seemed to be head tissue-specific, whereas AeOSBP and AeORP9 expressions were induced by a blood meal. Furthermore, over-expression of AeORPs facilitated [3H]-cholesterol uptake in Aedes aegypti cultured Aag-2 cells. PMID:21699592

  3. Chikungunya virus susceptibility & variation in populations of Aedes aegypti (Diptera: Culicidae) mosquito from India

    PubMed Central

    Gokhale, Mangesh D.; Paingankar, Mandar S.; Sudeep, Anakathil B.; Parashar, Deepti

    2015-01-01

    Background & objectives: Although having immense clinical relevance, yet only a few studies have been targeted to understand the chikungunya virus (CHIKV) susceptibility and growth in Aedes aegypti populations from India. This study was undertaken to investigate CHIKV susceptibility and growth kinetics in Ae. aegypti along with genetic heterogeneity of Ae. aegypti populations. Methods: Dose dependent CHIKV susceptibility and growth kinetic studies for three CHIKV strains reported from India were carried out in Ae. aegypti mosquito populations. The phenotypic variation and genetic heterogeneity in five Ae. aegypti populations were investigated using multivariate morphometrics and allozyme variation studies. Results: The dissemination and growth kinetics studies of the three CHIKV strains showed no selective advantage for a particular strain of CHIKV in Ae. aegypti. At 100 per cent infection rate, five geographic Ae. aegypti populations showed differences in dissemination to three CHIKV strains. Morphometric studies revealed phenotypic variation in all the studied populations. The allelic frequencies, F statistics, and Nei's genetic identity values showed that genetic differences between the populations were small, but significant. Interpretation & conclusions: The results obtained in this study suggest that genetic background of the vector strongly influences the CHIKV susceptibility in Ae. aegypti. PMID:26905240

  4. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas

    PubMed Central

    Díaz-González, Esteban E.; Kautz, Tiffany F.; Dorantes-Delgado, Alicia; Malo-García, Iliana R.; Laguna-Aguilar, Maricela; Langsjoen, Rose M.; Chen, Rubing; Auguste, Dawn I.; Sánchez-Casas, Rosa M.; Danis-Lozano, Rogelio; Weaver, Scott C.; Fernández-Salas, Ildefonso

    2015-01-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)–positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown. PMID:26416113

  5. First Report of Aedes aegypti Transmission of Chikungunya Virus in the Americas.

    PubMed

    Díaz-González, Esteban E; Kautz, Tiffany F; Dorantes-Delgado, Alicia; Malo-García, Iliana R; Laguna-Aguilar, Maricela; Langsjoen, Rose M; Chen, Rubing; Auguste, Dawn I; Sánchez-Casas, Rosa M; Danis-Lozano, Rogelio; Weaver, Scott C; Fernández-Salas, Ildefonso

    2015-12-01

    During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored Aedes aegypti and 2.7% (2) Aedes albopictus. A total of 1,170 Ae. aegypti and three Ae. albopictus was collected and 81 pools were generated. Although none of the Ae. albopictus pools were chikungunya virus (CHIKV)-positive, 18 Ae. aegypti pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, Ae. aegypti appears to be the principal vector of CHIKV in southern Mexico, while the role of Ae. albopictus remains unknown.

  6. Effect of temperature on life history traits during immature development of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) from Córdoba city, Argentina.

    PubMed

    Grech, Marta G; Sartor, Paolo D; Almirón, Walter R; Ludueña-Almeida, Francisco F

    2015-06-01

    We investigated how ambient temperature under fluctuating conditions affects the larval-pupal immature traits of Aedes aegypti and Culex quinquefasciatus mosquitoes from Córdoba city, Argentina, and established each species development threshold and physiological time. Based on life tables, three cohorts of each mosquito species were reared in the laboratory under small fluctuating temperatures conditions of 15.2±1.7°C, 17.9±1.6°C, 21.6±0.7°C and 25.3±0.4°C for Ae. aegypti, and 16.6±1.7°C, 18.7±1.7°C and 25.2±0.3°C for Cx. quinquefasciatus. Immature development time and survival values, and also thermal development threshold and physiological time were estimated. Development times of all larval and pupal stages of Ae. aegypti and Cx. quinquefasciatus were significantly affected by the rearing temperatures, decreasing when temperature increased. Mean Ae. aegypti total (larva+pupa) development time ranged from 21.9 to 8.6 days, at 15.2 and 25.3°C, whereas, for Cx. quinquefasciatus varied between 23.5 to 9.2 days at 16.6 and 25.2°C, respectively. Larval and pupal survival of both species was affected by different rearing temperatures, increasing in general as temperature increased. For Ae. aegypti the total immature survival ranged from 26% at 15.2°C to 92% at 21.6°C; however, temperature did not have significant effect on this variable. The total immature survival of Cx. quinquefasciatus was significantly and positively affected by temperatures, ranging from 32 to 88%, at 16.6 and 25.2°C. The temperature development threshold and the physiological time estimated for Ae. aegypti and Cx. quinquefasciatus were 11.11°C and 93.74 degree-days, and 10.96°C and 136.87 degree-days, respectively. The results of the present study showed that temperature significantly affects the larval-pupal immature traits of these mosquito species of sanitary importance, from the central region of Argentina. All the parameters recorded are useful for the development of

  7. Implications of saline concentrations for the performance and competitive interactions of the mosquitoes Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia albopictus).

    PubMed

    Yee, D A; Himel, E; Reiskind, M H; Vamosi, S M

    2014-03-01

    Aedes albopictus (Stegomyia albopictus) (Diptera: Culicidae) has probably supplanted Aedes aegypti (Stegomyia aegypti) throughout most of its historical range in the U.S.A., although Ae. aegypti still exists in large coastal cities in southern Florida. We measured salt concentrations in field containers along an axis perpendicular to the coast and examined intraspecific outcomes in these species under different salt concentrations in a factorial study using varying intra- and interspecific densities in different conditions of salinity to order to determine if salt could mitigate the documented competitive superiority of Ae. albopictus. Salt in field containers declined away from the coast, with maximal values similar to our lower salt concentrations. Egg hatching and short-term survival of pupae and late instars were not affected by salt concentrations; survival of early instars of both species decreased at higher concentrations. In high salt conditions, Ae. aegypti achieved higher survival. In the longterm experiment, both species displayed longer development times. Salt did not affect interactions for either species; Ae. aegypti survived in the highest salt conditions, regardless of density. The tolerance of Ae. aegypti to high salt concentrations may allow it to use coastal containers, although because salt did not mediate interspecific interactions between Ae. aegypti and Ae. albopictus, the ultimate effects of salt on the coexistence of these species or exclusion of either species remain unknown.

  8. Metarhizium anisopliae Pathogenesis of Mosquito Larvae: A Verdict of Accidental Death

    PubMed Central

    Butt, Tariq M.; Greenfield, Bethany P. J.; Greig, Carolyn; Maffeis, Thierry G. G.; Taylor, James W. D.; Piasecka, Justyna; Dudley, Ed; Abdulla, Ahmed; Dubovskiy, Ivan M.; Garrido-Jurado, Inmaculada; Quesada-Moraga, Enrique; Penny, Mark W.; Eastwood, Daniel C.

    2013-01-01

    Metarhizium anisopliae, a fungal pathogen of terrestrial arthropods, kills the aquatic larvae of Aedes aegypti, the vector of dengue and yellow fever. The fungus kills without adhering to the host cuticle. Ingested conidia also fail to germinate and are expelled in fecal pellets. This study investigates the mechanism by which this fungus adapted to terrestrial hosts kills aquatic mosquito larvae. Genes associated with the M. anisopliae early pathogenic response (proteinases Pr1 and Pr2, and adhesins, Mad1 and Mad2) are upregulated in the presence of larvae, but the established infection process observed in terrestrial hosts does not progress and insecticidal destruxins were not detected. Protease inhibitors reduce larval mortality indicating the importance of proteases in the host interaction. The Ae. aegypti immune response to M. anisopliae appears limited, whilst the oxidative stress response gene encoding for thiol peroxidase is upregulated. Cecropin and Hsp70 genes are downregulated as larval death occurs, and insect mortality appears to be linked to autolysis through caspase activity regulated by Hsp70 and inhibited, in infected larvae, by protease inhibitors. Evidence is presented that a traditional host-pathogen response does not occur as the species have not evolved to interact. M. anisopliae retains pre-formed pathogenic determinants which mediate host mortality, but unlike true aquatic fungal pathogens, does not recognise and colonise the larval host. PMID:24349111

  9. Nepenthes ampullaria (Nepenthaceae) Pitchers Are Unattractive to Gravid Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    PubMed

    Chou, Lee Yiung; Dykes, Gary A; Wilson, Robyn F; Clarke, Charles M

    2016-02-01

    Nepenthes pitcher plants are colonized by a variety of specialized arthropods. As Aedes mosquitoes are container breeders, Nepenthes pitchers are a potential candidate oviposition site for vector species, such as Aedes aegypti (L.) and Aedes albopictus (Skuse). However, Aedes spp. are not commonly encountered in Nepenthes pitchers, and the environment inside the pitchers of some species is lethal to them. One exception is Nepenthes ampullaria Jack, whose pitchers are known to be colonized by Ae. albopictus on very rare occasions. Given that Ae. albopictus larvae can survive in N. ampullaria pitcher fluids, we sought to determine why pitcher colonization is rare, testing the hypothesis that gravid Aedes mosquitoes are deterred from ovipositing into container habitats that have similar characteristics to N. ampullaria pitchers. Using plastic ovitraps of different sizes, colors, and with different types of fluids (based on the characteristics of N. ampullaria pitchers), we compared oviposition rates by Aedes mosquitoes in urban and rural areas within the geographical range of N. ampullaria near Kuala Lumpur, Malaysia. Ovitraps that were black and large (>250-ml capacity) accumulated significantly more eggs than ovitraps that were smaller, or green in color. In terms of size and color, small, green ovitraps are analogous to N. ampullaria pitchers, indicating that these pitchers are not particularly attractive to gravid Ae. albopictus. Although Aedes spp. are capable of colonizing N. ampullaria pitchers, the pitchers are relatively unattractive to gravid females and do not represent a significant habitat for larvae of dengue vectors at present.

  10. Vector Competence of Aedes aegypti and Aedes polynesiensis Populations from French Polynesia for Chikungunya Virus

    PubMed Central

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background From October 2014 to March 2015, French Polynesia experienced for the first time a chikungunya outbreak. Two Aedes mosquitoes may have contributed to chikungunya virus (CHIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methods To investigate the vector competence of French Polynesian populations of Ae. aegypti and Ae. polynesiensis for CHIKV, mosquitoes were exposed per os at viral titers of 7 logs tissue culture infectious dose 50%. At 2, 6, 9, 14 and 21 days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of CHIKV infectious particles. Legs and body (thorax and abdomen) of each mosquito were also collected at the different dpi and submitted separately to viral RNA extraction and CHIKV real-time RT-PCR. Results CHIKV infection rate, dissemination and transmission efficiencies ranged from 7–90%, 18–78% and 5–53% respectively for Ae. aegypti and from 39–41%, 3–17% and 0–14% respectively for Ae. polynesiensis, depending on the dpi. Infectious saliva was found as early as 2 dpi for Ae. aegypti and from 6 dpi for Ae. polynesiensis. Our laboratory results confirm that the French Polynesian population of Ae. aegypti is highly competent for CHIKV and they provide clear evidence for Ae. polynesiensis to act as an efficient CHIKV vector. Conclusion As supported by our findings, the presence of two CHIKV competent vectors in French Polynesia certainly contributed to enabling this virus to quickly disseminate from the urban/peri-urban areas colonized by Ae. aegypti to the most remote atolls where Ae. polynesiensis is predominating. Ae. polynesiensis was probably involved in the recent chikungunya outbreaks in Samoa and the Cook Islands. Moreover, this vector may contribute to the risk for CHIKV to emerge in other Polynesian islands like Fiji, and more particularly Wallis where there

  11. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru

    PubMed Central

    LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.

    2014-01-01

    Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically

  12. New Records of Aedes aegypti In Southern Oklahoma, 2016.

    PubMed

    Bradt, David L; Bradley, Kristy K; Hoback, W Wyatt; Noden, Bruce H

    2017-03-01

    Aedes aegypti is an important subtropical vector species and is predicted to have a limited year-round distribution in the southern United States. Collection of the species has not been officially verified in Oklahoma since 1940. Adult mosquitoes were collected in 42 sites across 7 different cities in Oklahoma using 3 different mosquito traps between May and September 2016. Between July and September 2016, 88 Ae. aegypti adults were collected at 18 different sites in 4 different cities across southern Oklahoma. Centers for Disease Control and Prevention mini light traps baited with CO2 attracted the highest numbers of Ae. aegypti individuals compared to Biogents (BG)-Sentinel(®) traps baited with Biogents (BG)-lure and octenol and Centers for Disease Control and Prevention gravid traps baited with Bermuda grass-infused water. The discovery of Ae. aegypti mosquitoes within urban/exurban areas in Oklahoma is important from an ecological as well as a public health perspective.

  13. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection

    PubMed Central

    Conway, Michael J.; Londono-Renteria, Berlin; Troupin, Andrea; Watson, Alan M.; Klimstra, William B.; Fikrig, Erol; Colpitts, Tonya M.

    2016-01-01

    Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1–4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions. PMID:27632170

  14. Bioefficacy of crude extract of Cyperus aromaticus (Family: Cyperaceae ) cultured cells, against Aedes aegypti and Aedes albopictus mosquitoes

    PubMed Central

    Kamiabi, Fatemeh; Jaal, Zairi; Keng, Chan Lai

    2013-01-01

    Objective To evaluate the growth inhibition activity of the crude extract of Cyperus aromaticus (C. aromaticus) cultured cells against the 3rd instar larvae of Aedes aegypti (Linn.) and Aedes albopictus Skuse (Ae. albopictus) under laboratory conditions, and determine the sublethal effects (EI50) of the crude extract of C. aromaticus cultured cells on some biological and morphological parameters of both Aedes mosquito species during two generations as well. Methods The cell suspension cultures of C. aromaticus were activated from five callus lines (P4, Pa, Z1, Z6 and Ml) derived from the root explants of in vitro plantlets. The cultured cells were extracted in chloroform and used as plant material for the present study. For detection of juvenile hormone III, the crude extracts were analyzed by HPLC. Then the crude extracts of the three C. aromaticus cultured cell lines which contained varied amounts of juvenile hormone III [high level (P4 cell line), medium level (Z1 cell line) and low level (Ml cell line)] were tested against Aedes mosquito species. Laboratory evaluation was performed against late third instar larvae of the Vector Control Research Unit strains of Ae. aegypti and Ae. albopictus using the standard WHO method. The effects of EI50 of the C. aromaticus cultured P4 cells on fecundity, fertility, growth period, sex ratio, adult size and longevity of Aedes mosquitoes were assessed. Results Bioassay tests presented the remarkable growth inhibition activity of the crude extracts of C. aromaticus cultured cells against the two Aedes mosquitoes. Between the two mosquito species, Ae. albopictus was more susceptible to the crude extracts with lower EI50 values. EI50 of the crude extract of C. aromaticus cultured cells (P4) increased the sterility indices in the parental generation females in both Aedes mosquito species. A significant delay in the pupal formation and adult emergence were observed in the parental generation of the both mosquito species. The sex

  15. Larvicidal efficacy screening of Anacardaciae crude extracts on the dengue hemorrhagic vector, Aedes aegypti.

    PubMed

    Zuharah, W F; Fadzly, N; Ali, Y; Zakaria, R; Juperi, S; Asyraf, M; Dieng, H

    2014-06-01

    Vector-borne diseases are still rife because of the re-emergence of diseases transmitted by mosquitoes. The objective of this paper is to evaluate the larvicidal efficacy of crude leaf extract of Mangifera indica, Gluta renghas, and Melanochyla fasciculiflora against vector of dengue hemorrhagic fever, Aedes aegypti. These plant species are endemic species and widely distributed in Malaysian forests. Leaves of Ma. indica, G. renghas and M. fascculiflora were collected from Teluk Bahang National Park, Penang Malaysia. Fractions of leaves were segregated, air-dried, powdered and extracted using Soxhlet with methanol. The solvent was removed by using rotary evaporator to obtain the crude extract. Using WHO standard larval bioassay test method, third instar larvae of Aedes aegypti were exposed to concentration ranging from 200- 4500 ppm of methanol extract for all plant species. Larval mortality was observed after 24 hours exposure. The highest susceptibility and toxicity was recorded by Mangifera indica with the lowest concentration at 800 ppm followed by M. fasciculiflora and G. renghas. This indicates that crude plant extract is very effective in killing Ae. aegypti mosquitoes. This finding may lead to new low cost alternative, environmentally friendly method for mosquito control programs. To our knowledge, this is the first report on larvicidal bioefficacy from endemic Malaysian plants.

  16. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Peinado, Stephen A.; Velez, Ivan Dario; Osorio, Jorge E.

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  17. Diversity of containers and buildings infested with Aedes aegypti in Puerto Iguazú, Argentina.

    PubMed

    Costa, Federico; Fattore, Gladys; Abril, Marcelo

    2012-09-01

    Aedes aegypti is the main domestic vector of the dengue virus. Control measures to prevent dengue transmission focus on the treatment and elimination of this vector's oviposition sites. There is limited biological information on Ae. aegypti in Argentina. The aim of this study was to characterize Ae. aegypti oviposition sites in the city of Puerto Iguazú, Argentina. We surveyed an area covering nine neighborhoods in 2005. We identified 191 premises as positive for Ae. aegypti, giving a general house index of 9.6%. Premises classified as residential and vacant lots presented the highest number of infested premises, with 9% and 22% respectively. The total number of surveyed containers was 29,600. The overall container index (CI) was 1.1. The most frequently infested containers were water tanks (CI = 37). These preliminary results suggest that vacant lots and water tanks provide suitable breeding areas and environmental conditions, improving the chances of Ae. aegypti survival in Puerto Iguazú.

  18. Neuropeptidomics of the mosquito Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptidomic data were collected on the mosquito Ae. aegypti which is considered the most tractable mosquito species for physiological and endocrine studies. The data were solely obtained by direct mass spectrometric profiling, including tandem fragmentation, of selected tissues from single speci...

  19. Detection of Aedes aegypti, Aedes albopictus, and Aedes koreicus in the Area of Sochi, Russia.

    PubMed

    Ganushkina, Ludmila A; Patraman, Ivan V; Rezza, Giovanni; Migliorini, Luigi; Litvinov, Serguei K; Sergiev, Vladimir P

    2016-01-01

    Following the identification of Aedes (Ae.) aegypti in the Sochi area in Russia at the beginning of 2000, entomological surveys were conducted during the summers of 2007, 2011, and 2012, leading to the identification of Ae. albopictus and Ae. koreicus. These findings highlight Russia as being the only country in the World Health Organization European Region with a documented presence of both Ae. aegypti and Ae. albopictus mosquitoes. Both mosquito species are found on the coasts of the Black Sea. Control measures are needed to reduce the possible risks of importing exotic vector-borne infections, such as dengue and chikungunya.

  20. Characterization of Aedes aegypti (Diptera: Culcidae) production sites in urban Nicaragua.

    PubMed

    Hammond, Samantha N; Gordon, Aubree L; Lugo, Emperatriz del C; Moreno, Gilberto; Kuan, Guillermina M; López, María M; López, Josefa D; Delgado, Marco A; Valle, Sonia I; Espinoza, Perla M; Harris, Eva

    2007-09-01

    To characterize the production patterns of the dengue virus vector Aedes aegypti (L.) (Diptera: Culcidae), pupal surveys were conducted in selected neighborhoods of two major cities in Nicaragua. In León, 833 houses were visited in July and September 2003, corresponding to the beginning and middle of the dengue season; in Managua, 1,365 homes were visited in July 2003. In total, 7,607 containers were characterized, of which 11% were positive for Ae. aegypti larvae and 4% for pupae. In addition to barrels, potted plants and superficial water on tarps and in puddles were identified as highly productive sites. Univariate and multivariate analysis revealed frequency of container use, use of a lid, and rainwater filling as key variables affecting pupal positivity. Importantly, this survey demonstrated the risk associated with the presence of lids, the limited temporal efficacy of temephos, and the lack of association of water availability with risky water storage practices. Finally, we introduce the concept of an efficiency value and an accompanying graphical display system that can facilitate development of targeted pupal control strategies. These data underscore the importance of entomological surveillance of pupal productivity to gather information from which to derive streamlined, efficient, and effective vector control measures to reduce the density of Aedes mosquito larvae and pupae and thus the risk for dengue.

  1. Distribution of container-inhabiting Aedes larvae (Diptera: Culicidae) at a dengue focus in Thailand.

    PubMed

    Kittayapong, P; Strickman, D

    1993-05-01

    A Thai village with dengue transmission was surveyed for Aedes aegypti (L.) and Ae. albopictus (Skuse) larvae at the end of the rainy season. All containers (1,819) in 186 households were surveyed, recording the presence of larvae, container type, level of water, kind of cover, and location. The number of positive containers was proportional to the total number of containers in a household. Standard water jars (approximately 200 liters) contributed 57% and small water jars (< 100 liters) contributed 16% of the total infested containers. Each of the other 10 container types contributed < or = 10% of the total infested containers and were not statistically different from each other. Containers inside houses were infested significantly more often than were those outdoors, those under elevated houses or roofs, or those in bathrooms. Unexpectedly, standard water jars located outdoors that were covered with commercial metal lids were infested significantly more often than were uncovered jars.

  2. Mitochondrial Gene Cytochrome b Developmental and Environmental Expression in Aedes aegypti (Diptera: Culicidae)

    DTIC Science & Technology

    2009-11-01

    Experiments. Adult female (3- and 10- d-old) Ae. aegypti were treated topically with per- methrin/acetone at 2.5 105 g (high dose, HD) and 1.25 105...downwas recorded for each collection time point and at 24 h postpermethrin treatment (Supplemental Ta- ble 5). Heat-ShockExperiments.Ae. aegypti females ...Radiation Experiments. For the UV-radiation time course study, Ae. aegypti females (3, 10, and 17 d old)wereexposed toagermicidal lamp(30W,G30TB, General

  3. Morphological and genetic variability within Aedes aegypti in Niakhar, Senegal.

    PubMed

    Paupy, Christophe; Brengues, Cécile; Ndiath, Ousmane; Toty, Céline; Hervé, Jean-Pierre; Simard, Frédéric

    2010-05-01

    Aedes aegypti (Linné, 1762) is a major vector of arboviruses such as Yellow Fever, Dengue and Chikungunya. In Africa, where the species exhibits major variations in morphology, ecology, behavior and vector competence, two subspecies have been described: a light form, named Ae. aegypti aegypti (Aaa) with highly domestic and anthropophilic habits and a cosmotropical distribution; and a dark form, referred to as Ae. aegypti formosus (Aaf), which is endemic to Africa and thrives in sylvan environments. In East Africa, both forms were described to occur in sympatry whereas only Aaf was reported from Central/West Africa. However, recent findings suggest Aaa was also common in Senegal. Here, we report on a longitudinal survey of morphological and genetic variability of Ae. aegypti sampled in the rural environment of Niakhar, Senegal. In agreement with recent findings, most of specimens we analyzed were classified as Aaa suggesting typical Aaf was scarce in the studied area. Among Aaa, significant temporal variations in abdominal pale scales pattern were detected. Depending on the season and the nature of larval breeding places, the specimens (particularly females) tend to segregate in two main morphological groups. Microsatellite-based estimates of genetic differentiation did not provide any clear evidence that the two groups were genetically distinct. Overall, these results improve our understanding of the diversity of Ae. aegypti in West Africa, where data are crucially lacking.

  4. Preliminary data on the performance of Aedes aegypti and Aedes albopictus immatures developing in water-filled tires in Rio de Janeiro.

    PubMed

    Honório, Nildimar Alves; Cabello, Pedro H; Codeço, Cláudia T; Lourenço-de-Oliveira, Ricardo

    2006-03-01

    A monthly survey of Aedes aegypti and Aedes albopictus immatures in discarded tires at a site in metropolitan Rio de Janeiro showed that Ae. albopictus was much more abundant in the rainy season, but Ae. aegypti abundance showed a less clear seasonal pattern. Pupal masses for Ae. albopictus showed a seasonal trend. In contrast, Ae. aegypti pupae did not show any clear trend in weight. Large Ae. albopictus pupae were found in the warmer months, when water volume was higher, pH lower and larval abundance lower. Further studies should be carried out to assess how seasonal variations in body size may impact vector competence of these species in Brazil.

  5. Age-Stage, Two-Sex Life Table Characteristics of Aedes albopictus and Aedes Aegypti in Penang Island, Malaysia.

    PubMed

    Maimusa, Hamisu A; Ahmad, Abu Hassan; Kassim, Nur Faeza A; Rahim, Junaid

    2016-03-01

    The life table developmental attributes of laboratory colonies of wild strains of Aedes albopictus and Aedes aegypti were analyzed and compared based on the age-stage, two-sex life table. Findings inclusive in this study are: adult preoviposition periods, total preoviposition period, mean intrinsic rate of increase (r), mean finite rate of increase (λ), net reproductive rates (R0), and mean generation time (T). The total preadult development time was 9.47 days for Ae. albopictus and 8.76 days for Ae. aegypti. The life expectancy was 19.01 days for Ae. albopictus and 19.94 days for Ae. aegypti. Mortality occurred mostly during the adult stage. The mean development time for each stage insignificantly correlated with temperature for Ae. albopictus (r  =  -0.208, P > 0.05) and (r  =  -0.312, P > 0.05) for Ae. aegypti. The population parameters suggest that Ae. albopictus and Ae. aegypti populations are r-strategists characterized by a high r, a large R0, and short T. This present study provides the first report to compare the life parameters of Ae. albopictus and Ae. aegypti strains from Penang island, Malaysia.

  6. CLONING AND EXPRESSING TRYPSIN MODULATING OOSTATIC FACTOR IN Chlorella desiccata TO CONTROL MOSQUITO LARVAE.

    PubMed

    Borovsky, Dov; Sterner, Andeas; Powell, Charles A

    2016-01-01

    The insect peptide hormone trypsin modulating oostatic factor (TMOF), a decapeptide that is synthesized by the mosquito ovary and controls the translation of the gut's trypsin mRNA was cloned and expressed in the marine alga Chlorella desiccata. To express Aedes aegypti TMOF gene (tmfA) in C. desiccata cells, two plasmids (pYES2/TMOF and pYDB4-tmfA) were engineered with pKYLX71 DNA (5 Kb) carrying the cauliflower mosaic virus (CaMV) promoter 35S(2) and the kanamycin resistant gene (neo), as well as, a 8 Kb nitrate reductase gene (nit) from Chlorella vulgaris. Transforming C. desiccata with pYES2/TMOF and pYDB4-tmfA show that the engineered algal cells express TMOF (20 ± 4 μg ± SEM and 17 ± 3 μg ± SEM, respectively in 3 × 10(8) cells) and feeding the cells to mosquito larvae kill 75 and 60% of Ae. aegypti larvae in 4 days, respectively. Southern and Northern blots analyses show that tmfA integrated into the genome of C. desiccata by homologous recombination using the yeast 2 μ circle of replication and the nit in pYES2/TMOF and pYDB4-tmfA, respectively, and the transformed algal cells express tmfA transcript. Using these algal cells it will be possible in the future to control mosquito larvae in the marsh.

  7. Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan.

    PubMed

    Rasheed, S B; Boots, M; Frantz, A C; Butlin, R K

    2013-12-01

    Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long-range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human-aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.

  8. Use of transgenic Aedes aegypti in Brazil: risk perception and assessment

    PubMed Central

    Aragão, Francisco José Lima; Colli, Walter; Dellagostin, Odir Antônio; Finardi-Filho, Flávio; Hirata, Mario Hiroyuki; Lira-Neto, Amaro de Castro; Almeida de Melo, Marcia; Nepomuceno, Alexandre Lima; Gorgônio da Nóbrega, Francisco; Delfino de Sousa, Gutemberg; Valicente, Fernando Hercos; Zanettini, Maria Helena Bodanese

    2016-01-01

    Abstract The OX513A strain of Aedes aegypti, which was developed by the British company Oxitec, expresses a self-limiting transgene that prevents larvae from developing to adulthood. In April 2014, the Brazilian National Technical Commission on Biosafety completed a risk assessment of OX513A and concluded that the strain did not present new biological risks to humans or the environment and could be released in Brazil. At that point, Brazil became the first country to approve the unconstrained release of a genetically modified mosquito. During the assessment, the commission produced a comprehensive list of – and systematically analysed – the perceived hazards. Such hazards included the potential survival to adulthood of immature stages carrying the transgene – should the transgene fail to be expressed or be turned off by exposure to sufficient environmental tetracycline. Other perceived hazards included the potential allergenicity and/or toxicity of the proteins expressed by the gene, the potential for gene flow or increased transmission of human pathogens and the occupation of vacant breeding sites by other vector species. The Zika epidemic both elevated the perceived importance of Ae. aegypti as a vector – among policy-makers and regulators as well as the general public – and increased concerns over the release of males of the OX513A strain. We have therefore reassessed the potential hazards. We found that release of the transgenic mosquitoes would still be both safe and of great potential value in the control of diseases spread by Ae. aegypti, such as chikungunya, dengue and Zika. PMID:27843167

  9. Undesirable Consequences of Insecticide Resistance following Aedes aegypti Control Activities Due to a Dengue Outbreak

    PubMed Central

    Maciel-de-Freitas, Rafael; Avendanho, Fernando Campos; Santos, Rosangela; Sylvestre, Gabriel; Araújo, Simone Costa; Lima, José Bento Pereira; Martins, Ademir Jesus; Coelho, Giovanini Evelim; Valle, Denise

    2014-01-01

    Background During a dengue outbreak with co-circulation of DENV-1 and -2 in the city of Boa Vista, one patient was diagnosed with DENV-4, a serotype supposed absent from Brazil for almost 30 years. The re-emergence of DENV-4 triggered the intensification of mechanical and chemical Aedes aegypti control activities in order to reduce vector density and avoid DENV-4 dissemination throughout the country. Methods/Principal Findings Vector control activities consisted of (a) source reduction, (b) application of diflubenzuron against larvae and (c) vehicle-mounted space spraying of 2% deltamethrin to eliminate adults. Control activity efficacy was monitored by comparing the infestation levels and the number of eggs collected in ovitraps before and after interventions, performed in 22 Boa Vista districts, covering an area of ∼80% of the city and encompassing 56,837 dwellings. A total of 94,325 containers were eliminated or treated with diflubenzuron. The most frequently positive containers were small miscellaneous receptacles, which corresponded to 59% of all positive breeding sites. Insecticide resistance to deltamethrin was assessed before, during and after interventions by dose-response bioassays adopting WHO-based protocols. The intense use of the pyrethroid increased fourfold the resistance ratio of the local Ae. aegypti population only six months after the beginning of vector control. Curiously, this trend was also observed in the districts in which no deltamethrin was applied by the public health services. On the other hand, changes in the resistance ratio to the organophosphate temephos seemed less influenced by insecticide in Boa Vista. Conclusions Despite the intense effort, mosquito infestation levels were only slightly reduced. Besides, the median number of eggs in ovitraps remained unaltered after control activity intensification. The great and rapid increase in pyrethroid resistance levels of natural Ae. aegypti populations is discussed in the context of

  10. Transstadial Effects of Bti on Traits of Aedes aegypti and Infection with Dengue Virus

    PubMed Central

    Alto, Barry W.; Lord, Cynthia C.

    2016-01-01

    Most mosquito control efforts are primarily focused on reducing the adult population size mediated by reductions in the larval population, which should lower risk of disease transmission. Although the aim of larviciding is to reduce larval abundance and thus recruitment of adults, nonlethal effects on adults are possible, including transstadial effects on phenotypes of adults such as survival and pathogen infection and transmission. In addition, the mortality induced by control efforts may act in conjunction with other sources of mosquito mortality in nature. The consequences of these effects and interactions may alter the potential of the population to transmit pathogens. We tested experimentally the combined effects of a larvicide (Bacillus thuringiensis ssp. israelensis, Bti) and competition during the larval stages on subsequent Aedes aegypti (Linnaeus) traits, population performance, and susceptibility to dengue-1 virus infection. Ae. aegypti that survived exposure to Bti experienced accelerated development, were larger, and produced more eggs with increasing amounts of Bti, consistent with competitive release among surviving mosquitoes. Changing larval density had no significant interactive effect with Bti treatment on development and growth to adulthood. Larval density, but not Bti or treatment interaction, had a strong effect on survival of adult Ae. aegypti females. There were sharper declines in cumulative daily survival of adults from crowded than uncrowded larval conditions, suggesting that high competition conditions of larvae may be an impediment to transmission of dengue viruses. Rates of infection and dengue-1 virus disseminated infections were found to be 87±13% and 88±12%, respectively. There were no significant treatment effects on infection measurements. Our findings suggest that larvicide campaigns using Bti may reduce the number of emerged adults, but survivors will have a fitness advantage (growth, development, enhanced production of eggs

  11. Comparison of the insecticide susceptibilities of laboratory strains of Aedes aegypti and Aedes albopictus.

    PubMed

    Gómez, Andrea; Seccacini, Emilia; Zerba, Eduardo; Licastro, Susana

    2011-12-01

    A susceptible strain of Aedes albopictus derived from the Gainesville strain (Florida, USA) was established in our laboratory. The larvicidal efficacies of the neurotoxic insecticides temephos, permethrin and the pure cis and trans-permethrin isomers and the microbial insecticide Bacillus thuringiensis israelensis (Bti) against Ae. albopictus were estimated and compared to a susceptible strain of Aedes aegypti. The larvicidal effect of insect growth regulator pyriproxyfen was also evaluated in both mosquito strains. The median lethal concentration/median emergency inhibition values for Ae. aegypti and Ae. albopictus, respectively, were: temephos, 3.058 and 6.632 ppb, permethrin, 3.143 and 4.933 ppb, cis-permethrin, 4.457 and 10.068 ppb, trans-permethrin, 1.510 and 3.883 ppb, Bti, 0.655 and 0.880 ppb and pyriproxyfen, 0.00774 and 0.01642 ppb. Ae. albopictus was more tolerant than Ae. aegypti to all six larvicides evaluated. The order of susceptibility for Ae. aegypti was pyriproxyfen > Bti > trans-permethrin > temephos > permethrin > cis-permethrin and for Ae. albopictus was pyriproxyfen > Bti > trans-permethrin > permethrin > temephos > cis-permethrin. Because both species can be found together in common urban, suburban and rural breeding sites, the results of this work provide baseline data on the susceptibility of Ae. albopictus to insecticides commonly used for controlling Ae. aegypti in the field.

  12. Susceptibility of Florida Aedes aegypti and Aedes albopictus to dengue viruses from Puerto Rico.

    PubMed

    Alto, Barry W; Smartt, Chelsea T; Shin, Dongyoung; Bettinardi, David; Malicoate, Jolene; Anderson, Sheri L; Richards, Stephanie L

    2014-12-01

    Locally acquired dengue cases in the continental U.S. are rare. However, outbreaks of dengue-1 during 2009, 2010, and 2013 in Florida and dengue-1 and -2 in Texas suggest vulnerability to transmission. Travel and commerce between Puerto Rico and the U.S. mainland is common, which may pose a risk for traveler-imported dengue cases. Mosquitoes were collected in Florida and used to evaluate their susceptibility to dengue viruses (DENV) from Puerto Rico. Aedes aegypti and Ae. albopictus were susceptible to virus infection with DENV-1 and -2. No significant differences were observed in rates of midgut infection or dissemination between Ae. aegypti or Ae. albopictus for DENV-1 (6-14%). Aedes aegypti was significantly more susceptible to midgut infection with DENV-2 than Ae. albopictus (Ae. aegypti, ∼28%; Ae. albopictus, ∼9%). The dissemination rate with dengue-2 virus for Ae. aegypti (23%) was greater than Ae. albopictus (0%), suggesting that Ae. albopictus is not likely to be an important transmitter of the DENV-2 isolate from Puerto Rico. These results are discussed in light of Florida's vulnerability to DENV transmission.

  13. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae).

    PubMed

    Edwin, Edward-Sam; Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Ponsankar, Athirstam; Pradeepa, Venkatraman; Selin-Rani, Selvaraj; Kalaivani, Kandaswamy; Hunter, Wayne B; Abdel-Megeed, Ahmed; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2016-11-01

    The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management.

  14. Recent Changes in the Local Distribution of Aedes aegypti (Diptera: Culicidae) in South Florida, USA.

    PubMed

    Hopperstad, K A; Reiskind, M H

    2016-07-01

    Disease transmission is directly tied to the spatial distribution of disease vectors. The distribution of Aedes aegypti (L.) in the United States has diminished since the introduction of Aedes albopictus (Skuse) in the 1980s. However, Ae. aegypti persists in some urban areas, particularly in south Florida. The pattern of habitat segregation of these two species is well documented, but the consistency of this phenomenon over time is unknown. To examine the dynamics of the local distributions of these two species, we studied the spatial pattern of Ae. aegypti and Ae. albopictus over time at a fine landscape scale in Palm Beach County, FL. We compared patterns from 2006-2007 with their distributions in 2013, taking into account abiotic factors of microclimate and land cover. We found evidence for a local shift in Ae. aegypti distribution, but could not attribute this to changes in measured abiotic factors. Alternatively, the interaction between Ae. aegypti and Ae. albopictus that initially resulted Ae. aegypti decline may be being attenuated through natural selection. This study confirms the importance of monitoring the changing ranges of these two important vector species.

  15. Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida.

    PubMed

    Reiskind, M H; Lounibos, L P

    2013-12-01

    Invasion by mosquito vectors of disease may impact the distribution of resident mosquitoes, resulting in novel patterns of vectors and concomitant risk for disease. One example of such an impact is the invasion by Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] (Diptera: Culicidae) of North America and this species' interaction with Aedes aegypti L. (Stegomyia aegypti L). We hypothesized that Ae. aegypti would be found in urban, coastal areas that experience hotter and drier conditions, whereas Ae. albopictus would be more commonly found in suburban and rural areas that are cooler and wetter. In addition, we hypothesized that Ae. aegypti would be more abundant early in the wet season, whereas Ae. albopictus would be more abundant later in the wet season. Urban areas were drier, hotter and contained more Ae. aegypti than suburban or rural areas. Aedes aegypti was relatively more abundant early in the wet season, whereas Ae. albopictus was more abundant in both the late wet season and the dry season. The spatial patterns of inter- and intraspecific encounters between these species were also described. The distribution of these mosquitoes is correlated with abiotic conditions, and with temperature, humidity and the relative availability of rain-filled containers. Understanding the ecological determinants of species distribution can provide insight into the biology of these vectors and important information for their appropriate control.

  16. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases

    PubMed Central

    Dixon, Daniel P.; Van Ekeris, Leslie; Linser, Paul J.

    2017-01-01

    In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the

  17. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases.

    PubMed

    Dixon, Daniel P; Van Ekeris, Leslie; Linser, Paul J

    2017-02-21

    In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its bicarbonate/carbonate form as one of the major buffers of cellular and extracellular pH. The conversion of metabolic carbon dioxide to bicarbonate/carbonate is accomplished by a family of enzymes encoded by the carbonic anhydrase gene family. This study characterizes Aedes aegypti carbonic anhydrases using bioinformatic, molecular, and immunohistochemical methods. Our analyses show that there are fourteen Aedes aegypti carbonic anhydrase genes, two of which are expressed as splice variants. The carbonic anhydrases were classified as either integral membrane, peripheral membrane, mitochondrial, secreted, or soluble cytoplasmic proteins. Using polymerase chain reaction and Western blotting, one of the carbonic anhydrases, Aedes aegypti carbonic anhydrase 9, was analyzed and found in each life stage, male/female pupae, male/female adults, and in the female posterior midgut. Next, carbonic anhydrase 9 was analyzed in larvae and adults using confocal microscopy and was detected in the midgut regions. According to our analyses, carbonic anhydrase 9 is a soluble cytoplasmic enzyme found in the alimentary canal of larvae and adults and is expressed throughout the life cycle of the mosquito. Based on previous physiological analyses of adults and larvae, it appears AeCA9 is one of the major carbonic anhydrases involved in producing bicarbonate/carbonate which is involved in pH regulation and ion transport processes in the alimentary canal. Detailed understanding of the molecular bases of ion homeostasis in mosquitoes will provide targets for novel mosquito control strategies into the

  18. Indoor development of Aedes aegypti in Germany, 2016

    PubMed Central

    Kampen, Helge; Jansen, Stephanie; Schmidt-Chanasit, Jonas; Walther, Doreen

    2016-01-01

    In spring 2016, a German traveller returning from Martinique cultivated imported plant offsets in her home, and accidentally bred Aedes aegypti. Thirteen adult mosquito specimens submitted for identification and the traveller were tested for Zika, dengue and chikungunya virus infections, with negative results. The detection of Ae. aegypti by the ‘Mueckenatlas’ project demonstrates the value of this passive surveillance scheme for potential public health threats posed by invasive mosquitoes in Germany. PMID:27918261

  19. Effect of Temperature on the Vector Efficiency of Aedes aegypti for Dengue 2 Virus

    DTIC Science & Technology

    1986-06-26

    VECTOR EFFICIENCY OF AEDES AEGYPTI FOR DENGUE 2 VIRUS DOUGLAS M. WATTS,* DONALD S. BURKE,** BRUCE A. HARRISON,-/- RICHARD E. WHITMIRE,* AND ANANDA...the ability of Aedes aegypti to transmit dengue (DEN) 2 virus to rhesus monkeys was assessed as a possible explanation for the seasonal variation...in the incidence of dengue hemorrhagic fever in Bangkok, Thailand. In two laboratory experiments, a Bangkok strain of Ae. aegypti was allowed to feed

  20. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles.

    PubMed

    Murugan, Kadarkarai; Priyanka, Vishwanathan; Dinesh, Devakumar; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Suresh, Udaiyan; Chandramohan, Balamurugan; Roni, Mathath; Nicoletti, Marcello; Alarfaj, Abdullah A; Higuchi, Akon; Munusamy, Murugan A; Khater, Hanem F; Messing, Russell H; Benelli, Giovanni

    2015-10-01

    Aedes aegypti is a primary vector of dengue and chikungunya. The use of synthetic insecticides to control Aedes populations often leads to high operational costs and adverse non-target effects. Botanical extracts have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles, but their impact against predators of mosquito larvae has not been well studied. We propose a single-step method for the biosynthesis of silver nanoparticles (AgNP) using the extract of Artemisia vulgaris leaves as a reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). SEM and XRD showed that AgNP were polydispersed, crystalline, irregularly shaped, with a mean size of 30-70 nm. EDX confirmed the presence of elemental silver. FTIR highlighted that the functional groups from plant metabolites capped AgNP, stabilizing them over time. We investigated the mosquitocidal properties of A. vulgaris leaf extract and green-synthesized AgNP against larvae and pupae of Ae. aegypti. We also evaluated the predatory efficiency of Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against larvae of Ae. aegypti, under laboratory conditions and in an aquatic environment treated with ultra-low doses of AgNP. AgNP were highly toxic to Ae. aegypti larval instars (I-IV) and pupae, with LC50 ranging from 4.4 (I) to 13.1 ppm (pupae). In the lab, the mean number of prey consumed per tadpole per day was 29.0 (I), 26.0 (II), 21.4 (III), and 16.7 (IV). After treatment with AgNP, the mean number of mosquito prey per tadpole per day increased to 34.2 (I), 32.4 (II), 27.4 (III), and 22.6 (IV). Overall, this study highlights the importance of a synergistic approach based on biocontrol agents and botanical nano-insecticides for mosquito control.

  1. Differentiation of Aedes aegypti and Aedes notoscriptus (Diptera: Culicidae) eggs using scanning electron microscopy.

    PubMed

    Faull, Katherine J; Williams, Craig R

    2016-05-01

    Aedes notoscriptus and Aedes aegypti are both peri-domestic, invasive container-breeding mosquitoes. While the two potential arboviral vectors are bionomically similar, their sympatric distribution in Australia is limited. In this study, analyses of Ae. aegypti and Ae. notoscriptus eggs were enabled using scanning electron microscopy. Significant variations in egg length to width ratio and outer chorionic cell field morphology between Ae. aegypti and Ae. notoscriptus enabled distinction of the two species. Intraspecific variations in cell field morphology also enabled differentiation of the separate populations of both species, highlighting regional and global variation. Our study provides a comprehensive comparative analysis of inter- and intraspecific egg morphological and morphometric variation between two invasive container-breeding mosquitoes. The results indicate a high degree of intraspecific variation in Ae. notoscriptus egg morphology when compared to the eggs of Ae. aegypti. Comparative morphological analyses of Ae. aegypti and Ae. notoscriptus egg attributes using SEM allows differentiation of the species and may be helpful in understanding egg biology in relation to biotope of origin.

  2. Alkaline phosphatases and aminopeptidases are altered in a Cry11Aa resistant strain of Aedes aegypti

    PubMed Central

    Lee, Su-Bum; Aimanova, Karlygash G.; Gill, Sarjeet S.

    2014-01-01

    Bacillus thuringiensis subsp. israelensis (Bti) has been widely for the biological control of mosquito populations. However, the mechanism of Bti toxins is still not fully understood. To further elucidate the mechanism of Bti toxins, we developed an Aedes aegypti resistant strain that shows high-level resistance to Cry11Aa toxin. After 27 selections with Cry11Aa toxin, the larvae showed a 124-fold resistance ratio for Cry11Aa (strain G30). G30 larvae showed cross-resistance to Cry4Aa (66-fold resistance), less to Cry4Ba (13-fold), but not to Cry11Ba (2-fold). Midguts from these resistant larvae did not show detectable difference in the processing of the Cry11Aa toxin compared to that in susceptible larvae (WT). Brush border membrane vesicles (BBMV) from resistant larvae bound slightly less Cry11Aa compared to WT BBMV. To identify potential proteins associated with Cry11A resistance, not only transcript changes in the larval midgut were analyzed using Illumina sequencing and qPCR, but alterations of previously identified receptor proteins were investigated using immunoblots. The transcripts of 375 genes were significantly increased and those of 208 genes were down regulated in the resistant larvae midgut compared to the WT. None of the transcripts for previously identified receptors of Cry11Aa (Aedes cadherin, ALP1, APN1, and APN2) were altered in these analyses. The genes for the identified functional receptors in resistant larvae midgut did not contain any mutation in their sequences nor was there any change in their transcript expression levels compared to WT. However, ALP proteins were expressed at reduced levels (~40%) in the resistant strain BBMV. APN proteins and their activity were also slightly reduced in resistance strain. The transcript levels of ALPs (AAEL013330 and AAEL015070) and APNs (AAEL008158, AAEL008162) were significantly reduced. These results strongly suggest that ALPs and APNs could be associated with Cry11Aa resistance in Ae. aegypti. PMID

  3. Further evidences for the mode of action of the larvicidal m-pentadecadienyl-phenol isolated from Myracrodruon urundeuva seeds against Aedes aegypti.

    PubMed

    Souza, Terezinha M; Menezes, Erika S Bezerra; Oliveira, Rodrigo V; Almeida Filho, Luiz Carlos P; Martins, Jorge M; Moreno, Frederico B; Monteiro-Moreira, Ana Cristina O; Moura, Arlindo A Araripe; Carvalho, Ana F Urano

    2015-12-01

    Nowadays, dengue fever is considered the most important arbovirosis worldwide and its control is still based upon combating the vector Aedes aegypti. Besides monitoring of mosquito populations resistant to conventional insecticides, the search for new environmentally safe insecticides and conduction of molecular studies focusing on the elucidation of mode of action and possible resistance mechanisms are considered the key for a sustainable management of the mosquito vector. Thus, the present work aimed to assess changes in protein expression of 3rd-instar larvae of Ae. aegypti after exposure to the natural insecticide m-pentadecadienyl-phenol. Bidimensional electrophoresis followed by mass spectrometry resulted in identification of 12 proteins differentially expressed between control and treated groups. Larvae exposed to the toxic compound for 24h showed elevated detoxification response (glutathione-S-transferase), increased levels of stress-related proteins (HSP70) as well as evidence of lysosome stabilization to enable survival. Furthermore, expression of proteins involved in protection of peritrophic membrane and metabolism of lipids indicated systemic effect of toxic effects in treated larvae.

  4. First report of Stegomyia aegypti (= Aedes aegypti) in Mexico City, Mexico.

    PubMed

    Kuri-Morales, P; Correa-Morales, F; González-Acosta, C; Sánchez-Tejeda, G; Dávalos-Becerril, E; Fernanda Juárez-Franco, M; Díaz-Quiñonez, A; Huerta-Jimenéz, H; Mejía-Guevara, M D; Moreno-García, M; González-Roldán, J F

    2017-01-20

    Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is a species of mosquito that is currently widespread in Mexico. Historically, the mosquito has been distributed across most tropical and subtropical areas lower than 1700 m a.s.l. Currently, populations that are found at higher altitudes in regions with cold and dry climates suggest that these conditions do not limit the colonization and population growth of S. aegypti. During a survey of mosquitoes in September 2015, larvae of S. aegypti mosquitoes were found in two different localities in Mexico City, which is located at about 2250 m a.s.l. Mexico City is the most populous city in Mexico and has inefficient drainage and water supply systems. These factors may result in the provision of numerous larval breeding sites. Mosquito monitoring and surveillance are now priorities for the city.

  5. Comparison of BG-Sentinel® Trap and Oviposition Cups for Aedes aegypti and Aedes albopictus Surveillance in Jacksonville, Florida, USA.

    PubMed

    Wright, Jennifer A; Larson, Ryan T; Richardson, Alec G; Cote, Noel M; Stoops, Craig A; Clark, Marah; Obenauer, Peter J

    2015-03-01

    The BG-Sentinel® (BGS) trap and oviposition cups (OCs) have both proven effective in the surveillance of Aedes species. This study aimed to determine which of the 2 traps could best characterize the relative population sizes of Aedes albopictus and Aedes aegypti in an urban section of Jacksonville, FL. Until 1986, Ae. aegypti was considered the dominant container-breeding species in urban northeastern Florida. Since the introduction of Ae. albopictus, Ae. aegypti has become almost completely extirpated. In 2011, a resurgence of Ae. aegypti was detected in the urban areas of Jacksonville; thus this study initially set out to determine the extent of Ae. aegypti reintroduction to the area. We determined that the BGS captured a greater number of adult Ae. aegypti than Ae. albopictus, while OCs did not monitor significantly different numbers of either species, even in areas where the BGS traps suggested a predominance of one species over the other. Both traps were effective at detecting Aedes spp.; however, the BGS proved more diverse by detecting over 20 other species as well. Our results show that in order to accurately determine vectorborne disease threats and the impact of control operations on these 2 species, multiple trapping techniques should be utilized when studying Ae. aegypti and Ae. albopictus population dynamics.

  6. Patterns of Aedes aegypti (Diptera: Culicidae) infestation and container productivity measured using pupal and Stegomyia indices in northern Argentina.

    PubMed

    Garelli, F M; Espinosa, M O; Weinberg, D; Coto, H D; Gaspe, M S; Gürtler, R E

    2009-09-01

    A citywide control program of Aedes aegypti (L.) (Diptera: Culicidae) mainly based on the use of larvicides reduced infestations but failed to achieve the desired target levels in Clorinda, northeastern Argentina, over 5 yr of interventions. To understand the underlying causes of persistent infestations and to develop new control tactics adapted to the local context, we conducted two pupal surveys in a large neighborhood with approximately 2,500 houses and recorded several variables for every container inspected in fall and spring 2007. In total, 4,076 lots and 4,267 containers were inspected over both surveys, and 8,391 Ae. aegypti pupae were collected. Large tanks used for potable water storage were the most abundant and the most productive type of container, accounting for 65-84% of all the pupae collected. Therefore, large tanks were key containers and candidates for improved targeted interventions. Multivariate analysis showed that containers located in the yard, at low sun exposure, unlidded, filled with rain water, and holding polluted water were all more likely to be infested by larvae or pupae. When only infested containers were considered, productivity of pupae was most closely associated with large tanks and rain water. A stochastic simulation model was developed to calculate the expected correlations between pupal and Stegomyia indices according to the characteristics of the distribution of larvae and pupae per container and the spatial scale at which the indices were computed. The correlation between pupal and Stegomyia indices is expected to increase as infestation levels decline.

  7. Larvicidal efficacies of plants from Midwestern Brazil: melianodiol from Guarea kunthiana as a potential biopesticide against Aedes aegypti

    PubMed Central

    Sarmento, Ulana Chaves; Miguita, Carlos Henrique; Almeida, Luís Henrique de Oliveira; Gaban, Cleusa Rocha Garcia; da Silva, Lilliam May Grespan Estodutto; de Souza, Albert Schiaveto; Garcez, Walmir Silva; Garcez, Fernanda Rodrigues

    2016-01-01

    A total of 36 ethanol extracts from different anatomical parts of 27 plant species (18 families), native to the Pantanal and Cerrado biomes in Midwest Brazil, was assessed for their effect against Aedes aegypti larvae, the vector of dengue, hemorrhagic dengue, Zika and chikungunya fevers. Only the extract obtained from seeds of Guarea kunthiana (Meliaceae) proved active (LC50 = 169.93 μg/mL). A bioassay-guided investigation of this extract led to the isolation and identification of melianodiol, a protolimonoid, as the active constituent (LC50 = 14.44 mg/mL). Meliantriol, which was also obtained from the bioactive fraction, was nevertheless devoid of any larval toxicity, even at the highest concentration tested (LC50 > 100.0 mg/mL). These results indicate that the larvicidal activity of melianodiol stems from the presence of the carbonyl moiety at C-3 in the 21,23-epoxy-21,24,25-trihydroxy-tirucall-7-ene-type skeleton. The structures of both protolimonoids were established on the basis of spectral methods (1H and 13C NMR and MS). This is the first report on the toxicity of melianodiol against Ae. aegypti larvae. Based on the results, melianodiol can be regarded as a potential candidate for use as an ecologically sound biocontrol agent for reducing the larval population of this vector. PMID:27333366

  8. Dynamic expression of genes encoding subunits of inward rectifier potassium (Kir) channels in the yellow fever mosquito Aedes aegypti.

    PubMed

    Yang, Zhongxia; Statler, Bethanie-Michelle; Calkins, Travis L; Alfaro, Edna; Esquivel, Carlos J; Rouhier, Matthew F; Denton, Jerod S; Piermarini, Peter M

    2017-02-01

    Inward rectifier potassium (Kir) channels play fundamental roles in neuromuscular, epithelial, and endocrine function in mammals. Recent research in insects suggests that Kir channels play critical roles in the development, immune function, and excretory physiology of fruit flies and/or mosquitoes. Moreover, our group has demonstrated that mosquito Kir channels may serve as valuable targets for the development of novel insecticides. Here we characterize the molecular expression of 5 mRNAs encoding Kir channel subunits in the yellow fever mosquito, Aedes aegypti: Kir1, Kir2A-c, Kir2B, Kir2B', and Kir3. We demonstrate that 1) Kir mRNA expression is dynamic in whole mosquitoes, Malpighian tubules, and the midgut during development from 4th instar larvae to adult females, 2) Kir2B and Kir3 mRNA levels are reduced in 4th instar larvae when reared in water containing an elevated concentration (50mM) of KCl, but not NaCl, and 3) Kir mRNAs are differentially expressed in the Malpighian tubules, midgut, and ovaries within 24h after blood feeding. Furthermore, we provide the first characterization of Kir mRNA expression in the anal papillae of 4th instar larval mosquitoes, which indicates that Kir2A-c is the most abundant. Altogether, the data provide the first comprehensive characterization of Kir mRNA expression in Ae. aegypti and offer insights into the putative physiological roles of Kir subunits in this important disease vector.

  9. Patterns of Aedes aegypti (Diptera: Culicidae) Infestation and Container Productivity Measured Using Pupal and Stegomyia Indices in Northern Argentina

    PubMed Central

    Garelli, F. M.; Espinosa, M. O.; Weinberg, D.; Coto, H. D.; Gaspe, M. S.; Gürtler, R. E.

    2011-01-01

    A citywide control program of Aedes aegypti (L.) (Diptera: Culicidae) mainly based on the use of larvicides reduced infestations but failed to achieve the desired target levels in Clorinda, northeastern Argentina, over 5 yr of interventions. To understand the underlying causes of persistent infestations and to develop new control tactics adapted to the local context, we conducted two pupal surveys in a large neighborhood with ≈2,500 houses and recorded several variables for every container inspected in fall and spring 2007. In total, 4,076 lots and 4,267 containers were inspected over both surveys, and 8,391 Ae. aegypti pupae were collected. Large tanks used for potable water storage were the most abundant and the most productive type of container, accounting for 65–84% of all the pupae collected. Therefore, large tanks were key containers and candidates for improved targeted interventions. Multivariate analysis showed that containers located in the yard, at low sun exposure, unlidded, filled with rain water, and holding polluted water were all more likely to be infested by larvae or pupae. When only infested containers were considered, productivity of pupae was most closely associated with large tanks and rain water. A stochastic simulation model was developed to calculate the expected correlations between pupal and Stegomyia indices according to the characteristics of the distribution of larvae and pupae per container and the spatial scale at which the indices were computed. The correlation between pupal and Stegomyia indices is expected to increase as infestation levels decline. PMID:19769052

  10. Long-lasting effects of a Bacillus thuringiensis serovar israelensis experimental tablet formulation for Aedes aegypti (Diptera: Culicidae) control.

    PubMed

    Armengol, Gemma; Hernandez, Johana; Velez, Jose G; Orduz, Sergio

    2006-10-01

    Dengue is a growing public health problem in many tropical and subtropical countries worldwide. At present, the only method of controlling or preventing the disease is to eliminate its vector, Aedes aegypti (L.) (Diptera: Culicidae). In the current study, an experimental larvicide tablet formulation XL-47 based on Bacillus thuringiensis serovar israelensis (Bti) and containing 4.8% of technical powder was developed. This formulation was evaluated against Ae. aegypti in three different sets of experiments, under field-simulated conditions: two experiments were indoors and under partial sunlight exposure and one experiment was outdoors with sunlight exposure. Larvae were added throughout the experiment two times per week, and the residual larvicidal activity was recorded daily. Pupal formation was reduced in the containers with Bti by > 80% in relation to the containers without treatment for 12 wk; to our knowledge, this is the longest period of control reported for a Bti tablet formulation outdoors under sunlight exposure. Moreover, samples from the top, middle, and bottom of the water column were collected to perform bacterial plate counts and toxicity assays. The Bti population and the active ingredient of the tablet formulation remained mainly at the bottom of the containers and mosquito larvae reached the formulation by diving and shredding the tablet's material. In conclusion, the experimental tablet formulation XL-47 showed an inhibition of pupal formation that lasted for long periods under sunlight exposure.

  11. Larvicidal activity of catechin isolated from Leucas aspera against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Elumalai, Devan; Hemavathi, Maduraiveeran; Hemalatha, Periaswamy; Deepaa, Chandrasekar Vijayalakshmi; Kaleena, Patheri Kunyil

    2016-03-01

    Vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of plant origin my serve as an alternative biocontrol technique in the future. The aim of the present study was to evaluate the larvicidal activity of fractions and compounds from the whole-plant methanol extracts of Leucas aspera on the fourth-instar larvae of Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. The larvae were exposed to fractions with concentrations ranging from 1.25, 2.25, 5, 10, and 20 ppm and isolated compounds. After 24 h exposure, larval mortality was assessed. Among the eight fractions, four from hexane extractions showed potent larvicidal activity against tested mosquito species at 20 ppm concentration. The isolated compound catechin showed pronounced larvicidal activity at very low concentrations. The LC50 and LC90 values of catechin were 3.05 and 8.25 ppm against Ae. aegypti, 3.44 and 8.89 ppm against An. stephensi, and 3.76 and 9.79 ppm against C. quinquefasciatus, respectively. The isolated compound was subjected to spectral analyses (GC-MS, FTIR, (1)H NMR, and (13)C NMR) to elucidate the structure and to compare with spectral data literature.

  12. Interspecific Cross-Mating Between Aedes aegypti and Aedes albopictus Laboratory Strains: Implication of Population Density on Mating Behaviors.

    PubMed

    Marcela, P; Hassan, A Abu; Hamdan, A; Dieng, H; Kumara, T K

    2015-12-01

    Mating behavior between Aedes aegypti and Ae. albopictus, established colony strains were examined under laboratory conditions (30-cm(3) screened cages) for 5 consecutive days. The effect of selected male densities (30, 20, 10) and female density (20) on the number of swarming, mating pairs, eggs produced, and inseminated females were evaluated. Male densities significantly increased swarming behavior, mating pairs, and egg production of heterospecific females, but female insemination was reduced. Aedes aegypti males mate more readily with heterospecific females than do Ae. albopictus males. The current study suggests that Ae. aegypti males were not species-specific in mating, and if released into the field as practiced in genetically modified mosquito techniques, they may mate with both Ae. aegypti and Ae. albopictus females, hence reducing populations of both species by producing infertile eggs.

  13. Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus

    PubMed Central

    Richard, Vaea; Paoaafaite, Tuterarii; Cao-Lormeau, Van-Mai

    2016-01-01

    Background In 2013–2014, French Polynesia experienced for the first time a Zika outbreak. Two Aedes mosquitoes may have contributed to Zika virus (ZIKV) transmission in French Polynesia: the worldwide distributed Ae. aegypti and the Polynesian islands-endemic Ae. polynesiensis mosquito. Methodology/Principal Findings To evaluate their vector competence for ZIKV, mosquitoes were infected per os at viral titers of 7 logs tissue culture infectious dose 50%. At several days post-infection (dpi), saliva was collected from each mosquito and inoculated onto C6/36 mosquito cells to check for the presence of ZIKV infectious particles. Legs and body of each mosquito were also collected and submitted separately to RNA extraction and ZIKV RT-PCR. In Ae. aegypti the infection rate was high as early as 6 dpi and the dissemination efficiency get substantial from 9 dpi while the both rates remained quite low in Ae. polynesiensis. The transmission efficiency was poor in Ae. aegypti until 14 dpi and no infectious saliva was found in Ae. polynesiensis at the time points studied. Conclusions/Significance In our experimental conditions, the late ability of the French Polynesian Ae. aegypti to transmit ZIKV added by the poor competence of Ae. polynesiensis for this virus suggest the possible contribution of another vector for the propagation of ZIKV during the outbreak, in particular in remote islands where Ae. polynesiensis is predominating. PMID:27654962

  14. The effect of shade on the container index and pupal productivity of the mosquitoes Aedes aegypti and Culex pipiens breeding in artificial containers.

    PubMed

    Vezzani, D; Albicócco, A P

    2009-03-01

    The aim of this study was to assess whether certain attributes of larval breeding sites are correlated with pupal productivity (i.e. numbers of pupae collected per sampling period), so that these could be used as the focus for control measures to enhance control efficiency. Therefore, the objectives were to identify the months of highest pupal productivity of Aedes aegypti (L.) and Culex pipiens L. (Diptera: Culicidae) in an urban temperate cemetery in Argentina where artificial containers of < 6 L (flower vases) were the predominant breeding habitats, to compare various measures of the productivity of sunlit and shaded containers and to determine whether the composition of the containers affected pupal productivity. Over a period of 9 months, 200 randomly chosen water-filled containers (100 sunlit and 100 shaded), out of approximately 3738 containers present (approximately 54% in shade), were examined each month within a cemetery (5 ha) in Buenos Aires (October 2006 to June 2007). In total, 3440 immatures of Cx pipiens and 1974 of Ae. aegypti were collected. The larvae : pupae ratio was 10 times greater for the former, indicating that larval mortality was greater for Cx pipiens. Both mosquito species showed a higher container index (CI) in shaded than in sunlit containers (Ae. aegypti: 12.8% vs. 6.9% [chi(2) = 17.6, P < 0.001]; Cx pipiens: 6.3% vs. 1.8% [chi(2) = 24, P < 0.001]). However, the number and the density of immatures per infested container and the number of pupae per pupa-positive container did not differ significantly between sunlit and shaded containers for either species. Therefore, the overall relative productivity of pupae per ha of Ae. aegypti and Cx pipiens was 2.3 and 1.8 times greater, respectively, in shaded than in sunlit areas as a result of the greater CIs of containers in shaded areas. Neither the CI nor the number of immatures per infested container differed significantly among container types of different materials in either lighting

  15. Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program

    PubMed Central

    Monteiro, Fernando A.; Shama, Renata; Martins, Ademir J.; Gloria-Soria, Andrea; Brown, Julia E.; Powell, Jeffrey R.

    2014-01-01

    Background Aedes aegypti is the most important vector of dengue fever in Brazil, where severe epidemics have recently taken place. Ae. aegypti in Brazil was the subject of an intense eradication program in the 1940s and 50s to control yellow fever. Brazil was the largest country declared free of this mosquito by the Pan-American Health Organization in 1958. Soon after relaxation of this program, Ae. aegypti reappeared in this country, and by the early 1980s dengue fever had been reported. The aim of this study is to analyze the present-day genetic patterns of Ae. aegypti populations in Brazil. Methodology/Principal Findings We studied the genetic variation in samples of 11 widely spread populations of Ae. aegypti in Brazil based on 12 well-established microsatellite loci. Our principal finding is that present-day Brazilian Ae. aegypti populations form two distinct groups, one in the northwest and one in the southeast of the country. These two groups have genetic affinities to northern South American countries and the Caribbean, respectively. This is consistent with what has been reported for other genetic markers such as mitochondrial DNA and allele frequencies at the insecticide resistance gene, kdr. Conclusions/Significance We conclude that the genetic patterns in present day populations of Ae. aegypti in Brazil are more consistent with a complete eradication of the species in the recent past followed by re-colonization, rather than the alternative possibility of expansion from residual pockets of refugia. At least two colonizations are likely to have taken place, one from northern South American countries (e.g., Venezuela) that founded the northwestern group, and one from the Caribbean that founded the southeastern group. The proposed source areas were never declared free of Ae. aegypti. PMID:25233218

  16. Disruption of Aedes aegypti Olfactory System Development through Chitosan/siRNA Nanoparticle Targeting of semaphorin-1a

    PubMed Central

    Mysore, Keshava; Flannery, Ellen M.; Tomchaney, Michael; Severson, David W.; Duman-Scheel, Molly

    2013-01-01

    Despite the devastating impact of mosquito-borne illnesses on human health, surprisingly little is known about mosquito developmental biology, including development of the olfactory system, a tissue of vector importance. Analysis of mosquito olfactory developmental genetics has been hindered by a lack of means to target specific genes during the development of this sensory system. In this investigation, chitosan/siRNA nanoparticles were used to target semaphorin-1a (sema1a) during olfactory system development in the dengue and yellow fever vector mosquito Aedes aegypti. Immunohistochemical analyses and anterograde tracing of antennal sensory neurons, which were used to track the progression of olfactory development in this species, revealed antennal lobe defects in sema1a knockdown fourth instar larvae. These findings, which correlated with a larval odorant tracking behavioral phenotype, identified previously unreported roles for Sema1a in the developing insect larval olfactory system. Analysis of sema1a knockdown pupae also revealed a number of olfactory phenotypes, including olfactory receptor neuron targeting and projection neuron defects coincident with a collapse in the structure and shape of the antennal lobe and individual glomeruli. This study, which is to our knowledge the first functional genetic analysis of insect olfactory development outside of D. melanogaster, identified critical roles for Sema1a during Ae. aegypti larval and pupal olfactory development and advocates the use of chitosan/siRNA nanoparticles as an effective means of targeting genes during post-embryonic Ae. aegypti development. Use of siRNA nanoparticle methodology to understand sensory developmental genetics in mosquitoes will provide insight into the evolutionary conservation and divergence of key developmental genes which could be exploited in the development of both common and species-specific means for intervention. PMID:23696908

  17. Natural vertical transmission of dengue viruses by Aedes aegypti in Bolivia

    PubMed Central

    Le Goff, G.; Revollo, J.; Guerra, M.; Cruz, M.; Barja Simon, Z.; Roca, Y.; Vargas Florès, J.; Hervé, J.P.

    2011-01-01

    The natural transmission of dengue virus from an infected female mosquito to its progeny, namely the vertical transmission, was researched in wild caught Aedes aegypti during an important outbreak in the town of Santa Cruz de la Sierra, Bolivia. Mosquitoes were collected at the preimaginal stages (eggs, larvae and pupae) then reared up to adult stage for viral detection using molecular methods. Dengue virus serotypes 1 and 3 were found to be co-circulating with significant higher prevalence in male than in female mosquitoes. Of the 97 pools of Ae. aegypti (n = 635 male and 748 female specimens) screened, 14 pools, collected in February-May in 2007, were found positive for dengue virus infection: five DEN-1 and nine DEN-3. The average true infection rate (TIR) and minimum infection rate (MIR) were respectively 1.08% and 1.01%. These observations suggest that vertical transmission of dengue virus may be detected in vectors at the peak of an outbreak as well as several months before an epidemic occurs in human population. PMID:21894270

  18. Natural vertical transmission of dengue viruses by Aedes aegypti in Bolivia.

    PubMed

    Le Goff, G; Revollo, J; Guerra, M; Cruz, M; Barja Simon, Z; Roca, Y; Vargas Florès, J; Hervé, J P

    2011-08-01

    The natural transmission of dengue virus from an infected female mosquito to its progeny, namely the vertical transmission, was researched in wild caught Aedes aegypti during an important outbreak in the town of Santa Cruz de la Sierra, Bolivia. Mosquitoes were collected at the preimaginal stages (eggs, larvae and pupae) then reared up to adult stage for viral detection using molecular methods. Dengue virus serotypes 1 and 3 were found to be co-circulating with significant higher prevalence in male than in female mosquitoes. Of the 97 pools of Ae. aegypti (n = 635 male and 748 female specimens) screened, 14 pools, collected in February-May in 2007, were found positive for dengue virus infection: five DEN-1 and nine DEN-3. The average true infection rate (TIR) and minimum infection rate (MIR) were respectively 1.08% and 1.01%. These observations suggest that vertical transmission of dengue virus may be detected in vectors at the peak of an outbreak as well as several months before an epidemic occurs in human population.

  19. Bionomics of Aedes aegypti subpopulations (Diptera: Culicidae) from Misiones Province, northeastern Argentina.

    PubMed

    Tejerina, Edmundo Fabricio; Almeida, Francisco Felipe Ludueña; Almirón, Walter Ricardo

    2009-01-01

    Life statistics of four Aedes aegypti subpopulations from the subtropical province of Misiones were studied during autumn and winter, under semi-natural conditions, coming from the localities of Posadas (SW), San Javier (SE), Bernardo de Irigoyen (NE) and Puerto Libertad (NW). The eastern subpopulations are geographically separated by the central mountain system of the province from the western subpopulations. High percentages of larval and pupal survival (97-100%) were recorded, and no significant differences were detected among the four subpopulations. Larvae and pupae lasted approximately 8 days to complete their development, no significant differences being detected among the four subpopulations studied. Sex ratio recorded did not differ significantly from 1:1. Male longevity did not show difference among the different subpopulations, but female longevity was remarkably different among the four subpopulations (F=16.27; d.f.=(3;8); P=0.0009), ranging among 11.45 days for San Javier and 57.87 days for Posadas. Fecundity also varied considerably among subpopulations, the greatest number (307.44 eggs/female) being recorded for Posadas (F=4.13; d.f.=(3;8); P=0.04). Ae. aegypti females of the western subpopulations lived longer than the eastern subpopulations studied, therefore, the risk of dengue outbreak would be greater on the Misiones Province border with Paraguay.

  20. Development and evaluation of a pyriproxyfen-treated device to control the dengue vector, Aedes aegypti (L.) (Diptera:Culicidae).

    PubMed

    Ponlawat, Alongkot; Fansiri, Thanyalak; Kurusarttra, Somwang; Pongsiri, Arissara; McCardle, Patrick W; Evans, Brian P; Evans, Brain P; Richardson, Jason H

    2013-03-01

    The resurgence of dengue fever and the chikungunya epidemic make the control of Aedes aegypti mosquitoes, the vectors of these diseases, critically important. We developed and evaluated an Ae. aegypti control device that is visually-attractive to mosquitoes. This pyriproxyfen-treated device was evaluated for its impact on Ae. aegypti egg production and population dynamics in dengue-endemic areas in Thailand. The device consists of a "high rise" shaped ovitrap/ resting station covered with black cotton cloth. The device is easily collapsible and transportable. Ae. aegypti are generally drawn towards darker, shadier areas making this device physically attractive as a resting station to mosquitoes of all physiological stages. The results show this device suppressed Ae. aegypti populations after it was introduced into a village. The observed effect was primarily the result of the Ae. aegypti exposure to pyriproxyfen shortly after adult emergence or after taking a blood meal resulting in decreased egg production. We believe the device may be further improved physically and the formulation should be replaced to provide even better efficacy for controlling Ae. aegypti mosquito, populations.

  1. Burchellin: study of bioactivity against Aedes aegypti

    PubMed Central

    2014-01-01

    Background The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. Methods Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. Results The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations ≥ 30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. Conclusion The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti. PMID:24713267

  2. Molecular characterization of Chikungunya virus isolates from clinical samples and adult Aedes albopictus mosquitoes emerged from larvae from Kerala, South India.

    PubMed

    Niyas, Kudukkil P; Abraham, Rachy; Unnikrishnan, Ramakrishnan Nair; Mathew, Thomas; Nair, Sajith; Manakkadan, Anoop; Issac, Aneesh; Sreekumar, Easwaran

    2010-08-13

    Chikungunya virus (CHIKV), an arthritogenic alphavirus, is transmitted to humans by infected Aedes (Ae.) aegypti and Ae.albopictus mosquitoes. In the study, reverse-transcription PCR (RT PCR) and virus isolation detected CHIKV in patient samples and also in adult Ae.albopictus mosquitoes that was derived from larvae collected during a chikungunya (CHIK) outbreak in Kerala in 2009. The CHIKV strains involved in the outbreak were the East, Central and South African (ECSA) genotype that had the E1 A226V mutation. The viral strains from the mosquitoes and CHIK patients from the same area showed a close relationship based on phylogenetic analysis. Genetic characterization by partial sequencing of non-structural protein 2 (nsP2; 378 bp), envelope E1 (505 bp) and E2 (428 bp) identified one critical mutation in the E2 protein coding region of these CHIKV strains. This novel, non-conservative mutation, L210Q, consistently present in both human and mosquito-derived samples studied, was within the region of the E2 protein (amino acids E2 200-220) that determines mosquito cell infectivity in many alpha viruses. Our results show the involvement of Ae. albopictus in this outbreak in Kerala and appearance of CHIKV with novel genetic changes. Detection of virus in adult mosquitoes, emerged in the laboratory from larvae, also points to the possibility of transovarial transmission (TOT) of mutant CHIKV strains in mosquitoes.

  3. Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability

    NASA Astrophysics Data System (ADS)

    de Garín, A.; Bejarán, R. A.; Carbajo, A. E.; de Casas, S. C.; Schweigmann, N. J.

    The mosquito Aedes aegypti is the main urban vector responsible for the transmission of dengue fever and dengue hemorrhagic fever. The city of Buenos Aires, Argentina, is located at the southern end of the world distribution of the species. The population abundance of Ae. aegypti is mainly regulated by environmental factors. We calculated the potential number of times that a female could lay eggs during its mean life expectancy, based on potential egg production and daily meteorological records. The model considers those variables implying physical hazard to the survival of Ae. aegypti, mosquito flying activity and oviposition. The results, obtained after calibration and validation of the model with field observations, show significant correlation (P<0.001) for different lags depending on the life stage. From these results, more favorable atmospheric conditions for Ae. aegypti reproduction (linked to the urban climatic change) can be observed. The climatic variability in the last decade resembles conditions at the end of 19th century.

  4. Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico

    PubMed Central

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M.; Scott, Thomas W.

    2012-01-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  5. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City

    PubMed Central

    Chan, K. L.; Chan, Y. C.; Ho, B. C.

    1971-01-01

    There is a current belief stemming from statements made in the literature that Ae. aegypti is displacing Ae. albopictus in a number of cities of South-East Asia and in Calcutta, India. A critical review of these works showed that either the observations were inconclusive or the methods of collection were biased for one or the other species. Extensive surveys of the larval habitats of the two species in Singapore showed that the sharing of breeding habitats was uncommon in both urban and rural areas. In the laboratory, Ae. aegypti took a slightly shorter time to complete its development from egg-hatching to adult emergence. It is concluded that information available at present is insufficient to interpret the Ae. aegypti—Ae. albopictus population balance resulting from interspecific competition in Singapore. The pattern of distribution of the two species is unlikely to be the result of competitive displacement; it is, rather, probable that this pattern results from factors that favour the rapid increase and spread of one species over the other. It is suggested that Ae. aegypti in the city is favoured by rapid and extensive urbanization and by the higher fecundity and shorter life cycle of the species. PMID:5316748

  6. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan

    2015-03-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Mosquito control is to enhance the health and quality of life of county residents and visitors through the reduction of mosquito populations. Mosquito control is a serious concern in developing countries like India due to the lack of general awareness, development of resistance, and socioeconomic reasons. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, larvicidal activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using C. asiatica plant leaves against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Cx. quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (40, 80, 120, 160, and 200 μg/mL) were tested against the larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus. The synthesized AgNPs from C. asiatica were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis (EDX). Considerable mortality was evident after the treatment of C. asiatica for all three important vector mosquitoes. The LC50 and LC90 values of C. asiatica aqueous leaf extract appeared to be effective against An. stephensi (LC50, 90.17 μg/mL; LC90, 165.18 μg/mL) followed by Ae. aegypti (LC50, 96.59 μg/mL; LC90, 173.83 μg/mL) and Cx. quinquefasciatus (LC50, 103.08 μg/mL; LC90, 183.16 μg/mL). Synthesized AgNPs against the vector mosquitoes of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus had the following LC50 and LC90

  7. Natural transovarial dengue virus infection rate in both sexes of dark and pale forms of Aedes aegypti from an urban area of Bangkok, Thailand.

    PubMed

    Thongrungkiat, Supatra; Wasinpiyamongkol, Ladawan; Maneekan, Pannamas; Prummongkol, Samrerng; Samung, Yudthana

    2012-09-01

    Transovarial dengue virus infection status of two forms of adult Aedes aegypti (dark or Ae. aegypti type form and pale or form queenslandensis), reared from field-collected larval and pupal stages, was determined by one-step RT-PCR and dengue viral serotype by nested-PCR. Natural transovarial transmission (TOT) of dengue virus was detected in the two Ae. aegypti forms, and in both adult males and females. Male Ae. aegypti had a higher rate of TOT dengue virus infection than female. The overall minimum infection rate among the male and female populations was 19.5 and 12.3 per 1,000 mosquitoes, respectively. All four dengue serotypes were detected in mosquito samples, with DEN-4 being the predominant serotype. Thus, both male and female Ae. aegypti have influences on the epidemiology of dengue virus transmission.

  8. Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated "Safe Sites"?

    DTIC Science & Technology

    2011-07-26

    Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated ‘‘Safe Sites’’? Hortance Manda*, Luana M. Arce... aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant...overall impact. Methods: Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU) were evaluated

  9. Susceptibility of Aedes aegypti and Aedes albopictus to temephos in four study sites in Kuala Lumpur City Center and Selangor State, Malaysia.

    PubMed

    Chen, C D; Nazni, W A; Lee, H L; Sofian-Azirun, M

    2005-12-01

    Larvae obtained from Taman Samudera (Gombak, Selangor), Kampung Banjar (Gombak, Selangor), Taman Lembah Maju (Cheras, Kuala Lumpur) and Kampung Baru (City centre, Kuala Lumpur) were bioassayed with diagnostic dosage (0.012 mg/L) and operational dosage (1 mg/L) of temephos. All strains of Aedes aegypti and Aedes albopictus showed percentage mortality in the range of 16.00 to 59.05 and 6.4 to 59.50 respectively, after 24 hours. LT50 values for the 6 strains of Ae. aegypti and Ae. albopictus were between 41.25 to 54.42 minutes and 52.67 to 141.76 minutes respectively, and the resistance ratio for both Aedes species were in the range of 0.68 to 1.82 when tested with operational dosage, 1 mg/L temephos. These results indicate that Aedes mosquitoes have developed some degree of resistance. However, complete mortality for all strains were achieved after 24 hours when tested against 1 mg/L temephos.

  10. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection

    PubMed Central

    Stoddard, Steven T.; Barker, Christopher M.; Van Rie, Annelies; Messer, William B.; Meshnick, Steven R.; Morrison, Amy C.; Scott, Thomas W.

    2017-01-01

    Routine entomological monitoring data are used to quantify the abundance of Ae. aegypti. The public health utility of these indicators is based on the assumption that greater mosquito abundance increases the risk of human DENV transmission, and therefore reducing exposure to the vector decreases incidence of infection. Entomological survey data from two longitudinal cohort studies in Iquitos, Peru, linked with 8,153 paired serological samples taken approximately six months apart were analyzed. Indicators of Ae. aegypti density were calculated from cross-sectional and longitudinal entomological data collected over a 12-month period for larval, pupal and adult Ae. aegypti. Log binomial models were used to estimate risk ratios (RR) to measure the association between Ae. aegypti abundance and the six-month risk of DENV seroconversion. RRs estimated using cross-sectional entomological data were compared to RRs estimated using longitudinal data. Higher cross-sectional Ae. aegypti densities were not associated with an increased risk of DENV seroconversion. Use of longitudinal entomological data resulted in RRs ranging from 1.01 (95% CI: 1.01, 1.02) to 1.30 (95% CI: 1.17, 1.46) for adult stage density estimates and RRs ranging from 1.21 (95% CI: 1.07, 1.37) to 1.75 (95% CI: 1.23, 2.5) for categorical immature indices. Ae. aegypti densities calculated from longitudinal entomological data were associated with DENV seroconversion, whereas those measured cross-sectionally were not. Ae. aegypti indicators calculated from cross-sectional surveillance, as is common practice, have limited public health utility in detecting areas or populations at high risk of DENV infection. PMID:28333938

  11. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection.

    PubMed

    Cromwell, Elizabeth A; Stoddard, Steven T; Barker, Christopher M; Van Rie, Annelies; Messer, William B; Meshnick, Steven R; Morrison, Amy C; Scott, Thomas W

    2017-03-01

    Routine entomological monitoring data are used to quantify the abundance of Ae. aegypti. The public health utility of these indicators is based on the assumption that greater mosquito abundance increases the risk of human DENV transmission, and therefore reducing exposure to the vector decreases incidence of infection. Entomological survey data from two longitudinal cohort studies in Iquitos, Peru, linked with 8,153 paired serological samples taken approximately six months apart were analyzed. Indicators of Ae. aegypti density were calculated from cross-sectional and longitudinal entomological data collected over a 12-month period for larval, pupal and adult Ae. aegypti. Log binomial models were used to estimate risk ratios (RR) to measure the association between Ae. aegypti abundance and the six-month risk of DENV seroconversion. RRs estimated using cross-sectional entomological data were compared to RRs estimated using longitudinal data. Higher cross-sectional Ae. aegypti densities were not associated with an increased risk of DENV seroconversion. Use of longitudinal entomological data resulted in RRs ranging from 1.01 (95% CI: 1.01, 1.02) to 1.30 (95% CI: 1.17, 1.46) for adult stage density estimates and RRs ranging from 1.21 (95% CI: 1.07, 1.37) to 1.75 (95% CI: 1.23, 2.5) for categorical immature indices. Ae. aegypti densities calculated from longitudinal entomological data were associated with DENV seroconversion, whereas those measured cross-sectionally were not. Ae. aegypti indicators calculated from cross-sectional surveillance, as is common practice, have limited public health utility in detecting areas or populations at high risk of DENV infection.

  12. Productivity and population density estimates of the dengue vector mosquito Aedes aegypti (Stegomyia aegypti) in Australia.

    PubMed

    Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A

    2013-09-01

    New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities.

  13. A novel photo-biological engineering method for Salvia miltiorrhiza-mediated fabrication of silver nanoparticles using LED lights sources and its effectiveness against Aedes aegypti mosquito larvae and microbial pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, Salvia miltiorrhiza-synthesized Ag nanoparticles (AgNPs) fabricated using sunlight or various LED lights were studied for their biophysical features and evaluated as larvicides against Aedes aegypti mosquitoes and growth inhibitors on different species of microbial pathogens. AgNPs pr...

  14. Exposure to chikungunya virus and adult longevity in Aedes aegypti (L.) and Aedes albopictus (Skuse).

    PubMed

    Reiskind, Michael H; Westbrook, Catherine J; Lounibos, L Philip

    2010-06-01

    Chikungunya virus (CHIKV) recently emerged as a global threat to public health through its adaptation to the cosmopolitan mosquito Aedes albopictus Skuse. Aedes albopictus is highly susceptible to the emergent strain of CHIKV, relative to the historical vector of CHIKV, Aedes aegypti (L.). We hypothesized that the high susceptibility of Ae. albopictus to CHIKV may have a cost in terms of longevity and fecundity among infected vs non-infected mosquitoes, relative to Ae. aegypti. We performed a longevity experiment comparing Ae. aegypti and Ae. albopictus exposed to the emergent strain of CHIKV (LR-2006OPY1). We found a small but significant decrease in longevity of Ae. albopictus, but not Ae. aegypti, in response to exposure to CHIKV. We did not observe significant differences in numbers of eggs laid by either species in response to exposure. Longevity and body titer of infected Ae. albopictus were significantly negatively correlated, such that individuals that lived longer had lower viral body titers when they died. The cost of exposure, while not high, suggests there may be physiological constraints in the evolution of viral infectiousness in its insect vector.

  15. Polygamy: the possibly significant behavior of Aedes aegypti and Aedes albopictus in relation to the efficient transmission of dengue virus.

    PubMed

    Choochote, W; Tippawangkosol, P; Jitpakdi, A; Sukontason, K L; Pitasawat, B; Sukontason, K; Jariyapan, N

    2001-12-01

    The polygamous behavior of male Aedes aegypti (L.) and Ae. albopictus (Skuse) was investigated by co-habiting a newly-emerged male and females in a 30 cm3 cage (1 male: 20 females) for up to 5 consecutive days. As determined by insemination rates, the results indicated that one Ae. aegypti and Ae. albopictus male could successfully mate with 1.10 (0-4), 4.10 (1-8), 5.40 (4-8), 5.10 (2-8), 5.15 (3-9) and 0.20 (0-3), 1.70 (0-3), 2.35 (1-4), 2.30 (0-4), 2.35 (1-4) Ae. aegypti and Ae. albopictus females, respectively on day 1,2,3,4 and 5 consecutively. The possibly significant role of their polygamy in relation to dengue virus transmission is discussed.

  16. Functional genetic characterization of salivary gland development in Aedes aegypti

    PubMed Central

    2013-01-01

    Background Despite the devastating global impact of mosquito-borne illnesses on human health, very little is known about mosquito developmental biology. In this investigation, functional genetic analysis of embryonic salivary gland development was performed in Aedes aegypti, the dengue and yellow fever vector and an emerging model for vector mosquito development. Although embryonic salivary gland development has been well studied in Drosophila melanogaster, little is known about this process in mosquitoes or other arthropods. Results Mosquitoes possess orthologs of many genes that regulate Drosophila melanogaster embryonic salivary gland development. The expression patterns of a large subset of these genes were assessed during Ae. aegypti development. These studies identified a set of molecular genetic markers for the developing mosquito salivary gland. Analysis of marker expression allowed for tracking of the progression of Ae. aegypti salivary gland development in embryos. In Drosophila, the salivary glands develop from placodes located in the ventral neuroectoderm. However, in Ae. aegypti, salivary marker genes are not expressed in placode-like patterns in the ventral neuroectoderm. Instead, marker gene expression is detected in salivary gland rudiments adjacent to the proventriculus. These observations highlighted the need for functional genetic characterization of mosquito salivary gland development. An siRNA- mediated knockdown strategy was therefore employed to investigate the role of one of the marker genes, cyclic-AMP response element binding protein A (Aae crebA), during Ae. aegypti salivary gland development. These experiments revealed that Aae crebA encodes a key transcriptional regulator of the secretory pathway in the developing Ae. aegypti salivary gland. Conclusions The results of this investigation indicated that the initiation of salivary gland development in Ae. aegypti significantly differs from that of D. melanogaster. Despite these differences

  17. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa.

    PubMed

    Paupy, Christophe; Ollomo, Benjamin; Kamgang, Basile; Moutailler, Sara; Rousset, Dominique; Demanou, Maurice; Hervé, Jean-Pierre; Leroy, Eric; Simard, Frédéric

    2010-04-01

    Since its discovery in Nigeria in 1991, Aedes albopictus has invaded much of Central Africa, a region where Ae. aegypti also occurs. To assess the relationship between the invasion by Ae. albopictus and the recent emergence of dengue virus (DENV) and chikungunya virus (CHIKV), we undertook vector competence experiments on populations collected from Cameroon and conducted field investigations during concurrent epidemics of DENV and CHIKV in Gabon. Overall, infection and dissemination rates were not significantly different between Ae. albopictus and Ae. aegypti when exposed to titers of 10(8.1) mosquito infectious dose 50/mL and 10(7.5) plaque forming units/mL of DENV type 2 and CHIKV, respectively. Field investigations showed that Ae. albopictus readily bit man, was abundant, and outnumbered Ae. aegypti to a large extent in Gabon, particularly in suburban environments. Nevertheless, Ae. aegypti was predominant in the more urbanized central parts of Libreville. In this city, CHIKV and DENV were detected only in Ae. albopictus. These data strongly suggest that Ae. albopictus acted as the major vector of both viruses in Libreville in 2007, impacting on the epidemiology of DENV and CHIKV in this area.

  18. Ecological Modeling of Aedes aegypti (L.) Pupal Production in Rural Kamphaeng Phet, Thailand

    PubMed Central

    Aldstadt, Jared; Koenraadt, Constantianus J. M.; Fansiri, Thanyalak; Kijchalao, Udom; Richardson, Jason; Jones, James W.; Scott, Thomas W.

    2011-01-01

    Background Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites. Methodology Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts. Findings The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as

  19. Molecular and phytochemical investigation of Angelica dahurica and Angelica pubescentis essential oils and their biological activity against Aedes aegypti, Stephanitis pyrioides, and Colletotrichum species.

    PubMed

    Tabanca, Nurhayat; Gao, Zengping; Demirci, Betul; Techen, Natascha; Wedge, David E; Ali, Abbas; Sampson, Blair J; Werle, Chris; Bernier, Ulrich R; Khan, Ikhlas A; Baser, Kemal Husnu Can

    2014-09-03

    In this study, Angelica dahurica and Angelica pubescentis root essential oils were investigated as pest management perspectives, and root samples were also analyzed genetically using the nuclear ribosomal internal transcribed spacer (ITS) region as a DNA barcode marker. A. pubescentis root essential oil demonstrated weak antifungal activity against Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides, whereas A. dahurica root essential oil did not show antifungal activity. Conversely, A. dahurica root essential oil demonstrated better biting deterrent and insecticidal activity against yellow fever mosquito, Aedes aegypti, and azalea lace bugs, Stephanitis pyrioides, than A. pubescentis root oil. The major compounds in the A. dahurica oil were found as α-pinene (46.3%), sabinene (9.3%), myrcene (5.5%), 1-dodecanol (5.2%), and terpinen-4-ol (4.9%). α-Pinene (37.6%), p-cymene (11.6%), limonene (8.7%), and cryptone (6.7%) were the major compounds found in the A. pubescentis oil. In mosquito bioassays, 1-dodecanol and 1-tridecanol showed antibiting deterrent activity similar to the positive control DEET (N,N-diethyl-3-methylbenzamide) at 25 nmol/cm(2) against Ae. aegypti, whereas only 1-tridecanol showed repellent activity in human-based cloth patch bioassay with minimum effective dosages (MED) of 0.086 ± 0.089 mg/cm(2) (DEET = 0.007 ± 0.003 mg/cm(2)). In larval bioassays, 1-tridecanol was more toxic with an LC50 value of 2.1 ppm than 1-dodecanol having an LC50 value of 5.2 ppm against 1-day-old Ae. aegypti larvae. 1-Dodecanol and 1-tridecanol could be useful for the natural mosquito control agents.

  20. The genetic architecture of a complex trait: Resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti.

    PubMed

    Bonin, Aurélie; Paris, Margot; Frérot, Hélène; Bianco, Erica; Tetreau, Guillaume; Després, Laurence

    2015-10-01

    The bacterial insecticide Bacillus thuringiensis subsp. israelensis (Bti) is an increasingly popular alternative to chemical insecticides for controlling mosquito populations. Because Bti toxicity relies on the action of four main toxins, resistance to Bti is very likely a complex phenotype involving several genes simultaneously. Dissecting the underlying genetic basis thus requires associating a quantitative measure of resistance to genetic variation at many loci in a segregating population. Here, we undertake this task using the dengue and yellow fever vector, the mosquito Aedes aegypti, as a study model. We conducted QTL (Quantitative Trait Locus) and admixture mapping analyses on two controlled crosses and on an artificial admixed population, respectively, all obtained from resistant and susceptible lab strains. We detected 16 QTL regions, among which four QTLs were revealed by different analysis methods. These four robust QTLs explained altogether 29.2% and 62.2% of the total phenotypic variance in the two QTL crosses, respectively. They also all showed a dominant mode of action. In addition, we found six loci showing statistical association with Bti resistance in the admixed population. Five of the supercontigs highlighted in this study contained candidate genes as suggested by their function, or by prior evidence from expression and/or outlier analyses. These genomic regions are thus good starting points for fine mapping of resistance to Bti or functional analyses aiming at identifying the underlying genes and mutations. Moreover, for the purpose of this work, we built the first Ae. aegypti genetic map based on markers associated with genes expressed in larvae. This genetic map harbors 229 SNP markers mapped across the three chromosomes for a total length of 311.9cM. It brought to light several assembly discrepancies with the reference genome, suggesting a high level of genome plasticity in Ae. aegypti.

  1. Processes affecting Aedes aegypti (Diptera: Culicidae) infestation and abundance: inference through statistical modeling and risk maps in northern Argentina.

    PubMed

    Garelli, F M; Espinosa, M O; Gürtler, R E

    2012-05-01

    Understanding the processes that affect Aedes aegypti (L.) (Diptera: Culicidae) may serve as a starting point to create and/or improve vector control strategies. For this purpose, we performed statistical modeling of three entomological surveys conducted in Clorinda City, northern Argentina. Previous 'basic' models of presence or absence of larvae and/or pupae (infestation) and the number of pupae in infested containers (productivity), mainly based on physical characteristics of containers, were expanded to include variables selected a priori reflecting water use practices, vector-related context factors, the history of chemical control, and climate. Model selection was performed using Akaike's Information Criterion. In total, 5,431 water-holding containers were inspected and 12,369 Ae. aegypti pupae collected from 963 positive containers. Large tanks were the most productive container type. Variables reflecting every putative process considered, except for history of chemical control, were selected in the best models obtained for infestation and productivity. The associations found were very strong, particularly in the case of infestation. Water use practices and vector-related context factors were the most important ones, as evidenced by their impact on Akaike's Information Criterion scores of the infestation model. Risk maps based on empirical data and model predictions showed a heterogeneous distribution of entomological risk. An integrated vector control strategy is recommended, aiming at community participation for healthier water use practices and targeting large tanks for key elements such as lid status, water addition frequency and water use.

  2. LARVICIDAL ACTIVITY OF PERESKIA BLEO (KUNTH) DC. (CACTACEAE) FRUIT ENDOCARP CRUDE AND FRACTIONATED EXTRACTS AGAINST AEDES AEGYPTI (L.) (DIPTERA: CULICIDAE).

    PubMed

    Thongwat, Damrongpan; Ganranoo, Lucksagoon; Chokchaisiri, Ratchanaporn

    2014-11-01

    The use of insecticides can cause adverse effects in vector control, a plant bio-insecticide is an advantageous substitute. Currently, the promising mosquito larvicidal activity from plant extracts has been reported worldwide, including Thailand. In this study, the endocarp of Pereskia bleo (Kunth) DC. fruit was extracted with distilled water and ethanol. Crudes and fractionated groups of the extracts were evaluated for their larvicidal efficacy against the 3rd instar larvae of Aedes aegypti. At 48 hours of exposure, it was found that the activities of the extracts were higher than 24-hour's. The ethanolic extracts showed stronger activities than the aqueous ones, indicating the lower LC50 values of both crude and fractionated group extracts. The most toxic activity was found in a fractionated group of the ethanolic extract, E-Gr3, with significantly lowest LC50 values of 707.94 and 223.12 ppm for 24- and 48-hour detection times, respectively. The bioassay results indicated the larvicidal property against the Ae. aegypti mosquito of the P. bleo plant extracts. A safety for non-target organisms or an action on other mosquito vectors of this plant, should be further investigated.

  3. Comparative investigation of Umbellularia californica and Laurus nobilis leaf essential oils and identification of constituents active against Aedes aegypti.

    PubMed

    Tabanca, Nurhayat; Avonto, Cristina; Wang, Mei; Parcher, Jon F; Ali, Abbas; Demirci, Betul; Raman, Vijayasankar; Khan, Ikhlas A

    2013-12-18

    Umbellularia californica (California bay laurel) and Laurus nobilis (Mediterranean bay laurel) leaves may be mistaken or used as a substitute on the market due to their morphological similarity. In this study, a comparison of anatomical and chemical features and biological activity of both plants is presented. L. nobilis essential oil biting deterrent and larvicidal activity were negligible. On the other hand, U. californica leaf oil showed biting deterrent activity against Aedes aegypti . The identified active repellents was thymol, along with (-)-umbellulone, 1,8-cineole, and (-)-α-terpineol. U. californica essential oil also demonstrated good larvicidal activity against 1-day-old Ae. aegypti larvae with a LD50 value of 52.6 ppm. Thymol (LD50 = 17.6 ppm), p-cymene, (-)-umbellulone, and methyleugenol were the primary larvicidal in this oil. Umbellulone was found as the principal compound (37%) of U. californica essential oil, but was not present in L. nobilis essential oil. Umbellulone mosquito activity is here reported for the first time.

  4. Synergistic actions of formamidine insecticides on the activity of pyrethroids and neonicotinoids against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ahmed, M A I; Matsumura, F

    2012-11-01

    Formamidines are unique insecticides and acaricides that elicit multiple effects in controlling insects. Here, we tested two formamidines, amitraz, and chlordimeform, for their synergistic actions on type II pyrethroids and neonicotinoids to increase their larvicidal actions on the fourth instars of Aedes aegypti L. An organophosphate insecticide was used as a negative control. After 24 h, the synergism of formamidines was highest on imidacloprid, followed by two type II pyrethroids, deltamethrin and fenvalerate. After 48 h, the synergism of formamidines on imidacloprid decreased, remained unchanged on type II pyrethroids, and increased noticeably on two of the newer type neonicotinoids, dinotefuran and thiamethoxam. By 72 h, synergism of formamidines on dinotefuran reached the maximum, while that on imidacloprid was at a minimum. Both formamidines did not show synergistic effects on permethrin or fenitrothion. In all cases, the synergistic effects of amitraz on the two major classes of larvicides were greater than for chlordimeform. These results indicate that amitraz is a promising synergist that shows the potential to increase the efficacy of certain members of type II pyrethroids as well as neonicotinoids to control Ae. aegypti larvae.

  5. The synergistic effects of insecticidal essential oils and piperonyl butoxide on biotransformational enzyme activities in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Waliwitiya, Ranil; Nicholson, Russell A; Kennedy, Christopher J; Lowenberger, Carl A

    2012-05-01

    The biochemical mechanisms underlying the increased toxicity of several plant essential oils (thymol, eugenol, pulegone, terpineol, and citronellal) against fourth instar of Aedes aegypti L. when exposed simultaneously with piperonyl butoxide (PBO) were examined. Whole body biotransformational enzyme activities including cytochrome P450-mediated oxidation (ethoxyresorufin O-dethylase [EROD]), glutathione S-transferase (GST), and beta-esterase activity were measured in control, essential oil-exposed only (single chemical), and essential oil + PBO (10 mg/liter) exposed larvae. At high concentrations, thymol, eugenol, pulegone, and citronellal alone reduced EROD activity by 5-25% 16 h postexposure. Terpineol at 10 mg/liter increased EROD activity by 5 +/- 1.8% over controls. The essential oils alone reduced GST activity by 3-20% but PBO exposure alone did not significantly affect the activity of any of the measured enzymes. All essential oils in combination with PBO reduced EROD activity by 58-76% and reduced GST activity by 3-85% at 16 h postexposure. This study indicates a synergistic interaction between essential oils and PBO in inhibiting the cytochrome P450 and GST detoxification enzymes in Ae. aegypti.

  6. Effect of female size on fecundity and survivorship of Aedes aegypti fed only human blood versus human blood plus sugar.

    PubMed

    Naksathit, A T; Scott, T W

    1998-06-01

    We determined whether size, an indirect measure of teneral energy reserves, modifies the fitness advantage (sigma survival x egg production/female/day) conferred to female Aedes aegypti (L.) maintained on human blood over cohorts fed human blood plus sugar. Different sized females were obtained by rearing them at different larval densities and with different amounts of food per larva. Each female in 4 treatment groups of 23 mosquitoes each was maintained in a separate cage. A 10% sucrose solution was provided ad libitum to mosquitoes in the sugar-plus-blood treatments and water to the blood only groups. Eggs deposited and survival were monitored daily for each mosquito until all had died. Within a size category, survival of mosquitoes in different treatments was not different and mosquitoes fed only human blood laid more eggs than those fed blood plus sugar. The numbers of eggs laid by small mosquitoes fed human blood alone and large mosquitoes fed human blood plus sugar were not different. Mosquitoes fed only human blood had higher net replacement and intrinsic rates of growth than similar sized mosquitoes fed blood plus sugar. Female Ae. aegypti fed only human blood, regardless of the variation in size that we studied and thus energy reserves at emergence, had a fitness advantage over those fed a diet that included sugar.

  7. Reported Distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995-2016 (Diptera: Culicidae).

    PubMed

    Hahn, Micah B; Eisen, Rebecca J; Eisen, Lars; Boegler, Karen A; Moore, Chester G; McAllister, Janet; Savage, Harry M; Mutebi, John-Paul

    2016-06-09

    Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) transmit arboviruses that are increasing threats to human health in the Americas, particularly dengue, chikungunya, and Zika viruses. Epidemics of the associated arboviral diseases have been limited to South and Central America, Mexico, and the Caribbean in the Western Hemisphere, with only minor localized outbreaks in the United States. Nevertheless, accurate and up-to-date information for the geographical ranges of Ae. aegypti and Ae. albopictus in the United States is urgently needed to guide surveillance and enhance control capacity for these mosquitoes. We compiled county records for presence of Ae. aegypti and Ae. albopictus in the United States from 1995-2016, presented here in map format. Records were derived from the Centers for Disease Control and Prevention ArboNET database, VectorMap, the published literature, and a survey of mosquito control agencies, university researchers, and state and local health departments. Between January 1995 and March 2016, 183 counties from 26 states and the District of Columbia reported occurrence of Ae. aegypti, and 1,241 counties from 40 states and the District of Columbia reported occurrence of Ae. albopictus During the same time period, Ae. aegypti was collected in 3 or more years from 94 counties from 14 states and the District of Columbia, and Ae. albopictus was collected during 3 or more years from 514 counties in 34 states and the District of Columbia. Our findings underscore the need for systematic surveillance of Ae. aegypti and Ae. albopictus in the United States and delineate areas with risk for the transmission of these introduced arboviruses.

  8. Experimental transmission of Mayaro virus by Aedes aegypti.

    PubMed

    Long, Kanya C; Ziegler, Sarah A; Thangamani, Saravanan; Hausser, Nicole L; Kochel, Tadeusz J; Higgs, Stephen; Tesh, Robert B

    2011-10-01

    Outbreaks of Mayaro fever have been associated with a sylvatic cycle of Mayaro virus (MAYV) transmission in South America. To evaluate the potential for a common urban mosquito to transmit MAYV, laboratory vector competence studies were performed with Aedes aegypti from Iquitos, Peru. Oral infection in Ae. aegypti ranged from 0% (0/31) to 84% (31/37), with blood meal virus titers between 3.4 log(10) and 7.3 log(10) plaque-forming units (PFU)/mL. Transmission of MAYV by 70% (21/30) of infected mosquitoes was shown by saliva collection and exposure to suckling mice. Amount of viral RNA in febrile humans, determined by real-time polymerase chain reaction, ranged from 2.7 to 5.3 log(10) PFU equivalents/mL. Oral susceptibility of Ae. aegypti to MAYV at titers encountered in viremic humans may limit opportunities to initiate an urban cycle; however, transmission of MAYV by Ae. aegypti shows the vector competence of this species and suggests potential for urban transmission.

  9. Argonaute 2 Suppresses Japanese Encephalitis Virus Infection in Aedes aegypti.

    PubMed

    Sasaki, Toshinori; Kuwata, Ryusei; Hoshino, Keita; Isawa, Haruhiko; Sawabe, Kyoko; Kobayashi, Mutsuo

    2017-01-24

    There are three main innate immune mechanisms against viruses in mosquitoes. Infection with the flavivirus dengue virus is controlled by RNA interference (RNAi) and the JAK-STAT and Toll signaling pathways. This study showed that another flavivirus, Japanese encephalitis virus (JEV), did not invade the salivary glands of Aedes aegypti and that this may be a result of the innate immune resistance to the virus. Argonaute 2 (Ago2) plays a critical role in the RNAi pathway. To understand the mechanism of JEV resistance, we focused on Ago2 as a possible target of JEV. Here, we show that the expression of MyD88 (a mediator of Toll signaling) and Ago2 mRNAs was induced by JEV in the salivary glands of Ae. aegypti mosquitoes and that Ago2, JAK, and domeless (DOME) mRNAs were induced by JEV in the bodies of Ae. aegypti mosquitoes. Double-stranded (ds) Ago2 RNA enhanced JEV infection, and the virus was detected in salivary glands by immunofluorescence assay. In contrast, MyD88 dsRNA had no effect on JEV infection. These data suggest that Ago2 plays a crucial role in mediating the innate immune response of Ae. aegypti to JEV in a manner similar to that employed by dengue virus.

  10. Species composition and habitat characterization of mosquito (Diptera: Culicidae) larvae in semi-urban areas of Dhaka, Bangladesh.

    PubMed

    Bashar, Kabirul; Rahman, Md Sayfur; Nodi, Ila Jahan; Howlader, Abdul Jabber

    2016-03-01

    Mosquito larvae are purely aquatic and develop in water bodies, the type of which is more or less specific to each species. Therefore, a study was carried out to identify the habitat characters of different mosquito species along with their species composition in semi-urban area of Dhaka in Bangladesh during the month of May and June 2012. A total of 6088 mosquito larvae belonging to 12 species (Aedes aegypti, Aedes albopictus, Anopheles barbirostris, Anopheles peditaeniatus, Anopheles vagus, Culex gelidus, Culex hutchinsoni, Culex quinquefasciatus, Culex tritaeniorhynchus, Mansonia annulifera, Mansonia uniformis, and Toxorhynchites splendens) under 5 genera were collected from 14 different types of habitats. Culex quinquefsciatus was the dominant (21.7/500 ml) species followed by Cx. tritaeniorhynchus (10.53/500 ml). Dissolved oxygen and chlorophyll a were the preeminent predictors for the abundance of all collected mosquito larvae except Ae. aegypti. Water temperature was positively associated with the breeding of An. vagus (r = 0.421, p = <0.001), An. barbirostris (r = 0.489, p = <0.001) and An. peditaeniatus (r = 0.375, p = <0.001). Water depth, distance from nearest house, emergent plant coverage, and alkalinity were found as the basis of larval abundance. Every Culex species and Tx. splendens (r = 0.359, p = 0.001) were found positively associated with chemical oxygen demand, while Mn. annulifera showed negative association (r = -0.115, p = 0.0297). This study also highlighted that various physicochemical factors affect the presence or abundance of mosquito larvae.

  11. Species composition and habitat characterization of mosquito (Diptera: Culicidae) larvae in semi-urban areas of Dhaka, Bangladesh

    PubMed Central

    Bashar, Kabirul; Rahman, Md. Sayfur; Nodi, Ila Jahan; Howlader, Abdul Jabber

    2016-01-01

    Mosquito larvae are purely aquatic and develop in water bodies, the type of which is more or less specific to each species. Therefore, a study was carried out to identify the habitat characters of different mosquito species along with their species composition in semi-urban area of Dhaka in Bangladesh during the month of May and June 2012. A total of 6088 mosquito larvae belonging to 12 species (Aedes aegypti, Aedes albopictus, Anopheles barbirostris, Anopheles peditaeniatus, Anopheles vagus, Culex gelidus, Culex hutchinsoni, Culex quinquefasciatus, Culex tritaeniorhynchus, Mansonia annulifera, Mansonia uniformis, and Toxorhynchites splendens) under 5 genera were collected from 14 different types of habitats. Culex quinquefsciatus was the dominant (21.7/500 ml) species followed by Cx. tritaeniorhynchus (10.53/500 ml). Dissolved oxygen and chlorophyll a were the preeminent predictors for the abundance of all collected mosquito larvae except Ae. aegypti. Water temperature was positively associated with the breeding of An. vagus (r = 0.421, p = <0.001), An. barbirostris (r = 0.489, p = <0.001) and An. peditaeniatus (r = 0.375, p = <0.001). Water depth, distance from nearest house, emergent plant coverage, and alkalinity were found as the basis of larval abundance. Every Culex species and Tx. splendens (r = 0.359, p = 0.001) were found positively associated with chemical oxygen demand, while Mn. annulifera showed negative association (r = −0.115, p = 0.0297). This study also highlighted that various physicochemical factors affect the presence or abundance of mosquito larvae. PMID:27241953

  12. Detection of Chikungunya virus in Aedes aegypti during 2011 outbreak in Al Hodayda, Yemen.

    PubMed

    Zayed, Alia; Awash, Abdullah A; Esmail, Mohammed A; Al-Mohamadi, Hani A; Al-Salwai, Mostafa; Al-Jasari, Adel; Medhat, Iman; Morales-Betoulle, Maria E; Mnzava, Abraham

    2012-07-01

    In October 2010, the Ministry of Public Health and Population reported an outbreak of dengue-like acute febrile illness in Al Hodayda governorate. By January 2011, a total of 1542 cases had been recorded from 19 of the 26 districts in the governorate with 104 purportedly associated deaths. In response this event, in January 2011 entomological investigations aimed at identifying the primary vector and the epidemic associated etiological agent were carried out. Based on the reported cases and the progress of the outbreak in the governorate, mosquito collection was undertaken in two of the most recent outbreak areas; Al Khokha district (130km south of Al Hodayda) and Al Muneera district (100km north). Mosquito adults were collected from houses using BG-sentinel™ traps, aspiration of resting mosquitoes and knock-down spraying. Indoor and outdoor containers adjacent to the houses were inspected for larvae. Subsequently mosquito pools were analyzed by RT-PCR for detection of the four dengue virus serotypes (DENV-1, DENV-2, DENV-3, DENV-4), and for Chikungunya virus (CHIKV). Aedes aegypti was the dominant mosquito species collected. Four pools represent 40% of the tested pools, all containing adult female Ae. aegypti, were positive for CHIKV. Three CHIKV isolates were obtained from the RNA positive mosquito pools and identified by rRT-PCR. This finding marks the first record of CHIKV isolated from Ae. aegypti in Yemen. The larval container and Breteau indices in the visited localities surveyed were estimated at 53.8 and 100, respectively. The emergence of this unprecedented CHIKV epidemic in Al Hodayda is adding up another arboviral burden to the already existing vector-borne diseases. Considering the governorate as one focal port in the Red Sea region, the spread of the disease to other areas in Yemen and in neighboring countries is anticipated. Public health education and simple measures to detect and prevent mosquito breeding in water storage containers could prevent

  13. Aedes aegypti (Diptera: Culicidae) Longevity and Differential Emergence of Dengue Fever in Two Cities in Sonora, Mexico.

    PubMed

    Ernst, Kacey C; Walker, Kathleen R; Reyes-Castro, Pablo; Joy, Teresa K; Castro-Luque, A Lucia; Diaz-Caravantes, Rolando E; Gameros, Mercedes; Haenchen, Steven; Hayden, Mary H; Monaghan, Andrew; Jeffrey-Guttierez, Eileen; Carrière, Yves; Riehle, Michael R

    2017-01-01

    Dengue virus, primarily transmitted by the Aedes aegypti (L.) mosquito, has rapidly expanded in geographic extent over the past several decades. In some areas, however, dengue fever has not emerged despite established Ae. aegypti populations. The reasons for this are unclear and have sometimes been attributed to socio-economic differences. In 2013 we compared Ae. aegypti adult density and population age structure between two cities in Sonora, Mexico: Hermosillo, which has regular seasonal dengue virus transmission, and Nogales, which has minimal transmission. Larval and pupal abundance was greater in Nogales, and adult density was only higher in Hermosillo during September. Population age structure, however, was consistently older in Hermosillo. This difference in longevity may have been one factor that limited dengue virus transmission in Nogales in 2013, as a smaller proportion of Ae. aegypti females survived past the extrinsic incubation period.

  14. Aedes aegypti (Diptera: Culicidae) Longevity and Differential Emergence of Dengue Fever in Two Cities in Sonora, Mexico.

    PubMed

    Ernst, Kacey C; Walker, Kathleen R; Reyes-Castro, Pablo; Joy, Teresa K; Castro-Luque, A Lucia; Diaz-Caravantes, Rolando E; Gameros, Mercedes; Haenchen, Steven; Hayden, Mary H; Monaghan, Andrew; Jeffrey-Guttierez, Eileen; Carrière, Yves; Riehle, Michael R

    2016-09-02

    Dengue virus, primarily transmitted by the Aedes aegypti (L.) mosquito, has rapidly expanded in geographic extent over the past several decades. In some areas, however, dengue fever has not emerged despite established Ae. aegypti populations. The reasons for this are unclear and have sometimes been attributed to socio-economic differences. In 2013 we compared Ae. aegypti adult density and population age structure between two cities in Sonora, Mexico: Hermosillo, which has regular seasonal dengue virus transmission, and Nogales, which has minimal transmission. Larval and pupal abundance was greater in Nogales, and adult density was only higher in Hermosillo during September. Population age structure, however, was consistently older in Hermosillo. This difference in longevity may have been one factor that limited dengue virus transmission in Nogales in 2013, as a smaller proportion of Ae. aegypti females survived past the extrinsic incubation period.

  15. Field Efficacy of New Larvicide Products for Control of Multi-Resistant Aedes aegypti Populations in Martinique (French West Indies)

    PubMed Central

    Marcombe, Sébastien; Darriet, Frédéric; Agnew, Philip; Etienne, Manuel; Yp-Tcha, Marie-Michelle; Yébakima, André; Corbel, Vincent

    2011-01-01

    World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and Bti. In simulated trials, pyriproxyfen and Bti showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail Ae. aegypti populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant Ae. aegypti populations. PMID:21212213

  16. Field efficacy of new larvicide products for control of multi-resistant Aedes aegypti populations in Martinique (French West Indies).

    PubMed

    Marcombe, Sébastien; Darriet, Frédéric; Agnew, Philip; Etienne, Manuel; Yp-Tcha, Marie-Michelle; Yébakima, André; Corbel, Vincent

    2011-01-01

    World-wide dengue vector control is hampered by the spread of insecticide resistance in Aedes aegypti. We report the resistance status of a wild Ae. aegypti population from Martinique (Vauclin) to conventional larvicides (Bacillus thuringiensis var israeliensis [Bti] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and Bti. In simulated trials, pyriproxyfen and Bti showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail Ae. aegypti populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to Bti and temephos for controlling insecticide-resistant Ae. aegypti populations.

  17. Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae)

    PubMed Central

    Govindarajan, M; Mathivanan, T; Elumalai, K; Krishnappa, K; Anandan, A

    2011-01-01

    Objective To determine the ovicidal and repellent activities of methanol leaf extract of Ervatamia coronaria (E. coronaria) and Caesalpinia pulcherrima (C. pulcherrima) against Culex quinquefasciatus (Cx. quinquefasciatus), Aedes aegypti (Ae. aegypti) and Anopheles stephensi (An. stephensi). Methods The ovicidal activity was determined against three mosquito species at various concentrations ranging from 50-450 ppm under the laboratory conditions. The hatch rates were assessed 48 h after treatment. The repellent efficacy was determined against three mosquito species at three concentrations viz., 1.0, 2.5 and 5.0 mg/cm2 under the laboratory conditions. Results The crude extract of E. coronaria exerted zero hatchability (100% mortality) at 250, 200 and 150 ppm for Cx. quinquefasciatus, Ae. aegypti and An. stephensi, respectively. The crude extract of C. pulcherrima exerted zero hatchability (100% mortality) at 375, 300 and 225 ppm for Cx. quinquefasciatus, Ae. aegypti and An. Stephensi, respectively. The methanol extract of E. coronaria found to be more repellenct than C. pulcherrima extract. A higher concentration of 5.0 mg/cm2 provided 100% protection up to 150, 180 and 210 min against Cx. quinquefasciatus, Ae. aegypti and An. stephensi, respectively. The results clearly showed that repellent activity was dose dependent. Conclusions From the results it can be concluded the crude extracts of E. coronaria and C. pulcherrima are an excellent potential for controlling Cx. quinquefasciatus, Ae. aegypti and An. stephensi mosquitoes. PMID:23569723

  18. Mosquito Infestation and Dengue Virus Infection in Aedes aegypti Females in Schools in Mérida, México

    PubMed Central

    García-Rejón, Julián E.; Loroño-Pino, María Alba; Farfán-Ale, José Arturo; Flores-Flores, Luis F.; López-Uribe, Mildred P.; del Rosario Najera-Vazquez, Maria; Nuñez-Ayala, Guadalupe; Beaty, Barry J.; Eisen, Lars

    2011-01-01

    We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from schools in Mérida, México, during 2008 and 2009. Backpack aspiration from 24 schools produced 468 females of Ae. aegypti and 1,676 females of another human biter, Culex quinquefasciatus. Ae. aegypti females were collected most commonly from classrooms followed by offices and bathrooms. Of these females, 24.7% were freshly fed. Examination of 118 pools of Ae. aegypti females (total of 415 females) for presence of DENV RNA produced 19 positive pools (16.1%). DENV-infected pools were detected from 11 (45.8%) of 24 schools and came from different room types, including classrooms, offices, and bathrooms. The overall rate of DENV infection per 100 Ae. aegypti females was 4.8. We conclude that schools in Mérida present a risk environment for students, teachers, and other personnel to be exposed to mosquitoes and bites of DENV-infected Ae. aegypti females. PMID:21363990

  19. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

    2012-01-01

    Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185-406)) compared with the treated substrate (88 (13-210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves.

  20. Oviposition and Embryotoxicity of Indigofera suffruticosa on Early Development of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Vieira, Jeymesson Raphael Cardoso; Leite, Roberta Maria Pereira; Lima, Izabela Rangel; Navarro, Daniela do Amaral Ferraz; Bianco, Everson Miguel; Leite, Sônia Pereira

    2012-01-01

    Aqueous extract of Indigofera suffruticosa leaves obtained by infusion was used to evaluate the oviposition, its effect on development of eggs and larvae, and morphological changes in larvae of Aedes aegypti. The bioassays were carried out with aqueous extract in different concentrations on eggs, larvae, and female mosquitoes, and the morphological changes were observed in midgut of larvae. The extract showed repellent activity on A. aegypti mosquitoes, reducing significantly the egg laying by females with control substrate (343 (185–406)) compared with the treated substrate (88 (13–210)). No eclosion of A. aegypti eggs at different concentrations studied was observed. The controleclodedin 35%. At concentration of 250 μg/mL, 93.3% of larvae remained in the second instar of development and at concentrations of 500, 750, and 1000 μg/mL the inhibitory effect was lower with percentages of 20%, 53.3%, and 46.6%, respectively. Morphological changes like disruption on the peritrophic envelope (PE), discontinued underlying epithelium, increased gut lumen, and segments with hypertrophic aspects were observed in anterior region of medium midgut of larvae of A. aegypti. The results showed repellent activity, specific embryotoxicity, and general growth retardation in A. aegypti by medium containing aqueous extract of I. suffruticosa leaves. PMID:21822443

  1. A new tent trap for monitoring the daily activity of Aedes aegypti and Aedes albopictus.

    PubMed

    Casas Martínez, Mauricio; Orozco Bonilla, Arnoldo; Muñoz Reyes, Miguel; Ulloa García, Armando; Bond, J Guillermo; Valle Mora, Javier; Weber, Manuel; Rojas, Julio C

    2013-12-01

    In this study, we designed a new tent trap; the BioDiVector (BDV) tent trap, consisting of two rectangular tents that use human bait without endangering the technical personnel. The daily activity pattern of Aedes aegypti and Aedes albopictus in intra, peri, and extradomiciliary sites was studied in an endemic area of dengue in southern Mexico by using the BDV tent trap. Totals of 3,128 individuals of Ae. aegypti and 833 Ae. albopictus were captured. More Ae. aegypti males than females were caught, while the opposite was true with Ae. albopictus. The activity of both mosquito species was affected by the interaction between the collection site and time of day. In general, more individuals of both mosquito species were captured at the extradomicillary sites than at the peri and intradomicillary sites. Mosquitoes showed two peaks of activity, one in the morning and the other in the afternoon, but in general this only occurred at the extradomicillary sites, whereas no peak of activity was observed at the intra and peridomicillary sites. Overall, Ae. aegypti had a higher indirect biting rate than Ae. albopictus. Finally, due to its efficiency, simplicity, and low cost, we suggest the use of this innovative tool for entomological surveillance, bionomics and vector incrimination studies in geographical areas where dengue and other arboviruses are present.

  2. Coexistence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Peninsular Florida Two Decades After Competitive Displacements.

    PubMed

    Lounibos, L Philip; Bargielowski, Irka; Carrasquilla, María Cristina; Nishimura, Naoya

    2016-11-01

    The spread of Aedes albopictus (Skuse) eastward in the mid-1980s from its initial establishment in Houston, TX, was associated with rapid declines and local disappearances of Aedes aegypti (L.) in Gulf Coast states and Florida where annual larval surveillance during the early 1990s described temporal and spatial patterns of competitive displacements in cemeteries and tire shops. Approximately 20 yr later in 2013-2014, we re-visited former collection sites and sampled aquatic immatures of these two species from tire shops in 10 cities on State Route 441 and from 9 cemeteries from Lakeland to Miami in southwest Florida. In the recent samples Ae. aegypti was recovered from three central Florida cities where it had not been detected in 1994, but its northern limit on Rte. 441, Apopka, did not change. Other evidence, such as trends at a few cemeteries, suggested a moderate resurgence of this species since 1994. Cage experiments that exposed female progeny of Ae. aegypti from recent Florida collection sites to interspecific mating by Ae. albopictus males showed that females from coexistence sites had evolved resistance to cross-mating, but Ae. aegypti from sites with no Ae. albopictus were relatively susceptible to satyrization. Habitat classifications of collection sites were reduced by principal component (PC) analysis to four variables that accounted for > 99% of variances; PCs with strong positive loadings for tree cover and ground vegetation were associated with collection sites yielding only Ae. albopictus Within the coexistence range of the two species, the numbers of Ae. aegypti among total Aedes collected were strongly correlated in stepwise logistic regression models with two habitat-derived PCs, distance from the coast, and annual rainfall and mean maximum temperatures at the nearest weather station. Subtle increases in the range of Ae. aegypti since its previous displacements are interpreted in the context of the evolution of resistance to mating

  3. The Genetics of Chemoreception in the Labella and Tarsi of Aedes aegypti

    DTIC Science & Technology

    2014-01-01

    The genetics of chemoreception in the labella and tarsi of Aedes aegypti Jackson T. Sparks, Jonathan D. Bohbot, Joseph C. Dickens* United States...labella and tarsi of both sexes of adult Ae. aegypti and discuss their possible roles in the physiology and behavior of this important disease vector...Recently, Ionotropic Receptors have also been shown to play a role in DEET avoidance in D. melanogaster (Kain et al., 2013), highlighting the need to

  4. Behavioral responses of catnip (Nepeta cataria l.)by two species of mosquitoes, Aedes aegypti (l.) and Anopheles harrisoni harbach and manguin, in Thailand.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Ae. aegypti and An. harrisoni were conducted using an automated excito-repellency test system. Aedes aegypti showed significant higher escape rates from the contact chamber at 5%...

  5. The key breeding sites by pupal survey for dengue mosquito vectors, Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), in Guba, Cebu City, Philippines.

    PubMed

    Edillo, Frances E; Roble, Noel D; Otero, Nenito D

    2012-11-01

    We conducted this study to assess how well a pupal survey of dengue mosquito vectors, Aedes aegypti and Aedes albopictus, is able to target the most productive breeding sites. The study was carried out monthly during the rainy season (8 months) in 2008 in Cuba, Cebu City, Philippines. The hypotheses tested were: 1) most pupae of Ae. aegypti or Ae. albopictus were produced in a few types of breeding sites and 2) the most productive types of breeding sites for each species were the most abundant. Approximately 2,500 pupae were collected from 554 breeding sites in 279 houses. Thirty-eight point four percent of ten types of breeding sites were positive for Ae. aegypti, and 11.9% of nine types of sites were positive for Ae. albopictus. Plastic drums (40.2%), metal drums (29.6%), and plastic containers (10.5%) were the key sites for Ae. aegypti pupae, whereas bamboo stumps (28.5%), plastic drums (21.1%), and rubber tires (19.1%) were the key sites for Ae. albopictus. The most productive breeding sites for Ae. aegypti were common but not the most common for Ae. albopictus. These results are relevant for dengue vector control programs.

  6. Exploring New Thermal Fog and Ultra-Low Volume Technologies to Improve Indoor Control of the Dengue Vector, Aedes aegypti (Diptera: Culicidae)

    DTIC Science & Technology

    2014-07-01

    ULV]and thermal fog)wereevaluated for their ability toprovide immediate control of Ae. aegypti mosquitoes with a contact insecticide inside simulated...ULV] and thermal fog) were evaluated for their ability to provide immediate control of Ae. aegypti mosquitoes with a contact insecticide inside...peridomestic insecticide applications, as the pesticide delivery systemsmust be able to distribute lethal doses of active ingredient (a.i.) to all secluded areas

  7. Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia.

    PubMed

    Ocampo, Clara B; Wesson, Dawn M

    2004-10-01

    This study evaluated if the Aedes aegypti population in the city of Cali, Colombia was composed of genetically distinct local populations with different levels of insecticide resistance and dengue vector competence. Insecticide resistance was assayed biochemically and was associated with varying levels of mixed-function oxidases and non-specific esterases. The genes encoding those enzymes were under selective pressure from insecticides used to suppress Ae. aegypti populations. Vector competence showed heterogeneity among the vector populations ranging from 19% to 60%. Population genetic analysis of random amplified polymorphic DNA-polymerase chain reaction products, expressed as genetic distance, Wright's F(st), and migration rate (Nm), demonstrated moderate genetic differentiation among Ae. aegypti from four sites (F(st) = 0.085). The results from all characteristics evaluated in the study demonstrated spatial and temporal variation between Ae. aegypti populations. At any specific time, the local populations of Ae. aegypti were genetically differentiated and unique with respect to insecticide resistance and vector competence. Both characteristics changed independently.

  8. Evidence of limited polyandry in a natural population of Aedes aegypti.

    PubMed

    Richardson, Joshua B; Jameson, Samuel B; Gloria-Soria, Andrea; Wesson, Dawn M; Powell, Jeffrey

    2015-07-01

    The mosquito Aedes aegypti is a vector of yellow fever, dengue, and chikungunya. Control of the insect is crucial to stop the spread of dengue and chikungunya, so it is critically important to understand its mating behavior. Primarily, based on laboratory behavior, it has long been assumed that Ae. aegypti females mate once in their lifetime. However, multiple inseminations have been observed in semi-field and laboratory settings, and in closely related species. Here, we report the first evidence of polyandry in a natural population of Ae. aegypti. Female Ae. aegypti were captured around the New Orleans, LA, metropolitan area. They were offered a blood meal and allowed to lay eggs, which were reared to the third-instar larval stage. A parentage analysis using four microsatellite loci was performed. Out of 48 families, 3 showed evidence of multiple paternity. An expanded analysis of these three families found that one family group included offspring contributed by three fathers, and the other two included offspring from two fathers. This result establishes that polyandry can occur in a small proportion of Ae. aegypti females in a natural setting. This could complicate future genetic control efforts and has implications for sampling for population genetics.

  9. Local Evolution of Pyrethroid Resistance Offsets Gene Flow Among Aedes aegypti Collections in Yucatan State, Mexico

    PubMed Central

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C.

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1–4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. PMID:25371186

  10. Changing Domesticity of Aedes aegypti in Northern Peninsular Malaysia: Reproductive Consequences and Potential Epidemiological Implications

    PubMed Central

    Saifur, Rahman G. M.; Dieng, Hamady; Hassan, Ahmad Abu; Salmah, Md Rawi Che; Satho, Tomomitsu; Miake, Fumio; Hamdan, Ahmad

    2012-01-01

    Background The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior. Methodology/Principal Findings This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts. Conclusion/Significance The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence. PMID:22363516

  11. A field test for competitive effects of Aedes albopictus on A. aegypti in South Florida: differences between sites of coexistence and exclusion?

    PubMed Central

    Juliano, Steven A.; Lounibos, L. Philip; O’Meara, George F.

    2007-01-01

    We tested whether interspecific competition from Aedes albopictus had measurable effects on A. aegypti at the typical numbers of larval mosquitoes found in cemetery vases in south Florida. We also tested whether the effect of interspecific competition from A. albopictus on A. aegypti differed between sites where A. aegypti either persists or went extinct following invasion by A. albopictus. Similar experiments manipulating numbers of A. albopictus in cemetery vases were conducted at three sites of A. aegypti persistence and three sites where A. aegypti was apparently extinct. The experiments were done using numbers of larvae that were determined by observed numbers of larvae for each site, and with resources (leaf detritus) that accumulated in experimental vases placed into each field site. In both the early rainy season (when number of mosquito larvae was low) and the late rainy season (when number of mosquito larvae was high), there was a significant effect of treatment on developmental progress of experimental A. aegypti. In the late rainy season, when numbers of larvae were high, there was also a significant effect of treatment on survivorship of A. aegypti. However, the competition treatment × site type (A. aegypti persists vs extinct) interaction was never significant, indicating that the competitive effect of A. albopictus on A. aegypti did not differ systematically between persistence versus extinction sites. Thus, although competition from A. albopictus is strong under field conditions at all sites, we find no evidence that variation in the impact of interspecific competition is associated with coexistence or exclusion. Interspecific competition among larvae is thus a viable explanation for exclusion or reduction of A. aegypti in south Florida, but variation in the persistence of A. aegypti following invasion does not seem to be primarily a product of variation in the conditions in the aquatic environments of cemetery vases. PMID:15024640

  12. Effects of the Botanical Insecticide, Toosendanin, on Blood Digestion and Egg Production by Female Aedes aegypti (Diptera: Culicidae): Topical Application and Ingestion

    PubMed Central

    ZHIQING, MA; GULIA-NUSS, MONIKA; ZHANG, XING; BROWN, MARK R.

    2014-01-01

    Botanical insecticides offer novel chemistries and actions that may provide effective mosquito control. Toosendanin (TSN, 95% purity) is one such insecticide used to control crop pests in China, and in this study, it was evaluated for lethal and sublethal effects on larvae and females of the yellowfever mosquito, Aedes aegypti (L.). TSN was very toxic to first instar larvae after a 24 h exposure (LC50 = 60.8 μg/ml) and to adult females up to 96 h after topical treatment (LD50 = 4.3 μg/female) or ingestion in a sugar bait (LC50 = 1.02 μg/μl). Treatment of first instars for 24 h with a range of sublethal doses (6.3–25 μg/ml) delayed development to pupae by 1 to 2 d. Egg production and larval hatching from eggs were dose dependently reduced (>45%) by TSN doses (1.25–10.0 μg) topically applied to females 24 h before or 1 h after a bloodmeal. Ingestion of TSN (0.031–0.25 μg/μl of sugar bait) by females 24 h before a bloodmeal also greatly reduced egg production and larval hatch; no eggs were oviposited by females ingesting the highest dose. Further studies revealed that topical or ingested TSN dose-dependently disrupted yolk deposition in oocytes, blood ingestion and digestion, and ovary ecdysteroid production in blood-fed females. Overall, our results indicate that TSN is an effective insecticide for Ae. aegypti larvae and adults, because of its overt toxicity at high doses and disruption of development and reproduction at sublethal doses. PMID:23427659

  13. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for the DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus in Fujian, China.

    PubMed

    Guo, Xiao-Xia; Li, Chun-Xiao; Zhang, Ying-Mei; Xing, Dan; Dong, Yan-De; Zhang, Heng-Duan; Qin, Cheng-Feng; Zhao, Tong-Yan

    2016-09-01

    Dengue is an acute, emerging, infectious disease transmitted by Aedes mosquitoes that has become a serious global public health problem. The DEN2-FJ10 and DEN2-FJ11 strains of the dengue 2 virus were originally isolated from the serum of a patient with dengue fever in Fujian Province, China, in 1999. Our data provide the first assessment of the vector competence of Aedes mosquitoes with respect to the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus. There were significant differences in the replication rates of these two viral strains in Aedes albopictus and Aedes aegypti (P<0.05); replication of the DEN2-FJ10 strain was greater in Ae. aegypti than in Ae. albopictus 5 days post infection whereas replication of the DEN2-FJ11 was greater in Ae. albopictus than in Ae. aegypti 7 days post infection. The replicative ability of the DEN2-FJ11 strain was greater than that of the DEN2-FJ10 strain in infected Ae. albopictus. In infected Ae. aegypti, rapid proliferation of the DEN2-FJ10 strain occurred earlier than in the DEN2-FJ11 strain. There were no significant differences in the midgut and salivary gland infection rates of Ae. albopictus and Ae. aegypti with respect to either viral strain. Although the DEN2-FJ10 and DEN2-FJ11 strains differ in their virulence to neonatal rats, there was no significant difference in the ability of either Ae. albopictus or Ae. aegypti to transmit the DEN2-FJ10 and DEN2-FJ10 strains of the dengue 2 virus (P>0.05). In summary, our results indicate that Ae. albopictus and Ae. aegypti mosquitoes are moderately competent vectors of the DEN2-FJ10 and DEN2-FJ11 strains of the dengue virus and provide the first evidence of the effect of these two viral strains on the vector competence of mosquitoes in China.

  14. Multi-scale analysis of the associations among egg, larval and pupal surveys and the presence and abundance of adult female Aedes aegypti (Stegomyia aegypti) in the city of Merida, Mexico.

    PubMed

    Manrique-Saide, P; Coleman, P; McCall, P J; Lenhart, A; Vázquez-Prokopec, G; Davies, C R

    2014-09-01

    Despite decades of research, there is still no agreement on which indices of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) presence and abundance better quantify entomological risk for dengue. This study reports the results of a multi-scale, cross-sectional entomological survey carried out in 1160 households in the city of Merida, Mexico to establish: (a) the correlation between levels of Ae. aegypti presence and abundance detected with aspirators and ovitraps; (b) which immature and egg indices correlate with the presence and abundance of Ae. aegypti females, and (c) the correlations amongst traditional Aedes indices and their modifications for pupae at the household level and within medium-sized geographic areas used for vector surveillance. Our analyses show that ovitrap positivity was significantly associated with indoor adult Ae. aegypti presence [odds ratio (OR) = 1.50; P = 0.03], that the presence of pupae is associated with adult presence at the household level (OR = 2.27; P = 0.001), that classic Aedes indices are informative only when they account for pupae, and that window screens provide a significant level of protection against peridomestic Ae. aegypti (OR = 0.59; P = 0.02). Results reinforce the potential of using both positive collections in outdoor ovitraps and the presence of pupae as sensitive indicators of indoor adult female presence.

  15. Natural vertical transmission of dengue viruses in Aedes aegypti in selected sites in Cebu City, Philippines.

    PubMed

    Edillo, Frances E; Sarcos, Janet R; Sayson, Stephanie L

    2015-12-01

    We attempted to determine the vertical transmission of dengue virus (DENV) in Aedes aegypti in selected sites in Cebu City, Philippines. Mosquito sub-adults were collected monthly from households and the field during the wet-dry-wet season from November, 2011 to July, 2012 and were laboratory-reared to adults. Viral RNA extracts in mosquitoes were assayed by hemi-nested RT-PCR. Results showed that 62 (36.26%; n=679) out of 171 mosquito pools (n=2,871) were DENV+. The minimum infection rate (MIR) of DENV ranged from 0 in wet months to 48.22/1,000 mosquitoes in April, 2012 (mid-dry). DENVs were detected in larvae, pupae, and male and female adults, with DENV-4, DENV-3, and DENV-1, in that rank of prevalence. DENV-1 co-infected with either DENV-3 or -4 or with both in April, 2012; DENV-3 and -4 were present in both seasons. More DENV+ mosquitoes were collected from households than in field premises (p<0.001) and in the dry than in the wet season (p<0.05), with significant interaction (p<0.05) between sites and premises but no interaction between sites and seasons (p>0.05). By Generalized Linear Mixed models, the type of premises nested in sites and monthly total rainfall were significant predictors of monthly dengue cases (p<0.05) and not MIR, season, temperature, and relative humidity. Surveillance of DENV prevalence in Ae. aegypti and detecting their natural foci in the dry season provide an early warning signal of dengue outbreak.

  16. Assessing the Effects of Aedes aegypti kdr Mutations on Pyrethroid Resistance and Its Fitness Cost

    PubMed Central

    Brito, Luiz Paulo; Linss, Jutta G. B.; Lima-Camara, Tamara N.; Belinato, Thiago A.; Peixoto, Alexandre A.; Lima, José Bento P.; Valle, Denise; Martins, Ademir J.

    2013-01-01

    Pyrethroids are the most used insecticide class worldwide. They target the voltage gated sodium channel (NaV), inducing the knockdown effect. In Aedes aegypti, the main dengue vector, the AaNaV substitutions Val1016Ile and Phe1534Cys are the most important knockdown resistance (kdr) mutations. We evaluated the fitness cost of these kdr mutations related to distinct aspects of development and reproduction, in the absence of any other major resistance mechanism. To accomplish this, we initially set up 68 crosses with mosquitoes from a natural population. Allele-specific PCR revealed that one couple, the one originating the CIT-32 strain, had both parents homozygous for both kdr mutations. However, this pyrethroid resistant strain also presented high levels of detoxifying enzymes, which synergistically account for resistance, as revealed by biological and biochemical assays. Therefore, we carried out backcrosses between CIT-32 and Rockefeller (an insecticide susceptible strain) for eight generations in order to bring the kdr mutation into a susceptible genetic background. This new strain, named Rock-kdr, was highly resistant to pyrethroid and presented reduced alteration of detoxifying activity. Fitness of the Rock-kdr was then evaluated in comparison with Rockefeller. In this strain, larval development took longer, adults had an increased locomotor activity, fewer females laid eggs, and produced a lower number of eggs. Under an inter-strain competition scenario, the Rock-kdr larvae developed even slower. Moreover, when Rockefeller and Rock-kdr were reared together in population cage experiments during 15 generations in absence of insecticide, the mutant allele decreased in frequency. These results strongly suggest that the Ae. aegypti kdr mutations have a high fitness cost. Therefore, enhanced surveillance for resistance should be priority in localities where the kdr mutation is found before new adaptive alleles can be selected for diminishing the kdr deleterious

  17. Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost.

    PubMed

    Brito, Luiz Paulo; Linss, Jutta G B; Lima-Camara, Tamara N; Belinato, Thiago A; Peixoto, Alexandre A; Lima, José Bento P; Valle, Denise; Martins, Ademir J

    2013-01-01

    Pyrethroids are the most used insecticide class worldwide. They target the voltage gated sodium channel (NaV), inducing the knockdown effect. In Aedes aegypti, the main dengue vector, the AaNaV substitutions Val1016Ile and Phe1534Cys are the most important knockdown resistance (kdr) mutations. We evaluated the fitness cost of these kdr mutations related to distinct aspects of development and reproduction, in the absence of any other major resistance mechanism. To accomplish this, we initially set up 68 crosses with mosquitoes from a natural population. Allele-specific PCR revealed that one couple, the one originating the CIT-32 strain, had both parents homozygous for both kdr mutations. However, this pyrethroid resistant strain also presented high levels of detoxifying enzymes, which synergistically account for resistance, as revealed by biological and biochemical assays. Therefore, we carried out backcrosses between CIT-32 and Rockefeller (an insecticide susceptible strain) for eight generations in order to bring the kdr mutation into a susceptible genetic background. This new strain, named Rock-kdr, was highly resistant to pyrethroid and presented reduced alteration of detoxifying activity. Fitness of the Rock-kdr was then evaluated in comparison with Rockefeller. In this strain, larval development took longer, adults had an increased locomotor activity, fewer females laid eggs, and produced a lower number of eggs. Under an inter-strain competition scenario, the Rock-kdr larvae developed even slower. Moreover, when Rockefeller and Rock-kdr were reared together in population cage experiments during 15 generations in absence of insecticide, the mutant allele decreased in frequency. These results strongly suggest that the Ae. aegypti kdr mutations have a high fitness cost. Therefore, enhanced surveillance for resistance should be priority in localities where the kdr mutation is found before new adaptive alleles can be selected for diminishing the kdr deleterious

  18. Adulticidal Activity of Olea vera, Linum usitatissimum and Piper nigera against Anopheles stephensi and Aedes aegypti under Laboratory Conditions

    PubMed Central

    Nawaz, R; Rathor, H Rashid; Bilal, H; Hassan, SA; Khan, I Akram

    2011-01-01

    Background: There are several plant extractions which are being used for mosquito control. The aim of this study was to evaluate the efficacy of Olea vera, Linum usitatissimum and Piper nigera against Anopheles stephensi and Aedes aegypti under laboratory conditions. Methods: These tests were carried out using WHO recommended bioassay method for adult mosquitoes. Results: The extracts from black pepper was more effective as adulticide with lowest LC50 values (2.26% and 8.4%) against Aedes aegypti and Anopheles stephensi after 24 h of exposure while after 48h (1.56% and 5.11%) respectively. In terms of LC90 value black pepper was best with (8.66% and 30.1%) against Ae. aegypti and An. stephensi after 24 h of exposure while after 48h (4.59% and 17.3%) respectively. In terms of LT50 black pepper took 15 h to kill 50% tested population of Ae. aegypti while against An. stephensi it took more than 2 days. In terms of percentage mortality black pepper kill 84% of the population of Ae. aegypti and 44.75% of the An. stephensi population. Conclusion: Black pepper showed best results in term of LC50, LC90, LT50 and percentage mortality against Ae. aegypti and An. stephensi. Our study suggested that the plant extracts have potential to kill adult mosquitoes, are environment friendly and can be used for the control of mosquitoes. PMID:22808413

  19. Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae).

    PubMed

    da Silva, Onilda Santos; Prado, Geronimo Rodrigues; da Silva, João Luiz Rosa; Silva, Carlos Eugenio; da Costa, Marisa; Heermann, Ralf

    2013-08-01

    Dengue fever is an important vector-borne disease, mainly transmitted by Aedes aegypti. To date, there are no vaccines or effective drugs available against this arboviral disease. As mosquito control is practically the only method available to control dengue fever, alternative and cost-effective pest control strategies need to be explored. The gram-negative enteric bacteria Xenorhabdus and Photorhabdus are symbiotically associated with nematode parasites, which themselves are highly pathogenic for insect larvae. Here, we evaluate the oral toxicity of these entomopathogenic bacteria in A. aegypti larvae. The susceptibility of larvae (third late or fourth early instars) was assessed by exposing them to suspensions containing Photorhabdus luminescens or Xenorhabdus nematophila, respectively. Two diet treatments were tested with larvae fed on pet food and unfed larvae. After 24 h, larvae began to die when exposed to the bacteria. Exposure to P. luminescens killed 73% of the fed and 83% of the unfed larvae, respectively. In comparison, X. nematophila was less pathogenic, killing 52% of the larvae in the fed and 42% in the unfed treatment. Remarkably, cannibalism was observed in all bioassays after exposing larvae to either of the bacterial species. To our knowledge, this is the first report demonstrating the efficiency of these entomopathogenic bacteria for oral A. aegypti killing. Our results provide a promising basis for using these bacteria as bioinsecticides for mosquito control in the future.

  20. Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell

    PubMed Central

    2014-01-01

    Background Mosquito eggshells show remarkable diversity in physical properties and structure consistent with adaptations to the wide variety of environments exploited by these insects. We applied proteomic, transcriptomic, and hybridization in situ techniques to identify gene products and pathways that participate in the assembly of the Aedes aegypti eggshell. Aedes aegypti population density is low during cold and dry seasons and increases immediately after rainfall. The survival of embryos through unfavorable periods is a key factor in the persistence of their populations. The work described here supports integrated vector control approaches that target eggshell formation and result in Ae. aegypti drought-intolerant phenotypes for public health initiatives directed to reduce mosquito-borne diseases. Results A total of 130 proteins were identified from the combined mass spectrometric analyses of eggshell preparations. Conclusions Classification of proteins according to their known and putative functions revealed the complexity of the eggshell structure. Three novel Ae. aegypti vitelline membrane proteins were discovered. Odorant-binding and cysteine-rich proteins that may be structural components of the eggshell were identified. Enzymes with peroxidase, laccase and phenoloxidase activities also were identified, and their likely involvements in cross-linking reactions that stabilize the eggshell structure are discussed. PMID:24707823

  1. Aedes aegypti resistance to temephos in Argentina.

    PubMed

    Seccacini, Emilia; Lucia, Alejandro; Zerba, Eduardo; Licastro, Susana; Masuh, Hector

    2008-12-01

    Monitoring of resistance of Aedes aegypti to temephos was implemented in the provinces of Formosa and Misiones, Argentina, as a response to the need to improve the vigilance for the dengue vector in areas of high risk of dengue. Eggs collected in each locality were reared, and susceptibility to temephos was assayed using larval bioassays. A weak decrease in susceptibility of larvae to temephos was observed in Clorinda and Puerto Iguazú, indicating an incipient resistance with a resistance ratio of 3. No control failures have been observed yet, and this program should allow the early detection of a real problem in our country.

  2. Use of the CDC Autocidal Gravid Ovitrap to Control and Prevent Outbreaks of Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Barrera, Roberto; Amador, Manuel; Acevedo, Veronica; Caban, Belkis; Felix, Gilberto; Mackay, Andrew J.

    2015-01-01

    Populations of Aedes aegypti (L.) can be managed through reductions in adult mosquito survival, number of offspring produced, or both. Direct adult mortality can be caused by the use of space sprays or residual insecticides to mosquito resting sites, and with a variety of residual insecticide-impregnated surfaces that are being tested, such as curtains, covers for water-storage vessels, bednets, and ovitraps. The fertility of Ae. aegypti populations can be reduced by the use of autocidal oviposition cups that prevent the development of mosquitoes inside the trap by mechanical means or larvicides, as well as by releasing sterile, transgenic, and para-transgenic mosquitoes. Survival and fertility can be simultaneously reduced by capturing gravid female Ae. aegypti with sticky gravid traps. We tested the effectiveness of the novel Centers for Disease Control and Prevention autocidal gravid ovitrap (CDC-AGO trap) to control natural populations of Ae. aegypti under field conditions in two isolated urban areas (reference vs. intervention areas) in southern Puerto Rico for 1 yr. There were significant reductions in the captures of female Ae. aegypti (53–70%) in the intervention area. The presence of three to four AGO control traps per home in 81% of the houses prevented outbreaks of Ae. aegypti, which would be expected after rains. Mosquito captures in BG-Sentinel and AGO traps were significantly and positively correlated, showing that AGO traps are useful and inexpensive mosquito surveillance devices. The use of AGO traps to manage Ae. aegypti populations is compatible with other control means such as source reduction, larviciding, adulticiding, sterile insect techniques, induced cytoplasmic incompatibility, and dominant lethal gene systems. PMID:24605464

  3. The microbiome composition of Aedes aegypti is not critical for Wolbachia-mediated inhibition of dengue virus

    PubMed Central

    Audsley, Michelle D.; Ye, Yixin H.

    2017-01-01

    Background Dengue virus (DENV) is primarily vectored by the mosquito Aedes aegypti, and is estimated to cause 390 million human infections annually. A novel method for DENV control involves stable transinfection of Ae. aegypti with the common insect endosymbiont Wolbachia, which mediates an antiviral effect. However, the mechanism by which Wolbachia reduces the susceptibility of Ae. aegypti to DENV is not fully understood. In this study we assessed the potential of resident microbiota, which can play important roles in insect physiology and immune responses, to affect Wolbachia-mediated DENV blocking. Methodology/Findings The microbiome of Ae. aegypti stably infected with Wolbachia strain wMel was compared to that of Ae. aegypti without Wolbachia, using 16s rDNA profiling. Our results indicate that although Wolbachia affected the relative abundance of several genera, the microbiome of both the Wolbachia-infected and uninfected mosquitoes was dominated by Elizabethkingia and unclassified Enterobacteriaceae. To assess the potential of the resident microbiota to affect the Wolbachia-mediated antiviral effect, we used antibiotic treatment before infection with DENV by blood-meal. In spite of a significant shift in the microbiome composition in response to the antibiotics, we detected no effect of antibiotic treatment on DENV infection rates, or on the DENV load of infected mosquitoes. Conclusions/Significance Our findings indicate that stable infection with Wolbachia strain wMel produces few effects on the microbiome of laboratory-reared Ae. aegypti. Moreover, our findings suggest that the microbiome can be significantly altered without affecting the fundamental DENV blocking phenotype in these mosquitoes. Since Ae. aegypti are likely to encounter diverse microbiota in the field, this is a particularly important result in the context of using Wolbachia as a method for DENV control. PMID:28267749

  4. Use of the CDC autocidal gravid ovitrap to control and prevent outbreaks of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Barrera, Roberto; Amador, Manuel; Acevedo, Veronica; Caban, Belkis; Felix, Gilberto; Mackay, Andrew J

    2014-01-01

    Populations ofAedes aegypti (L.) can be managed through reductions in adult mosquito survival, number of offspring produced, or both. Direct adult mortality can be caused by the use of space sprays or residual insecticides to mosquito resting sites, and with a variety of residual insecticide-impregnated surfaces that are being tested, such as curtains, covers for water-storage vessels, bednets, and ovitraps. The fertility ofAe. aegypti populations can be reduced by the use of autocidal oviposition cups that prevent the development of mosquitoes inside the trap by mechanical means or larvicides, as well as by releasing sterile, transgenic, and para-transgenic mosquitoes. Survival and fertility can be simultaneously reduced by capturing gravid female Ae. aegypti with sticky gravid traps. We tested the effectiveness of the novel Centers for Disease Control and Prevention autocidal gravid ovitrap (CDC-AGO trap) to control natural populations ofAe. aegypti under field conditions in two isolated urban areas (reference vs. intervention areas) in southern Puerto Rico for 1 yr. There were significant reductions in the captures of female Ae. aegypti (53-70%) in the intervention area The presence of three to four AGO control traps per home in 81% of the houses prevented outbreaks of Ae. aegypti, which would be expected after rains. Mosquito captures in BG-Sentinel and AGO traps were significantly and positively correlated, showing that AGO traps are useful and inexpensive mosquito surveillance devices. The use of AGO traps to manage Ae. aegypti populations is compatible with other control means such as source reduction, larviciding, adulticiding, sterile insect techniques, induced cytoplasmic incompatibility, and dominant lethal gene systems.

  5. Aedes aegypti Rhesus glycoproteins contribute to ammonia excretion by larval anal papillae.

    PubMed

    Durant, Andrea C; Chasiotis, Helen; Misyura, Lidiya; Donini, Andrew

    2017-02-15

    In larval Aedes aegypti, transcripts of the Rhesus-like glycoproteins AeRh50-1 and AeRh50-2 have been detected in the anal papillae, sites of ammonia (NH3/NH4(+)) excretion; however, these putative ammonia transporters have not been previously localized or functionally characterized. In this study, we show that the AeRh50s co-immunolocalize with apical V-type H(+)-ATPase as well as with basal Na(+)/K(+)-ATPase in the epithelium of anal papillae. The double-stranded RNA-mediated knockdown of AeRh50-1 and AeRh50-2 resulted in a significant reduction in AeRh50 protein abundance in the anal papillae, and this was coupled to decreased ammonia excretion. The knockdown of AeRh50-1 resulted in decreased hemolymph [NH4(+)] and pH whereas knockdown of AeRh50-2 had no effect on these parameters. We conclude that the AeRh50s are important contributors to ammonia excretion at the anal papillae of larval A. aegypti, which may be the basis for their ability to inhabit areas with high ammonia levels.

  6. Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals

    PubMed Central

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G.; Grieco, John P.; Achee, Nicole L.

    2013-01-01

    Background Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. Methods Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin. Results Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%. Conclusions/Significance Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human–vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown

  7. Vertical Transmission of Zika Virus in Aedes aegypti Mosquitoes

    PubMed Central

    Thangamani, Saravanan; Huang, Jing; Hart, Charles E.; Guzman, Hilda; Tesh, Robert B.

    2016-01-01

    Previous experimental studies have demonstrated that a number of mosquito-borne flavivirus pathogens are vertically transmitted in their insect vectors, providing a mechanism for these arboviruses to persist during adverse climatic conditions or in the absence of a susceptible vertebrate host. In this study, designed to test whether Zika virus (ZIKV) could be vertically transmitted, female Aedes aegypti and Aedes albopictus were injected with ZIKV, and their F1 adult progeny were tested for ZIKV infection. Six of 69 Ae. aegypti pools, comprised of a total of 1,738 F1 adults, yielded ZIKV upon culture, giving a minimum filial infection rate of 1:290. In contrast, none of 803 F1 Ae. albopictus adults (32 pools) yielded ZIKV. The MFIR for Ae. aegypti was comparable to MFIRs reported for other flaviviruses in mosquitoes, including dengue, Japanese encephalitis, yellow fever, West Nile, and St. Louis encephalitis viruses. The results suggest that vertical transmission may provide a potential mechanism for the virus to survive during adverse conditions. PMID:27573623

  8. AE-941 (AEterna).

    PubMed

    Dredge, Keith

    2004-06-01

    AEterna is developing AE-941, an angiogenesis inhibitor derived from the ultrafiltration of liquid shark cartilage, with matrix metalloprotease (MMP)-2, MMP-9 and vascular endothelial growth factor inhibitory properties, for the potential treatment of non-small-cell lung cancer.

  9. Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics.

    PubMed

    Albeny-Simões, Daniel; Murrell, Ebony G; Elliot, Simon L; Andrade, Mateus R; Lima, Eraldo; Juliano, Steven A; Vilela, Evaldo F

    2014-06-01

    Oviposition habitat choices of species with aquatic larvae are expected to be influenced by both offspring risk of mortality due to predation, and offspring growth potential. Aquatic predators may indirectly influence growth potential for prey by reducing prey density and, for filter-feeding prey, by increasing bacterial food for prey via added organic matter (feces, partially eaten victims), creating the potential for interactive effects on oviposition choices. We tested the hypothesis that the mosquito Aedes aegypti preferentially oviposits in habitats with predatory Toxorhynchites larvae because of indirect effects of predation on chemical cues indicating bacterial abundance. We predicted that A. aegypti would avoid oviposition in sites with Toxorhynchites, but prefer to oviposit where bacterial food for larvae is abundant, and that predation by Toxorhynchites would increase bacterial abundances. Gravid A. aegypti were offered paired oviposition sites representing choices among: predator presence; the act of predation; conspecific density; dead conspecific larvae; and bacterial activity. A. aegypti preferentially oviposited in sites with Toxorhynchites theobaldi predation, and with killed conspecific larvae, but failed to detect preferences for other treatments. The antibiotic tetracycline eliminated the strongest oviposition preference. Both predation by Toxorhynchites and killed larvae increased bacterial abundances, suggesting that oviposition attraction is cued by bacteria. Our results show the potential for indirect effects, like trophic cascades, to influence oviposition choices and community composition in aquatic systems. Our results suggest that predators like Toxorhynchites may be doubly beneficial as biocontrol agents because of the attraction of ovipositing mosquitoes to bacterial by-products of Toxorhynchites feeding.

  10. Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics

    PubMed Central

    Albeny-Simoes, Daniel; Murrell, Ebony G.; Elliot, Simon L.; Andrade, Mateus R.; Lima, Eraldo; Juliano, Steven A.; Vilela, Evaldo F.

    2014-01-01

    Oviposition habitat choices of species with aquatic larvae is expected to be influenced by both offspring risk of mortality due to predation, and offspring growth potential. Aquatic predators may indirectly influence growth potential for prey by reducing prey density and, for filter feeding prey, by increasing bacterial food for prey via added organic matter (feces, partially eaten victims), creating the potential for interactive effects on oviposition choices. We tested the hypothesis that the mosquito Aedes aegypti preferentially oviposit in habitats with predatory Toxorhynchites larvae because of indirect effects of predation on chemical cues indicating bacterial abundance. We predicted that A. aegypti would avoid oviposition in sites with Toxorhynchites, but prefer to oviposit where bacterial food for larvae is abundant, and that predation by Toxorhynchites would increase bacterial abundances. Gravid A. aegypti were offered paired oviposition sites representing choices among: predator presence; the act of predation; conspecific density; dead conspecific larvae; and bacterial activity. Aedes aegypti preferentially oviposited in sites with T. theobaldi predation, and with killed conspecific larvae, but failed to detect preferences for other treatments. The antibiotic Tetracycline eliminated the strongest oviposition preference. Both predation by Toxorhynchites and killed larvae increased bacterial abundances, suggesting that oviposition attraction is cued by bacteria. Our results show the potential for indirect effects, like trophic cascades, to influence oviposition choices and community composition in aquatic systems. Our results suggest that predators like Toxorhynchites may be doubly beneficial as biocontrol agents because of the attraction of ovipositing mosquitoes to bacterial by-products of Toxorhynchites feeding. PMID:24590205

  11. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.

    PubMed

    Eisen, Lars; Moore, Chester G

    2013-05-01

    After more than a half century without recognized local dengue outbreaks in the continental United States, there were recent outbreaks of autochthonous dengue in the southern parts of Texas (2004-2005) and Florida (2009-2011). This dengue reemergence has provoked interest in the extent of the future threat posed by the yellow fever mosquito, Aedes (Stegomyia) aegypti (L.), the primary vector of dengue and yellow fever viruses in urban settings, to human health in the continental United States. Ae. aegypti is an intriguing example of a vector species that not only occurs in the southernmost portions of the eastern United States today but also is incriminated as the likely primary vector in historical outbreaks of yellow fever as far north as New York, Philadelphia, and Boston, from the 1690s to the 1820s. For vector species with geographic ranges limited, in part, by low temperature and cool range margins occurring in the southern part of the continental United States, as is currently the case for Ae. aegypti, it is tempting to speculate that climate warming may result in a northward range expansion (similar to that seen for Ixodes tick vectors of Lyme borreliosis spirochetes in Scandinavia and southern Canada in recent decades). Although there is no doubt that climate conditions directly impact many aspects of the life history of Ae. aegypti, this mosquito also is closely linked to the human environment and directly influenced by the availability of water-holding containers for oviposition and larval development. Competition with other container-inhabiting mosquito species, particularly Aedes (Stegomyia) albopictus (Skuse), also may impact the presence and local abundance of Ae. aegypti. Field-based studies that focus solely on the impact of weather or climate factors on the presence and abundance of Ae. aegypti, including assessments of the potential impact of climate warming on the mosquito's future range and abundance, do not consider the potential confounding

  12. Stage-Structured Population Dynamics of AEDES AEGYPTI

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  13. Larvicidal and Biting Deterrent Activity of Essential Oils of Curcuma longa, Ar-turmerone, and Curcuminoids Against Aedes aegypti and Anopheles quadrimaculatus (Culicidae: Diptera).

    PubMed

    Ali, Abbas; Wang, Yan-Hong; Khan, Ikhlas A

    2015-09-01

    Essential oils and extract of Curcuma longa, ar-turmerone, and curcuminoids were evaluated for their larvicidal and deterrent activity against mosquitoes. Ar-turmerone and curcuminoids constituted 36.9, 24.9 and 50.6% of rhizome oil, leaf oil, and rhizome extract, respectively. Ar-turmerone was the major compound of the rhizome oil (36.9%) and leaf oil (24.9%). The ethanolic extract had 15.4% ar-turmerone with 6.6% bisdesmethoxycurcumin, 6.1% desmethoxycurcumin, and 22.6% curcumin. In in vitro studies, essential oils of the leaf (biting deterrence index [BDI] = 0.98), rhizome (BDI = 0.98), and rhizome ethanolic extract (BDI = 0.96) at 10 µg/cm(2) showed biting deterrent activity similar to DEET at 25 nmol/cm(2) against Aedes aegypti L. Among the pure compounds, ar-turmerone (BDI = 1.15) showed the biting deterrent activity higher than DEET at 25 nmol/cm(2) whereas the activity of other compounds was lower than DEET. In Anopheles quadrimaculatus Say, only ar-turmerone showed deterrent activity similar to DEET. In dose-response bioassay, ar-turmerone showed significantly higher biting deterrence than DEET at all the dosages. Ar-turmerone, at 15 nmol/cm(2), showed activity similar to DEET at 25 nmol/cm(2) and activity at 5 nmol/cm(2) was similar to DEET at 20 and 15 nmol/cm(2). Leaf essential oil with LC(50) values of 1.8 and 8.9 ppm against larvae of An. quadrimaculatus and Ae. aegypti, respectively, showed highest toxicity followed by rhizome oil and ethanolic extract. Among the pure compounds, ar-turmerone with LC(50) values of 2.8 and 2.5 ppm against larvae of An. quadrimaculatus and Ae. aegypti, respectively, was most toxic followed by bisdesmethoxycurcumin, curcumin, and desmethoxycurcumin.

  14. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus

    PubMed Central

    Vazeille, Marie; Yebakima, André; Girod, Romain; Goindin, Daniella; Dupont-Rouzeyrol, Myrielle; Lourenço-de-Oliveira, Ricardo; Failloux, Anna-Bella

    2016-01-01

    Background Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe), North America (southern United States), South America (Brazil, French Guiana) for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia. Methodology/Principal Findings Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132). Upon exposure, engorged mosquitoes were maintained at 28°±1°C, a 16h:8h light:dark cycle and 80% humidity. 25–30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level. Conclusions/Significance This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak. PMID:26938868

  15. Spatial clustering of Aedes aegypti related to breeding container characteristics in Coastal Ecuador: implications for dengue control.

    PubMed

    Schafrick, Nathaniel H; Milbrath, Meghan O; Berrocal, Veronica J; Wilson, Mark L; Eisenberg, Joseph N S

    2013-10-01

    Mosquito management within households remains central to the control of dengue virus transmission. An important factor in these management decisions is the spatial clustering of Aedes aegypti. We measured spatial clustering of Ae. aegypti in the town of Borbón, Ecuador and assessed what characteristics of breeding containers influenced the clustering. We used logistic regression to assess the spatial extent of that clustering. We found strong evidence for juvenile mosquito clustering within 20 m and for adult mosquito clustering within 10 m, and stronger clustering associations for containers ≥ 40 L than those < 40 L. Aedes aegypti clusters persisted after adjusting for various container characteristics, suggesting that patterns are likely attributable to short dispersal distances rather than shared characteristics of containers in cluster areas. These findings have implications for targeting Ae. aegypti control efforts.

  16. Indoor Resting Behavior of Aedes aegypti (Diptera: Culicidae) in Acapulco, Mexico.

    PubMed

    Dzul-Manzanilla, Felipe; Ibarra-López, Jésus; Bibiano Marín, Wilbert; Martini-Jaimes, Andrés; Leyva, Joel Torres; Correa-Morales, Fabián; Huerta, Herón; Manrique-Saide, Pablo; Prokopec, Gonzalo Vazquez M

    2016-12-22

    The markedly anthropophilic and endophilic behaviors of Aedes aegypti (L.) make it a very efficient vector of dengue, chikungunya, and Zika viruses. Although a large body of research has investigated the immature habitats and conditions for adult emergence, relatively few studies have focused on the indoor resting behavior and distribution of vectors within houses. We investigated the resting behavior of Ae. aegypti indoors in 979 houses of the city of Acapulco, Mexico, by performing exhaustive indoor mosquito collections to describe the rooms and height at which mosquitoes were found resting. In total, 1,403 adult and 747 female Ae. aegypti were collected, primarily indoors (98% adults and 99% females). Primary resting locations included bedrooms (44%), living rooms (25%), and bathrooms (20%), followed by kitchens (9%). Aedes aegypti significantly rested below 1.5 m of height (82% adults, 83% females, and 87% bloodfed females); the odds of finding adult Ae. aegypti mosquitoes below 1.5 m was 17 times higher than above 1.5 m. Our findings provide relevant information for the design of insecticide-based interventions selectively targeting the adult resting population, such as indoor residual spraying.

  17. Human and environmental factors affecting Aedes aegypti distribution in an arid urban environment.

    PubMed

    Walker, Kathleen R; Joy, Teresa K; Ellers-Kirk, Christa; Ramberg, Frank B

    2011-06-01

    Aedes aegypti has reappeared in urban communities in the southwestern U.S.A. in the 1990s after a 40-year absence. In 2003 and 2004, a systematic survey was conducted throughout metropolitan Tucson, AZ, to identify human and environmental factors associated with Ae. aegypti distribution within an arid urban area. Aedes aegypti presence and abundance were measured monthly using the Centers for Disease Control and Prevention enhanced oviposition traps at sampling sites established in a grid at 3- to 4-km intervals across the city. Sampling occurred in the summer rainy season (July through September), the peak of mosquito activity in the region. Multiple regression analyses were conducted to determine relationships between mosquito density and factors that could influence mosquito distribution. House age was the only factor that showed a consistent significant association with Ae. aegypti abundance in both years: older houses had more mosquito eggs. This is the 1st study of Ae. aegypti distribution at a local level to identify house age as an explanatory factor independent of other human demographic factors. Further research into the reasons why mosquitoes were more abundant around older homes may help inform and refine future vector surveillance and control efforts in the event of a dengue outbreak in the region.

  18. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti.

    PubMed

    Gulia-Nuss, Monika; Elliot, Anne; Brown, Mark R; Strand, Michael R

    2015-11-01

    Aedes aegypti is an anautogenous mosquito that must blood feed on a vertebrate host to produce and lay a clutch of eggs. The rockpool mosquito, Georgecraigius atropalpus, is related to A. aegypti but is a facultatively autogenous species that produces its first clutch of eggs shortly after emerging without blood feeding. Consumption of a blood meal by A. aegypti triggers the release of ovary ecdysteroidogenic hormone (OEH) and insulin-like peptide 3 (ILP3) from the brain, which stimulate egg formation. OEH and ILP3 also stimulate egg formation in G. atropalpus but are released at eclosion independently of blood feeding. These results collectively suggest that blood meal dependent release of OEH and ILP3 is one factor that prevents A. aegypti from reproducing autogenously. Here, we examined two other factors that potentially inhibit autogeny in A. aegypti: teneral nutrient reserves and the ability of OEH and ILP3 to stimulate egg formation in the absence of blood feeding. Measures of nutrient reserves showed that newly emerged A. aegypti females had similar wet weights but significantly lower protein and glycogen reserves than G. atropalpus females when larvae were reared under identical conditions. OEH stimulated non-blood fed A. aegypti females to produce ecdysteroid hormone and package yolk into oocytes more strongly than ILP3. OEH also reduced host seeking and blood feeding behavior, yet females produced few mature eggs. Overall, our results indicate that multiple factors prevent A. aegypti from reproducing autogenously.

  19. Spatial and Temporal Variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Numbers in the Yogyakarta Area of Java, Indonesia, With Implications for Wolbachia Releases.

    PubMed

    Tantowijoyo, W; Arguni, E; Johnson, P; Budiwati, N; Nurhayati, P I; Fitriana, I; Wardana, S; Ardiansyah, H; Turley, A P; Ryan, P; O'Neill, S L; Hoffmann, A A

    2016-01-01

    of mosquito vector populations, particularly through Wolbachia endosymbionts. The success of these strategies depends on understanding the dynamics of vector populations. In preparation for Wolbachia releases around Yogyakarta, we have studied Aedes populations in five hamlets. Adult monitoring with BioGent- Sentinel (BG-S) traps indicated that hamlet populations had different dynamics across the year; while there was an increase in Aedes aegypti (L.) and Aedes albopictus (Skuse) numbers in the wet season, species abundance remained relatively stable in some hamlets but changed markedly (>2 fold) in others. Local rainfall a month prior to monitoring partly predicted numbers of Ae. aegypti but not Ae. albopictus. Site differences in population size indicated by BG-S traps were also evident in ovitrap data. Egg or larval collections with ovitraps repeated at the same location suggested spatial autocorrelation (<250 m) in the areas of the hamlets where Ae. aegypti numbers were high. Overall, there was a weak negative association (r<0.43) between Ae. aegypti and Ae. albopictus numbers in ovitraps when averaged across collections. Ae. albopictus numbers in ovitraps and BG-S traps were positively correlated with vegetation around areas where traps were placed, while Ae. aegypti were negatively correlated with this feature. These data inform intervention strategies by defining periods when mosquito densities are high, highlighting the importance of local site characteristics on populations, and suggesting relatively weak interactions between Ae. aegypti and Ae. albopictus. They also indicate local areas within hamlets where consistently high mosquito densities may influence Wolbachia invasions and other interventions.

  20. [Aedes aegypti and Aedes albopictus in bromeliads grown in the Bauru Municipal Botanical Gardens, São Paulo, Brazil].

    PubMed

    Oliveira, Viviane Camila de; Almeida, Luiz Carlos de

    2017-01-23

    The aim of this study was to observe the occurrence of mosquito larvae, especially Aedes aegypti and Aedes albopictus, in the tanks and axillae of bromeliads at the Bauru Municipal Botanical Gardens, São Paulo, Brazil, highlighting the epidemiological implications for the use of these plants. The majority of the larvae belonged to mosquitos from genus Culex, with only occasional findings of A. aegypti and A. albopictus. The use of screens for protection of the plants, exposure to sunlight, and larger amounts of water in the tanks may have influenced the occurrence and grouping of larvae.

  1. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  2. The Drosophila melanogaster cinnabar gene is a cell autonomous genetic marker in Aedes aegypti (Diptera: Culicidae).

    PubMed

    Sethuraman, Nagaraja; O'Brochta, David A

    2005-07-01

    The cinnabar gene of Drosophila melanogaster (Meigen) encodes for kynurenine hydroxylase, an enzyme involved in ommochrome biosynthesis. This gene is commonly included as a visible genetic marker in gene vectors used to create transgenic Aedes aegypti (L.) that are homozygous for the khw allele, the mosquito homolog of cinnabar. Unexpectedly, the phenotype of cells expressing kynurenine hydroxylase in transgenic Ae. aegypti is cell autonomous as demonstrated by the recovery of insects heterozygous for the kynurenine hydroxylase transgene with mosaic eye color patterns. In addition, a transgenic gynandromorph was recovered in which one-half of the insect was expressing the kynurenine hydroxylase transgene, including one eye with red pigmentation, whereas the other half of the insect was homozygous khw and included a white eye. The cell autonomous behavior of cinnabar in transgenic Ae. aegypti is unexpected and increases the utility of this genetic marker.

  3. Sustained, Area-Wide Control of Aedes aegypti Using CDC Autocidal Gravid Ovitraps

    PubMed Central

    Barrera, Roberto; Amador, Manuel; Acevedo, Verónica; Hemme, Ryan R.; Félix, Gilberto

    2014-01-01

    We have shown that the Centers for Disease Control and Prevention (CDC) autocidal gravid ovitraps (AGO trap) reduced the Aedes aegypti population and prevented mosquito outbreaks in southern Puerto Rico. After showing treatment efficacy for 1 year, we deployed three traps per home in an area that formerly did not have traps and in a site that served as the intervention area. Two new areas were selected as reference sites to compare the density of Ae. aegypti without traps. We monitored mosquitoes and weather every week in all four sites. The hypotheses were the density of Ae. aegypti in the former reference area converges to the low levels observed in the intervention area, and mosquito density in both areas having control traps is lower than in the new reference areas. Mosquito density in the former reference area decreased 79% and mosquito density in the new reference areas was 88% greater than in the intervention areas. PMID:25223937

  4. Sustained, area-wide control of Aedes aegypti using CDC autocidal gravid ovitraps.

    PubMed

    Barrera, Roberto; Amador, Manuel; Acevedo, Verónica; Hemme, Ryan R; Félix, Gilberto

    2014-12-01

    We have shown that the Centers for Disease Control and Prevention (CDC) autocidal gravid ovitraps (AGO trap) reduced the Aedes aegypti population and prevented mosquito outbreaks in southern Puerto Rico. After showing treatment efficacy for 1 year, we deployed three traps per home in an area that formerly did not have traps and in a site that served as the intervention area. Two new areas were selected as reference sites to compare the density of Ae. aegypti without traps. We monitored mosquitoes and weather every week in all four sites. The hypotheses were the density of Ae. aegypti in the former reference area converges to the low levels observed in the intervention area, and mosquito density in both areas having control traps is lower than in the new reference areas. Mosquito density in the former reference area decreased 79% and mosquito density in the new reference areas was 88% greater than in the intervention areas.

  5. Discriminating lethal concentrations and efficacy of six pyrethroids for control of Aedes aegypti in Thailand.

    PubMed

    Juntarajumnong, Waraporn; Pimnon, Sunthorn; Bangs, Michael J; Thanispong, Kanutcharee; Chareonviriyaphap, Theeraphap

    2012-03-01

    Establishing baseline insecticide discriminating doses is crucial in accurately determining susceptibility status and changing temporal patterns of physiological response in mosquito populations. Pyrethroids are the predominant chemicals used for controlling adult Aedes aegypti and Ae. albopictus, both vectors of dengue viruses, in Thailand. Presently, only 2 pyrethroids, permethrin and lambda-cyhalothrin, have published diagnostic dose rates for monitoring Ae. aegypti. This study established the diagnostic lethal concentrations for 6 different pyrethroids available in Thailand for dengue vector control. United States Department of Agriculture insecticide-susceptible strain of Ae. aegypti was used to establish the baseline concentrations for subsequent susceptibility testing of field populations. Our findings showed lower discriminating concentrations for lambda-cyhalothrin and permethrin than those recommended by the World Health Organization (WHO), at 2.5- and 1.7-fold lower dosing, respectively. The susceptibility status of 3 different geographical populations of field-collected Ae. aegypti were tested using the standard WHO procedures. All 3 field strains demonstrated varying levels of physiological resistance to each compound. We conclude that establishing the baseline diagnostic concentration of an insecticide is of paramount importance in accurately determining the susceptibility status in field-collected mosquitoes. If possible, discriminating doses should be established for all insecticides and test assays run concurrently with a known susceptible strain for more accurate monitoring of resistance in mosquito populations in Thailand.

  6. Permethrin Induces Overexpression of Cytochrome c Oxidase Subunit 3 in Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using quantitative PCR (QPCR), the relative transcriptional levels of cytochrome c oxidase subunit 3 (CO3) were studied in Aedes aegypti (L.) in response to treatments with acetone, permethrin, or fipronil. The transcriptional levels of CO3 were significantly (p <0.05) higher in acetone-treated Ae. ...

  7. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America

    PubMed Central

    Ferreira-de-Brito, Anielly; Ribeiro, Ieda P; de Miranda, Rafaella Moraes; Fernandes, Rosilainy Surubi; Campos, Stéphanie Silva; da Silva, Keli Antunes Barbosa; de Castro, Marcia Gonçalves; Bonaldo, Myrna C; Brasil, Patrícia; Lourenço-de-Oliveira, Ricardo

    2016-01-01

    Zika virus (ZIKV) has caused a major epidemic in Brazil and several other American countries. ZIKV is an arbovirus whose natural vectors during epidemics have been poorly determined. In this study, 1,683 mosquitoes collected in the vicinity of ZIKV suspected cases in Rio de Janeiro, Brazil, from June 2015 to May 2016 were screened for natural infection by using molecular methods. Three pools of Aedes aegypti were found with the ZIKV genome, one of which had only one male. This finding supports the occurrence of vertical and/or venereal transmission of ZIKV in Ae. aegypti in nature. None of the examined Ae. albopictus and Culex quinquefasciatus was positive. This is the first report of natural infection by ZIKV in mosquitoes in Brazil and other South American countries. So far, Ae. aegypti is the only confirmed vector of ZIKV during the ongoing Pan-American epidemics. PMID:27706382

  8. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America.

    PubMed

    Ferreira-de-Brito, Anielly; Ribeiro, Ieda P; Miranda, Rafaella Moraes de; Fernandes, Rosilainy Surubi; Campos, Stéphanie Silva; Silva, Keli Antunes Barbosa da; Castro, Marcia Gonçalves de; Bonaldo, Myrna C; Brasil, Patrícia; Lourenço-de-Oliveira, Ricardo

    2016-10-01

    Zika virus (ZIKV) has caused a major epidemic in Brazil and several other American countries. ZIKV is an arbovirus whose natural vectors during epidemics have been poorly determined. In this study, 1,683 mosquitoes collected in the vicinity of ZIKV suspected cases in Rio de Janeiro, Brazil, from June 2015 to May 2016 were screened for natural infection by using molecular methods. Three pools of Aedes aegypti were found with the ZIKV genome, one of which had only one male. This finding supports the occurrence of vertical and/or venereal transmission of ZIKV in Ae. aegypti in nature. None of the examined Ae. albopictus and Culex quinquefasciatus was positive. This is the first report of natural infection by ZIKV in mosquitoes in Brazil and other South American countries. So far, Ae. aegypti is the only confirmed vector of ZIKV during the ongoing Pan-American epidemics.

  9. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti.

    PubMed

    Rapley, L P; Johnson, P H; Williams, C R; Silcock, R M; Larkman, M; Long, S A; Russell, R C; Ritchie, S A

    2009-12-01

    In Cairns, Australia, the impacts on Aedes aegypti L. (Diptera: Culicidae) populations of two types of 'lure & kill' (L&K) lethal ovitraps (LOs), the standard lethal ovitrap (SLO) and the biodegradable lethal ovitrap (BLO) were measured during three mass-trapping interventions. To assess the efficacy of the SLO, two interventions (one dry season and one wet season) were conducted in three discrete areas, each lasting 4 weeks, with the following treatments: (i) SLOs (>200 traps, approximately 4/premise), BG-sentinel traps (BGSs; approximately 15, 1/premise) and larval control (container reduction and methoprene treatment) and (ii) larval control alone, and (iii) untreated control. Female Ae. aegypti populations were monitored for 4 weeks pre- and post-treatment in all three areas using BGSs and sticky ovitraps (SOs) or non-lethal regular ovitraps (ROs). In the dry season, 206 SLOs and 15 BGSs set at 54 and 15 houses, respectively, caught and killed an estimated 419 and 73 female Ae. aegypti, respectively. No significant decrease in collection size of female Ae. aegypti could be attributed to the treatments. In the wet season, 243 SLOs and 15 BGSs killed approximately 993 and 119 female Ae. aegypti, respectively. The mean number of female Ae. aegypti collected after 4 weeks with SOs and BGSs was significantly less than the control (LSD post-hoc test). The third mass-trapping intervention was conducted using the BLO during the wet season in Cairns. For this trial, three treatment areas were each provided with BLOs (>500, approximately 4/premise) plus larval control, and an untreated control area was designated. Adult female Ae. aegypti were collected for 4 weeks pre- and post-treatment using 15 BGSs and 20 SOs. During this period, 53.2% of BLOs contained a total of 6654 Ae. aegypti eggs. Over the intervention period, collections of Ae. aegypti in the treatment areas were significantly less than in the control area for BGSs but not SOs. An influx of relatively large

  10. Study of the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus according to the habitat and meteorological variables, municipality of São Sebastião, São Paulo State, Brazil

    PubMed Central

    2013-01-01

    Background This study focused on the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus. Methods Eighty ovitraps were exposed for four days of each month in peri- and intradomiciliary environments of 40 urban residences on 20 street blocks that were drawn monthly in Sebastião, SP, between February 2011 and February 2012. The monthly distribution of positive ovitrap indices (POI) and mean egg counts per trap (MET) of Ae. aegypti and Ae. albopictus were analyzed using the Kruskal-Wallis test, followed by the Dwass-Steel-Critchlow-Fligner (DSCF) test. Spearman's rank correlation coefficient and simple linear regression were used to determine the association between the meteorological variables of temperature and rainfall and the number of ovitraps with eggs and the egg count. Results The POI and MET of Ae. aegypti were higher in peridomiciliary premises. A positive correlation was found between the temperature and the number of ovitraps with eggs and the egg count of this species in domestic environments. There was no difference in the POI and MET of Ae. albopictus between the environments. A positive correlation was found between temperature and positive ovitraps of Ae. albopictus in peridomiciliary premises. The POI and MET of Ae. aegypti were higher than those of Ae. albopictus. Conclusions Peridomiciliary premises were the preferred environments for oviposition of Ae. aegypti. The use of ovitraps for surveillance and vector control is reiterated. PMID:24499530

  11. Mapping Past, Present, and Future Climatic Suitability for Invasive Aedes Aegypti and Aedes Albopictus in the United States: A Process-Based Modeling Approach Using CMIP5 Downscaled Climate Scenarios

    NASA Technical Reports Server (NTRS)

    Donnelly, Marisa Anne Pella; Marcantonio, Matteo; Melton, Forrest S.; Barker, Christopher M.

    2016-01-01

    The ongoing spread of the mosquitoes, Aedes aegypti and Aedes albopictus, in the continental United States leaves new areas at risk for local transmission of dengue, chikungunya, and Zika viruses. All three viruses have caused major disease outbreaks in the Americas with infected travelers returning regularly to the U.S. The expanding range of these mosquitoes raises questions about whether recent spread has been enabled by climate change or other anthropogenic influences. In this analysis, we used downscaled climate scenarios from the NASA Earth Exchange Global Daily Downscaled Projections (NEX GDDP) dataset to model Ae. aegypti and Ae. albopictus population growth rates across the United States. We used a stage-structured matrix population model to understand past and present climatic suitability for these vectors, and to project future suitability under CMIP5 climate change scenarios. Our results indicate that much of the southern U.S. is suitable for both Ae. aegypti and Ae. albopictus year-round. In addition, a large proportion of the U.S. is seasonally suitable for mosquito population growth, creating the potential for periodic incursions into new areas. Changes in climatic suitability in recent decades for Ae. aegypti and Ae. albopictus have occurred already in many regions of the U.S., and model projections of future climate suggest that climate change will continue to reshape the range of Ae. aegypti and Ae. albopictus in the U.S., and potentially the risk of the viruses they transmit.

  12. The risk of Aedes aegypti breeding and premises condition in South Mexico.

    PubMed

    Manrique-Saide, Pablo; Davies, Clive R; Coleman, Paul G; Che-Mendoza, Azael; Dzul-Manzanilla, Felipe; Barrera-Pérez, Mario; Hernández-Betancourt, Silvia; Ayora-Talavera, Guadalupe; Pinkus-Rendón, Miguel; Burciaga-Zúñiga, Pierre; Sánchez Tejeda, Gustavo; Arredondo-Jiménez, Juan I

    2013-12-01

    A recent innovation instrumented for the Dengue Prevention and Control program in Mexico is the use of the premises condition index (PCI) as an indicator of risk for the vector Aedes aegypti infestation in dengue-endemic localities of Mexico. This paper addresses whether further improvements for the dengue control program could be made if the prevalence and productivity of Ae. aegypti populations could be reliably predicted using PCI at the household level, as well as medium-sized neighborhoods. We evaluated the use of PCI to predict the infestation with Aedes aegypti (breeding sites and immature productivity) in Merida, Mexico. The study consisted of a cross-sectional survey based on a cluster-randomized sampling design. We analyzed the statistical association between Aedes infestation and PCI, the extent to which the 3 components of PCI (house maintenance, and tidiness and shading of the patio) contributed to the association between PCI and infestation and whether infestation in a given premises was also affected by the PCI of the surrounding ones. Premises with the lowest PCI had significantly lower Aedes infestation and productivity; and as PCI scores increased infestation levels also tended to increase. Household PCI was significantly associated with Ae. aegypti breeding, largely due to the effect of patio untidiness and patio shade. The mean PCI within the surroundings premises also had a significant and independent explanatory power to predict the risk for infestation, in addition to individual PCI. This is the 1st study in Mexico showing evidence that premises condition as measured by the PCI is related to Ae. aegypti breeding sites and immature productivity. Results suggest that PCI could be used to streamline surveys to inform control efforts at least where Ae. aegypti breeds outdoors, as in Merida. The effect of individual premises, neighborhood condition, and the risk of Aedes infestation imply that the risk for dengue vector infestation can only be

  13. Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico

    PubMed Central

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J.

    2011-01-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. PMID:22206021

  14. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti.

    PubMed

    Dzaki, Najat; Ramli, Karima N; Azlan, Azali; Ishak, Intan H; Azzam, Ghows

    2017-03-16

    The mosquito Aedes aegypti (Ae. aegypti) is the most notorious vector of illness-causing viruses such as Dengue, Chikugunya, and Zika. Although numerous genetic expression studies utilizing quantitative real-time PCR (qPCR) have been conducted with regards to Ae. aegypti, a panel of genes to be used suitably as references for the purpose of expression-level normalization within this epidemiologically important insect is presently lacking. Here, the usability of seven widely-utilized reference genes i.e. actin (ACT), eukaryotic elongation factor 1 alpha (eEF1α), alpha tubulin (α-tubulin), ribosomal proteins L8, L32 and S17 (RPL8, RPL32 and RPS17), and glyceraldeyde 3-phosphate dehydrogenase (GAPDH) were investigated. Expression patterns of the reference genes were observed in sixteen pre-determined developmental stages and in cell culture. Gene stability was inferred from qPCR data through three freely available algorithms i.e. BestKeeper, geNorm, and NormFinder. The consensus rankings generated from stability values provided by these programs suggest a combination of at least two genes for normalization. ACT and RPS17 are the most dependably expressed reference genes and therefore, we propose an ACT/RPS17 combination for normalization in all Ae. aegypti derived samples. GAPDH performed least desirably, and is thus not a recommended reference gene. This study emphasizes the importance of validating reference genes in Ae. aegypti for qPCR based research.

  15. Evaluation of BG-sentinel trap trapping efficacy for Aedes aegypti (Diptera: Culicidae) in a visually competitive environment.

    PubMed

    Ball, Tamara S; Ritchie, Scott R

    2010-07-01

    The BG-Sentinel (BGS) trap uses visual and olfactory cues as well as convection currents to attract Aedes aegypti (L.). The impact of the visual environment on trapping efficacy of the BGS trap for Ae. aegypti was investigated. Four- to 5-d nulliparous female and male Ae. aegypti were released into a semicontrolled room to evaluate the effect of the presence, reflectance, and distribution of surrounding harborage sites on BGS trapping efficacy. Low-reflective (dark) harborage sites near the BGS had a negative effect on both male and nulliparous female recapture rates; however, a more pronounced effect was observed in males. The distribution (clustered versus scattered) of dark harborage sites did not significantly affect recapture rates in either sex. In a subsequent experiment, the impact of oviposition sites on the recapture rate of gravid females was investigated. Although gravid females went to the oviposition sites and deposited eggs, the efficacy of the BGS in recapturing gravid females was not compromised. Ae. aegypti sampling in the field will mostly occur in the urban environment, whereby the BGS will be among oviposition sites and dark harborage areas in the form of household items and outdoor clutter. In addition to understanding sampling biases of the BGS, estimations of the adult population size and structure can be further adjusted based on an understanding of the impact of dark harborage sites on trap captures. Outcomes from this suite of experiments provide us with important considerations for trap deployment and interpretation of Ae. aegypti samples from the BGS trap.

  16. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti

    PubMed Central

    Dzaki, Najat; Ramli, Karima N.; Azlan, Azali; Ishak, Intan H.; Azzam, Ghows

    2017-01-01

    The mosquito Aedes aegypti (Ae. aegypti) is the most notorious vector of illness-causing viruses such as Dengue, Chikugunya, and Zika. Although numerous genetic expression studies utilizing quantitative real-time PCR (qPCR) have been conducted with regards to Ae. aegypti, a panel of genes to be used suitably as references for the purpose of expression-level normalization within this epidemiologically important insect is presently lacking. Here, the usability of seven widely-utilized reference genes i.e. actin (ACT), eukaryotic elongation factor 1 alpha (eEF1α), alpha tubulin (α-tubulin), ribosomal proteins L8, L32 and S17 (RPL8, RPL32 and RPS17), and glyceraldeyde 3-phosphate dehydrogenase (GAPDH) were investigated. Expression patterns of the reference genes were observed in sixteen pre-determined developmental stages and in cell culture. Gene stability was inferred from qPCR data through three freely available algorithms i.e. BestKeeper, geNorm, and NormFinder. The consensus rankings generated from stability values provided by these programs suggest a combination of at least two genes for normalization. ACT and RPS17 are the most dependably expressed reference genes and therefore, we propose an ACT/RPS17 combination for normalization in all Ae. aegypti derived samples. GAPDH performed least desirably, and is thus not a recommended reference gene. This study emphasizes the importance of validating reference genes in Ae. aegypti for qPCR based research. PMID:28300076

  17. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico.

    PubMed

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J

    2011-12-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence.

  18. Aedes aegypti pupal/demographic surveys in southern Mexico: consistency and practicality.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-04-01

    In interventions aimed at the control of the immature stages of Aedes aegypti (L.), the principal vector of the dengue viruses, attempts are often made to treat or manage all larval habitats in households. When there are resource-constraints, however, a concentration of effort on the types of container that produce the most pupae may be required. Identification of these 'key' container types requires surveys of the immature stages and particularly - since these give the best estimates of the numbers of adults produced - of the numbers of pupae in local containers. Although there has been no clearly defined or standardized protocol for the sampling of Ae. aegypti pupae for many years, a methodology for 'pupal/demographic' surveys, which may allow the risk of dengue outbreaks in a given setting to be estimated, has been recently described. The consistency and practicality of using such surveys has now been investigated in three cities in the Mexican state of Chiapas, Mexico. Using a combination of 'quadrat'- and transect-sampling methods, 600 houses in each city were each sampled twice. Containers within each study household were searched for pupae and larvae. Although 107,297 containers, belonging to 26 categories, were observed, only 16,032 were found to contain water and 96% and 92% of these 'wet' containers contained no pupae and no third- or fourth-instar larvae, respectively. Although the random 'quadrat' sampling gave similar results to sampling along transects, there were statistically significant differences in the numbers of pupae according to container type and locality. The most important containers for pupal production were found to be large cement wash basins, which were present in almost every household investigated and from which 84% (10,257/12,271) of all pupae were collected. A focus on this class of container could serve as the basis of a targeted intervention strategy. When traditional Stegomyia indices were calculated they appeared to be

  19. Identification and initial characterization of matrix metalloproteinases in the yellow fever mosquito, Aedes aegypti.

    PubMed

    Kantor, A M; Dong, S; Held, N L; Ishimwe, E; Passarelli, A L; Clem, R J; Franz, A W E

    2017-02-01

    Aedes aegypti is a major vector for arboviruses such as dengue, chikungunya and Zika viruses. During acquisition of a viremic bloodmeal, an arbovirus infects mosquito midgut cells before disseminating to secondary tissues, including the salivary glands. Once virus is released into the salivary ducts it can be transmitted to another vertebrate host. The midgut is surrounded by a basal lamina (BL) in the extracellular matrix, consisting of a proteinaceous mesh composed of collagen IV and laminin. BL pore size exclusion limit prevents virions from passing through. Thus, the BL probably requires remodelling via enzymatic activity to enable efficient virus dissemination. Matrix metalloproteinases (MMPs) are extracellular endopeptidases that are involved in remodelling of the extracellular matrix. Here, we describe and characterize the nine Ae. aegypti encoded MMPs, AeMMPs 1-9, which share common features with other invertebrate and vertebrate MMPs. Expression profiling in Ae. aegypti revealed that Aemmp4 and Aemmp6 were upregulated during metamorphosis, whereas expression of Aemmp1 and Aemmp2 increased during bloodmeal digestion. Aemmp1 expression was also upregulated in the presence of a bloodmeal containing chikungunya virus. Using polyclonal antibodies, AeMMP1 and AeMMP2 were specifically detected in tissues associated with the mosquito midgut.

  20. Mosquito attractant blends to trap host seeking Aedes aegypti.

    PubMed

    Mathew, Nisha; Ayyanar, Elango; Shanmugavelu, Sabesan; Muthuswamy, Kalyanasundaram

    2013-03-01

    Aedes aegypti is the key vector of three important arboviral diseases -dengue, yellow fever and chikungunya. To identify volatile chemicals which could be used in odour based traps for Aedes mosquito surveillance, a few synthetic compounds and compound blends have been evaluated in an indigenously designed olfactometer. A total of 24 compounds and seven compound blends were screened against unfed adult female Ae. aegypti mosquitoes for attraction and compared with control group. The attractancy or repellency index of the test material to mosquitoes was calculated and rated them as class-1, class-2 and class-3 with rating values ranging 1-15, 16-33 and 34-100 respectively. Out of the 24 compounds tested, six were showing significant attractancy (P < 0.05) and among that 1-octene-3-ol showed maximum attractancy with a rating value of 57.81. Sixteen compounds showed significant repellency (P < 0.05) and among that with a rating value of 72.47, 1-hexene-3-ol showed strong repellent action against Ae. aegypti. All the seven blends showed significant mosquito attractancy (P < 0.05) and among that with a rating of 62.08 Myristic acid, Lactic acid and CO(2) blend exhibited first-rate mosquito attractancy.

  1. Comprehensive DNA methylation analysis of the Aedes aegypti genome

    PubMed Central

    Falckenhayn, Cassandra; Carneiro, Vitor Coutinho; de Mendonça Amarante, Anderson; Schmid, Katharina; Hanna, Katharina; Kang, Seokyoung; Helm, Mark; Dimopoulos, George; Fantappié, Marcelo Rosado; Lyko, Frank

    2016-01-01

    Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the Ae. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided first evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus regulation. PMID:27805064

  2. Comprehensive DNA methylation analysis of the Aedes aegypti genome.

    PubMed

    Falckenhayn, Cassandra; Carneiro, Vitor Coutinho; de Mendonça Amarante, Anderson; Schmid, Katharina; Hanna, Katharina; Kang, Seokyoung; Helm, Mark; Dimopoulos, George; Fantappié, Marcelo Rosado; Lyko, Frank

    2016-11-02

    Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play key roles in virus control and it has been suggested that dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the Ae. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the Ae. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided first evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus regulation.

  3. Formulas of components of citronella oil against mosquitoes (Aedes aegypti).

    PubMed

    Hsu, Wey-Shin; Yen, Jui-Hung; Wang, Yei-Shung

    2013-01-01

    The mosquito Aedes aegypti is an epidemic vector of several diseases such as dengue fever and yellow fever. Several pesticides are used to control the mosquito population. Because of their frequent use, some mosquitoes have developed resistance. In this study, we used the Y-tube olfactometer to test essential oils of Cymbopogon species and screened specific formulas of components as repellents against Ae. aegypti. At 400 μL, the extracted oil of citronella grass (Cymbopogon nardus) and myrcene produced a low-active response by inhibiting mosquito host-seeking activity. Citronella grass, lemon grass (Cymbopogon citratus), citral and myrcene also produced a low-treatment response to repellents, for more potential to affect host-seeking behavior. Furthermore, the mixture of citral, myrcene, and citronellal oil (C:M:Ci = 6:4:1) greatly affected and inhibited host-seeking behavior (76% active response; 26% treatment response with 40 μL; 42.5%, 18% with 400 μL; and 19%, 23% with 1000 μL). As compared with the result for N,N-diethyl-3-methylbenzamide (DEET; 44%, 22% with 400 μL), adjusting the composition formulas of citronella oil had a synergistic effect, for more effective repellent against Ae. aegypti.

  4. Biochemical evidence of efficacy of potash alum for the control of dengue vector Aedes aegypti (Linnaeus).

    PubMed

    Preet, Shabad; Sneha, A

    2011-06-01

    Aedes aegypti is the primary vector of dengue, yellow fever and chikungunya in India and other South East Asian countries, and novel insecticides for vector control are urgently needed. In the present investigation, efficacy of potash alum, a traditionally known double salt in Indian and Chinese medicine system, was tested against the larvae of dengue vector, A. aegypti. LC(50,) LC(90) and LC(99) values were recorded for various instar larvae where I instar larvae were found to be the most susceptible and IV instar larvae as the least susceptible one. The LC(50) values of crude and standard potash alum of various instar larvae ranged between 15.29 and 48.53 ppm and 20.50-65.10 ppm, respectively. Biochemical changes were also evidenced in IV instar A. aegypti larvae following a sublethal exposure for 24 h in the levels of various nutrient reserves and primary metabolites such as sugar, glycogen, lipids and proteins suggesting possible mode of action responsible for larval mortality. Sugar and glycogen concentrations were measured as 24.6 and 10.67 μg per five larvae in controls which were significantly (p<0.05) reduced by 32.11-93.98% and 39.26-94.47%, respectively, in larvae treated with crude alum. In controls, protein and lipid content were recorded as 210.74 and 94.71 μg per five larvae which dropped up to 26.53% and 25.5%, respectively, in larvae following treatment with crude alum. Moreover, drastic changes were also recorded for DNA content with 25.39-44.17% decrease in crude alum-treated larvae. It is evident from these results that potash alum, a fairly cheaper and readily available ecofriendly compound could be recommended as a potential chemical larvicide against dengue vector at mosquito breeding sites in the vicinity of human dwellings.

  5. Field validation of the gravid Aedes trap (GAT) for collection of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ritchie, Scott A; Buhagiar, Tamara S; Townsend, Michael; Hoffmann, Ary; Van Den Hurk, Andrew F; McMahon, Jamie L; Eiras, Alvaro E

    2014-01-01

    Current surveillance methods for adult Aedes aegypti (L.) are expensive, require electrical power (e.g., the BG-Sentinel trap, BGS), are labor intensive (aspirators), or require difficult to use and costly adhesives (sticky ovitraps). Field trials were conducted in Cairns (Australia) to compare the efficacy of the newly designed Gravid Aedes Trap (GAT) against existing sticky ovitraps (MosquiTRAP and double sticky ovitrap) and the BGS. Latin square design trials confirmed that alarge GAT using a 9.2-liters bucket treated with Mortein Barrier Outdoor Surface Spray ([AI] 0.3 g/kg imiprothrin and 0.6 g/kg deltamethrin) outperformed a smaller 1.2-liters GAT and collected, on average, 3.7x and 2.4X more female Ae. aegypti than the MosquiTRAP and double sticky ovitrap, respectively. Field trials showed that the GAT collected 10-50% less female Ae. aegypti than the BGS trap but 30% more gravid mosquitoes than the BGS. Trials using the BGS and the GAT indicated that there was no difference in capture rates between female Ae. aegypti uninfected and infected with the wMel strain of Wolbachia, and wMel infection rates were nearly identical at >90% to field captured Ae. aegypti. The potential for the GAT to be used for dengue virus surveillance was also demonstrated with dengue virus type 3 RNA detected in five-sixths and six-sixths pools ofAe. aegypti stored in a GAT held at 28 degreeC and 60% relative humidity for 7 and 14 d, respectively. Mosquito knock down in GATs treated with Mortein surface spray set in 30, 70, and 99% shade was comparable for up to 2 mo, with only approximately 10% of adults escaping. The GAT is therefore a useful tool for capturing adult Ae. aegypti and may be suitable for other container-inhabiting species such as Aedes albopictus (Skuse) and Culex quinquefasciatus Say. The low cost and practicality of operation make the GAT suitable for vector surveillance and projects requiring monitoring of mosquitoes for Wolbachia and arboviruses, especially in

  6. The queenslandensis and the type Form of the Dengue Fever Mosquito (Aedes aegypti L.) Are Genomically Indistinguishable

    PubMed Central

    Filipović, Igor; Callahan, Ashley G.; Stanford, Darren; Chan, Abigail; Lam-Phua, Sai Gek; Tan, Cheong Huat; Hoffmann, Ary Anthony

    2016-01-01

    Background The mosquito Aedes aegypti (L.) is a major vector of viral diseases like dengue fever, Zika and chikungunya. Aedes aegypti exhibits high morphological and behavioral variation, some of which is thought to be of epidemiological significance. Globally distributed domestic Ae. aegypti have often been grouped into (i) the very pale variety queenslandensis and (ii) the type form. Because the two color forms co-occur across most of their range, there is interest in understanding how freely they interbreed. This knowledge is particularly important for control strategies that rely on mating compatibilities between the release and target mosquitoes, such as Wolbachia releases and SIT. To address this question, we analyzed nuclear and mitochondrial genome-wide variation in the co-occurring pale and type Ae. aegypti from northern Queensland (Australia) and Singapore. Methods/Findings We typed 74 individuals at a 1170 bp-long mitochondrial sequence and at 16,569 nuclear SNPs using a customized double-digest RAD sequencing. 11/29 genotyped individuals from Singapore and 11/45 from Queensland were identified as var. queenslandensis based on the diagnostic scaling patterns. We found 24 different mitochondrial haplotypes, seven of which were shared between the two forms. Multivariate genetic clustering based on nuclear SNPs corresponded to individuals’ geographic location, not their color. Several family groups consisted of both forms and three queenslandensis individuals were Wolbachia infected, indicating previous breeding with the type form which has been used to introduce Wolbachia into Ae. aegypti populations. Conclusion Aedes aegypti queenslandensis are genomically indistinguishable from the type form, which points to these forms freely interbreeding at least in Australia and Singapore. Based on our findings, it is unlikely that the presence of very pale Ae. aegypti will affect the success of Aedes control programs based on Wolbachia-infected, sterile or RIDL

  7. Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: a precursor to successful worldwide colonization?

    PubMed

    Bennett, Kelly Louise; Shija, Fortunate; Linton, Yvonne-Marie; Misinzo, Gerald; Kaddumukasa, Martha; Djouaka, Rousseau; Anyaele, Okorie; Harris, Angela; Irish, Seth; Hlaing, Thaung; Prakash, Anil; Lutwama, Julius; Walton, Catherine

    2016-09-01

    Increasing globalization has promoted the spread of exotic species, including disease vectors. Understanding the evolutionary processes involved in such colonizations is both of intrinsic biological interest and important to predict and mitigate future disease risks. The Aedes aegypti mosquito is a major vector of dengue, chikungunya and Zika, the worldwide spread of which has been facilitated by Ae. aegypti's adaption to human-modified environments. Understanding the evolutionary processes involved in this invasion requires characterization of the genetic make-up of the source population(s). The application of approximate Bayesian computation (ABC) to sequence data from four nuclear and one mitochondrial marker revealed that African populations of Ae. aegypti best fit a demographic model of lineage diversification, historical admixture and recent population structuring. As ancestral Ae. aegypti were dependent on forests, this population history is consistent with the effects of forest fragmentation and expansion driven by Pleistocene climatic change. Alternatively, or additionally, historical human movement across the continent may have facilitated their recent spread and mixing. ABC analysis and haplotype networks support earlier inferences of a single out-of-Africa colonization event, while a cline of decreasing genetic diversity indicates that Ae. aegypti moved first from Africa to the Americas and then to Asia. ABC analysis was unable to verify this colonization route, possibly because the genetic signal of admixture obscures the true colonization pathway. By increasing genetic diversity and forming novel allelic combinations, divergence and historical admixture within Africa could have provided the adaptive potential needed for the successful worldwide spread of Ae. aegypti.

  8. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations

    PubMed Central

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715

  9. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    PubMed

    Carvalho, Danilo O; McKemey, Andrew R; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission.

  10. The Impact of Selection with Diflubenzuron, a Chitin Synthesis Inhibitor, on the Fitness of Two Brazilian Aedes aegypti Field Populations.

    PubMed

    Belinato, Thiago Affonso; Valle, Denise

    2015-01-01

    Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators.

  11. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes

    PubMed Central

    Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A.; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L.

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011 – 0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  12. Aedes aegypti (Diptera: Culicidae) in Mauritania: First Report on the Presence of the Arbovirus Mosquito Vector in Nouakchott.

    PubMed

    Mint Lekweiry, Khadijetou; Ould Ahmedou Salem, Mohamed Salem; Ould Brahim, Khyarhoum; Ould Lemrabott, Mohamed Aly; Brengues, Cécile; Faye, Ousmane; Simard, Frédéric; Ould Mohamed Salem Boukhary, Ali

    2015-07-01

    Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city.

  13. Ovicidal activity of Metarhizium brunneum (Mb F52) on dengue fever vector, Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ovicidal activity of Metarhizium brunneum F52 (Mb F52) grown from granules was evaluated against Aedes aegypti eggs over time. Survival of larvae from treated eggs was significantly less when compared with untreated eggs at 7, 10 and 14 days post treatment. Only 27 % of treated eggs produced vi...

  14. On the analysis of parasite effect for Aedes aegypti and Aedes albopictus population

    NASA Astrophysics Data System (ADS)

    Kallista, Meta; Aldila, Dipo; Nuraini, Nuning; Soewono, Edy

    2014-03-01

    It has been reported in some countries that the population of Aedes aegypti has been significantly reduced by the invasion of Aedes albopictus. There has been a hypothesis explaining this phenomenon of which investigated the influence of parasites pathogenesis to the competition between these two mosquito species in the fields. Ascogregarina taiwanensis and Ascogregarina culicis are known as parasites that infect Aedes albopictus and Aedes aegypti, respectively. Several studies have concluded that Ascogregarina taiwanensis caused high fatality for Aedes aegypti larvae, but Ascogregarina culicis was not pathogenic to Aedes albopictus larvae. Therefore, Ascogregarina taiwanensis may contribute to reduce the number of populations Aedes aegypti in the fields. Inspired by these facts, a mathematical model depicting interaction between parasites and mosquitoes is constructed in this paper. In this model are included six dynamic mosquito compartments, i.e. egg, larvae, infected larvae, adult, infected adult and one dynamic compartment for parasite. Derivation of the existence criteria and the stability analysis of parasite-free equilibrium as well as the basic offspring for the model are presented. Numerical simulations for sensitivity analysis indicating the invasive species for variation parameters are shown.

  15. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    PubMed Central

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  16. Stormwater Drains and Catch Basins as Sources for Production of Aedes aegypti and Culex quinquefasciatus

    PubMed Central

    Arana-Guardia, Roger; Baak-Baak, Carlos M.; Loroño-Pino, María Alba; Machain-Williams, Carlos; Beaty, Barry J.; Eisen, Lars; García-Rejón, Julián E.

    2014-01-01

    We present data showing that structures serving as drains and catch basins for stormwater are important sources for production of the mosquito arbovirus vectors Aedes aegypti and Culex quinquefasciatus in Mérida City, México. We examined 1,761 stormwater drains – located in 45 different neighborhoods spread across the city – over dry and wet seasons from March 2012–March 2013. Of the examined stormwater drains, 262 (14.9%) held water at the time they were examined and 123 yielded mosquito immatures. In total, we collected 64,560 immatures representing nine species. The most commonly encountered species were Cx. quinquefasciatus (n=39,269) and Ae. aegypti (n=23,313). Ae. aegypti and Cx. quinquefasciatus were collected during all 11 months when we found water-filled stormwater drains, and both were found in stormwater drains located throughout Mérida City. We also present data for associations between structural characteristics of stormwater drains or water-related characteristics and the abundance of mosquito immatures. In conclusion, stormwater drains produce massive numbers of Ae. aegypti and Cx. quinquefasciatus across Mérida City, both in the wet and dry seasons, and represent non-residential development sites that should be strongly considered for inclusion in the local mosquito surveillance and control program. PMID:24582840

  17. Household Dengue Prevention Interventions, Expenditures, and Barriers to Aedes aegypti Control in Machala, Ecuador.

    PubMed

    Heydari, Naveed; Larsen, David A; Neira, Marco; Beltrán Ayala, Efraín; Fernandez, Prissila; Adrian, Jefferson; Rochford, Rosemary; Stewart-Ibarra, Anna M

    2017-02-16

    The Aedes aegypti mosquito is an efficient vector for the transmission of Zika, chikungunya, and dengue viruses, causing major epidemics and a significant social and economic burden throughout the tropics and subtropics. The primary means of preventing these diseases is household-level mosquito control. However, relatively little is known about the economic burden of Ae. aegypti control in resource-limited communities. We surveyed residents from 40 households in a high-risk community at the urban periphery in the city of Machala, Ecuador, on dengue perceptions, vector control interventions, household expenditures, and factors influencing purchasing decisions. The results of this study show that households spend a monthly median of US$2.00, or 1.90% (range: 0.00%, 9.21%) of their family income on Ae. aegypti control interventions. Households reported employing, on average, five different mosquito control and dengue prevention interventions, including aerosols, liquid sprays, repellents, mosquito coils, and unimpregnated bed nets. We found that effectiveness and cost were the most important factors that influence people's decisions to purchase a mosquito control product. Our findings will inform the development and deployment of new Ae. aegypti control interventions by the public health and private sectors, and add to prior studies that have focused on the economic burden of dengue-like illness.

  18. Insecticidal and Repellent Activity of Several Plant-Derived Essential Oils Against Aedes aegypti.

    PubMed

    Castillo, Ruth M; Stashenko, Elena; Duque, Jonny E

    2017-03-01

    We examined the pupicidal, adulticidal, repellent, and oviposition-deterrent activities of essential oils (EOs) from Lippia alba, L. origanoides, Eucalyptus citriodora, Cymbopogon citratus, Cymbopogon flexuosus, Citrus sinensis , Cananga odorata , Swinglea glutinosa, and Tagetes lucida plants against Aedes aegypti under laboratory conditions. Pupicidal and adulticidal activities were assessed at exploratory concentrations of 250, 310, and 390 parts per million (ppm); and 30, 300, and 1,000 ppm, respectively. The greatest pupicidal activity was exhibited at 390 ppm with a 24-h exposure by L. origanoides, and 390 ppm with a 48-h exposure by Citrus sinensis . Lippia origanoides killed all adult mosquitoes at 300 ppm after 120 min of exposure. Only L. origanoides and E. citriodora EOs, applied at 1,000 ppm to human skin, produced the greatest repellency (100%) to host-seeking Ae. aegypti after 2 min of exposure; the repellency decreased between 12% and 10% after 15 min. Complete oviposition deterrence by gravid Ae. aegypti was observed for E. citriodora EOs at 200 ppm with an oviposition activity index of -1.00. These results confirm that the EOs assessed in this study have insecticidal, repellent, and oviposition-deterrent activities against the dengue vector, Ae. aegypti.

  19. Behavioral Response of Aedes aegypti Mosquito towards Essential Oils Using Olfactometer

    PubMed Central

    Uniyal, Ashish; Tikar, Sachin N; Mendki, Murlidhar J; Singh, Ram; Shukla, Shakti V; Agrawal, Om P; Veer, Vijay; Sukumaran, Devanathan

    2016-01-01

    Background: Aedes aegypti mosquito is responsible for transmitting human diseases like dengue and chikungunya. Personal or space protection with insect repellents is a practical approach to reducing human mosquito contact, thereby minimizing disease transmission. Essential oils are natural volatile substances from plants used as protective measure against blood-sucking mosquitoes. Methods: Twenty-three essential oils were evaluated for their repellent effect against Ae. aegypti female mosquito in laboratory conditions using Y-tube olfactometer. Results: The essential oils exhibited varying degree of repellency. Litsea oil showed 50.31%, 60.2 %, and 77.26% effective mean repellency at 1 ppm, 10 ppm and 100 ppm respectively, while DEET exhibited 59.63%, 68.63%, 85.48% and DEPA showed 57.97%, 65.43%, and 80.62% repellency at respective above concentrations. Statistical analysis revealed that among the tested essential oils, litsea oil had effective repellency in comparison with DEET and DEPA against Ae. aegypti mosquito at all concentration. Essential oils, DEET and DEPA showed significant repellence against Ae. aegypti (P< 0.05) at all 3 concentration tested. Conclusion: Litsea oil exhibited effective percentage repellency similar to DEET and DEPA. The essential oils are natural plant products that may be useful for developing safer and newer herbal based effective mosquito repellents. PMID:27308295

  20. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance

    PubMed Central

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-01-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring. PMID:25946154

  1. Novel estimates of Aedes aegypti (Diptera: Culicidae) population size and adult survival based on Wolbachia releases.

    PubMed

    Ritchie, Scott A; Montgomery, Brian L; Hoffmann, Ary A

    2013-05-01

    The size of Aedes aegypti (L.) mosquito populations and adult survival rates have proven difficult to estimate because of a lack of consistent quantitative measures to equate sampling methods, such as adult trapping, to actual population size. However, such estimates are critical for devising control methods and for modeling the transmission of dengue and other infectious agents carried by this species. Here we take advantage of recent releases of Wolbachia-infected Ae. aegypti coupled with the results of ongoing monitoring to estimate the size of adult Ae. aegypti populations around Cairns in far north Queensland, Australia. Based on the association between released adults infected with Wolbachia and data from Biogents Sentinel traps, we show that data from two locations are consistent with population estimates of approximately 5-10 females per house and daily survival rates of 0.7-0.9 for the released Wolbachia-infected females. Moreover, we estimate that networks of Biogents Sentinel traps at a density of one per 15 houses capture around 5-10% of the adult population per week, and provide a rapid estimate of the absolute population size of Ae. aegypti. These data are discussed with respect to release rates and monitoring in future Wolbachia releases and also the levels of suppression required to reduce dengue transmission.

  2. Microsatellite-based parentage analysis of Aedes aegypti (Diptera: Culicidae) using nonlethal DNA sampling.

    PubMed

    Wong, Jacklyn; Chu, Yui Yin; Stoddard, Steven T; Lee, Yoosook; Morrison, Amy C; Scott, Thomas W

    2012-01-01

    To track Aedes aegypti (L.) egg-laying behavior in the field in Iquitos, Peru, we developed methods for 1) sampling DNA from live mosquitoes and 2) high through-put parentage analysis using microsatellite markers. We were able to amplify DNA extracted from a single hind leg, but not from the pupal exuvia. Removal of a leg from teneral females caused no significant changes in female behavioral or life history traits (e.g., longevity, blood feeding frequency, fecundity, egg hatch rate, gonotrophic cycle length, or oviposition behavior). Using a panel of nine microsatellite markers and an exclusion-based software program, we matched offspring to parental pairs in 10 Ae. aegypti test families in which parents originated from natural development sites in Iquitos. By mating known individuals in the laboratory, retaining the male, sampling the female's DNA before release, and collecting offspring in the field, the technique we developed can be used to genotype large numbers of Ae. aegypti, reconstruct family relationships, and track the egg-laying behavior of individual Ae. aegypti in nature.

  3. Long-term spatio-temporal dynamics of the mosquito Aedes aegypti in temperate Argentina.

    PubMed

    Fischer, S; De Majo, M S; Quiroga, L; Paez, M; Schweigmann, N

    2017-04-01

    Buenos Aires city is located near the southern limit of the distribution of Aedes aegypti (Diptera: Culicidae). This study aimed to assess long-term variations in the abundance of Ae. aegypti in Buenos Aires in relation to changes in climatic conditions. Ae. aegypti weekly oviposition activity was analyzed and compared through nine warm seasons from 1998 to 2014, with 200 ovitraps placed across the whole extension of the city. The temporal and spatial dynamics of abundances were compared among seasons, and their relation with climatic variables were analyzed. Results showed a trend to higher peak abundances, a higher number of infested sites, and longer duration of the oviposition season through subsequent years, consistent with a long-term colonization process. In contrast, thermal favorability and rainfall pattern did not show a consistent trend of changes. The long-term increase in abundance, and the recently documented expansion of Ae. aegypti to colder areas of Buenos Aires province suggest that local populations might be adapting to lower temperature conditions. The steadily increasing abundances may have implications on the risk of dengue transmission.

  4. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance.

    PubMed

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Rösner, Susanne; Rocha, Eliseu Soares Oliveira; Kroon, Erna Geessien; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2015-06-01

    The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT) by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS) traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm) did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring.

  5. Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico.

    PubMed

    Somers, Gerard; Brown, Julia E; Barrera, Roberto; Powell, Jeffrey R

    2011-11-01

    Dengue viruses, primarily transmitted by the mosquito Aedes aegypti (L.), affect an estimated 50-100 million people yearly. Traditional approaches to control mosquito population numbers, such as the use of pesticides, have had only limited success. Atypical mosquito behavior may be one reason why current vector control efforts have been less efficacious than expected. In Puerto Rico, for example, adult Ae. aegypti have been observed emerging from septic tanks. Interestingly, adults emerging from septic tanks are larger on average than adults collected from surface containers. To determine whether adults colonizing septic tanks constitute a separate Ae. aegypti population, we used 12 previously validated microsatellite loci to examine adult mosquitoes collected from both septic tanks and surface containers, but found no evidence to suggest genetic differentiation. Size differences between septic tank and surface mosquitoes were reduced when nutrient levels were held constant across experimental groups. Despite the absence of evidence suggesting a genetic difference between experimental groups in this study, Ae. aegypti emerging from septic tanks may still represent a more dangerous phenotype and should be given special consideration when developing vector control programs and designing public health interventions in the future.

  6. Lethal ovitrap deployment for Aedes aegypti control: potential implications for non-target organisms.

    PubMed

    Long, Sharron A; Jacups, Susan P; Ritchie, Scott A

    2015-06-01

    In Australia, dengue control combines source reduction with lethal ovitraps to reduce Aedes aegypti populations during outbreaks. Lethal ovitraps are considered a sustainable and environmentally friendly method of controlling container-inhabiting mosquitoes, however, to-date, this claim has not been quantified. This study assesses the potential impact of lethal ovitraps on non-target organisms when used to control Ae. aegypti in tropical Australia. For retention of specimens, we substituted standard sticky ovitraps for lethal ovitraps. We collected 988 Ae. aegypti and 44,132 non-target specimens over 13 months from 16 sites. Although Ae. aegypti comprised only 2.2% of the total collection, they were were the eighth most dominant taxa collected, on the 93(rd) percentile. Of the non-target organisms, Collembola were the dominant taxa, 44.2%, with 36.8% and 10.5% Diptera and Hymenoptera, respectively. Of the Dipterans, 61% were family Phoridae. Lethal ovitraps were visited by 90 insect or invertebrate families in total. Ovitraps are attractive to Collembola, Phoridae, Sciaridae, Formicidae, and Culicidae, with minimal attraction by Apidae and other commonly monitored non-target organisms. For container-inhabiting mosquitoes, LOs are cost effective operationally, requiring minimal staff resources for placement and retrieval.

  7. Transcript profiling of the meiotic drive phenotype in testis of Aedes aegypti using suppressive subtractive hybridization.

    PubMed

    Shin, Dongyoung; Jin, Lizhong; Lobo, Neil F; Severson, David W

    2011-09-01

    The meiotic drive gene in Aedes aegypti is tightly linked with the sex determination locus on chromosome 1, and causes highly male-biased sex ratios. We prepared cDNA libraries from testes from the Ae. aegypti T37 strain (driving) and RED strain (non-driving), and used suppressive subtraction hybridization techniques to enrich for T37 testes-specific transcripts. Expressed sequence tags (ESTs) were obtained from a total of 2784 randomly selected clones from the subtracted T37 (subT37) library as well as the primary libraries for each strain (pT37 and pRED). Sequence analysis identified a total of 171 unique genes in the subT37 library and 299 unique genes among the three libraries. The majority of genes enriched in the subT37 library were associated with signal transduction, development, reproduction, metabolic process and cell cycle functions. Further, as observed with meiotic drive systems in Drosophila and mouse, a number of these genes were associated with signaling cascades that involve the Ras superfamily of regulatory small GTPases. Differential expression of several of these genes was verified in Ae. aegypti pupal testes using qRT-PCR. This study increases our understanding of testes gene expression enriched in adult males from the meiotic drive strain as well as insights into the basic testes transcriptome in Ae. aegypti.

  8. Environmental and Genetic Factors Determine Whether the Mosquito Aedes aegypti Lays Eggs without a Blood Meal

    PubMed Central

    Ariani, Cristina V.; Smith, Sophia C. L.; Osei-Poku, Jewelna; Short, Katherine; Juneja, Punita; Jiggins, Francis M.

    2015-01-01

    Some mosquito strains or species are able to lay eggs without taking a blood meal, a trait named autogeny. This may allow populations to persist through times or places where vertebrate hosts are scarce. Autogenous egg production is highly dependent on the environment in some species, but the ideal conditions for its expression in Aedes aegypti mosquitoes are unknown. We found that 3.2% of females in a population of Ae. aegypti from Kenya were autogenous. Autogeny was strongly influenced by temperature, with many more eggs laid at 28°C compared with 22°C. Good nutrition in larval stages and feeding on higher concentrations of sugar solution during the adult stage both result in more autogenous eggs being produced. The trait also has a genetic basis, as not all Ae. aegypti genotypes can lay autogenously. We conclude that Ae. aegypti requires a favorable environment and a suitable genotype to be able to lay eggs without a blood meal. PMID:25646251

  9. Household Dengue Prevention Interventions, Expenditures, and Barriers to Aedes aegypti Control in Machala, Ecuador

    PubMed Central

    Heydari, Naveed; Larsen, David A.; Neira, Marco; Beltrán Ayala, Efraín; Fernandez, Prissila; Adrian, Jefferson; Rochford, Rosemary; Stewart-Ibarra, Anna M.

    2017-01-01

    The Aedes aegypti mosquito is an efficient vector for the transmission of Zika, chikungunya, and dengue viruses, causing major epidemics and a significant social and economic burden throughout the tropics and subtropics. The primary means of preventing these diseases is household-level mosquito control. However, relatively little is known about the economic burden of Ae. aegypti control in resource-limited communities. We surveyed residents from 40 households in a high-risk community at the urban periphery in the city of Machala, Ecuador, on dengue perceptions, vector control interventions, household expenditures, and factors influencing purchasing decisions. The results of this study show that households spend a monthly median of US$2.00, or 1.90% (range: 0.00%, 9.21%) of their family income on Ae. aegypti control interventions. Households reported employing, on average, five different mosquito control and dengue prevention interventions, including aerosols, liquid sprays, repellents, mosquito coils, and unimpregnated bed nets. We found that effectiveness and cost were the most important factors that influence people’s decisions to purchase a mosquito control product. Our findings will inform the development and deployment of new Ae. aegypti control interventions by the public health and private sectors, and add to prior studies that have focused on the economic burden of dengue-like illness. PMID:28212349

  10. Evidence of Polyandry for Aedes aegypti in Semifield Enclosures

    PubMed Central

    Helinski, Michelle E. H.; Valerio, Laura; Facchinelli, Luca; Scott, Thomas W.; Ramsey, Janine; Harrington, Laura C.

    2012-01-01

    Female Aedes aegypti are assumed to be primarily monandrous (i.e., mate only once in their lifetime), but true estimates of mating frequency have not been determined outside the laboratory. To assess polyandry in Ae. aegypti with first-generation progeny from wild mosquitoes, stable isotope semen-labeled males (15N or 13C) were allowed to mate with unlabeled females in semifield enclosures (22.5 m3) in a dengue-endemic area in southern Mexico. On average, 14% of females were positive for both labels, indicating that they received semen from more than one male. Our results provide evidence of a small but potentially significant rate of multiple mating within a 48-hour period and provide an approach for future open-field studies of polyandry in this species. Polyandry has implications for understanding mosquito ecology, evolution, and reproductive behavior as well as genetic strategies for mosquito control. PMID:22492148

  11. Genome sequence of Aedes aegypti, a major arbovirus vector.

    PubMed

    Nene, Vishvanath; Wortman, Jennifer R; Lawson, Daniel; Haas, Brian; Kodira, Chinnappa; Tu, Zhijian Jake; Loftus, Brendan; Xi, Zhiyong; Megy, Karyn; Grabherr, Manfred; Ren, Quinghu; Zdobnov, Evgeny M; Lobo, Neil F; Campbell, Kathryn S; Brown, Susan E; Bonaldo, Maria F; Zhu, Jingsong; Sinkins, Steven P; Hogenkamp, David G; Amedeo, Paolo; Arensburger, Peter; Atkinson, Peter W; Bidwell, Shelby; Biedler, Jim; Birney, Ewan; Bruggner, Robert V; Costas, Javier; Coy, Monique R; Crabtree, Jonathan; Crawford, Matt; Debruyn, Becky; Decaprio, David; Eiglmeier, Karin; Eisenstadt, Eric; El-Dorry, Hamza; Gelbart, William M; Gomes, Suely L; Hammond, Martin; Hannick, Linda I; Hogan, James R; Holmes, Michael H; Jaffe, David; Johnston, J Spencer; Kennedy, Ryan C; Koo, Hean; Kravitz, Saul; Kriventseva, Evgenia V; Kulp, David; Labutti, Kurt; Lee, Eduardo; Li, Song; Lovin, Diane D; Mao, Chunhong; Mauceli, Evan; Menck, Carlos F M; Miller, Jason R; Montgomery, Philip; Mori, Akio; Nascimento, Ana L; Naveira, Horacio F; Nusbaum, Chad; O'leary, Sinéad; Orvis, Joshua; Pertea, Mihaela; Quesneville, Hadi; Reidenbach, Kyanne R; Rogers, Yu-Hui; Roth, Charles W; Schneider, Jennifer R; Schatz, Michael; Shumway, Martin; Stanke, Mario; Stinson, Eric O; Tubio, Jose M C; Vanzee, Janice P; Verjovski-Almeida, Sergio; Werner, Doreen; White, Owen; Wyder, Stefan; Zeng, Qiandong; Zhao, Qi; Zhao, Yongmei; Hill, Catherine A; Raikhel, Alexander S; Soares, Marcelo B; Knudson, Dennis L; Lee, Norman H; Galagan, James; Salzberg, Steven L; Paulsen, Ian T; Dimopoulos, George; Collins, Frank H; Birren, Bruce; Fraser-Liggett, Claire M; Severson, David W

    2007-06-22

    We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.

  12. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission.

    PubMed

    Roundy, Christopher M; Azar, Sasha R; Rossi, Shannan L; Huang, Jing H; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J; Paploski, Igor A D; Kitron, Uriel; Ribeiro, Guilherme S; Hanley, Kathryn A; Weaver, Scott C; Vasilakis, Nikos

    2017-04-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log 10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas.

  13. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission

    PubMed Central

    Roundy, Christopher M.; Azar, Sasha R.; Rossi, Shannan L.; Huang, Jing H.; Leal, Grace; Yun, Ruimei; Fernandez-Salas, Ildefonso; Vitek, Christopher J.; Paploski, Igor A.D.; Kitron, Uriel; Ribeiro, Guilherme S.; Hanley, Kathryn A.

    2017-01-01

    To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas. PMID:28287375

  14. New findings on the developmental process of Ascogregarina taiwanensis and Ascogregarina culicis in Aedes albopictus and Aedes aegypti.

    PubMed

    Roychoudhury, Sudipta; Kobayashi, Mutsuo

    2006-03-01

    Infection in different stages of larvae of Aedes aegypti and Ae. albopictus with Ascogregarina taiwanensis and A. culicis, respectively, revealed that the oocysts of Ascogregarina spp. are able to infect any instar and can complete their life cycle within 9.5 +/- 1 days. When early instars ingested oocysts, parasite development was synchronized to larval-pupal ecdysis and oocyst dissemination occurred at the time of adult emergence, oviposition, or both. The parasites also developed normally when infecting 2nd, 3rd, and early 4th instars and oocysts were released only during oviposition. The parasitic development stopped at the gamont stage when oocysts were ingested by late 4th instars (6 days old). The release of sporozoites in the midgut of any larval stage started within 45 min of oocyst ingestion. About 98% of oocysts of both A. taiwanensis and A. culicis were emptied within 2-3 h of their ingestion in their respective hosts. The oocysts of both species remained viable on desiccated filter paper stored at 27 degrees C and 65 +/- 5% relative humidity, indicating that the oocysts were resistant to dryness. The oocysts of A. culicis could survive up to 6 months, whereas those of A. taiwanensis survived up to 4 months. These biological characteristics relating to parasite development might enhance the distribution of Ascogregarina spp. widely in nature and facilitate the species to be considered for biological control of Aedes mosquitoes in the future.

  15. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti

    PubMed Central

    Aliota, Matthew T.; Walker, Emma C.; Uribe Yepes, Alexander; Dario Velez, Ivan; Christensen, Bruce M.; Osorio, Jorge E.

    2016-01-01

    Background New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. Methodology/Principal Findings Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. Conclusions/Significance These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this

  16. Evaluation of Location-Specific Predictions by a Detailed Simulation Model of Aedes aegypti Populations

    PubMed Central

    Legros, Mathieu; Magori, Krisztian; Morrison, Amy C.; Xu, Chonggang; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2011-01-01

    Background Skeeter Buster is a stochastic, spatially explicit simulation model of Aedes aegypti populations, designed to predict the outcome of vector population control methods. In this study, we apply the model to two specific locations, the cities of Iquitos, Peru, and Buenos Aires, Argentina. These two sites differ in the amount of field data that is available for location-specific customization. By comparing output from Skeeter Buster to field observations in these two cases we evaluate population dynamics predictions by Skeeter Buster with varying degrees of customization. Methodology/Principal Findings Skeeter Buster was customized to the Iquitos location by simulating the layout of houses and the associated distribution of water-holding containers, based on extensive surveys of Ae. aegypti populations and larval habitats that have been conducted in Iquitos for over 10 years. The model is calibrated by adjusting the food input into various types of containers to match their observed pupal productivity in the field. We contrast the output of this customized model to the data collected from the natural population, comparing pupal numbers and spatial distribution of pupae in the population. Our results show that Skeeter Buster replicates specific population dynamics and spatial structure of Ae. aegypti in Iquitos. We then show how Skeeter Buster can be customized for Buenos Aires, where we only had Ae. aegypti abundance data that was averaged across all locations. In the Argentina case Skeeter Buster provides a satisfactory simulation of temporal population dynamics across seasons. Conclusions This model can provide a faithful description of Ae. aegypti populations, through a process of location-specific customization that is contingent on the amount of data available from field collections. We discuss limitations presented by some specific components of the model such as the description of food dynamics and challenges that these limitations bring to model

  17. Spatial Patterns of High Aedes aegypti Oviposition Activity in Northwestern Argentina

    PubMed Central

    Estallo, Elizabet Lilia; Más, Guillermo; Vergara-Cid, Carolina; Lanfri, Mario Alberto; Ludueña-Almeida, Francisco; Scavuzzo, Carlos Marcelo; Introini, María Virginia; Zaidenberg, Mario; Almirón, Walter Ricardo

    2013-01-01

    Background In Argentina, dengue has affected mainly the Northern provinces, including Salta. The objective of this study was to analyze the spatial patterns of high Aedes aegypti oviposition activity in San Ramón de la Nueva Orán, northwestern Argentina. The location of clusters as hot spot areas should help control programs to identify priority areas and allocate their resources more effectively. Methodology Oviposition activity was detected in Orán City (Salta province) using ovitraps, weekly replaced (October 2005–2007). Spatial autocorrelation was measured with Moran’s Index and depicted through cluster maps to identify hot spots. Total egg numbers were spatially interpolated and a classified map with Ae. aegypti high oviposition activity areas was performed. Potential breeding and resting (PBR) sites were geo-referenced. A logistic regression analysis of interpolated egg numbers and PBR location was performed to generate a predictive mapping of mosquito oviposition activity. Principal Findings Both cluster maps and predictive map were consistent, identifying in central and southern areas of the city high Ae. aegypti oviposition activity. A logistic regression model was successfully developed to predict Ae. aegypti oviposition activity based on distance to PBR sites, with tire dumps having the strongest association with mosquito oviposition activity. A predictive map reflecting probability of oviposition activity was produced. The predictive map delimitated an area of maximum probability of Ae. aegypti oviposition activity in the south of Orán city where tire dumps predominate. The overall fit of the model was acceptable (ROC = 0.77), obtaining 99% of sensitivity and 75.29% of specificity. Conclusions Distance to tire dumps is inversely associated with high mosquito activity, allowing us to identify hot spots. These methodologies are useful for prevention, surveillance, and control of tropical vector borne diseases and might assist National Health

  18. Genetic Diversity and Phylogeny of Aedes aegypti, the Main Arbovirus Vector in the Pacific

    PubMed Central

    Calvez, Elodie; Guillaumot, Laurent; Millet, Laurent; Marie, Jérôme; Bossin, Hervé; Rama, Vineshwaran; Faamoe, Akata; Kilama, Sosiasi; Teurlai, Magali; Mathieu-Daudé, Françoise; Dupont-Rouzeyrol, Myrielle

    2016-01-01

    Background The Pacific region is an area unique in the world, composed of thousands of islands with differing climates and environments. The spreading and establishment of the mosquito Aedes aegypti in these islands might be linked to human migration. Ae. aegypti is the major vector of arboviruses (dengue, chikungunya and Zika viruses) in the region. The intense circulation of these viruses in the Pacific during the last decade led to an increase of vector control measures by local health authorities. The aim of this study is to analyze the genetic relationships among Ae. aegypti populations in this region. Methodology/Principal Finding We studied the genetic variability and population genetics of 270 Ae. aegypti, sampled from 9 locations in New Caledonia, Fiji, Tonga and French Polynesia by analyzing nine microsatellites and two mitochondrial DNA regions (CO1 and ND4). Microsatellite markers revealed heterogeneity in the genetic structure between the western, central and eastern Pacific island countries. The microsatellite markers indicate a statistically moderate differentiation (FST = 0.136; P < = 0.001) in relation to island isolation. A high degree of mixed ancestry can be observed in the most important towns (e.g. Noumea, Suva and Papeete) compared with the most isolated islands (e.g. Ouvea and Vaitahu). Phylogenetic analysis indicated that most of samples are related to Asian and American specimens. Conclusions/Significance Our results suggest a link between human migrations in the Pacific region and the origin of Ae. aegypti populations. The genetic pattern observed might be linked to the island isolation and to the different environmental conditions or ecosystems. PMID:26799213

  19. The Siren's Song: Exploitation of Female Flight Tones to Passively Capture Male Aedes aegypti (Diptera: Culicidae).

    PubMed

    Johnson, Brian J; Ritchie, Scott A

    2016-01-01

    The need to capture male mosquitoes has intensified recently as a result of a number of male-based sterile insect technique (SIT) and population-modification programs focused on Aedes aegypti (L.) having initiated field releases. Here, we report the results of the successful exploitation of the attraction of male Ae. aegypti to female flight tones to enhance male collections in nonmechanical passive (nonbattery powered) Gravid Aedes Traps (GAT). Prior to field studies, male attraction to female flight tones of 484 and 560 Hz, as well as to a male flight tone of 715 Hz, were assessed in a series of controlled release-recapture and semifield trials. These trials determined that a pure tone of 484 Hz was significantly more attractive to free-flying males than the other flight tones and enabled their collection in sound-baited GATs (ca. 95% capture rate after 2 h; 484 Hz at 65 dB). In contrast, gravid females were unresponsive to male or female flight tones and were evenly distributed among sound-baited and control GATs. Importantly, under normal field conditions sound-baited GATs (484 Hz at 70 dB) captured significantly more male Ae. aegypti per 24-h trap interval (1.3 ± 0.37) than controls (0.2 ± 0.13). Overall, sound-bated GATs captured approximately twice as many Ae. aegypti (male and female; 3.0 ± 0.68 per interval, 30 total) than controls (1.5 ± 0.56 per interval, 15 total). These results reveal that sound-baited GATs are a simple and effective surveillance tool for Ae. aegypti that would allow current male-based SIT and population-modification programs to effectively monitor males in their target populations.

  20. Use of genetic polymorphisms detected by the random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) for differentiation and identification of Aedes aegypti subspecies and populations.

    PubMed

    Ballinger-Crabtree, M E; Black, W C; Miller, B R

    1992-12-01

    Amplification of random regions of genomic DNA using 10-base primers in the random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) was used to differentiate and identify mosquito populations based on genetic variation. Genomic DNA was extracted from individual mosquitoes from 11 geographic populations of Aedes aegypti and amplified in PCR reactions using single primers of arbitrary nucleotide sequence. Discriminant analysis of the population frequencies of RAPD fragments produced using three different primers allowed accurate discrimination between the geographic populations in 89% of individuals and between subspecies (Ae. aegypti aegypti versus Ae. aegypti formosus) in 100% of mosquitoes tested. The genetic relatedness of the populations was estimated using three different statistical methods, and unknown populations were correctly classified in a blind test. These results indicate that the RAPD-PCR technique will be useful in studies of arthropod molecular taxonomy and in epidemiologic studies of the relatedness of geographic populations and vector movement.

  1. Oviposition response of Aedes aegypti mosquitoes to different concentrations of hay infusion in Trinidad, West Indies.

    PubMed

    Chadee, D D; Lakhan, A; Ramdath, W R; Persad, R C

    1993-09-01

    Ovitraps containing various concentrations of hay infusion and tap water were exposed weekly in the field for 15 wk to determine the oviposition patterns of Aedes aegypti. The results showed 10, 20, 60 and 80% hay infusions each attracted similar numbers of Ae. aegypti eggs oviposited and egg occurrences. No repellent effect was observed. In another field study, significantly more eggs and egg occurrences were collected from 25 and 50% hay infusions and tap water. The differences in these results from those of a previous study in Puerto Rico are discussed.

  2. Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela.

    PubMed

    Herrera, Flor; Urdaneta, Ludmel; Rivero, José; Zoghbi, Normig; Ruiz, Johanny; Carrasquel, Gabriela; Martínez, José Antonio; Pernalete, Martha; Villegas, Patricia; Montoya, Ana; Rubio-Palis, Yasmin; Rojas, Elina

    2006-09-01

    The mosquito Aedes aegypti is the main vector of dengue in Venezuela. The genetic structure of this vector was investigated in 24 samples collected from eight geographic regions separated by up to 1160 km. We examined the distribution of a 359-basepair region of the NADH dehydrogenase subunit 4 mitochondrial gene among 1144 Ae. aegypti from eight collections. This gene was amplified by the polymerase chain reaction and tested for variation using single strand conformation polymorphism analysis. Seven haplotypes were detected throughout Venezuela and these were sorted into two clades. Significant differentiation was detected among collections and these were genetically isolated by distance.

  3. Influence of the Length of Storage on Aedes aegypti (Diptera: Culicidae) Egg Viability.

    PubMed

    Brown, Heidi E; Smith, Caitlin; Lashway, Stephanie

    2016-12-22

    Aedes aegypti (L.) is one of the most important arboviral vectors worldwide. Vector control is targeted at immature and adult stages; however, eggs are resistant to desiccation and may repopulate treated areas long after treatment ceases. We investigated the effect of age on Ae. aegypti egg hatching rates using newly colonized populations (F2) from an arid region. We found a strongly negative association where older eggs had lower hatch rates. The capacity of eggs to survive for long periods of time has implications on mosquito control. In addition, the accumulation of eggs in containers should be accounted for in abundance modeling efforts where populations may grow rapidly early in the season.

  4. Methods for TALEN evaluation, use, and mutation detection in the mosquito Aedes aegypti

    PubMed Central

    Basu, Sanjay; Aryan, Azadeh; Haac, Mary Etna; Myles, Kevin M.; Adelman, Zach N.

    2016-01-01

    The generation and study of transgenic Aedes aegypti mosquitoes provides an essential tool for elucidating the complex molecular biology of this important vector. Within the field, genetic manipulation has now surpassed the proof of principle stage and is now utilised in both applied and theoretical vector control strategies. The application of new instruments, technologies and techniques allows ever more controlled experiments to be conducted. In this text we describe microinjection of Ae. aegypti embryos in the context of evaluating and performing genomic editing with transcription activator-like effector nucleases (TALENs). PMID:26443221

  5. Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam.

    PubMed

    Higa, Yukiko; Yen, Nguyen Thi; Kawada, Hitoshi; Son, Tran Hai; Hoa, Nguyen Thuy; Takagi, Masahiro

    2010-03-01

    The spatial distribution of Aedes aegypti and Aedes albopictus in environmental and geographical zones, e.g., urban-rural, coastal-mountainous, and north-south, was investigated throughout Vietnam. Immature stages were collected from used tires along roads. The effects of regions, seasons, and the degree of urbanization on the density and the frequency were statistically analyzed. Aedes aegypti predominated in the southern and central regions, while Ae. albopictus predominated in the northern region, which may be related to climatic conditions (temperature and rainfall). Larval collection from used tires may be suitable to assess rapidly the current distribution of dengue mosquitoes for estimating health risks and implementing vector control measures.

  6. Downregulation of Aedes aegypti chromodomain helicase DNA binding protein 7/Kismet by Wolbachia and its effect on dengue virus replication

    PubMed Central

    Asad, Sultan; Hall-Mendelin, Sonja; Asgari, Sassan

    2016-01-01

    Dengue virus (DENV) is a mosquito-transmitted virus imposing a significant burden on human health around the world. Since current control strategies are not sufficient, there is an urgent need to find alternative methods to control DENV transmission. It has been demonstrated that introduction of Wolbachia pipientis in Aedes aegypti mosquitoes can impede DENV transmission with the mechanism(s) not fully understood. Recently, a number of studies have found the involvement of chromodomain DNA binding helicases in case of Human Immunodeficiency virus (HIV) and Influenza A virus infection. In this study, we have identified three chromodomain helicase DNA binding protein (CHD) genes in Ae. aegypti and looked at their response in the case of Wolbachia and DENV infections. Foremost amongst them we have found that AeCHD7/Kismet is significantly downregulated in the presence of Wolbachia infection only in female mosquitoes. Furthermore, AeCHD7 levels showed significant increase during DENV infection, and AeCHD7 depletion led to severe reduction in the replication of DENV. Our data have identified AeCHD7 as a novel Ae. aegypti host factor that is important for DENV replication, and Wolbachia downregulates it, which may contribute towards the mechanism(s) of limiting DENV replication. PMID:27827425

  7. Repellent and Deterrent Effects of SS220, Picaridin, and Deet Suppress Human Blood Feeding by Aedes aegypti, Anopheles stephensi, and Phlebotomus papatasi

    DTIC Science & Technology

    2006-01-01

    females andÞve26Ð63-yr-old male Caucasian volunteers to feeding mosquitoes and sand ßies. Each bioassay used a minimum of three individuals and at least...Cand80%RHwith cottonpadmoistened with 10% aqueous sucrose solution.Mated nulliparous Ae. aegypti andAn. stephensi females (5Ð15dold)were tested. An...BEHAVIOR, CHEMICAL ECOLOGY Repellent and Deterrent Effects of SS220, Picaridin, and Deet Suppress Human Blood Feeding by Aedes aegypti , Anopheles

  8. Selective oviposition by Aedes aegypti (Diptera: culicidae) in response to Mesocyclops longisetus (Copepoda: Cyclopoidea) under laboratory and field conditions.

    PubMed

    Torres-Estrada, J L; Rodríguez, M H; Cruz-López, L; Arredondo-Jimenez, J I

    2001-03-01

    The influence of predacious Mesocyclops longisetus Thiebaud on the selection of oviposition sites by prey Aedes aegypti (L.) was studied under laboratory and field conditions. In both cases, gravid Ae. aegypti females were significantly more attracted to ovitraps containing copepods or to ovitraps with water in which copepods were held previously than to distilled water. Monoterpene and sesquiterpene compounds including 3-carene, alpha-terpinene, alpha-copaene, alpha-longipinene, alpha-cedrene, and delta-cadinene were found in hexane extracts of copepods by gas chromatography and mass spectrometry analyses. These compounds may be responsible for attracting gravid Ae. aegypti females and may increase the number of potential prey for the copepod.

  9. [Genetic variability of Aedes aegypti determined by mitochondrial gene ND4 analysis in eleven endemic areas for dengue in Peru].

    PubMed

    Yáñez, Pamela; Mamani, Enrique; Valle, Jorge; García, María Paquita; León, Walter; Villaseca, Pablo; Torres, Dina; Cabezas, César

    2013-04-01

    In order to establish the genetic variability of Aedes aegypti determined by the analysis of the MT-ND4 gene, in eleven endemic regions for dengue in Peru, 51 samples of Ae. Aegypti were tested. The genetic variability was determined through the amplification and sequencing of a fragment of 336 base-pairs of MT ND4, the analysis of intra-specific phylogeny was conducted with the Network Ver. 4.6.10 program; and the phylogenetic analysis, with the Neighbor Joining distance method. The presence of five haplotypes of Ae. Aegypti grouped in two lineages was identified: the first one includes haplotypes 1, 3 and 5, and the second one comprises haplotypes 2 and 4. The geographic distribution of each of the haplotypes found is also shown. It is concluded that this variability is caused by the active migration of this vector and the human activity-mediated passive migration.

  10. Control of aedes aegypti breeding in desert coolers and tires by use of Bacillus thuringiensis var. Israelensis formulation.

    PubMed

    Batra, C P; Mittal, P K; Adak, T

    2000-12-01

    Three different formulations of Bacillus thuringiensis var. israelensis (Bti) were evaluated for their efficacy against immature Aedes aegypti in desert coolers and tires. Three formulations, viz., VectoBac tablets, VectoBac granules, and Bacticide powder, at the application rate of 0.75, 2, and 1 g per cooler, respectively, and VectoBac tablets at 0.75 and 0.375 g per tire, were evaluated. In coolers and tires, 100% reduction in the abundance of late larval instars of Ae. aegypti was observed for a period of 2 and 3 wk, respectively. The possibility of using tablets and capsules filled with Bti granules and powder formulation by individuals or communities for control of Ae. aegypti breeding has been discussed in view of the increasing outbreaks of dengue and dengue hemorrhagic fever in India. Use of these formulations over conventional methods is better and more user-friendly.

  11. [Larva migrans].

    PubMed

    Chabasse, D; Le Clec'h, C; de Gentile, L; Verret, J L

    1995-01-01

    Larbish, cutaneous larva migrans or creeping eruption, is a serpiginous cutaneous eruption caused by skin penetration of infective larva from various animal nematodes. Hookworms (Ancylostoma brasiliense, A. caninum) are the most common causative parasites. They live in the intestines of dogs and cats where their ova are deposited in the animal feces. In sandy and shady soil, when temperature and moisture are elevated, the ova hatch and mature into infective larva. Infection occurs when humans have contact with the infected soil. Infective larva penetrate the exposed skin of the body, commonly around the feet, hands and buttocks. In humans, the larva are not able to complete their natural cycle and remain trapped in the upper dermis of the skin. The disease is widespread in tropical or subtropical regions, especially along the coast on sandy beaches. The diagnosis is easy for the patient who is returning from a tropical or subtropical climate and gives a history of beach exposure. The characteristic skin lesion is a fissure or erythematous cord which is displaced a few millimeters each day in a serpiginous track. Scabies, the larva currens syndrome due to Strongyloides stercoralis, must be distinguished from other creeping eruptions and subcutaneous swelling lesions caused by other nematodes or myiasis. Medical treatments are justified because it shortens the duration of the natural evolution of the disease. Topical tiabendazole is safe for localized invasions, but prolonged treatment may be necessary. Oral thiabendazole treatment for three days is effective, but sometimes is associated with adverse effects. Trials using albendazole for one or four consecutive days appear more efficacious. More recent trials using ivermectine showed that a single oral dose can cure 100% of the patients; thus, this drug looks very promising as a new form of therapy. Individual prophylaxis consists of avoiding skin contact with soil which has been contaminated with dog or cat feces

  12. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.

    PubMed

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-12-01

    Dengue fever is a serious problem in Mexico and vector control has not been effective enough at preventing outbreaks. Malaria is largely under control, but it is important that new control measures continue to be developed. Novaluron, a novel host-specific insect growth regulator and chitin synthesis inhibitor, has proved to be effective against agricultural pests, but its efficacy against larval mosquito vectors under field conditions remains unknown. In accordance with the World Health Organization Pesticide Evaluation Scheme, phase I, II and III studies were conducted to evaluate the efficacy and residual effect of Novaluron (Rimon 10 EC, Makhteshim, Beer-Sheva, Israel) on the malaria vectors Anopheles albimanus Wiedemann (Diptera: Culicidae) and Anopheles pseudopunctipennis Theobald, the dengue vectors Aedes aegypti (L) and Aedes albopictus Skuse and the nuisance mosquito Culex quinquefasciatus Say. Laboratory susceptibility tests yielded diagnostic concentrations for all five target species. Field trials to identify the optimum field dosage of Novaluron against Anopheles mosquitoes were carried out under semi-natural conditions in artificial plots and in vessels with wild mosquitoes. Efficacy was measured by monitoring mortality of larvae and pupae and the percentage of inhibition of emergence from floating cages. Dosages of Novaluron for field tests were based on pupal LC(99) (lethal concentration 99%) of An. pseudopunctipennis (0.166 mg/L) in plots and average pupal LC(99) of Ae. aegypti and Ae. albopictus (0.55 mg/L). At all dosages tested, Novaluron significantly reduced larval populations of An. albimanus, Culex coronator Dyar & Knab, Ae. albopictus and Cx. quinquefasciatus by approximately 90%, inhibited adult emergence of An. albimanus and An. pseudopunctipennis by approximately 97% for almost 4 months in experimental plots, and inhibited adult emergence of Ae. aegypti and Ae. albopictus by approximately 97% for up to 14 weeks. Recommended dosages of

  13. Insecticide susceptibility of the dengue vector, Aedes aegypti (L.) in Metropolitan Bangkok.

    PubMed

    Komalamisra, Narumon; Srisawat, Raweewan; Phanbhuwong, Theerawit; Oatwaree, Sompis

    2011-07-01

    Mosquito larvae were collected from the houses of dengue infected patients in Bangkok, Thailand from 55 sites (36 out of the 50 districts of Metropolitan Bangkok). Aedes aegypti larvae were tested against temephos using WHO bioassay techniques. Adult mosquitoes were tested for susceptibility to permethrin, deltamethrin, cyfluthrin, malathion and DDT using WHO diagnostic doses. Most of the larvae tested were susceptible to temephos. Only few specimens were resistant to temephos. Most adult mosquitoes were highly susceptible to malathion. Deltamethrin resistance was seen in 6 districts of Bangkok. Variable levels of susceptibility were seen with cyfluthrin. Most of the specimens showed resistance to permethrin and all specimens were resistant to DDT.

  14. Sampling considerations for designing Aedes aegypti (Diptera:Culicidae) oviposition studies in Iquitos, Peru: substrate preference, diurnal periodicity, and gonotrophic cycle length.

    PubMed

    Wong, Jacklyn; Astete, Helvio; Morrison, Amy C; Scott, Thomas W

    2011-01-01

    When devising methods to sample Aedes aegypti (L.) eggs from naturally-occurring containers to investigate selective oviposition, failure to take into account certain aspects of Ae. aegypti behavior can bias study inferences. In Iquitos, Peru, we tested three assumptions related to designing Ae. aegypti oviposition field studies, as follows: 1) lining containers with paper as an oviposition substrate does not affect oviposition; 2) diurnal egg-laying activity peaks in the late afternoon or early evening, and there is little oviposition during midday; and 3) the gonotrophic cycle length of wild females averages from 3 to 4 d. When wild females were presented with containers lined and unlined with paper toweling, the presence of paper increased oviposition in plastic and metal containers, but had no effect in cement containers. Recording the number of eggs laid by Ae. aegypti every 2 h throughout the day delineated a bimodal diurnal oviposition pattern, with a small morning peak, decreased activity during midday, and a predominant peak in the late afternoon and evening from 16:00 to 20:00 h. Daily monitoring of captive individual Fo females revealed that the gonotrophic cycle length was typically 3-4 d for the Iquitos population. These findings will be used to adjust field study design to 1) account for sampling eggs using paper toweling, and 2) determine the time of day and number of days over which to sample Ae. aegypti eggs. We explored how failure to consider these behaviors could potentially bias field assessments of oviposition preferences.

  15. Use of an artificial bromeliad to show the importance of color value in restricting colonization of bromeliads by Aedes aegypti and Culex quinquefasciatus.

    PubMed

    Frank, J H

    1985-03-01

    An artificial bromeliad was developed which, painted and containing an infusion water, elicited ovipositional response by caged adult Aedes aegypti, Culex quinquefasciatus, Wyeomyia vanduzeei and Wy. mitchellii. Comparison was made of the ovipositional response of adults of the four mosquito species to artificial bromeliads painted black, white, dark green and deep blue. Adult Ae, aegypti and Wy. vanduzeei did not discriminate significantly between white, dark green and deep blue, but whereas Ae. aegypti showed a preference for black, Wy. vanduzeei showed an aversion to black. Adult Wy. mitchelli responded similarly to Wy. vanduzeei except that although deep blue was preferred to black, it elicited a significantly weaker response than did dark green and white. Adult Cx. quinquefasciatus responded similarly to Ae. aegypti but did not show a significant preference for black over dark green. The high color value (i.e., lightness) of natural bromeliad leaves is likely to deter oviposition by adult Ae. aegypti and Cx quinquefasciatus in favor of competing oviposition sites of lower color value.

  16. Natural odor ligands for olfactory receptor neurons of the female mosquito Aedes aegypti: use of gas chromatography-linked single sensillum recordings.

    PubMed

    Ghaninia, Majid; Larsson, Mattias; Hansson, Bill S; Ignell, Rickard

    2008-09-01

    Female Aedes aegypti are vectors of dengue and yellow fever. Odor volatiles are the predominant cues that drive the host-seeking behavior of Ae. aegypti. Odorant molecules are detected and discriminated by olfactory receptor neurons (ORNs) housed in sensory hairs, sensilla, located on the antennae and maxillary palps. In a previous study, we used odor volatiles that are behaviorally and/or electrophysiologically active for Ae. aegypti and other mosquito species to show that antennal ORNs of female Ae. aegypti are divided into functionally different classes. In the present study, we have, for the first time, conducted gas chromatography-coupled single sensillum recordings (GC-SSR) from antennal trichoid and intermediate sensilla of female Ae. aegypti in order to screen for additional putative host attractants and repellents. We used headspace collections from biologically relevant sources, such as different human body parts (including feet, trunk regions and armpit), as well as a plant species used as a mosquito repellent, Nepeta faassenii. We found that a number of ORN types strongly responded to one or more of the biological extracts. GC-SSR recordings revealed several active components, which were subsequently identified through GC-linked mass spectrometry (GC-MS). Electrophysiologically active volatiles from human skin included heptanal, octanal, nonanal and decanal.

  17. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations.

  18. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    NASA Astrophysics Data System (ADS)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  19. Excito-repellency of essential oils against an Aedes aegypti (L.) field population in Thailand.

    PubMed

    Boonyuan, Wasana; Grieco, John P; Bangs, Michael J; Prabaripai, Atchariya; Tantakom, Siripun; Chareonviriyaphap, Theeraphap

    2014-06-01

    An investigation of the behavioral responses of Aedes aegypti (= Stegomyia aegypti) to various concentrations of essential oils (2.5, 5, and 10%) extracted from hairy basil (Ocimum americanum Linn), ginger (Zingiber officinale Roscoe), lemongrass (Cymbopogon citratus Stapf), citronella grass (Cymbopogon nardus Rendle), and plai (Zingiber cassumunar Roxb) were performed using an excito-repellency test chamber. Results showed that Ae. aegypti exhibited varying levels of escape response in both the contact and noncontact chambers in response to different essential oils. The magnitude of the behaviors changed in a dose-response fashion depending on the percent volume to volume concentration of oil used. A 2.5% concentration of hairy basil oil produced a significantly greater escape response compared to the other extracts at the same concentration (P< 0.05). Oils of ginger, lemongrass, and citronella produced stronger irritant and repellent responses at the median 5% concentration compared to the lowest and highest concentrations. There was marked suppression of escape for both contact and noncontact tests using 10% concentrations of hairy basil, lemongrass, and citronella, with high knockdown for all three oils after 30 min. Hairy basil and lemongrass had the highest insecticidal activity to Ae. aegypti, with LC50 values of 6.3 and 6.7 percent, respectively. We conclude that the essential oils from native plants tested, and likely many other extracts found in plants, have inherent repellent and irritant qualities that should to be screened and optimized for their behavior-modifying properties against Ae. aegypti and other biting arthropods of public health and pest importance.

  20. Genomic and evolutionary analyses of Tango transposons in Aedes aegypti, Anopheles gambiae and other mosquito species.

    PubMed

    Coy, M R; Tu, Z

    2007-08-01

    Tango is a transposon of the Tc1 family and was originally discovered in the African malaria mosquito, Anopheles gambiae. Here we report a systematic analysis of the genome sequence of the yellow fever mosquito, Aedes aegypti, which uncovered three distinct Tango transposons. We name the only An. gambiae Tango transposon AgTango1 and the three Ae. aegypti Tango elements AeTango1-3. Like AgTango1, AeTango1 and AeTango2 elements both have members that retain characteristics of autonomous elements such as intact open reading frames and terminal inverted repeats (TIRs). AeTango3 is a degenerate transposon with no full-length members. All full-length Tango transposons contain subterminal direct repeats within their TIRs. AgTango1 and AeTango1-3 form a single clade among other Tc1 transposons. Within this clade, AgTango1 and AeTango1 are closely related and share approximately 80% identity at the amino acid level, which exceeds the level of similarity of the majority of host genes in the two species. A survey of Tango in other mosquito species was carried out using degenerate PCR. Tango was isolated and sequenced in all members of the An. gambiae species complex, Aedes albopictus and Ochlerotatus atropalpus. Oc. atropalpus contains a rich diversity of Tango elements, while Tango elements in Ae. albopictus and the An. gambiae species complex all belong to Tango1. No Tango was detected in Culex pipiens quinquefasciatus, Anopheles stephensi, Anopheles dirus, Anopheles farauti or Anopheles albimanus using degenerate PCR. Bioinformatic searches of the Cx. p. quinquefasciatus (~10 x coverage) and An. stephensi (0.33 x coverage) databases also failed to uncover any Tango elements. Although other evolutionary scenarios cannot be ruled out, there are indications that Tango1 underwent horizontal transfer among divergent mosquito species.

  1. Distribution of Brugia malayi larvae and DNA in vector and non-vector mosquitoes: implications for molecular diagnostics

    PubMed Central

    2009-01-01

    Background The purpose of this study was to extend prior studies of molecular detection of Brugia malayi DNA in vector (Aedes aegypti- Liverpool) and non-vector (Culex pipiens) mosquitoes at different times after ingestion of infected blood. Results Parasite DNA was detected over a two week time course in 96% of pooled thoraces of vector mosquitoes. In contrast, parasite DNA was detected in only 24% of thorax pools from non-vectors; parasite DNA was detected in 56% of midgut pools and 47% of abdomen pools from non-vectors. Parasite DNA was detected in vectors in the head immediately after the blood meal and after 14 days. Parasite DNA was also detected in feces and excreta of the vector and non-vector mosquitoes which could potentially confound results obtained with field samples. However, co-housing experiments failed to demonstrate transfer of parasite DNA from infected to non-infected mosquitoes. Parasites were also visualized in mosquito tissues by immunohistololgy using an antibody to the recombinant filarial antigen Bm14. Parasite larvae were detected consistently after mf ingestion in Ae. aegypti- Liverpool. Infectious L3s were seen in the head, thorax and abdomen of vector mosquitoes 14 days after Mf ingestion. In contrast, parasites were only detected by histology shortly after the blood meal in Cx. pipiens, and these were not labeled by the antibody. Conclusion This study provides new information on the distribution of filarial parasites and parasite DNA in vector and non-vector mosquitoes. This information should be useful for those involved in designing and interpreting molecular xenomonitoring studies. PMID:19922607

  2. Gene flow pattern among Aedes aegypti populations in Mexico.

    PubMed

    de Lourdes Muñoz, Maria; Mercado-Curiel, Ricardo F; Diaz-Badillo, Alvaro; Pérez Ramirez, Gerardo; Black, William C

    2013-03-01

    Patterns of gene flow vary greatly among Aedes aegypti populations throughout Mexico. The populations are panmictic along the Pacific coast, isolated by distance in northeast Mexico, and exhibit moderate gene flow across the Yucatan peninsula. Nine Ae. aegypti collections from 6 cities in Oaxaca, Mexico, were taken to examine the local patterns of gene flow. Genetic variation was examined in a 387-bp region of the nicotinamide adenine dinucleotide dehydrogenase subunit 4 mitochondrial gene (ND4) using single-strand conformation polymorphism analysis, and 3 haplotypes were detected. Cluster analysis on the linearized FST genetic distances failed to group collections in geographic proximity. Regression analysis of linear or road distances on linearized F(ST) indicated that proximal collections were as diverse as distant collections across an approximately 800-km range. The geographical distribution of the Mexican mosquito haplotype frequencies was determined for the ND4 sequences from 524 individuals from Oaxaca (this study) and 2,043 individuals from our previous studies. Herein, we report on yet another pattern dominated by genetic drift among 9 Ae. aegypti collections from 6 cities in Oaxaca, Mexico, and compare it to those reported in other regions of Mexico. Molecular analysis of variance showed that there was as much genetic variation among collections 4 km apart as there was among all collections. The numbers of haplotypes and the amount of genetic diversity among the collections from Oaxaca were much lower than detected in previous studies in other regions of Mexico and may reflect the effects of control efforts or adaptations to the altitudinal limits (1,500 m) of the species in Mexico. The geographical distribution of mosquito haplotypes in Mexico is also reported. Furthermore, based on the distribution of the mosquito haplotypes in America, we suggest that mosquito dispersion is very efficient, most likely due to commercial transportation.

  3. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus

    PubMed Central

    LOUNIBOS, L. P.

    2009-01-01

    Larval competition is common in container-breeding mosquitoes. The impact of competition on larval growth has been thoroughly examined and findings that larval competition can lead to density-dependent effects on adult body size have been documented. The effects of larval competition on adult longevity have been less well explored. The effects of intraspecific larval densities on the longevity of adults maintained under relatively harsh environmental conditions were tested in the laboratory by measuring the longevity of adult Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae) that had been reared under a range of larval densities and subsequently maintained in high- or low-humidity regimes (85% or 35% relative humidity [RH], respectively) as adults. We found significant negative effects of competition on adult longevity in Ae. aegypti, but not in Ae. albopictus. Multivariate analysis of variance suggested that the negative effect of the larval environment on the longevity of Ae. aegypti adults was most strongly associated with increased development time and decreased wing length as adults. Understanding how larval competition affects adult longevity under a range of environmental conditions is important in establishing the relationship between models of mosquito population regulation and epidemiological models of vector-borne disease transmission. PMID:19239615

  4. Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, U.S./Sonora, MX border.

    PubMed

    Hayden, Mary H; Uejio, Christopher K; Walker, Kathleen; Ramberg, Frank; Moreno, Rafael; Rosales, Cecilia; Gameros, Mercedes; Mearns, Linda O; Zielinski-Gutierrez, Emily; Janes, Craig R

    2010-08-01

    This study examined the association of human and environmental factors with the presence of Aedes aegypti, the vector for dengue fever and yellow fever viruses, in a desert region in the southwest United States and northwest Mexico. Sixty-eight sites were longitudinally surveyed along the United States-Mexico border in Tucson, AZ, Nogales, AZ, and Nogales, Sonora during a 3-year period. Aedes aegypti presence or absence at each site was measured three times per year using standard oviposition traps. Maximum and minimum temperature and relative humidity were measured hourly at each site. Field inventories were conducted to measure human housing factors potentially affecting mosquito presence, such as the use of air-conditioning and evaporative coolers, outdoor vegetation cover, and access to piped water. The results showed that Ae. aegypti presence was highly variable across space and time. Aedes aegypti presence was positively associated with highly vegetated areas. Other significant variables included microclimatic differences and access to piped water. This study demonstrates the importance of microclimate and human factors in predicting Ae. aegypti distribution in an arid environment.

  5. Improving the effectiveness of three essential oils against Aedes aegypti (Linn.) and Anopheles dirus (Peyton and Harrison).

    PubMed

    Auysawasdi, Nutthanun; Chuntranuluck, Sawitri; Phasomkusolsil, Siriporn; Keeratinijakal, Vichien

    2016-01-01

    Repellency of essential oil extracted from Curcuma longa, Eucalyptus globulus, and Citrus aurantium at various concentrations (5, 10, 15, 20, and 25 %) with and without 5 % vanillin was evaluated against female mosquitoes: Aedes aegypti and Anopheles dirus. The comparisons were made with a commercial chemical repellent (N,N-diethyl-3-methylbenzamide (DEET) 25 % w/w; KOR YOR 15) by arm in cage method. It was found that the essential oils with 5 % vanillin gave the longest lasting period against two mosquitoes as follows: Curcuma longa gave 150 min for Ae. aegypti, 480 min for An. dirus; Eucalyptus globulus gave 144 min for Ae. aegypti, 390 min for An. dirus; and Citrus aurantium gave 120 min for Ae. aegypti, 360 min for An. dirus. The 25 % Curcuma longa essential oil exhibited the best efficiency as equal as a commercial repellent (480 min against An. dirus). Vanillin can extend the period of time in protection against the two mosquitoes. This study indicates the potential uses of the essential oils (Curcuma longa, Eucalyptus globulus, and Citrus aurantium) with vanillin as natural mosquito repellents.

  6. Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba.

    PubMed

    Bisset, Juan; Rodríguez, María M; Fernández, Ditter

    2006-11-01

    A sample of Aedes aegypti (L.) (Diptera: Culicidae) from Santiago de Cuba, Cuba, with a high level of propoxur resistance compared with the reference susceptible Rockefeller strain (12.60 x at the 50% lethal concentration [LC50] and 18.08 at the 90% lethal concentration [LC90]), with a 4.3% frequency of insensitive acetylcholinesterase (AChE) frequency, was subjected to propoxur selection for 13 successive generations to increase the frequency of this resistance mechanism in Ae. aegypti. High resistance to propoxur was developed during this selection (41.73-fold), and the frequency of insensitive AChE mechanism was increased 13.25-fold. Other mechanisms (overproduced esterases, glutathione transferases, or monooxygenases) were not detected in the propoxur-selected strain. The selection of an insensitive AChE resistance mechanism in Ae. aegypti has important implications and will be a valuable resource for genetic studies and molecular characterization of the ace gene mutation(s) associated with insecticide resistance in Ae. aegypti.

  7. Vacant lots: productive sites for Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Mérida City, México.

    PubMed

    Baak-Baak, Carlos M; Arana-Guardia, Roger; Cigarroa-Toledo, Nohemi; Loroño-Pino, Maria Alba; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Beaty, Barry J; Eisen, Lars; García-Rejón, Julián E

    2014-03-01

    We assessed the potential for vacant lots and other nonresidential settings to serve as source environments for Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) in Mérida City, México. Mosquito immatures were collected, during November 2011-June 2013, from residential premises (n = 156 site visits) and nonresidential settings represented by vacant lots (50), parking lots (18), and streets or sidewalks (28). Collections totaled 46,025 mosquito immatures of 13 species. Ae. aegypti was the most commonly encountered species accounting for 81.0% of total immatures, followed by Culex quinquefasciatus Say (12.1%). Site visits to vacant lots (74.0%) were more likely to result in collection of Ae. aegypti immatures than residential premises (35.9%). Tires accounted for 75.5% of Ae. aegypti immatures collected from vacant lots. Our data suggest that vacant lots should be considered for inclusion in mosquito surveillance and control efforts in Mérida City, as they often are located near homes, commonly have abundant vegetation, and frequently harbor accumulations of small and large discarded water-holding containers that we now have demonstrated to serve as development sites for immature mosquitoes. In addition, we present data for associations of immature production with various container characteristics, such as storage capacity, water quality, and physical location in the environment.

  8. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases

    PubMed Central

    Brown, Julia E.; McBride, Carolyn S.; Johnson, Petrina; Ritchie, Scott; Paupy, Christophe; Bossin, Hervé; Lutomiah, Joel; Fernandez-Salas, Ildefonso; Ponlawat, Alongkot; Cornel, Anthony J.; Black, William C.; Gorrochotegui-Escalante, Norma; Urdaneta-Marquez, Ludmel; Sylla, Massamba; Slotman, Michel; Murray, Kristy O.; Walker, Christopher; Powell, Jeffrey R.

    2011-01-01

    Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single ‘domestication’ event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic populations outside of Africa and the other included both domestic and forest populations within Africa. This suggests that human association in Africa occurred independently from that in domestic populations across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti. PMID:21227970

  9. Optomotor Reactions Reveal Polarization Sensitvity in the Zika Virus Transmitting Yellow Fever Mosquito Aedes (Stegomyia) aegypti (Diptera; Nematocera).

    PubMed

    Bernáth, Balazs; Meyer-Rochow, Victor Benno

    2016-12-01

    In polarization-sensitive insect species an orthogonal arrangement of photoreceptive microvilli is a characteristic feature. However, mosquito eyes had not revealed this feature, and polarization sensitivity (PS) was considered to be non-existent in them. Recently, however, gravid Aedes (Stegomyia) aegypti females were found to possess PS, sequels of which could be demonstrated only in the absence of chemicals emitted by conspecifics. Therefore, PS in Ae. aegypti, unlike that of other aquatic insects, apparently does not play a dominant role in locating water bodies, and is difficult to demonstrate in situations free of chemical cues. Here, we present behavioral evidence with Ae. aegypti females, exposed to large-field optomotor stimuli based solely on polarization contrast. Under conditions with stripes of alternating orthogonal directions of polarization, clear optomotor responses were elicited, no different from those in response to a rotating drum with vertical black and white stripes. Thus, Ae. aegypti is indeed polarization-sensitive; it reacts to vertically-striped contrast patterns with low spatial frequency on the basis of both intensity and polarization differences between the stripes.

  10. Vacant Lots: Productive Sites for Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Mérida City, México

    PubMed Central

    BAAK-BAAK, CARLOS M.; ARANA-GUARDIA, ROGER; CIGARROA-TOLEDO, NOHEMI; LOROÑO-PINO, MARÍA ALBA; REYES-SOLIS, GUADALUPE; MACHAIN-WILLIAMS, CARLOS; BEATY, BARRY J.; EISEN, LARS; GARCÍA-REJÓN, JULIÁN E.

    2014-01-01

    We assessed the potential for vacant lots and other non-residential settings to serve as source environments for Aedes (Stegomyia) aegypti (L.) in Mérida City, México. Mosquito immatures were collected, during November 2011 – June 2013, from residential premises (n = 156 site visits) and non-residential settings represented by vacant lots (50), parking lots (18), and streets/sidewalks (28). Collections totaled 46,025 mosquito immatures of 13 species. Ae. aegypti was the most commonly encountered species accounting for 81.0% of total immatures, followed by Culex quinquefasciatus Say (12.1%). Site visits to vacant lots (74.0%) were more likely to result in collection of Ae. aegypti immatures that residential premises (35.9%). Tires accounted for 75.5% of Ae. aegypti immatures collected from vacant lots. Our data suggest that vacant lots should be considered for inclusion in mosquito surveillance and control efforts in Mérida City, as they often are located near homes, commonly have abundant vegetation, and frequently harbor accumulations of small and large discarded water-holding containers that we now have demonstrated to serve as development sites for immature mosquitoes. Additionally, we present data for associations of immature production with various container characteristics, such as storage capacity, water quality and physical location in the environment. PMID:24724299

  11. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus.

    PubMed

    Sathantriphop, Sunaiyana; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2015-12-01

    The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock-down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P<0.05) contact irritant escape responses between treatment and control for all tested compound concentrations, except with the minimum dose of picaridin (P>0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes.

  12. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones are involved in the mating behavior of Aedes aegypti.

    PubMed

    Fawaz, Emadeldin Y; Allan, Sandra A; Bernier, Ulrich R; Obenauer, Peter J; Diclaro, Joseph W

    2014-12-01

    Mosquitoes of various species mate in swarms comprised of tens of thousands of flying males. In this study, we examined Aedes aegypti swarming behavior and identified associated chemical cues. Novel evidence is provided that Ae. aegypti females aggregate by means of olfactory cues, such as aggregation pheromones. Isolation of Ae. aegypti aggregation pheromones was achieved by aeration of confined mosquitoes and collection of associated volatiles by glass filters. The collected volatiles were identified through gas chromatography mass spectrometry (GCMS). Three aggregation pheromones were collected and identified as 2,6,6-trimethylcyclohex-2-ene-1,4-dione (ketoisophorone) (CAS# 1125-21-9, t(R) = 18.75), 2,2,6-trimethylcyclohexane-1,4-dione (the saturated analog of ketoisophorone) (CAS# 20547-99-3, t(R) = 20.05), and 1-(4-ethylphenyl) ethanone (CAS# 937-30-4, t(R) = 24.22). Our biological studies revealed that the identified compounds stimulated mosquito behavior under laboratory conditions. The mechanism of mosquito swarm formation is discussed in light of our behavioral study findings. A preliminary field trial demonstrated the potential application of the isolated aggregation pheromones in controlling Ae. aegypti.

  13. The effect of photoperiod on life history and blood-feeding activity in Aedes albopictus and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Costanzo, K S; Schelble, S; Jerz, K; Keenan, M

    2015-06-01

    Several studies have examined how climatic variables such as temperature and precipitation may affect life history traits in mosquitoes that are important to disease transmission. Despite its importance as a seasonal cue in nature, studies investigating the influence of photoperiod on such traits are relatively few. This study aims to investigate how photoperiod alters life history traits, survival, and blood-feeding activity in Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus). We performed three experiments that tested the effects of day length on female survival, development time, adult size, fecundity, adult life span, and propensity to blood feed in Ae. albopictus and Ae. aegypti. Each experiment had three photoperiod treatments: 1) short-day (10L:14D), 2) control (12L:12D), and 3) long-day (14L:10D). Aedes albopictus adult females were consistently larger in size when reared in short-day conditions. Aedes aegypti adult females from short-day treatments lived longer and were more likely to take a blood meal compared to other treatments. We discuss how species-specific responses may reflect alternative strategies evolved to increase survival during unfavorable conditions. We review the potential impacts of these responses on seasonal transmission patterns, such as potentially increasing vectorial capacity of Ae. aegypti during periods of shorter day lengths.

  14. Diminished reproductive fitness associated with the deltamethrin resistance in an Indian strain of dengue vector mosquito, Aedes aegypti L.

    PubMed

    Kumar, Sarita; Thomas, Anita; Samuel, Thomas; Sahgal, Arunima; Verma, Anita; Pillai, M K K

    2009-08-01

    The susceptible (SS) and resistant (DLR) strains of Aedes aegypti selected with deltamethrin and combination of deltamethrin and PBO (1:5) at the larval/adult stage were studied in the laboratory for their reproductive fitness in terms of fecundity, hatchability and longevity of gonotrophic cycles. The DLR strains exhibited 73-88% reduction in the duration of gonotrophic cycles as compared to their SS counterparts. There was a considerable decrease in egg production and hatchability rates in the selected strains of Ae. aegypti, as compared to that of the SS strain. Data indicate deltamethrin being an effective insecticide against Ae. aegypti and a possible correlation between the deltamethrin resistance and disadvantages during reproduction. The most drastic and significant effect was observed in DLR1b strains exhibiting 36.7% decrease in fecundity and 32.4% reduction in hatchability. Another important observation was diminished reproductive fitness in DLR2 strains. This suggests the usefulness of synergized deltamethrin selections in reducing the frequency of resistant individuals. A significant finding was to observe the reproductive disadvantage in adult-selected strains having negligible resistance to deltamethrin implicating the efficacy of deltamethrin as an adulticide rather than as a larvicide. Various probable reasons for the reduction in the reproductive potential and the possible resistance-management strategies of Ae. aegypti are discussed.

  15. (abstract) Airborne Emission Spectrometer (AES)

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard

    1994-01-01

    AES is a low-cost analog of the TES downlooking modes. Because AES operates at ambient temperature, limb-viewing is not possible. The first flight of AES took place in April 1994 on the NASA P3B aircraft out of Wallops Island, VA. While planned as an engineering test flight, spectra were successfully acquired both over the Atlantic Ocean and the area of the Great Dismal Swamp on the Virginia-North Carolina border. At this writing (July 1994), a second series of flights on the NASA DC8 aircraft out of Ames RC,CA is in progress. By the time of the workshop, a third series using the NASA C130 should have been accomplished.

  16. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus.

    PubMed

    Guo, Xiao-Xia; Zhu, Xiao-Juan; Li, Chun-Xiao; Dong, Yan-De; Zhang, Ying-Mei; Xing, Dan; Xue, Rui-De; Qin, Cheng-Feng; Zhao, Tong-Yan

    2013-12-01

    The vector competence of Aedes albopictus and Aedes aegypti with regard to DEN2-43 and New Guinea C (NGC) virus strains of Dengue 2 viruses was assessed and compared. The infection and dissemination rate and distribution of DEN2-43 antigens in orally infected Ae. albopictus was investigated using the reverse transcription polymerase chain reaction and an indirect immunofluorescence assay. To better understand the initial infection, dissemination and transmission of these viral strains in vector mosquitoes, Ae. albopoictus and Ae. aegypti were fed an artificial blood meal containing either the DEN2-43 or NGC strain. There was no significant difference in the infection and dissemination rates of DEN2-43 and NGC virus strains in Ae. albopictus, however, Ae. aegypti was more susceptible to infection by NGC than DEN2-43 vrius strain. Ae. albopictus mosquitoes infected with the NGC strain developed a higher percentage of midgut infections than those infected with the DEN2-43 strain (t=2.893, df=7, P=0.024). Approximately 26.7% of midgut samples were positive for the NGC antigen 5 days after infection, and 80% of mosquitoes had infected midgets after 15 days. The NGC antigen first became evident in mosquito salivary glands on Day 5, and 40% of mosquitoes had infected salivary by Day 9. In contrast, the DEN2-43 antigen first became evident in salivary glands on Day 7. The infection rate of NGC and DEN2-43 virus strains in salivary glands were similar. These results indicate that Ae. albopictus and Ae. aegypti are moderately competent vectors for the DEN2-43 virus, which could provide basic data for the epidemiology study of dengue fever in China.

  17. AE Recorder Characteristics and Development.

    SciTech Connect

    Partridge, Michael E.; Curtis, Shane Keawe; McGrogan, David Paul

    2016-11-01

    The Anomalous Environment Recorder (AE Recorder) provides a robust data recording capability for multiple high-shock applications including earth penetrators. The AE Recorder, packaged as a 2.4" di ameter cylinder 3" tall, acquires 12 accelerometer, 2 auxiliary, and 6 discrete signal channels at 250k samples / second. Recording depth is 213 seconds plus 75ms of pre-trigger data. The mechanical, electrical, and firmware are described as well as support electro nics designed for the first use of the recorder.

  18. Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand

    PubMed Central

    2013-01-01

    Background Resistance to pyrethroid insecticides is widespread among populations of Aedes aegypti, the main vector for the dengue virus. Several different point mutations within the voltage-gated sodium channel (VGSC) gene contribute to such resistance. A mutation at position 1016 in domain II, segment 6 of the VGSC gene in Ae. aegypti leads to a valine to glycine substitution (V1016G) that confers resistance to deltamethrin. Methods This study developed and utilized an allele-specific PCR (AS-PCR) assay that could be used to detect the V1016G mutation. The assay was validated against a number of sequenced DNA samples of known genotype and was determined to be in complete agreement. Larvae and pupae were collected from various localities throughout Thailand. Samples were reared to adulthood and their resistance status against deltamethrin was determined by standard WHO susceptibility bioassays. Deltamethrin-resistant and susceptible insects were then genotyped for the V1016G mutation. Additionally, some samples were genotyped for a second mutation at position 1534 in domain III (F1534C) which is also known to confer pyrethroid resistance. Results The bioassay results revealed an overall mortality of 77.6%. Homozygous 1016G individuals survived at higher rates than either heterozygous or wild-type (1016 V) mosquitoes. The 1016G mutation was significantly and positively associated with deltamethrin resistance and was widely distributed throughout Thailand. Interestingly, wild-type 1016 V mosquitoes tested were homozygous for the 1534C mutation, and all heterozygous mosquitoes were also heterozygous for 1534C. Mutant homozygous (G/G) mosquitoes expressed the wild-type (F/F) at position 1534. However, the presence of the 1534C mutation was not associated with deltamethrin resistance. Conclusions Our bioassay results indicate that all populations sampled display some degree of resistance to deltamethrin. Homozygous 1016G mosquitoes were far likelier to survive such

  19. Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps.

    PubMed

    Honório, N A; Codeço, C T; Alves, F C; Magalhães, M A F M; Lourenço-De-Oliveira, R

    2009-09-01

    Dengue dynamics in Rio de Janeiro, Brazil, as in many dengue-endemic regions of the world, is seasonal, with peaks during the wet-hot months. This temporal pattern is generally attributed to the dynamics of its mosquito vector Aedes aegypti (L.). The objectives of this study were to characterize the temporal pattern of Ae. aegypti population dynamics in three neighborhoods of Rio de Janeiro and its association with local meteorological variables; and to compare positivity and density indices obtained with ovitraps and MosquiTraps. The three neighborhoods are distinct in vegetation coverage, sanitation, water supply, and urbanization. Mosquito sampling was carried out weekly, from September 2006 to March 2008, a period during which large dengue epidemics occurred in the city. Our results show peaks of oviposition in early summer 2007 and late summer 2008, detected by both traps. The ovitrap provided a more sensitive index than MosquiTrap. The MosquiTrap detection threshold showed high variation among areas, corresponding to a mean egg density of approximately 25-52 eggs per ovitrap. Both temperature and rainfall were significantly related to Ae. aegypti indices at a short (1 wk) time lag. Our results suggest that mean weekly temperature above 22-24 degrees C is strongly associated with high Ae. aegypti abundance and consequently with an increased risk of dengue transmission. Understanding the effects of meteorological variables on Ae. aegypti population dynamics will help to target control measures at the times when vector populations are greatest, contributing to the development of climate-based control and surveillance measures for dengue fever in a hyperendemic area.

  20. Impact of Autocidal Gravid Ovitraps on Chikungunya Virus Incidence in Aedes aegypti (Diptera: Culicidae) in Areas With and Without Traps.

    PubMed

    Barrera, Roberto; Acevedo, Veronica; Felix, Gilberto E; Hemme, Ryan R; Vazquez, Jesus; Munoz, Jorge L; Amador, Manuel

    2016-12-28

    Puerto Rico detected the first confirmed case of chikungunya virus (CHIKV) in May 2014 and the virus rapidly spread throughout the island. The invasion of CHIKV allowed us to observe Aedes aegypti (L.) densities, infection rates, and impact of vector control in urban areas using CDC autocidal gravid ovitraps (AGO traps) for mosquito control over several years. Because local mosquitoes can only get the virus from infectious residents, detecting the presence of virus in mosquitoes functions as a proxy for the presence of virus in people. We monitored the incidence of CHIKV in gravid females of Ae. aegypti in four neighborhoods-two with three AGO traps per home in most homes and two nearby neighborhoods without AGO mosquito control traps. Monitoring of mosquito density took place weekly using sentinel AGO traps from June to December 2014. In all, 1,334 pools of female Ae. aegypti (23,329 individuals) were processed by real-time reverse transcription PCR to identify CHIKV and DENV RNA. Density of Ae. aegypti females was 10.5 times lower (91%) in the two areas with AGO control traps during the study. Ten times (90.9%) more CHIKV-positive pools were identified in the nonintervention areas (50/55 pools) than in intervention areas (5/55). We found a significant linear relationship between the number of positive pools and both density of Ae. aegypti and vector index (average number of expected infected mosquitoes per trap per week). Temporal and spatial patterns of positive CHIKV pools suggested limited virus circulation in areas with AGO traps.

  1. Abundance and prevalence of Aedes aegypti immatures and relationships with household water storage in rural areas in southern Viet Nam.

    PubMed

    Nguyen, Le Anh P; Clements, Archie C A; Jeffery, Jason A L; Yen, Nguyen Thi; Nam, Vu Sinh; Vaughan, Gregory; Shinkfield, Ramon; Kutcher, Simon C; Gatton, Michelle L; Kay, Brian H; Ryan, Peter A

    2011-06-01

    Since 2000, the Government of Viet Nam has committed to provide rural communities with increased access to safe water through a variety of household water supply schemes (wells, ferrocement tanks and jars) and piped water schemes. One possible, unintended consequence of these schemes is the concomitant increase in water containers that may serve as habitats for dengue mosquito immatures, principally Aedes aegypti. To assess these possible impacts we undertook detailed household surveys of Ae. aegypti immatures, water storage containers and various socioeconomic factors in three rural communes in southern Viet Nam. Positive relationships between the numbers of household water storage containers and the prevalence and abundance of Ae. aegypti immatures were found. Overall, water storage containers accounted for 92-97% and 93-96% of the standing crops of III/IV instars and pupae, respectively. Interestingly, households with higher socioeconomic levels had significantly higher numbers of water storage containers and therefore greater risk of Ae. aegypti infestation. Even after provision of piped water to houses, householders continued to store water in containers and there was no observed decrease in water storage container abundance in these houses, compared to those that relied entirely on stored water. These findings highlight the householders' concerns about the limited availability of water and their strong behavoural patterns associated with storage of water. We conclude that household water storage container availability is a major risk factor for infestation with Ae. aegypti immatures, and that recent investment in rural water supply infrastructure are unlikely to mitigate this risk, at least in the short term.

  2. Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti.

    PubMed

    Jonusaite, Sima; Donini, Andrew; Kelly, Scott P

    2017-03-01

    This study examined the distribution and localization of the septate junction (SJ) proteins snakeskin (Ssk) and mesh in osmoregulatory organs of larval mosquito (Aedes aegypti), as well as their response to altered environmental salt levels. Ssk and mesh transcripts and immunoreactivity were detected in tissues of endodermal origin such as the midgut and Malpighian tubules of A. aegypti larvae, but not in ectodermally derived hindgut and anal papillae. Immunolocalization of Ssk and mesh in the midgut and Malpighian tubules indicated that both proteins are concentrated at regions of cell-cell contact between epithelial cells. Transcript abundance of ssk and mesh was higher in the midgut and Malpighian tubules of brackish water (BW, 30% SW) reared A. aegypti larvae when compared with freshwater (FW) reared animals. Therefore, [(3)H]polyethylene glycol (MW 400Da, PEG-400) flux was examined across isolated midgut and Malpighian tubule preparations as a measure of their paracellular permeability. It was found that PEG-400 flux was greater across the midgut of BW versus FW larvae while the Malpighian tubules of BW-reared larvae had reduced PEG-400 permeability in conjunction with increased Cl(-) secretion compared to FW animals. Taken together, data suggest that Ssk and mesh are found in smooth SJs (sSJs) of larval A. aegypti and that their abundance alters in association with changes in epithelial permeability when larvae reside in water of differing salt content. This latter observation suggests that Ssk and mesh play a role in the homeostatic control of salt and water balance in larval A. aegypti.

  3. The Effects of Interspecific Courtship on the Mating Success of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Males

    PubMed Central

    Bargielowski, Irka; Blosser, Erik; Lounibos, L. P.

    2015-01-01

    Satyrization, a form of asymmetric reproductive interference, has recently been shown to play a role in competitive displacements of Aedes aegypti (L.) by Aedes albopictus (Skuse). Furthermore, female Ae. aegypti from populations in sympatry with Ae. albopictus have evolved reproductive character displacement and changes in mating behavior to reduce interspecific mating. In this article, we examine evolutionary responses of males to interspecific mating and show that satyrization has also evoked reproductive character displacement in males. We demonstrate that the presence of heterospecific females negatively influences conspecific mating success in male Ae. aegypti, most likely due to misdirected courting or mating efforts, and that males of this species from populations in sympatry with Ae. albopictus have evolved to be less influenced by the presence of heterospecific females than their allopatric counterparts. Conversely, we suggest that the presence of conspecifics may, in some circumstances, increase interspecific mating. This study demonstrates that co-occurrences of these two invasive species may lead to evolution and adaptation of reproductive behaviors to changing circumstances. Understanding the processes driving development of mate choice preferences or avoidance mechanisms may help predict future changes in the distribution and abundance of insect vectors or pests. PMID:27418696

  4. Effect of triflumuron, a chitin synthesis inhibitor, on Aedes aegypti, Aedes albopictus and Culex quinquefasciatus under laboratory conditions

    PubMed Central

    2013-01-01

    Background Resistance to traditional insecticides represents a threat to the control of disease vectors. The insect growth regulators (IGR) are a potential alternative to control mosquitoes, including resistant populations. The chitin synthesis inhibitors (CSI) are IGRs, which interfere with the insect molting process and represent one major class of compounds against Aedes aegypti populations resistant to the larvicide organophosphate temephos. In the present study, we evaluated the efficacy of the CSI triflumuron on Culex quinquefasciatus, Aedes albopictus and against several Ae. aegypti field populations. Methods The efficacy of triflumuron, against Cx. quinquefasciatus and Ae. albopictus was evaluated with laboratory strains through dose–response assays. Additionaly, this CSI was tested against seven Ae. aegypti field populations exhibiting distinct resistance levels to both temephos and the pyrethroid deltamethrin. Aedes aegypti populations were exposed to both a dose that inhibits 99% of the adult emergence of mosquitoes from the susceptible reference strain, Rockefeller, (EI99 = 3.95 μg/L) and the diagnostic dose (DD), corresponding to twice the EI99. Results Our results indicate that triflumuron was effective in emergence inhibition (EI) of Cx. quinquefasciatus (EI50= 5.28 μg/L; EI90= 12.47 μg/L) and Ae. albopictus (EI50= 1.59 μg/L; EI90= 2.63 μg/L). Triflumuron was also effective against seven Ae. aegypti Brazilian populations resistant to both temephos and deltamethrin. Exposure of all the Ae. aegypti populations to the triflumuron EI99 of the susceptible reference strain, Rockefeller, resulted in complete inhibition of adult emergence, suggesting no cross-resistance among traditional insecticides and this CSI. However, a positive correlation between temephos resistance and tolerance to triflumuron was observed. Conclusion The results suggest that triflumuron represents a potential tool for the control of disease vectors in public

  5. Assessment of Local Mosquito Species Incriminates Aedes aegypti as the Potential Vector of Zika Virus in Australia

    PubMed Central

    Hall-Mendelin, Sonja; Pyke, Alyssa T.; Moore, Peter R.; Mackay, Ian M.; McMahon, Jamie L.; Ritchie, Scott A.; Taylor, Carmel T.; Moore, Frederick A.J.; van den Hurk, Andrew F.

    2016-01-01

    Background Within the last 10 years Zika virus (ZIKV) has caused unprecedented epidemics of human disease in the nations and territories of the western Pacific and South America, and continues to escalate in both endemic and non-endemic regions. We evaluated the vector competence of Australian mosquitoes for ZIKV to assess their potential role in virus transmission. Methodology/Principal Findings Mosquitoes were exposed to infectious blood meals containing the prototype African ZIKV strain. After 14 days incubation at 28°C and high relative humidity, infection, dissemination and transmission rates were assessed. Infection in Culex annulirostris and Cx. sitiens could not be detected. 8% of Cx. quinquefasciatus were infected, but the virus did not disseminate in this species. Despite having infection rates > 50%, Aedes notoscriptus and Ae. vigilax did not transmit ZIKV. In contrast, Ae. aegypti had infection and transmission rates of 57% and 27%, respectively. In susceptibility trials, the virus dose required to infect 50% (ID50) of Ae. aegypti was106.4 tissue culture infectious dose50 (TCID50)/mL. Additionally, a threshold viral load within the mosquito of at least 105.1 TCID50 equivalents/mL had to be reached before virus transmission occurred. Conclusions/Significance We confirmed Ae. aegypti to be the most likely mosquito vector of ZIKV in Australia, although the restricted distribution of this species will limit the receptive zone to northern Queensland where this species occurs. Importantly, the role in ZIKV transmission of Culex and other Aedes spp. tested will be negligible. Despite being the implicated vector, the relatively high ID50 and need for a high titer disseminated infection in Ae. aegypti suggest that high mosquito population densities will be required to facilitate epidemic ZIKV transmission among the currently immunologically naïve human population in Australia. PMID:27643685

  6. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    PubMed

    Ulrich, Jill N; Beier, John C; Devine, Gregor J; Hugo, Leon E

    2016-07-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal.

  7. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development

    PubMed Central

    Beier, John C.; Devine, Gregor J.; Hugo, Leon E.

    2016-01-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30–40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20–30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20–30°C for 4–7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  8. Comparison of wing geometry data and genetic data for assessing the population structure of Aedes aegypti.

    PubMed

    Vidal, Paloma Oliveira; Suesdek, Lincoln

    2012-04-01

    Aedes aegypti is the most important vector of dengue viruses in tropical and subtropical regions. Because vaccines are still under development, dengue prevention depends primarily on vector control. Population genetics is a common approach in research involving Ae. aegypti. In the context of medical entomology, wing morphometric analysis has been proposed as a strong and low-cost complementary tool for investigating population structure. Therefore, we comparatively evaluated the genetic and phenotypic variability of population samples of Ae. aegypti from four sampling sites in the metropolitan area of São Paulo city, Brazil. The distances between the sites ranged from 7.1 to 50 km. This area, where knowledge on the population genetics of this mosquito is incipient, was chosen due to the thousands of dengue cases registered yearly. The analysed loci were polymorphic, and they revealed population structure (global F(ST)=0.062; p<0.05) and low levels of gene flow (Nm=0.47) between the four locations. Principal component and discriminant analyses of wing shape variables (18 landmarks) demonstrated that wing polymorphisms were only slightly more common between populations than within populations. Whereas microsatellites allowed for geographic differentiation, wing geometry failed to distinguish the samples. These data suggest that microevolution in this species may affect genetic and morphological characters to different degrees. In this case, wing shape was not validated as a marker for assessing population structure. According to the interpretation of a previous report, the wing shape of Ae. aegypti does not vary significantly because it is stabilised by selective pressure.

  9. Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.

    PubMed

    Hugo, Leon E; Jeffery, Jason A L; Trewin, Brendan J; Wockner, Leesa F; Nguyen, Thi Yen; Nguyen, Hoang Le; Nghia, Le Trung; Hine, Emma; Ryan, Peter A; Kay, Brian H

    2014-02-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle.

  10. Chemical composition, larvicidal, and biting deterrent activity of essential oils of two subspecies of Tanacetum argenteum (Asterales: Asteraceae) and individual constituents against Aedes aegypti (Diptera: Culicidae).

    PubMed

    Ali, Abbas; Tabanca, Nurhayat; Kurkcuoglu, Mine; Duran, Ahmet; Blythe, Eugene K; Khan, Ikhlas A; Baser, K Husnu Can

    2014-07-01

    Water-distilled essential oils from dried aerial parts of Tanacetum argenteum (Lam.) Willd. subsp. argenteum (Lam.) and T. argenteum (Lam.) Willd. subsp. canum (C. Koch) Grierson were analyzed by gas chromatography and gas chromatography-mass spectrometry. In total, 27 and 32 components were identified representing 97.2 and 98.7% of essential oils of subsp. argenteum and canum, respectively. Main compounds of T. argenteum subsp. argenteum were alpha-pinene (67.9%) and beta-pinene (4.8%), whereas alpha-pinene (53.6%), 1, 8-cineole (14.8%), and camphor (4.7%) were the major constituents of subsp. canum. Essential oil of T. argenteum subsp. canum at 10 microg/cm2 with Biting Deterrent Index (BDI) value of 0.73 showed activity similar to N,N-Diethyl-meta-toluamide (DEET) at 25 mol/cm2, whereas the activity of essential oil of subsp. argenteum was lower (BDI = 0.47) than subsp. canum and DEET. Based on 95% CIs, activity of beta-caryophyllene (BDI value = 0.54) and caryophyllene oxide (BDI = 0.66) were significantly lower than DEET. In larval bioassays, essential oil of T. argenteum subsp. argenteum showed LC50 value of 93.34 ppm, whereas T. argenteum subsp. canum killed only 40% of the larvae at the highest dose of 125 ppm. Among the pure compounds, beta-caryophyllene (LC50 = 26 ppm) was the most potent compound followed by caryophyllene oxide (LC50 = 29 ppm), which was also similar to (-)-beta-pinene (LC50 = 35.9 ppm) against 1-d-old Ae. aegypti larvae at 24-h post treatment. Compounds (-)-alpha-pinene and (+)-beta-pinene showed similar larvicidal activity. Activity of (+)-alpha-pinene with LC50 value of was similar to the essential oil of T. argenteum subsp. argenteum.

  11. Biting Deterrence and Insecticidal Activity of Hydrazide-Hydrazones and Their Corresponding 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazoles Against Aedes aegypti

    DTIC Science & Technology

    2012-09-11

    2,5-disubstituted-2,3-dihydro-1,3,4- oxadiazoles against Aedes aegypti Nurhayat Tabanca,a∗ Abbas Ali,a Ulrich R Bernier,b Ikhlas A Khan,a,c,d Bedia...biting deterrent and larvicidal activities against Aedes aegypti for the first time. RESULTS: The compound 3-acetyl-5-(4-fluorophenyl)-2-[4-(dimethylamino...phenyl]-2,3-dihydro-1,3,4-oxadiazole (17) produced the highest biting deterrent activity (BDI = 1.025) against Ae. Aegypti , followed by 4

  12. Comparative efficacy of two poeciliid fish in indoor cement tanks against chikungunya vector Aedes aegypti in villages in Karnataka, India

    PubMed Central

    2011-01-01

    Background In 2006, severe outbreaks of Aedes aegypti-transmitted chikungunya occurred in villages in Karnataka, South India. We evaluated the effectiveness of combined information, education and communication (IEC) campaigns using two potential poeciliid larvivorous fish guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis), in indoor cement tanks for Aedes larval control. Methods Trials were conducted in two villages (Domatmari and Srinivaspura) in Tumkur District from March to May 2006 for Poecilia